WorldWideScience

Sample records for novo sequence assembly

  1. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  2. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    DEFF Research Database (Denmark)

    Maretty, Lasse; Jensen, Jacob Malte; Petersen, Bent

    2017-01-01

    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome......-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set...... or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high...

  3. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    DEFF Research Database (Denmark)

    Maretty, Lasse; Jensen, Jacob Malte; Petersen, Bent

    2017-01-01

    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome...... or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high......-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set...

  4. Long-read sequencing and de novo assembly of a Chinese genome

    Science.gov (United States)

    Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arr...

  5. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    DEFF Research Database (Denmark)

    Maretty, Lasse; Jensen, Jacob Malte; Petersen, Bent

    2017-01-01

    or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high......-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set...

  6. Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data.

    Science.gov (United States)

    Al-Nakeeb, Kosai; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-11-21

    Whole-genome sequencing (WGS) projects provide short read nucleotide sequences from nuclear and possibly organelle DNA depending on the source of origin. Mitochondrial DNA is present in animals and fungi, while plants contain DNA from both mitochondria and chloroplasts. Current techniques for separating organelle reads from nuclear reads in WGS data require full reference or partial seed sequences for assembling. Norgal (de Novo ORGAneLle extractor) avoids this requirement by identifying a high frequency subset of k-mers that are predominantly of mitochondrial origin and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences in the range from 98.5 to 99.5%. We also assembled the chloroplasts of grape vines and cucumbers using Norgal together with seed-based de novo assemblers. Norgal is a pipeline that can extract and assemble full or partial mitochondrial and chloroplast genomes from WGS short reads without prior knowledge. The program is available at: https://bitbucket.org/kosaidtu/norgal .

  7. NxRepair: error correction in de novo sequence assembly using Nextera mate pairs

    Directory of Open Access Journals (Sweden)

    Rebecca R. Murphy

    2015-06-01

    Full Text Available Scaffolding errors and incorrect repeat disambiguation during de novo assembly can result in large scale misassemblies in draft genomes. Nextera mate pair sequencing data provide additional information to resolve assembly ambiguities during scaffolding. Here, we introduce NxRepair, an open source toolkit for error correction in de novo assemblies that uses Nextera mate pair libraries to identify and correct large-scale errors. We show that NxRepair can identify and correct large scaffolding errors, without use of a reference sequence, resulting in quantitative improvements in the assembly quality. NxRepair can be downloaded from GitHub or PyPI, the Python Package Index; a tutorial and user documentation are also available.

  8. De novo assembly of human genomes with massively parallel short read sequencing

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Zhu, Hongmei; Ruan, Jue

    2010-01-01

    genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities...... for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way....

  9. Optimizing and benchmarking de novo transcriptome sequencing: from library preparation to assembly evaluation.

    Science.gov (United States)

    Hara, Yuichiro; Tatsumi, Kaori; Yoshida, Michio; Kajikawa, Eriko; Kiyonari, Hiroshi; Kuraku, Shigehiro

    2015-11-18

    RNA-seq enables gene expression profiling in selected spatiotemporal windows and yields massive sequence information with relatively low cost and time investment, even for non-model species. However, there remains a large room for optimizing its workflow, in order to take full advantage of continuously developing sequencing capacity. Transcriptome sequencing for three embryonic stages of Madagascar ground gecko (Paroedura picta) was performed with the Illumina platform. The output reads were assembled de novo for reconstructing transcript sequences. In order to evaluate the completeness of transcriptome assemblies, we prepared a reference gene set consisting of vertebrate one-to-one orthologs. To take advantage of increased read length of >150 nt, we demonstrated shortened RNA fragmentation time, which resulted in a dramatic shift of insert size distribution. To evaluate products of multiple de novo assembly runs incorporating reads with different RNA sources, read lengths, and insert sizes, we introduce a new reference gene set, core vertebrate genes (CVG), consisting of 233 genes that are shared as one-to-one orthologs by all vertebrate genomes examined (29 species)., The completeness assessment performed by the computational pipelines CEGMA and BUSCO referring to CVG, demonstrated higher accuracy and resolution than with the gene set previously established for this purpose. As a result of the assessment with CVG, we have derived the most comprehensive transcript sequence set of the Madagascar ground gecko by means of assembling individual libraries followed by clustering the assembled sequences based on their overall similarities. Our results provide several insights into optimizing de novo RNA-seq workflow, including the coordination between library insert size and read length, which manifested in improved connectivity of assemblies. The approach and assembly assessment with CVG demonstrated here would be applicable to transcriptome analysis of other species as

  10. Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools.

    Science.gov (United States)

    Kisand, Veljo; Lettieri, Teresa

    2013-04-01

    De novo genome sequencing of previously uncharacterized microorganisms has the potential to open up new frontiers in microbial genomics by providing insight into both functional capabilities and biodiversity. Until recently, Roche 454 pyrosequencing was the NGS method of choice for de novo assembly because it generates hundreds of thousands of long reads (tools for processing NGS data are increasingly free and open source and are often adopted for both their high quality and role in promoting academic freedom. The error rate of pyrosequencing the Alcanivorax borkumensis genome was such that thousands of insertions and deletions were artificially introduced into the finished genome. Despite a high coverage (~30 fold), it did not allow the reference genome to be fully mapped. Reads from regions with errors had low quality, low coverage, or were missing. The main defect of the reference mapping was the introduction of artificial indels into contigs through lower than 100% consensus and distracting gene calling due to artificial stop codons. No assembler was able to perform de novo assembly comparable to reference mapping. Automated annotation tools performed similarly on reference mapped and de novo draft genomes, and annotated most CDSs in the de novo assembled draft genomes. Free and open source software (FOSS) tools for assembly and annotation of NGS data are being developed rapidly to provide accurate results with less computational effort. Usability is not high priority and these tools currently do not allow the data to be processed without manual intervention. Despite this, genome assemblers now readily assemble medium short reads into long contigs (>97-98% genome coverage). A notable gap in pyrosequencing technology is the quality of base pair calling and conflicting base pairs between single reads at the same nucleotide position. Regardless, using draft whole genomes that are not finished and remain fragmented into tens of contigs allows one to characterize

  11. The sequence and de novo assembly of the giant panda genome

    Science.gov (United States)

    Li, Ruiqiang; Fan, Wei; Tian, Geng; Zhu, Hongmei; He, Lin; Cai, Jing; Huang, Quanfei; Cai, Qingle; Li, Bo; Bai, Yinqi; Zhang, Zhihe; Zhang, Yaping; Wang, Wen; Li, Jun; Wei, Fuwen; Li, Heng; Jian, Min; Li, Jianwen; Zhang, Zhaolei; Nielsen, Rasmus; Li, Dawei; Gu, Wanjun; Yang, Zhentao; Xuan, Zhaoling; Ryder, Oliver A.; Leung, Frederick Chi-Ching; Zhou, Yan; Cao, Jianjun; Sun, Xiao; Fu, Yonggui; Fang, Xiaodong; Guo, Xiaosen; Wang, Bo; Hou, Rong; Shen, Fujun; Mu, Bo; Ni, Peixiang; Lin, Runmao; Qian, Wubin; Wang, Guodong; Yu, Chang; Nie, Wenhui; Wang, Jinhuan; Wu, Zhigang; Liang, Huiqing; Min, Jiumeng; Wu, Qi; Cheng, Shifeng; Ruan, Jue; Wang, Mingwei; Shi, Zhongbin; Wen, Ming; Liu, Binghang; Ren, Xiaoli; Zheng, Huisong; Dong, Dong; Cook, Kathleen; Shan, Gao; Zhang, Hao; Kosiol, Carolin; Xie, Xueying; Lu, Zuhong; Zheng, Hancheng; Li, Yingrui; Steiner, Cynthia C.; Lam, Tommy Tsan-Yuk; Lin, Siyuan; Zhang, Qinghui; Li, Guoqing; Tian, Jing; Gong, Timing; Liu, Hongde; Zhang, Dejin; Fang, Lin; Ye, Chen; Zhang, Juanbin; Hu, Wenbo; Xu, Anlong; Ren, Yuanyuan; Zhang, Guojie; Bruford, Michael W.; Li, Qibin; Ma, Lijia; Guo, Yiran; An, Na; Hu, Yujie; Zheng, Yang; Shi, Yongyong; Li, Zhiqiang; Liu, Qing; Chen, Yanling; Zhao, Jing; Qu, Ning; Zhao, Shancen; Tian, Feng; Wang, Xiaoling; Wang, Haiyin; Xu, Lizhi; Liu, Xiao; Vinar, Tomas; Wang, Yajun; Lam, Tak-Wah; Yiu, Siu-Ming; Liu, Shiping; Zhang, Hemin; Li, Desheng; Huang, Yan; Wang, Xia; Yang, Guohua; Jiang, Zhi; Wang, Junyi; Qin, Nan; Li, Li; Li, Jingxiang; Bolund, Lars; Kristiansen, Karsten; Wong, Gane Ka-Shu; Olson, Maynard; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian; Wang, Jun

    2013-01-01

    Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes. PMID:20010809

  12. Sequencing and De Novo Transcriptome Assembly of Brachypodium sylvaticum (Poaceae

    Directory of Open Access Journals (Sweden)

    Samuel E. Fox

    2013-03-01

    Full Text Available Premise of the study: We report the de novo assembly and characterization of the transcriptomes of Brachypodium sylvaticum (slender false-brome accessions from native populations of Spain and Greece, and an invasive population west of Corvallis, Oregon, USA. Methods and Results: More than 350 million sequence reads from the mRNA libraries prepared from three B. sylvaticum genotypes were assembled into 120,091 (Corvallis, 104,950 (Spain, and 177,682 (Greece transcript contigs. In comparison with the B. distachyon Bd21 reference genome and GenBank protein sequences, we estimate >90% exome coverage for B. sylvaticum. The transcripts were assigned Gene Ontology and InterPro annotations. Brachypodium sylvaticum sequence reads aligned against the Bd21 genome revealed 394,654 single-nucleotide polymorphisms (SNPs and >20,000 simple sequence repeat (SSR DNA sites. Conclusions: To our knowledge, this is the first report of transcriptome sequencing of invasive plant species with a closely related sequenced reference genome. The sequences and identified SNP variant and SSR sites will provide tools for developing novel genetic markers for use in genotyping and characterization of invasive behavior of B. sylvaticum.

  13. Norgal: Extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data

    DEFF Research Database (Denmark)

    Al-Nakeeb, Kosai Ali Ahmed; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-01-01

    and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences...

  14. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads.

    Science.gov (United States)

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo; Zhu, Shilin; Shi, Daihu; McDill, Joshua; Yang, Linfeng; Hawkins, Simon; Neutelings, Godfrey; Datla, Raju; Lambert, Georgina; Galbraith, David W; Grassa, Christopher J; Geraldes, Armando; Cronk, Quentin C; Cullis, Christopher; Dash, Prasanta K; Kumar, Polumetla A; Cloutier, Sylvie; Sharpe, Andrew G; Wong, Gane K-S; Wang, Jun; Deyholos, Michael K

    2012-11-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  15. When less is more: 'slicing' sequencing data improves read decoding accuracy and de novo assembly quality.

    Science.gov (United States)

    Lonardi, Stefano; Mirebrahim, Hamid; Wanamaker, Steve; Alpert, Matthew; Ciardo, Gianfranco; Duma, Denisa; Close, Timothy J

    2015-09-15

    As the invention of DNA sequencing in the 70s, computational biologists have had to deal with the problem of de novo genome assembly with limited (or insufficient) depth of sequencing. In this work, we investigate the opposite problem, that is, the challenge of dealing with excessive depth of sequencing. We explore the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones (in the context of the combinatorial pooling design we have recently proposed), and (ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing data, we show that when the depth of sequencing increases over a certain threshold, sequencing errors make these two problems harder and harder (instead of easier, as one would expect with error-free data), and as a consequence the quality of the solution degrades with more and more data. For the first problem, we propose an effective solution based on 'divide and conquer': we 'slice' a large dataset into smaller samples of optimal size, decode each slice independently, and then merge the results. Experimental results on over 15 000 barley BACs and over 4000 cowpea BACs demonstrate a significant improvement in the quality of the decoding and the final assembly. For the second problem, we show for the first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing data. Python scripts to process slices and resolve decoding conflicts are available from http://goo.gl/YXgdHT; software Hashfilter can be downloaded from http://goo.gl/MIyZHs stelo@cs.ucr.edu or timothy.close@ucr.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Extreme-Scale De Novo Genome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Georganas, Evangelos [Intel Corporation, Santa Clara, CA (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Rokhsar, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yelick, Katherine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.

    2017-09-26

    De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and potentially erroneous DNA segments and is one of the most important computations in modern genomics. This work presents HipMER, a high-quality end-to-end de novo assembler designed for extreme scale analysis, via efficient parallelization of the Meraculous code. Genome assembly software has many components, each of which stresses different components of a computer system. This chapter explains the computational challenges involved in each step of the HipMer pipeline, the key distributed data structures, and communication costs in detail. We present performance results of assembling the human genome and the large hexaploid wheat genome on large supercomputers up to tens of thousands of cores.

  17. De novo assembly of highly diverse viral populations

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2012-09-01

    Full Text Available Abstract Background Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. Results We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. Conclusions We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.

  18. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale

    DEFF Research Database (Denmark)

    Liu, Siyang; Huang, Shujia; Rao, Junhua

    2015-01-01

    present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome......) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We...... assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction...

  19. The de novo assembly of mitochondrial genomes of the extinct passenger pigeon (Ectopistes migratorius with next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Chih-Ming Hung

    Full Text Available The information from ancient DNA (aDNA provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome of two extinct passenger pigeons (Ectopistes migratorius using de novo assembly of massive short (90 bp, paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species.

  20. The De Novo Assembly of Mitochondrial Genomes of the Extinct Passenger Pigeon (Ectopistes migratorius) with Next Generation Sequencing

    Science.gov (United States)

    Hung, Chih-Ming; Lin, Rong-Chien; Chu, Jui-Hua; Yeh, Chia-Fen; Yao, Chiou-Ju; Li, Shou-Hsien

    2013-01-01

    The information from ancient DNA (aDNA) provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome) of two extinct passenger pigeons (Ectopistes migratorius) using de novo assembly of massive short (90 bp), paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species. PMID:23437111

  1. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang

    Full Text Available The advent of next-generation sequencing technologies is accompanied with the development of many whole-genome sequence assembly methods and software, especially for de novo fragment assembly. Due to the poor knowledge about the applicability and performance of these software tools, choosing a befitting assembler becomes a tough task. Here, we provide the information of adaptivity for each program, then above all, compare the performance of eight distinct tools against eight groups of simulated datasets from Solexa sequencing platform. Considering the computational time, maximum random access memory (RAM occupancy, assembly accuracy and integrity, our study indicate that string-based assemblers, overlap-layout-consensus (OLC assemblers are well-suited for very short reads and longer reads of small genomes respectively. For large datasets of more than hundred millions of short reads, De Bruijn graph-based assemblers would be more appropriate. In terms of software implementation, string-based assemblers are superior to graph-based ones, of which SOAPdenovo is complex for the creation of configuration file. Our comparison study will assist researchers in selecting a well-suited assembler and offer essential information for the improvement of existing assemblers or the developing of novel assemblers.

  2. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis.

    Science.gov (United States)

    Nowrousian, Minou; Stajich, Jason E; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D; Pöggeler, Stefanie; Read, Nick D; Seiler, Stephan; Smith, Kristina M; Zickler, Denise; Kück, Ulrich; Freitag, Michael

    2010-04-08

    Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for

  3. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis.

    Directory of Open Access Journals (Sweden)

    Minou Nowrousian

    2010-04-01

    Full Text Available Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data

  4. MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Yasumbumi

    2011-10-13

    Keio University's Yasumbumi Sakakibara on "MetaVelvet: An Extension of Velvet Assembler to de novo Metagenome Assembly from Short Sequence Reads" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads

    DEFF Research Database (Denmark)

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo

    2012-01-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp...... these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species....

  6. Characterization of Liaoning cashmere goat transcriptome: sequencing, de novo assembly, functional annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    Full Text Available Liaoning cashmere goat is a famous goat breed for cashmere wool. In order to increase the transcriptome data and accelerate genetic improvement for this breed, we performed de novo transcriptome sequencing to generate the first expressed sequence tag dataset for the Liaoning cashmere goat, using next-generation sequencing technology.Transcriptome sequencing of Liaoning cashmere goat on a Roche 454 platform yielded 804,601 high-quality reads. Clustering and assembly of these reads produced a non-redundant set of 117,854 unigenes, comprising 13,194 isotigs and 104,660 singletons. Based on similarity searches with known proteins, 17,356 unigenes were assigned to 6,700 GO categories, and the terms were summarized into three main GO categories and 59 sub-categories. 3,548 and 46,778 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Comparative analysis revealed that 42,254 unigenes were aligned to 17,532 different sequences in NCBI non-redundant nucleotide databases. 97,236 (82.51% unigenes were mapped to the 30 goat chromosomes. 35,551 (30.17% unigenes were matched to 11,438 reported goat protein-coding genes. The remaining non-matched unigenes were further compared with cattle and human reference genes, 67 putative new goat genes were discovered. Additionally, 2,781 potential simple sequence repeats were initially identified from all unigenes.The transcriptome of Liaoning cashmere goat was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the Liaoning cashmere goat transcriptome. The potential simple sequence repeats provide a material basis for future genetic linkage and quantitative trait loci analyses.

  7. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data

    Directory of Open Access Journals (Sweden)

    Duan Jialei

    2012-08-01

    Full Text Available Abstract Background Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq. The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. Results In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. Conclusions It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly.

  8. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from Total DNA Sequences

    Directory of Open Access Journals (Sweden)

    Shairul Izan

    2017-08-01

    Full Text Available Whole Genome Shotgun (WGS sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This re-sequencing approach may select against structural differences between the genomes especially in non-model species for which no close relatives have been sequenced before. The alternative approach is to de novo assemble the chloroplast genome from total genomic DNA sequences. In this study, we used k-mer frequency tables to identify and extract the chloroplast reads from the WGS reads and assemble these using a highly integrated and automated custom pipeline. Our strategy includes steps aimed at optimizing assemblies and filling gaps which are left due to coverage variation in the WGS dataset. We have successfully de novo assembled three complete chloroplast genomes from plant species with a range of nuclear genome sizes to demonstrate the universality of our approach: Solanum lycopersicum (0.9 Gb, Aegilops tauschii (4 Gb and Paphiopedilum henryanum (25 Gb. We also highlight the need to optimize the choice of k and the amount of data used. This new and cost-effective method for de novo short read assembly will facilitate the study of complete chloroplast genomes with more accurate analyses and inferences, especially in non-model plant genomes.

  9. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    Science.gov (United States)

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  10. Transcriptome sequencing and de novo assembly in arecanut, Areca catechu L elucidates the secondary metabolite pathway genes

    Directory of Open Access Journals (Sweden)

    Ramaswamy Manimekalai

    2018-03-01

    Full Text Available Areca catechu L. belongs to the Arecaceae family which comprises many economically important palms. The palm is a source of alkaloids and carotenoids. The lack of ample genetic information in public databases has been a constraint for the genetic improvement of arecanut. To gain molecular insight into the palm, high throughput RNA sequencing and de novo assembly of arecanut leaf transcriptome was undertaken in the present study. A total 56,321,907 paired end reads of 101 bp length consisting of 11.343 Gb nucleotides were generated. De novo assembly resulted in 48,783 good quality transcripts, of which 67% of transcripts could be annotated against NCBI non – redundant database. The Gene Ontology (GO analysis with UniProt database identified 9222 biological process, 11268 molecular function and 7574 cellular components GO terms. Large scale expression profiling through Fragments per Kilobase per Million mapped reads (FPKM showed major genes involved in different metabolic pathways of the plant. Metabolic pathway analysis of the assembled transcripts identified 124 plant related pathways. The transcripts related to carotenoid and alkaloid biosynthetic pathways had more number of reads and FPKM values suggesting higher expression of these genes. The arecanut transcript sequences generated in the study showed high similarity with coconut, oil palm and date palm sequences retrieved from public domains. We also identified 6853 genic SSR regions in the arecanut. The possible primers were designed for SSR detection and this would simplify the future efforts in genetic characterization of arecanut.

  11. De novo assembly and phasing of a Korean human genome.

    Science.gov (United States)

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  12. Spaced Seed Data Structures for De Novo Assembly

    Directory of Open Access Journals (Sweden)

    Inanç Birol

    2015-01-01

    Full Text Available De novo assembly of the genome of a species is essential in the absence of a reference genome sequence. Many scalable assembly algorithms use the de Bruijn graph (DBG paradigm to reconstruct genomes, where a table of subsequences of a certain length is derived from the reads, and their overlaps are analyzed to assemble sequences. Despite longer subsequences unlocking longer genomic features for assembly, associated increase in compute resources limits the practicability of DBG over other assembly archetypes already designed for longer reads. Here, we revisit the DBG paradigm to adapt it to the changing sequencing technology landscape and introduce three data structure designs for spaced seeds in the form of paired subsequences. These data structures address memory and run time constraints imposed by longer reads. We observe that when a fixed distance separates seed pairs, it provides increased sequence specificity with increased gap length. Further, we note that Bloom filters would be suitable to implicitly store spaced seeds and be tolerant to sequencing errors. Building on this concept, we describe a data structure for tracking the frequencies of observed spaced seeds. These data structure designs will have applications in genome, transcriptome and metagenome assemblies, and read error correction.

  13. Distilled single-cell genome sequencing and de novo assembly for sparse microbial communities.

    Science.gov (United States)

    Taghavi, Zeinab; Movahedi, Narjes S; Draghici, Sorin; Chitsaz, Hamidreza

    2013-10-01

    Identification of every single genome present in a microbial sample is an important and challenging task with crucial applications. It is challenging because there are typically millions of cells in a microbial sample, the vast majority of which elude cultivation. The most accurate method to date is exhaustive single-cell sequencing using multiple displacement amplification, which is simply intractable for a large number of cells. However, there is hope for breaking this barrier, as the number of different cell types with distinct genome sequences is usually much smaller than the number of cells. Here, we present a novel divide and conquer method to sequence and de novo assemble all distinct genomes present in a microbial sample with a sequencing cost and computational complexity proportional to the number of genome types, rather than the number of cells. The method is implemented in a tool called Squeezambler. We evaluated Squeezambler on simulated data. The proposed divide and conquer method successfully reduces the cost of sequencing in comparison with the naïve exhaustive approach. Squeezambler and datasets are available at http://compbio.cs.wayne.edu/software/squeezambler/.

  14. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    Science.gov (United States)

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  15. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome.

    Science.gov (United States)

    Weisberg, Alexandra J; Kim, Gunjune; Westwood, James H; Jelesko, John G

    2017-11-10

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is "leaves of three, let it be", which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species.

  16. De novo transcriptome sequencing and assembly from apomictic and sexual Eragrostis curvula genotypes.

    Directory of Open Access Journals (Sweden)

    Ingrid Garbus

    Full Text Available A long-standing goal in plant breeding has been the ability to confer apomixis to agriculturally relevant species, which would require a deeper comprehension of the molecular basis of apomictic regulatory mechanisms. Eragrostis curvula (Schrad. Nees is a perennial grass that includes both sexual and apomictic cytotypes. The availability of a reference transcriptome for this species would constitute a very important tool toward the identification of genes controlling key steps of the apomictic pathway. Here, we used Roche/454 sequencing technologies to generate reads from inflorescences of E. curvula apomictic and sexual genotypes that were de novo assembled into a reference transcriptome. Near 90% of the 49568 assembled isotigs showed sequence similarity to sequences deposited in the public databases. A gene ontology analysis categorized 27448 isotigs into at least one of the three main GO categories. We identified 11475 SSRs, and several of them were assayed in E curvula germoplasm using SSR-based primers, providing a valuable set of molecular markers that could allow direct allele selection. The differential contribution to each library of the spliced forms of several transcripts revealed the existence of several isotigs produced via alternative splicing of single genes. The reference transcriptome presented and validated in this work will be useful for the identification of a wide range of gene(s related to agronomic traits of E. curvula, including those controlling key steps of the apomictic pathway in this species, allowing the extrapolation of the findings to other plant species.

  17. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies.

    Science.gov (United States)

    Card, Daren C; Schield, Drew R; Reyes-Velasco, Jacobo; Fujita, Matthew K; Andrew, Audra L; Oyler-McCance, Sara J; Fike, Jennifer A; Tomback, Diana F; Ruggiero, Robert P; Castoe, Todd A

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5-5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  18. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies

    Science.gov (United States)

    Card, Daren C.; Schield, Drew R.; Reyes-Velasco, Jacobo; Fujita, Matthre K.; Andrew, Audra L.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Tomback, Diana F.; Ruggiero, Robert P.; Castoe, Todd A.

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (~3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  19. Whole-Genome de novo Sequencing Of Quail And Grey Partridge

    DEFF Research Database (Denmark)

    Holm, Lars-Erik; Panitz, Frank; Burt, Dave

    2011-01-01

    The development in sequencing methods has made it possible to perform whole genome de novo sequencing of species without large commercial interests. Within the EU-financed QUANTOMICS project (KBBE-2A-222664), we have performed de novo sequencing of quail (Coturnix coturnix) and grey partridge...... (Perdix perdix) on a Genome Analyzer GAII (Illumina) using paired-end sequencing. The amount of generated sequences amounts to 8 to 9 Gb for each species. The analysis and assembly of the generated sequences is ongoing. Access to the whole genome sequence from these two species will enable enhanced...... comparative studies towards the chicken genome and will aid in identifying evolutionarily conserved sequences within the Galliformes. The obtained sequences from quail and partridge represent a beginning of generating the whole genome sequence for these species. The continuation of establishing the genome...

  20. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  1. De novo transcriptome assembly of Setatria italica variety Taejin

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2016-06-01

    Full Text Available Foxtail millet (Setaria italica belonging to the family Poaceae is an important millet that is widely cultivated in East Asia. Of the cultivated millets, the foxtail millet has the longest history and is one of the main food crops in South India and China. Moreover, foxtail millet is a model plant system for biofuel generation utilizing the C4 photosynthetic pathway. In this study, we carried out de novo transcriptome assembly for the foxtail millet variety Taejin collected from Korea using next-generation sequencing. We obtained a total of 8.676 GB raw data by paired-end sequencing. The raw data in this study can be available in NCBI SRA database with accession number of SRR3406552. The Trinity program was used to de novo assemble 145,332 transcripts. Using the TransDecoder program, we predicted 82,925 putative proteins. BLASTP was performed against the Swiss-Prot protein sequence database to annotate the functions of identified proteins, resulting in 20,555 potentially novel proteins. Taken together, this study provides transcriptome data for the foxtail millet variety Taejin by RNA-Seq.

  2. Illumina-based de novo transcriptome sequencing and analysis

    Indian Academy of Sciences (India)

    In the present study, we used Illumina HiSeq technology to perform de novo assembly of heart and musk gland transcriptomes from the Chinese forest musk deer. A total of 239,383 transcripts and 176,450 unigenes were obtained, of which 37,329 unigenes were matched to known sequences in the NCBI nonredundant ...

  3. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study.

    Science.gov (United States)

    Cerdeira, Louise Teixeira; Carneiro, Adriana Ribeiro; Ramos, Rommel Thiago Jucá; de Almeida, Sintia Silva; D'Afonseca, Vivian; Schneider, Maria Paula Cruz; Baumbach, Jan; Tauch, Andreas; McCulloch, John Anthony; Azevedo, Vasco Ariston Carvalho; Silva, Artur

    2011-08-01

    Due to the advent of the so-called Next-Generation Sequencing (NGS) technologies the amount of monetary and temporal resources for whole-genome sequencing has been reduced by several orders of magnitude. Sequence reads can be assembled either by anchoring them directly onto an available reference genome (classical reference assembly), or can be concatenated by overlap (de novo assembly). The latter strategy is preferable because it tends to maintain the architecture of the genome sequence the however, depending on the NGS platform used, the shortness of read lengths cause tremendous problems the in the subsequent genome assembly phase, impeding closing of the entire genome sequence. To address the problem, we developed a multi-pronged hybrid de novo strategy combining De Bruijn graph and Overlap-Layout-Consensus methods, which was used to assemble from short reads the entire genome of Corynebacterium pseudotuberculosis strain I19, a bacterium with immense importance in veterinary medicine that causes Caseous Lymphadenitis in ruminants, principally ovines and caprines. Briefly, contigs were assembled de novo from the short reads and were only oriented using a reference genome by anchoring. Remaining gaps were closed using iterative anchoring of short reads by craning to gap flanks. Finally, we compare the genome sequence assembled using our hybrid strategy to a classical reference assembly using the same data as input and show that with the availability of a reference genome, it pays off to use the hybrid de novo strategy, rather than a classical reference assembly, because more genome sequences are preserved using the former. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data.

    Science.gov (United States)

    Chin, Chen-Shan; Alexander, David H; Marks, Patrick; Klammer, Aaron A; Drake, James; Heiner, Cheryl; Clum, Alicia; Copeland, Alex; Huddleston, John; Eichler, Evan E; Turner, Stephen W; Korlach, Jonas

    2013-06-01

    We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph-based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. In contrast to hybrid approaches, HGAP does not require highly accurate raw reads for error correction. We demonstrate efficient genome assembly for several microorganisms using as few as three SMRT Cell zero-mode waveguide arrays of sequencing and for BACs using just one SMRT Cell. Long repeat regions can be successfully resolved with this workflow. We also describe a consensus algorithm that incorporates SMRT sequencing primary quality values to produce de novo genome sequence exceeding 99.999% accuracy.

  5. mPUMA: a computational approach to microbiota analysis by de novo assembly of operational taxonomic units based on protein-coding barcode sequences.

    Science.gov (United States)

    Links, Matthew G; Chaban, Bonnie; Hemmingsen, Sean M; Muirhead, Kevin; Hill, Janet E

    2013-08-15

    Formation of operational taxonomic units (OTU) is a common approach to data aggregation in microbial ecology studies based on amplification and sequencing of individual gene targets. The de novo assembly of OTU sequences has been recently demonstrated as an alternative to widely used clustering methods, providing robust information from experimental data alone, without any reliance on an external reference database. Here we introduce mPUMA (microbial Profiling Using Metagenomic Assembly, http://mpuma.sourceforge.net), a software package for identification and analysis of protein-coding barcode sequence data. It was developed originally for Cpn60 universal target sequences (also known as GroEL or Hsp60). Using an unattended process that is independent of external reference sequences, mPUMA forms OTUs by DNA sequence assembly and is capable of tracking OTU abundance. mPUMA processes microbial profiles both in terms of the direct DNA sequence as well as in the translated amino acid sequence for protein coding barcodes. By forming OTUs and calculating abundance through an assembly approach, mPUMA is capable of generating inputs for several popular microbiota analysis tools. Using SFF data from sequencing of a synthetic community of Cpn60 sequences derived from the human vaginal microbiome, we demonstrate that mPUMA can faithfully reconstruct all expected OTU sequences and produce compositional profiles consistent with actual community structure. mPUMA enables analysis of microbial communities while empowering the discovery of novel organisms through OTU assembly.

  6. Oxford Nanopore MinION Sequencing and Genome Assembly

    Directory of Open Access Journals (Sweden)

    Hengyun Lu

    2016-10-01

    Full Text Available The revolution of genome sequencing is continuing after the successful second-generation sequencing (SGS technology. The third-generation sequencing (TGS technology, led by Pacific Biosciences (PacBio, is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that promises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT. MinION identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MinION has thus generated much excitement and interest in the genomics community. While de novo genome assemblies can be cheaply produced from SGS data, assembly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in genome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.

  7. Sequencing and de novo transcriptome assembly of the Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2017-06-01

    Full Text Available Next-generation technologies for determination of genomics and transcriptomics composition have a wide range of applications. Andrias davidianus, has become an endangered amphibian species of salamander endemic in China. However, there is a lack of the molecular information. In this study, we obtained the RNA-Seq data from a pool of A. davidianus tissue including spleen, liver, muscle, kidney, skin, testis, gut and heart using Illumina HiSeq 2500 platform. A total of 15,398,997,600 bp were obtained, corresponding to 102,659,984 raw reads. A total of 102,659,984 reads were filtered after removing low-quality reads and trimming the adapter sequences. The Trinity program was used to de novo assemble 132,912 unigenes with an average length of 690 bp and N50 of 1263 bp. Unigenes were annotated through number of databases. These transcriptomic data of A. davidianus should open the door to molecular evolution studies based on the entire transcriptome or targeted genes of interest to sequence. The raw data in this study can be available in NCBI SRA database with accession number of SRP099564.

  8. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms

    Directory of Open Access Journals (Sweden)

    Haznedaroglu Berat Z

    2012-07-01

    Full Text Available Abstract Background The k-mer hash length is a key factor affecting the output of de novo transcriptome assembly packages using de Bruijn graph algorithms. Assemblies constructed with varying single k-mer choices might result in the loss of unique contiguous sequences (contigs and relevant biological information. A common solution to this problem is the clustering of single k-mer assemblies. Even though annotation is one of the primary goals of a transcriptome assembly, the success of assembly strategies does not consider the impact of k-mer selection on the annotation output. This study provides an in-depth k-mer selection analysis that is focused on the degree of functional annotation achieved for a non-model organism where no reference genome information is available. Individual k-mers and clustered assemblies (CA were considered using three representative software packages. Pair-wise comparison analyses (between individual k-mers and CAs were produced to reveal missing Kyoto Encyclopedia of Genes and Genomes (KEGG ortholog identifiers (KOIs, and to determine a strategy that maximizes the recovery of biological information in a de novo transcriptome assembly. Results Analyses of single k-mer assemblies resulted in the generation of various quantities of contigs and functional annotations within the selection window of k-mers (k-19 to k-63. For each k-mer in this window, generated assemblies contained certain unique contigs and KOIs that were not present in the other k-mer assemblies. Producing a non-redundant CA of k-mers 19 to 63 resulted in a more complete functional annotation than any single k-mer assembly. However, a fraction of unique annotations remained (~0.19 to 0.27% of total KOIs in the assemblies of individual k-mers (k-19 to k-63 that were not present in the non-redundant CA. A workflow to recover these unique annotations is presented. Conclusions This study demonstrated that different k-mer choices result in various quantities

  9. De novo sequencing, assembly and characterization of antennal transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae.

    Directory of Open Access Journals (Sweden)

    Haoliang Chen

    Full Text Available Anomala corpulenta is an important insect pest and can cause enormous economic losses in agriculture, horticulture and forestry. It is widely distributed in China, and both larvae and adults can cause serious damage. It is difficult to control this pest because the larvae live underground. Any new control strategy should exploit alternatives to heavily and frequently used chemical insecticides. However, little genetic research has been carried out on A. corpulenta due to the lack of genomic resources. Genomic resources could be produced by next generation sequencing technologies with low cost and in a short time. In this study, we performed de novo sequencing, assembly and characterization of the antennal transcriptome of A. corpulenta.Illumina sequencing technology was used to sequence the antennal transcriptome of A. corpulenta. Approximately 76.7 million total raw reads and about 68.9 million total clean reads were obtained, and then 35,656 unigenes were assembled. Of these unigenes, 21,463 of them could be annotated in the NCBI nr database, and, among the annotated unigenes, 11,154 and 6,625 unigenes could be assigned to GO and COG, respectively. Additionally, 16,350 unigenes could be annotated in the Swiss-Prot database, and 14,499 unigenes could map onto 258 pathways in the KEGG Pathway database. We also found 24 unigenes related to OBPs, 6 to CSPs, and in total 167 unigenes related to chemodetection. We analyzed 4 OBPs and 3CSPs sequences and their RT-qPCR results agreed well with their FPKM values.We produced the first large-scale antennal transcriptome of A. corpulenta, which is a species that has little genomic information in public databases. The identified chemodetection unigenes can promote the molecular mechanistic study of behavior in A. corpulenta. These findings provide a general sequence resource for molecular genetics research on A. corpulenta.

  10. Evaluation of the impact of RNA preservation methods of spiders for de novo transcriptome assembly.

    Science.gov (United States)

    Kono, Nobuaki; Nakamura, Hiroyuki; Ito, Yusuke; Tomita, Masaru; Arakawa, Kazuharu

    2016-05-01

    With advances in high-throughput sequencing technologies, de novo transcriptome sequencing and assembly has become a cost-effective method to obtain comprehensive genetic information of a species of interest, especially in nonmodel species with large genomes such as spiders. However, high-quality RNA is essential for successful sequencing, and sample preservation conditions require careful consideration for the effective storage of field-collected samples. To this end, we report a streamlined feasibility study of various storage conditions and their effects on de novo transcriptome assembly results. The storage parameters considered include temperatures ranging from room temperature to -80°C; preservatives, including ethanol, RNAlater, TRIzol and RNAlater-ICE; and sample submersion states. As a result, intact RNA was extracted and assembly was successful when samples were preserved at low temperatures regardless of the type of preservative used. The assemblies as well as the gene expression profiles were shown to be robust to RNA degradation, when 30 million 150-bp paired-end reads are obtained. The parameters for sample storage, RNA extraction, library preparation, sequencing and in silico assembly considered in this work provide a guideline for the study of field-collected samples of spiders. © 2015 John Wiley & Sons Ltd.

  11. De Novo Assembly of the Pea (Pisum sativum L. Nodule Transcriptome

    Directory of Open Access Journals (Sweden)

    Vladimir A. Zhukov

    2015-01-01

    Full Text Available The large size and complexity of the garden pea (Pisum sativum L. genome hamper its sequencing and the discovery of pea gene resources. Although transcriptome sequencing provides extensive information about expressed genes, some tissue-specific transcripts can only be identified from particular organs under appropriate conditions. In this study, we performed RNA sequencing of polyadenylated transcripts from young pea nodules and root tips on an Illumina GAIIx system, followed by de novo transcriptome assembly using the Trinity program. We obtained more than 58,000 and 37,000 contigs from “Nodules” and “Root Tips” assemblies, respectively. The quality of the assemblies was assessed by comparison with pea expressed sequence tags and transcriptome sequencing project data available from NCBI website. The “Nodules” assembly was compared with the “Root Tips” assembly and with pea transcriptome sequencing data from projects indicating tissue specificity. As a result, approximately 13,000 nodule-specific contigs were found and annotated by alignment to known plant protein-coding sequences and by Gene Ontology searching. Of these, 581 sequences were found to possess full CDSs and could thus be considered as novel nodule-specific transcripts of pea. The information about pea nodule-specific gene sequences can be applied for gene-based markers creation, polymorphism studies, and real-time PCR.

  12. De novo transcriptome assembly of two different peach cultivars grown in Korea

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2015-12-01

    Full Text Available Peach (Prunus persica is one of the most popular stone fruits worldwide. Next generation sequencing (NGS has facilitated genome and transcriptome analyses of several stone fruit trees. In this study, we conducted de novo transcriptome analyses of two peach cultivars grown in Korea. Leaves of two cultivars, referred to as Jangtaek and Mibaek, were harvested and used for library preparation. The two prepared libraries were paired-end sequenced by the HiSeq2000 system. We obtained 8.14 GB and 9.62 GB sequence data from Jangtaek and Mibaek (NCBI accession numbers: SRS1056585 and SRS1056587, respectively. The Trinity program was used to assemble two transcriptomes de novo, resulting in 110,477 (Jangtaek and 136,196 (Mibaek transcripts. TransDecoder identified possible coding regions in assembled transcripts. The identified proteins were subjected to BLASTP search against NCBI's non-redundant database for functional annotation. This study provides transcriptome data for two peach cultivars, which might be useful for genetic marker development and comparative transcriptome analyses.

  13. De novo transcriptome assembly of shrimp Palaemon serratus

    Directory of Open Access Journals (Sweden)

    Alejandra Perina

    2017-03-01

    Full Text Available The shrimp Palaemon serratus is a coastal decapod crustacean with a high commercial value. It is harvested for human consumption. In this study, we used Illumina sequencing technology (HiSeq 2000 to sequence, assemble and annotate the transcriptome of P. serratus. RNA was isolated from muscle of adults individuals and, from a pool of larvae. A total number of 4 cDNA libraries were constructed, using the TruSeq RNA Sample Preparation Kit v2. The raw data in this study was deposited in NCBI SRA database with study accession number of SRP090769. The obtained data were subjected to de novo transcriptome assembly using Trinity software, and coding regions were predicted by TransDecoder. We used Blastp and Sma3s to annotate the identified proteins. The transcriptome data could provide some insight into the understanding of genes involved in the larval development and metamorphosis.

  14. UniNovo: a universal tool for de novo peptide sequencing.

    Science.gov (United States)

    Jeong, Kyowon; Kim, Sangtae; Pevzner, Pavel A

    2013-08-15

    Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but de novo peptide sequencing algorithms to analyze tandem mass (MS/MS) spectra are lagging behind. Although existing de novo sequencing tools perform well on certain types of spectra [e.g. Collision Induced Dissociation (CID) spectra of tryptic peptides], their performance often deteriorates on other types of spectra, such as Electron Transfer Dissociation (ETD), Higher-energy Collisional Dissociation (HCD) spectra or spectra of non-tryptic digests. Thus, rather than developing a new algorithm for each type of spectra, we develop a universal de novo sequencing algorithm called UniNovo that works well for all types of spectra or even for spectral pairs (e.g. CID/ETD spectral pairs). UniNovo uses an improved scoring function that captures the dependences between different ion types, where such dependencies are learned automatically using a modified offset frequency function. The performance of UniNovo is compared with PepNovo+, PEAKS and pNovo using various types of spectra. The results show that the performance of UniNovo is superior to other tools for ETD spectra and superior or comparable with others for CID and HCD spectra. UniNovo also estimates the probability that each reported reconstruction is correct, using simple statistics that are readily obtained from a small training dataset. We demonstrate that the estimation is accurate for all tested types of spectra (including CID, HCD, ETD, CID/ETD and HCD/ETD spectra of trypsin, LysC or AspN digested peptides). UniNovo is implemented in JAVA and tested on Windows, Ubuntu and OS X machines. UniNovo is available at http://proteomics.ucsd.edu/Software/UniNovo.html along with the manual.

  15. Rapid centriole assembly in Naegleria reveals conserved roles for both de novo and mentored assembly.

    Science.gov (United States)

    Fritz-Laylin, Lillian K; Levy, Yaron Y; Levitan, Edward; Chen, Sean; Cande, W Zacheus; Lai, Elaine Y; Fulton, Chandler

    2016-03-01

    Centrioles are eukaryotic organelles whose number and position are critical for cilia formation and mitosis. Many cell types assemble new centrioles next to existing ones ("templated" or mentored assembly). Under certain conditions, centrioles also form without pre-existing centrioles (de novo). The synchronous differentiation of Naegleria amoebae to flagellates represents a unique opportunity to study centriole assembly, as nearly 100% of the population transitions from having no centrioles to having two within minutes. Here, we find that Naegleria forms its first centriole de novo, immediately followed by mentored assembly of the second. We also find both de novo and mentored assembly distributed among all major eukaryote lineages. We therefore propose that both modes are ancestral and have been conserved because they serve complementary roles, with de novo assembly as the default when no pre-existing centriole is available, and mentored assembly allowing precise regulation of number, timing, and location of centriole assembly. © 2016 Wiley Periodicals, Inc.

  16. De novo assembly and next-generation sequencing to analyse full-length gene variants from codon-barcoded libraries.

    Science.gov (United States)

    Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee

    2015-09-21

    Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.

  17. De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing.

    Science.gov (United States)

    Sun, Xiudong; Zhou, Shumei; Meng, Fanlu; Liu, Shiqi

    2012-10-01

    Garlic is widely used as a spice throughout the world for the culinary value of its flavor and aroma, which are created by the chemical transformation of a series of organic sulfur compounds. To analyze the transcriptome of Allium sativum and discover the genes involved in sulfur metabolism, cDNAs derived from the total RNA of Allium sativum buds were analyzed by Illumina sequencing. Approximately 26.67 million 90 bp paired-end clean reads were achieved in two libraries. A total of 127,933 unigenes were generated by de novo assembly and were compared with the sequences in public databases. Of these, 45,286 unigenes had significant hits to the sequences in the Nr database, 29,514 showed significant similarity to known proteins in the Swiss-Prot database and, 20,706 and 21,952 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Moreover, genes involved in organic sulfur biosynthesis were identified. These unigenes data will provide the foundation for research on gene expression, genomics and functional genomics in Allium sativum. Key message The obtained unigenes will provide the foundation for research on functional genomics in Allium sativum and its closely related species, and fill the gap of the existing plant EST database.

  18. A divide-and-conquer algorithm for large-scale de novo transcriptome assembly through combining small assemblies from existing algorithms.

    Science.gov (United States)

    Sze, Sing-Hoi; Parrott, Jonathan J; Tarone, Aaron M

    2017-12-06

    While the continued development of high-throughput sequencing has facilitated studies of entire transcriptomes in non-model organisms, the incorporation of an increasing amount of RNA-Seq libraries has made de novo transcriptome assembly difficult. Although algorithms that can assemble a large amount of RNA-Seq data are available, they are generally very memory-intensive and can only be used to construct small assemblies. We develop a divide-and-conquer strategy that allows these algorithms to be utilized, by subdividing a large RNA-Seq data set into small libraries. Each individual library is assembled independently by an existing algorithm, and a merging algorithm is developed to combine these assemblies by picking a subset of high quality transcripts to form a large transcriptome. When compared to existing algorithms that return a single assembly directly, this strategy achieves comparable or increased accuracy as memory-efficient algorithms that can be used to process a large amount of RNA-Seq data, and comparable or decreased accuracy as memory-intensive algorithms that can only be used to construct small assemblies. Our divide-and-conquer strategy allows memory-intensive de novo transcriptome assembly algorithms to be utilized to construct large assemblies.

  19. Transcriptome Sequencing, De Novo Assembly and Differential Gene Expression Analysis of the Early Development of Acipenser baeri.

    Directory of Open Access Journals (Sweden)

    Wei Song

    Full Text Available The molecular mechanisms that drive the development of the endangered fossil fish species Acipenser baeri are difficult to study due to the lack of genomic data. Recent advances in sequencing technologies and the reducing cost of sequencing offer exclusive opportunities for exploring important molecular mechanisms underlying specific biological processes. This manuscript describes the large scale sequencing and analyses of mRNA from Acipenser baeri collected at five development time points using the Illumina Hiseq2000 platform. The sequencing reads were de novo assembled and clustered into 278167 unigenes, of which 57346 (20.62% had 45837 known homologues proteins in Uniprot protein databases while 11509 proteins matched with at least one sequence of assembled unigenes. The remaining 79.38% of unigenes could stand for non-coding unigenes or unigenes specific to A. baeri. A number of 43062 unigenes were annotated into functional categories via Gene Ontology (GO annotation whereas 29526 unigenes were associated with 329 pathways by mapping to KEGG database. Subsequently, 3479 differentially expressed genes were scanned within developmental stages and clustered into 50 gene expression profiles. Genes preferentially expressed at each stage were also identified. Through GO and KEGG pathway enrichment analysis, relevant physiological variations during the early development of A. baeri could be better cognized. Accordingly, the present study gives insights into the transcriptome profile of the early development of A. baeri, and the information contained in this large scale transcriptome will provide substantial references for A. baeri developmental biology and promote its aquaculture research.

  20. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii

    Directory of Open Access Journals (Sweden)

    Zhongying Qiu

    2016-07-01

    Full Text Available Background: The grasshopper Shirakiacris shirakii is an important agricultural pest and feeds mainly on gramineous plants, thereby causing economic damage to a wide range of crops. However, genomic information on this species is extremely limited thus far, and transcriptome data relevant to insecticide resistance and pest control are also not available. Methods: The transcriptome of S. shirakii was sequenced using the Illumina HiSeq platform, and we de novo assembled the transcriptome. Results: Its sequencing produced a total of 105,408,878 clean reads, and the de novo assembly revealed 74,657 unigenes with an average length of 680 bp and N50 of 1057 bp. A total of 28,173 unigenes were annotated for the NCBI non-redundant protein sequences (Nr, NCBI non-redundant nucleotide sequences (Nt, a manually-annotated and reviewed protein sequence database (Swiss-Prot, Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. Based on the Nr annotation results, we manually identified 79 unigenes encoding cytochrome P450 monooxygenases (P450s, 36 unigenes encoding carboxylesterases (CarEs and 36 unigenes encoding glutathione S-transferases (GSTs in S. shirakii. Core RNAi components relevant to miroRNA, siRNA and piRNA pathways, including Pasha, Loquacious, Argonaute-1, Argonaute-2, Argonaute-3, Zucchini, Aubergine, enhanced RNAi-1 and Piwi, were expressed in S. shirakii. We also identified five unigenes that were homologous to the Sid-1 gene. In addition, the analysis of differential gene expressions revealed that a total of 19,764 unigenes were up-regulated and 4185 unigenes were down-regulated in larvae. In total, we predicted 7504 simple sequence repeats (SSRs from 74,657 unigenes. Conclusions: The comprehensive de novo transcriptomic data of S. shirakii will offer a series of valuable molecular resources for better studying insecticide resistance, RNAi and molecular marker discovery in the transcriptome.

  1. Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis.

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Nandety

    Full Text Available BACKGROUND: The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae, is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference. RESULTS: Here we elucidate and explore the transcriptome of adult H. vitripennis using high-throughput paired end deep sequencing and de novo assembly. A total of 32,803,656 paired-end reads were obtained with an average transcript length of 624 nucleotides. We assembled 32.9 Mb of the transcriptome of H. vitripennis that spanned across 47,265 loci and 52,708 transcripts. Comparison of our non-redundant database showed that 45% of the deduced proteins of H. vitripennis exhibit identity (e-value ≤1(-5 with known proteins. We assigned Gene Ontology (GO terms, Kyoto Encyclopedia of Genes and Genomes (KEGG annotations, and potential Pfam domains to each transcript isoform. In order to gain insight into the molecular basis of key regulatory genes of H. vitripennis, we characterized predicted proteins involved in the metabolism of juvenile hormone, and biogenesis of small RNAs (Dicer and Piwi sequences from the transcriptomic sequences. Analysis of transposable element sequences of H. vitripennis indicated that the genome is less expanded in comparison to many other insects with approximately 1% of the transcriptome carrying transposable elements. CONCLUSIONS: Our data significantly enhance the molecular resources available for future study and control of this economically important hemipteran. This transcriptional information not only provides a more nuanced understanding of the underlying biological and physiological mechanisms that

  2. De Novo Sequencing and Assembly Analysis of Transcriptome in Pinus bungeana Zucc. ex Endl.

    Directory of Open Access Journals (Sweden)

    Qifei Cai

    2018-03-01

    Full Text Available To enrich the molecular data of Pinus bungeana Zucc. ex Endl. and study the regulating factors of different morphology controled by apical dominance. In this study, de novo assembly of transcriptome annotation was performed for two varieties of Pinus bungeana Zucc. ex Endl. that are obviously different in morphology. More than 147 million reads were produced, which were assembled into 88,092 unigenes. Based on a similarity search, 11,692 unigenes showed significant similarity to proteins from Picea sitchensis (Bong. Carr. From this collection of unigenes, a large number of molecular markers were identified, including 2829 simple sequence repeats (SSRs. A total of 158 unigenes expressed differently between two varieties, including 98 up-regulated and 60 down-regulated unigenes. Furthermore, among the differently expressed genes (DEGs, five genes which may impact the plant morphology were further validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR. The five genes related to cytokinin oxidase/dehydrogenase (CKX, two-component response regulator ARR-A family (ARR-A, plant hormone signal transduction (AHP, and MADS-box transcription factors have a close relationship with apical dominance. This new dataset will be a useful resource for future genetic and genomic studies in Pinus bungeana Zucc. ex Endl.

  3. Single molecule sequencing-guided scaffolding and correction of draft assemblies.

    Science.gov (United States)

    Zhu, Shenglong; Chen, Danny Z; Emrich, Scott J

    2017-12-06

    Although single molecule sequencing is still improving, the lengths of the generated sequences are inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies. We propose a disassembling-reassembling approach for both correcting structural errors in the draft assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal, we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a 2-approximation algorithm. Our experimental results show that our approach can improve the structural correctness of target assemblies in the cost of some contiguity, even with smaller amounts of long reads. In addition, our reassembling process can also serve as a competitive scaffolder relative to well-established assembly benchmarks.

  4. Detection of a Usp-like gene in Calotropis procera plant from the de novo assembled genome contigs of the high-throughput sequencing dataset

    KAUST Repository

    Shokry, Ahmed M.

    2014-02-01

    The wild plant species Calotropis procera (C. procera) has many potential applications and beneficial uses in medicine, industry and ornamental field. It also represents an excellent source of genes for drought and salt tolerance. Genes encoding proteins that contain the conserved universal stress protein (USP) domain are known to provide organisms like bacteria, archaea, fungi, protozoa and plants with the ability to respond to a plethora of environmental stresses. However, information on the possible occurrence of Usp in C. procera is not available. In this study, we uncovered and characterized a one-class A Usp-like (UspA-like, NCBI accession No. KC954274) gene in this medicinal plant from the de novo assembled genome contigs of the high-throughput sequencing dataset. A number of GenBank accessions for Usp sequences were blasted with the recovered de novo assembled contigs. Homology modelling of the deduced amino acids (NCBI accession No. AGT02387) was further carried out using Swiss-Model, accessible via the EXPASY. Superimposition of C. procera USPA-like full sequence model on Thermus thermophilus USP UniProt protein (PDB accession No. Q5SJV7) was constructed using RasMol and Deep-View programs. The functional domains of the novel USPA-like amino acids sequence were identified from the NCBI conserved domain database (CDD) that provide insights into sequence structure/function relationships, as well as domain models imported from a number of external source databases (Pfam, SMART, COG, PRK, TIGRFAM). © 2014 Académie des sciences.

  5. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40.

    Directory of Open Access Journals (Sweden)

    Myco Umemura

    Full Text Available The development of next-generation sequencing (NGS technologies has dramatically increased the throughput, speed, and efficiency of genome sequencing. The short read data generated from NGS platforms, such as SOLiD and Illumina, are quite useful for mapping analysis. However, the SOLiD read data with lengths of <60 bp have been considered to be too short for de novo genome sequencing. Here, to investigate whether de novo sequencing of fungal genomes is possible using only SOLiD short read sequence data, we performed de novo assembly of the Aspergillus oryzae RIB40 genome using only SOLiD read data of 50 bp generated from mate-paired libraries with 2.8- or 1.9-kb insert sizes. The assembled scaffolds showed an N50 value of 1.6 Mb, a 22-fold increase than those obtained using only SOLiD short read in other published reports. In addition, almost 99% of the reference genome was accurately aligned by the assembled scaffold fragments in long lengths. The sequences of secondary metabolite biosynthetic genes and clusters, whose products are of considerable interest in fungal studies due to their potential medicinal, agricultural, and cosmetic properties, were also highly reconstructed in the assembled scaffolds. Based on these findings, we concluded that de novo genome sequencing using only SOLiD short reads is feasible and practical for molecular biological study of fungi. We also investigated the effect of filtering low quality data, library insert size, and k-mer size on the assembly performance, and recommend for the assembly use of mild filtered read data where the N50 was not so degraded and the library has an insert size of ∼2.0 kb, and k-mer size 33.

  6. Optimizing Transcriptome Assemblies for Eleusine indica Leaf and Seedling by Combining Multiple Assemblies from Three De Novo Assemblers

    Directory of Open Access Journals (Sweden)

    Shu Chen

    2015-03-01

    Full Text Available Due to rapid advances in sequencing technology, increasing amounts of genomic and transcriptomic data are available for plant species, presenting enormous challenges for biocomputing analysis. A crucial first step for a successful transcriptomics-based study is the building of a high-quality assembly. Here, we utilized three different de novo assemblers (Trinity, Velvet, and CLC and the EvidentialGene pipeline tr2aacds to assemble two optimized transcript sets for the notorious weed species, . Two RNA sequencing (RNA-seq datasets from leaf and aboveground seedlings were processed using three assemblers, which resulted in 20 assemblies for each dataset. The contig numbers and N50 values of each assembly were compared to study the effect of read number, k-mer size, and in silico normalization on assembly output. The 20 assemblies were then processed through the tr2aacds pipeline to remove redundant transcripts and to select the transcript set with the best coding potential. Each assembly contributed a considerable proportion to the final transcript combination with the exception of the CLC-k14. Thus each assembler and parameter set did assemble better contigs for certain transcripts. The redundancy, total contig number, N50, fully assembled contig number, and transcripts related to target-site herbicide resistance were evaluated for the EvidentialGene and Trinity assemblies. Comparing the EvidentialGene set with the Trinity assembly revealed improved quality and reduced redundancy in both leaf and seedling EvidentialGene sets. The optimized transcriptome references will be useful for studying herbicide resistance in and the evolutionary process in the three allotetraploid offspring.

  7. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers.

    Directory of Open Access Journals (Sweden)

    Sebastian Jünemann

    Full Text Available De novo genome assembly is the process of reconstructing a complete genomic sequence from countless small sequencing reads. Due to the complexity of this task, numerous genome assemblers have been developed to cope with different requirements and the different kinds of data provided by sequencers within the fast evolving field of next-generation sequencing technologies. In particular, the recently introduced generation of benchtop sequencers, like Illumina's MiSeq and Ion Torrent's Personal Genome Machine (PGM, popularized the easy, fast, and cheap sequencing of bacterial organisms to a broad range of academic and clinical institutions. With a strong pragmatic focus, here, we give a novel insight into the line of assembly evaluation surveys as we benchmark popular de novo genome assemblers based on bacterial data generated by benchtop sequencers. Therefore, single-library assemblies were generated, assembled, and compared to each other by metrics describing assembly contiguity and accuracy, and also by practice-oriented criteria as for instance computing time. In addition, we extensively analyzed the effect of the depth of coverage on the genome assemblies within reasonable ranges and the k-mer optimization problem of de Bruijn Graph assemblers. Our results show that, although both MiSeq and PGM allow for good genome assemblies, they require different approaches. They not only pair with different assembler types, but also affect assemblies differently regarding the depth of coverage where oversampling can become problematic. Assemblies vary greatly with respect to contiguity and accuracy but also by the requirement on the computing power. Consequently, no assembler can be rated best for all preconditions. Instead, the given kind of data, the demands on assembly quality, and the available computing infrastructure determines which assembler suits best. The data sets, scripts and all additional information needed to replicate our results are freely

  8. MRUniNovo: an efficient tool for de novo peptide sequencing utilizing the hadoop distributed computing framework.

    Science.gov (United States)

    Li, Chuang; Chen, Tao; He, Qiang; Zhu, Yunping; Li, Kenli

    2017-03-15

    Tandem mass spectrometry-based de novo peptide sequencing is a complex and time-consuming process. The current algorithms for de novo peptide sequencing cannot rapidly and thoroughly process large mass spectrometry datasets. In this paper, we propose MRUniNovo, a novel tool for parallel de novo peptide sequencing. MRUniNovo parallelizes UniNovo based on the Hadoop compute platform. Our experimental results demonstrate that MRUniNovo significantly reduces the computation time of de novo peptide sequencing without sacrificing the correctness and accuracy of the results, and thus can process very large datasets that UniNovo cannot. MRUniNovo is an open source software tool implemented in java. The source code and the parameter settings are available at http://bioinfo.hupo.org.cn/MRUniNovo/index.php. s131020002@hnu.edu.cn ; taochen1019@163.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. De novo transcriptome assembly of Sorghum bicolor variety Taejin

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2016-06-01

    Full Text Available Sorghum (Sorghum bicolor, also known as great millet, is one of the most popular cultivated grass species in the world. Sorghum is frequently consumed as food for humans and animals as well as used for ethanol production. In this study, we conducted de novo transcriptome assembly for sorghum variety Taejin by next-generation sequencing, obtaining 8.748 GB of raw data. The raw data in this study can be available in NCBI SRA database with accession number of SRX1715644. Using the Trinity program, we identified 222,161 transcripts from sorghum variety Taejin. We further predicted coding regions within the assembled transcripts by the TransDecoder program, resulting in a total of 148,531 proteins. We carried out BLASTP against the Swiss-Prot protein sequence database to annotate the functions of the identified proteins. To our knowledge, this is the first transcriptome data for a sorghum variety derived from Korea, and it can be usefully applied to the generation of genetic markers.

  10. Icarus: visualizer for de novo assembly evaluation.

    Science.gov (United States)

    Mikheenko, Alla; Valin, Gleb; Prjibelski, Andrey; Saveliev, Vladislav; Gurevich, Alexey

    2016-11-01

    : Data visualization plays an increasingly important role in NGS data analysis. With advances in both sequencing and computational technologies, it has become a new bottleneck in genomics studies. Indeed, evaluation of de novo genome assemblies is one of the areas that can benefit from the visualization. However, even though multiple quality assessment methods are now available, existing visualization tools are hardly suitable for this purpose. Here, we present Icarus-a novel genome visualizer for accurate assessment and analysis of genomic draft assemblies, which is based on the tool QUAST. Icarus can be used in studies where a related reference genome is available, as well as for non-model organisms. The tool is available online and as a standalone application. http://cab.spbu.ru/software/icarus CONTACT: aleksey.gurevich@spbu.ruSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra.

    Science.gov (United States)

    Muth, Thilo; Weilnböck, Lisa; Rapp, Erdmann; Huber, Christian G; Martens, Lennart; Vaudel, Marc; Barsnes, Harald

    2014-02-07

    De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com .

  12. De novo assembly, gene annotation and marker development using Illumina paired-end transcriptome sequences in celery (Apium graveolens L..

    Directory of Open Access Journals (Sweden)

    Nan Fu

    Full Text Available BACKGROUND: Celery is an increasing popular vegetable species, but limited transcriptome and genomic data hinder the research to it. In addition, a lack of celery molecular markers limits the process of molecular genetic breeding. High-throughput transcriptome sequencing is an efficient method to generate a large transcriptome sequence dataset for gene discovery, molecular marker development and marker-assisted selection breeding. PRINCIPAL FINDINGS: Celery transcriptomes from four tissues were sequenced using Illumina paired-end sequencing technology. De novo assembling was performed to generate a collection of 42,280 unigenes (average length of 502.6 bp that represent the first transcriptome of the species. 78.43% and 48.93% of the unigenes had significant similarity with proteins in the National Center for Biotechnology Information (NCBI non-redundant protein database (Nr and Swiss-Prot database respectively, and 10,473 (24.77% unigenes were assigned to Clusters of Orthologous Groups (COG. 21,126 (49.97% unigenes harboring Interpro domains were annotated, in which 15,409 (36.45% were assigned to Gene Ontology(GO categories. Additionally, 7,478 unigenes were mapped onto 228 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG. Large numbers of simple sequence repeats (SSRs were indentified, and then the rate of successful amplication and polymorphism were investigated among 31 celery accessions. CONCLUSIONS: This study demonstrates the feasibility of generating a large scale of sequence information by Illumina paired-end sequencing and efficient assembling. Our results provide a valuable resource for celery research. The developed molecular markers are the foundation of further genetic linkage analysis and gene localization, and they will be essential to accelerate the process of breeding.

  13. Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data.

    Science.gov (United States)

    Jayakumar, Vasanthan; Sakakibara, Yasubumi

    2017-11-03

    Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guiding the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in genome size. The results allowed us to narrow down the list to a few assemblers that can be effectively applied to eukaryotic assembly projects. Moreover, we highlight how best to use limited genomic resources for effectively evaluating the genome assemblies of non-model organisms. © The Author 2017. Published by Oxford University Press.

  14. De novo assembly of the perennial ryegrass transcriptome using an RNA-Seq strategy.

    Directory of Open Access Journals (Sweden)

    Jacqueline D Farrell

    Full Text Available Perennial ryegrass is a highly heterozygous outbreeding grass species used for turf and forage production. Heterozygosity can affect de-Bruijn graph assembly making de novo transcriptome assembly of species such as perennial ryegrass challenging. Creating a reference transcriptome from a homozygous perennial ryegrass genotype can circumvent the challenge of heterozygosity. The goals of this study were to perform RNA-sequencing on multiple tissues from a highly inbred genotype to develop a reference transcriptome. This was complemented with RNA-sequencing of a highly heterozygous genotype for SNP calling.De novo transcriptome assembly of the inbred genotype created 185,833 transcripts with an average length of 830 base pairs. Within the inbred reference transcriptome 78,560 predicted open reading frames were found of which 24,434 were predicted as complete. Functional annotation found 50,890 transcripts with a BLASTp hit from the Swiss-Prot non-redundant database, 58,941 transcripts with a Pfam protein domain and 1,151 transcripts encoding putative secreted peptides. To evaluate the reference transcriptome we targeted the high-affinity K+ transporter gene family and found multiple orthologs. Using the longest unique open reading frames as the reference sequence, 64,242 single nucleotide polymorphisms were found. One thousand sixty one open reading frames from the inbred genotype contained heterozygous sites, confirming the high degree of homozygosity.Our study has developed an annotated, comprehensive transcriptome reference for perennial ryegrass that can aid in determining genetic variation, expression analysis, genome annotation, and gene mapping.

  15. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.

    Directory of Open Access Journals (Sweden)

    Loren A Honaas

    Full Text Available Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1 proportion of reads mapping to an assembly 2 recovery of conserved, widely expressed genes, 3 N50 length statistics, and 4 the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation.

  16. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.

    Science.gov (United States)

    Schneider, Valerie A; Graves-Lindsay, Tina; Howe, Kerstin; Bouk, Nathan; Chen, Hsiu-Chuan; Kitts, Paul A; Murphy, Terence D; Pruitt, Kim D; Thibaud-Nissen, Françoise; Albracht, Derek; Fulton, Robert S; Kremitzki, Milinn; Magrini, Vincent; Markovic, Chris; McGrath, Sean; Steinberg, Karyn Meltz; Auger, Kate; Chow, William; Collins, Joanna; Harden, Glenn; Hubbard, Timothy; Pelan, Sarah; Simpson, Jared T; Threadgold, Glen; Torrance, James; Wood, Jonathan M; Clarke, Laura; Koren, Sergey; Boitano, Matthew; Peluso, Paul; Li, Heng; Chin, Chen-Shan; Phillippy, Adam M; Durbin, Richard; Wilson, Richard K; Flicek, Paul; Eichler, Evan E; Church, Deanna M

    2017-05-01

    The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health. © 2017 Schneider et al.; Published by Cold Spring Harbor Laboratory Press.

  17. De novo transcriptome assembly of the mycoheterotrophic plant Monotropa hypopitys

    Directory of Open Access Journals (Sweden)

    Alexey V. Beletsky

    2017-03-01

    Full Text Available Monotropa hypopitys (pinesap is a non-photosynthetic obligately mycoheterotrophic plant of the family Ericaceae. It obtains the carbon and other nutrients from the roots of surrounding autotrophic trees through the associated mycorrhizal fungi. In order to understand the evolutionary changes in the plant genome associated with transition to a heterotrophic lifestyle, we performed de novo transcriptomic analysis of M. hypopitys using next-generation sequencing. We obtained the RNA-Seq data from flowers, flower bracts and roots with haustoria using Illumina HiSeq2500 platform. The raw data obtained in this study can be available in NCBI SRA database with accession number of SRP069226. A total of 10.3 GB raw sequence data were obtained, corresponding to 103,357,809 raw reads. A total of 103,025,683 reads were filtered after removing low-quality reads and trimming the adapter sequences. The Trinity program was used to de novo assemble 98,349 unigens with an N50 of 1342 bp. Using the TransDecoder program, we predicted 43,505 putative proteins. 38,416 unigenes were annotated in the Swiss-Prot protein sequence database using BLASTX. The obtained transcriptomic data will be useful for further studies of the evolution of plant genomes upon transition to a non-photosynthetic lifestyle and the loss of photosynthesis-related functions.

  18. De novo transcriptome assembly associated with fumonisin production by the rice pathogen Fusarium fujikuroi

    Directory of Open Access Journals (Sweden)

    Keerthi S. Guruge

    2018-06-01

    Full Text Available The present study employed a next-generation sequencing method to assemble a de novo transcriptome database designed to distinguish gene expression changes exhibited by the fumonisin-producing fungus Fusarium fujikuroi when grown under ‘fumonisin-producing’ compared to ‘non-fumonisin-producing’ conditions. The raw data of this study have been deposited at DNA Data Bank of Japan (DDBJ under the accession ID DRA006146. Keywords: Fusarium fujikuroi, Fumonisin, Next-generation sequencing, Transcriptome, Gene-expression

  19. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.

    Science.gov (United States)

    Cerveau, Nicolas; Jackson, Daniel J

    2016-12-09

    Next-generation sequencing (NGS) technologies are arguably the most revolutionary technical development to join the list of tools available to molecular biologists since PCR. For researchers working with nonconventional model organisms one major problem with the currently dominant NGS platform (Illumina) stems from the obligatory fragmentation of nucleic acid material that occurs prior to sequencing during library preparation. This step creates a significant bioinformatic challenge for accurate de novo assembly of novel transcriptome data. This challenge becomes apparent when a variety of modern assembly tools (of which there is no shortage) are applied to the same raw NGS dataset. With the same assembly parameters these tools can generate markedly different assembly outputs. In this study we present an approach that generates an optimized consensus de novo assembly of eukaryotic coding transcriptomes. This approach does not represent a new assembler, rather it combines the outputs of a variety of established assembly packages, and removes redundancy via a series of clustering steps. We test and validate our approach using Illumina datasets from six phylogenetically diverse eukaryotes (three metazoans, two plants and a yeast) and two simulated datasets derived from metazoan reference genome annotations. All of these datasets were assembled using three currently popular assembly packages (CLC, Trinity and IDBA-tran). In addition, we experimentally demonstrate that transcripts unique to one particular assembly package are likely to be bioinformatic artefacts. For all eight datasets our pipeline generates more concise transcriptomes that in fact possess more unique annotatable protein domains than any of the three individual assemblers we employed. Another measure of assembly completeness (using the purpose built BUSCO databases) also confirmed that our approach yields more information. Our approach yields coding transcriptome assemblies that are more likely to be

  20. A practical guide to build de-novo assemblies for single tissues of non-model organisms: the example of a Neotropical frog

    Directory of Open Access Journals (Sweden)

    Santiago Montero-Mendieta

    2017-09-01

    Full Text Available Whole genome sequencing (WGS is a very valuable resource to understand the evolutionary history of poorly known species. However, in organisms with large genomes, as most amphibians, WGS is still excessively challenging and transcriptome sequencing (RNA-seq represents a cost-effective tool to explore genome-wide variability. Non-model organisms do not usually have a reference genome and the transcriptome must be assembled de-novo. We used RNA-seq to obtain the transcriptomic profile for Oreobates cruralis, a poorly known South American direct-developing frog. In total, 550,871 transcripts were assembled, corresponding to 422,999 putative genes. Of those, we identified 23,500, 37,349, 38,120 and 45,885 genes present in the Pfam, EggNOG, KEGG and GO databases, respectively. Interestingly, our results suggested that genes related to immune system and defense mechanisms are abundant in the transcriptome of O. cruralis. We also present a pipeline to assist with pre-processing, assembling, evaluating and functionally annotating a de-novo transcriptome from RNA-seq data of non-model organisms. Our pipeline guides the inexperienced user in an intuitive way through all the necessary steps to build de-novo transcriptome assemblies using readily available software and is freely available at: https://github.com/biomendi/TRANSCRIPTOME-ASSEMBLY-PIPELINE/wiki.

  1. Identifying wrong assemblies in de novo short read primary ...

    Indian Academy of Sciences (India)

    2016-08-05

    Aug 5, 2016 ... Most of these assemblies are done using some de novo short read assemblers and other related approaches. .... benchmarking projects like Assemblathon 1, Assemblathon ... from a large insert library (at least 1000 bases).

  2. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly

    DEFF Research Database (Denmark)

    Li, Yingrui; Zheng, Hancheng; Luo, Ruibang

    2011-01-01

    Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their precise...

  3. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  4. De novo assembly of mitochondrial genomes provides insights into genetic diversity and molecular evolution in wild boars and domestic pigs.

    Science.gov (United States)

    Ni, Pan; Bhuiyan, Ali Akbar; Chen, Jian-Hai; Li, Jingjin; Zhang, Cheng; Zhao, Shuhong; Du, Xiaoyong; Li, Hua; Yu, Hui; Liu, Xiangdong; Li, Kui

    2018-05-10

    Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.

  5. The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data.

    Science.gov (United States)

    Links, Matthew G; Dumonceaux, Tim J; Hemmingsen, Sean M; Hill, Janet E

    2012-01-01

    Barcoding with molecular sequences is widely used to catalogue eukaryotic biodiversity. Studies investigating the community dynamics of microbes have relied heavily on gene-centric metagenomic profiling using two genes (16S rRNA and cpn60) to identify and track Bacteria. While there have been criteria formalized for barcoding of eukaryotes, these criteria have not been used to evaluate gene targets for other domains of life. Using the framework of the International Barcode of Life we evaluated DNA barcodes for Bacteria. Candidates from the 16S rRNA gene and the protein coding cpn60 gene were evaluated. Within complete bacterial genomes in the public domain representing 983 species from 21 phyla, the largest difference between median pairwise inter- and intra-specific distances ("barcode gap") was found from cpn60. Distribution of sequence diversity along the ∼555 bp cpn60 target region was remarkably uniform. The barcode gap of the cpn60 universal target facilitated the faithful de novo assembly of full-length operational taxonomic units from pyrosequencing data from a synthetic microbial community. Analysis supported the recognition of both 16S rRNA and cpn60 as DNA barcodes for Bacteria. The cpn60 universal target was found to have a much larger barcode gap than 16S rRNA suggesting cpn60 as a preferred barcode for Bacteria. A large barcode gap for cpn60 provided a robust target for species-level characterization of data. The assembly of consensus sequences for barcodes was shown to be a reliable method for the identification and tracking of novel microbes in metagenomic studies.

  6. Towards accurate de novo assembly for genomes with repeats

    NARCIS (Netherlands)

    Bucur, Doina

    2017-01-01

    De novo genome assemblers designed for short k-mer length or using short raw reads are unlikely to recover complex features of the underlying genome, such as repeats hundreds of bases long. We implement a stochastic machine-learning method which obtains accurate assemblies with repeats and

  7. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.

    Directory of Open Access Journals (Sweden)

    Sara Torre

    Full Text Available Quercus pubescens Willd., a species distributed from Spain to southwest Asia, ranks high for drought tolerance among European oaks. Q. pubescens performs a role of outstanding significance in most Mediterranean forest ecosystems, but few mechanistic studies have been conducted to explore its response to environmental constrains, due to the lack of genomic resources. In our study, we performed a deep transcriptomic sequencing in Q. pubescens leaves, including de novo assembly, functional annotation and the identification of new molecular markers. Our results are a pre-requisite for undertaking molecular functional studies, and may give support in population and association genetic studies. 254,265,700 clean reads were generated by the Illumina HiSeq 2000 platform, with an average length of 98 bp. De novo assembly, using CLC Genomics, produced 96,006 contigs, having a mean length of 618 bp. Sequence similarity analyses against seven public databases (Uniprot, NR, RefSeq and KOGs at NCBI, Pfam, InterPro and KEGG resulted in 83,065 transcripts annotated with gene descriptions, conserved protein domains, or gene ontology terms. These annotations and local BLAST allowed identify genes specifically associated with mechanisms of drought avoidance. Finally, 14,202 microsatellite markers and 18,425 single nucleotide polymorphisms (SNPs were, in silico, discovered in assembled and annotated sequences. We completed a successful global analysis of the Q. pubescens leaf transcriptome using RNA-seq. The assembled and annotated sequences together with newly discovered molecular markers provide genomic information for functional genomic studies in Q. pubescens, with special emphasis to response mechanisms to severe constrain of the Mediterranean climate. Our tools enable comparative genomics studies on other Quercus species taking advantage of large intra-specific ecophysiological differences.

  8. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana.

    Science.gov (United States)

    Gross, Stephen M; Martin, Jeffrey A; Simpson, June; Abraham-Juarez, María Jazmín; Wang, Zhong; Visel, Axel

    2013-08-19

    Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development.

  9. Hybrid De Novo Genome Assembly Using MiSeq and SOLiD Short Read Data.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ikegami

    Full Text Available A hybrid de novo assembly pipeline was constructed to utilize both MiSeq and SOLiD short read data in combination in the assembly. The short read data were converted to a standard format of the pipeline, and were supplied to the pipeline components such as ABySS and SOAPdenovo. The assembly pipeline proceeded through several stages, and either MiSeq paired-end data, SOLiD mate-paired data, or both of them could be specified as input data at each stage separately. The pipeline was examined on the filamentous fungus Aspergillus oryzae RIB40, by aligning the assembly results against the reference sequences. Using both the MiSeq and the SOLiD data in the hybrid assembly, the alignment length was improved by a factor of 3 to 8, compared with the assemblies using either one of the data types. The number of the reproduced gene cluster regions encoding secondary metabolite biosyntheses (SMB was also improved by the hybrid assemblies. These results imply that the MiSeq data with long read length are essential to construct accurate nucleotide sequences, while the SOLiD mate-paired reads with long insertion length enhance long-range arrangements of the sequences. The pipeline was also tested on the actinomycete Streptomyces avermitilis MA-4680, whose gene is known to have high-GC content. Although the quality of the SOLiD reads was too low to perform any meaningful assemblies by themselves, the alignment length to the reference was improved by a factor of 2, compared with the assembly using only the MiSeq data.

  10. IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels.

    Science.gov (United States)

    Peng, Yu; Leung, Henry C M; Yiu, Siu-Ming; Lv, Ming-Ju; Zhu, Xin-Guang; Chin, Francis Y L

    2013-07-01

    RNA sequencing based on next-generation sequencing technology is effective for analyzing transcriptomes. Like de novo genome assembly, de novo transcriptome assembly does not rely on any reference genome or additional annotation information, but is more difficult. In particular, isoforms can have very uneven expression levels (e.g. 1:100), which make it very difficult to identify low-expressed isoforms. One challenge is to remove erroneous vertices/edges with high multiplicity (produced by high-expressed isoforms) in the de Bruijn graph without removing correct ones with not-so-high multiplicity from low-expressed isoforms. Failing to do so will result in the loss of low-expressed isoforms or having complicated subgraphs with transcripts of different genes mixed together due to erroneous vertices/edges. Contributions: Unlike existing tools, which remove erroneous vertices/edges with multiplicities lower than a global threshold, we use a probabilistic progressive approach to iteratively remove them with local thresholds. This enables us to decompose the graph into disconnected components, each containing a few genes, if not a single gene, while retaining many correct vertices/edges of low-expressed isoforms. Combined with existing techniques, IDBA-Tran is able to assemble both high-expressed and low-expressed transcripts and outperform existing assemblers in terms of sensitivity and specificity for both simulated and real data. http://www.cs.hku.hk/~alse/idba_tran. Supplementary data are available at Bioinformatics online.

  11. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds.

    Science.gov (United States)

    Dudchenko, Olga; Batra, Sanjit S; Omer, Arina D; Nyquist, Sarah K; Hoeger, Marie; Durand, Neva C; Shamim, Muhammad S; Machol, Ido; Lander, Eric S; Aiden, Aviva Presser; Aiden, Erez Lieberman

    2017-04-07

    The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective way. Here we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67× coverage). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Ae aegypti and Culex quinquefasciatus , each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that almost all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, and accurate, and can be applied to many species. Copyright © 2017, American Association for the Advancement of Science.

  12. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration

    Science.gov (United States)

    2013-01-01

    Background Salamanders are unique among vertebrates in their ability to completely regenerate amputated limbs through the mediation of blastema cells located at the stump ends. This regeneration is nerve-dependent because blastema formation and regeneration does not occur after limb denervation. To obtain the genomic information of blastema tissues, de novo transcriptomes from both blastema tissues and denervated stump ends of Ambystoma mexicanum (axolotls) 14 days post-amputation were sequenced and compared using Solexa DNA sequencing. Results The sequencing done for this study produced 40,688,892 reads that were assembled into 307,345 transcribed sequences. The N50 of transcribed sequence length was 562 bases. A similarity search with known proteins identified 39,200 different genes to be expressed during limb regeneration with a cut-off E-value exceeding 10-5. We annotated assembled sequences by using gene descriptions, gene ontology, and clusters of orthologous group terms. Targeted searches using these annotations showed that the majority of the genes were in the categories of essential metabolic pathways, transcription factors and conserved signaling pathways, and novel candidate genes for regenerative processes. We discovered and confirmed numerous sequences of the candidate genes by using quantitative polymerase chain reaction and in situ hybridization. Conclusion The results of this study demonstrate that de novo transcriptome sequencing allows gene expression analysis in a species lacking genome information and provides the most comprehensive mRNA sequence resources for axolotls. The characterization of the axolotl transcriptome can help elucidate the molecular mechanisms underlying blastema formation during limb regeneration. PMID:23815514

  13. De novo Assembly and Characterization of Cajanus scarabaeoides (L. Thouars Transcriptome by Paired-End Sequencing

    Directory of Open Access Journals (Sweden)

    Deepti Nigam

    2017-07-01

    Full Text Available Pigeonpea [Cajanus cajan (L. Millsp.] is a heat and drought resilient legume crop grown mostly in Asia and Africa. Pigeonpea is affected by various biotic (diseases and insect pests and abiotic stresses (salinity and water logging which limit the yield potential of this crop. However, resistance to all these constraints is not readily available in the cultivated genotypes and some of the wild relatives have been found to withstand these resistances. Thus, the utilization of crop wild relatives (CWR in pigeonpea breeding has been effective in conferring resistance, quality and breeding efficiency traits to this crop. Bud and leaf tissue of Cajanus scarabaeoides, a wild relative of pigeon pea were used for transcriptome profiling. Approximately 30 million clean reads filtered from raw reads by removal of adaptors, ambiguous reads and low-quality reads (3.02 gigabase pairs were generated by Illumina paired-end RNA-seq technology. All of these clean reads were pooled and assembled de novo into 1,17,007 transcripts using the Trinity. Finally, a total of 98,664 unigenes were derived with mean length of 396 bp and N50 values of 1393. The assembly produced significant mapping results (73.68% in BLASTN searches of the Glycine max CDS sequence database (Ensembl. Further, uniprot database of Viridiplantae was used for unigene annotation; 81,799 of 98,664 (82.90% unigenes were finally annotated with gene descriptions or conserved protein domains. Further, a total of 23,475 SSRs were identified in 27,321 unigenes. This data will provide useful information for mining of functionally important genes and SSR markers for pigeonpea improvement.

  14. A hybrid reference-guided de novo assembly approach for generating Cyclospora mitochondrion genomes.

    Science.gov (United States)

    Gopinath, G R; Cinar, H N; Murphy, H R; Durigan, M; Almeria, M; Tall, B D; DaSilva, A J

    2018-01-01

    Cyclospora cayetanensis is a coccidian parasite associated with large and complex foodborne outbreaks worldwide. Linking samples from cyclosporiasis patients during foodborne outbreaks with suspected contaminated food sources, using conventional epidemiological methods, has been a persistent challenge. To address this issue, development of new methods based on potential genomically-derived markers for strain-level identification has been a priority for the food safety research community. The absence of reference genomes to identify nucleotide and structural variants with a high degree of confidence has limited the application of using sequencing data for source tracking during outbreak investigations. In this work, we determined the quality of a high resolution, curated, public mitochondrial genome assembly to be used as a reference genome by applying bioinformatic analyses. Using this reference genome, three new mitochondrial genome assemblies were built starting with metagenomic reads generated by sequencing DNA extracted from oocysts present in stool samples from cyclosporiasis patients. Nucleotide variants were identified in the new and other publicly available genomes in comparison with the mitochondrial reference genome. A consolidated workflow, presented here, to generate new mitochondrion genomes using our reference-guided de novo assembly approach could be useful in facilitating the generation of other mitochondrion sequences, and in their application for subtyping C. cayetanensis strains during foodborne outbreak investigations.

  15. Orthology Guided Assembly in highly heterozygous crops

    DEFF Research Database (Denmark)

    Ruttink, Tom; Sterck, Lieven; Rohde, Antje

    2013-01-01

    to outbreeding crop species hamper De Bruijn Graph-based de novo assembly algorithms, causing transcript fragmentation and the redundant assembly of allelic contigs. If multiple genotypes are sequenced to study genetic diversity, primary de novo assembly is best performed per genotype to limit the level......Despite current advances in next-generation sequencing data analysis procedures, de novo assembly of a reference sequence required for SNP discovery and expression analysis is still a major challenge in genetically uncharacterized, highly heterozygous species. High levels of polymorphism inherent...... of polymorphism and avoid transcript fragmentation. Here, we propose an Orthology Guided Assembly procedure that first uses sequence similarity (tBLASTn) to proteins of a model species to select allelic and fragmented contigs from all genotypes and then performs CAP3 clustering on a gene-by-gene basis. Thus, we...

  16. De novo assembly of leaf transcriptome in the medicinal plant Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Neeraja Cherukupalli

    2016-08-01

    Full Text Available Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeqTM 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant nonredundant protein database, gene ontology and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts − using kyoto encyclopedia of genes and genomes database − revealed 5,606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6,767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs in 23,168 transcripts. Assembled sequences of transcriptome of A.paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analyses besides identification of key enzymes involved in the various pathways of secondary metabolism.

  17. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata

    Science.gov (United States)

    Cherukupalli, Neeraja; Divate, Mayur; Mittapelli, Suresh R.; Khareedu, Venkateswara R.; Vudem, Dashavantha R.

    2016-01-01

    Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeq™ 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts—using kyoto encyclopedia of genes and genomes database—revealed 5606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs) in 23,168 transcripts. Assembled sequences of transcriptome of A. paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analysis besides identification of key enzymes involved in the various pathways of secondary metabolism. PMID:27582746

  18. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.

    Science.gov (United States)

    Peng, Yu; Leung, Henry C M; Yiu, S M; Chin, Francis Y L

    2012-06-01

    Next-generation sequencing allows us to sequence reads from a microbial environment using single-cell sequencing or metagenomic sequencing technologies. However, both technologies suffer from the problem that sequencing depth of different regions of a genome or genomes from different species are highly uneven. Most existing genome assemblers usually have an assumption that sequencing depths are even. These assemblers fail to construct correct long contigs. We introduce the IDBA-UD algorithm that is based on the de Bruijn graph approach for assembling reads from single-cell sequencing or metagenomic sequencing technologies with uneven sequencing depths. Several non-trivial techniques have been employed to tackle the problems. Instead of using a simple threshold, we use multiple depthrelative thresholds to remove erroneous k-mers in both low-depth and high-depth regions. The technique of local assembly with paired-end information is used to solve the branch problem of low-depth short repeat regions. To speed up the process, an error correction step is conducted to correct reads of high-depth regions that can be aligned to highconfident contigs. Comparison of the performances of IDBA-UD and existing assemblers (Velvet, Velvet-SC, SOAPdenovo and Meta-IDBA) for different datasets, shows that IDBA-UD can reconstruct longer contigs with higher accuracy. The IDBA-UD toolkit is available at our website http://www.cs.hku.hk/~alse/idba_ud

  19. Sequencing, De Novo Assembly, and Annotation of the Transcriptome of the Endangered Freshwater Pearl Bivalve, Cristaria plicata, Provides Novel Insights into Functional Genes and Marker Discovery.

    Directory of Open Access Journals (Sweden)

    Bharat Bhusan Patnaik

    Full Text Available The freshwater mussel Cristaria plicata (Bivalvia: Eulamellibranchia: Unionidae, is an economically important species in molluscan aquaculture due to its use in pearl farming. The species have been listed as endangered in South Korea due to the loss of natural habitats caused by anthropogenic activities. The decreasing population and a lack of genomic information on the species is concerning for environmentalists and conservationists. In this study, we conducted a de novo transcriptome sequencing and annotation analysis of C. plicata using Illumina HiSeq 2500 next-generation sequencing (NGS technology, the Trinity assembler, and bioinformatics databases to prepare a sustainable resource for the identification of candidate genes involved in immunity, defense, and reproduction.The C. plicata transcriptome analysis included a total of 286,152,584 raw reads and 281,322,837 clean reads. The de novo assembly identified a total of 453,931 contigs and 374,794 non-redundant unigenes with average lengths of 731.2 and 737.1 bp, respectively. Furthermore, 100% coverage of C. plicata mitochondrial genes within two unigenes supported the quality of the assembler. In total, 84,274 unigenes showed homology to entries in at least one database, and 23,246 unigenes were allocated to one or more Gene Ontology (GO terms. The most prominent GO biological process, cellular component, and molecular function categories (level 2 were cellular process, membrane, and binding, respectively. A total of 4,776 unigenes were mapped to 123 biological pathways in the KEGG database. Based on the GO terms and KEGG annotation, the unigenes were suggested to be involved in immunity, stress responses, sex-determination, and reproduction. A total of 17,251 cDNA simple sequence repeats (cSSRs were identified from 61,141 unigenes (size of >1 kb with the most abundant being dinucleotide repeats.This dataset represents the first transcriptome analysis of the endangered mollusc, C. plicata

  20. Evaluation of de novo assembly technique in the South African abalone Haliotis midae transcriptome: A comparison from Illumina and 454 systems

    Directory of Open Access Journals (Sweden)

    Barbara Picone

    2016-12-01

    Full Text Available Next generation sequencing platforms have recently been used to rapidly characterize transcriptome sequences from a number of non-model organisms. The present study compares two of the most frequently used platforms, the Roche 454-pyrosequencing and the Illumina sequencing-by-synthesis (SBS, on the same RNA sample obtained from an intertidal gastropod mollusc species, Haliotis midae. All the sequencing reads were deposited in the Short Read Archive (SRA database are retrievable under the accession number [SRR071314 (Illumina Genome Analyzer II] and [SRR1737738, SRR1737737, SRR1737735, SRR1737734 (454 GS FLX] in the SRA database of NCBI. Three transcriptomes, composed of either pure 454 or Illumina reads or a mixture of read types (Hybrid, were assembled using CLC Genomics Workbench software. Illumina assemblies performed the best de novo transcriptome characterization in terms of contig length, whereas the 454 assemblies tended to improve the complete assembly of gene transcripts. Both the Hybrid and Illumina assemblies produced longer contigs covering more of the transcriptome than 454 assemblies. However, the addition of 454 significantly increased the number of genes annotated.

  1. De novo assembly and annotation of the Antarctic copepod (Tigriopus kingsejongensis) transcriptome.

    Science.gov (United States)

    Kim, Hui-Su; Lee, Bo-Young; Han, Jeonghoon; Lee, Young Hwan; Min, Gi-Sik; Kim, Sanghee; Lee, Jae-Seong

    2016-08-01

    The whole transcriptome of the Antarctic copepod (Tigriopus kingsejongensis) was sequenced using Illumina RNA-seq. De novo assembly was performed with 64,785,098 raw reads using Trinity, which assembled into 81,653 contigs. TransDecoder found 38,250 candidate coding contigs which showed homology to other species by BLAST analysis. Functional gene annotation was performed by Gene Ontology (GO), InterProScan, and KEGG pathway analyses. Finally, we identified a number of expressed gene catalog for T. kingsejongensis that is a useful model animal for gene information-based polar research to uncover molecular mechanisms of environmental adaptation on harsh environments. In particular, we observed highly developing lipid metabolism in T. kingsejongensis directly compared to those of the Far East Pacific coast copepod Tigriopus japonicus at the transcriptome level. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology.

    Science.gov (United States)

    Canales, Javier; Bautista, Rocio; Label, Philippe; Gómez-Maldonado, Josefa; Lesur, Isabelle; Fernández-Pozo, Noe; Rueda-López, Marina; Guerrero-Fernández, Dario; Castro-Rodríguez, Vanessa; Benzekri, Hicham; Cañas, Rafael A; Guevara, María-Angeles; Rodrigues, Andreia; Seoane, Pedro; Teyssier, Caroline; Morel, Alexandre; Ehrenmann, François; Le Provost, Grégoire; Lalanne, Céline; Noirot, Céline; Klopp, Christophe; Reymond, Isabelle; García-Gutiérrez, Angel; Trontin, Jean-François; Lelu-Walter, Marie-Anne; Miguel, Celia; Cervera, María Teresa; Cantón, Francisco R; Plomion, Christophe; Harvengt, Luc; Avila, Concepción; Gonzalo Claros, M; Cánovas, Francisco M

    2014-04-01

    Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne).

    Science.gov (United States)

    Jung, Won Yong; Lee, Sang Sook; Kim, Chul Wook; Kim, Hyun-Soon; Min, Sung Ran; Moon, Jae Sun; Kwon, Suk-Yoon; Jeon, Jae-Heung; Cho, Hye Sun

    2014-01-01

    Jerusalem artichoke (Helianthus tuberosus L.) has long been cultivated as a vegetable and as a source of fructans (inulin) for pharmaceutical applications in diabetes and obesity prevention. However, transcriptomic and genomic data for Jerusalem artichoke remain scarce. In this study, Illumina RNA sequencing (RNA-Seq) was performed on samples from Jerusalem artichoke leaves, roots, stems and two different tuber tissues (early and late tuber development). Data were used for de novo assembly and characterization of the transcriptome. In total 206,215,632 paired-end reads were generated. These were assembled into 66,322 loci with 272,548 transcripts. Loci were annotated by querying against the NCBI non-redundant, Phytozome and UniProt databases, and 40,215 loci were homologous to existing database sequences. Gene Ontology terms were assigned to 19,848 loci, 15,434 loci were matched to 25 Clusters of Eukaryotic Orthologous Groups classifications, and 11,844 loci were classified into 142 Kyoto Encyclopedia of Genes and Genomes pathways. The assembled loci also contained 10,778 potential simple sequence repeats. The newly assembled transcriptome was used to identify loci with tissue-specific differential expression patterns. In total, 670 loci exhibited tissue-specific expression, and a subset of these were confirmed using RT-PCR and qRT-PCR. Gene expression related to inulin biosynthesis in tuber tissue was also investigated. Exsiting genetic and genomic data for H. tuberosus are scarce. The sequence resources developed in this study will enable the analysis of thousands of transcripts and will thus accelerate marker-assisted breeding studies and studies of inulin biosynthesis in Jerusalem artichoke.

  4. De Novo whole genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 from blueberry in Georgia, USA

    Science.gov (United States)

    This study reports a de novo assembled draft genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 causing blueberry bacterial leaf scorch in Georgia, USA. The BB01 genome is 2,517,579 bp with a G+C content of 51.8% and 2,943 open reading frames (ORFs) and 48 RNA genes....

  5. De novo transcriptome assembly of a sour cherry cultivar, Schattenmorelle

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2015-12-01

    Full Text Available Sour cherry (Prunus cerasus in the genus Prunus in the family Rosaceae is one of the most popular stone fruit trees worldwide. Of known sour cherry cultivars, the Schattenmorelle is a famous old sour cherry with a high amount of fruit production. The Schattenmorelle was selected before 1650 and described in the 1800s. This cultivar was named after gardens of the Chateau de Moreille in which the cultivar was initially found. In order to identify new genes and to develop genetic markers for sour cherry, we performed a transcriptome analysis of a sour cherry. We selected the cultivar Schattenmorelle, which is among commercially important cultivars in Europe and North America. We obtained 2.05 GB raw data from the Schattenmorelle (NCBI accession number: SRX1187170. De novo transcriptome assembly using Trinity identified 61,053 transcripts in which N50 was 611 bp. Next, we identified 25,585 protein coding sequences using TransDecoder. The identified proteins were blasted against NCBI's non-redundant database for annotation. Based on blast search, we taxonomically classified the obtained sequences. As a result, we provide the transcriptome of sour cherry cultivar Schattenmorelle using next generation sequencing.

  6. SEQUENCING AND DE NOVO DRAFT ASSEMBLIES OF A FATHEAD MINNOW (Pimpehales promelas) reference genome

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset provides the URLs for accessing the genome sequence data and two draft assemblies as well as fathead minnow genotyping data associated with estimating...

  7. Data of first de-novo transcriptome assembly of a non-model species, hawksbill sea turtle, Eretmochelys imbricate, nesting of the Colombian Caribean.

    Science.gov (United States)

    Hernández-Fernández, Javier

    2017-12-01

    The hawksbill sea turtle, Eretmochelys imbricata, is an endangered species of the Caribbean Colombian coast due to anthropic and natural factors that have decreased their population levels. Little is known about the genes that are involved in their immune system, sex determination, aging and others important functions. The data generated represents RNA sequencing and the first de-novo assembly of transcripts expressed in the blood of the hawksbill sea turtle. The raw FASTQ files were deposited in the NCBI SRA database with accession number SRX2653641. A total of 5.7 Gb raw sequence data were obtained, corresponding to 47,555,108 raw reads. Trinity was used to perform a first de-novo assembly, and we were able to identify 47,586 transcripts of the female hawksbill turtle transcriptome with an N50 of 1100 bp. The obtained transcriptome data will be useful for further studies of the physiology, biochemistry and evolution in this species.

  8. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  9. De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus).

    Science.gov (United States)

    Migalska, M; Sebastian, A; Konczal, M; Kotlík, P; Radwan, J

    2017-04-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.

  10. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Bruno, Vincent M.; Fang, Zhide; Meng, Xiandong; Blow, Matthew; Zhang, Tao; Sherlock, Gavin; Snyder, Michael; Wang, Zhong

    2010-11-19

    Background: Comprehensive annotation and quantification of transcriptomes are outstanding problems in functional genomics. While high throughput mRNA sequencing (RNA-Seq) has emerged as a powerful tool for addressing these problems, its success is dependent upon the availability and quality of reference genome sequences, thus limiting the organisms to which it can be applied. Results: Here, we describe Rnnotator, an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome. We have applied the Rnnotator assembly pipeline to two yeast transcriptomes and compared the results to the reference gene catalogs of these organisms. The contigs produced by Rnnotator are highly accurate (95percent) and reconstruct full-length genes for the majority of the existing gene models (54.3percent). Furthermore, our analyses revealed many novel transcribed regions that are absent from well annotated genomes, suggesting Rnnotator serves as a complementary approach to analysis based on a reference genome for comprehensive transcriptomics. Conclusions: These results demonstrate that the Rnnotator pipeline is able to reconstruct full-length transcripts in the absence of a complete reference genome.

  11. De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley

    Directory of Open Access Journals (Sweden)

    Scholz Uwe

    2009-11-01

    Full Text Available Abstract Background De novo sequencing the entire genome of a large complex plant genome like the one of barley (Hordeum vulgare L. is a major challenge both in terms of experimental feasibility and costs. The emergence and breathtaking progress of next generation sequencing technologies has put this goal into focus and a clone based strategy combined with the 454/Roche technology is conceivable. Results To test the feasibility, we sequenced 91 barcoded, pooled, gene containing barley BACs using the GS FLX platform and assembled the sequences under iterative change of parameters. The BAC assemblies were characterized by N50 of ~50 kb (N80 ~31 kb, N90 ~21 kb and a Q40 of 94%. For ~80% of the clones, the best assemblies consisted of less than 10 contigs at 24-fold mean sequence coverage. Moreover we show that gene containing regions seem to assemble completely and uninterrupted thus making the approach suitable for detecting complete and positionally anchored genes. By comparing the assemblies of four clones to their complete reference sequences generated by the Sanger method, we evaluated the distribution, quality and representativeness of the 454 sequences as well as the consistency and reliability of the assemblies. Conclusion The described multiplex 454 sequencing of barcoded BACs leads to sequence consensi highly representative for the clones. Assemblies are correct for the majority of contigs. Though the resolution of complex repetitive structures requires additional experimental efforts, our approach paves the way for a clone based strategy of sequencing the barley genome.

  12. Comparing de novo assemblers for 454 transcriptome data.

    Science.gov (United States)

    Kumar, Sujai; Blaxter, Mark L

    2010-10-16

    Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs however gave a more credible

  13. Sequencing and De novo Draft Assemblies of the Fathead Minnow (Pimphales promelas)Reference Genome

    Science.gov (United States)

    This study was undertaken to develop genome-scale resources for the fathead minnow (Pimphales promelas) an important model organism widely used in both aquatic ecotoxicology research and in regulatory toxicity testing. We report on the first sequencing and two draft assemblies fo...

  14. A glance at quality score: implication for de novo transcriptome reconstruction of Illumina reads

    Directory of Open Access Journals (Sweden)

    Stanley Kimbung Mbandi

    2014-02-01

    Full Text Available Downstream analyses of short-reads from next-generation sequencing platforms are often preceded by a pre-processing step that removes uncalled and wrongly called bases. Standard approaches rely on their associated base quality scores to retain the read or a portion of it when the score is above a predefined threshold. It is difficult to differentiate sequencing error from biological variation without a reference using quality scores. The effects of quality score based trimming have not been systematically studied in de novo transcriptome assembly. Using RNA-Seq data produced from Illumina, we teased out the effects of quality score base filtering or trimming on de novo transcriptome reconstruction. We showed that assemblies produced from reads subjected to different quality score thresholds contain truncated and missing transfrags when compared to those from untrimmed reads. Our data supports the fact that de novo assembling of untrimmed data is challenging for de Bruijn graph assemblers. However, our results indicates that comparing the assemblies from untrimmed and trimmed read subsets can suggest appropriate filtering parameters and enable selection of the optimum de novo transcriptome assembly in non-model organisms.

  15. Data of first de-novo transcriptome assembly of a non-model species, hawksbill sea turtle, Eretmochelys imbricate, nesting of the Colombian Caribean

    Directory of Open Access Journals (Sweden)

    Javier Hernández-Fernández

    2017-12-01

    Full Text Available The hawksbill sea turtle, Eretmochelys imbricata, is an endangered species of the Caribbean Colombian coast due to anthropic and natural factors that have decreased their population levels. Little is known about the genes that are involved in their immune system, sex determination, aging and others important functions. The data generated represents RNA sequencing and the first de-novo assembly of transcripts expressed in the blood of the hawksbill sea turtle. The raw FASTQ files were deposited in the NCBI SRA database with accession number SRX2653641. A total of 5.7 Gb raw sequence data were obtained, corresponding to 47,555,108 raw reads. Trinity was used to perform a first de-novo assembly, and we were able to identify 47,586 transcripts of the female hawksbill turtle transcriptome with an N50 of 1100 bp. The obtained transcriptome data will be useful for further studies of the physiology, biochemistry and evolution in this species. Keywords: Hawksbill turtle, Trinity, RNAseq, illumina, N50

  16. Comparing de novo assemblers for 454 transcriptome data

    Directory of Open Access Journals (Sweden)

    Blaxter Mark L

    2010-10-01

    Full Text Available Abstract Background Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. Results Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects, which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. Conclusions Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies

  17. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation.

    Science.gov (United States)

    Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C

    2012-01-01

    The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  18. De novo assembly, gene annotation, and marker discovery in stored-product pest Liposcelis entomophila (Enderlein using transcriptome sequences.

    Directory of Open Access Journals (Sweden)

    Dan-Dan Wei

    Full Text Available BACKGROUND: As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. METHODOLOGY/PRINCIPAL FINDINGS: We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61% unigenes were matched to known proteins in the NCBI non-redundant (Nr protein database. These unigenes were further functionally annotated with gene ontology (GO, cluster of orthologous groups of proteins (COG, and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST genes, 19 putative carboxyl/cholinesterase (CCE genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. CONCLUSIONS/SIGNIFICANCE: We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying

  19. De novo transcriptome assembly of the calanoid copepod Neocalanus flemingeri: A new resource for emergence from diapause.

    Science.gov (United States)

    Roncalli, Vittoria; Cieslak, Matthew C; Sommer, Stephanie A; Hopcroft, Russell R; Lenz, Petra H

    2018-02-01

    Copepods, small planktonic crustaceans, are key links between primary producers and upper trophic levels, including many economically important fishes. In the subarctic North Pacific, the life cycle of copepods like Neocalanus flemingeri includes an ontogenetic migration to depth followed by a period of diapause (a type of dormancy) characterized by arrested development and low metabolic activity. The end of diapause is marked by the production of the first brood of eggs. Recent temperature anomalies in the North Pacific have raised concerns about potential negative effects on N. flemingeri. Since diapause is a developmental program, its progress can be tracked using through global gene expression. Thus, a reference transcriptome was developed as a first step towards physiological profiling of diapausing females using high-throughput Illumina sequencing. The de novo transcriptome, the first for this species was designed to investigate the diapause period. RNA-Seq reads were obtained for dormant to reproductive N. flemingeri females. A high quality de novo transcriptome was obtained by first assembling reads from each individual using Trinity software followed by clustering with CAP3 Assembly Program. This assembly consisted of 140,841transcripts (contigs). Bench-marking universal single-copy orthologs analysis identified 85% of core eukaryotic genes, with 79% predicted to be complete. Comparison with other calanoid transcriptomes confirmed its quality and degree of completeness. Trinity assembly of reads originating from multiple individuals led to fragmentation. Thus, the workflow applied here differed from the one recommended by Trinity, but was required to obtain a good assembly. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2017-10-01

    Full Text Available Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV, infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

  1. De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses.

    Science.gov (United States)

    Xie, Feng-Yun; Feng, Yu-Long; Wang, Hong-Hui; Ma, Yun-Feng; Yang, Yang; Wang, Yin-Chao; Shen, Wei; Pan, Qing-Jie; Yin, Shen; Sun, Yu-Jiang; Ma, Jun-Yu

    2015-01-01

    Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.

  2. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease.

    Science.gov (United States)

    Marchant, A; Mougel, F; Almeida, C; Jacquin-Joly, E; Costa, J; Harry, M

    2015-04-01

    High throughput sequencing (HTS) provides new research opportunities for work on non-model organisms, such as differential expression studies between populations exposed to different environmental conditions. However, such transcriptomic studies first require the production of a reference assembly. The choice of sampling procedure, sequencing strategy and assembly workflow is crucial. To develop a reliable reference transcriptome for Triatoma brasiliensis, the major Chagas disease vector in Northeastern Brazil, different de novo assembly protocols were generated using various datasets and software. Both 454 and Illumina sequencing technologies were applied on RNA extracted from antennae and mouthparts from single or pooled individuals. The 454 library yielded 278 Mb. Fifteen Illumina libraries were constructed and yielded nearly 360 million RNA-seq single reads and 46 million RNA-seq paired-end reads for nearly 45 Gb. For the 454 reads, we used three assemblers, Newbler, CAP3 and/or MIRA and for the Illumina reads, the Trinity assembler. Ten assembly workflows were compared using these programs separately or in combination. To compare the assemblies obtained, quantitative and qualitative criteria were used, including contig length, N50, contig number and the percentage of chimeric contigs. Completeness of the assemblies was estimated using the CEGMA pipeline. The best assembly (57,657 contigs, completeness of 80 %, <1 % chimeric contigs) was a hybrid assembly leading to recommend the use of (1) a single individual with large representation of biological tissues, (2) merging both long reads and short paired-end Illumina reads, (3) several assemblers in order to combine the specific advantages of each.

  3. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach.

    Science.gov (United States)

    Melicher, Dacotah; Torson, Alex S; Dworkin, Ian; Bowsher, Julia H

    2014-03-12

    The Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba. Our bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species. The pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.

  4. The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny

    Science.gov (United States)

    Scaglione, Davide; Reyes-Chin-Wo, Sebastian; Acquadro, Alberto; Froenicke, Lutz; Portis, Ezio; Beitel, Christopher; Tirone, Matteo; Mauro, Rosario; Lo Monaco, Antonino; Mauromicale, Giovanni; Faccioli, Primetta; Cattivelli, Luigi; Rieseberg, Loren; Michelmore, Richard; Lanteri, Sergio

    2016-01-01

    Globe artichoke (Cynara cardunculus var. scolymus) is an out-crossing, perennial, multi-use crop species that is grown worldwide and belongs to the Compositae, one of the most successful Angiosperm families. We describe the first genome sequence of globe artichoke. The assembly, comprising of 13,588 scaffolds covering 725 of the 1,084 Mb genome, was generated using ~133-fold Illumina sequencing data and encodes 26,889 predicted genes. Re-sequencing (30×) of globe artichoke and cultivated cardoon (C. cardunculus var. altilis) parental genotypes and low-coverage (0.5 to 1×) genotyping-by-sequencing of 163 F1 individuals resulted in 73% of the assembled genome being anchored in 2,178 genetic bins ordered along 17 chromosomal pseudomolecules. This was achieved using a novel pipeline, SOILoCo (Scaffold Ordering by Imputation with Low Coverage), to detect heterozygous regions and assign parental haplotypes with low sequencing read depth and of unknown phase. SOILoCo provides a powerful tool for de novo genome analysis of outcrossing species. Our data will enable genome-scale analyses of evolutionary processes among crops, weeds, and wild species within and beyond the Compositae, and will facilitate the identification of economically important genes from related species. PMID:26786968

  5. Improving transcriptome assembly through error correction of high-throughput sequence reads

    Directory of Open Access Journals (Sweden)

    Matthew D. MacManes

    2013-07-01

    Full Text Available The study of functional genomics, particularly in non-model organisms, has been dramatically improved over the last few years by the use of transcriptomes and RNAseq. While these studies are potentially extremely powerful, a computationally intensive procedure, the de novo construction of a reference transcriptome must be completed as a prerequisite to further analyses. The accurate reference is critically important as all downstream steps, including estimating transcript abundance are critically dependent on the construction of an accurate reference. Though a substantial amount of research has been done on assembly, only recently have the pre-assembly procedures been studied in detail. Specifically, several stand-alone error correction modules have been reported on and, while they have shown to be effective in reducing errors at the level of sequencing reads, how error correction impacts assembly accuracy is largely unknown. Here, we show via use of a simulated and empiric dataset, that applying error correction to sequencing reads has significant positive effects on assembly accuracy, and should be applied to all datasets. A complete collection of commands which will allow for the production of Reptile corrected reads is available at https://github.com/macmanes/error_correction/tree/master/scripts and as File S1.

  6. De novo transcriptome assembly of two Vigna angularis varieties collected from Korea

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2016-06-01

    Full Text Available The adzuki bean (Vigna angularis, a member of the family Fabaceae, is widely grown in Asia, from East Asia to the Himalayas. The adzuki bean is known as an ingredient that adds sweetness to diverse desserts made in Eastern Asian countries. Libraries prepared from two V. angularis varieties referred to as Taejin Black and Taejin Red were paired-end sequenced using the Illumina HiSeq 2000 system. The raw data in this study can be available in NCBI SRA database with accession numbers of SRR3406660 and SRR3406553. After de novo transcriptome assembly using Trinity, we obtained 324,219 and 280,056 transcripts from Taejin Black and Taejin Red, respectively. We predicted a total of 238,321 proteins and 179,519 proteins for Taejin Black and Taejin Red, respectively, by the TransDecoder program. We carried out BLASTP on the predicted proteins against the Swiss-Prot protein sequence database to predict the putative functions of identified proteins. Taken together, we provide transcriptomes of two adzuki bean varieties by RNA-Seq, which might be usefully applied to generate molecular markers.

  7. De Novo transcriptome assembly of Zingiber officinale cv. Suruchi of Odisha.

    Science.gov (United States)

    Gaur, Mahendra; Das, Aradhana; Sahoo, Rajesh Kumar; Kar, Basudeba; Nayak, Sanghamitra; Subudhi, Enketeswara

    2016-09-01

    Zingiber officinale Rosc., known as ginger, is an Asian crop, popularly used in every household kitchen and commercially used in bakery, beverage, food and pharmaceutical industries. The present study deals with de novo transcriptome assembly of an elite ginger cultivar Suruchi by next generation sequencing methodology. From the analysis 10.9 GB raw data was obtained which can be available in NCBI accession number SAMN03761185. We identified 41,969 transcripts using Trinity RNA-Seq from ginger rhizome of Suruchi variety from Odisha. The transcript length varied from 300 bp to 8404 bp with a total length of 3,96,40,526 bp and N50 of 1251 bp. To the best of our knowledge, this is the first transcriptome data of an elite ginger cultivar Suruchi released for Odisha state of India which will help molecular biologists to develop genetic markers for identification of cultivars.

  8. De novo sequencing, assembly, and analysis of Iris lactea var. chinensis roots' transcriptome in response to salt stress.

    Science.gov (United States)

    Gu, Chunsun; Xu, Sheng; Wang, Zhiquan; Liu, Liangqin; Zhang, Yongxia; Deng, Yanming; Huang, Suzhen

    2018-04-01

    As a halophyte, Iris lactea var. chinensis (I. lactea var. chinensis) is widely distributed and has good drought and heavy metal resistance. Moreover, it is an excellent ornamental plant. I. lactea var. chinensis has extensive application prospects owing to the global impacts of salinization. To better understand its molecular mechanism involved in salt resistance, the de novo sequencing, assembly, and analysis of I. lactea var. chinensis roots' transcriptome in response to salt-stress conditions was performed. On average, 74.17% of the clean reads were mapped to unigenes. A total of 121,093 unigenes were constructed and 56,398 (46.57%) were annotated. Among these, 13,522 differentially expressed genes (DEGs) were identified between salt-treated and control samples Compared to the transcriptional level of control, 7037 DEGs were up-regulated and 6539 down-regulated. In addition, 129 up-regulated and 1609 down-regulated genes were simultaneously detected in all three pairwise comparisons between control and salt-stressed libraries. At least 247 and 250 DEGs encoding transcription factors and transporter proteins were identified. Meanwhile, 130 DEGs regarding reactive oxygen species (ROS) scavenging system were also summarized. Based on real-time quantitative RT-PCR, we verified the changes in the expression patterns of 10 unigenes. Our study identified potential salt-responsive candidate genes and increased the understanding of halophyte responses to salinity stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation.

    Science.gov (United States)

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L; Chang, Bill Chia-Han; Matzke, Antonius J M; Matzke, Marjori

    2014-09-04

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop. Copyright © 2014 Huang et al.

  10. De novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome to identify putative genes involved in the aquatic adaptation and immune response.

    Science.gov (United States)

    Gui, Duan; Jia, Kuntong; Xia, Jia; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng

    2013-01-01

    The Indo-Pacific humpback dolphin (Sousa chinensis), a marine mammal species inhabited in the waters of Southeast Asia, South Africa and Australia, has attracted much attention because of the dramatic decline in population size in the past decades, which raises the concern of extinction. So far, this species is poorly characterized at molecular level due to little sequence information available in public databases. Recent advances in large-scale RNA sequencing provide an efficient approach to generate abundant sequences for functional genomic analyses in the species with un-sequenced genomes. We performed a de novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome by Illumina sequencing. 108,751 high quality sequences from 47,840,388 paired-end reads were generated, and 48,868 and 46,587 unigenes were functionally annotated by BLAST search against the NCBI non-redundant and Swiss-Prot protein databases (E-valueIndo-Pacific humpback dolphin, an endangered species. The de novo transcriptome analysis of the unique transcripts will provide valuable sequence information for discovery of new genes, characterization of gene expression, investigation of various pathways and adaptive evolution, as well as identification of genetic markers.

  11. De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses.

    Directory of Open Access Journals (Sweden)

    Feng-Yun Xie

    Full Text Available Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR protein database. We also compared the donkey protein sequences with those of the horse (E. caballus and wild horse (E. przewalskii, and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.

  12. De novo assembly of the perennial ryegrass transcriptome using an RNA-seq strategy

    DEFF Research Database (Denmark)

    Farrell, Jacqueline Danielle; Byrne, Stephen; Paina, Cristiana

    2014-01-01

    a homozygous perennial ryegrass genotype can circumvent the challenge of heterozygosity. The goals of this study were to perform RNA-sequencing on multiple tissues from a highly inbred genotype to develop a reference transcriptome. This was complemented with RNA-sequencing of a highly heterozygous genotype...... for SNP calling. Result De novo transcriptome assembly of the inbred genotype created 185,833 transcripts with an average length of 830 base pairs. Within the inbred reference transcriptome 78,560 predicted open reading frames were found of which 24,434 were predicted as complete. Functional annotation...... multiple orthologs. Using the longest unique open reading frames as the reference sequence, 64,242 single nucleotide polymorphisms were found. One thousand sixty one open reading frames from the inbred genotype contained heterozygous sites, confirming the high degree of homozygosity. Conclusion Our study...

  13. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Cannon Charles H

    2011-07-01

    Full Text Available Abstract Background Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants. Results We sequenced transcriptomes of A. auriculiformis and A. mangium from non-normalized cDNA libraries synthesized from pooled young stem and inner bark tissues using paired-end libraries and a single lane of an Illumina GAII machine. De novo assembly produced a total of 42,217 and 35,759 contigs with an average length of 496 bp and 498 bp for A. auriculiformis and A. mangium respectively. The assemblies of A. auriculiformis and A. mangium had a total length of 21,022,649 bp and 17,838,260 bp, respectively, with the largest contig 15,262 bp long. We detected all ten monolignol biosynthetic genes using Blastx and further analysis revealed 18 lignin isoforms for each species. We also identified five contigs homologous to R2R3-MYB proteins in other plant species that are involved in transcriptional regulation of secondary cell wall formation and lignin deposition. We searched the contigs against public microRNA database and predicted the stem-loop structures of six highly conserved microRNA families (miR319, miR396, miR160, miR172, miR162 and miR168 and one legume-specific family (miR2086. Three microRNA target genes were predicted to be involved in wood formation and flavonoid biosynthesis. By using the assemblies as a reference, we discovered 16,648 and 9,335 high quality putative Single Nucleotide Polymorphisms (SNPs in the transcriptomes of A. auriculiformis and A. mangium

  14. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome.

    Science.gov (United States)

    Hsu, Ju-Chun; Chien, Ting-Ying; Hu, Chia-Cheng; Chen, Mei-Ju May; Wu, Wen-Jer; Feng, Hai-Tung; Haymer, David S; Chen, Chien-Yu

    2012-01-01

    Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS). The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs). A total of 29,067 isotigs have putative homologues in the non-redundant (nr) protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also analyzed to

  15. De novo transcriptome assembly, functional annotation and differential gene expression analysis of juvenile and adult E. fetida, a model oligochaete used in ecotoxicological studies

    Directory of Open Access Journals (Sweden)

    Michelle Thunders

    Full Text Available Abstract Background Earthworms are sensitive to toxic chemicals present in the soil and so are useful indicator organisms for soil health. Eisenia fetida are commonly used in ecotoxicological studies; therefore the assembly of a baseline transcriptome is important for subsequent analyses exploring the impact of toxin exposure on genome wide gene expression. Results This paper reports on the de novo transcriptome assembly of E. fetida using Trinity, a freely available software tool. Trinotate was used to carry out functional annotation of the Trinity generated transcriptome file and the transdecoder generated peptide sequence file along with BLASTX, BLASTP and HMMER searches and were loaded into a Sqlite3 database. To identify differentially expressed transcripts; each of the original sequence files were aligned to the de novo assembled transcriptome using Bowtie and then RSEM was used to estimate expression values based on the alignment. EdgeR was used to calculate differential expression between the two conditions, with an FDR corrected P value cut off of 0.001, this returned six significantly differentially expressed genes. Initial BLASTX hits of these putative genes included hits with annelid ferritin and lysozyme proteins, as well as fungal NADH cytochrome b5 reductase and senescence associated proteins. At a cut off of P = 0.01 there were a further 26 differentially expressed genes. Conclusion These data have been made publicly available, and to our knowledge represent the most comprehensive available transcriptome for E. fetida assembled from RNA sequencing data. This provides important groundwork for subsequent ecotoxicogenomic studies exploring the impact of the environment on global gene expression in E. fetida and other earthworm species.

  16. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  17. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L. Lam].

    Directory of Open Access Journals (Sweden)

    Xiang Tao

    Full Text Available BACKGROUND: Sweet potato (Ipomoea batatas L. [Lam.] ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic resources. Hence, studies based on high-throughput sequencing technologies are needed to get a comprehensive and integrated genomic resource and better understanding of gene expression patterns in different tissues and at various developmental stages. METHODOLOGY/PRINCIPAL FINDINGS: Illumina paired-end (PE RNA-Sequencing was performed, and generated 48.7 million of 75 bp PE reads. These reads were de novo assembled into 128,052 transcripts (≥ 100 bp, which correspond to 41.1 million base pairs, by using a combined assembly strategy. Transcripts were annotated by Blast2GO and 51,763 transcripts got BLASTX hits, in which 39,677 transcripts have GO terms and 14,117 have ECs that are associated with 147 KEGG pathways. Furthermore, transcriptome differences of seven tissues were analyzed by using Illumina digital gene expression (DGE tag profiling and numerous differentially and specifically expressed transcripts were identified. Moreover, the expression characteristics of genes involved in viral genomes, starch metabolism and potential stress tolerance and insect resistance were also identified. CONCLUSIONS/SIGNIFICANCE: The combined de novo transcriptome assembly strategy can be applied to other organisms whose reference genomes are not available. The data provided here represent the most comprehensive and integrated genomic resources for cloning and identifying genes of interest in sweet potato. Characterization of sweet potato transcriptome provides an effective tool for better understanding the molecular mechanisms of cellular processes including development of leaves and storage roots

  18. De novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome to identify putative genes involved in the aquatic adaptation and immune response.

    Directory of Open Access Journals (Sweden)

    Duan Gui

    Full Text Available BACKGROUND: The Indo-Pacific humpback dolphin (Sousa chinensis, a marine mammal species inhabited in the waters of Southeast Asia, South Africa and Australia, has attracted much attention because of the dramatic decline in population size in the past decades, which raises the concern of extinction. So far, this species is poorly characterized at molecular level due to little sequence information available in public databases. Recent advances in large-scale RNA sequencing provide an efficient approach to generate abundant sequences for functional genomic analyses in the species with un-sequenced genomes. PRINCIPAL FINDINGS: We performed a de novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome by Illumina sequencing. 108,751 high quality sequences from 47,840,388 paired-end reads were generated, and 48,868 and 46,587 unigenes were functionally annotated by BLAST search against the NCBI non-redundant and Swiss-Prot protein databases (E-value<10(-5, respectively. In total, 16,467 unigenes were clustered into 25 functional categories by searching against the COG database, and BLAST2GO search assigned 37,976 unigenes to 61 GO terms. In addition, 36,345 unigenes were grouped into 258 KEGG pathways. We also identified 9,906 simple sequence repeats and 3,681 putative single nucleotide polymorphisms as potential molecular markers in our assembled sequences. A large number of unigenes were predicted to be involved in immune response, and many genes were predicted to be relevant to adaptive evolution and cetacean-specific traits. CONCLUSION: This study represented the first transcriptome analysis of the Indo-Pacific humpback dolphin, an endangered species. The de novo transcriptome analysis of the unique transcripts will provide valuable sequence information for discovery of new genes, characterization of gene expression, investigation of various pathways and adaptive evolution, as well as identification of genetic markers.

  19. Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.

    Science.gov (United States)

    Morse, Alison M; Calabro, Kaitlyn R; Fear, Justin M; Bloom, David C; McIntyre, Lauren M

    2017-08-16

    High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.

  20. Targeted assembly of short sequence reads.

    Directory of Open Access Journals (Sweden)

    René L Warren

    Full Text Available As next-generation sequence (NGS production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled stringently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming genomic mutations, polymorphisms, fusions and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly.

  1. Meta-IDBA: a de Novo assembler for metagenomic data.

    Science.gov (United States)

    Peng, Yu; Leung, Henry C M; Yiu, S M; Chin, Francis Y L

    2011-07-01

    Next-generation sequencing techniques allow us to generate reads from a microbial environment in order to analyze the microbial community. However, assembling of a set of mixed reads from different species to form contigs is a bottleneck of metagenomic research. Although there are many assemblers for assembling reads from a single genome, there are no assemblers for assembling reads in metagenomic data without reference genome sequences. Moreover, the performances of these assemblers on metagenomic data are far from satisfactory, because of the existence of common regions in the genomes of subspecies and species, which make the assembly problem much more complicated. We introduce the Meta-IDBA algorithm for assembling reads in metagenomic data, which contain multiple genomes from different species. There are two core steps in Meta-IDBA. It first tries to partition the de Bruijn graph into isolated components of different species based on an important observation. Then, for each component, it captures the slight variants of the genomes of subspecies from the same species by multiple alignments and represents the genome of one species, using a consensus sequence. Comparison of the performances of Meta-IDBA and existing assemblers, such as Velvet and Abyss for different metagenomic datasets shows that Meta-IDBA can reconstruct longer contigs with similar accuracy. Meta-IDBA toolkit is available at our website http://www.cs.hku.hk/~alse/metaidba. chin@cs.hku.hk.

  2. Draft Sequencing of the Heterozygous Diploid Genome of Satsuma (Citrus unshiu Marc. Using a Hybrid Assembly Approach

    Directory of Open Access Journals (Sweden)

    Tokurou Shimizu

    2017-12-01

    Full Text Available Satsuma (Citrus unshiu Marc. is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. De novo assembly of the heterozygous diploid genome of Satsuma (“Miyagawa Wase” was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N50 length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome.

  3. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps.

    Science.gov (United States)

    Georges, Arthur; Li, Qiye; Lian, Jinmin; O'Meally, Denis; Deakin, Janine; Wang, Zongji; Zhang, Pei; Fujita, Matthew; Patel, Hardip R; Holleley, Clare E; Zhou, Yang; Zhang, Xiuwen; Matsubara, Kazumi; Waters, Paul; Graves, Jennifer A Marshall; Sarre, Stephen D; Zhang, Guojie

    2015-01-01

    The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.

  4. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    Science.gov (United States)

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Assembly of Repeat Content Using Next Generation Sequencing Data

    Energy Technology Data Exchange (ETDEWEB)

    labutti, Kurt; Kuo, Alan; Grigoriev, Igor; Copeland, Alex

    2014-03-17

    Repetitive organisms pose a challenge for short read assembly, and typically only unique regions and repeat regions shorter than the read length, can be accurately assembled. Recently, we have been investigating the use of Pacific Biosciences reads for de novo fungal assembly. We will present an assessment of the quality and degree of repeat reconstruction possible in a fungal genome using long read technology. We will also compare differences in assembly of repeat content using short read and long read technology.

  6. Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2010-05-01

    Full Text Available Abstract Background Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires de novo peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete Plasmopara halstedii, we first evaluated the performance of three different de novo peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i. Results The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set. All three de novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of P. halstedii. We found ten de novo sequenced peptides that showed homology to a Phytophthora infestans protein, a closely related organism of P. halstedii. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase. Conclusions Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different de novo peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in P. halstedii.

  7. Combining de novo and reference-guided assembly with scaffold_builder

    NARCIS (Netherlands)

    Silva, G.G.; Dutilh, B.E.; Matthews, T.D.; Elkins, K.; Schmieder, R.; Dinsdale, E.A.; Edwards, R.A.

    2013-01-01

    Genome sequencing has become routine, however genome assembly still remains a challenge despite the computational advances in the last decade. In particular, the abundance of repeat elements in genomes makes it difficult to assemble them into a single complete sequence. Identical repeats shorter

  8. Evaluation of nine popular de novo assemblers in microbial genome assembly.

    Science.gov (United States)

    Forouzan, Esmaeil; Maleki, Masoumeh Sadat Mousavi; Karkhane, Ali Asghar; Yakhchali, Bagher

    2017-12-01

    Next generation sequencing (NGS) technologies are revolutionizing biology, with Illumina being the most popular NGS platform. Short read assembly is a critical part of most genome studies using NGS. Hence, in this study, the performance of nine well-known assemblers was evaluated in the assembly of seven different microbial genomes. Effect of different read coverage and k-mer parameters on the quality of the assembly were also evaluated on both simulated and actual read datasets. Our results show that the performance of assemblers on real and simulated datasets could be significantly different, mainly because of coverage bias. According to outputs on actual read datasets, for all studied read coverages (of 7×, 25× and 100×), SPAdes and IDBA-UD clearly outperformed other assemblers based on NGA50 and accuracy metrics. Velvet is the most conservative assembler with the lowest NGA50 and error rate. Copyright © 2017. Published by Elsevier B.V.

  9. Sequencing and de novo assembly of the Asian clam (Corbicula fluminea transcriptome using the Illumina GAIIx method.

    Directory of Open Access Journals (Sweden)

    Huihui Chen

    Full Text Available BACKGROUND: The Asian clam (Corbicula fluminea is currently one of the most economically important aquatic species in China and has been used as a test organism in many environmental studies. However, the lack of genomic resources, such as sequenced genome, expressed sequence tags (ESTs and transcriptome sequences has hindered the research on C. fluminea. Recent advances in large-scale RNA-Seq enable generation of genomic resources in a short time, and provide large expression datasets for functional genomic analysis. METHODOLOGY/PRINCIPAL FINDINGS: We used a next-generation high-throughput DNA sequencing technique with an Illumina GAIIx method to analyze the transcriptome from the whole bodies of C. fluminea. More than 62,250,336 high-quality reads were generated based on the raw data, and 134,684 unigenes with a mean length of 791 bp were assembled using the Velvet and Oases software. All of the assembly unigenes were annotated by running BLASTx and BLASTn similarity searches on the Nt, Nr, Swiss-Prot, COG and KEGG databases. In addition, the Clusters of Orthologous Groups (COGs, Gene Ontology (GO terms and Kyoto Encyclopedia of Gene and Genome (KEGG annotations were also assigned to each unigene transcript. To provide a preliminary verification of the assembly and annotation results, and search for potential environmental pollution biomarkers, 15 functional genes (five antioxidase genes, two cytochrome P450 genes, three GABA receptor-related genes and five heat shock protein genes were cloned and identified. Expressions of the 15 selected genes following fluoxetine exposure confirmed that the genes are indeed linked to environmental stress. CONCLUSIONS/SIGNIFICANCE: The C. fluminea transcriptome advances the underlying molecular understanding of this freshwater clam, provides a basis for further exploration of C. fluminea as an environmental test organism and promotes further studies on other bivalve organisms.

  10. Efficient assembly of de novo human artificial chromosomes from large genomic loci

    Directory of Open Access Journals (Sweden)

    Stromberg Gregory

    2005-07-01

    Full Text Available Abstract Background Human Artificial Chromosomes (HACs are potentially useful vectors for gene transfer studies and for functional annotation of the genome because of their suitability for cloning, manipulating and transferring large segments of the genome. However, development of HACs for the transfer of large genomic loci into mammalian cells has been limited by difficulties in manipulating high-molecular weight DNA, as well as by the low overall frequencies of de novo HAC formation. Indeed, to date, only a small number of large (>100 kb genomic loci have been reported to be successfully packaged into de novo HACs. Results We have developed novel methodologies to enable efficient assembly of HAC vectors containing any genomic locus of interest. We report here the creation of a novel, bimolecular system based on bacterial artificial chromosomes (BACs for the construction of HACs incorporating any defined genomic region. We have utilized this vector system to rapidly design, construct and validate multiple de novo HACs containing large (100–200 kb genomic loci including therapeutically significant genes for human growth hormone (HGH, polycystic kidney disease (PKD1 and ß-globin. We report significant differences in the ability of different genomic loci to support de novo HAC formation, suggesting possible effects of cis-acting genomic elements. Finally, as a proof of principle, we have observed sustained ß-globin gene expression from HACs incorporating the entire 200 kb ß-globin genomic locus for over 90 days in the absence of selection. Conclusion Taken together, these results are significant for the development of HAC vector technology, as they enable high-throughput assembly and functional validation of HACs containing any large genomic locus. We have evaluated the impact of different genomic loci on the frequency of HAC formation and identified segments of genomic DNA that appear to facilitate de novo HAC formation. These genomic loci

  11. Playing hide and seek with repeats in local and global de novo transcriptome assembly of short RNA-seq reads.

    Science.gov (United States)

    Lima, Leandro; Sinaimeri, Blerina; Sacomoto, Gustavo; Lopez-Maestre, Helene; Marchet, Camille; Miele, Vincent; Sagot, Marie-France; Lacroix, Vincent

    2017-01-01

    The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they do create ambiguities and confuse assemblers if not addressed properly. Most transcriptome assemblers of short reads are based on de Bruijn graphs (DBG) and have no clear and explicit model for repeats in RNA-seq data, relying instead on heuristics to deal with them. The results of this work are threefold. First, we introduce a formal model for representing high copy-number and low-divergence repeats in RNA-seq data and exploit its properties to infer a combinatorial characteristic of repeat-associated subgraphs. We show that the problem of identifying such subgraphs in a DBG is NP-complete. Second, we show that in the specific case of local assembly of alternative splicing (AS) events, we can implicitly avoid such subgraphs, and we present an efficient algorithm to enumerate AS events that are not included in repeats. Using simulated data, we show that this strategy is significantly more sensitive and precise than the previous version of KisSplice (Sacomoto et al. in WABI, pp 99-111, 1), Trinity (Grabherr et al. in Nat Biotechnol 29(7):644-652, 2), and Oases (Schulz et al. in Bioinformatics 28(8):1086-1092, 3), for the specific task of calling AS events. Third, we turn our focus to full-length transcriptome assembly, and we show that exploring the topology of DBGs can improve de novo transcriptome evaluation methods. Based on the observation that repeats create complicated regions in a DBG, and when assemblers try to traverse these regions, they can infer erroneous transcripts, we propose a measure to flag transcripts traversing such troublesome regions, thereby giving a confidence level for each transcript. The originality of our work when

  12. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.

    Science.gov (United States)

    Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2015-11-26

    Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.

  13. De novo transcriptome assembly for the tropical grass Panicum maximum Jacq.

    Directory of Open Access Journals (Sweden)

    Guilherme Toledo-Silva

    Full Text Available Guinea grass (Panicum maximum Jacq. is a tropical African grass often used to feed beef cattle, which is an important economic activity in Brazil. Brazil is the leader in global meat exportation because of its exclusively pasture-raised bovine herds. Guinea grass also has potential uses in bioenergy production due to its elevated biomass generation through the C4 photosynthesis pathway. We generated approximately 13 Gb of data from Illumina sequencing of P. maximum leaves. Four different genotypes were sequenced, and the combined reads were assembled de novo into 38,192 unigenes and annotated; approximately 63% of the unigenes had homology to other proteins in the NCBI non-redundant protein database. Functional classification through COG (Clusters of Orthologous Groups, GO (Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes analyses showed that the unigenes from Guinea grass leaves are involved in a wide range of biological processes and metabolic pathways, including C4 photosynthesis and lignocellulose generation, which are important for cattle grazing and bioenergy production. The most abundant transcripts were involved in carbon fixation, photosynthesis, RNA translation and heavy metal cellular homeostasis. Finally, we identified a number of potential molecular markers, including 5,035 microsatellites (SSRs and 346,456 single nucleotide polymorphisms (SNPs. To the best of our knowledge, this is the first study to characterize the complete leaf transcriptome of P. maximum using high-throughput sequencing. The biological information provided here will aid in gene expression studies and marker-assisted selection-based breeding research in tropical grasses.

  14. De novo design of an RNA tile that self-assembles into a homo-octameric nanoprism

    Science.gov (United States)

    Yu, Jinwen; Liu, Zhiyu; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2015-01-01

    Rational, de novo design of RNA nanostructures can potentially integrate a wide array of structural and functional diversities. Such nanostructures have great promises in biomedical applications. Despite impressive progress in this field, all RNA building blocks (or tiles) reported so far are not geometrically well defined. They are generally flexible and can only assemble into a mixture of complexes with different sizes. To achieve defined structures, multiple tiles with different sequences are needed. In this study, we design an RNA tile that can homo-oligomerize into a uniform RNA nanostructure. The designed RNA nanostructure is characterized by gel electrophoresis, atomic force microscopy and cryogenic electron microscopy imaging. We believe that development along this line would help RNA nanotechnology to reach the structural control that is currently associated with DNA nanotechnology.

  15. Next-Generation Sequencing of the Chrysanthemum nankingense (Asteraceae) Transcriptome Permits Large-Scale Unigene Assembly and SSR Marker Discovery

    Science.gov (United States)

    Wang, Haibin; Jiang, Jiafu; Chen, Sumei; Qi, Xiangyu; Peng, Hui; Li, Pirui; Song, Aiping; Guan, Zhiyong; Fang, Weimin; Liao, Yuan; Chen, Fadi

    2013-01-01

    Background Simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Chrysanthemum is one of the largest genera in the Asteraceae family. Only few Chrysanthemum expressed sequence tag (EST) sequences have been acquired to date, so the number of available EST-SSR markers is very low. Methodology/Principal Findings Illumina paired-end sequencing technology produced over 53 million sequencing reads from C. nankingense mRNA. The subsequent de novo assembly yielded 70,895 unigenes, of which 45,789 (64.59%) unigenes showed similarity to the sequences in NCBI database. Out of 45,789 sequences, 107 have hits to the Chrysanthemum Nr protein database; 679 and 277 sequences have hits to the database of Helianthus and Lactuca species, respectively. MISA software identified a large number of putative EST-SSRs, allowing 1,788 primer pairs to be designed from the de novo transcriptome sequence and a further 363 from archival EST sequence. Among 100 primer pairs randomly chosen, 81 markers have amplicons and 20 are polymorphic for genotypes analysis in Chrysanthemum. The results showed that most (but not all) of the assays were transferable across species and that they exposed a significant amount of allelic diversity. Conclusions/Significance SSR markers acquired by transcriptome sequencing are potentially useful for marker-assisted breeding and genetic analysis in the genus Chrysanthemum and its related genera. PMID:23626799

  16. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Parani Madasamy

    2011-04-01

    Full Text Available Abstract Background Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. Results From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. Conclusion The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil

  17. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing.

    Science.gov (United States)

    Natarajan, Purushothaman; Parani, Madasamy

    2011-04-15

    Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of

  18. ScanIndel: a hybrid framework for indel detection via gapped alignment, split reads and de novo assembly.

    Science.gov (United States)

    Yang, Rendong; Nelson, Andrew C; Henzler, Christine; Thyagarajan, Bharat; Silverstein, Kevin A T

    2015-12-07

    Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel.

  19. Assembling large, complex environmental metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, A. C. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Jansson, J. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Malfatti, S. A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, S. G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tiedje, J. M. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Brown, C. T. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Computer Science and Engineering

    2012-12-28

    The large volumes of sequencing data required to sample complex environments deeply pose new challenges to sequence analysis approaches. De novo metagenomic assembly effectively reduces the total amount of data to be analyzed but requires significant computational resources. We apply two pre-assembly filtering approaches, digital normalization and partitioning, to make large metagenome assemblies more computationaly tractable. Using a human gut mock community dataset, we demonstrate that these methods result in assemblies nearly identical to assemblies from unprocessed data. We then assemble two large soil metagenomes from matched Iowa corn and native prairie soils. The predicted functional content and phylogenetic origin of the assembled contigs indicate significant taxonomic differences despite similar function. The assembly strategies presented are generic and can be extended to any metagenome; full source code is freely available under a BSD license.

  20. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery

    Directory of Open Access Journals (Sweden)

    Benkman Craig W

    2010-03-01

    Full Text Available Abstract Background Massively parallel sequencing of cDNA is now an efficient route for generating enormous sequence collections that represent expressed genes. This approach provides a valuable starting point for characterizing functional genetic variation in non-model organisms, especially where whole genome sequencing efforts are currently cost and time prohibitive. The large and complex genomes of pines (Pinus spp. have hindered the development of genomic resources, despite the ecological and economical importance of the group. While most genomic studies have focused on a single species (P. taeda, genomic level resources for other pines are insufficiently developed to facilitate ecological genomic research. Lodgepole pine (P. contorta is an ecologically important foundation species of montane forest ecosystems and exhibits substantial adaptive variation across its range in western North America. Here we describe a sequencing study of expressed genes from P. contorta, including their assembly and annotation, and their potential for molecular marker development to support population and association genetic studies. Results We obtained 586,732 sequencing reads from a 454 GS XLR70 Titanium pyrosequencer (mean length: 306 base pairs. A combination of reference-based and de novo assemblies yielded 63,657 contigs, with 239,793 reads remaining as singletons. Based on sequence similarity with known proteins, these sequences represent approximately 17,000 unique genes, many of which are well covered by contig sequences. This sequence collection also included a surprisingly large number of retrotransposon sequences, suggesting that they are highly transcriptionally active in the tissues we sampled. We located and characterized thousands of simple sequence repeats and single nucleotide polymorphisms as potential molecular markers in our assembled and annotated sequences. High quality PCR primers were designed for a substantial number of the SSR loci

  1. De novo Transcriptome Assemblies of Rana (Lithobates catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Inanc Birol

    Full Text Available In this work we studied the liver transcriptomes of two frog species, the American bullfrog (Rana (Lithobates catesbeiana and the African clawed frog (Xenopus laevis. We used high throughput RNA sequencing (RNA-seq data to assemble and annotate these transcriptomes, and compared how their baseline expression profiles change when tadpoles of the two species are exposed to thyroid hormone. We generated more than 1.5 billion RNA-seq reads in total for the two species under two conditions as treatment/control pairs. We de novo assembled these reads using Trans-ABySS to reconstruct reference transcriptomes, obtaining over 350,000 and 130,000 putative transcripts for R. catesbeiana and X. laevis, respectively. Using available genomics resources for X. laevis, we annotated over 97% of our X. laevis transcriptome contigs, demonstrating the utility and efficacy of our methodology. Leveraging this validated analysis pipeline, we also annotated the assembled R. catesbeiana transcriptome. We used the expression profiles of the annotated genes of the two species to examine the similarities and differences between the tadpole liver transcriptomes. We also compared the gene ontology terms of expressed genes to measure how the animals react to a challenge by thyroid hormone. Our study reports three main conclusions. First, de novo assembly of RNA-seq data is a powerful method for annotating and establishing transcriptomes of non-model organisms. Second, the liver transcriptomes of the two frog species, R. catesbeiana and X. laevis, show many common features, and the distribution of their gene ontology profiles are statistically indistinguishable. Third, although they broadly respond the same way to the presence of thyroid hormone in their environment, their receptor/signal transduction pathways display marked differences.

  2. Peptide de novo sequencing of mixture tandem mass spectra

    DEFF Research Database (Denmark)

    Gorshkov, Vladimir; Hotta, Stéphanie Yuki Kolbeck; Braga, Thiago Verano

    2016-01-01

    they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co-isolation and thus prone to false identifications. The deconvolution approach matched...... complementary b-, y-ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co-isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced...... peptides. The improvement was in the range of 20–35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight...

  3. Sequencing, de novo assembly and characterization of the spotted scat Scatophagus argus (Linnaeus 1766) transcriptome for discovery of reproduction related genes and SSRs

    Science.gov (United States)

    Yang, Wei; Chen, Huapu; Cui, Xuefan; Zhang, Kewei; Jiang, Dongneng; Deng, Siping; Zhu, Chunhua; Li, Guangli

    2017-09-01

    Spotted scat (Scatophagus argus) is an economically important farmed fish, particularly in East and Southeast Asia. Because there has been little research on reproductive development and regulation in this species, the lack of a mature artificial reproduction technology remains a barrier for the sustainable development of the aquaculture industry. More genetic and genomic background knowledge is urgently needed for an in-depth understanding of the molecular mechanism of reproductive process and identification of functional genes related to sexual differentiation, gonad maturation and gametogenesis. For these reasons, we performed transcriptomic analysis on spotted scat using a multiple tissue sample mixing strategy. The Illumina RNA sequencing generated 118 510 486 raw reads. After trimming, de novo assembly was performed and yielded 99 888 unigenes with an average length of 905.75 bp. A total of 45 015 unigenes were successfully annotated to the Nr, Swiss-Prot, KOG and KEGG databases. Additionally, 23 783 and 27 183 annotated unigenes were assigned to 56 Gene Ontology (GO) functional groups and 228 KEGG pathways, respectively. Subsequently, 2 474 transcripts associated with reproduction were selected using GO term and KEGG pathway assignments, and a number of reproduction-related genes involved in sex differentiation, gonad development and gametogenesis were identified. Furthermore, 22 279 simple sequence repeat (SSR) loci were discovered and characterized. The comprehensive transcript dataset described here greatly increases the genetic information available for spotted scat and contributes valuable sequence resources for functional gene mining and analysis. Candidate transcripts involved in reproduction would make good starting points for future studies on reproductive mechanisms, and the putative sex differentiation-related genes will be helpful for sex-determining gene identification and sex-specific marker isolation. Lastly, the SSRs can serve as marker

  4. Transcriptome sequencing and De Novo analysis of Youngia japonica using the illumina platform.

    Directory of Open Access Journals (Sweden)

    Yulan Peng

    Full Text Available Youngia japonica, a weed species distributed worldwide, has been widely used in traditional Chinese medicine. It is an ideal plant for studying the evolution of Asteraceae plants because of its short life history and abundant source. However, little is known about its evolution and genetic diversity. In this study, de novo transcriptome sequencing was conducted for the first time for the comprehensive analysis of the genetic diversity of Y. japonica. The Y. japonica transcriptome was sequenced using Illumina paired-end sequencing technology. We produced 21,847,909 high-quality reads for Y. japonica and assembled them into contigs. A total of 51,850 unigenes were identified, among which 46,087 were annotated in the NCBI non-redundant protein database and 41,752 were annotated in the Swiss-Prot database. We mapped 9,125 unigenes onto 163 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. In addition, 3,648 simple sequence repeats (SSRs were detected. Our data provide the most comprehensive transcriptome resource currently available for Y. japonica. C4 photosynthesis unigenes were found in the biological process of Y. japonica. There were 5596 unigenes related to defense response and 1344 ungienes related to signal transduction mechanisms (10.95%. These data provide insights into the genetic diversity of Y. japonica. Numerous SSRs contributed to the development of novel markers. These data may serve as a new valuable resource for genomic studies on Youngia and, more generally, Cichoraceae.

  5. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.

    Directory of Open Access Journals (Sweden)

    Juan Ning

    Full Text Available BACKGROUND: Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. RESULTS: Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs that provide a resource for gene function studies. CONCLUSION: Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.

  6. Genomes correction and assembling: present methods and tools

    Science.gov (United States)

    Wojcieszek, Michał; Pawełkowicz, Magdalena; Nowak, Robert; Przybecki, Zbigniew

    2014-11-01

    Recent rapid development of next generation sequencing (NGS) technologies provided significant impact into genomics field of study enabling implementation of many de novo sequencing projects of new species which was previously confined by technological costs. Along with advancement of NGS there was need for adjustment in assembly programs. New algorithms must cope with massive amounts of data computation in reasonable time limits and processing power and hardware is also an important factor. In this paper, we address the issue of assembly pipeline for de novo genome assembly provided by programs presently available for scientist both as commercial and as open - source software. The implementation of four different approaches - Greedy, Overlap - Layout - Consensus (OLC), De Bruijn and Integrated resulting in variation of performance is the main focus of our discussion with additional insight into issue of short and long reads correction.

  7. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus.

    Science.gov (United States)

    Gao, Jian; Li, Qiye; Wang, Zongji; Zhou, Yang; Martelli, Paolo; Li, Fang; Xiong, Zijun; Wang, Jian; Yang, Huanming; Zhang, Guojie

    2017-07-01

    The Chinese crocodile lizard, Shinisaurus crocodilurus, is the only living representative of the monotypic family Shinisauridae under the order Squamata. It is an obligate semi-aquatic, viviparous, diurnal species restricted to specific portions of mountainous locations in southwestern China and northeastern Vietnam. However, in the past several decades, this species has undergone a rapid decrease in population size due to illegal poaching and habitat disruption, making this unique reptile species endangered and listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora Appendix II since 1990. A proposal to uplist it to Appendix I was passed at the Convention on International Trade in Endangered Species of Wild Fauna and Flora Seventeenth meeting of the Conference of the Parties in 2016. To promote the conservation of this species, we sequenced the genome of a male Chinese crocodile lizard using a whole-genome shotgun strategy on the Illumina HiSeq 2000 platform. In total, we generated ∼291 Gb of raw sequencing data (×149 depth) from 13 libraries with insert sizes ranging from 250 bp to 40 kb. After filtering for polymerase chain reaction-duplicated and low-quality reads, ∼137 Gb of clean data (×70 depth) were obtained for genome assembly. We yielded a draft genome assembly with a total length of 2.24 Gb and an N50 scaffold size of 1.47 Mb. The assembled genome was predicted to contain 20 150 protein-coding genes and up to 1114 Mb (49.6%) of repetitive elements. The genomic resource of the Chinese crocodile lizard will contribute to deciphering the biology of this organism and provides an essential tool for conservation efforts. It also provides a valuable resource for future study of squamate evolution. © The Authors 2017. Published by Oxford University Press.

  8. Developmental gene discovery in a hemimetabolous insect: de novo assembly and annotation of a transcriptome for the cricket Gryllus bimaculatus.

    Directory of Open Access Journals (Sweden)

    Victor Zeng

    Full Text Available Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects, representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket, a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in

  9. De novo transcriptome sequencing of the Octopus vulgaris hemocytes using Illumina RNA-Seq technology: response to the infection by the gastrointestinal parasite Aggregata octopiana.

    Science.gov (United States)

    Castellanos-Martínez, Sheila; Arteta, David; Catarino, Susana; Gestal, Camino

    2014-01-01

    Octopus vulgaris is a highly valuable species of great commercial interest and excellent candidate for aquaculture diversification; however, the octopus' well-being is impaired by pathogens, of which the gastrointestinal coccidian parasite Aggregata octopiana is one of the most important. The knowledge of the molecular mechanisms of the immune response in cephalopods, especially in octopus is scarce. The transcriptome of the hemocytes of O. vulgaris was de novo sequenced using the high-throughput paired-end Illumina technology to identify genes involved in immune defense and to understand the molecular basis of octopus tolerance/resistance to coccidiosis. A bi-directional mRNA library was constructed from hemocytes of two groups of octopus according to the infection by A. octopiana, sick octopus, suffering coccidiosis, and healthy octopus, and reads were de novo assembled together. The differential expression of transcripts was analysed using the general assembly as a reference for mapping the reads from each condition. After sequencing, a total of 75,571,280 high quality reads were obtained from the sick octopus group and 74,731,646 from the healthy group. The general transcriptome of the O. vulgaris hemocytes was assembled in 254,506 contigs. A total of 48,225 contigs were successfully identified, and 538 transcripts exhibited differential expression between groups of infection. The general transcriptome revealed genes involved in pathways like NF-kB, TLR and Complement. Differential expression of TLR-2, PGRP, C1q and PRDX genes due to infection was validated using RT-qPCR. In sick octopuses, only TLR-2 was up-regulated in hemocytes, but all of them were up-regulated in caecum and gills. The transcriptome reported here de novo establishes the first molecular clues to understand how the octopus immune system works and interacts with a highly pathogenic coccidian. The data provided here will contribute to identification of biomarkers for octopus resistance against

  10. De novo assembly of plant body plan: a step ahead of Deadpool.

    Science.gov (United States)

    Kareem, Abdul; Radhakrishnan, Dhanya; Sondhi, Yash; Aiyaz, Mohammed; Roy, Merin V; Sugimoto, Kaoru; Prasad, Kalika

    2016-08-01

    While in the movie Deadpool it is possible for a human to recreate an arm from scratch, in reality plants can even surpass that. Not only can they regenerate lost parts, but also the whole plant body can be reborn from a few existing cells. Despite the decades old realization that plant cells possess the ability to regenerate a complete shoot and root system, it is only now that the underlying mechanisms are being unraveled. De novo plant regeneration involves the initiation of regenerative mass, acquisition of the pluripotent state, reconstitution of stem cells and assembly of regulatory interactions. Recent studies have furthered our understanding on the making of a complete plant system in the absence of embryonic positional cues. We review the recent studies probing the molecular mechanisms of de novo plant regeneration in response to external inductive cues and our current knowledge of direct reprogramming of root to shoot and vice versa. We further discuss how de novo regeneration can be exploited to meet the demands of green culture industries and to serve as a general model to address the fundamental questions of regeneration across the plant kingdom.

  11. Assembling draft genomes using contiBAIT

    OpenAIRE

    O'Neill, Kieran; Hills, Mark; Gottlieb, Mike; Borkowski, Matthew; Karsan, Aly; Lansdorp, Peter M.

    2017-01-01

    A Summary: Massively parallel sequencing is now widely used, but data interpretation is only as good as the reference assembly to which it is aligned. While the number of reference assemblies has rapidly expanded, most of these remain at intermediate stages of completion, either as scaffold builds, or as chromosome builds (consisting of correctly ordered, but not necessarily correctly oriented scaffolds separated by gaps). Completion of de novo assemblies remains difficult, as regions that ar...

  12. A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao.

    Directory of Open Access Journals (Sweden)

    Christopher M Seabury

    Full Text Available Data deposition to NCBI Genomes: This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly. The version described in this paper is the first version (AMXX01000000. The scaffolded assembly (SMACv1.1 has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000. Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw. Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb includes more than 997 Mb of unambiguous sequence data (excluding N's. Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7, which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity which were independently supported by the results of previous human GWAS

  13. De novo assembly of a cotyledon-enriched transcriptome map of Vicia faba (L. for transfer cell research

    Directory of Open Access Journals (Sweden)

    Kiruba Shankari eArun Chinnappa

    2015-04-01

    Full Text Available Vicia faba (L. is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC development. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC development. The genome of V. faba is exceedingly large (ca. 13 Gb, however, and limited genomic information is available for this species. To provide a resource for transcript profiling of epidermal TC development, we have undertaken de novo assembly of a cotyledon-enriched transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form TCs, generated 69.5M reads, of which 65.8M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach within CLC Genomics Workbench v6.1 generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This cotyledon-enriched transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC development, and also enriches the genetic resources available for this important legume crop species.

  14. A sweetpotato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers

    Directory of Open Access Journals (Sweden)

    Solis Julio

    2010-10-01

    Full Text Available Abstract Background Sweetpotato (Ipomoea batatas (L. Lam., a hexaploid outcrossing crop, is an important staple and food security crop in developing countries in Africa and Asia. The availability of genomic resources for sweetpotato is in striking contrast to its importance for human nutrition. Previously existing sequence data were restricted to around 22,000 expressed sequence tag (EST sequences and ~ 1,500 GenBank sequences. We have used 454 pyrosequencing to augment the available gene sequence information to enhance functional genomics and marker design for this plant species. Results Two quarter 454 pyrosequencing runs used two normalized cDNA collections from stems and leaves from drought-stressed sweetpotato clone Tanzania and yielded 524,209 reads, which were assembled together with 22,094 publically available expressed sequence tags into 31,685 sets of overlapping DNA segments and 34,733 unassembled sequences. Blastx comparisons with the UniRef100 database allowed annotation of 23,957 contigs and 15,342 singletons resulting in 24,657 putatively unique genes. Further, 27,119 sequences had no match to protein sequences of UniRef100database. On the basis of this gene index, we have identified 1,661 gene-based microsatellite sequences, of which 223 were selected for testing and 195 were successfully amplified in a test panel of 6 hexaploid (I. batatas and 2 diploid (I. trifida accessions. Conclusions The sweetpotato gene index is a useful source for functionally annotated sweetpotato gene sequences that contains three times more gene sequence information for sweetpotato than previous EST assemblies. A searchable version of the gene index, including a blastn function, is available at http://www.cipotato.org/sweetpotato_gene_index.

  15. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji

    2015-10-22

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  16. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji; Yasuike, Motoshige; Nishiki, Issei; Iwasaki, Yuki; Fujiwara, Atushi; Kawato, Yasuhiko; Nakai, Toshihiro; Nagai, Satoshi; Kobayashi, Takanori; Gojobori, Takashi; Ototake, Mitsuru

    2015-01-01

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  17. Zseq: An Approach for Preprocessing Next-Generation Sequencing Data.

    Science.gov (United States)

    Alkhateeb, Abedalrhman; Rueda, Luis

    2017-08-01

    Next-generation sequencing technology generates a huge number of reads (short sequences), which contain a vast amount of genomic data. The sequencing process, however, comes with artifacts. Preprocessing of sequences is mandatory for further downstream analysis. We present Zseq, a linear method that identifies the most informative genomic sequences and reduces the number of biased sequences, sequence duplications, and ambiguous nucleotides. Zseq finds the complexity of the sequences by counting the number of unique k-mers in each sequence as its corresponding score and also takes into the account other factors such as ambiguous nucleotides or high GC-content percentage in k-mers. Based on a z-score threshold, Zseq sweeps through the sequences again and filters those with a z-score less than the user-defined threshold. Zseq algorithm is able to provide a better mapping rate; it reduces the number of ambiguous bases significantly in comparison with other methods. Evaluation of the filtered reads has been conducted by aligning the reads and assembling the transcripts using the reference genome as well as de novo assembly. The assembled transcripts show a better discriminative ability to separate cancer and normal samples in comparison with another state-of-the-art method. Moreover, de novo assembled transcripts from the reads filtered by Zseq have longer genomic sequences than other tested methods. Estimating the threshold of the cutoff point is introduced using labeling rules with optimistic results.

  18. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum Seedlings and Identification of Salt Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Jiangtao Liu

    2016-03-01

    Full Text Available Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS. We further identified 1663 differentially-expressed genes (DEGs between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO, using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress.

  19. An investigation of Hebbian phase sequences as assembly graphs

    Directory of Open Access Journals (Sweden)

    Daniel Gomes Almeida Filho

    2014-04-01

    Full Text Available Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb’s theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods. Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99 and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs s ranging from 0.64 to 0.98. Our findings agree with Hebb’s view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior

  20. Memetic algorithms for de novo motif-finding in biomedical sequences.

    Science.gov (United States)

    Bi, Chengpeng

    2012-09-01

    The objectives of this study are to design and implement a new memetic algorithm for de novo motif discovery, which is then applied to detect important signals hidden in various biomedical molecular sequences. In this paper, memetic algorithms are developed and tested in de novo motif-finding problems. Several strategies in the algorithm design are employed that are to not only efficiently explore the multiple sequence local alignment space, but also effectively uncover the molecular signals. As a result, there are a number of key features in the implementation of the memetic motif-finding algorithm (MaMotif), including a chromosome replacement operator, a chromosome alteration-aware local search operator, a truncated local search strategy, and a stochastic operation of local search imposed on individual learning. To test the new algorithm, we compare MaMotif with a few of other similar algorithms using simulated and experimental data including genomic DNA, primary microRNA sequences (let-7 family), and transmembrane protein sequences. The new memetic motif-finding algorithm is successfully implemented in C++, and exhaustively tested with various simulated and real biological sequences. In the simulation, it shows that MaMotif is the most time-efficient algorithm compared with others, that is, it runs 2 times faster than the expectation maximization (EM) method and 16 times faster than the genetic algorithm-based EM hybrid. In both simulated and experimental testing, results show that the new algorithm is compared favorably or superior to other algorithms. Notably, MaMotif is able to successfully discover the transcription factors' binding sites in the chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) data, correctly uncover the RNA splicing signals in gene expression, and precisely find the highly conserved helix motif in the transmembrane protein sequences, as well as rightly detect the palindromic segments in the primary micro

  1. De Novo Assembly and Characterization of Sophora japonica Transcriptome Using RNA-seq

    Directory of Open Access Journals (Sweden)

    Liucun Zhu

    2014-01-01

    Full Text Available Sophora japonica Linn (Chinese Scholar Tree is a shrub species belonging to the subfamily Faboideae of the pea family Fabaceae. In this study, RNA sequencing of S. japonica transcriptome was performed to produce large expression datasets for functional genomic analysis. Approximate 86.1 million high-quality clean reads were generated and assembled de novo into 143010 unique transcripts and 57614 unigenes. The average length of unigenes was 901 bps with an N50 of 545 bps. Four public databases, including the NCBI nonredundant protein (NR, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG, and the Cluster of Orthologous Groups (COG, were used to annotate unigenes through NCBI BLAST procedure. A total of 27541 of 57614 unigenes (47.8% were annotated for gene descriptions, conserved protein domains, or gene ontology. Moreover, an interaction network of unigenes in S. japonica was predicted based on known protein-protein interactions of putative orthologs of well-studied plant genomes. The transcriptome data of S. japonica reported here represents first genome-scale investigation of gene expressions in Faboideae plants. We expect that our study will provide a useful resource for further studies on gene expression, genomics, functional genomics, and protein-protein interaction in S. japonica.

  2. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    Science.gov (United States)

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  3. An assembly sequence planning method based on composite algorithm

    Directory of Open Access Journals (Sweden)

    Enfu LIU

    2016-02-01

    Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.

  4. SWAP-Assembler 2: Optimization of De Novo Genome Assembler at Large Scale

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jintao; Seo, Sangmin; Balaji, Pavan; Wei, Yanjie; Wang, Bingqiang; Feng, Shengzhong

    2016-08-16

    In this paper, we analyze and optimize the most time-consuming steps of the SWAP-Assembler, a parallel genome assembler, so that it can scale to a large number of cores for huge genomes with the size of sequencing data ranging from terabyes to petabytes. According to the performance analysis results, the most time-consuming steps are input parallelization, k-mer graph construction, and graph simplification (edge merging). For the input parallelization, the input data is divided into virtual fragments with nearly equal size, and the start position and end position of each fragment are automatically separated at the beginning of the reads. In k-mer graph construction, in order to improve the communication efficiency, the message size is kept constant between any two processes by proportionally increasing the number of nucleotides to the number of processes in the input parallelization step for each round. The memory usage is also decreased because only a small part of the input data is processed in each round. With graph simplification, the communication protocol reduces the number of communication loops from four to two loops and decreases the idle communication time. The optimized assembler is denoted as SWAP-Assembler 2 (SWAP2). In our experiments using a 1000 Genomes project dataset of 4 terabytes (the largest dataset ever used for assembling) on the supercomputer Mira, the results show that SWAP2 scales to 131,072 cores with an efficiency of 40%. We also compared our work with both the HipMER assembler and the SWAP-Assembler. On the Yanhuang dataset of 300 gigabytes, SWAP2 shows a 3X speedup and 4X better scalability compared with the HipMer assembler and is 45 times faster than the SWAP-Assembler. The SWAP2 software is available at https://sourceforge.net/projects/swapassembler.

  5. Comparison of de novo assembly statistics of Cucumis sativus L.

    Science.gov (United States)

    Wojcieszek, Michał; Kuśmirek, Wiktor; Pawełkowicz, Magdalena; PlÄ der, Wojciech; Nowak, Robert M.

    2017-08-01

    Genome sequencing is the core of genomic research. With the development of NGS and lowering the cost of procedure there is another tight gap - genome assembly. Developing the proper tool for this task is essential as quality of genome has important impact on further research. Here we present comparison of several de Bruijn assemblers tested on C. sativus genomic reads. The assessment shows that newly developed software - dnaasm provides better results in terms of quantity and quality. The number of generated sequences is lower by 5 - 33% with even two fold higher N50. Quality check showed reliable results were generated by dnaasm. This provides us with very strong base for future genomic analysis.

  6. Challenges, Solutions, and Quality Metrics of Personal Genome Assembly in Advancing Precision Medicine

    Directory of Open Access Journals (Sweden)

    Wenming Xiao

    2016-04-01

    Full Text Available Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging “third generation sequencing” technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host

  7. Optimum Assembly Sequence Planning System Using Discrete Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Özkan Özmen

    2018-01-01

    Full Text Available Assembly refers both to the process of combining parts to create a structure and to the product resulting therefrom. The complexity of this process increases with the number of pieces in the assembly. This paper presents the assembly planning system design (APSD program, a computer program developed based on a matrix-based approach and the discrete artificial bee colony (DABC algorithm, which determines the optimum assembly sequence among numerous feasible assembly sequences (FAS. Specifically, the assembly sequences of three-dimensional (3D parts prepared in the computer-aided design (CAD software AutoCAD are first coded using the matrix-based methodology and the resulting FAS are assessed and the optimum assembly sequence is selected according to the assembly time optimisation criterion using DABC. The results of comparison of the performance of the proposed method with other methods proposed in the literature verify its superiority in finding the sequence with the lowest overall time. Further, examination of the results of application of APSD to assemblies consisting of parts in different numbers and shapes shows that it can select the optimum sequence from among hundreds of FAS.

  8. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    Science.gov (United States)

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  9. A consensus approach to vertebrate de novo transcriptome assembly from RNA-seq data: Assembly of the duck (Anas platyrhynchos transcriptome.

    Directory of Open Access Journals (Sweden)

    Joanna eMoreton

    2014-06-01

    Full Text Available For vertebrate organisms where a reference genome is not available, de novo transcriptome assembly enables a cost effective insight into the identification of tissue specific or differentially expressed genes and variation of the coding part of the genome. However, since there are a number of different tools and parameters that can be used to reconstruct transcripts, it is difficult to determine an optimal method. Here we suggest a pipeline based on (1 assessing the performance of three different assembly tools (2 using both single and multiple k-mer approaches (3 examining the influence of the number of reads used in the assembly (4 merging assemblies from different tools. We use an example dataset from the vertebrate Anas platyrhynchos domestica (Pekin duck. We find that taking a subset of data enables a robust assembly to be produced by multiple methods without the need for very high memory capacity. The use of reads mapped back to transcripts (RMBT and CEGMA (Core Eukaryotic Genes Mapping Approach provides useful metrics to determine the completeness of assembly obtained. For this dataset the use of multiple k-mers in the assembly generated a more complete assembly as measured by greater number of RMBT and CEGMA score. Merged single k-mer assemblies are generally smaller but consist of longer transcripts, suggesting an assembly consisting of fewer fragmented transcripts. We suggest that the use of a subset of reads during assembly allows the relatively rapid investigation of assembly characteristics and can guide the user to the most appropriate transcriptome for particular downstream use. Transcriptomes generated by the compared assembly methods and the final merged assembly are freely available for download at http://dx.doi.org/10.6084/m9.figshare.1032613.

  10. De novo assembly of Phlomis purpurea after challenging with Phytophthora cinnamomi.

    Science.gov (United States)

    Baldé, Aladje; Neves, Dina; García-Breijo, Francisco J; Pais, Maria Salomé; Cravador, Alfredo

    2017-09-06

    Phlomis plants are a source of biological active substances with potential applications in the control of phytopathogens. Phlomis purpurea (Lamiaceae) is autochthonous of southern Iberian Peninsula and Morocco and was found to be resistant to Phytophthora cinnamomi. Phlomis purpurea has revealed antagonistic effect in the rhizosphere of Quercus suber and Q. ilex against P. cinnamomi. Phlomis purpurea roots produce bioactive compounds exhibiting antitumor and anti-Phytophthora activities with potential to protect susceptible plants. Although these important capacities of P. purpurea have been demonstrated, there is no transcriptomic or genomic information available in public databases that could bring insights on the genes underlying this anti-oomycete activity. Using Illumina technology we obtained a de novo assembly of P. purpurea transcriptome and differential transcript abundance to identify putative defence related genes in challenged versus non-challenged plants. A total of 1,272,600,000 reads from 18 cDNA libraries were merged and assembled into 215,739 transcript contigs. BLASTX alignment to Nr NCBI database identified 124,386 unique annotated transcripts (57.7%) with significant hits. Functional annotation identified 83,550 out of 124,386 unique transcripts, which were mapped to 141 pathways. 39% of unigenes were assigned GO terms. Their functions cover biological processes, cellular component and molecular functions. Genes associated with response to stimuli, cellular and primary metabolic processes, catalytic and transporter functions were among those identified. Differential transcript abundance analysis using DESeq revealed significant differences among libraries depending on post-challenge times. Comparative cyto-histological studies of P. purpurea roots challenged with P. cinnamomi zoospores and controls revealed specific morphological features (exodermal strips and epi-cuticular layer), that may provide a constitutive efficient barrier against

  11. SAGE: String-overlap Assembly of GEnomes.

    Science.gov (United States)

    Ilie, Lucian; Haider, Bahlul; Molnar, Michael; Solis-Oba, Roberto

    2014-09-15

    De novo genome assembly of next-generation sequencing data is one of the most important current problems in bioinformatics, essential in many biological applications. In spite of significant amount of work in this area, better solutions are still very much needed. We present a new program, SAGE, for de novo genome assembly. As opposed to most assemblers, which are de Bruijn graph based, SAGE uses the string-overlap graph. SAGE builds upon great existing work on string-overlap graph and maximum likelihood assembly, bringing an important number of new ideas, such as the efficient computation of the transitive reduction of the string overlap graph, the use of (generalized) edge multiplicity statistics for more accurate estimation of read copy counts, and the improved use of mate pairs and min-cost flow for supporting edge merging. The assemblies produced by SAGE for several short and medium-size genomes compared favourably with those of existing leading assemblers. SAGE benefits from innovations in almost every aspect of the assembly process: error correction of input reads, string-overlap graph construction, read copy counts estimation, overlap graph analysis and reduction, contig extraction, and scaffolding. We hope that these new ideas will help advance the current state-of-the-art in an essential area of research in genomics.

  12. Mapsembler, targeted and micro assembly of large NGS datasets on a desktop computer

    Directory of Open Access Journals (Sweden)

    Peterlongo Pierre

    2012-03-01

    Full Text Available Abstract Background The analysis of next-generation sequencing data from large genomes is a timely research topic. Sequencers are producing billions of short sequence fragments from newly sequenced organisms. Computational methods for reconstructing whole genomes/transcriptomes (de novo assemblers are typically employed to process such data. However, these methods require large memory resources and computation time. Many basic biological questions could be answered targeting specific information in the reads, thus avoiding complete assembly. Results We present Mapsembler, an iterative micro and targeted assembler which processes large datasets of reads on commodity hardware. Mapsembler checks for the presence of given regions of interest that can be constructed from reads and builds a short assembly around it, either as a plain sequence or as a graph, showing contextual structure. We introduce new algorithms to retrieve approximate occurrences of a sequence from reads and construct an extension graph. Among other results presented in this paper, Mapsembler enabled to retrieve previously described human breast cancer candidate fusion genes, and to detect new ones not previously known. Conclusions Mapsembler is the first software that enables de novo discovery around a region of interest of repeats, SNPs, exon skipping, gene fusion, as well as other structural events, directly from raw sequencing reads. As indexing is localized, the memory footprint of Mapsembler is negligible. Mapsembler is released under the CeCILL license and can be freely downloaded from http://alcovna.genouest.org/mapsembler/.

  13. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

    Science.gov (United States)

    Hatakeyama, Masaomi; Aluri, Sirisha; Balachadran, Mathi Thumilan; Sivarajan, Sajeevan Radha; Patrignani, Andrea; Grüter, Simon; Poveda, Lucy; Shimizu-Inatsugi, Rie; Baeten, John; Francoijs, Kees-Jan; Nataraja, Karaba N; Reddy, Yellodu A Nanja; Phadnis, Shamprasad; Ravikumar, Ramapura L; Schlapbach, Ralph; Sreeman, Sheshshayee M; Shimizu, Kentaro K

    2017-09-05

    Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids.

    Directory of Open Access Journals (Sweden)

    Xiang Guo

    2016-04-01

    Full Text Available Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW contents in wheat aneuploids (Triticum aestivum and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation.

  15. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in dryoperis fragrans under temperature stress

    International Nuclear Information System (INIS)

    Wang, W.Z.; Tong, W.S.; Gao, R.

    2016-01-01

    Dryopteris fragrans is a species of fern and contains flavonoids compounds with medicinal value. This study explain the temperature stress impact flavonoids synthesis in D. fragrans tissue culture seedlings under the low temperature at 4 degree C, high temperature at 35 degree C and moderate temperature at 25 degree C. By using Illumina HiSeq 2000 sequencing, 80.9 million raw sequence reads were de novo assembled into 66,716 non-redundant unigenes. 38,486 unigenes (57.7%) were annotated for their function. 13,973 unigenes and 29,598 unigenes were allocated to gene ontology (GO) and clusters of orthologous group (COG), respectively. 18,989 sequences mapped to 118 Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 204 genes were involved in flavonoid biosynthesis, regulation and transport. 25,292 and 16,817 unigenes exhibited marked differential expression in response to temperature shifts of 25 degree C to 4 degree C and 25 degree C to 35 degree C, respectively. 4CL and CHS genes involved in flavonoid biosynthesis were tested and suggested that they were responsible for biosynthesis of flavonoids. This study provides the first published data to describe the D. fragrans transcriptome and should accelerate understanding of flavonoids biosynthesis, regulation and transport mechanisms. Since most unigenes described here were successfully annotated, these results should facilitate future functional genomic understanding and research of D. fragrans. (author)

  16. De novo transcriptome assembly of ‘Angeleno’ and ‘Lamoon’ Japanese plum cultivars (Prunus salicina

    Directory of Open Access Journals (Sweden)

    Máximo González

    2016-09-01

    De novo transcriptome assembly was performed using CLC Genome Workbench software and a total of 54,584 unique contigs were generated, with an N50 of 1343 base pair (bp and a mean length of 829 bp. This work contributed with a specific Japanese plum skin transcriptome, providing two libraries of contrasting fruit skin color phenotype (yellow and red and increasing substantially the GB of raw data available until now for this specie.

  17. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels.

    Directory of Open Access Journals (Sweden)

    LingLin Wan

    Full Text Available Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production.We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to >3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem.Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.

  18. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  19. De novo assembly and comparison of the ovarian transcriptomes of the common Chinese cuttlefish (Sepiella japonica with different gonadal development

    Directory of Open Access Journals (Sweden)

    Zhenming Lü

    2016-03-01

    Full Text Available The common Chinese cuttlefish (Sepiella japonica has been considered one of the most economically important marine Cephalopod species in East Asia and seed breeding technology has been established for massive aquaculture and stock enhancement. In the present study, we used Illumina HiSeq2000 to sequence, assemble and annotate the transcriptome of the ovary tissues of S. japonica for the first time. A total of 53,116,650 and 53,446,640 reads were obtained from the immature and matured ovaries, respectively (NCBI SRA database SRX1409472 and SRX1409473, and 70,039 contigs (N50 = 1443 bp were obtained after de novo assembling with Trinity software. Digital gene expression analysis reveals 47,288 contigs show differential expression profile and 793 contigs are highly expressed in the immature ovary, while 38 contigs are highly expressed in the mature ovary with FPKM >100. We hope that the ovarian transcriptome and those stage-enriched transcripts of S. japonica can provide some insight into the understanding of genome-wide transcriptome profile of cuttlefish gonad tissue and give useful information in cuttlefish gonad development. Keywords: Cuttlefish, Gonad development, Transcriptome

  20. Dramatic improvement in genome assembly achieved using doubled-haploid genomes.

    Science.gov (United States)

    Zhang, Hong; Tan, Engkong; Suzuki, Yutaka; Hirose, Yusuke; Kinoshita, Shigeharu; Okano, Hideyuki; Kudoh, Jun; Shimizu, Atsushi; Saito, Kazuyoshi; Watabe, Shugo; Asakawa, Shuichi

    2014-10-27

    Improvement in de novo assembly of large genomes is still to be desired. Here, we improved draft genome sequence quality by employing doubled-haploid individuals. We sequenced wildtype and doubled-haploid Takifugu rubripes genomes, under the same conditions, using the Illumina platform and assembled contigs with SOAPdenovo2. We observed 5.4-fold and 2.6-fold improvement in the sizes of the N50 contig and scaffold of doubled-haploid individuals, respectively, compared to the wildtype, indicating that the use of a doubled-haploid genome aids in accurate genome analysis.

  1. Whole Exome Sequencing for a Patient with Rubinstein-Taybi Syndrome Reveals de Novo Variants besides an Overt CREBBP Mutation

    Directory of Open Access Journals (Sweden)

    Hee Jeong Yoo

    2015-03-01

    Full Text Available Rubinstein-Taybi syndrome (RSTS is a rare condition with a prevalence of 1 in 125,000–720,000 births and characterized by clinical features that include facial, dental, and limb dysmorphology and growth retardation. Most cases of RSTS occur sporadically and are caused by de novo mutations. Cytogenetic or molecular abnormalities are detected in only 55% of RSTS cases. Previous genetic studies have yielded inconsistent results due to the variety of methods used for genetic analysis. The purpose of this study was to use whole exome sequencing (WES to evaluate the genetic causes of RSTS in a young girl presenting with an Autism phenotype. We used the Autism diagnostic observation schedule (ADOS and Autism diagnostic interview revised (ADI-R to confirm her diagnosis of Autism. In addition, various questionnaires were used to evaluate other psychiatric features. We used WES to analyze the DNA sequences of the patient and her parents and to search for de novo variants. The patient showed all the typical features of Autism, WES revealed a de novo frameshift mutation in CREBBP and de novo sequence variants in TNC and IGFALS genes. Mutations in the CREBBP gene have been extensively reported in RSTS patients, while potential missense mutations in TNC and IGFALS genes have not previously been associated with RSTS. The TNC and IGFALS genes are involved in central nervous system development and growth. It is possible for patients with RSTS to have additional de novo variants that could account for previously unexplained phenotypes.

  2. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.

    Science.gov (United States)

    Wala, Jeremiah; Beroukhim, Rameen

    2017-03-01

    We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  3. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research.

    Science.gov (United States)

    Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang

    2013-09-01

    Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.

  4. Meraculous: De Novo Genome Assembly with Short Paired-End Reads

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jarrod A.; Ho, Isaac; Sunkara, Sirisha; Luo, Shujun; Schroth, Gary P.; Rokhsar, Daniel S.; Salzberg, Steven L.

    2011-08-18

    We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than 101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and oriented using paired reads separated by ~280 bp or ~3.2 kbp, and many gaps between contigs can be closed using paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are discussed.

  5. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.

    Science.gov (United States)

    Peichel, Catherine L; Sullivan, Shawn T; Liachko, Ivan; White, Michael A

    2017-09-01

    Scaffolding genomes into complete chromosome assemblies remains challenging even with the rapidly increasing sequence coverage generated by current next-generation sequence technologies. Even with scaffolding information, many genome assemblies remain incomplete. The genome of the threespine stickleback (Gasterosteus aculeatus), a fish model system in evolutionary genetics and genomics, is not completely assembled despite scaffolding with high-density linkage maps. Here, we first test the ability of a Hi-C based proximity-guided assembly (PGA) to perform a de novo genome assembly from relatively short contigs. Using Hi-C based PGA, we generated complete chromosome assemblies from a distribution of short contigs (20-100 kb). We found that 96.40% of contigs were correctly assigned to linkage groups (LGs), with ordering nearly identical to the previous genome assembly. Using available bacterial artificial chromosome (BAC) end sequences, we provide evidence that some of the few discrepancies between the Hi-C assembly and the existing assembly are due to structural variation between the populations used for the 2 assemblies or errors in the existing assembly. This Hi-C assembly also allowed us to improve the existing assembly, assigning over 60% (13.35 Mb) of the previously unassigned (~21.7 Mb) contigs to LGs. Together, our results highlight the potential of the Hi-C based PGA method to be used in combination with short read data to perform relatively inexpensive de novo genome assemblies. This approach will be particularly useful in organisms in which it is difficult to perform linkage mapping or to obtain high molecular weight DNA required for other scaffolding methods. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L..

    Directory of Open Access Journals (Sweden)

    Hui Xue

    Full Text Available Pomegranate (Punica granatum L. belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7% were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  7. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.).

    Science.gov (United States)

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  8. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.

    Science.gov (United States)

    Baptista, Rodrigo P; Reis-Cunha, Joao Luis; DeBarry, Jeremy D; Chiari, Egler; Kissinger, Jessica C; Bartholomeu, Daniella C; Macedo, Andrea M

    2018-02-14

    Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.

  9. De novo identification of viral pathogens from cell culture hologenomes

    Directory of Open Access Journals (Sweden)

    Patowary Ashok

    2012-01-01

    Full Text Available Abstract Background Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes. Findings We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and de-novo assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to Japanese encephalitis virus. The genome of the virus was also independently de-novo assembled. The presence of the virus was in addition, verified using standard molecular biology techniques. Conclusions Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.

  10. Defining the maize transcriptome de novo using deep RNA-Seq

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Gross, Stephen; Choi, Cindy; Zhang, Tao; Lindquist, Erika; Wei, Chia-Lin; Wang, Zhong

    2011-06-01

    De novo assembly of the transcriptome is crucial for functional genomics studies in bioenergy research, since many of the organisms lack high quality reference genomes. In a previous study we successfully de novo assembled simple eukaryote transcriptomes exclusively from short Illumina RNA-Seq reads [1]. However, extensive alternative splicing, present in most of the higher eukaryotes, poses a significant challenge for current short read assembly processes. Furthermore, the size of next-generation datasets, often large for plant genomes, presents an informatics challenge. To tackle these challenges we present a combined experimental and informatics strategy for de novo assembly in higher eukaryotes. Using maize as a test case, preliminary results suggest our approach can resolve transcript variants and improve gene annotations.

  11. Defining the maize transcriptome de novo using deep RNA-Seq

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Gross, Stephen; Choi, Cindy; Zhang, Tao; Lindquist, Erika; Wei, Chia-Lin; Wang, Zhong

    2011-06-02

    De novo assembly of the transcriptome is crucial for functional genomics studies in bioenergy research, since many of the organisms lack high quality reference genomes. In a previous study we successfully de novo assembled simple eukaryote transcriptomes exclusively from short Illumina RNA-Seq reads [1]. However, extensive alternative splicing, present in most of the higher eukaryotes, poses a significant challenge for current short read assembly processes. Furthermore, the size of next-generation datasets, often large for plant genomes, presents an informatics challenge. To tackle these challenges we present a combined experimental and informatics strategy for de novo assembly in higher eukaryotes. Using maize as a test case, preliminary results suggest our approach can resolve transcript variants and improve gene annotations.

  12. De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels

    Science.gov (United States)

    Wan, LingLin; Han, Juan; Sang, Min; Li, AiFen; Wu, Hong; Yin, ShunJi; Zhang, ChengWu

    2012-01-01

    Background Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs) for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. Results We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to >3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem. Conclusions Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock. PMID:22536352

  13. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra

    Czech Academy of Sciences Publication Activity Database

    Novák, Jiří; Lemr, Karel; Schug, K. A.; Havlíček, Vladimír

    2015-01-01

    Roč. 26, č. 10 (2015), s. 1780-1786 ISSN 1044-0305 R&D Projects: GA ČR(CZ) GAP206/12/1150 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : De novo sequencing * Nonribosomal peptides * Linear Subject RIV: CE - Biochemistry Impact factor: 3.031, year: 2015

  14. Building block synthesis using the polymerase chain assembly method.

    Science.gov (United States)

    Marchand, Julie A; Peccoud, Jean

    2012-01-01

    De novo gene synthesis allows the creation of custom DNA molecules without the typical constraints of traditional cloning assembly: scars, restriction site incompatibility, and the quest to find all the desired parts to name a few. Moreover, with the help of computer-assisted design, the perfect DNA molecule can be created along with its matching sequence ready to download. The challenge is to build the physical DNA molecules that have been designed with the software. Although there are several DNA assembly methods, this section presents and describes a method using the polymerase chain assembly (PCA).

  15. Solving Assembly Sequence Planning using Angle Modulated Simulated Kalman Filter

    Science.gov (United States)

    Mustapa, Ainizar; Yusof, Zulkifli Md.; Adam, Asrul; Muhammad, Badaruddin; Ibrahim, Zuwairie

    2018-03-01

    This paper presents an implementation of Simulated Kalman Filter (SKF) algorithm for optimizing an Assembly Sequence Planning (ASP) problem. The SKF search strategy contains three simple steps; predict-measure-estimate. The main objective of the ASP is to determine the sequence of component installation to shorten assembly time or save assembly costs. Initially, permutation sequence is generated to represent each agent. Each agent is then subjected to a precedence matrix constraint to produce feasible assembly sequence. Next, the Angle Modulated SKF (AMSKF) is proposed for solving ASP problem. The main idea of the angle modulated approach in solving combinatorial optimization problem is to use a function, g(x), to create a continuous signal. The performance of the proposed AMSKF is compared against previous works in solving ASP by applying BGSA, BPSO, and MSPSO. Using a case study of ASP, the results show that AMSKF outperformed all the algorithms in obtaining the best solution.

  16. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube.

    Science.gov (United States)

    Iaria, Domenico; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.

  17. Sequence protein identification by randomized sequence database and transcriptome mass spectrometry (SPIDER-TMS): from manual to automatic application of a 'de novo sequencing' approach.

    Science.gov (United States)

    Pascale, Raffaella; Grossi, Gerarda; Cruciani, Gabriele; Mecca, Giansalvatore; Santoro, Donatello; Sarli Calace, Renzo; Falabella, Patrizia; Bianco, Giuliana

    Sequence protein identification by a randomized sequence database and transcriptome mass spectrometry software package has been developed at the University of Basilicata in Potenza (Italy) and designed to facilitate the determination of the amino acid sequence of a peptide as well as an unequivocal identification of proteins in a high-throughput manner with enormous advantages of time, economical resource and expertise. The software package is a valid tool for the automation of a de novo sequencing approach, overcoming the main limits and a versatile platform useful in the proteomic field for an unequivocal identification of proteins, starting from tandem mass spectrometry data. The strength of this software is that it is a user-friendly and non-statistical approach, so protein identification can be considered unambiguous.

  18. De novo transcriptome sequencing of Isaria cateniannulata and comparative analysis of gene expression in response to heat and cold stresses.

    Directory of Open Access Journals (Sweden)

    Dingfeng Wang

    Full Text Available Isaria cateniannulata is a very important and virulent entomopathogenic fungus that infects many insect pest species. Although I. cateniannulata is commonly exposed to extreme environmental temperature conditions, little is known about its molecular response mechanism to temperature stress. Here, we sequenced and de novo assembled the transcriptome of I. cateniannulata in response to high and low temperature stresses using Illumina RNA-Seq technology. Our assembly encompassed 17,514 unigenes (mean length = 1,197 bp, in which 11,445 unigenes (65.34% showed significant similarities to known sequences in NCBI non-redundant protein sequences (Nr database. Using digital gene expression analysis, 4,483 differentially expressed genes (DEGs were identified after heat treatment, including 2,905 up-regulated genes and 1,578 down-regulated genes. Under cold stress, 1,927 DEGs were identified, including 1,245 up-regulated genes and 682 down-regulated genes. The expression patterns of 18 randomly selected candidate DEGs resulting from quantitative real-time PCR (qRT-PCR were consistent with their transcriptome analysis results. Although DEGs were involved in many pathways, we focused on the genes that were involved in endocytosis: In heat stress, the pathway of clathrin-dependent endocytosis (CDE was active; however at low temperature stresses, the pathway of clathrin-independent endocytosis (CIE was active. Besides, four categories of DEGs acting as temperature sensors were observed, including cell-wall-major-components-metabolism-related (CWMCMR genes, heat shock protein (Hsp genes, intracellular-compatible-solutes-metabolism-related (ICSMR genes and glutathione S-transferase (GST. These results enhance our understanding of the molecular mechanisms of I. cateniannulata in response to temperature stresses and provide a valuable resource for the future investigations.

  19. De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) during Cold Acclimation Using Contrasting Genotypes.

    Science.gov (United States)

    Han, Jeongsukhyeon; Thamilarasan, Senthil Kumar; Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp.

  20. De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L. during Cold Acclimation Using Contrasting Genotypes.

    Directory of Open Access Journals (Sweden)

    Jeongsukhyeon Han

    Full Text Available Bulb onion (Allium cepa is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C, freezing (-5 and -15°C, and control (25°C-treated samples of cold tolerant (CT and cold susceptible (CS genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr database, as well as KEGG and COG database. Differentially expressed genes (DEGs were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp.

  1. De Novo Transcriptome Assembly (NGS) of Curcuma longa L. Rhizome Reveals Novel Transcripts Related to Anticancer and Antimalarial Terpenoids

    Science.gov (United States)

    Jayakumar, Vasanthan; Damodaran, Anand C.; Rao, Sudha Narayana; Katta, Mohan A. V. S. K.; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C.

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa. PMID:23468859

  2. De Novo transcriptome assembly (NGS of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Directory of Open Access Journals (Sweden)

    Ramasamy S Annadurai

    Full Text Available Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  3. De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Science.gov (United States)

    Annadurai, Ramasamy S; Neethiraj, Ramprasad; Jayakumar, Vasanthan; Damodaran, Anand C; Rao, Sudha Narayana; Katta, Mohan A V S K; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  4. Tablet—next generation sequence assembly visualization

    Science.gov (United States)

    Milne, Iain; Bayer, Micha; Cardle, Linda; Shaw, Paul; Stephen, Gordon; Wright, Frank; Marshall, David

    2010-01-01

    Summary: Tablet is a lightweight, high-performance graphical viewer for next-generation sequence assemblies and alignments. Supporting a range of input assembly formats, Tablet provides high-quality visualizations showing data in packed or stacked views, allowing instant access and navigation to any region of interest, and whole contig overviews and data summaries. Tablet is both multi-core aware and memory efficient, allowing it to handle assemblies containing millions of reads, even on a 32-bit desktop machine. Availability: Tablet is freely available for Microsoft Windows, Apple Mac OS X, Linux and Solaris. Fully bundled installers can be downloaded from http://bioinf.scri.ac.uk/tablet in 32- and 64-bit versions. Contact: tablet@scri.ac.uk PMID:19965881

  5. Detection of an inversion in the Ty-2 region between S. lycopersicum and S. habrochaites by a combination of de novo genome assembly and BAC cloning.

    Science.gov (United States)

    Wolters, Anne-Marie A; Caro, Myluska; Dong, Shufang; Finkers, Richard; Gao, Jianchang; Visser, Richard G F; Wang, Xiaoxuan; Du, Yongchen; Bai, Yuling

    2015-10-01

    A chromosomal inversion associated with the tomato Ty - 2 gene for TYLCV resistance is the cause of severe suppression of recombination in a tomato Ty - 2 introgression line. Among tomato and its wild relatives inversions are often observed, which result in suppression of recombination. Such inversions hamper the transfer of important traits from a related species to the crop by introgression breeding. Suppression of recombination was reported for the TYLCV resistance gene, Ty-2, which has been introgressed in cultivated tomato (Solanum lycopersicum) from the wild relative S. habrochaites accession B6013. Ty-2 was mapped to a 300-kb region on the long arm of chromosome 11. The suppression of recombination in the Ty-2 region could be caused by chromosomal rearrangements in S. habrochaites compared with S. lycopersicum. With the aim of visualizing the genome structure of the Ty-2 region, we compared the draft de novo assembly of S. habrochaites accession LYC4 with the sequence of cultivated tomato ('Heinz'). Furthermore, using populations derived from intraspecific crosses of S. habrochaites accessions, the order of markers in the Ty-2 region was studied. Results showed the presence of an inversion of approximately 200 kb in the Ty-2 region when comparing S. lycopersicum and S. habrochaites. By sequencing a BAC clone from the Ty-2 introgression line, one inversion breakpoint was identified. Finally, the obtained results are discussed with respect to introgression breeding and the importance of a priori de novo sequencing of the species involved.

  6. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster.

    Science.gov (United States)

    Kumar, Abhishek; Henrissat, Bernard; Arvas, Mikko; Syed, Muhammad Fahad; Thieme, Nils; Benz, J Philipp; Sørensen, Jens Laurids; Record, Eric; Pöggeler, Stefanie; Kempken, Frank

    2015-01-01

    The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis.

  7. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences.

    Directory of Open Access Journals (Sweden)

    Josephine A Reinhardt

    Full Text Available How non-coding DNA gives rise to new protein-coding genes (de novo genes is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs, while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important.

  8. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida.

    Directory of Open Access Journals (Sweden)

    Biao Jiang

    Full Text Available BACKGROUND: Wax gourd is a widely used vegetable of Cucuribtaceae, and also has important medicinal and health values. However, the genomic resources of wax gourd were scarcity, and only a few nucleotide sequences could be obtained in public databases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined transcriptome in wax gourd. More than 44 million of high quality reads were generated from five different tissues of wax gourd using Illumina paired-end sequencing technology. Approximately 4 Gbp data were generated, and de novo assembled into 65,059 unigenes, with an N50 of 1,132 bp. Based on sequence similarity search with known protein database, 36,070 (55.4% showed significant similarity to known proteins in Nr database, and 24,969 (38.4% had BLAST hits in Swiss-Prot database. Among the annotated unigenes, 14,994 of wax gourd unigenes were assigned to GO term annotation, and 23,977 were found to have COG classifications. In addition, a total of 18,713 unigenes were assigned to 281 KEGG pathways. Furthermore, 6,242 microsatellites (simple sequence repeats were detected as potential molecular markers in wax gourd. Two hundred primer pairs for SSRs were designed for validation of the amplification and polymorphism. The result showed that 170 of the 200 primer pairs were successfully amplified and 49 (28.8% of them exhibited polymorphisms. CONCLUSION/SIGNIFICANCE: Our study enriches the genomic resources of wax gourd and provides powerful information for future studies. The availability of this ample amount of information about the transcriptome and SSRs in wax gourd could serve as valuable basis for studies on the physiology, biochemistry, molecular genetics and molecular breeding of this important vegetable crop.

  9. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.

    Science.gov (United States)

    Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D

    2017-01-01

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.

  10. Reference quality assembly of the 3.5 Gb genome of Capsicum annuum form a single linked-read library

    Science.gov (United States)

    Linked-Read sequencing technology has recently been employed successfully for de novo assembly of multiple human genomes, however the utility of this technology for complex plant genomes is unproven. We evaluated the technology for this purpose by sequencing the 3.5 gigabase (Gb) diploid pepper (Cap...

  11. De Novo Assembly and Phasing of Dikaryotic Genomes from Two Isolates of Puccinia coronata f. sp. avenae, the Causal Agent of Oat Crown Rust

    Directory of Open Access Journals (Sweden)

    Marisa E. Miller

    2018-02-01

    Full Text Available Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenae.

  12. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers.

    Science.gov (United States)

    Sathyanarayana, N; Pittala, Ranjith Kumar; Tripathi, Pankaj Kumar; Chopra, Ratan; Singh, Heikham Russiachand; Belamkar, Vikas; Bhardwaj, Pardeep Kumar; Doyle, Jeff J; Egan, Ashley N

    2017-05-25

    The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. The M

  13. Exploring the genes of yerba mate (Ilex paraguariensis A. St.-Hil. by NGS and de novo transcriptome assembly.

    Directory of Open Access Journals (Sweden)

    Humberto J Debat

    Full Text Available Yerba mate (Ilex paraguariensis A. St.-Hil. is an important subtropical tree crop cultivated on 326,000 ha in Argentina, Brazil and Paraguay, with a total yield production of more than 1,000,000 t. Yerba mate presents a strong limitation regarding sequence information. The NCBI GenBank lacks an EST database of yerba mate and depicts only 80 DNA sequences, mostly uncharacterized. In this scenario, in order to elucidate the yerba mate gene landscape by means of NGS, we explored and discovered a vast collection of I. paraguariensis transcripts. Total RNA from I. paraguariensis was sequenced by Illumina HiSeq-2000 obtaining 72,031,388 pair-end 100 bp sequences. High quality reads were de novo assembled into 44,907 transcripts encompassing 40 million bases with an estimated coverage of 180X. Multiple sequence analysis allowed us to predict that yerba mate contains ∼ 32,355 genes and 12,551 gene variants or isoforms. We identified and categorized members of more than 100 metabolic pathways. Overall, we have identified ∼ 1,000 putative transcription factors, genes involved in heat and oxidative stress, pathogen response, as well as disease resistance and hormone response. We have also identified, based in sequence homology searches, novel transcripts related to osmotic, drought, salinity and cold stress, senescence and early flowering. We have also pinpointed several members of the gene silencing pathway, and characterized the silencing effector Argonaute1. We predicted a diverse supply of putative microRNA precursors involved in developmental processes. We present here the first draft of the transcribed genomes of the yerba mate chloroplast and mitochondrion. The putative sequence and predicted structure of the caffeine synthase of yerba mate is presented. Moreover, we provide a collection of over 10,800 SSR accessible to the scientific community interested in yerba mate genetic improvement. This contribution broadly expands the limited knowledge

  14. Exploring the Genes of Yerba Mate (Ilex paraguariensis A. St.-Hil.) by NGS and De Novo Transcriptome Assembly

    Science.gov (United States)

    Aguilera, Patricia M.; Bubillo, Rosana E.; Otegui, Mónica B.; Ducasse, Daniel A.; Zapata, Pedro D.; Marti, Dardo A.

    2014-01-01

    Yerba mate (Ilex paraguariensis A. St.-Hil.) is an important subtropical tree crop cultivated on 326,000 ha in Argentina, Brazil and Paraguay, with a total yield production of more than 1,000,000 t. Yerba mate presents a strong limitation regarding sequence information. The NCBI GenBank lacks an EST database of yerba mate and depicts only 80 DNA sequences, mostly uncharacterized. In this scenario, in order to elucidate the yerba mate gene landscape by means of NGS, we explored and discovered a vast collection of I. paraguariensis transcripts. Total RNA from I. paraguariensis was sequenced by Illumina HiSeq-2000 obtaining 72,031,388 pair-end 100 bp sequences. High quality reads were de novo assembled into 44,907 transcripts encompassing 40 million bases with an estimated coverage of 180X. Multiple sequence analysis allowed us to predict that yerba mate contains ∼32,355 genes and 12,551 gene variants or isoforms. We identified and categorized members of more than 100 metabolic pathways. Overall, we have identified ∼1,000 putative transcription factors, genes involved in heat and oxidative stress, pathogen response, as well as disease resistance and hormone response. We have also identified, based in sequence homology searches, novel transcripts related to osmotic, drought, salinity and cold stress, senescence and early flowering. We have also pinpointed several members of the gene silencing pathway, and characterized the silencing effector Argonaute1. We predicted a diverse supply of putative microRNA precursors involved in developmental processes. We present here the first draft of the transcribed genomes of the yerba mate chloroplast and mitochondrion. The putative sequence and predicted structure of the caffeine synthase of yerba mate is presented. Moreover, we provide a collection of over 10,800 SSR accessible to the scientific community interested in yerba mate genetic improvement. This contribution broadly expands the limited knowledge of yerba mate genes

  15. Harnessing Whole Genome Sequencing in Medical Mycology.

    Science.gov (United States)

    Cuomo, Christina A

    2017-01-01

    Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

  16. Transcriptome survey of Patagonian southern beech Nothofagus nervosa (= N. Alpina: assembly, annotation and molecular marker discovery

    Directory of Open Access Journals (Sweden)

    Torales Susana L

    2012-07-01

    Full Text Available Abstract Background Nothofagus nervosa is one of the most emblematic native tree species of Patagonian temperate forests. Here, the shotgun RNA-sequencing (RNA-Seq of the transcriptome of N. nervosa, including de novo assembly, functional annotation, and in silico discovery of potential molecular markers to support population and associations genetic studies, are described. Results Pyrosequencing of a young leaf cDNA library generated a total of 111,814 high quality reads, with an average length of 447 bp. De novo assembly using Newbler resulted into 3,005 tentative isotigs (including alternative transcripts. The non-assembled sequences (singletons were clustered with CD-HIT-454 to identify natural and artificial duplicates from pyrosequencing reads, leading to 21,881 unique singletons. 15,497 out of 24,886 non-redundant sequences or unigenes, were successfully annotated against a plant protein database. A substantial number of simple sequence repeat markers (SSRs were discovered in the assembled and annotated sequences. More than 40% of the SSR sequences were inside ORF sequences. To confirm the validity of these predicted markers, a subset of 73 SSRs selected through functional annotation evidences were successfully amplified from six seedlings DNA samples, being 14 polymorphic. Conclusions This paper is the first report that shows a highly precise representation of the mRNAs diversity present in young leaves of a native South American tree, N. nervosa, as well as its in silico deduced putative functionality. The reported Nothofagus transcriptome sequences represent a unique resource for genetic studies and provide a tool to discover genes of interest and genetic markers that will greatly aid questions involving evolution, ecology, and conservation using genetic and genomic approaches in the genus.

  17. Getting complete genomes from complex samples using nanopore sequencing

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; Karst, Søren Michael; Albertsen, Mads

    Background Short read DNA sequencing and metagenomic binning workflows have made it possible to extract bacterial genome bins from environmental microbial samples containing hundreds to thousands of different species. However, these genome bins often do not represent complete genomes......, as they are mostly fragmented, incomplete and often contaminated with foreign DNA. The value of these `draft genomes` have limited, lasting value to the scientific community, as gene synteny is broken and there is some uncertainty of what is missing1. The genetic material most often missed is important multi......-copy and/or conserved marker genes such as the 16S rRNA gene, as sequence micro-heterogeneity prevents assembly of these genes in the de novo assembly. However, long read sequencing technologies are emerging promising an end to fragmented genome assemblies2. Experimental design We extracted DNA from a full...

  18. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.

    Science.gov (United States)

    Lin, Hsin-Hung; Liao, Yu-Chieh

    2015-01-01

    Despite the ever-increasing output of next-generation sequencing data along with developing assemblers, dozens to hundreds of gaps still exist in de novo microbial assemblies due to uneven coverage and large genomic repeats. Third-generation single-molecule, real-time (SMRT) sequencing technology avoids amplification artifacts and generates kilobase-long reads with the potential to complete microbial genome assembly. However, due to the low accuracy (~85%) of third-generation sequences, a considerable amount of long reads (>50X) are required for self-correction and for subsequent de novo assembly. Recently-developed hybrid approaches, using next-generation sequencing data and as few as 5X long reads, have been proposed to improve the completeness of microbial assembly. In this study we have evaluated the contemporary hybrid approaches and demonstrated that assembling corrected long reads (by runCA) produced the best assembly compared to long-read scaffolding (e.g., AHA, Cerulean and SSPACE-LongRead) and gap-filling (SPAdes). For generating corrected long reads, we further examined long-read correction tools, such as ECTools, LSC, LoRDEC, PBcR pipeline and proovread. We have demonstrated that three microbial genomes including Escherichia coli K12 MG1655, Meiothermus ruber DSM1279 and Pdeobacter heparinus DSM2366 were successfully hybrid assembled by runCA into near-perfect assemblies using ECTools-corrected long reads. In addition, we developed a tool, Patch, which implements corrected long reads and pre-assembled contigs as inputs, to enhance microbial genome assemblies. With the additional 20X long reads, short reads of S. cerevisiae W303 were hybrid assembled into 115 contigs using the verified strategy, ECTools + runCA. Patch was subsequently applied to upgrade the assembly to a 35-contig draft genome. Our evaluation of the hybrid approaches shows that assembling the ECTools-corrected long reads via runCA generates near complete microbial genomes, suggesting

  19. Characterization and analysis of a de novo transcriptome from the pygmy grasshopper Tetrix japonica.

    Science.gov (United States)

    Qiu, Zhongying; Liu, Fei; Lu, Huimeng; Huang, Yuan

    2017-05-01

    The pygmy grasshopper Tetrix japonica is a common insect distributed throughout the world, and it has the potential for use in studies of body colour polymorphism, genomics and the biology of Tetrigoidea (Insecta: Orthoptera). However, limited biological information is available for this insect. Here, we conducted a de novo transcriptome study of adult and larval T. japonica to provide a better understanding of its gene expression and develop genomic resources for future work. We sequenced and explored the characteristics of the de novo transcriptome of T. japonica using Illumina HiSeq 2000 platform. A total of 107 608 206 paired-end clean reads were assembled into 61 141 unigenes using the trinity software; the mean unigene size was 771 bp, and the N50 length was 1238 bp. A total of 29 225 unigenes were functionally annotated to the NCBI nonredundant protein sequences (Nr), NCBI nonredundant nucleotide sequences (Nt), a manually annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of putative genes that are potentially involved in pigment pathways, juvenile hormone (JH) metabolism and signalling pathways were identified in the T. japonica transcriptome. Additionally, 165 769 and 156 796 putative single nucleotide polymorphisms occurred in the adult and larvae transcriptomes, respectively, and a total of 3162 simple sequence repeats were detected in this assembly. This comprehensive transcriptomic data for T. japonica will provide a usable resource for gene predictions, signalling pathway investigations and molecular marker development for this species and other pygmy grasshoppers. © 2016 John Wiley & Sons Ltd.

  20. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

    Directory of Open Access Journals (Sweden)

    Colbourne John K

    2009-05-01

    Full Text Available Abstract Background New methods are needed for genomic-scale analysis of emerging model organisms that exemplify important biological questions but lack fully sequenced genomes. For example, there is an urgent need to understand the potential for corals to adapt to climate change, but few molecular resources are available for studying these processes in reef-building corals. To facilitate genomics studies in corals and other non-model systems, we describe methods for transcriptome sequencing using 454, as well as strategies for assembling a useful catalog of genes from the output. We have applied these methods to sequence the transcriptome of planulae larvae from the coral Acropora millepora. Results More than 600,000 reads produced in a single 454 sequencing run were assembled into ~40,000 contigs with five-fold average sequencing coverage. Based on sequence similarity with known proteins, these analyses identified ~11,000 different genes expressed in a range of conditions including thermal stress and settlement induction. Assembled sequences were annotated with gene names, conserved domains, and Gene Ontology terms. Targeted searches using these annotations identified the majority of genes associated with essential metabolic pathways and conserved signaling pathways, as well as novel candidate genes for stress-related processes. Comparisons with the genome of the anemone Nematostella vectensis revealed ~8,500 pairs of orthologs and ~100 candidate coral-specific genes. More than 30,000 SNPs were detected in the coral sequences, and a subset of these validated by re-sequencing. Conclusion The methods described here for deep sequencing of the transcriptome should be widely applicable to generate catalogs of genes and genetic markers in emerging model organisms. Our data provide the most comprehensive sequence resource currently available for reef-building corals, and include an extensive collection of potential genetic markers for association and

  1. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data

    KAUST Repository

    Allam, Amin

    2015-07-14

    Motivation: Next-generation sequencing generates large amounts of data affected by errors in the form of substitutions, insertions or deletions of bases. Error correction based on the high-coverage information, typically improves de novo assembly. Most existing tools can correct substitution errors only; some support insertions and deletions, but accuracy in many cases is low. Results: We present Karect, a novel error correction technique based on multiple alignment. Our approach supports substitution, insertion and deletion errors. It can handle non-uniform coverage as well as moderately covered areas of the sequenced genome. Experiments with data from Illumina, 454 FLX and Ion Torrent sequencing machines demonstrate that Karect is more accurate than previous methods, both in terms of correcting individual-bases errors (up to 10% increase in accuracy gain) and post de novo assembly quality (up to 10% increase in NGA50). We also introduce an improved framework for evaluating the quality of error correction.

  2. The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly

    Directory of Open Access Journals (Sweden)

    J. W. Clouse

    2016-03-01

    Full Text Available Amaranth ( L. is an emerging pseudocereal native to the New World that has garnered increased attention in recent years because of its nutritional quality, in particular its seed protein and more specifically its high levels of the essential amino acid lysine. It belongs to the Amaranthaceae family, is an ancient paleopolyploid that shows disomic inheritance (2 = 32, and has an estimated genome size of 466 Mb. Here we present a high-quality draft genome sequence of the grain amaranth. The genome assembly consisted of 377 Mb in 3518 scaffolds with an N of 371 kb. Repetitive element analysis predicted that 48% of the genome is comprised of repeat sequences, of which -like elements were the most commonly classified retrotransposon. A de novo transcriptome consisting of 66,370 contigs was assembled from eight different amaranth tissue and abiotic stress libraries. Annotation of the genome identified 23,059 protein-coding genes. Seven grain amaranths (, , and and their putative progenitor ( were resequenced. A single nucleotide polymorphism (SNP phylogeny supported the classification of as the progenitor species of the grain amaranths. Lastly, we generated a de novo physical map for using the BioNano Genomics’ Genome Mapping platform. The physical map spanned 340 Mb and a hybrid assembly using the BioNano physical maps nearly doubled the N of the assembly to 697 kb. Moreover, we analyzed synteny between amaranth and sugar beet ( L. and estimated, using analysis, the age of the most recent polyploidization event in amaranth.

  3. De novo Transcriptome Sequencing Reveals a Considerable Bias in the Incidence of Simple Sequence Repeats towards the Downstream of ‘Pre-miRNAs’ of Black Pepper

    Science.gov (United States)

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of ‘43 pre-miRNA candidates bearing different types of SSR motifs’. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted ‘pre-miRNA candidates bearing SSRs’. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted ‘pre-miRNA candidates’. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of ‘tandem repeats’ in miRNAs. PMID:23469176

  4. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus.

    Science.gov (United States)

    Moskalev, Alexey А; Kudryavtseva, Anna V; Graphodatsky, Alexander S; Beklemisheva, Violetta R; Serdyukova, Natalya A; Krutovsky, Konstantin V; Sharov, Vadim V; Kulakovskiy, Ivan V; Lando, Andrey S; Kasianov, Artem S; Kuzmin, Dmitry A; Putintseva, Yuliya A; Feranchuk, Sergey I; Shaposhnikov, Mikhail V; Fraifeld, Vadim E; Toren, Dmitri; Snezhkina, Anastasia V; Sitnik, Vasily V

    2017-12-28

    Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.

  5. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.

    Science.gov (United States)

    Castro, Juan C; Maddox, J Dylan; Cobos, Marianela; Requena, David; Zimic, Mirko; Bombarely, Aureliano; Imán, Sixto A; Cerdeira, Luis A; Medina, Andersson E

    2015-11-24

    Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with

  6. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  7. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  8. Centrioles: Some Self-Assembly Required

    OpenAIRE

    Song, Mi Hye; Miliaras, Nicholas B.; Peel, Nina; O'Connell, Kevin F.

    2008-01-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also self-assemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a ...

  9. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  10. De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies.

    Science.gov (United States)

    Karamitros, Timokratis; Harrison, Ian; Piorkowska, Renata; Katzourakis, Aris; Magiorkinis, Gkikas; Mbisa, Jean Lutamyo

    2016-01-01

    Human herpesvirus type 1 (HHV-1) has a large double-stranded DNA genome of approximately 152 kbp that is structurally complex and GC-rich. This makes the assembly of HHV-1 whole genomes from short-read sequencing data technically challenging. To improve the assembly of HHV-1 genomes we have employed a hybrid genome assembly protocol using data from two sequencing technologies: the short-read Roche 454 and the long-read Oxford Nanopore MinION sequencers. We sequenced 18 HHV-1 cell culture-isolated clinical specimens collected from immunocompromised patients undergoing antiviral therapy. The susceptibility of the samples to several antivirals was determined by plaque reduction assay. Hybrid genome assembly resulted in a decrease in the number of contigs in 6 out of 7 samples and an increase in N(G)50 and N(G)75 of all 7 samples sequenced by both technologies. The approach also enhanced the detection of non-canonical contigs including a rearrangement between the unique (UL) and repeat (T/IRL) sequence regions of one sample that was not detectable by assembly of 454 reads alone. We detected several known and novel resistance-associated mutations in UL23 and UL30 genes. Genome-wide genetic variability ranged from genomes will be useful in determining genetic determinants of drug resistance, virulence, pathogenesis and viral evolution. The numerous, complex repeat regions of the HHV-1 genome currently remain a barrier towards this goal.

  11. Sparc: a sparsity-based consensus algorithm for long erroneous sequencing reads

    Directory of Open Access Journals (Sweden)

    Chengxi Ye

    2016-06-01

    Full Text Available Motivation. The third generation sequencing (3GS technology generates long sequences of thousands of bases. However, its current error rates are estimated in the range of 15–40%, significantly higher than those of the prevalent next generation sequencing (NGS technologies (less than 1%. Fundamental bioinformatics tasks such as de novo genome assembly and variant calling require high-quality sequences that need to be extracted from these long but erroneous 3GS sequences. Results. We describe a versatile and efficient linear complexity consensus algorithm Sparc to facilitate de novo genome assembly. Sparc builds a sparse k-mer graph using a collection of sequences from a targeted genomic region. The heaviest path which approximates the most likely genome sequence is searched through a sparsity-induced reweighted graph as the consensus sequence. Sparc supports using NGS and 3GS data together, which leads to significant improvements in both cost efficiency and computational efficiency. Experiments with Sparc show that our algorithm can efficiently provide high-quality consensus sequences using both PacBio and Oxford Nanopore sequencing technologies. With only 30× PacBio data, Sparc can reach a consensus with error rate <0.5%. With the more challenging Oxford Nanopore data, Sparc can also achieve similar error rate when combined with NGS data. Compared with the existing approaches, Sparc calculates the consensus with higher accuracy, and uses approximately 80% less memory and time. Availability. The source code is available for download at https://github.com/yechengxi/Sparc.

  12. INTEGRATION OF SHIP HULL ASSEMBLY SEQUENCE PLANNING, SCHEDULING AND BUDGETING

    Directory of Open Access Journals (Sweden)

    Remigiusz Romuald Iwańkowicz

    2015-02-01

    Full Text Available The specificity of the yard work requires the particularly careful treatment of the issues of scheduling and budgeting in the production planning processes. The article presents the method of analysis of the assembly sequence taking into account the duration of individual activities and the demand for resources. A method of the critical path and resource budgeting were used. Modelling of the assembly was performed using the acyclic graphs. It has been shown that the assembly sequences can have very different feasible budget regions. The proposed model is applied to the assembly processes of large-scale welded structures, including the hulls of ships. The presented computational examples have a simulation character. They show the usefulness of the model and the possibility to use it in a variety of analyses.

  13. De novo sequencing of two novel peptides homologous to calcitonin-like peptides, from skin secretion of the Chinese Frog, Odorrana schmackeri

    NARCIS (Netherlands)

    Evaristo, Geisa P C; Pinkse, Martijn W H; Chen, Tianbao; Wang, Lei; Mohammed, Shabaz; Heck, Albert J R; Mathes, Isabella; Lottspeich, Friedrich; Shaw, Chris; Albar, Juan Pablo; Verhaert, Peter D E M

    2015-01-01

    An MS/MS based analytical strategy was followed to solve the complete sequence of two new peptides from frog (Odorrana schmackeri) skin secretion. This involved reduction and alkylation with two different alkylating agents followed by high resolution tandem mass spectrometry. De novo sequencing was

  14. Assembly and diploid architecture of an individual human genome via single-molecule technologies.

    Science.gov (United States)

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-08-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.

  15. NATpipe: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes

    Science.gov (United States)

    Yu, Dongliang; Meng, Yijun; Zuo, Ziwei; Xue, Jie; Wang, Huizhong

    2016-01-01

    Nat-siRNAs (small interfering RNAs originated from natural antisense transcripts) are a class of functional small RNA (sRNA) species discovered in both plants and animals. These siRNAs are highly enriched within the annealed regions of the NAT (natural antisense transcript) pairs. To date, great research efforts have been taken for systematical identification of the NATs in various organisms. However, developing a freely available and easy-to-use program for NAT prediction is strongly demanded by researchers. Here, we proposed an integrative pipeline named NATpipe for systematical discovery of NATs from de novo assembled transcriptomes. By utilizing sRNA sequencing data, the pipeline also allowed users to search for phase-distributed nat-siRNAs within the perfectly annealed regions of the NAT pairs. Additionally, more reliable nat-siRNA loci could be identified based on degradome sequencing data. A case study on the non-model plant Dendrobium officinale was performed to illustrate the utility of NATpipe. Finally, we hope that NATpipe would be a useful tool for NAT prediction, nat-siRNA discovery, and related functional studies. NATpipe is available at www.bioinfolab.cn/NATpipe/NATpipe.zip. PMID:26858106

  16. De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer's properties.

    Science.gov (United States)

    Guo, Qianqian; Ma, Xiaojun; Wei, Shugen; Qiu, Deyou; Wilson, Iain W; Wu, Peng; Tang, Qi; Liu, Lijun; Dong, Shoukun; Zu, Wei

    2014-08-12

    The major medicinal alkaloids isolated from Uncaria rhynchophylla (gouteng in chinese) capsules are rhynchophylline (RIN) and isorhynchophylline (IRN). Extracts containing these terpene indole alkaloids (TIAs) can inhibit the formation and destabilize preformed fibrils of amyloid β protein (a pathological marker of Alzheimer's disease), and have been shown to improve the cognitive function of mice with Alzheimer-like symptoms. The biosynthetic pathways of RIN and IRN are largely unknown. In this study, RNA-sequencing of pooled Uncaria capsules RNA samples taken at three developmental stages that accumulate different amount of RIN and IRN was performed. More than 50 million high-quality reads from a cDNA library were generated and de novo assembled. Sequences for all of the known enzymes involved in TIAs synthesis were identified. Additionally, 193 cytochrome P450 (CYP450), 280 methyltransferase and 144 isomerase genes were identified, that are potential candidates for enzymes involved in RIN and IRN synthesis. Digital gene expression profile (DGE) analysis was performed on the three capsule developmental stages, and based on genes possessing expression profiles consistent with RIN and IRN levels; four CYP450s, three methyltransferases and three isomerases were identified as the candidates most likely to be involved in the later steps of RIN and IRN biosynthesis. A combination of de novo transcriptome assembly and DGE analysis was shown to be a powerful method for identifying genes encoding enzymes potentially involved in the biosynthesis of important secondary metabolites in a non-model plant. The transcriptome data from this study provides an important resource for understanding the formation of major bioactive constituents in the capsule extract from Uncaria, and provides information that may aid in metabolic engineering to increase yields of these important alkaloids.

  17. De Novo Sequencing and Comparative Analysis of Schima superba Seedlings to Explore the Response to Drought Stress.

    Directory of Open Access Journals (Sweden)

    Bao-Cai Han

    Full Text Available Schima superba is an important dominant species in subtropical evergreen broadleaved forests of China, and plays a vital role in community structure and dynamics. However, the survival rate of its seedlings in the field is low, and water shortage could be a factor that limits its regeneration. In order to better understand the response of its seedlings to drought stress on a functional genomics scale, RNA-seq technology was utilized in this study to perform a large-scale transcriptome sequencing of the S. superba seedlings under drought stress. More than 320 million clean reads were generated and 72218 unique transcripts were obtained through de novo assembly. These unigenes were further annotated by blasting with different public databases and a total of 53300 unique transcripts were annotated. A total of 31586 simple sequence repeat (SSR loci were presented. Through gene expression profiling analysis between drought treatment and control, 11038 genes were found to be significantly enriched in drought-stressed seedlings. Based on these differentially expressed genes (DEGs, Gene Ontology (GO terms enrichment and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG enrichment analysis indicated that drought stress caused a number of changes in the types of sugars, enzymes, secondary mechanisms, and light responses, and induced some potential physical protection mechanisms. In addition, the expression patterns of 18 transcripts induced by drought, as determined by quantitative real-time PCR, were consistent with their transcript abundance changes, as identified by RNA-seq. This transcriptome study provides a rapid method for understanding the response of S. superba seedlings to drought stress and provides a number of gene sequences available for further functional genomics studies.

  18. DNApi: A De Novo Adapter Prediction Algorithm for Small RNA Sequencing Data.

    Science.gov (United States)

    Tsuji, Junko; Weng, Zhiping

    2016-01-01

    With the rapid accumulation of publicly available small RNA sequencing datasets, third-party meta-analysis across many datasets is becoming increasingly powerful. Although removing the 3´ adapter is an essential step for small RNA sequencing analysis, the adapter sequence information is not always available in the metadata. The information can be also erroneous even when it is available. In this study, we developed DNApi, a lightweight Python software package that predicts the 3´ adapter sequence de novo and provides the user with cleansed small RNA sequences ready for down stream analysis. Tested on 539 publicly available small RNA libraries accompanied with 3´ adapter sequences in their metadata, DNApi shows near-perfect accuracy (98.5%) with fast runtime (~2.85 seconds per library) and efficient memory usage (~43 MB on average). In addition to 3´ adapter prediction, it is also important to classify whether the input small RNA libraries were already processed, i.e. the 3´ adapters were removed. DNApi perfectly judged that given another batch of datasets, 192 publicly available processed libraries were "ready-to-map" small RNA sequence. DNApi is compatible with Python 2 and 3, and is available at https://github.com/jnktsj/DNApi. The 731 small RNA libraries used for DNApi evaluation were from human tissues and were carefully and manually collected. This study also provides readers with the curated datasets that can be integrated into their studies.

  19. LESSONS IN DE NOVO PEPTIDE SEQUENCING BY TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    Medzihradszky, Katalin F.; Chalkley, Robert J.

    2015-01-01

    Mass spectrometry has become the method of choice for the qualitative and quantitative characterization of protein mixtures isolated from all kinds of living organisms. The raw data in these studies are MS/MS spectra, usually of peptides produced by proteolytic digestion of a protein. These spectra are “translated” into peptide sequences, normally with the help of various search engines. Data acquisition and interpretation have both been automated, and most researchers look only at the summary of the identifications without ever viewing the underlying raw data used for assignments. Automated analysis of data is essential due to the volume produced. However, being familiar with the finer intricacies of peptide fragmentation processes, and experiencing the difficulties of manual data interpretation allow a researcher to be able to more critically evaluate key results, particularly because there are many known rules of peptide fragmentation that are not incorporated into search engine scoring. Since the most commonly used MS/MS activation method is collision-induced dissociation (CID), in this article we present a brief review of the history of peptide CID analysis. Next, we provide a detailed tutorial on how to determine peptide sequences from CID data. Although the focus of the tutorial is de novo sequencing, the lessons learned and resources supplied are useful for data interpretation in general. PMID:25667941

  20. De novo-based transcriptome profiling of male-sterile and fertile watermelon lines.

    Science.gov (United States)

    Rhee, Sun-Ju; Kwon, Taehyung; Seo, Minseok; Jang, Yoon Jeong; Sim, Tae Yong; Cho, Seoae; Han, Sang-Wook; Lee, Gung Pyo

    2017-01-01

    The whole-genome sequence of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai), a valuable horticultural crop worldwide, was released in 2013. Here, we compared a de novo-based approach (DBA) to a reference-based approach (RBA) using RNA-seq data, to aid in efforts to improve the annotation of the watermelon reference genome and to obtain biological insight into male-sterility in watermelon. We applied these techniques to available data from two watermelon lines: the male-sterile line DAH3615-MS and the male-fertile line DAH3615. Using DBA, we newly annotated 855 watermelon transcripts, and found gene functional clusters predicted to be related to stimulus responses, nucleic acid binding, transmembrane transport, homeostasis, and Golgi/vesicles. Among the DBA-annotated transcripts, 138 de novo-exclusive differentially-expressed genes (DEDEGs) related to male sterility were detected. Out of 33 randomly selected newly annotated transcripts and DEDEGs, 32 were validated by RT-qPCR. This study demonstrates the usefulness and reliability of the de novo transcriptome assembly in watermelon, and provides new insights for researchers exploring transcriptional blueprints with regard to the male sterility.

  1. De Novo Genome and Transcriptome Assembly of the Canadian Beaver (Castor canadensis

    Directory of Open Access Journals (Sweden)

    Si Lok

    2017-02-01

    Full Text Available The Canadian beaver (Castor canadensis is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 × long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 × and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon–gene models derived from 9805 full-length open reading frames (FL-ORFs constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.

  2. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species

    Directory of Open Access Journals (Sweden)

    Hornett Emily A

    2012-08-01

    Full Text Available Abstract Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

  3. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits.

    Directory of Open Access Journals (Sweden)

    Shuang Chen

    Full Text Available Locusts exhibit remarkable density-dependent phenotype (phase changes from the solitary to the gregarious, making them one of the most destructive agricultural pests. This phenotype polyphenism arises from a single genome and diverse transcriptomes in different conditions. Here we report a de novo transcriptome for the migratory locust and a comprehensive, representative core gene set. We carried out assembly of 21.5 Gb Illumina reads, generated 72,977 transcripts with N50 2,275 bp and identified 11,490 locust protein-coding genes. Comparative genomics analysis with eight other sequenced insects was carried out to identify the genomic divergence between hemimetabolous and holometabolous insects for the first time and 18 genes relevant to development was found. We further utilized the quantitative feature of RNA-seq to measure and compare gene expression among libraries. We first discovered how divergence in gene expression between two phases progresses as locusts develop and identified 242 transcripts as candidates for phase marker genes. Together with the detailed analysis of deep sequencing data of the 4(th instar, we discovered a phase-dependent divergence of biological investment in the molecular level. Solitary locusts have higher activity in biosynthetic pathways while gregarious locusts show higher activity in environmental interaction, in which genes and pathways associated with regulation of neurotransmitter activities, such as neurotransmitter receptors, synthetase, transporters, and GPCR signaling pathways, are strongly involved. Our study, as the largest de novo transcriptome to date, with optimization of sequencing and assembly strategy, can further facilitate the application of de novo transcriptome. The locust transcriptome enriches genetic resources for hemimetabolous insects and our understanding of the origin of insect metamorphosis. Most importantly, we identified genes and pathways that might be involved in locust development

  4. Gene expression patterns regulating embryogenesis based on the integrated de novo transcriptome assembly of the Japanese flounder.

    Science.gov (United States)

    Fu, Yuanshuai; Jia, Liang; Shi, Zhiyi; Zhang, Junling; Li, Wenjuan

    2017-06-01

    The Japanese flounder (Paralichthys olivaceus) is one of the most important commercial and biological marine fishes. However, the molecular biology involved during embryogenesis and early development of the Japanese flounder remains largely unknown due to a lack of genomic resources. A comprehensive and integrated transcriptome is necessary to study the molecular mechanisms of early development and to allow for the detailed characterization of gene expression patterns during embryogenesis; this approach is critical to understanding the processes that occur prior to mesectoderm formation during early embryonic development. In this study, more than 117.8 million 100bp PE reads were generated from pooled RNA extracted from unfertilized eggs to 41dph (days post-hatching) embryos and were sequenced using Illumina pair-end sequencing technology. In total, 121,513 transcripts (≥200bp) were obtained using de novo assembly. A sequence similarity search indicated that 52,338 transcripts show significant similarity to 22,462 known proteins from the NCBI non-redundant database and the Swiss-Prot protein database and were annotated using Blast2GO. GO terms were assigned to 44,627 transcripts with 12,006 functional terms, and 10,024 transcripts were assigned to 133 KEGG pathways. Furthermore, gene expression differences between the unfertilized egg and the gastrula embryo were analysed using Illumina RNA-Seq with single-read sequencing technology, and 24,837 differentially and specifically expressed transcripts were identified and included 5,286 annotated transcripts and 19,569 non-annotated transcripts. All of the expressed transcripts in the unfertilized egg and gastrula embryo were further classified as maternal, zygotic, or maternal-zygotic transcripts, which may help us to understand the roles of these transcripts during the embryonic development of the Japanese flounder. Thus, the results will contribute to an improved understanding of the gene expression patterns and

  5. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum.

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    Full Text Available Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  6. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum).

    Science.gov (United States)

    Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng

    2014-01-01

    Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  7. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers

    Science.gov (United States)

    Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B

    2015-01-01

    Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816

  8. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.

    Science.gov (United States)

    Huson, Daniel H; Tappu, Rewati; Bazinet, Adam L; Xie, Chao; Cummings, Michael P; Nieselt, Kay; Williams, Rohan

    2017-01-25

    Microbiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes. We present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled. Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered. Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.

  9. Reducing assembly complexity of microbial genomes with single-molecule sequencing

    Science.gov (United States)

    Genome assembly algorithms cannot fully reconstruct microbial chromosomes from the DNA reads output by first or second-generation sequencing instruments. Therefore, most genomes are left unfinished due to the significant resources required to manually close gaps left in the draft assemblies. Single-...

  10. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.

    Science.gov (United States)

    Warnke-Sommer, Julia; Ali, Hesham

    2016-05-06

    The assembly of Next Generation Sequencing (NGS) reads remains a challenging task. This is especially true for the assembly of metagenomics data that originate from environmental samples potentially containing hundreds to thousands of unique species. The principle objective of current assembly tools is to assemble NGS reads into contiguous stretches of sequence called contigs while maximizing for both accuracy and contig length. The end goal of this process is to produce longer contigs with the major focus being on assembly only. Sequence read assembly is an aggregative process, during which read overlap relationship information is lost as reads are merged into longer sequences or contigs. The assembly graph is information rich and capable of capturing the genomic architecture of an input read data set. We have developed a novel hybrid graph in which nodes represent sequence regions at different levels of granularity. This model, utilized in the assembly and analysis pipeline Focus, presents a concise yet feature rich view of a given input data set, allowing for the extraction of biologically relevant graph structures for graph mining purposes. Focus was used to create hybrid graphs to model metagenomics data sets obtained from the gut microbiomes of five individuals with Crohn's disease and eight healthy individuals. Repetitive and mobile genetic elements are found to be associated with hybrid graph structure. Using graph mining techniques, a comparative study of the Crohn's disease and healthy data sets was conducted with focus on antibiotics resistance genes associated with transposase genes. Results demonstrated significant differences in the phylogenetic distribution of categories of antibiotics resistance genes in the healthy and diseased patients. Focus was also evaluated as a pure assembly tool and produced excellent results when compared against the Meta-velvet, Omega, and UD-IDBA assemblers. Mining the hybrid graph can reveal biological phenomena captured

  11. De novo transcriptome assembly of mangosteen (Garcinia mangostana L. fruit

    Directory of Open Access Journals (Sweden)

    Deden Derajat Matra

    2016-12-01

    Full Text Available Garcinia mangostana L. (Mangosteen, of the family Clusiaceae, is one of the economically important tropical fruits in Indonesia. In the present study, we performed de novo transcriptomic analysis of Garcinia mangostana L. through RNA-Seq technology. We obtained the raw data from 12 libraries through Ion Proton System. Clean reads of 191,735,809 were obtained from 307,634,890 raw reads. The raw data obtained in this study can be accessible in DDBJ database with accession number of DRA005014 with bioproject accession number of PRJDB5091. We obtained 268,851 transcripts as well as 155,850 unigenes, having N50 value of 555 and 433 bp, respectively. Transcript/unigene length ranged from 201 to 5916 bp. The unigenes were annotated with two main databases from NCBI and UniProtKB, respectively having annotated-sequences of 73,287 and 73,107, respectively. These transcriptomic data will be beneficial for studying transcriptome of Garcinia mangostana L.

  12. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). Methods To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). Results Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. Conclusions Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis. PMID:25000941

  13. Faucet: streaming de novo assembly graph construction.

    Science.gov (United States)

    Rozov, Roye; Goldshlager, Gil; Halperin, Eran; Shamir, Ron

    2018-01-01

    We present Faucet, a two-pass streaming algorithm for assembly graph construction. Faucet builds an assembly graph incrementally as each read is processed. Thus, reads need not be stored locally, as they can be processed while downloading data and then discarded. We demonstrate this functionality by performing streaming graph assembly of publicly available data, and observe that the ratio of disk use to raw data size decreases as coverage is increased. Faucet pairs the de Bruijn graph obtained from the reads with additional meta-data derived from them. We show these metadata-coverage counts collected at junction k-mers and connections bridging between junction pairs-contain most salient information needed for assembly, and demonstrate they enable cleaning of metagenome assembly graphs, greatly improving contiguity while maintaining accuracy. We compared Fauceted resource use and assembly quality to state of the art metagenome assemblers, as well as leading resource-efficient genome assemblers. Faucet used orders of magnitude less time and disk space than the specialized metagenome assemblers MetaSPAdes and Megahit, while also improving on their memory use; this broadly matched performance of other assemblers optimizing resource efficiency-namely, Minia and LightAssembler. However, on metagenomes tested, Faucet,o outputs had 14-110% higher mean NGA50 lengths compared with Minia, and 2- to 11-fold higher mean NGA50 lengths compared with LightAssembler, the only other streaming assembler available. Faucet is available at https://github.com/Shamir-Lab/Faucet. rshamir@tau.ac.il or eranhalperin@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  14. Centrioles: some self-assembly required.

    Science.gov (United States)

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  15. VAGUE: a graphical user interface for the Velvet assembler.

    Science.gov (United States)

    Powell, David R; Seemann, Torsten

    2013-01-15

    Velvet is a popular open-source de novo genome assembly software tool, which is run from the Unix command line. Most of the problems experienced by new users of Velvet revolve around constructing syntactically and semantically correct command lines, getting input files into acceptable formats and assessing the output. Here, we present Velvet Assembler Graphical User Environment (VAGUE), a multi-platform graphical front-end for Velvet. VAGUE aims to make sequence assembly accessible to a wider audience and to facilitate better usage amongst existing users of Velvet. VAGUE is implemented in JRuby and targets the Java Virtual Machine. It is available under an open-source GPLv2 licence from http://www.vicbioinformatics.com/. torsten.seemann@monash.edu.

  16. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Science.gov (United States)

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  17. Batch-processing of imaging or liquid-chromatography mass spectrometry datasets and De Novo sequencing of polyketide siderophores

    Czech Academy of Sciences Publication Activity Database

    Novák, Jiří; Sokolová, Lucie; Lemr, Karel; Pluháček, Tomáš; Palyzová, Andrea; Havlíček, Vladimír

    2017-01-01

    Roč. 1865, č. 7 (2017), s. 768-775 ISSN 1570-9639 R&D Projects: GA ČR(CZ) GA16-20229S; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : Mass spectrometry imaging * De novo sequencing * Siderophores Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.773, year: 2016

  18. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from total DNA Sequences.

    NARCIS (Netherlands)

    Izan, Shairul; Esselink, G.; Visser, R.G.F.; Smulders, M.J.M.; Borm, T.J.A.

    2017-01-01

    Whole Genome Shotgun (WGS) sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This

  19. Transcriptome sequencing and de novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in chili pepper (Capsicum annuum L..

    Directory of Open Access Journals (Sweden)

    Chen Liu

    Full Text Available BACKGROUND: The use of cytoplasmic male sterility (CMS in F1 hybrid seed production of chili pepper is increasingly popular. However, the molecular mechanisms of cytoplasmic male sterility and fertility restoration remain poorly understood due to limited transcriptomic and genomic data. Therefore, we analyzed the difference between a CMS line 121A and its near-isogenic restorer line 121C in transcriptome level using next generation sequencing technology (NGS, aiming to find out critical genes and pathways associated with the male sterility. RESULTS: We generated approximately 53 million sequencing reads and assembled de novo, yielding 85,144 high quality unigenes with an average length of 643 bp. Among these unigenes, 27,191 were identified as putative homologs of annotated sequences in the public protein databases, 4,326 and 7,061 unigenes were found to be highly abundant in lines 121A and 121C, respectively. Many of the differentially expressed unigenes represent a set of potential candidate genes associated with the formation or abortion of pollen. CONCLUSIONS: Our study profiled anther transcriptomes of a chili pepper CMS line and its restorer line. The results shed the lights on the occurrence and recovery of the disturbances in nuclear-mitochondrial interaction and provide clues for further investigations.

  20. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii: The Identification of Genes and Markers Associated with Reproduction

    Directory of Open Access Journals (Sweden)

    Hyungtaek Jung

    2016-05-01

    Full Text Available The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium.

  1. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    OpenAIRE

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fu...

  2. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chu, Zongli; Chen, Junying; Sun, Junyan; Dong, Zhongdong; Yang, Xia; Wang, Ying; Xu, Haixia; Zhang, Xiaoke; Chen, Feng; Cui, Dangqun

    2017-12-19

    During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which

  3. New tool to assemble repetitive regions using next-generation sequencing data

    Science.gov (United States)

    Kuśmirek, Wiktor; Nowak, Robert M.; Neumann, Łukasz

    2017-08-01

    The next generation sequencing techniques produce a large amount of sequencing data. Some part of the genome are composed of repetitive DNA sequences, which are very problematic for the existing genome assemblers. We propose a modification of the algorithm for a DNA assembly, which uses the relative frequency of reads to properly reconstruct repetitive sequences. The new approach was implemented and tested, as a demonstration of the capability of our software we present some results for model organisms. The new implementation, using a three-layer software architecture was selected, where the presentation layer, data processing layer, and data storage layer were kept separate. Source code as well as demo application with web interface and the additional data are available at project web-page: http://dnaasm.sourceforge.net.

  4. Syntactic sequencing in Hebbian cell assemblies.

    Science.gov (United States)

    Wennekers, Thomas; Palm, Günther

    2009-12-01

    Hebbian cell assemblies provide a theoretical framework for the modeling of cognitive processes that grounds them in the underlying physiological neural circuits. Recently we have presented an extension of cell assemblies by operational components which allows to model aspects of language, rules, and complex behaviour. In the present work we study the generation of syntactic sequences using operational cell assemblies timed by unspecific trigger signals. Syntactic patterns are implemented in terms of hetero-associative transition graphs in attractor networks which cause a directed flow of activity through the neural state space. We provide regimes for parameters that enable an unspecific excitatory control signal to switch reliably between attractors in accordance with the implemented syntactic rules. If several target attractors are possible in a given state, noise in the system in conjunction with a winner-takes-all mechanism can randomly choose a target. Disambiguation can also be guided by context signals or specific additional external signals. Given a permanently elevated level of external excitation the model can enter an autonomous mode, where it generates temporal grammatical patterns continuously.

  5. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes

    Science.gov (United States)

    2012-01-01

    Background Molecular breeding of pepper (Capsicum spp.) can be accelerated by developing DNA markers associated with transcriptomes in breeding germplasm. Before the advent of next generation sequencing (NGS) technologies, the majority of sequencing data were generated by the Sanger sequencing method. By leveraging Sanger EST data, we have generated a wealth of genetic information for pepper including thousands of SNPs and Single Position Polymorphic (SPP) markers. To complement and enhance these resources, we applied NGS to three pepper genotypes: Maor, Early Jalapeño and Criollo de Morelos-334 (CM334) to identify SNPs and SSRs in the assembly of these three genotypes. Results Two pepper transcriptome assemblies were developed with different purposes. The first reference sequence, assembled by CAP3 software, comprises 31,196 contigs from >125,000 Sanger-EST sequences that were mainly derived from a Korean F1-hybrid line, Bukang. Overlapping probes were designed for 30,815 unigenes to construct a pepper Affymetrix GeneChip® microarray for whole genome analyses. In addition, custom Python scripts were used to identify 4,236 SNPs in contigs of the assembly. A total of 2,489 simple sequence repeats (SSRs) were identified from the assembly, and primers were designed for the SSRs. Annotation of contigs using Blast2GO software resulted in information for 60% of the unigenes in the assembly. The second transcriptome assembly was constructed from more than 200 million Illumina Genome Analyzer II reads (80–120 nt) using a combination of Velvet, CLC workbench and CAP3 software packages. BWA, SAMtools and in-house Perl scripts were used to identify SNPs among three pepper genotypes. The SNPs were filtered to be at least 50 bp from any intron-exon junctions as well as flanking SNPs. More than 22,000 high-quality putative SNPs were identified. Using the MISA software, 10,398 SSR markers were also identified within the Illumina transcriptome assembly and primers were

  6. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K

    2013-12-29

    Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition

  7. De novo Sequencing and Analysis of Lemongrass Transcriptome Provides First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Directory of Open Access Journals (Sweden)

    Seema Meena

    2016-07-01

    Full Text Available Aromatic grasses of the genus Cymbopogon (Poaceae family represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavour, fragrance, cosmetic and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step towards understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases (TPS, pyrophosphatases (PPase, alcohol dehydrogenases (ADH, aldo-keto reductases (AKR, carotenoid cleavage dioxygenases (CCD, alcohol acetyltransferases (AAT and aldehyde dehydrogenases (ALDH, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes and acetates. Molecular modeling and docking further supported the role of identified enzymes in aroma formation in Cymbopogon. Also, simple sequence repeats (SSRs were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  8. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Zhifeng Xu

    Full Text Available The carmine spider mite (CSM, Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs, Kyoto Encyclopedia of Genes and Genomes (KEGG and Gene Ontology (GO. Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45% of the transcripts had significant (e-value <10-5 matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA analysis identified 435 core eukaryotic genes (CEGs in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  9. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    Science.gov (United States)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  10. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    Science.gov (United States)

    Schulze, Thomas T.; Ali, Jonathan M.; Bartlett, Maggie L.; McFarland, Madalyn M.; Clement, Emalie J.; Won, Harim I.; Sanford, Austin G.; Monzingo, Elyssa B.; Martens, Matthew C.; Hemsley, Ryan M.; Kumar, Sidharta; Gouin, Nicolas; Kolok, Alan S.; Davis, Paul H.

    2016-01-01

    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included. PMID:27672404

  11. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

    Directory of Open Access Journals (Sweden)

    Yu-Chih Tsai

    2016-02-01

    Full Text Available Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation.

  12. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

    Science.gov (United States)

    Tsai, Yu-Chih; Deming, Clayton; Segre, Julia A.; Kong, Heidi H.; Korlach, Jonas

    2016-01-01

    ABSTRACT Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT) sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation. PMID:26861018

  13. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609

    Directory of Open Access Journals (Sweden)

    Christine Sambles

    2017-09-01

    Full Text Available Most eukaryotic oleaginous species are yeasts and among them the basidiomycete red yeast, Rhodotorula (Rhodosporidium toruloides (Pucciniomycotina is known to produce high quantities of lipids when grown in nitrogen-limiting media, and has potential for biodiesel production. The genome of the CGMCC 2.1609 strain of this oleaginous red yeast was sequenced using a hybrid of Roche 454 and Illumina technology generating 13× coverage. The de novo assembly was carried out using MIRA and scaffolded using MAQ and BAMBUS. The sequencing and assembly resulted in 365 scaffolds with total genome size of 33.4 Mb. The complete genome sequence of this strain was deposited in GenBank and the accession number is LKER00000000. The annotation is available on Figshare (doi:10.6084/m9.figshare.4754251.

  14. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors

    Directory of Open Access Journals (Sweden)

    Donald M. Bryant

    2017-01-01

    Full Text Available Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.

  15. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway.

    Science.gov (United States)

    Guzman, Frank; Kulcheski, Franceli Rodrigues; Turchetto-Zolet, Andreia Carina; Margis, Rogerio

    2014-12-01

    Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

    Science.gov (United States)

    Evans, Teri; Johnson, Andrew D; Loose, Matthew

    2018-01-12

    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .

  17. Rapid development of microsatellite markers for Callosobruchus chinensis using Illumina paired-end sequencing.

    Directory of Open Access Journals (Sweden)

    Can-Xing Duan

    Full Text Available BACKGROUND: The adzuki bean weevil, Callosobruchus chinensis L., is one of the most destructive pests of stored legume seeds such as mungbean, cowpea, and adzuki bean, which usually cause considerable loss in the quantity and quality of stored seeds during transportation and storage. However, a lack of genetic information of this pest results in a series of genetic questions remain largely unknown, including population genetic structure, kinship, biotype abundance, and so on. Co-dominant microsatellite markers offer a great resolving power to determine these events. Here, we report rapid microsatellite isolation from C. chinensis via high-throughput sequencing. PRINCIPAL FINDINGS: In this study, 94,560,852 quality-filtered and trimmed reads were obtained for the assembly of genome using Illumina paired-end sequencing technology. In total, the genome with total length of 497,124,785 bp, comprising 403,113 high quality contigs was generated with de novo assembly. More than 6800 SSR loci were detected and a suit of 6303 primer pair sequences were designed and 500 of them were randomly selected for validation. Of these, 196 pair of primers, i.e. 39.2%, produced reproducible amplicons that were polymorphic among 8 C. chinensis genotypes collected from different geographical regions. Twenty out of 196 polymorphic SSR markers were used to analyze the genetic diversity of 18 C. chinensis populations. The results showed the twenty SSR loci were highly polymorphic among these populations. CONCLUSIONS: This study presents a first report of genome sequencing and de novo assembly for C. chinensis and demonstrates the feasibility of generating a large scale of sequence information and SSR loci isolation by Illumina paired-end sequencing. Our results provide a valuable resource for C. chinensis research. These novel markers are valuable for future genetic mapping, trait association, genetic structure and kinship among C. chinensis.

  18. De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing.

    Science.gov (United States)

    Rajesh, M K; Fayas, T P; Naganeeswaran, S; Rachana, K E; Bhavyashree, U; Sajini, K K; Karun, Anitha

    2016-05-01

    Production and supply of quality planting material is significant to coconut cultivation but is one of the major constraints in coconut productivity. Rapid multiplication of coconut through in vitro techniques, therefore, is of paramount importance. Although somatic embryogenesis in coconut is a promising technique that will allow for the mass production of high quality palms, coconut is highly recalcitrant to in vitro culture. In order to overcome the bottlenecks in coconut somatic embryogenesis and to develop a repeatable protocol, it is imperative to understand, identify, and characterize molecular events involved in coconut somatic embryogenesis pathway. Transcriptome analysis (RNA-Seq) of coconut embryogenic calli, derived from plumular explants of West Coast Tall cultivar, was undertaken on an Illumina HiSeq 2000 platform. After de novo transcriptome assembly and functional annotation, we have obtained 40,367 transcripts which showed significant BLASTx matches with similarity greater than 40 % and E value of ≤10(-5). Fourteen genes known to be involved in somatic embryogenesis were identified. Quantitative real-time PCR (qRT-PCR) analyses of these 14 genes were carried in six developmental stages. The result showed that CLV was upregulated in the initial stage of callogenesis. Transcripts GLP, GST, PKL, WUS, and WRKY were expressed more in somatic embryo stage. The expression of SERK, MAPK, AP2, SAUR, ECP, AGP, LEA, and ANT were higher in the embryogenic callus stage compared to initial culture and somatic embryo stages. This study provides the first insights into the gene expression patterns during somatic embryogenesis in coconut.

  19. De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress.

    Directory of Open Access Journals (Sweden)

    Sadegh Mousavi

    Full Text Available Almond (Prunus dulcis Mill., one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond's transcriptome under the cold stress conditions. In the current research, we used RNA-seq technique to study the response of the reproductive tissues of almond (anther and ovary to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomly selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant.

  20. De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress.

    Science.gov (United States)

    Mousavi, Sadegh; Alisoltani, Arghavan; Shiran, Behrouz; Fallahi, Hossein; Ebrahimie, Esameil; Imani, Ali; Houshmand, Saadollah

    2014-01-01

    Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond's transcriptome under the cold stress conditions. In the current research, we used RNA-seq technique to study the response of the reproductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomly selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant.

  1. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity.

    Science.gov (United States)

    Katrancha, Sara M; Wu, Yi; Zhu, Minsheng; Eipper, Betty A; Koleske, Anthony J; Mains, Richard E

    2017-12-01

    Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus and zebra finch (Taeniopygia guttata genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao. More than 90% of the assembled bobwhite genome was captured within 14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.

  3. RNA-seq de novo Assembly Reveals Differential Gene Expression in Glossina palpalis gambiensis Infected with Trypanosoma brucei gambiense vs. Non-Infected and Self-Cured Flies.

    Science.gov (United States)

    Hamidou Soumana, Illiassou; Klopp, Christophe; Ravel, Sophie; Nabihoudine, Ibouniyamine; Tchicaya, Bernadette; Parrinello, Hugues; Abate, Luc; Rialle, Stéphanie; Geiger, Anne

    2015-01-01

    Trypanosoma brucei gambiense (Tbg), causing the sleeping sickness chronic form, completes its developmental cycle within the tsetse fly vector Glossina palpalis gambiensis (Gpg) before its transmission to humans. Within the framework of an anti-vector disease control strategy, a global gene expression profiling of trypanosome infected (susceptible), non-infected, and self-cured (refractory) tsetse flies was performed, on their midguts, to determine differential genes expression resulting from in vivo trypanosomes, tsetse flies (and their microbiome) interactions. An RNAseq de novo assembly was achieved. The assembled transcripts were mapped to reference sequences for functional annotation. Twenty-four percent of the 16,936 contigs could not be annotated, possibly representing untranslated mRNA regions, or Gpg- or Tbg-specific ORFs. The remaining contigs were classified into 65 functional groups. Only a few transposable elements were present in the Gpg midgut transcriptome, which may represent active transpositions and play regulatory roles. One thousand three hundred and seventy three genes differentially expressed (DEGs) between stimulated and non-stimulated flies were identified at day-3 post-feeding; 52 and 1025 between infected and self-cured flies at 10 and 20 days post-feeding, respectively. The possible roles of several DEGs regarding fly susceptibility and refractoriness are discussed. The results provide new means to decipher fly infection mechanisms, crucial to develop anti-vector control strategies.

  4. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.

    Directory of Open Access Journals (Sweden)

    Xianwen Ren

    Full Text Available Next generation sequencing (NGS technologies have greatly changed the landscape of transcriptomic studies of non-model organisms. Since there is no reference genome available, de novo assembly methods play key roles in the analysis of these data sets. Because of the huge amount of data generated by NGS technologies for each run, many assemblers, e.g., ABySS, Velvet and Trinity, are developed based on a de Bruijn graph due to its time- and space-efficiency. However, most of these assemblers were developed initially for the Illumina/Solexa platform. The performance of these assemblers on 454 transcriptomic data is unknown. In this study, we evaluated and compared the relative performance of these de Bruijn graph based assemblers on both simulated and real 454 transcriptomic data. The results suggest that Trinity, the Illumina/Solexa-specialized transcriptomic assembler, performs the best among the multiple de Bruijn graph assemblers, comparable to or even outperforming the standard 454 assembler Newbler which is based on the overlap-layout-consensus algorithm. Our evaluation is expected to provide helpful guidance for researchers to choose assemblers when analyzing 454 transcriptomic data.

  5. Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Kashiwa, Takeshi; Kozaki, Toshinori; Ishii, Kazuo; Turgeon, B Gillian; Teraoka, Tohru; Komatsu, Ken; Arie, Tsutomu

    2017-01-01

    A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. De novo structural modeling and computational sequence analysis ...

    African Journals Online (AJOL)

    Different bioinformatics tools and machine learning techniques were used for protein structural classification. De novo protein modeling was performed by using I-TASSER server. The final model obtained was accessed by PROCHECK and DFIRE2, which confirmed that the final model is reliable. Until complete biochemical ...

  7. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    Science.gov (United States)

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery

    Directory of Open Access Journals (Sweden)

    Materne Michael

    2011-05-01

    Full Text Available Abstract Background Lentil (Lens culinaris Medik. is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality. Results Tissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 106 expressed sequence tags (ESTs. De novo assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species Medicago truncatula and Arabidopsis thaliana to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of Glycine max, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism. Conclusions A substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.

  9. Dataset of the first transcriptome assembly of the tree crop “yerba mate” (Ilex paraguariensis and systematic characterization of protein coding genes

    Directory of Open Access Journals (Sweden)

    Patricia M. Aguilera

    2018-04-01

    Full Text Available This contribution contains data associated to the research article entitled “Exploring the genes of yerba mate (Ilex paraguariensis A. St.-Hil. by NGS and de novo transcriptome assembly” (Debat et al., 2014 [1]. By means of a bioinformatic approach involving extensive NGS data analyses, we provide a resource encompassing the full transcriptome assembly of yerba mate, the first available reference for the Ilex L. genus. This dataset (Supplementary files 1 and 2 consolidates the transcriptome-wide assembled sequences of I. paraguariensis with further comprehensive annotation of the protein coding genes of yerba mate via the integration of Arabidopsis thaliana databases. The generated data is pivotal for the characterization of agronomical relevant genes in the tree crop yerba mate -a non-model species- and related taxa in Ilex. The raw sequencing data dissected here is available at DDBJ/ENA/GenBank (NCBI Resource Coordinators, 2016 [2] Sequence Read Archive (SRA under the accession SRP043293 and the assembled sequences have been deposited at the Transcriptome Shotgun Assembly Sequence Database (TSA under the accession GFHV00000000.

  10. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    Science.gov (United States)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  11. Getting complete genomes from complex samples using nanopore sequencing

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; Karst, Søren Michael; Albertsen, Mads

    Short read sequencing and metagenomic binning workflows have made it possible to extract bacterial genome bins from environmental microbial samples containing hundreds to thousands of different species. However, these genome bins often do not represent complete genomes, as they are mostly...... fragmented, incomplete and often contaminated with foreign DNA and with no robust strategies to validate the quality. The value of these `draft genomes` have limited, lasting value to the scientific community, as gene synteny is broken and the uncertainty of what is missing. The genetic material most often...... missed is important multi-copy and/or conserved marker genes such as the 16S rRNA gene, as sequence micro-heterogeneity prevents assembly of these genes in the de novo assembly. We demonstrate that using nanopore long reads it is now possible to overcome these issues and make complete genomes from...

  12. PNA Directed Sequence Addressed Self-Assembly of DNA Nanostructures

    DEFF Research Database (Denmark)

    Nielsen, Peter E.

    2008-01-01

    sequence specifically recognize another PNA oligomer. We describe how such three domain PNAs have utility for assembling dsDNA grid and clover leaf structures, and in combination with SNAP-tag technol. of protein dsDNA structures. (c) 2008 American Institute of Physics. [on SciFinder (R)] Udgivelsesdato...

  13. Detection of de novo single nucleotide variants in offspring of atomic-bomb survivors close to the hypocenter by whole-genome sequencing.

    Science.gov (United States)

    Horai, Makiko; Mishima, Hiroyuki; Hayashida, Chisa; Kinoshita, Akira; Nakane, Yoshibumi; Matsuo, Tatsuki; Tsuruda, Kazuto; Yanagihara, Katsunori; Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Miyazaki, Yasushi; Yoshiura, Koh-Ichiro

    2018-03-01

    Ionizing radiation released by the atomic bombs at Hiroshima and Nagasaki, Japan, in 1945 caused many long-term illnesses, including increased risks of malignancies such as leukemia and solid tumours. Radiation has demonstrated genetic effects in animal models, leading to concerns over the potential hereditary effects of atomic bomb-related radiation. However, no direct analyses of whole DNA have yet been reported. We therefore investigated de novo variants in offspring of atomic-bomb survivors by whole-genome sequencing (WGS). We collected peripheral blood from three trios, each comprising a father (atomic-bomb survivor with acute radiation symptoms), a non-exposed mother, and their child, none of whom had any past history of haematological disorders. One trio of non-exposed individuals was included as a control. DNA was extracted and the numbers of de novo single nucleotide variants in the children were counted by WGS with sequencing confirmation. Gross structural variants were also analysed. Written informed consent was obtained from all participants prior to the study. There were 62, 81, and 42 de novo single nucleotide variants in the children of atomic-bomb survivors, compared with 48 in the control trio. There were no gross structural variants in any trio. These findings are in accord with previously published results that also showed no significant genetic effects of atomic-bomb radiation on second-generation survivors.

  14. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome.

    Science.gov (United States)

    Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2018-02-10

    Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.

    Science.gov (United States)

    Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina

    2015-03-24

    The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.

  16. Genome-wide SNP identification by high-throughput sequencing and selective mapping allows sequence assembly positioning using a framework genetic linkage map

    Directory of Open Access Journals (Sweden)

    Xu Xiangming

    2010-12-01

    Full Text Available Abstract Background Determining the position and order of contigs and scaffolds from a genome assembly within an organism's genome remains a technical challenge in a majority of sequencing projects. In order to exploit contemporary technologies for DNA sequencing, we developed a strategy for whole genome single nucleotide polymorphism sequencing allowing the positioning of sequence contigs onto a linkage map using the bin mapping method. Results The strategy was tested on a draft genome of the fungal pathogen Venturia inaequalis, the causal agent of apple scab, and further validated using sequence contigs derived from the diploid plant genome Fragaria vesca. Using our novel method we were able to anchor 70% and 92% of sequences assemblies for V. inaequalis and F. vesca, respectively, to genetic linkage maps. Conclusions We demonstrated the utility of this approach by accurately determining the bin map positions of the majority of the large sequence contigs from each genome sequence and validated our method by mapping single sequence repeat markers derived from sequence contigs on a full mapping population.

  17. Two-Stage orders sequencing system for mixed-model assembly

    Science.gov (United States)

    Zemczak, M.; Skolud, B.; Krenczyk, D.

    2015-11-01

    In the paper, the authors focus on the NP-hard problem of orders sequencing, formulated similarly to Car Sequencing Problem (CSP). The object of the research is the assembly line in an automotive industry company, on which few different models of products, each in a certain number of versions, are assembled on the shared resources, set in a line. Such production type is usually determined as a mixed-model production, and arose from the necessity of manufacturing customized products on the basis of very specific orders from single clients. The producers are nowadays obliged to provide each client the possibility to determine a huge amount of the features of the product they are willing to buy, as the competition in the automotive market is large. Due to the previously mentioned nature of the problem (NP-hard), in the given time period only satisfactory solutions are sought, as the optimal solution method has not yet been found. Most of the researchers that implemented inaccurate methods (e.g. evolutionary algorithms) to solving sequencing problems dropped the research after testing phase, as they were not able to obtain reproducible results, and met problems while determining the quality of the received solutions. Therefore a new approach to solving the problem, presented in this paper as a sequencing system is being developed. The sequencing system consists of a set of determined rules, implemented into computer environment. The system itself works in two stages. First of them is connected with the determination of a place in the storage buffer to which certain production orders should be sent. In the second stage of functioning, precise sets of sequences are determined and evaluated for certain parts of the storage buffer under certain criteria.

  18. De Novo Assembly and Phasing of Dikaryotic Genomes from Two Isolates of Puccinia coronata f. sp. avenae, the Causal Agent of Oat Crown Rust.

    Science.gov (United States)

    Miller, Marisa E; Zhang, Ying; Omidvar, Vahid; Sperschneider, Jana; Schwessinger, Benjamin; Raley, Castle; Palmer, Jonathan M; Garnica, Diana; Upadhyaya, Narayana; Rathjen, John; Taylor, Jennifer M; Park, Robert F; Dodds, Peter N; Hirsch, Cory D; Kianian, Shahryar F; Figueroa, Melania

    2018-02-20

    Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae , is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenae IMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae , which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae , resources to study the

  19. De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene.

    Directory of Open Access Journals (Sweden)

    Akira Shiraishi

    Full Text Available Forsythia spp. are perennial woody plants which are one of the most extensively used medicinal sources of Chinese medicines and functional diets owing to their lignan contents. Lignans have received widespread attention as leading compounds in the development of antitumor drugs and healthy diets for reducing the risks of lifestyle-related diseases. However, the molecular basis of Forsythia has yet to be established. In this study, we have verified de novo deep transcriptome of Forsythia koreana leaf and callus using the Illumina HiSeq 1500 platform. A total of 89 million reads were assembled into 116,824 contigs using Trinity, and 1,576 of the contigs displayed the sequence similarity to the enzymes responsible for plant specialized metabolism including lignan biosynthesis. Notably, gene ontology (GO analysis indicated the remarkable enrichment of lignan-biosynthetic enzyme genes in the callus transcriptome. Nevertheless, precise annotation and molecular phylogenetic analyses were hindered by partial sequences of open reading frames (ORFs of the Trinity-based contigs. To obtain more numerous contigs harboring a full-length ORF, we developed a novel overlapping layout consensus-based procedure, virtual primer-based sequence reassembly (VP-seq. VP-seq elucidated 709 full-length ORFs, whereas only 146 full-length ORFs were assembled by Trinity. The comparison of expression profiles of leaf and callus using VP-seq-based full-length ORFs revealed 50-fold upregulation of secoisolariciresinol dehydrogenase (SIRD in callus. Expression and phylogenetic cluster analyses predicted candidates for matairesinol-glucosylating enzymes. We also performed VP-seq analysis of lignan-biosynthetic enzyme genes in the transcriptome data of other lignan-rich plants, Linum flavum, Linum usitatissimum and Podophyllum hexandrum. The comparative analysis indicated both common gene clusters involved in biosynthesis upstream of matairesinol such as SIRD and plant lineage

  20. De novo transcriptome assembly of two contrasting pumpkin cultivars

    Directory of Open Access Journals (Sweden)

    Aliki Xanthopoulou

    2016-03-01

    Full Text Available Cucurbita pepo (squash, pumpkin, gourd, a worldwide-cultivated vegetable of American origin, is extremely variable in fruit characteristics. However, the information associated with genes and genetic markers for pumpkin is very limited. In order to identify new genes and to develop genetic markers, we performed a transcriptome analysis (RNA-Seq of two contrasting pumpkin cultivars. Leaves and female flowers of cultivars, ‘Big Moose’ with large round fruits and ‘Munchkin’ with small round fruits, were harvested for total RNA extraction. We obtained a total of 6 GB (Big Moose; http://www.ncbi.nlm.nih.gov/Traces/sra/?run=SRR3056882 and 5 GB (Munchkin; http://www.ncbi.nlm.nih.gov/Traces/sra/?run=SRR3056883 sequence data (NCBI SRA database SRX1502732 and SRX1502735, respectively, which correspond to 18,055,786 and 14,824,292 150-base reads. After quality assessment, the clean sequences where 17,995,932 and 14,774,486 respectively. The numbers of total transcripts for ‘Big Moose’ and ‘Munchkin’ were 84,727 and 68,051, respectively. TransDecoder identified possible coding regions in assembled transcripts. This study provides transcriptome data for two contrasting pumpkin cultivars, which might be useful for genetic marker development and comparative transcriptome analyses. Keywords: RNA-Seq, Pumpkin, Contrasting cultivars, Cucurbita pepo

  1. Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard Allen; Bottos, Eric M.; Roy Chowdhury, Taniya; Zucker, Jeremy D.; Brislawn, Colin J.; Nicora, Carrie D.; Fansler, Sarah J.; Glaesemann, Kurt R.; Glass, Kevin; Jansson, Janet K.; Langille, Morgan

    2016-06-28

    ABSTRACT

    Soil metagenomics has been touted as the “grand challenge” for metagenomics, as the high microbial diversity and spatial heterogeneity of soils make them unamenable to current assembly platforms. Here, we aimed to improve soil metagenomic sequence assembly by applying the Moleculo synthetic long-read sequencing technology. In total, we obtained 267 Gbp of raw sequence data from a native prairie soil; these data included 109.7 Gbp of short-read data (~100 bp) from the Joint Genome Institute (JGI), an additional 87.7 Gbp of rapid-mode read data (~250 bp), plus 69.6 Gbp (>1.5 kbp) from Moleculo sequencing. The Moleculo data alone yielded over 5,600 reads of >10 kbp in length, and over 95% of the unassembled reads mapped to contigs of >1.5 kbp. Hybrid assembly of all data resulted in more than 10,000 contigs over 10 kbp in length. We mapped three replicate metatranscriptomes derived from the same parent soil to the Moleculo subassembly and found that 95% of the predicted genes, based on their assignments to Enzyme Commission (EC) numbers, were expressed. The Moleculo subassembly also enabled binning of >100 microbial genome bins. We obtained via direct binning the first complete genome, that of “CandidatusPseudomonas sp. strain JKJ-1” from a native soil metagenome. By mapping metatranscriptome sequence reads back to the bins, we found that several bins corresponding to low-relative-abundanceAcidobacteriawere highly transcriptionally active, whereas bins corresponding to high-relative-abundanceVerrucomicrobiawere not. These results demonstrate that Moleculo sequencing provides a significant advance for resolving complex soil microbial communities.

    IMPORTANCESoil microorganisms carry out key processes for life on our planet, including cycling of carbon and other nutrients and supporting growth of plants. However, there is poor molecular-level understanding of their

  2. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  3. Bioinformatics for Next Generation Sequencing Data

    Directory of Open Access Journals (Sweden)

    Alberto Magi

    2010-09-01

    Full Text Available The emergence of next-generation sequencing (NGS platforms imposes increasing demands on statistical methods and bioinformatic tools for the analysis and the management of the huge amounts of data generated by these technologies. Even at the early stages of their commercial availability, a large number of softwares already exist for analyzing NGS data. These tools can be fit into many general categories including alignment of sequence reads to a reference, base-calling and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection and genome browsing. This manuscript aims to guide readers in the choice of the available computational tools that can be used to face the several steps of the data analysis workflow.

  4. Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen

    Directory of Open Access Journals (Sweden)

    S. Chandra Nayaka

    2017-12-01

    Full Text Available Sclerospora graminicola pathogen is the most important biotic production constraints of pearl millet in India, Africa and other parts of the world. We report a de novo whole genome assembly and analysis of pathotype 1, one of the most virulent pathotypes of S. graminicola from India. The draft genome assembly contained 299,901,251 bp with 65,404 genes. This study may help understand the evolutionary pattern of pathogen and aid elucidation of effector evolution for devising effective durable resistance breeding strategies in pearl millet. Keywords: Sclerospora graminicola, Pathotype 1, Pearl millet, Downy mildew, Whole genome sequence

  5. De novo assembly and characterization of the spleen transcriptome of common carp (Cyprinus carpio) using Illumina paired-end sequencing.

    Science.gov (United States)

    Li, Guoxi; Zhao, Yinli; Liu, Zhonghu; Gao, Chunsheng; Yan, Fengbin; Liu, Bianzhi; Feng, Jianxin

    2015-06-01

    Common carp (Cyprinus carpio) is one of the most important aquacultured species of the family Cyprinidae, and breeding this species for disease resistance is becoming more and more important. However, at the genome or transcriptome levels, study of the immunogenetics of disease resistance in the common carp is lacking. In this study, 60,316,906 and 75,200,328 paired-end clean reads were obtained from two cDNA libraries of the common carp spleen by Illumina paired-end sequencing technology. Totally, 130,293 unique transcript fragments (unigenes) were assembled, with an average length of 1400.57 bp. Approximately 105,612 (81.06%) unigenes could be annotated according to their homology with matches in the Nr, Nt, Swiss-Prot, COG, GO, or KEGG databases, and they were found to represent 46,747 non-redundant genes. Comparative analysis showed that 59.82% of the unigenes have significant similarity to zebrafish Refseq proteins. Gene expression comparison revealed that 10,432 and 6889 annotated unigenes were, respectively, up- and down-regulated with at least twofold changes between two developmental stages of the common carp spleen. Gene ontology and KEGG analysis were performed to classify all unigenes into functional categories for understanding gene functions and regulation pathways. In addition, 46,847 simple sequence repeats (SSRs) were detected from 35,618 unigenes, and a large number of single nucleotide polymorphism (SNP) and insertion/deletion (INDEL) sites were identified in the spleen transcriptome of common carp. This study has characterized the spleen transcriptome of the common carp for the first time, providing a valuable resource for a better understanding of the common carp immune system and defense mechanisms. This knowledge will also facilitate future functional studies on common carp immunogenetics that may eventually be applied in breeding programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Multi-objective Analysis for a Sequencing Planning of Mixed-model Assembly Line

    Science.gov (United States)

    Shimizu, Yoshiaki; Waki, Toshiya; Yoo, Jae Kyu

    Diversified customer demands are raising importance of just-in-time and agile manufacturing much more than before. Accordingly, introduction of mixed-model assembly lines becomes popular to realize the small-lot-multi-kinds production. Since it produces various kinds on the same assembly line, a rational management is of special importance. With this point of view, this study focuses on a sequencing problem of mixed-model assembly line including a paint line as its preceding process. By taking into account the paint line together, reducing work-in-process (WIP) inventory between these heterogeneous lines becomes a major concern of the sequencing problem besides improving production efficiency. Finally, we have formulated the sequencing problem as a bi-objective optimization problem to prevent various line stoppages, and to reduce the volume of WIP inventory simultaneously. Then we have proposed a practical method for the multi-objective analysis. For this purpose, we applied the weighting method to derive the Pareto front. Actually, the resulting problem is solved by a meta-heuristic method like SA (Simulated Annealing). Through numerical experiments, we verified the validity of the proposed approach, and discussed the significance of trade-off analysis between the conflicting objectives.

  7. 2D nanomaterials assembled from sequence-defined molecules

    International Nuclear Information System (INIS)

    Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long

    2017-01-01

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.

  8. New Approaches and Technologies to Sequence de novo Plant reference Genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy

    2013-03-01

    Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology on New approaches and technologies to sequence de novo plant reference genomes at the 8th Annual Genomics of Energy Environment Meeting on March 27, 2013 in Walnut Creek, CA.

  9. Assessment of metagenomic assembly using simulated next generation sequencing data

    DEFF Research Database (Denmark)

    Mende, Daniel R; Waller, Alison S; Sunagawa, Shinichi

    2012-01-01

    with platform-specific (Sanger, pyrosequencing, Illumina) base-error models, and simulated metagenomes of differing community complexities. We first evaluated the effect of rigorous quality control on Illumina data. Although quality filtering removed a large proportion of the data, it greatly improved...... the accuracy and contig lengths of resulting assemblies. We then compared the quality-trimmed Illumina assemblies to those from Sanger and pyrosequencing. For the simple community (10 genomes) all sequencing technologies assembled a similar amount and accurately represented the expected functional composition...... the Sanger reads still represented the overall functional composition reasonably well. We further examined the effect of scaffolding of contigs using paired-end Illumina reads. It dramatically increased contig lengths of the simple community and yielded minor improvements to the more complex communities...

  10. Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X Genomics' GemCode Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Lauren Coombe

    Full Text Available The linked read sequencing library preparation platform by 10X Genomics produces barcoded sequencing libraries, which are subsequently sequenced using the Illumina short read sequencing technology. In this new approach, long fragments of DNA are partitioned into separate micro-reactions, where the same index sequence is incorporated into each of the sequencing fragment inserts derived from a given long fragment. In this study, we exploited this property by using reads from index sequences associated with a large number of reads, to assemble the chloroplast genome of the Sitka spruce tree (Picea sitchensis. Here we report on the first Sitka spruce chloroplast genome assembled exclusively from P. sitchensis genomic libraries prepared using the 10X Genomics protocol. We show that the resulting 124,049 base pair long genome shares high sequence similarity with the related white spruce and Norway spruce chloroplast genomes, but diverges substantially from a previously published P. sitchensis- P. thunbergii chimeric genome. The use of reads from high-frequency indices enabled separation of the nuclear genome reads from that of the chloroplast, which resulted in the simplification of the de Bruijn graphs used at the various stages of assembly.

  11. Draft Genome Sequence of a Biosurfactant-Producing Bacillus subtilis UMX-103 Isolated from Hydrocarbon-Contaminated Soil in Terengganu, Malaysia.

    Science.gov (United States)

    Abdelhafiz, Yousri Abdelmutalab; Manaharan, Thamilvaani; BinMohamad, Saharuddin; Merican, Amir Feisal

    2017-07-01

    The draft genome here presents the sequence of Bacillus subtilis UMX-103. The bacterial strain was isolated from hydrocarbon-contaminated soil from Terengganu, Malaysia. The whole genome of the bacterium was sequenced using Illumina HiSeq 2000 sequencing platform. The genome was assembled using de novo approach. The genome size of UMX-103 is 4,234,627 bp with 4399 genes comprising 4301 protein-coding genes and 98 RNA genes. The analysis of assembled genes revealed the presence of 25 genes involved in biosurfactant production, where 14 of the genes are related to biosynthesis and 11 of the genes are in the regulation of biosurfactant productions. This draft genome will provide insights into the genetic bases of its biosurfactant-producing capabilities.

  12. Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis

    Directory of Open Access Journals (Sweden)

    Bidesh Mahata

    2014-05-01

    Full Text Available T helper 2 (Th2 cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis.

  13. A stochastic de novo assembly algorithm for viral-sized genomes obtains correct genomes and builds consensus

    NARCIS (Netherlands)

    Bucur, Doina

    2017-01-01

    A genetic algorithm with stochastic macro mutation operators which merge, split, move, reverse and align DNA contigs on a scaffold is shown to accurately and consistently assemble raw DNA reads from an accurately sequenced single-read library into a contiguous genome. A candidate solution is a

  14. INTEGRATED APPROACH TO GENERATION OF PRECEDENCE RELATIONS AND PRECEDENCE GRAPHS FOR ASSEMBLY SEQUENCE PLANNING

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An integrated approach to generation of precedence relations and precedence graphs for assembly sequence planning is presented, which contains more assembly flexibility. The approach involves two stages. Based on the assembly model, the components in the assembly can be divided into partially constrained components and completely constrained components in the first stage, and then geometric precedence relation for every component is generated automatically. According to the result of the first stage, the second stage determines and constructs all precedence graphs. The algorithms of these two stages proposed are verified by two assembly examples.

  15. Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of error in SNP analyses.

    Directory of Open Access Journals (Sweden)

    Arthur W Pightling

    Full Text Available The wide availability of whole-genome sequencing (WGS and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i depth of sequencing coverage, ii choice of reference-guided short-read sequence assembler, iii choice of reference genome, and iv whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT, using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming. We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers

  16. Improved de novo genomic assembly for the domestic donkey

    DEFF Research Database (Denmark)

    Renaud, Gabriel; Petersen, Bent; Seguin-Orlando, Andaine

    2018-01-01

    Donkeys and horses share a common ancestor dating back to about 4 million years ago. Although a high-quality genome assembly at the chromosomal level is available for the horse, current assemblies available for the donkey are limited to moderately sized scaffolds. The absence of a better......-quality assembly for the donkey has hampered studies involving the characterization of patterns of genetic variation at the genome-wide scale. These range from the application of genomic tools to selective breeding and conservation to the more fundamental characterization of the genomic loci underlying speciation...... and domestication. We present a new high-quality donkey genome assembly obtained using the Chicago HiRise assembly technology, providing scaffolds of subchromosomal size. We make use of this new assembly to obtain more accurate measures of heterozygosity for equine species other than the horse, both genome...

  17. Precise detection of de novo single nucleotide variants in human genomes.

    Science.gov (United States)

    Gómez-Romero, Laura; Palacios-Flores, Kim; Reyes, José; García, Delfino; Boege, Margareta; Dávila, Guillermo; Flores, Margarita; Schatz, Michael C; Palacios, Rafael

    2018-05-07

    The precise determination of de novo genetic variants has enormous implications across different fields of biology and medicine, particularly personalized medicine. Currently, de novo variations are identified by mapping sample reads from a parent-offspring trio to a reference genome, allowing for a certain degree of differences. While widely used, this approach often introduces false-positive (FP) results due to misaligned reads and mischaracterized sequencing errors. In a previous study, we developed an alternative approach to accurately identify single nucleotide variants (SNVs) using only perfect matches. However, this approach could be applied only to haploid regions of the genome and was computationally intensive. In this study, we present a unique approach, coverage-based single nucleotide variant identification (COBASI), which allows the exploration of the entire genome using second-generation short sequence reads without extensive computing requirements. COBASI identifies SNVs using changes in coverage of exactly matching unique substrings, and is particularly suited for pinpointing de novo SNVs. Unlike other approaches that require population frequencies across hundreds of samples to filter out any methodological biases, COBASI can be applied to detect de novo SNVs within isolated families. We demonstrate this capability through extensive simulation studies and by studying a parent-offspring trio we sequenced using short reads. Experimental validation of all 58 candidate de novo SNVs and a selection of non-de novo SNVs found in the trio confirmed zero FP calls. COBASI is available as open source at https://github.com/Laura-Gomez/COBASI for any researcher to use. Copyright © 2018 the Author(s). Published by PNAS.

  18. Assembly and melting of DNA nanotubes from single-sequence tiles

    International Nuclear Information System (INIS)

    Sobey, T L; Renner, S; Simmel, F C

    2009-01-01

    DNA melting and renaturation studies are an extremely valuable tool to study the kinetics and thermodynamics of duplex dissociation and reassociation reactions. These are important not only in a biological or biotechnological context, but also for DNA nanotechnology which aims at the construction of molecular materials by DNA self-assembly. We here study experimentally the formation and melting of a DNA nanotube structure, which is composed of many copies of an oligonucleotide containing several palindromic sequences. This is done using temperature-controlled UV absorption measurements correlated with atomic force microscopy, fluorescence microscopy and transmission electron microscopy techniques. In the melting studies, important factors such as DNA strand concentration, hierarchy of assembly and annealing protocol are investigated. Assembly and melting of the nanotubes are shown to proceed via different pathways. Whereas assembly occurs in several hierarchical steps related to the formation of tiles, lattices and tubes, melting of DNA nanotubes appears to occur in a single step. This is proposed to relate to fundamental differences between closed, three-dimensional tube-like structures and open, two-dimensional lattices. DNA melting studies can lead to a better understanding of the many factors that affect the assembly process which will be essential for the assembly of increasingly complex DNA nanostructures.

  19. Harnessing NGS and Big Data Optimally: Comparison of miRNA Prediction from Assembled versus Non-assembled Sequencing Data--The Case of the Grass Aegilops tauschii Complex Genome.

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda

    2015-07-01

    MicroRNAs (miRNAs) are small, endogenous, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. As high-throughput next generation sequencing (NGS) and Big Data rapidly accumulate for various species, efforts for in silico identification of miRNAs intensify. Surprisingly, the effect of the input genomics sequence on the robustness of miRNA prediction was not evaluated in detail to date. In the present study, we performed a homology-based miRNA and isomiRNA prediction of the 5D chromosome of bread wheat progenitor, Aegilops tauschii, using two distinct sequence data sets as input: (1) raw sequence reads obtained from 454-GS FLX Titanium sequencing platform and (2) an assembly constructed from these reads. We also compared this method with a number of available plant sequence datasets. We report here the identification of 62 and 22 miRNAs from raw reads and the assembly, respectively, of which 16 were predicted with high confidence from both datasets. While raw reads promoted sensitivity with the high number of miRNAs predicted, 55% (12 out of 22) of the assembly-based predictions were supported by previous observations, bringing specificity forward compared to the read-based predictions, of which only 37% were supported. Importantly, raw reads could identify several repeat-related miRNAs that could not be detected with the assembly. However, raw reads could not capture 6 miRNAs, for which the stem-loops could only be covered by the relatively longer sequences from the assembly. In summary, the comparison of miRNA datasets obtained by these two strategies revealed that utilization of raw reads, as well as assemblies for in silico prediction, have distinct advantages and disadvantages. Consideration of these important nuances can benefit future miRNA identification efforts in the current age of NGS and Big Data driven life sciences innovation.

  20. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity.

    Science.gov (United States)

    Misas, Elizabeth; Muñoz, José Fernando; Gallo, Juan Esteban; McEwen, Juan Guillermo; Clay, Oliver Keatinge

    2016-04-01

    The presence of repetitive or non-unique DNA persisting over sizable regions of a eukaryotic genome can hinder the genome's successful de novo assembly from short reads: ambiguities in assigning genome locations to the non-unique subsequences can result in premature termination of contigs and thus overfragmented assemblies. Fungal mitochondrial (mtDNA) genomes are compact (typically less than 100 kb), yet often contain short non-unique sequences that can be shown to impede their successful de novo assembly in silico. Such repeats can also confuse processes in the cell in vivo. A well-studied example is ectopic (out-of-register, illegitimate) recombination associated with repeat pairs, which can lead to deletion of functionally important genes that are located between the repeats. Repeats that remain conserved over micro- or macroevolutionary timescales despite such risks may indicate functionally or structurally (e.g., for replication) important regions. This principle could form the basis of a mining strategy for accelerating discovery of function in genome sequences. We present here our screening of a sample of 11 fully sequenced fungal mitochondrial genomes by observing where exact k-mer repeats occurred several times; initial analyses motivated us to focus on 17-mers occurring more than three times. Based on the diverse repeats we observe, we propose that such screening may serve as an efficient expedient for gaining a rapid but representative first insight into the repeat landscapes of sparsely characterized mitochondrial chromosomes. Our matching of the flagged repeats to previously reported regions of interest supports the idea that systems of persisting, non-trivial repeats in genomes can often highlight features meriting further attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Improved de novo genomic assembly for the domestic donkey

    Science.gov (United States)

    Newton, Richard; Paillot, Romain; Bryant, Neil; Vaudin, Mark

    2018-01-01

    Donkeys and horses share a common ancestor dating back to about 4 million years ago. Although a high-quality genome assembly at the chromosomal level is available for the horse, current assemblies available for the donkey are limited to moderately sized scaffolds. The absence of a better-quality assembly for the donkey has hampered studies involving the characterization of patterns of genetic variation at the genome-wide scale. These range from the application of genomic tools to selective breeding and conservation to the more fundamental characterization of the genomic loci underlying speciation and domestication. We present a new high-quality donkey genome assembly obtained using the Chicago HiRise assembly technology, providing scaffolds of subchromosomal size. We make use of this new assembly to obtain more accurate measures of heterozygosity for equine species other than the horse, both genome-wide and locally, and to detect runs of homozygosity potentially pertaining to positive selection in domestic donkeys. Finally, this new assembly allowed us to identify fine-scale chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation. PMID:29740610

  2. Improved de novo genomic assembly for the domestic donkey.

    Science.gov (United States)

    Renaud, Gabriel; Petersen, Bent; Seguin-Orlando, Andaine; Bertelsen, Mads Frost; Waller, Andrew; Newton, Richard; Paillot, Romain; Bryant, Neil; Vaudin, Mark; Librado, Pablo; Orlando, Ludovic

    2018-04-01

    Donkeys and horses share a common ancestor dating back to about 4 million years ago. Although a high-quality genome assembly at the chromosomal level is available for the horse, current assemblies available for the donkey are limited to moderately sized scaffolds. The absence of a better-quality assembly for the donkey has hampered studies involving the characterization of patterns of genetic variation at the genome-wide scale. These range from the application of genomic tools to selective breeding and conservation to the more fundamental characterization of the genomic loci underlying speciation and domestication. We present a new high-quality donkey genome assembly obtained using the Chicago HiRise assembly technology, providing scaffolds of subchromosomal size. We make use of this new assembly to obtain more accurate measures of heterozygosity for equine species other than the horse, both genome-wide and locally, and to detect runs of homozygosity potentially pertaining to positive selection in domestic donkeys. Finally, this new assembly allowed us to identify fine-scale chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation.

  3. Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D

    DEFF Research Database (Denmark)

    Jenjaroenpun, Piroon; Wongsurawat, Thidathip; Pereira, Rui

    2018-01-01

    Completion of eukaryal genomes can be difficult task with the highly repetitive sequences along the chromosomes and short read lengths of secondgeneration sequencing. Saccharomyces cerevisiae strain CEN. PK113-7D, widely used as a model organism and a cell factory, was selected for this study...... to demonstrate the superior capability of very long sequence reads for de novo genome assembly. We generated long reads using two common third-generation sequencing technologies (Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)) and used short reads obtained using Illumina sequencing for error...... correction. Assembly of the reads derived from all three technologies resulted in complete sequences for all 16 yeast chromosomes, as well as themitochondrial chromosome, in one step. Further, we identified three types of DNA methylation (5mC, 4mC and 6mA). Comparison between the reference strain S288C...

  4. De novo genome assembly and annotation of Australia's largest freshwater fish, the Murray cod (Maccullochella peelii), from Illumina and Nanopore sequencing read.

    Science.gov (United States)

    Austin, Christopher M; Tan, Mun Hua; Harrisson, Katherine A; Lee, Yin Peng; Croft, Laurence J; Sunnucks, Paul; Pavlova, Alexandra; Gan, Han Ming

    2017-08-01

    One of the most iconic Australian fish is the Murray cod, Maccullochella peelii (Mitchell 1838), a freshwater species that can grow to ∼1.8 metres in length and live to age ≥48 years. The Murray cod is of a conservation concern as a result of strong population contractions, but it is also popular for recreational fishing and is of growing aquaculture interest. In this study, we report the whole genome sequence of the Murray cod to support ongoing population genetics, conservation, and management research, as well as to better understand the evolutionary ecology and history of the species. A draft Murray cod genome of 633 Mbp (N50 = 109 974bp; BUSCO and CEGMA completeness of 94.2% and 91.9%, respectively) with an estimated 148 Mbp of putative repetitive sequences was assembled from the combined sequencing data of 2 fish individuals with an identical maternal lineage; 47.2 Gb of Illumina HiSeq data and 804 Mb of Nanopore data were generated from the first individual while 23.2 Gb of Illumina MiSeq data were generated from the second individual. The inclusion of Nanopore reads for scaffolding followed by subsequent gap-closing using Illumina data led to a 29% reduction in the number of scaffolds and a 55% and 54% increase in the scaffold and contig N50, respectively. We also report the first transcriptome of Murray cod that was subsequently used to annotate the Murray cod genome, leading to the identification of 26 539 protein-coding genes. We present the whole genome of the Murray cod and anticipate this will be a catalyst for a range of genetic, genomic, and phylogenetic studies of the Murray cod and more generally other fish species of the Percichthydae family. © The Authors 2017. Published by Oxford University Press.

  5. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions.

    Science.gov (United States)

    Senol Cali, Damla; Kim, Jeremie S; Ghose, Saugata; Alkan, Can; Mutlu, Onur

    2018-04-02

    Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious

  6. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype

    OpenAIRE

    Huang, J. L.; Zhao, Y. P.; Shiraigol, W.; Li, B.; Bai, D. Y.; Ye, W. X.; Daidiikhuu, D.; Yang, L. H.; Jin, Brqqg; Zhao, Q. A.; Gao, Y. H.; Wu, J.; Bao, Wydl; Li, A. A.; Zhang, Y. H. Percival

    2014-01-01

    Karyotypic diversification is more prominent in Equus species than in other mammals. Here, using next generation sequencing technology, we generated and de novo assembled quality genomes sequences for a male wild horse (Przewalski's horse) and a male domestic horse (Mongolian horse), with about 93-fold and 91-fold coverage, respectively. Portion of Y chromosome from wild horse assemblies (3 M bp) and Mongolian horse (2 M bp) were also sequenced and de novo assembled. We confirmed a Robertsoni...

  7. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    Directory of Open Access Journals (Sweden)

    Alix Armero

    Full Text Available The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L. is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut and a reference species (oil palm to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/.

  8. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    Science.gov (United States)

    Armero, Alix; Baudouin, Luc; Bocs, Stéphanie; This, Dominique

    2017-01-01

    The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).

  9. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.

    Science.gov (United States)

    Huth, Troy J; Place, Sean P

    2013-11-20

    The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a

  10. Transcriptomic identification of salt-related genes and de novo assembly in common buckwheat (F. esculentum).

    Science.gov (United States)

    Lu, Qi-Huan; Wang, Ya-Qi; Song, Jin-Nan; Yang, Hong-Bing

    2018-06-01

    Common buckwheat (F. esculentum), annually herbaceous crop, is prevalent in people's daily life with the increasing development of economics. Compared with wheat, it is highly praised with high content of rutin and flavonoid. Common buckwheat is recognized as healthy food with good taste, and the product price of which such as noodles, flour, bread and so on are higher than wheat, and the seeds of which are bigger than that of tartary buckwheat, so if common buckwheat are planted more widely, people will spend less money on this healthy and delicious food. However, soil salinity has been a giant problem for agriculture production. The cultivation of salt tolerant crop varieties is an effective way to make full use of saline alkali land, and the highest salinity that the common buckwheat can sow is at 6.0%, so we chose 100 mM as the concentration of NaCl for treatment. Then we conducted transcriptome comparison between control and treatment groups. Potential regulatory genes related salt stress in common buckwheat were identified. A total of 29.36 million clean reads were produced via an illumina sequencing approach. We de novo assembled these reads into a transcriptome dataset containing 43,772 unigenes with N50 length of 1778 bp. A total of 26,672 unigenes could be found matches in public databases. GO, KEGG and Swiss-Prot classification suggested the enrichment of these unigenes in 47 sub-categories, 25 KOG and 129 pathways, respectively. We got 385 differentially expressed genes (DEGs) after comparing the transcriptome data between salt treatment and control groups. There are some genes encoded for responsing to stimulus, cell killing, metabolic process, signaling, multi-organism process, growth and cellular process might be relevant to salt stress in common buckwheat, which will provide a valuable references for the study on mechanism of salt tolerance and will be used as a genetic information for cultivating strong salt tolerant common buckwheat varieties in

  11. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo: genome assembly and analysis.

    Directory of Open Access Journals (Sweden)

    Rami A Dalloul

    2010-09-01

    Full Text Available A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo. Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest.

  12. De Novo Discovery of Structured ncRNA Motifs in Genomic Sequences

    DEFF Research Database (Denmark)

    Ruzzo, Walter L; Gorodkin, Jan

    2014-01-01

    De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphas...... on an approach based on the CMfinder CMfinder program as a case study. Applications to genomic screens for novel de novo structured ncRNA ncRNA s, including structured RNA elements in untranslated portions of protein-coding genes, are presented.......De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphasis...

  13. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units

    Directory of Open Access Journals (Sweden)

    Sarah L. Westcott

    2015-12-01

    Full Text Available Background. 16S rRNA gene sequences are routinely assigned to operational taxonomic units (OTUs that are then used to analyze complex microbial communities. A number of methods have been employed to carry out the assignment of 16S rRNA gene sequences to OTUs leading to confusion over which method is optimal. A recent study suggested that a clustering method should be selected based on its ability to generate stable OTU assignments that do not change as additional sequences are added to the dataset. In contrast, we contend that the quality of the OTU assignments, the ability of the method to properly represent the distances between the sequences, is more important.Methods. Our analysis implemented six de novo clustering algorithms including the single linkage, complete linkage, average linkage, abundance-based greedy clustering, distance-based greedy clustering, and Swarm and the open and closed-reference methods. Using two previously published datasets we used the Matthew’s Correlation Coefficient (MCC to assess the stability and quality of OTU assignments.Results. The stability of OTU assignments did not reflect the quality of the assignments. Depending on the dataset being analyzed, the average linkage and the distance and abundance-based greedy clustering methods generated OTUs that were more likely to represent the actual distances between sequences than the open and closed-reference methods. We also demonstrated that for the greedy algorithms VSEARCH produced assignments that were comparable to those produced by USEARCH making VSEARCH a viable free and open source alternative to USEARCH. Further interrogation of the reference-based methods indicated that when USEARCH or VSEARCH were used to identify the closest reference, the OTU assignments were sensitive to the order of the reference sequences because the reference sequences can be identical over the region being considered. More troubling was the observation that while both USEARCH and

  14. De novo assembly of the transcriptome of Aegiceras corniculatum, a mangrove species in the Indo-West Pacific region.

    Science.gov (United States)

    Fang, Lu; Yang, Yuchen; Guo, Wuxia; Li, Jianfang; Zhong, Cairong; Huang, Yelin; Zhou, Renchao; Shi, Suhua

    2016-08-01

    Aegiceras corniculatum (L.) Blanco is one of the most salt tolerant mangrove species and can thrive in 3% salinity at the seaward edge of mangrove forests. Here we sequenced the transcriptome of A. corniculatum used Illumina GA platform to develop its genomic resources for ecological and evolutionary studies. We obtained about 50 million high-quality paired-end reads with 75bp in length. Using the short read assembler Velvet, we yielded 49,437 contigs with the average length of 625bp. A total of 32,744 (66.23%) contigs showed significant similarity to the GenBank non-redundant (NR) protein database. 30,911 and 18,004 of these sequences were assigned to Gene Ontology and eukaryotic orthologous groups of proteins (KOG). A total of 4942 transcripts from our assemblies had significant similarity with KEGG Orthologs and were involved in 144 KEGG pathways, while 9899 unigenes had enzyme commission (EC) numbers. In addition, 9792 transcriptome-derived SSRs were identified from 7342 sequences. With our strict criteria, 4165 candidate SNPs were also identified from 2058 contigs. Some of these SNPs were further validated by Sanger sequencing. Genomic resources generated in this study should be valuable in ecological, evolutionary, and functional genomics studies for this mangrove species. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    Science.gov (United States)

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  16. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.

    Science.gov (United States)

    Jäger, Marten; Ott, Claus-Eric; Grünhagen, Johannes; Hecht, Jochen; Schell, Hanna; Mundlos, Stefan; Duda, Georg N; Robinson, Peter N; Lienau, Jasmin

    2011-03-24

    The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This

  17. SSP: an interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads.

    Science.gov (United States)

    Safikhani, Zhaleh; Sadeghi, Mehdi; Pezeshk, Hamid; Eslahchi, Changiz

    2013-01-01

    Recent advances in the sequencing technologies have provided a handful of RNA-seq datasets for transcriptome analysis. However, reconstruction of full-length isoforms and estimation of the expression level of transcripts with a low cost are challenging tasks. We propose a novel de novo method named SSP that incorporates interval integer linear programming to resolve alternatively spliced isoforms and reconstruct the whole transcriptome from short reads. Experimental results show that SSP is fast and precise in determining different alternatively spliced isoforms along with the estimation of reconstructed transcript abundances. The SSP software package is available at http://www.bioinf.cs.ipm.ir/software/ssp. © 2013.

  18. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype

    OpenAIRE

    Huang, Jinlong; Zhao, Yiping; Shiraigol, Wunierfu; Li, Bei; Bai, Dongyi; Ye, Weixing; Daidiikhuu, Dorjsuren; Yang, Lihua; Jin, Burenqiqige; Zhao, Qinan; Gao, Yahan; Wu, Jing; Bao, Wuyundalai; Li, Anaer; Zhang, Yuhong

    2014-01-01

    Karyotypic diversification is more prominent in Equus species than in other mammals. Here, using next generation sequencing technology, we generated and de novo assembled quality genomes sequences for a male wild horse (Przewalski's horse) and a male domestic horse (Mongolian horse), with about 93-fold and 91-fold coverage, respectively. Portion of Y chromosome from wild horse assemblies (3 M bp) and Mongolian horse (2 M bp) were also sequenced and de novo assembled. We confirmed a Robertsoni...

  19. Discovery of Novel Antimicrobial Peptides from Varanus komodoensis (Komodo Dragon) by Large-Scale Analyses and De-Novo-Assisted Sequencing Using Electron-Transfer Dissociation Mass Spectrometry.

    Science.gov (United States)

    Bishop, Barney M; Juba, Melanie L; Russo, Paul S; Devine, Megan; Barksdale, Stephanie M; Scott, Shaylyn; Settlage, Robert; Michalak, Pawel; Gupta, Kajal; Vliet, Kent; Schnur, Joel M; van Hoek, Monique L

    2017-04-07

    Komodo dragons are the largest living lizards and are the apex predators in their environs. They endure numerous strains of pathogenic bacteria in their saliva and recover from wounds inflicted by other dragons, reflecting the inherent robustness of their innate immune defense. We have employed a custom bioprospecting approach combining partial de novo peptide sequencing with transcriptome assembly to identify cationic antimicrobial peptides from Komodo dragon plasma. Through these analyses, we identified 48 novel potential cationic antimicrobial peptides. All but one of the identified peptides were derived from histone proteins. The antimicrobial effectiveness of eight of these peptides was evaluated against Pseudomonas aeruginosa (ATCC 9027) and Staphylococcus aureus (ATCC 25923), with seven peptides exhibiting antimicrobial activity against both microbes and one only showing significant potency against P. aeruginosa. This study demonstrates the power and promise of our bioprospecting approach to cationic antimicrobial peptide discovery, and it reveals the presence of a plethora of novel histone-derived antimicrobial peptides in the plasma of the Komodo dragon. These findings may have broader implications regarding the role that intact histones and histone-derived peptides play in defending the host from infection. Data are available via ProteomeXChange with identifier PXD005043.

  20. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.

    Directory of Open Access Journals (Sweden)

    Jiang Du

    2009-07-01

    Full Text Available The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen, with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs. SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome. To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of

  1. Tips and tricks for the assembly of a Corynebacterium pseudotuberculosis genome using a semiconductor sequencer

    DEFF Research Database (Denmark)

    Ramos, Rommel Thiago Jucá; Carneiro, Adriana Ribeiro; Soares, Siomar de Castro

    2013-01-01

    that enable reference-based assembly, such as the one used in the present study, Corynebacterium pseudotuberculosis biovar equi, which causes high economic losses in the US equine industry. The quality treatment strategy incorporated into the assembly pipeline enabled a 16-fold greater use of the sequencing...... was validated by comparative genomics with other species of the genus Corynebacterium. The present study presents a modus operandi that enables a greater and better use of data obtained from semiconductor sequencing for obtaining the complete genome from a prokaryotic microorganism, C. pseudotuberculosis, which...

  2. Antimicrobial peptide capsids of de novo design.

    Science.gov (United States)

    De Santis, Emiliana; Alkassem, Hasan; Lamarre, Baptiste; Faruqui, Nilofar; Bella, Angelo; Noble, James E; Micale, Nicola; Ray, Santanu; Burns, Jonathan R; Yon, Alexander R; Hoogenboom, Bart W; Ryadnov, Maxim G

    2017-12-22

    The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.

  3. Deep sequencing as a method of typing bluetongue virus isolates.

    Science.gov (United States)

    Rao, Pavuluri Panduranga; Reddy, Yella Narasimha; Ganesh, Kapila; Nair, Shreeja G; Niranjan, Vidya; Hegde, Nagendra R

    2013-11-01

    Bluetongue (BT) is an economically important endemic disease of livestock in tropics and subtropics. In addition, its recent spread to temperate regions like North America and Northern Europe is of serious concern. Rapid serotyping and characterization of BT virus (BTV) is an essential step in the identification of origin of the virus and for controlling the disease. Serotyping of BTV is typically performed by serum neutralization, and of late by nucleotide sequencing. This report describes the near complete genome sequencing and typing of two isolates of BTV using Illumina next generation sequencing platform. Two of the BTV RNAs were multiplexed with ten other unknown samples. Viral RNA was isolated and fragmented, reverse transcribed, the cDNA ends were repaired and ligated with a multiplex oligo. The genome library was amplified using primers complementary to the ligated oligo and subjected to single and paired end sequencing. The raw reads were assembled using a de novo method and reference-based assembly was performed based on the contig data. Near complete sequences of all segments of BTV were obtained with more than 20× coverage, and single read sequencing method was sufficient to identify the genotype and serotype of the virus. The two viruses used in this study were typed as BTV-1 and BTV-9E. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian [Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan (China); Luo, Mao [Drug Discovery Research Center of Luzhou Medical College, Luzhou, Sichuan (China); Zhu, Ye; He, Ying; Wang, Qin [Department of Pharmacy of Luzhou Medical College, Luzhou, Sichuan (China); Zhang, Chun, E-mail: zc83good@126.com [Department of Pharmacy of Luzhou Medical College, Luzhou, Sichuan (China)

    2015-03-27

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries of untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR.

  5. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    International Nuclear Information System (INIS)

    Gao, Jian; Luo, Mao; Zhu, Ye; He, Ying; Wang, Qin; Zhang, Chun

    2015-01-01

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries of untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR

  6. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    Science.gov (United States)

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  7. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    Science.gov (United States)

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. Origins of De Novo Genes in Human and Chimpanzee.

    Science.gov (United States)

    Ruiz-Orera, Jorge; Hernandez-Rodriguez, Jessica; Chiva, Cristina; Sabidó, Eduard; Kondova, Ivanela; Bontrop, Ronald; Marqués-Bonet, Tomàs; Albà, M Mar

    2015-12-01

    The birth of new genes is an important motor of evolutionary innovation. Whereas many new genes arise by gene duplication, others originate at genomic regions that did not contain any genes or gene copies. Some of these newly expressed genes may acquire coding or non-coding functions and be preserved by natural selection. However, it is yet unclear which is the prevalence and underlying mechanisms of de novo gene emergence. In order to obtain a comprehensive view of this process, we have performed in-depth sequencing of the transcriptomes of four mammalian species--human, chimpanzee, macaque, and mouse--and subsequently compared the assembled transcripts and the corresponding syntenic genomic regions. This has resulted in the identification of over five thousand new multiexonic transcriptional events in human and/or chimpanzee that are not observed in the rest of species. Using comparative genomics, we show that the expression of these transcripts is associated with the gain of regulatory motifs upstream of the transcription start site (TSS) and of U1 snRNP sites downstream of the TSS. In general, these transcripts show little evidence of purifying selection, suggesting that many of them are not functional. However, we find signatures of selection in a subset of de novo genes which have evidence of protein translation. Taken together, the data support a model in which frequently-occurring new transcriptional events in the genome provide the raw material for the evolution of new proteins.

  9. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy.

    Science.gov (United States)

    Zhang, Senhao; Shi, Yinghua; Cheng, Ningning; Du, Hongqi; Fan, Wenna; Wang, Chengzhang

    2015-01-01

    Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa.

  10. Probabilistic Methods for Processing High-Throughput Sequencing Signals

    DEFF Research Database (Denmark)

    Sørensen, Lasse Maretty

    High-throughput sequencing has the potential to answer many of the big questions in biology and medicine. It can be used to determine the ancestry of species, to chart complex ecosystems and to understand and diagnose disease. However, going from raw sequencing data to biological or medical insig....... By estimating the genotypes on a set of candidate variants obtained from both a standard mapping-based approach as well as de novo assemblies, we are able to find considerably more structural variation than previous studies...... for reconstructing transcript sequences from RNA sequencing data. The method is based on a novel sparse prior distribution over transcript abundances and is markedly more accurate than existing approaches. The second chapter describes a new method for calling genotypes from a fixed set of candidate variants....... The method queries the reads using a graph representation of the variants and hereby mitigates the reference-bias that characterise standard genotyping methods. In the last chapter, we apply this method to call the genotypes of 50 deeply sequencing parent-offspring trios from the GenomeDenmark project...

  11. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data.

    Science.gov (United States)

    Nishito, Yukari; Osana, Yasunori; Hachiya, Tsuyoshi; Popendorf, Kris; Toyoda, Atsushi; Fujiyama, Asao; Itaya, Mitsuhiro; Sakakibara, Yasubumi

    2010-04-16

    Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks

  12. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data

    Directory of Open Access Journals (Sweden)

    Fujiyama Asao

    2010-04-01

    Full Text Available Abstract Background Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. Results We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for γ-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. Conclusions The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B

  13. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus.

    Science.gov (United States)

    Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K

    2014-01-01

    Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.

  14. Draft sequencing and assembly of the genome of the world's largest fish, the whale shark: Rhincodon typus Smith 1828.

    Science.gov (United States)

    Read, Timothy D; Petit, Robert A; Joseph, Sandeep J; Alam, Md Tauqeer; Weil, M Ryan; Ahmad, Maida; Bhimani, Ravila; Vuong, Jocelyn S; Haase, Chad P; Webb, D Harry; Tan, Milton; Dove, Alistair D M

    2017-07-14

    The whale shark (Rhincodon typus) has by far the largest body size of any elasmobranch (shark or ray) species. Therefore, it is also the largest extant species of the paraphyletic assemblage commonly referred to as fishes. As both a phenotypic extreme and a member of the group Chondrichthyes - the sister group to the remaining gnathostomes, which includes all tetrapods and therefore also humans - its genome is of substantial comparative interest. Whale sharks are also listed as an endangered species on the International Union for Conservation of Nature's Red List of threatened species and are of growing popularity as both a target of ecotourism and as a charismatic conservation ambassador for the pelagic ecosystem. A genome map for this species would aid in defining effective conservation units and understanding global population structure. We characterised the nuclear genome of the whale shark using next generation sequencing (454, Illumina) and de novo assembly and annotation methods, based on material collected from the Georgia Aquarium. The data set consisted of 878,654,233 reads, which yielded a draft assembly of 1,213,200 contigs and 997,976 scaffolds. The estimated genome size was 3.44Gb. As expected, the proteome of the whale shark was most closely related to the only other complete genome of a cartilaginous fish, the holocephalan elephant shark. The whale shark contained a novel Toll-like-receptor (TLR) protein with sequence similarity to both the TLR4 and TLR13 proteins of mammals and TLR21 of teleosts. The data are publicly available on GenBank, FigShare, and from the NCBI Short Read Archive under accession number SRP044374. This represents the first shotgun elasmobranch genome and will aid studies of molecular systematics, biogeography, genetic differentiation, and conservation genetics in this and other shark species, as well as providing comparative data for studies of evolutionary biology and immunology across the jawed vertebrate lineages.

  15. RePS: a sequence assembler that masks exact repeats identified from the shotgun data

    DEFF Research Database (Denmark)

    Wang, Jun; Wong, Gane Ka-Shu; Ni, Peixiang

    2002-01-01

    We describe a sequence assembler, RePS (repeat-masked Phrap with scaffolding), that explicitly identifies exact 20mer repeats from the shotgun data and removes them prior to the assembly. The established software is used to compute meaningful error probabilities for each base. Clone......-end-pairing information is used to construct scaffolds that order and orient the contigs. We show with real data for human and rice that reasonable assemblies are possible even at coverages of only 4x to 6x, despite having up to 42.2% in exact repeats. Udgivelsesdato: 2002-May...

  16. Growth of rat dorsal root ganglion neurons on a novel self-assembling scaffold containing IKVAV sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zou Zhenwei; Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Wu Yongchao, E-mail: wuyongchao@hotmail.com [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China); Song Yulin; Wu Bin [Department of Orthopaedics, Union Hospital, Tongji Medical college of Huazhong University of science and technology, Wuhan, 430022 (China)

    2009-08-31

    The potential benefits of self-assembly in synthesizing materials for the treatment of both peripheral and central nervous system disorders are tremendous. In this study, we synthesized peptide-amphiphile (PA) molecules containing IKVAV sequence and induced self-assembly of the PA solutions in vitro to form nanofiber gels. Then, we tested the characterization of gels by transmission electron microscopy and demonstrated the biocompatibility of this gel towards rat dorsal root ganglion neurons. The nanofiber gel was formed by self-assembly of IKVAV PA molecules, which was triggered by metal ions. The fibers were 7-8 nm in diameter and with lengths of hundreds of nanometers. Gels were shown to be non-toxic to neurons and able to promote neurons adhesion and neurite sprouting. The results indicated that the self-assembling scaffold containing IKVAV sequence had excellent biocompatibility with adult sensory neurons and could be useful in nerve tissue engineering.

  17. A simple and accurate two-step long DNA sequences synthesis strategy to improve heterologous gene expression in pichia.

    Directory of Open Access Journals (Sweden)

    Jiang-Ke Yang

    Full Text Available In vitro gene chemical synthesis is a powerful tool to improve the expression of gene in heterologous system. In this study, a two-step gene synthesis strategy that combines an assembly PCR and an overlap extension PCR (AOE was developed. In this strategy, the chemically synthesized oligonucleotides were assembled into several 200-500 bp fragments with 20-25 bp overlap at each end by assembly PCR, and then an overlap extension PCR was conducted to assemble all these fragments into a full length DNA sequence. Using this method, we de novo designed and optimized the codon of Rhizopus oryzae lipase gene ROL (810 bp and Aspergillus niger phytase gene phyA (1404 bp. Compared with the original ROL gene and phyA gene, the codon-optimized genes expressed at a significantly higher level in yeasts after methanol induction. We believe this AOE method to be of special interest as it is simple, accurate and has no limitation with respect to the size of the gene to be synthesized. Combined with de novo design, this method allows the rapid synthesis of a gene optimized for expression in the system of choice and production of sufficient biological material for molecular characterization and biotechnological application.

  18. Gigadalton-scale shape-programmable DNA assemblies

    Science.gov (United States)

    Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik

    2017-12-01

    Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.

  19. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.

    2010-07-12

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  20. Read length and repeat resolution: exploring prokaryote genomes using next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Matt J Cahill

    Full Text Available BACKGROUND: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. METHODOLOGY/PRINCIPAL FINDINGS: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. CONCLUSIONS: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.

  1. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.; Kö ser, Claudio U.; Ross, Nicholas E.; Archer, John A.C.

    2010-01-01

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  2. Identifying wrong assemblies in de novo short read primary

    Indian Academy of Sciences (India)

    Finally, some mis-assembly detecting tools have been evaluated for their ability to detect the wrongly assembledprimary contigs, suggesting a lot of scope for improvement in this area. The present work also proposes a simpleunsupervised learning-based novel approach to identify mis-assemblies in the contigs which was ...

  3. Sequencing of sporadic Attention-Deficit Hyperactivity Disorder (ADHD) identifies novel and potentially pathogenic de novo variants and excludes overlap with genes associated with autism spectrum disorder.

    Science.gov (United States)

    Kim, Daniel Seung; Burt, Amber A; Ranchalis, Jane E; Wilmot, Beth; Smith, Joshua D; Patterson, Karynne E; Coe, Bradley P; Li, Yatong K; Bamshad, Michael J; Nikolas, Molly; Eichler, Evan E; Swanson, James M; Nigg, Joel T; Nickerson, Deborah A; Jarvik, Gail P

    2017-06-01

    Attention-Deficit Hyperactivity Disorder (ADHD) has high heritability; however, studies of common variation account for ADHD variance. Using data from affected participants without a family history of ADHD, we sought to identify de novo variants that could account for sporadic ADHD. Considering a total of 128 families, two analyses were conducted in parallel: first, in 11 unaffected parent/affected proband trios (or quads with the addition of an unaffected sibling) we completed exome sequencing. Six de novo missense variants at highly conserved bases were identified and validated from four of the 11 families: the brain-expressed genes TBC1D9, DAGLA, QARS, CSMD2, TRPM2, and WDR83. Separately, in 117 unrelated probands with sporadic ADHD, we sequenced a panel of 26 genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD) to evaluate whether variation in ASD/ID-associated genes were also present in participants with ADHD. Only one putative deleterious variant (Gln600STOP) in CHD1L was identified; this was found in a single proband. Notably, no other nonsense, splice, frameshift, or highly conserved missense variants in the 26 gene panel were identified and validated. These data suggest that de novo variant analysis in families with independently adjudicated sporadic ADHD diagnosis can identify novel genes implicated in ADHD pathogenesis. Moreover, that only one of the 128 cases (0.8%, 11 exome, and 117 MIP sequenced participants) had putative deleterious variants within our data in 26 genes related to ID and ASD suggests significant independence in the genetic pathogenesis of ADHD as compared to ASD and ID phenotypes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Multifunctional hybrid networks based on self assembling peptide sequences

    Science.gov (United States)

    Sathaye, Sameer

    The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This

  5. Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing.

    Science.gov (United States)

    Seoane-Zonjic, Pedro; Cañas, Rafael A; Bautista, Rocío; Gómez-Maldonado, Josefa; Arrillaga, Isabel; Fernández-Pozo, Noé; Claros, M Gonzalo; Cánovas, Francisco M; Ávila, Concepción

    2016-02-27

    In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a

  6. De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum).

    Science.gov (United States)

    Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong

    2015-01-01

    Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper.

  7. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

    Science.gov (United States)

    Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-11-01

    The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.

  8. SeqEntropy: genome-wide assessment of repeats for short read sequencing.

    Directory of Open Access Journals (Sweden)

    Hsueh-Ting Chu

    Full Text Available BACKGROUND: Recent studies on genome assembly from short-read sequencing data reported the limitation of this technology to reconstruct the entire genome even at very high depth coverage. We investigated the limitation from the perspective of information theory to evaluate the effect of repeats on short-read genome assembly using idealized (error-free reads at different lengths. METHODOLOGY/PRINCIPAL FINDINGS: We define a metric H(k to be the entropy of sequencing reads at a read length k and use the relative loss of entropy ΔH(k to measure the impact of repeats for the reconstruction of whole-genome from sequences of length k. In our experiments, we found that entropy loss correlates well with de-novo assembly coverage of a genome, and a score of ΔH(k>1% indicates a severe loss in genome reconstruction fidelity. The minimal read lengths to achieve ΔH(k<1% are different for various organisms and are independent of the genome size. For example, in order to meet the threshold of ΔH(k<1%, a read length of 60 bp is needed for the sequencing of human genome (3.2 10(9 bp and 320 bp for the sequencing of fruit fly (1.8×10(8 bp. We also calculated the ΔH(k scores for 2725 prokaryotic chromosomes and plasmids at several read lengths. Our results indicate that the levels of repeats in different genomes are diverse and the entropy of sequencing reads provides a measurement for the repeat structures. CONCLUSIONS/SIGNIFICANCE: The proposed entropy-based measurement, which can be calculated in seconds to minutes in most cases, provides a rapid quantitative evaluation on the limitation of idealized short-read genome sequencing. Moreover, the calculation can be parallelized to scale up to large euakryotic genomes. This approach may be useful to tune the sequencing parameters to achieve better genome assemblies when a closely related genome is already available.

  9. FMLRC: Hybrid long read error correction using an FM-index.

    Science.gov (United States)

    Wang, Jeremy R; Holt, James; McMillan, Leonard; Jones, Corbin D

    2018-02-09

    Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging "hybrid" assemblies that use long reads for scaffolding and short reads for accuracy. We describe a novel method leveraging a multi-string Burrows-Wheeler Transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We demonstrate that our method efficiently produces significantly more high quality corrected sequence than existing hybrid error-correction methods. We also show that our method produces more contiguous assemblies, in many cases, than existing state-of-the-art hybrid and long-read only de novo assembly methods. Our method accurately corrects long read sequence data using complementary short reads. We demonstrate higher total throughput of corrected long reads and a corresponding increase in contiguity of the resulting de novo assemblies. Improved throughput and computational efficiency than existing methods will help better economically utilize emerging long read sequencing technologies.

  10. Draft genome sequence of Phomopsis longicolla isolate MSPL 10-6

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2015-03-01

    Full Text Available Phomopsis longicolla is the primary cause of Phomopsis seed decay in soybean. This disease severely affects soybean seed quality by reducing seed viability and oil content, altering seed composition, and increasing frequencies of moldy and/or split beans. It is one of the most economically important soybean diseases. Here, we report the de novo assembled draft genome sequence of the P. longicolla isolate MSPL10-6, which was isolated from field-grown soybean seed in Mississippi, USA. This study represents the first reported genome sequence of a seedborne fungal pathogen in the Diaporthe–Phomopsis complex. The P. longicolla genome sequence will enable research into the genetic basis of fungal infection of soybean seed and provide information for the study of soybean–fungal interactions. The genome sequence will also be valuable for molecular genetic marker development, manipulation of pathogenicity-related genes and development of new control strategies for this pathogen.

  11. Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome.

    Science.gov (United States)

    Chen, Meili; Hu, Yibo; Liu, Jingxing; Wu, Qi; Zhang, Chenglin; Yu, Jun; Xiao, Jingfa; Wei, Fuwen; Wu, Jiayan

    2015-12-11

    High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.

  12. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga.

    Directory of Open Access Journals (Sweden)

    Michael T Guarnieri

    Full Text Available Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga.

  13. Foldability of a Natural De Novo Evolved Protein.

    Science.gov (United States)

    Bungard, Dixie; Copple, Jacob S; Yan, Jing; Chhun, Jimmy J; Kumirov, Vlad K; Foy, Scott G; Masel, Joanna; Wysocki, Vicki H; Cordes, Matthew H J

    2017-11-07

    The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S. cerevisiae, folds to a partially specific three-dimensional structure. Bsc4 forms soluble, compact oligomers with high β sheet content and a hydrophobic core, and undergoes cooperative, reversible denaturation. Bsc4 lacks a specific quaternary state, however, existing instead as a continuous distribution of oligomer sizes, and binds dyes indicative of amyloid oligomers or molten globules. The combination of native-like and non-native-like properties suggests a rudimentary fold that could potentially act as a functional intermediate in the emergence of new folded proteins de novo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Whole Genome Sequencing of Enterovirus species C Isolates by High-throughput Sequencing: Development of Generic Primers

    Directory of Open Access Journals (Sweden)

    Maël Bessaud

    2016-08-01

    Full Text Available Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C consists of more than 20 types, among which the 3 serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions.A simple method was developed to sequence quickly the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to be sequenced by high-throughput technique.The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures.By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.

  15. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles.

    Science.gov (United States)

    Guo, Shaogui; Liu, Jingan; Zheng, Yi; Huang, Mingyun; Zhang, Haiying; Gong, Guoyi; He, Hongju; Ren, Yi; Zhong, Silin; Fei, Zhangjun; Xu, Yong

    2011-09-21

    Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression

  16. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    Science.gov (United States)

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  17. Selective enrichment and sequencing of whole mitochondrial genomes in the presence of nuclear encoded mitochondrial pseudogenes (numts.

    Directory of Open Access Journals (Sweden)

    Jonci N Wolff

    Full Text Available Numts are an integral component of many eukaryote genomes offering a snapshot of the evolutionary process that led from the incorporation of an α-proteobacterium into a larger eukaryotic cell some 1.8 billion years ago. Although numt sequence can be harnessed as molecular marker, these sequences often remain unidentified and are mistaken for genuine mtDNA leading to erroneous interpretation of mtDNA data sets. It is therefore indispensable that during the process of amplifying and sequencing mitochondrial genes, preventive measures are taken to ensure the exclusion of numts to guarantee the recovery of genuine mtDNA. This applies to mtDNA analyses in general but especially to studies where mtDNAs are sequenced de novo as the launch pad for subsequent mtDNA-based research. By using a combination of dilution series and nested rolling circle amplification (RCA, we present a novel strategy to selectively amplify mtDNA and exclude the amplification of numt sequence. We have successfully applied this strategy to de novo sequence the mtDNA of the Black Field Cricket Teleogryllus commodus, a species known to contain numts. Aligning our assembled sequence to the reference genome of Teleogryllus emma (GenBank EU557269.1 led to the identification of a numt sequence in the reference sequence. This unexpected result further highlights the need of a reliable and accessible strategy to eliminate this source of error.

  18. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  19. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    Science.gov (United States)

    Xu, Zhifeng; Zhu, Wenyi; Liu, Yanchao; Liu, Xing; Chen, Qiushuang; Peng, Miao; Wang, Xiangzun; Shen, Guangmao; He, Lin

    2014-01-01

    The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  20. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of

  1. DeepSimulator: a deep simulator for Nanopore sequencing

    KAUST Repository

    Li, Yu

    2017-12-23

    Motivation: Oxford Nanopore sequencing is a rapidly developed sequencing technology in recent years. To keep pace with the explosion of the downstream data analytical tools, a versatile Nanopore sequencing simulator is needed to complement the experimental data as well as to benchmark those newly developed tools. However, all the currently available simulators are based on simple statistics of the produced reads, which have difficulty in capturing the complex nature of the Nanopore sequencing procedure, the main task of which is the generation of raw electrical current signals. Results: Here we propose a deep learning based simulator, DeepSimulator, to mimic the entire pipeline of Nanopore sequencing. Starting from a given reference genome or assembled contigs, we simulate the electrical current signals by a context-dependent deep learning model, followed by a base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure more naturally. The thorough experiments performed across four species show that the signals generated by our context-dependent model are more similar to the experimentally obtained signals than the ones generated by the official context-independent pore model. In terms of the simulated reads, we provide a parameter interface to users so that they can obtain the reads with different accuracies ranging from 83% to 97%. The reads generated by the default parameter have almost the same properties as the real data. Two case studies demonstrate the application of DeepSimulator to benefit the development of tools in de novo assembly and in low coverage SNP detection. Availability: The software can be accessed freely at: https://github.com/lykaust15/DeepSimulator.

  2. The dual role of fragments in fragment-assembly methods for de novo protein structure prediction

    Science.gov (United States)

    Handl, Julia; Knowles, Joshua; Vernon, Robert; Baker, David; Lovell, Simon C.

    2013-01-01

    In fragment-assembly techniques for protein structure prediction, models of protein structure are assembled from fragments of known protein structures. This process is typically guided by a knowledge-based energy function and uses a heuristic optimization method. The fragments play two important roles in this process: they define the set of structural parameters available, and they also assume the role of the main variation operators that are used by the optimiser. Previous analysis has typically focused on the first of these roles. In particular, the relationship between local amino acid sequence and local protein structure has been studied by a range of authors. The correlation between the two has been shown to vary with the window length considered, and the results of these analyses have informed directly the choice of fragment length in state-of-the-art prediction techniques. Here, we focus on the second role of fragments and aim to determine the effect of fragment length from an optimization perspective. We use theoretical analyses to reveal how the size and structure of the search space changes as a function of insertion length. Furthermore, empirical analyses are used to explore additional ways in which the size of the fragment insertion influences the search both in a simulation model and for the fragment-assembly technique, Rosetta. PMID:22095594

  3. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    DEFF Research Database (Denmark)

    Hamilton, P J; Campbell, N G; Sharma, S

    2013-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution...

  4. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome

    DEFF Research Database (Denmark)

    Hoischen, Alexander; van Bon, Bregje W M; Rodríguez-Santiago, Benjamín

    2011-01-01

    Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which...... is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous....

  5. Characterization of Human Cytomegalovirus Genome Diversity in Immunocompromised Hosts by Whole-Genome Sequencing Directly From Clinical Specimens.

    Science.gov (United States)

    Hage, Elias; Wilkie, Gavin S; Linnenweber-Held, Silvia; Dhingra, Akshay; Suárez, Nicolás M; Schmidt, Julius J; Kay-Fedorov, Penelope C; Mischak-Weissinger, Eva; Heim, Albert; Schwarz, Anke; Schulz, Thomas F; Davison, Andrew J; Ganzenmueller, Tina

    2017-06-01

    Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals. Next-generation sequencing was performed on target enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast milk, respiratory samples, biopsies, and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients, and congenitally infected children). De novo-assembled HCMV genome sequences were obtained for 57 of 68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intraindividual blood samples from 9 of 15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in 6 individuals with sequential blood samples and upon compartmental analysis of 1 patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral-resistance mutations. In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. De Novo Assembly and Analysis of Tartary Buckwheat (Fagopyrum tataricum Garetn. Transcriptome Discloses Key Regulators Involved in Salt-Stress Response

    Directory of Open Access Journals (Sweden)

    Qi Wu

    2017-10-01

    Full Text Available Soil salinization has been a tremendous obstacle for agriculture production. The regulatory networks underlying salinity adaption in model plants have been extensively explored. However, limited understanding of the salt response mechanisms has hindered the planting and production in Fagopyrum tataricum, an economic and health-beneficial plant mainly distributing in southwest China. In this study, we performed physiological analysis and found that salt stress of 200 mM NaCl solution significantly affected the relative water content (RWC, electrolyte leakage (EL, malondialdehyde (MDA content, peroxidase (POD and superoxide dismutase (SOD activities in tartary buckwheat seedlings. Further, we conducted transcriptome comparison between control and salt treatment to identify potential regulatory components involved in F. tataricum salt responses. A total of 53.15 million clean reads from control and salt-treated libraries were produced via an Illumina sequencing approach. Then we de novo assembled these reads into a transcriptome dataset containing 57,921 unigenes with N50 length of 1400 bp and total length of 44.5 Mb. A total of 36,688 unigenes could find matches in public databases. GO, KEGG and KOG classification suggested the enrichment of these unigenes in 56 sub-categories, 25 KOG, and 273 pathways, respectively. Comparison of the transcriptome expression patterns between control and salt treatment unveiled 455 differentially expressed genes (DEGs. Further, we found the genes encoding for protein kinases, phosphatases, heat shock proteins (HSPs, ATP-binding cassette (ABC transporters, glutathione S-transferases (GSTs, abiotic-related transcription factors and circadian clock might be relevant to the salinity adaption of this species. Thus, this study offers an insight into salt tolerance mechanisms, and will serve as useful genetic information for tolerant elite breeding programs in future.

  7. De novo sequencing of two novel peptides homologous to calcitonin-like peptides, from skin secretion of the Chinese Frog, Odorrana schmackeri

    Directory of Open Access Journals (Sweden)

    Geisa P.C. Evaristo

    2015-09-01

    Full Text Available An MS/MS based analytical strategy was followed to solve the complete sequence of two new peptides from frog (Odorrana schmackeri skin secretion. This involved reduction and alkylation with two different alkylating agents followed by high resolution tandem mass spectrometry. De novo sequencing was achieved by complementary CID and ETD fragmentations of full-length peptides and of selected tryptic fragments. Heavy and light isotope dimethyl labeling assisted with annotation of sequence ion series. The identified primary structures are GCD[I/L]STCATHN[I/L]VNE[I/L]NKFDKSKPSSGGVGPESP-NH2 and SCNLSTCATHNLVNELNKFDKSKPSSGGVGPESF-NH2, i.e. two carboxyamidated 34 residue peptides with an aminoterminal intramolecular ring structure formed by a disulfide bridge between Cys2 and Cys7. Edman degradation analysis of the second peptide positively confirmed the exact sequence, resolving I/L discriminations. Both peptide sequences are novel and share homology with calcitonin, calcitonin gene related peptide (CGRP and adrenomedullin from other vertebrates. Detailed sequence analysis as well as the 34 residue length of both O. schmackeri peptides, suggest they do not fully qualify as either calcitonins (32 residues or CGRPs (37 amino acids and may justify their classification in a novel peptide family within the calcitonin gene related peptide superfamily. Smooth muscle contractility assays with synthetic replicas of the S–S linked peptides on rat tail artery, uterus, bladder and ileum did not reveal myotropic activity.

  8. Coevolutionary constraints in the sequence-space of macromolecular complexes reflect their self-assembly pathways.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2017-07-01

    Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 UL and US regions from genital swabs collected from 3 continents.

    Science.gov (United States)

    Johnston, Christine; Magaret, Amalia; Roychoudhury, Pavitra; Greninger, Alexander L; Cheng, Anqi; Diem, Kurt; Fitzgibbon, Matthew P; Huang, Meei-Li; Selke, Stacy; Lingappa, Jairam R; Celum, Connie; Jerome, Keith R; Wald, Anna; Koelle, David M

    2017-10-01

    Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. Genital lesion swabs containing ≥ 10 7 log 10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (U L _U S ) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated U L_ U S segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies

    DEFF Research Database (Denmark)

    2014-01-01

    in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p...... = 8.2 × 10(-4)), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have...... analyzed exome-sequencing data of 356 trios with the "classical" epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1...

  11. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis.

    Science.gov (United States)

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J; Quan, Guoxing

    2015-01-01

    The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects.

  12. De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development.

    Science.gov (United States)

    Chen, Honglin; Wang, Lixia; Liu, Xiaoyan; Hu, Liangliang; Wang, Suhua; Cheng, Xuzhen

    2017-07-11

    Cowpea [Vigna unguiculata (L.) Walp.] is one of the most important legumes in tropical and semi-arid regions. However, there is relatively little genomic information available for genetic research on and breeding of cowpea. The objectives of this study were to analyse the cowpea transcriptome and develop genic molecular markers for future genetic studies of this genus. Approximately 54 million high-quality cDNA sequence reads were obtained from cowpea based on Illumina paired-end sequencing technology and were de novo assembled to generate 47,899 unigenes with an N50 length of 1534 bp. Sequence similarity analysis revealed 36,289 unigenes (75.8%) with significant similarity to known proteins in the non-redundant (Nr) protein database, 23,471 unigenes (49.0%) with BLAST hits in the Swiss-Prot database, and 20,654 unigenes (43.1%) with high similarity in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Further analysis identified 5560 simple sequence repeats (SSRs) as potential genic molecular markers. Validating a random set of 500 SSR markers yielded 54 polymorphic markers among 32 cowpea accessions. This transcriptomic analysis of cowpea provided a valuable set of genomic data for characterizing genes with important agronomic traits in Vigna unguiculata and a new set of genic SSR markers for further genetic studies and breeding in cowpea and related Vigna species.

  13. AFEAP cloning: a precise and efficient method for large DNA sequence assembly.

    Science.gov (United States)

    Zeng, Fanli; Zang, Jinping; Zhang, Suhua; Hao, Zhimin; Dong, Jingao; Lin, Yibin

    2017-11-14

    Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.

  14. Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line

    Science.gov (United States)

    Li, Zixiang; Janardhanan, Mukund Nilakantan; Tang, Qiuhua; Nielsen, Peter

    2018-05-01

    This article presents the first method to simultaneously balance and sequence robotic mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, model sequencing and robot allocation. A new mixed-integer programming model is developed to minimize makespan and, using CPLEX solver, small-size problems are solved for optimality. Two metaheuristics, the restarted simulated annealing algorithm and co-evolutionary algorithm, are developed and improved to address this NP-hard problem. The restarted simulated annealing method replaces the current temperature with a new temperature to restart the search process. The co-evolutionary method uses a restart mechanism to generate a new population by modifying several vectors simultaneously. The proposed algorithms are tested on a set of benchmark problems and compared with five other high-performing metaheuristics. The proposed algorithms outperform their original editions and the benchmarked methods. The proposed algorithms are able to solve the balancing and sequencing problem of a robotic mixed-model assembly line effectively and efficiently.

  15. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    Science.gov (United States)

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  16. De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae

    Directory of Open Access Journals (Sweden)

    Maximilian Lauterbach

    2017-11-01

    Full Text Available C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our understanding of C4 functioning and evolution. In Chenopodiaceae, a family that is rich in C4 origins and photosynthetic types, the anatomy, physiology and phylogeny of C4, C2, and C3 species of Salsoleae has been studied in great detail, which facilitated the choice of six samples of five representative species with different photosynthetic types for transcriptome comparisons. mRNA from assimilating organs of each species was sequenced in triplicates, and sequence reads were de novo assembled. These novel genetic resources were then analyzed to provide a better understanding of differential gene expression between C3, C2 and C4 species. All three analyzed C4 species belong to the NADP-ME type as most genes encoding core enzymes of this C4 cycle are highly expressed. The abundance of photorespiratory transcripts is decreased compared to the C3 and C2 species. Like in other C4 lineages of Caryophyllales, our results suggest that PEPC1 is the C4-specific isoform in Salsoleae. Two recently identified transporters from the PHT4 protein family may not only be related to the C4 syndrome, but also active in C2 photosynthesis in Salsoleae. In the two populations of the C2 species S. divaricata transcript abundance of several C4 genes are slightly increased, however, a C4 cycle is not detectable in the carbon isotope values. Most of the core enzymes of photorespiration are highly increased in the C2 species compared to both C3 and C4 species, confirming a successful establishment of the C2 photosynthetic pathway. Furthermore, a function of PEP-CK in C2 photosynthesis

  17. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome evolution between two wheat cultivars

    KAUST Repository

    Thind, Anupriya Kaur

    2018-02-08

    Background: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the evolutionary dynamics of wheat genomes on a megabase-scale. Results: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes, the old landrace Chinese Spring and the elite Swiss spring wheat line CH Campala Lr22a. There was a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations revealed four large insertions/deletions (InDels) of >100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the evolutionary mechanisms that caused these InDels. Three of the large InDels affected copy number of NLRs, a gene family involved in plant immunity. Analysis of single nucleotide polymorphism (SNP) density revealed three haploblocks of 8 Mb, 9 Mb and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Conclusions: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.

  18. Analysis of 62 hybrid assembled human Y chromosomes exposes rapid structural changes and high rates of gene conversion

    DEFF Research Database (Denmark)

    Gonzalez-Izarzugaza, Jose Maria; Skov, Laurits; Maretty, Lasse

    2017-01-01

    The human Y-chromosome does not recombine across its male-specific part and is therefore an excellent marker of human migrations. It also plays an important role in male fertility. However, its evolution is difficult to fully understand because of repetitive sequences, inverted repeats and the po......The human Y-chromosome does not recombine across its male-specific part and is therefore an excellent marker of human migrations. It also plays an important role in male fertility. However, its evolution is difficult to fully understand because of repetitive sequences, inverted repeats...... and the potentially large role of gene conversion. Here we perform an evolutionary analysis of 62 Y-chromosomes of Danish descent sequenced using a wide range of library insert sizes and high coverage, thus allowing large regions of these chromosomes to be well assembled. These include 17 father-son pairs, which we...... use to validate variation calling. Using a recent method that can integrate variants based on both mapping and de novo assembly, we genotype 10898 SNVs and 2903 indels (max length of 27241 bp) in our sample and show by father-son concordance and experimental validation that the non-recurrent SNP...

  19. De Novo Coding Variants Are Strongly Associated with Tourette Disorder

    DEFF Research Database (Denmark)

    Willsey, A Jeremy; Fernandez, Thomas V; Yu, Dongmei

    2017-01-01

    Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 ...

  20. Identification of a Novel De Novo Heterozygous Deletion in the SOX10 Gene in Waardenburg Syndrome Type II Using Next-Generation Sequencing.

    Science.gov (United States)

    Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping

    2017-11-01

    Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.

  1. De novo assembly and characterization of the transcriptome of seagrass Zostera marina using Illumina paired-end sequencing.

    Directory of Open Access Journals (Sweden)

    Fanna Kong

    Full Text Available BACKGROUND: The seagrass Zostera marina is a monocotyledonous angiosperm belonging to a polyphyletic group of plants that can live submerged in marine habitats. Zostera marina L. is one of the most common seagrasses and is considered a cornerstone of marine plant molecular ecology research and comparative studies. However, the mechanisms underlying its adaptation to the marine environment still remain poorly understood due to limited transcriptomic and genomic data. PRINCIPAL FINDINGS: Here we explored the transcriptome of Z. marina leaves under different environmental conditions using Illumina paired-end sequencing. Approximately 55 million sequencing reads were obtained, representing 58,457 transcripts that correspond to 24,216 unigenes. A total of 14,389 (59.41% unigenes were annotated by blast searches against the NCBI non-redundant protein database. 45.18% and 46.91% of the unigenes had significant similarity with proteins in the Swiss-Prot database and Pfam database, respectively. Among these, 13,897 unigenes were assigned to 57 Gene Ontology (GO terms and 4,745 unigenes were identified and mapped to 233 pathways via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG. We compared the orthologous gene family of the Z. marina transcriptome to Oryza sativa and Pyropia yezoensis and 11,667 orthologous gene families are specific to Z. marina. Furthermore, we identified the photoreceptors sensing red/far-red light and blue light. Also, we identified a large number of genes that are involved in ion transporters and channels including Na+ efflux, K+ uptake, Cl- channels, and H+ pumping. CONCLUSIONS: Our study contains an extensive sequencing and gene-annotation analysis of Z. marina. This information represents a genetic resource for the discovery of genes related to light sensing and salt tolerance in this species. Our transcriptome can be further utilized in future studies on molecular adaptation to

  2. De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems

    Directory of Open Access Journals (Sweden)

    Zhang Xiaowen

    2012-10-01

    Full Text Available Abstract Background The green algal genus Ulva Linnaeus (Ulvaceae, Ulvales, Chlorophyta is well known for its wide distribution in marine, freshwater, and brackish environments throughout the world. The Ulva species are also highly tolerant of variations in salinity, temperature, and irradiance and are the main cause of green tides, which can have deleterious ecological effects. However, limited genomic information is currently available in this non-model and ecologically important species. Ulva linza is a species that inhabits bedrock in the mid to low intertidal zone, and it is a major contributor to biofouling. Here, we presented the global characterization of the U. linza transcriptome using the Roche GS FLX Titanium platform, with the aim of uncovering the genomic mechanisms underlying rapid and successful colonization of the coastal ecosystems. Results De novo assembly of 382,884 reads generated 13,426 contigs with an average length of 1,000 bases. Contiguous sequences were further assembled into 10,784 isotigs with an average length of 1,515 bases. A total of 304,101 reads were nominally identified by BLAST; 4,368 isotigs were functionally annotated with 13,550 GO terms, and 2,404 isotigs having enzyme commission (EC numbers were assigned to 262 KEGG pathways. When compared with four other full sequenced green algae, 3,457 unique isotigs were found in U. linza and 18 conserved in land plants. In addition, a specific photoprotective mechanism based on both LhcSR and PsbS proteins and a C4-like carbon-concentrating mechanism were found, which may help U. linza survive stress conditions. At least 19 transporters for essential inorganic nutrients (i.e., nitrogen, phosphorus, and sulphur were responsible for its ability to take up inorganic nutrients, and at least 25 eukaryotic cytochrome P450s, which is a higher number than that found in other algae, may be related to their strong allelopathy. Multi-origination of the stress related proteins

  3. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels

    Directory of Open Access Journals (Sweden)

    Bibby Kyle

    2011-03-01

    Full Text Available Abstract Background Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. The paucity of microalgae genome sequences, however, limits gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for the non-model microalgae species, Dunaliella tertiolecta, and identify pathways and genes of importance related to biofuel production. Results Next generation DNA pyrosequencing technology applied to D. tertiolecta transcripts produced 1,363,336 high quality reads with an average length of 400 bases. Following quality and size trimming, ~ 45% of the high quality reads were assembled into 33,307 isotigs with a 31-fold coverage and 376,482 singletons. Assembled sequences and singletons were subjected to BLAST similarity searches and annotated with Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology (KO identifiers. These analyses identified the majority of lipid and starch biosynthesis and catabolism pathways in D. tertiolecta. Conclusions The construction of metabolic pathways involved in the biosynthesis and catabolism of fatty acids, triacylglycrols, and starch in D. tertiolecta as well as the assembled transcriptome provide a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.

  4. De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda--the dominant zooplankter of the North Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Petra H Lenz

    Full Text Available Assessing the impact of global warming on the food web of the North Atlantic will require difficult-to-obtain physiological data on a key copepod crustacean, Calanus finmarchicus. The de novo transcriptome presented here represents a new resource for acquiring such data. It was produced from multiplexed gene libraries using RNA collected from six developmental stages: embryo, early nauplius (NI-II, late nauplius (NV-VI, early copepodite (CI-II, late copepodite (CV and adult (CVI female. Over 400,000,000 paired-end reads (100 base-pairs long were sequenced on an Illumina instrument, and assembled into 206,041 contigs using Trinity software. Coverage was estimated to be at least 65%. A reference transcriptome comprising 96,090 unique components ("comps" was annotated using Blast2GO. 40% of the comps had significant blast hits. 11% of the comps were successfully annotated with gene ontology (GO terms. Expression of many comps was found to be near zero in one or more developmental stages suggesting that 35 to 48% of the transcriptome is "silent" at any given life stage. Transcripts involved in lipid biosynthesis pathways, critical for the C. finmarchicus life cycle, were identified and their expression pattern during development was examined. Relative expression of three transcripts suggests wax ester biosynthesis in late copepodites, but triacylglyceride biosynthesis in adult females. Two of these transcripts may be involved in the preparatory phase of diapause. A key environmental challenge for C. finmarchicus is the seasonal exposure to the dinoflagellate Alexandrium fundyense with high concentrations of saxitoxins, neurotoxins that block voltage-gated sodium channels. Multiple contigs encoding putative voltage-gated sodium channels were identified. They appeared to be the result of both alternate splicing and gene duplication. This is the first report of multiple NaV1 genes in a protostome. These data provide new insights into the transcriptome

  5. BESST--efficient scaffolding of large fragmented assemblies.

    Science.gov (United States)

    Sahlin, Kristoffer; Vezzi, Francesco; Nystedt, Björn; Lundeberg, Joakim; Arvestad, Lars

    2014-08-15

    The use of short reads from High Throughput Sequencing (HTS) techniques is now commonplace in de novo assembly. Yet, obtaining contiguous assemblies from short reads is challenging, thus making scaffolding an important step in the assembly pipeline. Different algorithms have been proposed but many of them use the number of read pairs supporting a linking of two contigs as an indicator of reliability. This reasoning is intuitive, but fails to account for variation in link count due to contig features.We have also noted that published scaffolders are only evaluated on small datasets using output from only one assembler. Two issues arise from this. Firstly, some of the available tools are not well suited for complex genomes. Secondly, these evaluations provide little support for inferring a software's general performance. We propose a new algorithm, implemented in a tool called BESST, which can scaffold genomes of all sizes and complexities and was used to scaffold the genome of P. abies (20 Gbp). We performed a comprehensive comparison of BESST against the most popular stand-alone scaffolders on a large variety of datasets. Our results confirm that some of the popular scaffolders are not practical to run on complex datasets. Furthermore, no single stand-alone scaffolder outperforms the others on all datasets. However, BESST fares favorably to the other tested scaffolders on GAGE datasets and, moreover, outperforms the other methods when library insert size distribution is wide. We conclude from our results that information sources other than the quantity of links, as is commonly used, can provide useful information about genome structure when scaffolding.

  6. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production

    Science.gov (United States)

    Borelli, Guilherme; José, Juliana; Teixeira, Paulo José Pereira Lima; dos Santos, Leandro Vieira

    2016-01-01

    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection. PMID:26769937

  7. BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data

    Science.gov (United States)

    Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel

    2012-01-01

    BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310

  8. BG7: a new approach for bacterial genome annotation designed for next generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Pablo Pareja-Tobes

    Full Text Available BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers