WorldWideScience

Sample records for novo backbone scaffolds

  1. High-resolution protein design with backbone freedom.

    Science.gov (United States)

    Harbury, P B; Plecs, J J; Tidor, B; Alber, T; Kim, P S

    1998-11-20

    Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.

  2. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds.

    Science.gov (United States)

    Dudchenko, Olga; Batra, Sanjit S; Omer, Arina D; Nyquist, Sarah K; Hoeger, Marie; Durand, Neva C; Shamim, Muhammad S; Machol, Ido; Lander, Eric S; Aiden, Aviva Presser; Aiden, Erez Lieberman

    2017-04-07

    The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective way. Here we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67× coverage). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Ae aegypti and Culex quinquefasciatus , each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that almost all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, and accurate, and can be applied to many species. Copyright © 2017, American Association for the Advancement of Science.

  3. De novo design, synthesis, and in vitro activity of LFA-1 antagonists based on a bicyclic[5.5]hydantoin scaffold.

    Science.gov (United States)

    Potin, Dominique; Launay, Michele; Nicolai, Eric; Fabreguette, Maud; Malabre, Patrice; Caussade, François; Besse, Dominique; Skala, Stacey; Stetsko, Dawn K; Todderud, Gordon; Beno, Brett R; Cheney, Daniel L; Chang, Chiehying J; Sheriff, Steven; Hollenbaugh, Diane L; Barrish, Joel C; Iwanowicz, Edwin J; Suchard, Suzanne J; Dhar, T G Murali

    2005-02-15

    LFA-1 (leukocyte function-associated antigen-1), is a member of the beta(2)-integrin family and is expressed on all leukocytes. The LFA-1/ICAM interaction promotes tight adhesion between activated leukocytes and the endothelium, as well as between T cells and antigen-presenting cells. Evidence from both animal models and clinical trials provides support for LFA-1 as a target in several different inflammatory diseases. This paper describes the de novo design, synthesis and in vitro activity of LFA-1 antagonists based on a bicyclic[5.5]hydantoin scaffold.

  4. NxRepair: error correction in de novo sequence assembly using Nextera mate pairs

    Directory of Open Access Journals (Sweden)

    Rebecca R. Murphy

    2015-06-01

    Full Text Available Scaffolding errors and incorrect repeat disambiguation during de novo assembly can result in large scale misassemblies in draft genomes. Nextera mate pair sequencing data provide additional information to resolve assembly ambiguities during scaffolding. Here, we introduce NxRepair, an open source toolkit for error correction in de novo assemblies that uses Nextera mate pair libraries to identify and correct large-scale errors. We show that NxRepair can identify and correct large scaffolding errors, without use of a reference sequence, resulting in quantitative improvements in the assembly quality. NxRepair can be downloaded from GitHub or PyPI, the Python Package Index; a tutorial and user documentation are also available.

  5. Thermogel-Coated Poly(ε-Caprolactone Composite Scaffold for Enhanced Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shao-Jie Wang

    2016-05-01

    Full Text Available A three-dimensional (3D composite scaffold was prepared for enhanced cartilage tissue engineering, which was composed of a poly(ε-caprolactone (PCL backbone network and a poly(lactide-co-glycolide-block-poly(ethylene glycol-block-poly(lactide-co-glycolide (PLGA–PEG–PLGA thermogel surface. The composite scaffold not only possessed adequate mechanical strength similar to native osteochondral tissue as a benefit of the PCL backbone, but also maintained cell-friendly microenvironment of the hydrogel. The PCL network with homogeneously-controlled pore size and total pore interconnectivity was fabricated by fused deposition modeling (FDM, and was impregnated into the PLGA–PEG–PLGA solution at low temperature (e.g., 4 °C. The PCL/Gel composite scaffold was obtained after gelation induced by incubation at body temperature (i.e., 37 °C. The composite scaffold showed a greater number of cell retention and proliferation in comparison to the PCL platform. In addition, the composite scaffold promoted the encapsulated mesenchymal stromal cells (MSCs to differentiate chondrogenically with a greater amount of cartilage-specific matrix production compared to the PCL scaffold or thermogel. Therefore, the 3D PCL/Gel composite scaffold may exhibit great potential for in vivo cartilage regeneration.

  6. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design.

    Directory of Open Access Journals (Sweden)

    Kevin Drew

    Full Text Available Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones, oligooxopiperazines, oligo-peptoids, [Formula: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org. This work helps address the peptidomimetic community's need for an automated and expandable

  7. Neointimal Healing Evaluated by Optical Coherence Tomography after Drug-Eluting Absorbable Metal Scaffold Implantation in de novo Native Coronary Lesions: Rationale and Design of the Magmaris-OCT Study.

    Science.gov (United States)

    Karjalainen, Pasi; Paana, Tuomas; Sia, Jussi; Nammas, Wail

    We sought to explore neointimal healing assessed by optical coherence tomography (OCT) following implantation of the Magmaris sirolimus-eluting absorbable metal scaffold. The Magmaris-OCT is a prospective, multicenter, single-arm observational clinical study, intended to enrol 60 consecutive patients with up to 2 de novo native coronary lesions, each located in different major epicardial vessels, with a reference vessel diameter of 2.5-3.5 mm, and a maximum lesion length of 20 mm. Patients will undergo Magmaris scaffold implantation in the target lesion, according to the standard practice. Clinical follow-up will take place at 30 days, and at 3, 6, 9, and 12 months. For invasive-imaging follow-up, patients will be classified into 3 groups: cohort A will be scheduled for follow-up at 3 months, cohort B at 6 months, and cohort C at 12 months. Invasive imaging will include quantitative coronary angiography, OCT evaluation, and coronary flow reserve measurement. The primary end point will be the percentage of uncovered scaffold struts assessed by OCT at the prespecified follow-up. This study will provide insight into the short- and mid-term healing properties following Magmaris scaffold implantation, with special emphasis on the neointimal coverage of scaffold struts. © 2017 S. Karger AG, Basel.

  8. Serial Multimodality Imaging and 2-Year Clinical Outcomes of the Novel DESolve Novolimus-Eluting Bioresorbable Coronary Scaffold System for the Treatment of Single De Novo Coronary Lesions.

    Science.gov (United States)

    Abizaid, Alexandre; Costa, Ricardo A; Schofer, Joachim; Ormiston, John; Maeng, Michael; Witzenbichler, Bernhard; Botelho, Roberto V; Costa, J Ribamar; Chamié, Daniel; Abizaid, Andrea S; Castro, Juliana P; Morrison, Lynn; Toyloy, Sara; Bhat, Vinayak; Yan, John; Verheye, Stefan

    2016-03-28

    This study sought to report the late multimodality imaging and clinical outcomes of the novel poly-l-lactic-acid-based DESolve novolimus-eluting bioresorbable coronary scaffold for the treatment of de novo coronary lesions. Bioresorbable scaffolds are an alternative to drug-eluting metallic stents and provide temporary vascular scaffolding, which potentially may allow vessel restoration and reduce the risk of future adverse events. Overall, 126 patients were enrolled at 13 international sites between November 2011 and June 2012. The primary endpoint was in-scaffold late lumen loss at 6 months. Major adverse cardiac events, the main safety endpoint, were defined as the composite of cardiac death, target vessel myocardial infarction, or clinically indicated target lesion revascularization. All patients underwent angiography at 6 months. Serial intravascular ultrasound and optical coherence tomography were performed in a subset of patients. The scaffold device success rate was 97% (n = 122 of 126), and procedural success was 100% (n = 122 of 122). The major adverse cardiac event rate was 3.3% (n = 4 of 122) at 6 months and 7.4% (n = 9 of 122) at 24 months, including 1 probable stent thrombosis within the first month. At 6-month angiographic follow-up, in-scaffold late lumen loss was 0.20 ± 0.32 mm. Paired intravascular ultrasound analysis demonstrated a significant increase in vessel, lumen and scaffold dimensions between post-procedure and 6-month follow-up, and strut-level optical coherence tomography analysis showed full strut coverage in 99 ± 1.7%. Our results showed favorable performance of the DESolve scaffold, effective inhibition of neointimal hyperplasia, and for the first time, early luminal and scaffold growth at 6 months with sustained efficacy and safety through 2 years. (Elixir Medical Clinical Evaluation of the DESolve Novolimus Eluting Bioresorbable Coronary Scaffold System-The DESolve Nx Trial; NCT02086045). Copyright © 2016 American College of

  9. WiseScaffolder: an algorithm for the semi-automatic scaffolding of Next Generation Sequencing data.

    Science.gov (United States)

    Farrant, Gregory K; Hoebeke, Mark; Partensky, Frédéric; Andres, Gwendoline; Corre, Erwan; Garczarek, Laurence

    2015-09-03

    The sequencing depth provided by high-throughput sequencing technologies has allowed a rise in the number of de novo sequenced genomes that could potentially be closed without further sequencing. However, genome scaffolding and closure require costly human supervision that often results in genomes being published as drafts. A number of automatic scaffolders were recently released, which improved the global quality of genomes published in the last few years. Yet, none of them reach the efficiency of manual scaffolding. Here, we present an innovative semi-automatic scaffolder that additionally helps with chimerae resolution and generates valuable contig maps and outputs for manual improvement of the automatic scaffolding. This software was tested on the newly sequenced marine cyanobacterium Synechococcus sp. WH8103 as well as two reference datasets used in previous studies, Rhodobacter sphaeroides and Homo sapiens chromosome 14 (http://gage.cbcb.umd.edu/). The quality of resulting scaffolds was compared to that of three other stand-alone scaffolders: SSPACE, SOPRA and SCARPA. For all three model organisms, WiseScaffolder produced better results than other scaffolders in terms of contiguity statistics (number of genome fragments, N50, LG50, etc.) and, in the case of WH8103, the reliability of the scaffolds was confirmed by whole genome alignment against a closely related reference genome. We also propose an efficient computer-assisted strategy for manual improvement of the scaffolding, using outputs generated by WiseScaffolder, as well as for genome finishing that in our hands led to the circularization of the WH8103 genome. Altogether, WiseScaffolder proved more efficient than three other scaffolders for both prokaryotic and eukaryotic genomes and is thus likely applicable to most genome projects. The scaffolding pipeline described here should be of particular interest to biologists wishing to take advantage of the high added value of complete genomes.

  10. Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins.

    Science.gov (United States)

    Rotondi, Kenneth S; Gierasch, Lila M

    2006-01-01

    This paper provides an introduction to fundamental conformational states of polypeptides in the beta-region of phi,psi space, in which the backbone is extended near to its maximal length, and to more complex architectures in which extended segments are linked by turns and loops. There are several variants on these conformations, and they comprise versatile scaffolds for presentation of side chains and backbone amides for molecular recognition and designed catalysts. In addition, the geometry of these fundamental folds can be readily mimicked in peptidomimetics. Copyright 2005 Wiley Periodicals, Inc.

  11. BESST--efficient scaffolding of large fragmented assemblies.

    Science.gov (United States)

    Sahlin, Kristoffer; Vezzi, Francesco; Nystedt, Björn; Lundeberg, Joakim; Arvestad, Lars

    2014-08-15

    The use of short reads from High Throughput Sequencing (HTS) techniques is now commonplace in de novo assembly. Yet, obtaining contiguous assemblies from short reads is challenging, thus making scaffolding an important step in the assembly pipeline. Different algorithms have been proposed but many of them use the number of read pairs supporting a linking of two contigs as an indicator of reliability. This reasoning is intuitive, but fails to account for variation in link count due to contig features.We have also noted that published scaffolders are only evaluated on small datasets using output from only one assembler. Two issues arise from this. Firstly, some of the available tools are not well suited for complex genomes. Secondly, these evaluations provide little support for inferring a software's general performance. We propose a new algorithm, implemented in a tool called BESST, which can scaffold genomes of all sizes and complexities and was used to scaffold the genome of P. abies (20 Gbp). We performed a comprehensive comparison of BESST against the most popular stand-alone scaffolders on a large variety of datasets. Our results confirm that some of the popular scaffolders are not practical to run on complex datasets. Furthermore, no single stand-alone scaffolder outperforms the others on all datasets. However, BESST fares favorably to the other tested scaffolders on GAGE datasets and, moreover, outperforms the other methods when library insert size distribution is wide. We conclude from our results that information sources other than the quantity of links, as is commonly used, can provide useful information about genome structure when scaffolding.

  12. A Review on Fabricating Tissue Scaffolds using Vat Photopolymerization.

    Science.gov (United States)

    Chartrain, Nicholas A; Williams, Christopher B; Whittington, Abby R

    2018-05-09

    Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds. Copyright © 2018. Published by Elsevier Ltd.

  13. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  14. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans

    Directory of Open Access Journals (Sweden)

    Manuel Michaël

    2010-02-01

    Full Text Available Abstract Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving

  15. Testing Backbone.js

    CERN Document Server

    Roemer, Ryan

    2013-01-01

    This book is packed with the step by step tutorial and instructions in recipe format helping you setup test infrastructure and gradually advance your skills to plan, develop, and test your backbone applications.If you are a JavaScript developer looking for recipes to create and implement test support for your backbone application, then this book is ideal for you.

  16. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity.

    Science.gov (United States)

    Rathi, Preeti; Witte, Anna; Summerer, Daniel

    2017-11-08

    Transcription activator-like effectors (TALEs) are DNA major-groove binding proteins widely used for genome targeting. TALEs contain an N-terminal region (NTR) and a central repeat domain (CRD). Repeats of the CRD selectively recognize each one DNA nucleobase, offering programmability. Moreover, repeats with selectivity for 5-methylcytosine (5mC) and its oxidized derivatives can be designed for analytical applications. However, both TALE domains also nonspecifically interact with DNA phosphates via basic amino acids. To enhance the 5mC selectivity of TALEs, we aimed to decrease the nonselective binding energy of TALEs. We substituted basic amino acids with alanine in the NTR and identified TALE mutants with increased selectivity. We then analysed conserved, DNA phosphate-binding KQ diresidues in CRD repeats and identified further improved mutants. Combination of mutations in the NTR and CRD was highly synergetic and resulted in TALE scaffolds with up to 4.3-fold increased selectivity in genomic 5mC analysis via affinity enrichment. Moreover, transcriptional activation in HEK293T cells by a TALE-VP64 construct based on this scaffold design exhibited a 3.5-fold increased 5mC selectivity. This provides perspectives for improved 5mC analysis and for the 5mC-conditional control of TALE-based editing constructs in vivo.

  17. 1990s: High Capacity Backbones

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. 1990s: High Capacity Backbones. Backbone capacities increased from 2.5 Gb/s to 100s of Gb/s during the 1990's. Wavelength division multiplexing with 160 waves of 10 Gb/s was commercially available. Several high-capacity backbones built in the US and Europe.

  18. Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering

    Science.gov (United States)

    Demina, T. S.; Zaytseva-Zotova, D. S.; Timashev, P. S.; Bagratashvili, V. N.; Bardakova, K. N.; Sevrin, Ch; Svidchenko, E. A.; Surin, N. M.; Markvicheva, E. A.; Grandfils, Ch; Akopova, T. A.

    2015-07-01

    Chitosan-g-oligo (L, D-lactide) copolymers were synthesized and assessed to fabricate a number of 3D scaffolds using a variety of technologies such as oil/water emulsion evaporation technique, freeze-drying and two-photon photopolymerization. Solid-state copolymerization method allowed us to graft up to 160 wt-% of oligolactide onto chitosan backbone via chitosan amino group acetylation with substitution degree reaching up to 0.41. Grafting of hydrophobic oligolactide side chains with polymerization degree up to 10 results in chitosan amphiphilic properties. The synthesized chitosan-g-lactide copolymers were used to design 3D scaffolds for tissue engineering such as spherical microparticles and macroporous hydrogels.

  19. Backbone amide linker strategy

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    In the backbone amide linker (BAL) strategy, the peptide is anchored not at the C-terminus but through a backbone amide, which leaves the C-terminal available for various modifications. This is thus a very general strategy for the introduction of C-terminal modifications. The BAL strategy...

  20. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.

    Science.gov (United States)

    Plegaria, Jefferson S; Dzul, Stephen P; Zuiderweg, Erik R P; Stemmler, Timothy L; Pecoraro, Vincent L

    2015-05-12

    De novo protein design is a biologically relevant approach that provides a novel process in elucidating protein folding and modeling the metal centers of metalloproteins in a completely unrelated or simplified fold. An integral step in de novo protein design is the establishment of a well-folded scaffold with one conformation, which is a fundamental characteristic of many native proteins. Here, we report the NMR solution structure of apo α3DIV at pH 7.0, a de novo designed three-helix bundle peptide containing a triscysteine motif (Cys18, Cys28, and Cys67) that binds toxic heavy metals. The structure comprises 1067 NOE restraints derived from multinuclear multidimensional NOESY, as well as 138 dihedral angles (ψ, φ, and χ1). The backbone and heavy atoms of the 20 lowest energy structures have a root mean square deviation from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, respectively. When compared to the parent structure α3D, the substitution of Leu residues to Cys enhanced the α-helical content of α3DIV while maintaining the same overall topology and fold. In addition, solution studies on the metalated species illustrated metal-induced stability. An increase in the melting temperatures was observed for Hg(II), Pb(II), or Cd(II) bound α3DIV by 18-24 °C compared to its apo counterpart. Further, the extended X-ray absorption fine structure analysis on Hg(II)-α3DIV produced an average Hg(II)-S bond length at 2.36 Å, indicating a trigonal T-shaped coordination environment. Overall, the structure of apo α3DIV reveals an asymmetric distorted triscysteine metal binding site, which offers a model for native metalloregulatory proteins with thiol-rich ligands that function in regulating toxic heavy metals, such as ArsR, CadC, MerR, and PbrR.

  1. De novo assembly of human genomes with massively parallel short read sequencing

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Zhu, Hongmei; Ruan, Jue

    2010-01-01

    genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities...... for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way....

  2. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    Science.gov (United States)

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  3. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40.

    Directory of Open Access Journals (Sweden)

    Myco Umemura

    Full Text Available The development of next-generation sequencing (NGS technologies has dramatically increased the throughput, speed, and efficiency of genome sequencing. The short read data generated from NGS platforms, such as SOLiD and Illumina, are quite useful for mapping analysis. However, the SOLiD read data with lengths of <60 bp have been considered to be too short for de novo genome sequencing. Here, to investigate whether de novo sequencing of fungal genomes is possible using only SOLiD short read sequence data, we performed de novo assembly of the Aspergillus oryzae RIB40 genome using only SOLiD read data of 50 bp generated from mate-paired libraries with 2.8- or 1.9-kb insert sizes. The assembled scaffolds showed an N50 value of 1.6 Mb, a 22-fold increase than those obtained using only SOLiD short read in other published reports. In addition, almost 99% of the reference genome was accurately aligned by the assembled scaffold fragments in long lengths. The sequences of secondary metabolite biosynthetic genes and clusters, whose products are of considerable interest in fungal studies due to their potential medicinal, agricultural, and cosmetic properties, were also highly reconstructed in the assembled scaffolds. Based on these findings, we concluded that de novo genome sequencing using only SOLiD short reads is feasible and practical for molecular biological study of fungi. We also investigated the effect of filtering low quality data, library insert size, and k-mer size on the assembly performance, and recommend for the assembly use of mild filtered read data where the N50 was not so degraded and the library has an insert size of ∼2.0 kb, and k-mer size 33.

  4. Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting.

    Science.gov (United States)

    Madhavan, Krishna; Frid, Maria G; Hunter, Kendall; Shandas, Robin; Stenmark, Kurt R; Park, Daewon

    2018-01-01

    The optimization of biomechanical and biochemical properties of a vascular graft to render properties relevant to physiological environments is a major challenge today. These critical properties of a vascular graft not only regulate its stability and integrity, but also control invasion of cells for scaffold remodeling permitting its integration with native tissue. In this work, we have synthesized a biomimetic scaffold by electrospinning a blend of a polyurea, poly(serinol hexamethylene urea) (PSHU), and, a polyester, poly-ε-caprolactone (PCL). Mechanical properties of the scaffold were varied by varying polymer blending ratio and electrospinning flow rate. Mechanical characterization revealed that scaffolds with lower PSHU content relative to PCL content resulted in elasticity close to native mammalian arteries. We also found that increasing electrospinning flow rates also increased the elasticity of the matrix. Optimization of elasticity generated scaffolds that enabled vascular smooth muscle cells (SMCs) to adhere, grow and maintain a SMC phenotype. The 30/70 scaffold also underwent slower degradation than scaffolds with higher PSHU content, thereby, providing the best option for in vivo remodeling. Further, Gly-Arg-Gly-Asp-Ser (RGD) covalently conjugated to the polyurea backbone in 30/70 scaffold resulted in significantly increased clotting times. Reducing surface thrombogenicity by the conjugation of RGD is critical to avoiding intimal hyperplasia. Hence, biomechanical and biochemical properties of a vascular graft can be balanced by optimizing synthesis parameters and constituent components. For these reasons, the optimized RGD-conjugated 30/70 scaffold electrospun at 2.5 or 5 mL/h has great potential as a suitable material for vascular grafting applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 278-290, 2018. © 2017 Wiley Periodicals, Inc.

  5. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering.

    Science.gov (United States)

    Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khosrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G; Walther, Andreas

    2015-05-20

    A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geo-metries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests.

    Science.gov (United States)

    Eğri, Sinan; Eczacıoğlu, Numan

    2017-03-01

    Biodegradable PLA-PEG-PLA block copolymers were synthesized with desired backbone structures and molecular weights using PEG20000. Rectangular scaffolds were prepared by freeze drying with or without using NaCl particles. Bone morphogenetic protein (BMP)-2 was loaded to the matrix after the scaffold formation for sustained release while vascular endothelial growth factor (VEGF) was loaded within the pores with gelatin solution. VEGF release was quite fast and almost 60% of it was released in 2 d. However, sequential - sustained released was observed for BMP-2 in the following few months. Corporation of VEGF/BMP-2 couple into the scaffolds increased the cell adhesion and proliferation. Neither significant cytotoxicity nor apoptosis/necrosis were observed.

  7. Metallizing porous scaffolds as an alternative fabrication method for solid oxide fuel cell anodes

    Science.gov (United States)

    Ruiz-Trejo, Enrique; Atkinson, Alan; Brandon, Nigel P.

    2015-04-01

    A combination of electroless and electrolytic techniques is used to incorporate nickel into a porous Ce0.9Gd0.1O1.90 scaffold. First a porous backbone was screen printed into a YSZ electrolyte using an ink that contains sacrificial pore formers. Once sintered, the scaffold was coated with silver using Tollens' reaction followed by electrodeposition of nickel in a Watts bath. At high temperatures the silver forms droplets enabling direct contact between the gadolinia-doped ceria and nickel. Using impedance spectroscopy analysis in a symmetrical cell a total area specific resistance of 1 Ωcm2 at 700 °C in 97% H2 with 3% H2O was found, indicating the potential of this fabrication method for scaling up.

  8. Backbone upgrades and DEC equipment replacement

    Science.gov (United States)

    Vancamp, Warren

    1991-01-01

    The NASA Science Internet (NSI) dual protocol backbone is outlined. It includes DECnet link upgrades to match TCP/IP link performance. It also includes the integration of backbone resources and central management. The phase 1 transition process is outlined.

  9. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  10. De novo assembly of highly diverse viral populations

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2012-09-01

    Full Text Available Abstract Background Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. Results We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. Conclusions We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.

  11. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode......, microstructural characterization and electrochemical testing are discussed. Data on polarization resistance, Rp, are obtained from impedance spectra recorded on quasi-symmetrical cells (YSZ backbones/YSZ/LSM-YSZ (screen printed)). The backbones are infiltrated with LSM and compared to a standard LSM-YSZ screen...

  12. UniNovo: a universal tool for de novo peptide sequencing.

    Science.gov (United States)

    Jeong, Kyowon; Kim, Sangtae; Pevzner, Pavel A

    2013-08-15

    Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but de novo peptide sequencing algorithms to analyze tandem mass (MS/MS) spectra are lagging behind. Although existing de novo sequencing tools perform well on certain types of spectra [e.g. Collision Induced Dissociation (CID) spectra of tryptic peptides], their performance often deteriorates on other types of spectra, such as Electron Transfer Dissociation (ETD), Higher-energy Collisional Dissociation (HCD) spectra or spectra of non-tryptic digests. Thus, rather than developing a new algorithm for each type of spectra, we develop a universal de novo sequencing algorithm called UniNovo that works well for all types of spectra or even for spectral pairs (e.g. CID/ETD spectral pairs). UniNovo uses an improved scoring function that captures the dependences between different ion types, where such dependencies are learned automatically using a modified offset frequency function. The performance of UniNovo is compared with PepNovo+, PEAKS and pNovo using various types of spectra. The results show that the performance of UniNovo is superior to other tools for ETD spectra and superior or comparable with others for CID and HCD spectra. UniNovo also estimates the probability that each reported reconstruction is correct, using simple statistics that are readily obtained from a small training dataset. We demonstrate that the estimation is accurate for all tested types of spectra (including CID, HCD, ETD, CID/ETD and HCD/ETD spectra of trypsin, LysC or AspN digested peptides). UniNovo is implemented in JAVA and tested on Windows, Ubuntu and OS X machines. UniNovo is available at http://proteomics.ucsd.edu/Software/UniNovo.html along with the manual.

  13. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir; Jabbour, Ghassan

    2013-01-01

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  14. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  15. Single molecule sequencing-guided scaffolding and correction of draft assemblies.

    Science.gov (United States)

    Zhu, Shenglong; Chen, Danny Z; Emrich, Scott J

    2017-12-06

    Although single molecule sequencing is still improving, the lengths of the generated sequences are inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies. We propose a disassembling-reassembling approach for both correcting structural errors in the draft assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal, we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a 2-approximation algorithm. Our experimental results show that our approach can improve the structural correctness of target assemblies in the cost of some contiguity, even with smaller amounts of long reads. In addition, our reassembling process can also serve as a competitive scaffolder relative to well-established assembly benchmarks.

  16. Optical burst switching based satellite backbone network

    Science.gov (United States)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  17. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial.

    Science.gov (United States)

    Onuma, Yoshinobu; Dudek, Dariusz; Thuesen, Leif; Webster, Mark; Nieman, Koen; Garcia-Garcia, Hector M; Ormiston, John A; Serruys, Patrick W

    2013-10-01

    This study sought to demonstrate the 5-year clinical and functional multislice computed tomography angiographic results after implantation of the fully resorbable everolimus-eluting scaffold (Absorb BVS, Abbott Vascular, Santa Clara, California). Multimodality imaging of the first-in-humans trial using a ABSORB BVS scaffold demonstrated at 2 years the bioresorption of the device while preventing restenosis. However, the long-term safety and efficacy of this therapy remain to be documented. In the ABSORB cohort A trial (ABSORB Clinical Investigation, Cohort A [ABSORB A] Everolimus-Eluting Coronary Stent System Clinical Investigation), 30 patients with a single de novo coronary artery lesion were treated with the fully resorbable everolimus-eluting Absorb scaffold at 4 centers. As an optional investigation in 3 of the 4 centers, the patients underwent multislice computed tomography (MSCT) angiography at 18 months and 5 years. Acquired MSCT data were analyzed at an independent core laboratory (Cardialysis, Rotterdam, the Netherlands) for quantitative analysis of lumen dimensions and was further processed for calculation of fractional flow reserve (FFR) at another independent core laboratory (Heart Flow, Redwood City, California). Five-year clinical follow-up is available for 29 patients. One patient withdrew consent after 6 months, but the vital status of this patient remains available. At 46 days, 1 patient experienced a single episode of chest pain and underwent a target lesion revascularization with a slight troponin increase after the procedure. At 5 years, the ischemia-driven major adverse cardiac event rate of 3.4% remained unchanged. Clopidogrel was discontinued in all but 1 patient. Scaffold thrombosis was not observed in any patient. Two noncardiac deaths were reported, 1 caused by duodenal perforation and the other from Hodgkin's disease. At 5 years, 18 patients underwent MSCT angiography. All scaffolds were patent, with a median minimal lumen area of 3

  18. The key role of the scaffold on the efficiency of dendrimer nanodrugs

    Science.gov (United States)

    Caminade, Anne-Marie; Fruchon, Séverine; Turrin, Cédric-Olivier; Poupot, Mary; Ouali, Armelle; Maraval, Alexandrine; Garzoni, Matteo; Maly, Marek; Furer, Victor; Kovalenko, Valeri; Majoral, Jean-Pierre; Pavan, Giovanni M.; Poupot, Rémy

    2015-01-01

    Dendrimers are well-defined macromolecules whose highly branched structure is reminiscent of many natural structures, such as trees, dendritic cells, neurons or the networks of kidneys and lungs. Nature has privileged such branched structures for increasing the efficiency of exchanges with the external medium; thus, the whole structure is of pivotal importance for these natural networks. On the contrary, it is generally believed that the properties of dendrimers are essentially related to their terminal groups, and that the internal structure plays the minor role of an ‘innocent' scaffold. Here we show that such an assertion is misleading, using convergent information from biological data (human monocytes activation) and all-atom molecular dynamics simulations on seven families of dendrimers (13 compounds) that we have synthesized, possessing identical terminal groups, but different internal structures. This work demonstrates that the scaffold of nanodrugs strongly influences their properties, somewhat reminiscent of the backbone of proteins. PMID:26169490

  19. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Science.gov (United States)

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    A four-step infiltration method has been developed to infiltrate La0.75Sr0.25MnO3+δ (LSM25) nanoparticles into porous structures (YSZ or LSM-YSZ backbones). The pore size distribution in the backbones is obtained either by using PMMA and/or graphites as pore formers or by leaching treatment of sa...... of samples with Ni remained in the YSZ structure at high temperatures. All impregnated backbones, presented Rs comparable to a standard screen printed cathode, which proves that LSM nanoparticles forms a pathway for electron conduction....

  1. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    International Nuclear Information System (INIS)

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-01-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely

  2. In-Stent Restenosis of Drug-Eluting Stents Compared With a Matched Group of Patients With De Novo Coronary Artery Stenosis.

    Science.gov (United States)

    Buchanan, Kyle D; Torguson, Rebecca; Rogers, Toby; Xu, Linzhi; Gai, Jiaxiang; Ben-Dor, Itsik; Suddath, William O; Satler, Lowell F; Waksman, Ron

    2018-03-13

    Drug-eluting stents (DES) significantly reduced the incidence of in-stent restenosis (ISR). However, ISR still exists in the contemporary DES era. Previously deemed to be a benign process, ISR leads to complex presentation and intervention. This study aimed to compare the presentation and outcome of DES-ISR versus de novo lesions. We performed a retrospective analysis of 11,666 patients receiving percutaneous coronary intervention from 2003 to 2017 and divided them into 2 groups by de novo stenosis and ISR. They were matched based on common cardiovascular risk factors at a 4:1 ratio, respectively. After matching, a total of 1,888 patients with 3,126 de novo lesions and 472 patients with 508 ISR lesions were analyzed. Patients with ISR presented more often with unstable angina (61% vs 45%, p stent technique and should motivate the continued development of fully bioresorbable scaffolds. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  4. Mechanism-Guided Discovery of an Esterase Scaffold with Promiscuous Amidase Activity

    Directory of Open Access Journals (Sweden)

    Charlotte Kürten

    2016-06-01

    Full Text Available The discovery and generation of biocatalysts with extended catalytic versatilities are of immense relevance in both chemistry and biotechnology. An enhanced atomistic understanding of enzyme promiscuity, a mechanism through which living systems acquire novel catalytic functions and specificities by evolution, would thus be of central interest. Using esterase-catalyzed amide bond hydrolysis as a model system, we pursued a simplistic in silico discovery program aiming for the identification of enzymes with an internal backbone hydrogen bond acceptor that could act as a reaction specificity shifter in hydrolytic enzymes. Focusing on stabilization of the rate limiting transition state of nitrogen inversion, our mechanism-guided approach predicted that the acyl hydrolase patatin of the α/β phospholipase fold would display reaction promiscuity. Experimental analysis confirmed previously unknown high amidase over esterase activity displayed by the first described esterase machinery with a protein backbone hydrogen bond acceptor to the reacting NH-group of amides. The present work highlights the importance of a fundamental understanding of enzymatic reactions and its potential for predicting enzyme scaffolds displaying alternative chemistries amenable to further evolution by enzyme engineering.

  5. Cost-effectiveness analysis of dolutegravir plus backbone compared with raltegravir plus backbone, darunavir+ritonavir plus backbone and efavirenz/tenofovir/emtricitabine in treatment naïve and experienced HIV-positive patients

    Directory of Open Access Journals (Sweden)

    Restelli U

    2017-06-01

    Full Text Available Umberto Restelli,1,2 Giuliano Rizzardini,3,4 Andrea Antinori,5 Adriano Lazzarin,6 Marzia Bonfanti,1 Paolo Bonfanti,7 Davide Croce1,2 1Centre for Research on Health Economics, Social and Health Care Management, LIUC – Università Cattaneo, Castellanza, Varese, Italy; 2School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; 3First and Second Divisions of Infectious Diseases, “Luigi Sacco” Hospital, Milan, Italy; 4School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; 5National Institute for Infectious Diseases “L Spallanzani”, Rome, 6Department of Infectious Diseases, San Raffaele Scientific Institute, 7Department of Infectious and Tropical Diseases, A Manzoni Hospital, Lecco, Italy Background: In January 2014, the European Medicines Agency issued a marketing authorization for dolutegravir (DTG, a second-generation integrase strand transfer inhibitor for HIV treatment. The study aimed at determining the incremental cost-effectiveness ratio (ICER of the use of DTG+backbone compared with raltegravir (RAL+backbone, darunavir (DRV+ritonavir(r+backbone and efavirenz/tenofovir/emtricitabine (EFV/TDF/FTC in HIV-positive treatment-naïve patients and compared with RAL+backbone in treatment-experienced patients, from the Italian National Health Service’s point of view.Materials and methods: A published Monte Carlo Individual Simulation Model (ARAMIS-DTG model was used to perform the analysis. Patients pass through mutually exclusive health states (defined in terms of diagnosis of HIV with or without opportunistic infections [OIs] and cardiovascular disease [CVD] and successive lines of therapy. The model considers costs (2014 and quality of life per monthly cycle in a lifetime horizon. Costs and quality-adjusted life years (QALYs are dependent on OI, CVD, AIDS events, adverse events and antiretroviral therapies.Results: In

  6. MRUniNovo: an efficient tool for de novo peptide sequencing utilizing the hadoop distributed computing framework.

    Science.gov (United States)

    Li, Chuang; Chen, Tao; He, Qiang; Zhu, Yunping; Li, Kenli

    2017-03-15

    Tandem mass spectrometry-based de novo peptide sequencing is a complex and time-consuming process. The current algorithms for de novo peptide sequencing cannot rapidly and thoroughly process large mass spectrometry datasets. In this paper, we propose MRUniNovo, a novel tool for parallel de novo peptide sequencing. MRUniNovo parallelizes UniNovo based on the Hadoop compute platform. Our experimental results demonstrate that MRUniNovo significantly reduces the computation time of de novo peptide sequencing without sacrificing the correctness and accuracy of the results, and thus can process very large datasets that UniNovo cannot. MRUniNovo is an open source software tool implemented in java. The source code and the parameter settings are available at http://bioinfo.hupo.org.cn/MRUniNovo/index.php. s131020002@hnu.edu.cn ; taochen1019@163.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. De novo assembly and phasing of a Korean human genome.

    Science.gov (United States)

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  8. The Impact of Post-Procedural Asymmetry, Expansion, and Eccentricity of Bioresorbable Everolimus-Eluting Scaffold and Metallic Everolimus-Eluting Stent on Clinical Outcomes in the ABSORB II Trial.

    Science.gov (United States)

    Suwannasom, Pannipa; Sotomi, Yohei; Ishibashi, Yuki; Cavalcante, Rafael; Albuquerque, Felipe N; Macaya, Carlos; Ormiston, John A; Hill, Jonathan; Lang, Irene M; Egred, Mohaned; Fajadet, Jean; Lesiak, Maciej; Tijssen, Jan G; Wykrzykowska, Joanna J; de Winter, Robbert J; Chevalier, Bernard; Serruys, Patrick W; Onuma, Yoshinobu

    2016-06-27

    The study sought to investigate the relationship between post-procedural asymmetry, expansion, and eccentricity indices of metallic everolimus-eluting stent (EES) and bioresorbable vascular scaffold (BVS) and their respective impact on clinical events at 1-year follow-up. Mechanical properties of a fully BVS are inherently different from those of permanent metallic stent. The ABSORB II (A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions) trial compared the BVS and metallic EES in the treatment of a de novo coronary artery stenosis. Protocol-mandated intravascular ultrasound imaging was performed pre- and post-procedure in 470 patients (162 metallic EES and 308 BVS). Asymmetry index (AI) was calculated per lesion as: (1 - minimum scaffold/stent diameter/maximum scaffold/stent diameter). Expansion index and optimal scaffold/stent expansion followed the definition of the MUSIC (Multicenter Ultrasound Stenting in Coronaries) study. Eccentricity index (EI) was calculated as the ratio of minimum and maximum scaffold/stent diameter per cross section. The incidence of device-oriented composite endpoint (DoCE) was collected. Post-procedure, the metallic EES group was more symmetric and concentric than the BVS group. Only 8.0% of the BVS arm and 20.0% of the metallic EES arm achieved optimal scaffold/stent expansion (p 0.30 is an independent predictor of DoCE (hazard ratio: 3.43; 95% confidence interval: 1.08 to 10.92; p = 0.037). BVS implantation is more frequently associated with post-procedural asymmetric and eccentric morphology compared to metallic EES. Post-procedural devices asymmetry were independently associated with DoCE following percutaneous coronary intervention. However, this approach should be viewed as hypothesis generating due to low event rates. (ABSORB II Randomized Controlled Trial [ABSORB II]; NCT01425281). Copyright © 2016 American

  9. Periodontal ligament stem/progenitor cells with protein-releasing scaffolds for cementum formation and integration on dentin surface.

    Science.gov (United States)

    Cho, Hankyu; Tarafder, Solaiman; Fogge, Michael; Kao, Kristy; Lee, Chang H

    2016-11-01

    Purpose/Aim: Cementogenesis is a critical step in periodontal tissue regeneration given the essential role of cementum in anchoring teeth to the alveolar bone. This study is designed to achieve integrated cementum formation on the root surfaces of human teeth using growth factor-releasing scaffolds with periodontal ligament stem/progenitor cells (PDLSCs). Human PDLSCs were sorted by CD146 expression, and characterized using CFU-F assay and induced multi-lineage differentiation. Polycaprolactone scaffolds were fabricated using 3D printing, embedded with poly(lactic-co-glycolic acids) (PLGA) microspheres encapsulating connective tissue growth factor (CTGF), bone morphogenetic protein-2 (BMP-2), or bone morphogenetic protein-7 (BMP-7). After removing cementum on human tooth roots, PDLSC-seeded scaffolds were placed on the exposed dentin surface. After 6-week culture with cementogenic/osteogenic medium, cementum formation and integration were evaluated by histomorphometric analysis, immunofluorescence, and qRT-PCR. Periodontal ligament (PDL) cells sorted by CD146 and single-cell clones show a superior clonogenecity and multipotency as compared with heterogeneous populations. After 6 weeks, all the growth factor-delivered groups showed resurfacing of dentin with a newly formed cementum-like layer as compared with control. BMP-2 and BMP-7 showed de novo formation of tissue layers significantly thicker than all the other groups, whereas CTGF and BMP-7 resulted in significantly improved integration on the dentin surface. The de novo mineralized tissue layer seen in BMP-7-treated samples expressed cementum matrix protein 1 (CEMP1). Consistently, BMP-7 showed a significant increase in CEMP1 mRNA expression. Our findings represent important progress in stem cell-based cementum regeneration as an essential part of periodontium regeneration.

  10. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin

    2011-01-01

    algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... as the initial tag clustering result and then assign the rest tags into the corresponding clusters based on the similarity. Experimental results on three real world datasets namely MedWorm, MovieLens and Dmoz demonstrate the effectiveness and the superiority of the proposed method against the traditional...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...

  11. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define......Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...

  12. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data

    Directory of Open Access Journals (Sweden)

    Duan Jialei

    2012-08-01

    Full Text Available Abstract Background Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq. The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. Results In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. Conclusions It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly.

  13. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines.

    Science.gov (United States)

    Tian, Sheng; Li, Youyong; Wang, Junmei; Xu, Xiaojie; Xu, Lei; Wang, Xiaohong; Chen, Lei; Hou, Tingjun

    2013-01-21

    In order to better understand the structural features of natural compounds from traditional Chinese medicines, the scaffold architectures of drug-like compounds in MACCS-II Drug Data Report (MDDR), non-drug-like compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine Compound Database (TCMCD) were explored and compared. First, the different scaffolds were extracted from ACD, MDDR and TCMCD by using three scaffold representations, including Murcko frameworks, Scaffold Tree, and ring systems with different complexity and side chains. Then, by examining the accumulative frequency of the scaffolds in each dataset, we observed that the Level 1 scaffolds of the Scaffold Tree offer advantages over the other scaffold architectures to represent the scaffold diversity of the compound libraries. By comparing the similarity of the scaffold architectures presented in MDDR, ACD and TCMCD, structural overlaps were observed not only between MDDR and TCMCD but also between MDDR and ACD. Finally, Tree Maps were used to cluster the Level 1 scaffolds of the Scaffold Tree and visualize the scaffold space of the three datasets. The analysis of the scaffold architectures of MDDR, ACD and TCMCD shows that, on average, drug-like molecules in MDDR have the highest diversity while natural compounds in TCMCD have the highest complexity. According to the Tree Maps, it can be observed that the Level 1 scaffolds present in MDDR have higher diversity than those presented in TCMCD and ACD. However, some representative scaffolds in MDDR with high frequency show structural similarities to those in TCMCD and ACD, suggesting that some scaffolds in TCMCD and ACD may be potentially drug-like fragments for fragment-based and de novo drug design.

  14. Determination of backbone chain direction of PDA using FFM

    Science.gov (United States)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  15. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads.

    Science.gov (United States)

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo; Zhu, Shilin; Shi, Daihu; McDill, Joshua; Yang, Linfeng; Hawkins, Simon; Neutelings, Godfrey; Datla, Raju; Lambert, Georgina; Galbraith, David W; Grassa, Christopher J; Geraldes, Armando; Cronk, Quentin C; Cullis, Christopher; Dash, Prasanta K; Kumar, Polumetla A; Cloutier, Sylvie; Sharpe, Andrew G; Wong, Gane K-S; Wang, Jun; Deyholos, Michael K

    2012-11-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  16. On Backbone Structure for a Future Multipurpose Network

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Cuevas, Ruben; Riaz, M. Tahir

    2008-01-01

    Telecommunications are evolving towards the unification of services and infrastructures. This unification must be achieved at the highest hierarchical level for a complete synergy of services. Therefore, one of the requirements is a multipurpose backbone network capable of supporting all the curr......Telecommunications are evolving towards the unification of services and infrastructures. This unification must be achieved at the highest hierarchical level for a complete synergy of services. Therefore, one of the requirements is a multipurpose backbone network capable of supporting all...

  17. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    Science.gov (United States)

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Solution, solid phase and computational structures of apicidin and its backbone-reduced analogs.

    Science.gov (United States)

    Kranz, Michael; Murray, Peter John; Taylor, Stephen; Upton, Richard J; Clegg, William; Elsegood, Mark R J

    2006-06-01

    The recently isolated broad-spectrum antiparasitic apicidin (1) is one of the few naturally occurring cyclic tetrapeptides (CTP). Depending on the solvent, the backbone of 1 exhibits two gamma-turns (in CH(2)Cl(2)) or a beta-turn (in DMSO), differing solely in the rotation of the plane of one of the amide bonds. In the X-ray crystal structure, the peptidic C==Os and NHs are on opposite sides of the backbone plane, giving rise to infinite stacks of cyclotetrapeptides connected by three intermolecular hydrogen bonds between the backbones. Conformational searches (Amber force field) on a truncated model system of 1 confirm all three backbone conformations to be low-energy states. The previously synthesized analogs of 1 containing a reduced amide bond exhibit the same backbone conformation as 1 in DMSO, which is confirmed further by the X-ray crystal structure of a model system of the desoxy analogs of 1. This similarity helps in explaining why the desoxy analogs retain some of the antiprotozoal activities of apicidin. The backbone-reduction approach designed to facilitate the cyclization step of the acyclic precursors of the CTPs seems to retain the conformational preferences of the parent peptide backbone.

  19. DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra.

    Science.gov (United States)

    Muth, Thilo; Weilnböck, Lisa; Rapp, Erdmann; Huber, Christian G; Martens, Lennart; Vaudel, Marc; Barsnes, Harald

    2014-02-07

    De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com .

  20. ExScal Backbone Network Architecture

    Science.gov (United States)

    2005-01-01

    802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz

  1. Underestimated Halogen Bonds Forming with Protein Backbone in Protein Data Bank.

    Science.gov (United States)

    Zhang, Qian; Xu, Zhijian; Shi, Jiye; Zhu, Weiliang

    2017-07-24

    Halogen bonds (XBs) are attracting increasing attention in biological systems. Protein Data Bank (PDB) archives experimentally determined XBs in biological macromolecules. However, no software for structure refinement in X-ray crystallography takes into account XBs, which might result in the weakening or even vanishing of experimentally determined XBs in PDB. In our previous study, we showed that side-chain XBs forming with protein side chains are underestimated in PDB on the basis of the phenomenon that the proportion of side-chain XBs to overall XBs decreases as structural resolution becomes lower and lower. However, whether the dominant backbone XBs forming with protein backbone are overlooked is still a mystery. Here, with the help of the ratio (R F ) of the observed XBs' frequency of occurrence to their frequency expected at random, we demonstrated that backbone XBs are largely overlooked in PDB, too. Furthermore, three cases were discovered possessing backbone XBs in high resolution structures while losing the XBs in low resolution structures. In the last two cases, even at 1.80 Å resolution, the backbone XBs were lost, manifesting the urgent need to consider XBs in the refinement process during X-ray crystallography study.

  2. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  3. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds

    International Nuclear Information System (INIS)

    Hockaday, L A; Kang, K H; Colangelo, N W; Cheung, P Y C; Duan, B; Wu, J; Bonassar, L J; Butcher, J T; Malone, E; Lipson, H; Girardi, L N; Chu, C C

    2012-01-01

    The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for the long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomic and axisymmetric aortic valve geometries (root wall and tri-leaflets) with 12–22 mm inner diameters (ID) were 3D printed with poly-ethylene glycol-diacrylate (PEG-DA) hydrogels (700 or 8000 MW) supplemented with alginate. 3D printing geometric accuracy was quantified and compared using Micro-CT. Porcine aortic valve interstitial cells (PAVIC) seeded scaffolds were cultured for up to 21 days. Results showed that blended PEG-DA scaffolds could achieve over tenfold range in elastic modulus (5.3±0.9 to 74.6±1.5 kPa). 3D printing times for valve conduits with mechanically contrasting hydrogels were optimized to 14 to 45 min, increasing linearly with conduit diameter. Larger printed valves had greater shape fidelity (93.3±2.6, 85.1±2.0 and 73.3±5.2% for 22, 17 and 12 mm ID porcine valves; 89.1±4.0, 84.1±5.6 and 66.6±5.2% for simplified valves). PAVIC seeded scaffolds maintained near 100% viability over 21 days. These results demonstrate that 3D hydrogel printing with controlled photocrosslinking can rapidly fabricate anatomical heterogeneous valve conduits that support cell engraftment. (paper)

  4. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics.

    Science.gov (United States)

    Palermo, Vincenzo; Schwartz, Erik; Finlayson, Chris E; Liscio, Andrea; Otten, Matthijs B J; Trapani, Sara; Müllen, Klaus; Beljonne, David; Friend, Richard H; Nolte, Roeland J M; Rowan, Alan E; Samorì, Paolo

    2010-02-23

    The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine-tuning of their self-assembly properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre-programmed noncovalent forces. The control and fine-tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it possible to unravel the physical and chemical properties of this system across multiple length scales. The (opto)electronic properties of the new functional architectures have been explored by constructing prototypes of field-effect transistors and solar cells, thereby providing direct insight into the relationship between architecture and function.

  5. Backbone Diversity Analysis in Catalyst Design

    NARCIS (Netherlands)

    Maldonado, A.G.; Hageman, J.A.; Mastroianni, S.; Rothenberg, G.

    2009-01-01

    We present a computer-based heuristic framework for designing libraries of homogeneous catalysts. In this approach, a set of given bidentate ligand-metal complexes is disassembled into key substructures (building blocks). These include metal atoms, ligating groups, backbone groups, and residue

  6. Exact Solutions for Internuclear Vectors and Backbone Dihedral Angles from NH Residual Dipolar Couplings in Two Media, and their Application in a Systematic Search Algorithm for Determining Protein Backbone Structure

    International Nuclear Information System (INIS)

    Wang Lincong; Donald, Bruce Randall

    2004-01-01

    We have derived a quartic equation for computing the direction of an internuclear vector from residual dipolar couplings (RDCs) measured in two aligning media, and two simple trigonometric equations for computing the backbone (φ,ψ) angles from two backbone vectors in consecutive peptide planes. These equations make it possible to compute, exactly and in constant time, the backbone (φ,ψ) angles for a residue from RDCs in two media on any single backbone vector type. Building upon these exact solutions we have designed a novel algorithm for determining a protein backbone substructure consisting of α-helices and β-sheets. Our algorithm employs a systematic search technique to refine the conformation of both α-helices and β-sheets and to determine their orientations using exclusively the angular restraints from RDCs. The algorithm computes the backbone substructure employing very sparse distance restraints between pairs of α-helices and β-sheets refined by the systematic search. The algorithm has been demonstrated on the protein human ubiquitin using only backbone NH RDCs, plus twelve hydrogen bonds and four NOE distance restraints. Further, our results show that both the global orientations and the conformations of α-helices and β-strands can be determined with high accuracy using only two RDCs per residue. The algorithm requires, as its input, backbone resonance assignments, the identification of α-helices and β-sheets as well as sparse NOE distance and hydrogen bond restraints.Abbreviations: NMR - nuclear magnetic resonance; RDC - residual dipolar coupling; NOE - nuclear Overhauser effect; SVD - singular value decomposition; DFS - depth-first search; RMSD - root mean square deviation; POF - principal order frame; PDB - protein data bank; SA - simulated annealing; MD - molecular dynamics

  7. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones

    NARCIS (Netherlands)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-01-01

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or

  8. Nonribosomal biosynthesis of backbone-modified peptides

    Science.gov (United States)

    Niquille, David L.; Hansen, Douglas A.; Mori, Takahiro; Fercher, David; Kries, Hajo; Hilvert, Donald

    2018-03-01

    Biosynthetic modification of nonribosomal peptide backbones represents a potentially powerful strategy to modulate the structure and properties of an important class of therapeutics. Using a high-throughput assay for catalytic activity, we show here that an L-Phe-specific module of an archetypal nonribosomal peptide synthetase can be reprogrammed to accept and process the backbone-modified amino acid (S)-β-Phe with near-native specificity and efficiency. A co-crystal structure with a non-hydrolysable aminoacyl-AMP analogue reveals the origins of the 40,000-fold α/β-specificity switch, illuminating subtle but precise remodelling of the active site. When the engineered catalyst was paired with downstream module(s), (S)-β-Phe-containing peptides were produced at preparative scale in vitro (~1 mmol) and high titres in vivo (~100 mg l-1), highlighting the potential of biosynthetic pathway engineering for the construction of novel nonribosomal β-frameworks.

  9. Gender features of functional condition of backbone of teenagers with scoliotic posture

    Directory of Open Access Journals (Sweden)

    Sergiy Afanasiev

    2016-10-01

    Full Text Available Purpose: to study mobility of backbone, endurance of muscles of a trunk and to define gender features of functional condition of backbone at children of the middle school age with scoliotic posture depending on the direction of the top of arch of curvature of spine. Material & Methods: 40 girls and 40 boys, including 18 girls and 18 boys with the right-side deformation of backbone in the thoracic department, the left-side – 22 girls and 22 boys are examined. Results: features of changes of indicators, depending on sex of children and frontage of the top of arch of curvature of spine column, are revealed when studying the level of flexibility of backbone and endurance of muscles of a trunk at children of the middle school age with scoliotic posture. Conclusions: it is established that the level of decrease in flexibility of backbone is higher at boys, than at girls, whereas indicators of contractile ability and tone of muscles of "muscular corset" are higher at boys.

  10. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    Science.gov (United States)

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair.

    Science.gov (United States)

    Li, Jian; Jahr, Holger; Zheng, Wei; Ren, Pei-Gen

    2017-09-07

    The reconstruction of critically sized bone defects remains a serious clinical problem because of poor angiogenesis within tissue-engineered scaffolds during repair, which gives rise to a lack of sufficient blood supply and causes necrosis of the new tissues. Rapid vascularization is a vital prerequisite for new tissue survival and integration with existing host tissue. The de novo generation of vasculature in scaffolds is one of the most important steps in making bone regeneration more efficient, allowing repairing tissue to grow into a scaffold. To tackle this problem, the genetic modification of a biomaterial scaffold is used to accelerate angiogenesis and osteogenesis. However, visualizing and tracking in vivo blood vessel formation in real-time and in three-dimensional (3D) scaffolds or new bone tissue is still an obstacle for bone tissue engineering. Multiphoton microscopy (MPM) is a novel bio-imaging modality that can acquire volumetric data from biological structures in a high-resolution and minimally-invasive manner. The objective of this study was to visualize angiogenesis with multiphoton microscopy in vivo in a genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. PLGA/nHAp scaffolds were functionalized for the sustained delivery of a growth factor pdgf-b gene carrying lentiviral vectors (LV-pdgfb) in order to facilitate angiogenesis and to enhance bone regeneration. In a scaffold-implanted calvarial critical bone defect mouse model, the blood vessel areas (BVAs) in PHp scaffolds were significantly higher than in PH scaffolds. Additionally, the expression of pdgf-b and angiogenesis-related genes, vWF and VEGFR2, increased correspondingly. MicroCT analysis indicated that the new bone formation in the PHp group dramatically improved compared to the other groups. To our knowledge, this is the first time multiphoton microscopy was used in bone tissue-engineering to investigate angiogenesis in a 3D bio-degradable scaffold in

  12. Spatial distribution and temporal evolution of scattering centers by optical coherence tomography in the poly(L-lactide) backbone of a bioresorbable vascular scaffold

    DEFF Research Database (Denmark)

    Gutiérrez-Chico, Juan Luis; Radu, Maria D; Diletti, Roberto

    2012-01-01

    Scattering centers (SC) are often observed with optical coherence tomography (OCT) in some struts of bioresorbable vascular scaffolds (BVS). These SC might be caused by crazes in the polymer during crimp-deployment (more frequent at inflection points) or by other processes, such as physiological ...

  13. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  14. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species

    Directory of Open Access Journals (Sweden)

    Hornett Emily A

    2012-08-01

    Full Text Available Abstract Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

  15. Pesquisa de novos elementos Pesquisa de novos elementos

    Directory of Open Access Journals (Sweden)

    Gil Mário de Macedo Grassi

    1978-11-01

    Full Text Available The present study deals with the discovery of new elements synthesized by man. The introduction discusses in general the theories about nuclear transmutation, which is the method employed in these syntheses. The study shows the importance of the Periodical Table since it is through this table that one can reach a prevision of new elements and its, properties. The discoveries of the transuranic elements, together wich the data of their first preparations are also tabulated The stability of these elements is also discussed, and future speculations are showedNeste trabalho estuda-se, teoricamente, a descoberta de novos elementos sintetizados pelo homem Na introdução apresentamos um apanhado geral sobre as teorias a respeito da transmutação nuclear, que é o método utilizado nestas sínteses. Em seguida, mostramos a importância da Tabela Periódica, pois é através dela que se chega à previsão dos novos elementos e de suas propriedades. As descobertas dos transurânicos, Já realizadas com êxito, juntamente com os dados de suas primeiras preparações são tabelados. A estabilidade destes novos elementos também é discutida, e apresentadas futuras especulações.

  16. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    Science.gov (United States)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  17. Some fractal properties of the percolating backbone in two dimensions

    International Nuclear Information System (INIS)

    Laidlaw, D.; MacKay, G.; Jan, N.

    1987-01-01

    A new algorithm is presented, based on elements of artificial intelligence theory, to determine the fractal properties of the backbone of the incipient infinite cluster. It is found that fractal dimensionality of the backbone is d/sub f//sup BB/ = 1.61 +/- 0.01, the chemical dimensionality is d/sub t/ = 1.40 +/- 0.01, and the fractal dimension of the minimum path d/sub min/ = 1.15 +/- 0.02 for the two-dimensional triangular lattice

  18. Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching

    Directory of Open Access Journals (Sweden)

    Bron Peter A

    2012-09-01

    Full Text Available Abstract Background Specific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background. Results Through genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-κB reporter cells expressing Toll like receptor (TLR-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-α after stimulation with the WTA mutants as compared to the wild-type. Conclusions The study presented here correlates structural differences in WTA to their functional characteristics, thereby

  19. Redox-controlled backbone dynamics of human cytochrome c revealed by 15N NMR relaxation measurements

    International Nuclear Information System (INIS)

    Sakamoto, Koichi; Kamiya, Masakatsu; Uchida, Takeshi; Kawano, Keiichi; Ishimori, Koichiro

    2010-01-01

    Research highlights: → The dynamic parameters for the backbone dynamics in Cyt c were determined. → The backbone mobility of Cyt c is highly restricted due to the covalently bound heme. → The backbone mobility of Cyt c is more restricted upon the oxidation of the heme. → The redox-dependent dynamics are shown in the backbone of Cyt c. → The backbone dynamics of Cyt c would regulate the electron transfer from Cyt c. -- Abstract: Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D 15 N NMR relaxation experiments. 15 N T 1 and T 2 values and 1 H- 15 N NOEs of uniformly 15 N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S 2 ), the effective correlation time for internal motion (τ e ), the 15 N exchange broadening contributions (R ex ) for each residue, and the overall correlation time (τ m ) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S 2 value was increased from 0.88 ± 0.01 to 0.92 ± 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S 2 values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.

  20. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

    International Nuclear Information System (INIS)

    Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles

    2003-01-01

    We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms

  1. In vivo serial invasive imaging of the second-generation drug-eluting absorbable metal scaffold (Magmaris - DREAMS 2G) in de novo coronary lesions: Insights from the BIOSOLVE-II First-In-Man Trial.

    Science.gov (United States)

    Garcia-Garcia, Hector M; Haude, Michael; Kuku, Kayode; Hideo-Kajita, Alexandre; Ince, Hüseyin; Abizaid, Alexandre; Tölg, Ralph; Lemos, Pedro Alves; von Birgelen, Clemens; Christiansen, Evald Høj; Wijns, William; Escaned, Javier; Dijkstra, Jouke; Waksman, Ron

    2018-03-15

    Bioresorbable scaffolds may confer clinical benefit in long-term studies; early mechanistic studies using intravascular imaging have provided insightful information about the immediate and mid-term local serial effects of BRS on the coronary vessel wall. We assessed baseline, 6- and 12-month imaging data of the drug-eluting absorbable metal scaffold (DREAMS 2G). The international, first-in-man BIOSOLVE-II trial enrolled 123 patients with up to 2 de novo lesions (in vessels of 2.2 to 3.7mm). Angiographic based vasomotion, curvature and angulation were assessed; intravascular ultrasound (IVUS) derived radiofrequency (RF) data analysis and echogenicity were evaluated; optical coherence tomography (OCT) attenuation and backscattering analysis were also performed. There was hardly any difference in curvature between pre-procedure and 12months (-0.0019; p=0.48). The change in angulation from pre- to 12months was negligible (-3.58°; 95% CI [-5.97, -1.20]), but statistically significant. At 6months, the change in QCA based minimum lumen diameter in response to high dose of acetylcholine and IVUS-RF necrotic core percentage showed an inverse relationship (estimate of -0.489; p=0.055) and with fibrous volume a positive relationship (estimate of 0.53, p=0.035). Bioresorption analysis by OCT showed that the maximum attenuation values decreased significantly from post-procedure at 6months (Δ 6months vs. post-proc. is -13.5 [95% CI -14.6, -12.4]) and at 12months (Δ 12months vs. post-proc. is -14.0 [95% CI -15.4, -12.6]). By radiofrequency data, the percentage of dense calcium decreased significantly from post-procedure at 6months and at 12months. Likewise, by echogenicity, hyperechogenic structures decreased significantly from post-procedure at 6months; thereafter, they remained unchanged. Following implantation of DREAMS 2G, restoration of the vessel geometry, vasomotion and bioresorption signs were observed at up to 12months; importantly, these changes occurred with

  2. MCBT: Multi-Hop Cluster Based Stable Backbone Trees for Data Collection and Dissemination in WSNs

    Directory of Open Access Journals (Sweden)

    Tae-Jin Lee

    2009-07-01

    Full Text Available We propose a stable backbone tree construction algorithm using multi-hop clusters for wireless sensor networks (WSNs. The hierarchical cluster structure has advantages in data fusion and aggregation. Energy consumption can be decreased by managing nodes with cluster heads. Backbone nodes, which are responsible for performing and managing multi-hop communication, can reduce the communication overhead such as control traffic and minimize the number of active nodes. Previous backbone construction algorithms, such as Hierarchical Cluster-based Data Dissemination (HCDD and Multicluster, Mobile, Multimedia radio network (MMM, consume energy quickly. They are designed without regard to appropriate factors such as residual energy and degree (the number of connections or edges to other nodes of a node for WSNs. Thus, the network is quickly disconnected or has to reconstruct a backbone. We propose a distributed algorithm to create a stable backbone by selecting the nodes with higher energy or degree as the cluster heads. This increases the overall network lifetime. Moreover, the proposed method balances energy consumption by distributing the traffic load among nodes around the cluster head. In the simulation, the proposed scheme outperforms previous clustering schemes in terms of the average and the standard deviation of residual energy or degree of backbone nodes, the average residual energy of backbone nodes after disseminating the sensed data, and the network lifetime.

  3. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.

    Science.gov (United States)

    Hartenfeller, Markus; Proschak, Ewgenij; Schüller, Andreas; Schneider, Gisbert

    2008-07-01

    We present a fast stochastic optimization algorithm for fragment-based molecular de novo design (COLIBREE, Combinatorial Library Breeding). The search strategy is based on a discrete version of particle swarm optimization. Molecules are represented by a scaffold, which remains constant during optimization, and variable linkers and side chains. Different linkers represent virtual chemical reactions. Side-chain building blocks were obtained from pseudo-retrosynthetic dissection of large compound databases. Here, ligand-based design was performed using chemically advanced template search (CATS) topological pharmacophore similarity to reference ligands as fitness function. A weighting scheme was included for particle swarm optimization-based molecular design, which permits the use of many reference ligands and allows for positive and negative design to be performed simultaneously. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor subtype-selective agonists. The results demonstrate the ability of the technique to cope with large combinatorial chemistry spaces and its applicability to focused library design. The technique was able to perform exploitation of a known scheme and at the same time explorative search for novel ligands within the framework of a given molecular core structure. It thereby represents a practical solution for compound screening in the early hit and lead finding phase of a drug discovery project.

  4. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  5. Versatile phosphite ligands based on silsesquioxane backbones

    NARCIS (Netherlands)

    van der Vlugt, JI; Ackerstaff, J; Dijkstra, TW; Mills, AM; Kooijman, H; Spek, AL; Meetsma, A; Abbenhuis, HCL; Vogt, D

    Silsesquioxanes are employed as ligand backbones for the synthesis of novel phosphite compounds with 3,3'-5,5'-tetrakis(tert-butyl)-2,2'-di-oxa-1,1'-biphenyl substituents. Both mono- and bidentate phosphites are prepared in good yields. Two types of silsesquioxanes are employed as starting

  6. de novo'' aneurysms following endovascular procedures

    International Nuclear Information System (INIS)

    Briganti, F.; Cirillo, S.; Caranci, F.; Esposito, F.; Maiuri, F.

    2002-01-01

    Two personal cases of ''de novo'' aneurysms of the anterior communicating artery (ACoA) occurring 9 and 4 years, respectively, after endovascular carotid occlusion are described. A review of the 30 reported cases (including our own two) of ''de novo'' aneurysms after occlusion of the major cerebral vessels has shown some features, including a rather long time interval after the endovascular procedure of up to 20-25 years (average 9.6 years), a preferential ACoA (36.3%) and internal carotid artery-posterior communicating artery (ICA-PCoA) (33.3%) location of the ''de novo'' aneurysms, and a 10% rate of multiple aneurysms. These data are compared with those of the group of reported spontaneous ''de novo'' aneurysms after SAH or previous aneurysm clipping. We agree that the frequency of ''de novo'' aneurysms after major-vessel occlusion (two among ten procedures in our series, or 20%) is higher than commonly reported (0 to 11%). For this reason, we suggest that patients who have been submitted to endovascular major-vessel occlusion be followed up for up to 20-25 years after the procedure, using non-invasive imaging studies such as MR angiography and high-resolution CT angiography. On the other hand, periodic digital angiography has a questionable risk-benefit ratio; it may be used when a ''de novo'' aneurysm is detected or suspected on non-invasive studies. The progressive enlargement of the ACoA after carotid occlusion, as described in our case 1, must be considered a radiological finding of risk for ''de novo'' aneurysm formation. (orig.)

  7. Serial 5-Year Evaluation of Side Branches Jailed by Bioresorbable Vascular Scaffolds Using 3-Dimensional Optical Coherence Tomography: Insights From the ABSORB Cohort B Trial (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions).

    Science.gov (United States)

    Onuma, Yoshinobu; Grundeken, Maik J; Nakatani, Shimpei; Asano, Taku; Sotomi, Yohei; Foin, Nicolas; Ng, Jaryl; Okamura, Takayuki; Wykrzykowska, Joanna J; de Winter, Robbert J; van Geuns, Robert-Jan; Koolen, Jacques; Christiansen, Evald; Whitbourn, Robert; McClean, Dougal; Smits, Pieter; Windecker, Stephan; Ormiston, John A; Serruys, Patrick W

    2017-09-01

    The long-term fate of Absorb bioresorbable vascular scaffold (Abbott Vascular, Santa Clara, CA) struts jailing side branch ostia has not been clarified. We therefore evaluate serially (post-procedure and at 6 months, 1, 2, 3, and 5 years) the appearance and fate of jailed Absorb bioresorbable vascular scaffold struts. We performed 3-dimensional optical coherence tomographic analysis of the ABSORB Cohort B trial (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions) up to 5 years using a novel, validated cut-plane analysis method. We included 29 patients with a total of 85 side branch ostia. From the 12 ostia which could be assessed in true serial fashion, 7 showed a pattern of initial decrease in the ostial area free from struts, followed by an increase in strut-free ostial area toward the end of the 5 years of follow-up. In a repeated-measures analysis with time as fixed variable and ostial area free from struts as dependent variable, we showed a numeric decrease in the estimated ostial area free from struts from 0.75 mm 2 (baseline) to 0.68 mm 2 (first follow-up visit at 6 months or 1 year) and 0.63 mm 2 (second follow-up visit at 2 or 3 years). However, from the second visit to the 5-year follow-up visit, there was a statistically significant increase from 0.63 to 0.89 mm 2 ( P =0.001). Struts overlying an ostium divided the ostium into compartments, and the number of these compartments decreased over time. This study showed that in most cases, the side branch ostial area free from struts initially decreased. However, with full scaffold bioresorption, the ostial area free from scaffold increased between 2 to 3 years and 5 years in the vast majority of patients. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00856856. © 2017 American Heart Association, Inc.

  8. Integrative technology of massage manipulations in physical rehabilitation of students with backbone pathology

    Directory of Open Access Journals (Sweden)

    V.I. Kotelevskiy

    2016-06-01

    Full Text Available Purpose:to analyze effectiveness of massage manipulations’ integrative technology in physical rehabilitation of higher educational establishments’ students with backbone pathology. Material: in the research 195 students of 19-20 years’ age participated. All students had periodical initial neurological symptoms of functional pathology and first stage osteochondrosis in different parts of backbone. We conducted a course of 10 sessions of therapeutic massage. Results: the sense of massage integrative technology is that every specialist shall have certain optimal set of skills and knowledge in technique of manipulation sessions of massage. Integrative technology of massage manipulations consists of psycho-corrective and manipulation parts. It considers psycho-somatic, mechanical and reflex rehabilitation aspects of patho-genesis of backbone functional disorders and vertebral osteochondrosis. Conclusions: depending on pathological process or backbone functional state of every person (peculiarities of his (her psycho-somatic status or, even, his (her bents. Individual approach in choice of strategy, tactic and methodological provisioning of massage session shall be used.

  9. Parallel fabrication of macroporous scaffolds.

    Science.gov (United States)

    Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal

    2018-07-01

    Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.

  10. Selective backbone labelling of ILV methyl labelled proteins

    International Nuclear Information System (INIS)

    Sibille, Nathalie; Hanoulle, Xavier; Bonachera, Fanny; Verdegem, Dries; Landrieu, Isabelle; Wieruszeski, Jean-Michel; Lippens, Guy

    2009-01-01

    Adding the 13 C labelled 2-keto-isovalerate and 2-oxobutanoate precursors to a minimal medium composed of 12 C labelled glucose instead of the commonly used ( 2 D, 13 C) glucose leads not only to the 13 C labelling of (I, L, V) methyls but also to the selective 13 C labelling of the backbone C α and CO carbons of the Ile and Val residues. As a result, the backbone ( 1 H, 15 N) correlations of the Ile and Val residues and their next neighbours in the (i + 1) position can be selectively identified in HN(CA) and HN(CO) planes. The availability of a selective HSQC spectrum corresponding to the sole amide resonances of the Ile and Val residues allows connecting them to their corresponding methyls by the intra-residue NOE effect, and should therefore be applicable to larger systems

  11. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Hu, Ye; Bajorath, Jürgen

    2016-01-01

    Aim: Computational design of and systematic search for a new type of molecular scaffolds termed analog series-based scaffolds. Materials & methods: From currently available bioactive compounds, analog series were systematically extracted, key compounds identified and new scaffolds isolated from them. Results: Using our computational approach, more than 12,000 scaffolds were extracted from bioactive compounds. Conclusion: A new scaffold definition is introduced and a computational methodology developed to systematically identify such scaffolds, yielding a large freely available scaffold knowledge base. PMID:28116132

  12. Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft.

    Science.gov (United States)

    Lau, Ting Ting; Leong, Wenyan; Peck, Yvonne; Su, Kai; Wang, Dong-An

    2015-01-01

    The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

  13. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Science.gov (United States)

    Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2014-01-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width × Length, 1 × 2 cm(2)) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study

  14. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Directory of Open Access Journals (Sweden)

    Yeun Goo Chung

    Full Text Available Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4 (Width × Length, 1 × 2 cm(2 in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS implants (Group 2, N = 4 or urethrotomy alone (Group 3, N = 3. Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome, immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results

  15. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta......-amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area...

  16. Analisa Perbandingan Quality Of Service (QoS) pada Jaringan Backbone Non-MPLS dengan Jaringan Backbone MPLS Menggunakan Routing Protocol OSPF di PT. Telekomunikasi Indonesia, Tbk. Witel Ridar Riau

    OpenAIRE

    Silaban, Nestor Hasudungan; Sari, Linna Oktaviana; Anhar, Anhar

    2015-01-01

    The development of telecommunications technology based on Internet Protocol (IP) is now growing with the competitiveness of the telecommunications company to improve the quality of service to consumers. It can be obtained by increasing the quality backbone network using Multi Protocol Label Switching (MPLS). MPLS is a new technology to forward the packet to the backbone network without changing the existing network structure. The main idea is to construct a replacement MPLS paths using label ...

  17. Antimicrobial Cu-bearing stainless steel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: mfqwang@163.com [School of Stomatology, China Medical University, Shenyang 110002 (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences (China); Li, Xiaopeng [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Zhang, Shuyuan [Institute of Metal Research, Chinese Academy of Sciences (China); Sercombe, Timothy B., E-mail: tim.sercombe@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences (China)

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  18. Antimicrobial Cu-bearing stainless steel scaffolds

    International Nuclear Information System (INIS)

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B.; Yang, Ke

    2016-01-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  19. Economic Outcomes of Bioresorbable Vascular Scaffolds Versus Everolimus-Eluting Stents in Patients Undergoing Percutaneous Coronary Intervention: 1-Year Results From the ABSORB III Trial.

    Science.gov (United States)

    Baron, Suzanne J; Lei, Yang; Chinnakondepalli, Khaja; Vilain, Katherine; Magnuson, Elizabeth A; Kereiakes, Dean J; Ellis, Stephen G; Stone, Gregg W; Cohen, David J

    2017-04-24

    The purpose of this study was to evaluate the economic impact of the Absorb bioresorbable vascular scaffold compared with the Xience everolimus-eluting stent in patients undergoing percutaneous coronary intervention. The ABSORB III trial (Everolimus-Eluting Bioresorbable Scaffolds for Coronary Artery Disease) demonstrated that the Absorb scaffold was noninferior to the Xience stent with respect to target lesion failure at 1 year. Whether health care costs differ between the Absorb scaffold and the Xience stent is unknown. We performed a prospective health economic study alongside the ABSORB III trial, in which patients undergoing percutaneous coronary intervention for stable or unstable angina were randomized to receive the Absorb scaffold (n = 1,322) or Xience stent (n = 686). Resource use data were collected through 1 year of follow-up. Costs were assessed using resource-based accounting (for procedures), MedPAR data (for other index hospitalization costs), and Medicare reimbursements (for follow-up costs and physician fees). Initial procedural costs were higher with the Absorb scaffold than the Xience stent ($6,316 ± 1,892 vs. $6,103 ± 1,895; p = 0.02), driven mainly by greater balloon catheter use and the higher cost of the scaffold in the Absorb group. Nonetheless, index hospitalization costs ($15,035 ± 2,992 for Absorb vs. $14,903 ± 3,449 for Xience; p = 0.37) and total 1-year costs ($17,848 ± 6,110 for Absorb vs. $17,498 ± 7,411 for Xience; p = 0.29) were similar between the 2 groups. Although initial procedural costs were higher with the Absorb scaffold, there were no differences in total 1-year health care costs between the 2 cohorts. Longer term follow-up is needed to determine whether meaningful cost savings emerge after scaffold resorption. (A Clinical Evaluation of Absorb™ BVS, the Everolimus-Eluting Bioresorbable Vascular Scaffold in the Treatment of Subjects With de Novo Native Coronary Artery Lesions; NCT01751906). Copyright © 2017

  20. Five Principles of Industrialized Transformation for Successfully Building an Operational Backbone

    DEFF Research Database (Denmark)

    Winkler, Till J.; Kettunen, Petteri

    2018-01-01

    approach that is underpinned by five principles—template-based, business-driven, matrix-organized, tight supplier steering and cascaded planning. The UPM case provides important lessons for transformation leaders seeking to build, expand or develop a value-adding operational backbone.......To move into the digital age, a globally operating company needs to have in place an operational backbone, but many struggle with achieving this and the associated transformation program. Based on the experience of UPM, a Finnish forest industry company, we describe an industrialized transformation...

  1. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences.

    Science.gov (United States)

    Lapidoth, Gideon D; Baran, Dror; Pszolla, Gabriele M; Norn, Christoffer; Alon, Assaf; Tyka, Michael D; Fleishman, Sarel J

    2015-08-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function--essential to exert control over all polypeptide degrees of freedom--remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity. © 2015 Wiley Periodicals, Inc.

  2. Structural test of the parameterized-backbone method for protein design.

    Science.gov (United States)

    Plecs, Joseph J; Harbury, Pehr B; Kim, Peter S; Alber, Tom

    2004-09-03

    Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone and detailed modeling of core packing. This crystal structure was determined using another rationally designed feature, a metal-binding site that permitted experimental phasing of the X-ray data. RH3 adopted the intended fold, which has not been observed previously in biological proteins. Unanticipated structural asymmetry in the trimer was a principal source of variation within the RH3 structure. The sequence of RH3 differs from that of a previously characterized right-handed tetramer, RH4, at only one position in each 11 amino acid sequence repeat. This close similarity indicates that the design method is sensitive to the core packing interactions that specify the protein structure. Comparison of the structures of RH3 and RH4 indicates that both steric overlap and cavity formation provide strong driving forces for oligomer specificity.

  3. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    Science.gov (United States)

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  4. De novo malignancy after pancreas transplantation in Japan.

    Science.gov (United States)

    Tomimaru, Y; Ito, T; Marubashi, S; Kawamoto, K; Tomokuni, A; Asaoka, T; Wada, H; Eguchi, H; Mori, M; Doki, Y; Nagano, H

    2015-04-01

    Long-term immunosuppression is associated with an increased risk of cancer. Especially, the immunosuppression in pancreas transplantation is more intensive than that in other organ transplantation because of its strong immunogenicity. Therefore, it suggests that the risk of post-transplant de novo malignancy might increase in pancreas transplantation. However, there have been few studies of de novo malignancy after pancreas transplantation. The aim of this study was to analyze the incidence of de novo malignancy after pancreas transplantation in Japan. Post-transplant patients with de novo malignancy were surveyed and characterized in Japan. Among 107 cases receiving pancreas transplantation in Japan between 2001 and 2010, de novo malignancy developed in 9 cases (8.4%): post-transplant lymphoproliferative disorders in 6 cases, colon cancer in 1 case, renal cancer in 1 case, and brain tumor in 1 case. We clarified the incidence of de novo malignancy after pancreas transplantation in Japan. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Computational design of new molecular scaffolds for medicinal chemistry, part II: generalization of analog series-based scaffolds

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2018-01-01

    Aim: Extending and generalizing the computational concept of analog series-based (ASB) scaffolds. Materials & methods: Methodological modifications were introduced to further increase the coverage of analog series (ASs) and compounds by ASB scaffolds. From bioactive compounds, ASs were systematically extracted and second-generation ASB scaffolds isolated. Results: More than 20,000 second-generation ASB scaffolds with single or multiple substitution sites were extracted from active compounds, achieving more than 90% coverage of ASs. Conclusion: Generalization of the ASB scaffold approach has yielded a large knowledge base of scaffold-capturing compound series and target information. PMID:29379641

  6. Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    Lopez del Amo, Juan-Miguel; Fink, Uwe; Reif, Bernd

    2010-01-01

    We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15 N-T 1 timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s -1 . Backbone amide 15 N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41ε. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D 2 O is employed as a solvent for sample preparation. Due to the intrinsically long 15 N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.

  7. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  8. Using Scaffolds in Problem-Based Hypermedia

    Science.gov (United States)

    Su, Yuyan; Klein, James D.

    2010-01-01

    This study investigated the use of scaffolds in problem-based hypermedia. Three hundred and twelve undergraduate students enrolled in a computer literacy course worked in project teams to use a hypermedia PBL program focused on designing a personal computer. The PBL program included content scaffolds, metacognitive scaffolds, or no scaffolds.…

  9. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  10. Induced helical backbone conformations of self-organizable dendronized polymers.

    Science.gov (United States)

    Rudick, Jonathan G; Percec, Virgil

    2008-12-01

    Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural

  11. Instant Backbone.js application development

    CERN Document Server

    Hunter, Thomas

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is a practical, step-by-step tutorial that will teach you to build Backbone.js applications quickly and efficiently.This book is targeted towards developers. It is assumed that you have at least a basic understanding of JavaScript and jQuery selectors. If you are interested in building dynamic Single Page Applications that interact heavily with a backend server, then this is the book for you.

  12. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    Science.gov (United States)

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  13. Study of muscular skeletal apparatus’s functional state of junior sportsmen-power lifters, who have backbone verterbral abnormalities

    Directory of Open Access Journals (Sweden)

    V.R. Ilmatov

    2015-10-01

    Full Text Available Purpose: determination of abnormalities and disorders of muscular skeletal apparatuses’ status of power lifters, who have vertebral abnormalities of backbone. Material: 58 junior sportsmen participated in the research. 36 sportsmen were the main group of the research and had vertebral disorders in backbone. For posture testing visual examination was used. Backbone mobility was tested with goniometry method. Flat feet were registered with plantography method. Results: we determined posture abnormalities in sagittal and frontal planes; feet flat, limited maximal movements in thoracic and lumbar spines. It was determined that the most limited were rotational movements and backbone unbending. The next were side bents. These limitations were accompanied by pain syndrome. These observations indirectly confirmed theory of direct interaction of backbone structures with nervous structures. It is also a confirmation of vertebral abnormalities’ presence in junior sportsmen. Conclusions: it was found that in junior sportsmen - power lifters with backbone pathologies in 100% of cases symptoms are determined by local limitations of backbone mobility with pain syndrome. In 35% of cases they are accompanied by posture’s disorders and feet flat. Orientation and methodic of rehabilitation of such sportsmen have been determined.

  14. Performance of Flow-Aware Networking in LTE backbone

    DEFF Research Database (Denmark)

    Sniady, Aleksander; Soler, José

    2012-01-01

    technologies, such as Long Term Evolution (LTE). This paper proposes usage of a modified Flow Aware Networking (FAN) technique for enhancing Quality of Service (QoS) in the all-IP transport networks underlying LTE backbone. The results obtained with OPNET Modeler show that FAN, in spite of being relatively...

  15. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings impl...... semiotic scaffolding is not, of course, exclusive for phylogenetic and ontogenetic development, it is also an important dynamical element in cultural evolution.......Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... (the representamen) and the effect. Semiotic interaction patterns therefore provide fast and versatile mechanisms for adaptations, mechanisms that depend on communication and “learning” rather than on genetic preformation. Seen as a stabilizing agency supporting the emergence of higher-order structure...

  16. Towards a natural classification and backbone tree for Sordariomycete

    Digital Repository Service at National Institute of Oceanography (India)

    Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Huang, S.-K.; Abdel-Wahab, M.A.; Daranagama, D.A.; Dayarathne, M.; D'souza, M.J.; Goonasekara, I.D.; Hongsanan, S.; Jayawardena, R.S.; Kirk, P.M.; Konta, S.; Liu, J.-K.; Liu, Z.-Y.; Norphanphoun, C.; Pang, K.-L.; Perera, R.H.; Senanayake, I.C.; Shang, Q.; Shenoy, B.D.; Xiao, Y.; Bahkali, A.H.; Kang, J.; Somrothipol, S.; Suetrong, S.; Wen, T.; Xu, J.

    , lichenized or lichenicolous taxa The class includes freshwater, marine and terrestrial taxa and has a worldwide distribution This paper provides an updated outline of the Sordariomycetes and a backbone tree incorporating asexual and sexual genera in the class...

  17. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...

  18. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  19. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    Science.gov (United States)

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  20. Optical alignment control of polyimide molecules containing azobenzene in the backbone structure

    International Nuclear Information System (INIS)

    Sakamoto, Kenji; Usami, Kiyoaki; Sasaki, Toru; Kanayama, Takashi; Ushioda, Sukekatsu

    2004-01-01

    Using polarized infrared absorption spectroscopy, we have determined the orientation of the polyimide backbone structure in photo-alignment films for liquid crystals (LC). The polyimide used in this study contains azobenzene in the backbone structure. Photo-alignment treatment was performed on the corresponding polyamic acid film, using a light source of wavelength 340-500 nm. The polyamic acid film (∼16 nm thick) was first irradiated at normal incidence with linearly polarized light (LP-light) of 156 J/cm 2 , and then oblique angle irradiation of unpolarized light (UP-light) was performed in the plane of incidence perpendicular to the polarization direction of the LP-light. The UP-light exposure was varied up to 882 J/cm 2 . We found that the average inclination angle of the polyimide backbone structure, measured from the surface plane, increases almost linearly with UP-light exposure. On the other hand, the in-plane anisotropy induced by the first irradiation with LP-light decreases with the increase of UP-light exposure

  1. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    Science.gov (United States)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  2. NovoPen Echo® insulin delivery device

    Directory of Open Access Journals (Sweden)

    Hyllested-Winge J

    2016-01-01

    Full Text Available Jacob Hyllested-Winge,1 Thomas Sparre,2 Line Kynemund Pedersen2 1Novo Nordisk Pharma Ltd, Tokyo, Japan; 2Novo Nordisk A/S, Søborg, Denmark Abstract: The introduction of insulin pen devices has provided easier, well-tolerated, and more convenient treatment regimens for patients with diabetes mellitus. When compared with vial and syringe regimens, insulin pens offer a greater clinical efficacy, improved quality of life, and increased dosing accuracy, particularly at low doses. The portable and discreet nature of pen devices reduces the burden on the patient, facilitates adherence, and subsequently contributes to the improvement in glycemic control. NovoPen Echo® is one of the latest members of the NovoPen® family that has been specifically designed for the pediatric population and is the first to combine half-unit increment (=0.5 U of insulin dosing with a simple memory function. The half-unit increment dosing amendments and accurate injection of 0.5 U of insulin are particularly beneficial for children (and insulin-sensitive adults/elders, who often require small insulin doses. The memory function can be used to record the time and amount of the last dose, reducing the fear of double dosing or missing a dose. The memory function also provides parents with extra confidence and security that their child is taking insulin at the correct doses and times. NovoPen Echo is a lightweight, durable insulin delivery pen; it is available in two different colors, which may help to distinguish between different types of insulin, providing more confidence for both users and caregivers. Studies have demonstrated a high level of patient satisfaction, with 80% of users preferring NovoPen Echo to other pediatric insulin pens. Keywords: NovoPen Echo®, memory function, half-unit increment dosing, adherence, children, adolescents 

  3. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    . Within the developmental hierarchy, each module yields an inter-level relationship that makes it possible for the scaffolding to mediate the production of selectable variations. Awide range of genetic, cellular and morphological mechanisms allows the scaffolding to integrate these modular variations...... to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones...

  4. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    Science.gov (United States)

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface. © 2013.

  5. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.

    Science.gov (United States)

    Hu, Ye; Stumpfe, Dagmar; Bajorath, Jürgen

    2016-05-12

    The scaffold concept is widely applied in medicinal chemistry. Scaffolds are mostly used to represent core structures of bioactive compounds. Although the scaffold concept has limitations and is often viewed differently from a chemical and computational perspective, it has provided a basis for systematic investigations of molecular cores and building blocks, going far beyond the consideration of individual compound series. Over the past 2 decades, alternative scaffold definitions and organization schemes have been introduced and scaffolds have been studied in a variety of ways and increasingly on a large scale. Major applications of the scaffold concept include the generation of molecular hierarchies, structural classification, association of scaffolds with biological activities, and activity prediction. This contribution discusses computational approaches for scaffold generation and analysis, with emphasis on recent developments impacting medicinal chemistry. A variety of scaffold-based studies are discussed, and a perspective on scaffold methods is provided.

  6. Automated backbone assignment of labeled proteins using the threshold accepting algorithm

    International Nuclear Information System (INIS)

    Leutner, Michael; Gschwind, Ruth M.; Liermann, Jens; Schwarz, Christian; Gemmecker, Gerd; Kessler, Horst

    1998-01-01

    The sequential assignment of backbone resonances is the first step in the structure determination of proteins by heteronuclear NMR. For larger proteins, an assignment strategy based on proton side-chain information is no longer suitable for the use in an automated procedure. Our program PASTA (Protein ASsignment by Threshold Accepting) is therefore designed to partially or fully automate the sequential assignment of proteins, based on the analysis of NMR backbone resonances plus C β information. In order to overcome the problems caused by peak overlap and missing signals in an automated assignment process, PASTA uses threshold accepting, a combinatorial optimization strategy, which is superior to simulated annealing due to generally faster convergence and better solutions. The reliability of this algorithm is shown by reproducing the complete sequential backbone assignment of several proteins from published NMR data. The robustness of the algorithm against misassigned signals, noise, spectral overlap and missing peaks is shown by repeating the assignment with reduced sequential information and increased chemical shift tolerances. The performance of the program on real data is finally demonstrated with automatically picked peak lists of human nonpancreatic synovial phospholipase A 2 , a protein with 124 residues

  7. Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution

    International Nuclear Information System (INIS)

    Hrovat, Andrea; Bluemel, Markus; Loehr, Frank; Mayhew, Stephen G.; Rueterjans, Heinz

    1997-01-01

    Recombinant Desulfovibrio vulgaris flavodoxin was produced in Escherichia coli. A complete backbone NMR assignment for the two-electron reduced protein revealed significant changes of chemical shift values compared to the oxidized protein, in particular for the flavine mononucleotide (FMN)-binding site. A comparison of homo- and heteronuclear NOESY spectra for the two redox states led to the assumption that reduction is not accompanied by significant changes of the global fold of the protein.The backbone dynamics of both the oxidized and reduced forms of D. vulgaris flavodoxin were investigated using two-dimensional 15 N- 1 H correlation NMR spectroscopy.T 1 , T 2 and NOE data are obtained for 95% of the backbone amide groups in both redox states. These values were analysed in terms of the 'model-free' approach introduced by Lipari and Szabo [(1982) J. Am. Chem. Soc., 104, 4546-;4559, 4559-;4570]. A comparison of the two redox states indicates that in the reduced species significantly more flexibility occurs in the two loop regions enclosing FMN.Also, a higher amplitude of local motion could be found for the N(3)H group of FMN bound to the reduced protein compared to the oxidized state

  8. In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available This paper investigated the long-term in vitro degradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate (PHBV which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, and in vitro degradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in the in vitro physiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-month in vitro degradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

  9. A multicenter post-marketing evaluation of the Elixir DESolve® Novolimus-eluting bioresorbable coronary scaffold system: First results from the DESolve PMCF study.

    Science.gov (United States)

    Nef, Holger; Wiebe, Jens; Boeder, Niklas; Dörr, Oliver; Bauer, Timm; Hauptmann, Karl-Eugen; Latib, Azeem; Colombo, Antonio; Fischer, Dieter; Rudolph, Tanja; Foin, Nicolas; Richardt, Gert; Hamm, Christian

    2018-03-06

    To date, experience with bioresorbable scaffolds (BRS) that elute agents other than everolimus is limited. Thus, a post-marketing clinical follow-up study was conducted to evaluate the continued safety and effectiveness of the DESolve® NOVOLIMUS™ Eluting BRS as treatment for patients with stable coronary artery disease. The DESolve BRS combines a poly-l-lactide-based backbone with a biodegradable polylactide-based polymer and Novolimus, a macrocyclic lactone mTOR inhibitor. One hundred and two patients (mean age 62 years, 77.5% male) were enrolled at 10 European sites. Comparison of baseline and post-procedural angiographic assessment was performed, and a device-oriented composite endpoint (comprising cardiac death, target vessel myocardial infarction, and clinically driven target lesion revascularization) and rate of scaffold thrombosis at 12 months were examined. The device was successfully delivered and deployed in 98.2% (107/109) of the lesions, with two failures to cross the lesion. A total of 100 patients (109 lesions) were treated with a DESolve BRS. Post-procedural angiographic assessment indicated an in-scaffold acute gain of 1.54 ± 0.44 mm, with a reduction in % diameter stenosis from 61.00 ± 11.29 to 12.69 ± 0.44. At 12 months, the device-oriented composite endpoint had occurred in 3.0% (3/100) of patients, with 1.0% (1/100) experiencing scaffold thrombosis and myocardial infarction and 3.0% (3/100) undergoing target lesion revascularization. There were no cardiac deaths. Results through 12 months indicate that the DESolve BRS is a safe and effective treatment for coronary lesions, though larger, long-term prospective studies are needed. © 2018 Wiley Periodicals, Inc.

  10. Design and synthesis of polyphosphazenes: Hard tissue scaffolding biomaterials and physically crosslinked elastomers

    Science.gov (United States)

    Modzelewski, Tomasz

    The work in this thesis is divided into two main parts. The first part examines the synthesis and characterization of polyphosphazenes as potential scaffolding materials usable for hard tissue repair. The goal of this work was to design polymers containing acidic functional groups in an attempt to encourage the deposition of calcium hydroxyapatite when the polymer is exposed to simulated body fluids. The second part examines the development of a new polymeric architecture which generates elastomeric properties without the use of traditional covalent or physical crosslinks. The goal was to examine the effects of this new architecture on the physical and mechanical properties of the final polymers. Chapter 1 provides a general background for the two main focus areas mentioned above. More specifically: a brief explanation is provided of the necessary physical and chemical properties of a suitable hard tissue engineering scaffolding substrate, and the basis of those requirements; together with an examination of the traditional ways in which elastomeric properties are introduced into a polymeric sample. Chapter 2 details the design and synthesis of polyphosphazenes bearing phosphonic acid and phosphoester side groups using two different routes. The first route utilized a linker unit which was functionalized with phosphoesters prior to its attachment to the polyphosphazene backbone, while the second route involved attachment of the same linking group to the polyphosphazene backbone before the introduction of the phosphoester moieties. In both cases, the samples were treated with iodotrimethylsilane to cleave the ester bonds and afford the parent phosphonic acid. Both routes proved successful. However, varying difficulties were encountered for each route. In Chapter 3 we examine the ability of the phosphonic acid functionalized polyphosphazenes described in Chapter 2 to mineralize calcium hydroxyapatite when exposed to simulated body fluid, which has the same ion

  11. The design of 3D scaffold for tissue engineering using automated scaffold design algorithm.

    Science.gov (United States)

    Mahmoud, Shahenda; Eldeib, Ayman; Samy, Sherif

    2015-06-01

    Several progresses have been introduced in the field of bone regenerative medicine. A new term tissue engineering (TE) was created. In TE, a highly porous artificial extracellular matrix or scaffold is required to accommodate cells and guide their growth in three dimensions. The design of scaffolds with desirable internal and external structure represents a challenge for TE. In this paper, we introduce a new method known as automated scaffold design (ASD) for designing a 3D scaffold with a minimum mismatches for its geometrical parameters. The method makes use of k-means clustering algorithm to separate the different tissues and hence decodes the defected bone portions. The segmented portions of different slices are registered to construct the 3D volume for the data. It also uses an isosurface rendering technique for 3D visualization of the scaffold and bones. It provides the ability to visualize the transplanted as well as the normal bone portions. The proposed system proves good performance in both the segmentation results and visualizations aspects.

  12. Backbone assignment of the little finger domain of a Y-family DNA polymerase.

    Science.gov (United States)

    Ma, Dejian; Fowler, Jason D; Suo, Zucai

    2011-10-01

    Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.

  13. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.

    Science.gov (United States)

    Bhaskar, Birru; Owen, Robert; Bahmaee, Hossein; Wally, Zena; Sreenivasa Rao, Parcha; Reilly, Gwendolen C

    2018-05-01

    Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of polyethylene glycol (PEG) addition on porosity and bone-cell behavior, porous polylactic acid (PLA)-PEG scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess scaffold suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined using (alizarin red S staining for calcium and direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1334-1340, 2018. © 2018 Wiley Periodicals, Inc.

  14. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease

    DEFF Research Database (Denmark)

    Onuma, Yoshinobu; Dudek, Dariusz; Thuesen, Leif

    2013-01-01

    This study sought to demonstrate the 5-year clinical and functional multislice computed tomography angiographic results after implantation of the fully resorbable everolimus-eluting scaffold (Absorb BVS, Abbott Vascular, Santa Clara, California).......This study sought to demonstrate the 5-year clinical and functional multislice computed tomography angiographic results after implantation of the fully resorbable everolimus-eluting scaffold (Absorb BVS, Abbott Vascular, Santa Clara, California)....

  15. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.

    Science.gov (United States)

    Parmar, Avanish S; Xu, Fei; Pike, Douglas H; Belure, Sandeep V; Hasan, Nida F; Drzewiecki, Kathryn E; Shreiber, David I; Nanda, Vikas

    2015-08-18

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.

  16. Neuronal Networks on Nanocellulose Scaffolds.

    Science.gov (United States)

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  17. Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector.

    Science.gov (United States)

    Miyafusa, Takamitsu; Shibuya, Risa; Honda, Shinya

    2018-06-02

    Backbone circularization is a powerful approach for enhancing the structural stability of polypeptides. Herein, we present the crystal structure of the circularized variant of the granulocyte colony-stimulating factor (G-CSF) in which the terminal helical region was circularized using a short, two-amino acid connector. The structure revealed that the N- and C-termini were indeed connected by a peptide bond. The local structure of the C-terminal region transited from an α helix to 3 10 helix with a bend close to the N-terminal region, indicating that the structural change offset the insufficient length of the connector. This is the first-ever report of a crystal structure of the backbone of a circularized protein. It will facilitate the development of backbone circularization methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    Science.gov (United States)

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  19. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Yuanyuan

    2007-01-01

    Full Text Available A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS and show that in general the minimum BACDS (MBACDS can achieve longer lifetime than the previous backbone structures. Then we show that finding a MBACDS is NP-hard and give a distributed approximation algorithm to construct the BACDS. The resulting BACDS constructed by our algorithm is at most opt size, where is the maximum node degree and opt is the size of an optimal BACDS. Simulation results show that the BACDS can save a significant amount of energy and achieve up to longer network lifetime than previous schemes.

  20. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    Science.gov (United States)

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the

  1. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    Science.gov (United States)

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  2. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  3. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  4. Internet Backbone in the Democratic Republic of Congo : Feasibility ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Internet Backbone in the Democratic Republic of Congo : Feasibility Study and Advocacy. During 7-10 February 2005, representatives of five francophone African countries (Cameroon, Morocco, Niger, Sénégal, and the Democratic Republic of Congo - DRC) met to consider ways and means of galvanizing the appropriation ...

  5. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.

    Science.gov (United States)

    Hu, Jin-Jia; Chao, Wei-Chih; Lee, Pei-Yuan; Huang, Chih-Hao

    2012-09-01

    Based on a postulate that the microstructure of a scaffold can influence that of the resulting tissue and hence its mechanical behavior, we fabricated a small-diameter tubular scaffold (∼3 mm inner diameter) that has a microstructure similar to the arterial media using a scaffold membrane approach. Scaffold membranes that contain randomly oriented, moderately aligned, or highly aligned fibers were fabricated by collecting electrospun poly([epsilon]-caprolactone) fibers on a grounded rotating drum at three different drum rotation speeds (250, 1000, and 1500 rpm). Membranes of each type were wrapped around a small-diameter mandrel to form the tubular scaffolds. Particularly, the tubular scaffolds with three different off-axis fiber angles (30, 45, and 60 degree) were formed using membranes that contain aligned fibers. These scaffolds were subjected to biaxial mechanical testing to examine the effects of fiber directions as well as the distribution of fiber orientations on their mechanical properties. The circumferential elastic modulus of the tubular scaffold was closely related to the fiber directions; the larger the off-axis fiber angle the greater the circumferential elastic modulus. The distribution of fiber orientations, on the other hand, manifested itself in the mechanical behavior via the Poisson effect. Similar to cell sheet-based vascular tissue engineering, tubular cell-seeded constructs were prepared by wrapping cell-seeded scaffold membranes, alleviating the difficulty associated with cell seeding in electrospun scaffolds. Histology of the construct illustrated that cells were aligned to the fiber directions in the construct, demonstrating the potential to control the microstructure of tissue-engineered vascular grafts using the electrospun scaffold membrane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Image-based characterization of foamed polymeric tissue scaffolds

    International Nuclear Information System (INIS)

    Mather, Melissa L; Morgan, Stephen P; Crowe, John A; White, Lisa J; Shakesheff, Kevin M; Tai, Hongyun; Howdle, Steven M; Kockenberger, Walter

    2008-01-01

    Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results

  7. De novo origin of human protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Dong-Dong Wu

    2011-11-01

    Full Text Available The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA-seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.

  8. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  9. Combined "de novo" and "ex novo" lipid fermentation in a mix-medium of corncob acid hydrolysate and soybean oil by Trichosporon dermatis.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Qi, Gao-Xiang; Xiong, Lian; Lin, Xiao-Qing; Wang, Can; Li, Hai-Long; Chen, Xin-De

    2017-01-01

    Microbial oil is one important bio-product for its important function in energy, chemical, and food industry. Finding suitable substrates is one key issue for its industrial application. Both hydrophilic and hydrophobic substrates can be utilized by oleaginous microorganisms with two different bio-pathways (" de novo " lipid fermentation and " ex novo " lipid fermentation). To date, most of the research on lipid fermentation has focused mainly on only one fermentation pathway and little work was carried out on both " de novo " and " ex novo " lipid fermentation simultaneously; thus, the advantages of both lipid fermentation cannot be fulfilled comprehensively. In this study, corncob acid hydrolysate with soybean oil was used as a mix-medium for combined " de novo " and " ex novo " lipid fermentation by oleaginous yeast Trichosporon dermatis . Both hydrophilic and hydrophobic substrates (sugars and soybean oil) in the medium can be utilized simultaneously and efficiently by T. dermatis . Different fermentation modes were compared and the batch mode was the most suitable for the combined fermentation. The influence of soybean oil concentration, inoculum size, and initial pH on the lipid fermentation was evaluated and 20 g/L soybean oil, 5% inoculum size, and initial pH 6.0 were suitable for this bioprocess. By this technology, the lipid composition of extracellular hydrophobic substrate (soybean oil) can be modified. Although adding emulsifier showed little beneficial effect on lipid production, it can modify the intracellular lipid composition of T. dermatis . The present study proves the potential and possibility of combined " de novo " and " ex novo " lipid fermentation. This technology can use hydrophilic and hydrophobic sustainable bio-resources to generate lipid feedstock for the production of biodiesel or other lipid-based chemical compounds and to treat some special wastes such as oil-containing wastewater.

  10. Oxidation Responsive Polymers with a Triggered Degradation via Arylboronate Self-Immolative Motifs on a Polyphosphazene Backbone.

    Science.gov (United States)

    Iturmendi, Aitziber; Monkowius, Uwe; Teasdale, Ian

    2017-02-21

    Oxidation responsive polymers with triggered degradation pathways have been prepared via attachment of self-immolative moieties onto a hydrolytically unstable polyphosphazene backbone. After controlled main-chain growth, postpolymerization functionalization allows the preparation of hydrolytically stable poly(organo)phosphazenes decorated with a phenylboronic ester caging group. In oxidative environments, triggered cleavage of the caging group is followed by self-immolation, exposing the unstable glycine-substituted polyphosphazene which subsequently undergoes to backbone degradation to low-molecular weight molecules. As well as giving mechanistic insights, detailed GPC and 1 H and 31 P NMR analysis reveal the polymers to be stable in aqueous solutions, but show a selective, fast degradation upon exposure to hydrogen peroxide containing solutions. Since the post-polymerization functionalization route allows simple access to polymer backbones with a broad range of molecular weights, the approach of using the inorganic backbone as a platform significantly expands the toolbox of polymers capable of stimuli-responsive degradation.

  11. Dynamic power control for wireless backbone mesh networks: a survey

    CSIR Research Space (South Africa)

    Olwal, TO

    2010-01-01

    Full Text Available points of failures, and robust against RF interference, obstacles or power outage. This is because WMRs forming wireless backbone mesh networks (WBMNs) are built on advanced physical technologies. Such nodes perform both accessing and forwarding...

  12. Porous magnesium-based scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R.; Tayebi, Lobat

    2017-01-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  13. Porous magnesium-based scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Razavi, Mehdi [Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Moharamzadeh, Keyvan [School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield (United Kingdom); Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  14. Genes from scratch--the evolutionary fate of de novo genes.

    Science.gov (United States)

    Schlötterer, Christian

    2015-04-01

    Although considered an extremely unlikely event, many genes emerge from previously noncoding genomic regions. This review covers the entire life cycle of such de novo genes. Two competing hypotheses about the process of de novo gene birth are discussed as well as the high death rate of de novo genes. Despite the high death rate, some de novo genes are retained and remain functional, even in distantly related species, through their integration into gene networks. Further studies combining gene expression with ribosome profiling in multiple populations across different species will be instrumental for an improved understanding of the evolutionary processes operating on de novo genes. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  15. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  16. Green IGP Link Weights for Energy-efficiency and Load-balancing in IP Backbone Networks

    OpenAIRE

    Francois, Frederic; Wang, Ning; Moessner, Klaus; Georgoulas, Stylianos; Xu, Ke

    2013-01-01

    The energy consumption of backbone networks has become a primary concern for network operators and regulators due to the pervasive deployment of wired backbone networks to meet the requirements of bandwidth-hungry applications. While traditional optimization of IGP link weights has been used in IP based load-balancing operations, in this paper we introduce a novel link weight setting algorithm, the Green Load-balancing Algorithm (GLA), which is able to jointly optimize both energy efficiency ...

  17. Peer scaffolding in an EFL writing classroom: An investigation of writing accuracy and scaffolding behaviors

    Directory of Open Access Journals (Sweden)

    Parastou Gholami Pasand

    2017-09-01

    Full Text Available Considering the tenets of Sociocultural Theory with its emphasis on co-construction of knowledge, L2 writing can be regarded as a co-writing practice whereby assistance is provided to struggling writers. To date, most studies have dealt with peer scaffolding in the revision phase of writing, as such planning and drafting are remained untouched. The present study examines the impact of peer scaffolding on writing accuracy of a group of intermediate EFL learners, and explores scaffolding behaviors employed by them in planning and drafting phases of writing. To these ends, 40 freshmen majoring in English Language and Literature in the University of Guilan were randomly divided into a control group and an experimental group consisting of dyads in which a competent writer provided scaffolding to a less competent one using the process approach to writing. Results of independent samples t-tests revealed that learners in the experimental group produced more accurate essays. Microgenetic analysis of one dyad’s talks showed that scaffolding behaviors used in planning and drafting phases of writing were more or less the same as those identified in the revision phase. These findings can be used to inform peer intervention in L2 writing classes, and assist L2 learners in conducting successful peer scaffolding in the planning and drafting phases of writing.

  18. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  19. Platelet lysate embedded scaffolds for skin regeneration.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  20. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  1. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    Science.gov (United States)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  2. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  3. Novel biodegradable porous scaffold applied to skin regeneration.

    Science.gov (United States)

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Chau-Zen; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  4. Novel biodegradable porous scaffold applied to skin regeneration.

    Directory of Open Access Journals (Sweden)

    Hui-Min Wang

    Full Text Available Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  5. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  6. “Pinning strategy”: a novel approach for predicting the backbone ...

    Indian Academy of Sciences (India)

    Prakash

    To assess the quality of the strategy, we define two measures. The first one ...... modular framework of the protein backbone; Protein Eng. 12. 1063–1073 .... Richardson J S, Getzoff E D and Richardson D C 1978 The beta bulge: a common ...

  7. Impact of Backbone Fluorination on π-Conjugated Polymers in Organic Photovoltaic Devices: A Review

    Directory of Open Access Journals (Sweden)

    Nicolas Leclerc

    2016-01-01

    Full Text Available Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties’ evolution trends related to the fluorination of their conjugated backbone.

  8. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    Science.gov (United States)

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered

  9. A radiopaque electrospun scaffold for engineering fibrous musculoskeletal tissues: Scaffold characterization and in vivo applications.

    Science.gov (United States)

    Martin, John T; Milby, Andrew H; Ikuta, Kensuke; Poudel, Subash; Pfeifer, Christian G; Elliott, Dawn M; Smith, Harvey E; Mauck, Robert L

    2015-10-01

    Tissue engineering strategies have emerged in response to the growing prevalence of chronic musculoskeletal conditions, with many of these regenerative methods currently being evaluated in translational animal models. Engineered replacements for fibrous tissues such as the meniscus, annulus fibrosus, tendons, and ligaments are subjected to challenging physiologic loads, and are difficult to track in vivo using standard techniques. The diagnosis and treatment of musculoskeletal conditions depends heavily on radiographic assessment, and a number of currently available implants utilize radiopaque markers to facilitate in vivo imaging. In this study, we developed a nanofibrous scaffold in which individual fibers included radiopaque nanoparticles. Inclusion of radiopaque particles increased the tensile modulus of the scaffold and imparted radiation attenuation within the range of cortical bone. When scaffolds were seeded with bovine mesenchymal stem cells in vitro, there was no change in cell proliferation and no evidence of promiscuous conversion to an osteogenic phenotype. Scaffolds were implanted ex vivo in a model of a meniscal tear in a bovine joint and in vivo in a model of total disc replacement in the rat coccygeal spine (tail), and were visualized via fluoroscopy and microcomputed tomography. In the disc replacement model, histological analysis at 4 weeks showed that the scaffold was biocompatible and supported the deposition of fibrous tissue in vivo. Nanofibrous scaffolds that include radiopaque nanoparticles provide a biocompatible template with sufficient radiopacity for in vivo visualization in both small and large animal models. This radiopacity may facilitate image-guided implantation and non-invasive long-term evaluation of scaffold location and performance. The healing capacity of fibrous musculoskeletal tissues is limited, and injury or degeneration of these tissues compromises the standard of living of millions in the US. Tissue engineering repair

  10. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar-Mohammadi, Marziyeh [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Bahrami, S. Hajir, E-mail: hajirb@aut.ac.ir [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Center for excellence Modern Textile Characterization, Tehran (Iran, Islamic Republic of)

    2015-03-01

    Outstanding wound healing activity of gum tragacanth (GT) and higher mechanical strength of poly (ε-caprolactone) (PCL) may produce an excellent nanofibrous patch for either skin tissue engineering or wound dressing application. PCL/GT scaffold containing different concentrations of PCL with different blend ratios of GT/PCL was produced using 90% acetic acid as solvent. The results demonstrated that the PCL/GT (3:1.5) with PCL concentration of 20% (w/v) produced nanofibers with proper morphology. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were utilized to characterize the nanofibers. Surface wettability, functional groups analysis, porosity and tensile properties of nanofibers were evaluated. Morphological characterization showed that the addition of GT to PCL solution results in decreasing the average diameter of the PCL/GT nanofibers. However, the hydrophilicity increased in the PCL/GT nanofibers. Slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. PCL/GT nanofibers were used for in vitro cell culture of human fibroblast cell lines AGO and NIH 3T3 fibroblast cells. MTT assay and SEM results showed that the biocomposite PCL/GT mats enhanced the fibroblast adhesion and proliferation compared to PCL scaffolds. The antibacterial activity of PCL/GT and GT nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa was also examined. - Highlights: • A new skin tissue engineering scaffold from poly (ε-caprolactone) (PCL) and gum tragacanth (GT) has been developed. • These scaffolds might be an effectual simulator of the structure and composition of native skin. • Very slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. • Biodegradation, water uptake and hydrophilicity properties of these scaffolds showed that produced scaffolds were adherent. • The electrospun PCL/GT scaffold can promote the skin regeneration of full

  11. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds

    International Nuclear Information System (INIS)

    Ranjbar-Mohammadi, Marziyeh; Bahrami, S. Hajir

    2015-01-01

    Outstanding wound healing activity of gum tragacanth (GT) and higher mechanical strength of poly (ε-caprolactone) (PCL) may produce an excellent nanofibrous patch for either skin tissue engineering or wound dressing application. PCL/GT scaffold containing different concentrations of PCL with different blend ratios of GT/PCL was produced using 90% acetic acid as solvent. The results demonstrated that the PCL/GT (3:1.5) with PCL concentration of 20% (w/v) produced nanofibers with proper morphology. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were utilized to characterize the nanofibers. Surface wettability, functional groups analysis, porosity and tensile properties of nanofibers were evaluated. Morphological characterization showed that the addition of GT to PCL solution results in decreasing the average diameter of the PCL/GT nanofibers. However, the hydrophilicity increased in the PCL/GT nanofibers. Slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. PCL/GT nanofibers were used for in vitro cell culture of human fibroblast cell lines AGO and NIH 3T3 fibroblast cells. MTT assay and SEM results showed that the biocomposite PCL/GT mats enhanced the fibroblast adhesion and proliferation compared to PCL scaffolds. The antibacterial activity of PCL/GT and GT nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa was also examined. - Highlights: • A new skin tissue engineering scaffold from poly (ε-caprolactone) (PCL) and gum tragacanth (GT) has been developed. • These scaffolds might be an effectual simulator of the structure and composition of native skin. • Very slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. • Biodegradation, water uptake and hydrophilicity properties of these scaffolds showed that produced scaffolds were adherent. • The electrospun PCL/GT scaffold can promote the skin regeneration of full

  12. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold

    International Nuclear Information System (INIS)

    Baylan, Nuray; Ditto, Maggie; Lawrence, Joseph G; Yildirim-Ayan, Eda; Bhat, Samerna; Lecka-Czernik, Beata

    2013-01-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  13. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chi Ma

    2007-05-01

    Full Text Available A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS and show that in general the minimum BACDS (MBACDS can achieve longer lifetime than the previous backbone structures. Then we show that finding a MBACDS is NP-hard and give a distributed approximation algorithm to construct the BACDS. The resulting BACDS constructed by our algorithm is at most (8+Δopt size, where Δ is the maximum node degree and opt is the size of an optimal BACDS. Simulation results show that the BACDS can save a significant amount of energy and achieve up to 30% longer network lifetime than previous schemes.

  14. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Science.gov (United States)

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  15. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-28

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.

  16. Inverse Opal Scaffolds and Their Biomedical Applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Zhu, Chunlei; Xia, Younan

    2017-09-01

    Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P.; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, S.

    2010-01-01

    Surface properties of scaffolds such as hydrophilicity and the presence of functional groups on the surface of scaffolds play a key role in cell adhesion, proliferation and migration. Different modification methods for hydrophilicity improvement and introduction of functional groups on the surface of scaffolds have been carried out on synthetic biodegradable polymers, for tissue engineering applications. In this study, alkaline hydrolysis of poly (ε-caprolactone) (PCL) nanofibrous scaffolds was carried out for different time periods (1 h, 4 h and 12 h) to increase the hydrophilicity of the scaffolds. The formation of reactive groups resulting from alkaline hydrolysis provides opportunities for further surface functionalization of PCL nanofibrous scaffolds. Matrigel was attached covalently on the surface of an optimized 4 h hydrolyzed PCL nanofibrous scaffolds and additionally the fabrication of blended PCL/matrigel nanofibrous scaffolds was carried out. Chemical and mechanical characterization of nanofibrous scaffolds were evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM) and tensile measurement. In vitro cell adhesion and proliferation study was carried out after seeding nerve precursor cells (NPCs) on different scaffolds. Results of cell proliferation assay and SEM studies showed that the covalently functionalized PCL/matrigel nanofibrous scaffolds promote the proliferation and neurite outgrowth of NPCs compared to PCL and hydrolyzed PCL nanofibrous scaffolds, providing suitable substrates for nerve tissue engineering.

  18. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

    Science.gov (United States)

    Wang, Junping; Valmikinathan, Chandra M; Liu, Wei; Laurencin, Cato T; Yu, Xiaojun

    2010-05-01

    Polymeric nanofiber matrices have already been widely used in tissue engineering. However, the fabrication of nanofibers into complex three-dimensional (3D) structures is restricted due to current manufacturing techniques. To overcome this limitation, we have incorporated nanofibers onto spiral-structured 3D scaffolds made of poly (epsilon-caprolactone) (PCL). The spiral structure with open geometries, large surface areas, and porosity will be helpful for improving nutrient transport and cell penetration into the scaffolds, which are otherwise limited in conventional tissue-engineered scaffolds for large bone defects repair. To investigate the effect of structure and fiber coating on the performance of the scaffolds, three groups of scaffolds including cylindrical PCL scaffolds, spiral PCL scaffolds (without fiber coating), and spiral-structured fibrous PCL scaffolds (with fiber coating) have been prepared. The morphology, porosity, and mechanical properties of the scaffolds have been characterized. Furthermore, human osteoblast cells are seeded on these scaffolds, and the cell attachment, proliferation, differentiation, and mineralized matrix deposition on the scaffolds are evaluated. The results indicated that the spiral scaffolds possess porosities within the range of human trabecular bone and an appropriate pore structure for cell growth, and significantly lower compressive modulus and strength than cylindrical scaffolds. When compared with the cylindrical scaffolds, the spiral-structured scaffolds demonstrated enhanced cell proliferation, differentiation, and mineralization and allowed better cellular growth and penetration. The incorporation of nanofibers onto spiral scaffolds further enhanced cell attachment, proliferation, and differentiation. These studies suggest that spiral-structured nanofibrous scaffolds may serve as promising alternatives for bone tissue engineering applications. Copyright 2009 Wiley Periodicals, Inc.

  19. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane

    2015-03-01

    The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  1. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  2. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  3. Future High Capacity Backbone Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan

    are proposed. The work focuses on energy efficient routing algorithms in a dynamic optical core network environment, with Generalized MultiProtocol Label Switching (GMPLS) as the control plane. Energy ef- ficient routing algorithms for energy savings and CO2 savings are proposed, and their performance...... aiming for reducing the dynamic part of the energy consumption of the network may increase the fixed part of the energy consumption meanwhile. In the second half of the thesis, the conflict between energy efficiency and Quality of Service (QoS) is addressed by introducing a novel software defined......This thesis - Future High Capacity Backbone Networks - deals with the energy efficiency problems associated with the development of future optical networks. In the first half of the thesis, novel approaches for using multiple/single alternative energy sources for improving energy efficiency...

  4. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  5. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  6. Cell-derived matrix coatings for polymeric scaffolds.

    Science.gov (United States)

    Decaris, Martin L; Binder, Bernard Y; Soicher, Matthew A; Bhat, Archana; Leach, J Kent

    2012-10-01

    Cells in culture deposit a complex extracellular matrix that remains intact following decellularization and possesses the capacity to modulate cell phenotype. The direct application of such decellularized matrices (DMs) to 3D substrates is problematic, as transport issues influence the homogeneous deposition, decellularization, and modification of DM surface coatings. In an attempt to address this shortcoming, we hypothesized that DMs deposited by human mesenchymal stem cells (MSCs) could be transferred to the surface of polymeric scaffolds while maintaining their capacity to direct cell fate. The ability of the transferred DM (tDM)-coated scaffolds to enhance the osteogenic differentiation of undifferentiated and osteogenically induced MSCs under osteogenic conditions in vitro was confirmed. tDM-coated scaffolds increased MSC expression of osteogenic marker genes (BGLAP, IBSP) and intracellular alkaline phosphatase production. In addition, undifferentiated MSCs deposited significantly more calcium when seeded onto tDM-coated scaffolds compared with control scaffolds. MSC-seeded tDM-coated scaffolds subcutaneously implanted in nude rats displayed significantly higher blood vessel density after 2 weeks compared with cells on uncoated scaffolds, but we did not observe significant differences in mineral deposition after 8 weeks. These data demonstrate that DM-coatings produced in 2D culture can be successfully transferred to 3D substrates and retain their capacity to modulate cell phenotype.

  7. Smectic order and backbone anisotropy of a side-chain liquid crystalline polymer by Small-Angle Neutron Scattering

    Science.gov (United States)

    Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.

    1991-07-01

    We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.

  8. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P; Venugopal, J; Chan, Casey K; Ramakrishna, S

    2008-01-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  9. Genome-wide patterns and properties of de novo mutations in humans

    NARCIS (Netherlands)

    Francioli, Laurent C.; Polak, Paz P.; Koren, Amnon; Menelaou, Androniki; Chun, Sung; Renkens, Ivo; van Duijn, Cornelia M.; Swertz, Morris; Wijmenga, Cisca; van Ommen, Gertjan; Slagboom, P. Eline; Boomsma, Dorret I.; Ye, Kai; Guryev, Victor; Arndt, Peter F.; Kloosterman, Wigard P.; de Bakker, Paul I. W.; Sunyaev, Shamil R.

    Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect(1-10). Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring

  10. Genome-wide patterns and properties of de novo mutations in humans

    NARCIS (Netherlands)

    Francioli, L.C.; Polak, P.P.; Koren, A.; Menelaou, A.; Chun, S.; Renkens, I.; van Duijn, C.M.; Swertz, M.A.; Wijmenga, C.; van Ommen, G.J.; Slagboom, P.E.; Boomsma, D.I.; Ye, K.; Guryev, V.; Arndt, P.F.; Kloosterman, W.P.; Bakker, P.I.W.; Sunyaev, S.R.; Dijk, F.; Neerincx, P.B.T.; Pulit, S.L.; Deelen, P.; Elbers, C.C.; Palamara, P.F.; Pe'er, I.; Abdellaoui, A.; van Oven, M.; Vermaat, M.; Li, M.; Laros, J.F.J.; Stoneking, M.; de Knijff, P.; Kayser, M.; Veldink, J.H.; Van den Berg, L.H.; Byelas, H.; den Dunnen, J.T.; Dijkstra, M.; Amin, N.; van der Velde, K.J.; Hottenga, J.J.; van Setten, J.; van Leeuwen, E.M.; Kanterakis, A.; Kattenberg, V.M.; Karssen, L.C.; van Schaik, B.D.C.; Bot, J.; Nijman, I.J.; van Enckevort, D.; Mei, H.; Koval, V.; Estrada, K.; Medina-Gomez, C.; Lameijer, E.W.; Moed, M.H.; Hehir-Kwa, J.Y.; Handsaker, R.E.; McCarroll, S.A.; Vuzman, D.; Sohail, M.; Hormozdiari, F.; Marschall, T.; Schönhuth, A.; Beekman, M.; de Craen, A.J.; Suchiman, H.E.D.; Hofman, A.; Oostra, B.; Isaacs, A.; Rivadeneira, F.; Uitterlinden, A.G.; Willemsen, G.; Platteel, M.; Pitts, S.J.; Potluri, S.; Sundar, P.; Cox, D.R.; Li, Q.; Li, Y.; Du, Y.; Chen, R.; Cao, H.; Li, N.; Cao, S.; Wang, J.; Bovenberg, J.A.; Brandsma, M.

    2015-01-01

    Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring of

  11. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    Science.gov (United States)

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  12. Performance Analysis of Space Information Networks with Backbone Satellite Relaying for Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-01-01

    Full Text Available Space Information Network (SIN with backbone satellites relaying for vehicular network (VN communications is regarded as an effective strategy to provide diverse vehicular services in a seamless, efficient, and cost-effective manner in rural areas and highways. In this paper, we investigate the performance of SIN return channel cooperative communications via an amplify-and-forward (AF backbone satellite relaying for VN communications, where we assume that both of the source-destination and relay-destination links undergo Shadowed-Rician fading and the source-relay link follows Rician fading, respectively. In this SIN-assisted VN communication scenario, we first obtain the approximate statistical distributions of the equivalent end-to-end signal-to-noise ratio (SNR of the system. Then, we derive the closed-form expressions to efficiently evaluate the average symbol error rate (ASER of the system. Furthermore, the ASER expressions are taking into account the effect of satellite perturbation of the backbone relaying satellite, which reveal the accumulated error of the antenna pointing error. Finally, simulation results are provided to verify the accuracy of our theoretical analysis and show the impact of various parameters on the system performance.

  13. Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2009-12-01

    Full Text Available Abstract Background The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure. Results We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods. Conclusions We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at http://comp.chem.nottingham.ac.uk/disspred/.

  14. The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny

    Science.gov (United States)

    Scaglione, Davide; Reyes-Chin-Wo, Sebastian; Acquadro, Alberto; Froenicke, Lutz; Portis, Ezio; Beitel, Christopher; Tirone, Matteo; Mauro, Rosario; Lo Monaco, Antonino; Mauromicale, Giovanni; Faccioli, Primetta; Cattivelli, Luigi; Rieseberg, Loren; Michelmore, Richard; Lanteri, Sergio

    2016-01-01

    Globe artichoke (Cynara cardunculus var. scolymus) is an out-crossing, perennial, multi-use crop species that is grown worldwide and belongs to the Compositae, one of the most successful Angiosperm families. We describe the first genome sequence of globe artichoke. The assembly, comprising of 13,588 scaffolds covering 725 of the 1,084 Mb genome, was generated using ~133-fold Illumina sequencing data and encodes 26,889 predicted genes. Re-sequencing (30×) of globe artichoke and cultivated cardoon (C. cardunculus var. altilis) parental genotypes and low-coverage (0.5 to 1×) genotyping-by-sequencing of 163 F1 individuals resulted in 73% of the assembled genome being anchored in 2,178 genetic bins ordered along 17 chromosomal pseudomolecules. This was achieved using a novel pipeline, SOILoCo (Scaffold Ordering by Imputation with Low Coverage), to detect heterozygous regions and assign parental haplotypes with low sequencing read depth and of unknown phase. SOILoCo provides a powerful tool for de novo genome analysis of outcrossing species. Our data will enable genome-scale analyses of evolutionary processes among crops, weeds, and wild species within and beyond the Compositae, and will facilitate the identification of economically important genes from related species. PMID:26786968

  15. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes.

    Science.gov (United States)

    Anselmetti, Yoann; Duchemin, Wandrille; Tannier, Eric; Chauve, Cedric; Bérard, Sèverine

    2018-05-09

    Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. We present a computational method, ADSEQ, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADSEQ provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADSEQ to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. We demonstrate the method's ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression.

  16. Clinicopathologic factors associated with de novo metastatic breast cancer.

    Science.gov (United States)

    Shen, Tiansheng; Siegal, Gene P; Wei, Shi

    2016-12-01

    While breast cancers with distant metastasis at presentation (de novo metastasis) harbor significantly inferior clinical outcomes, there have been limited studies analyzing the clinicopathologic characteristics in this subset of patients. In this study, we analyzed 6126 breast cancers diagnosed between 1998 and 2013 to identify factors associated with de novo metastatic breast cancer. When compared to patients without metastasis at presentation, race, histologic grade, estrogen/progesterone receptor (ER/PR) and HER2 statuses were significantly associated with de novo metastasis in the entire cohort, whereas age, histologic grade, PR and HER2 status were the significant parameters in the subset of patients with locally advanced breast cancer (Stage IIB/III). The patients with de novo metastatic breast cancer had a significant older mean age and a lower proportion of HER2-positive tumors when compared to those with metastatic recurrence. Further, the HER2-rich subtype demonstrated a drastically higher incidence of de novo metastasis when compared to the luminal and triple-negative breast cancers in the entire cohort [odds ratio (OR)=5.68 and 2.27, respectively] and in the patients with locally advanced disease (OR=4.02 and 2.12, respectively), whereas no significant difference was seen between de novo metastatic cancers and those with metastatic recurrence. Moreover, the luminal and HER2-rich subtypes showed bone-seeking (OR=1.92) and liver-homing (OR=2.99) characteristics, respectively, for the sites of de novo metastasis, while the latter was not observed in those with metastatic recurrence. Our data suggest that an algorithm incorporating clinicopathologic factors, especially histologic grade and receptor profile, remains of significant benefit during decision making in newly diagnosed breast cancer in the pursuit of precision medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Design of a bioresorbable polymeric scaffold for osteoblast culture

    Science.gov (United States)

    Ditaranto, Vincent M., Jr.

    Bioresorbable polymeric scaffolds were designed for the purpose of growing rat osteosarcoma cells (ROS 17/2.8) using the compression molding method. The material used in the construction of the scaffolds was a mixture of polycaprolactone (PCL), Hydroxyapatite (HA), Glycerin (GL) and salt (NaCl) for porosity. The concentration of the several materials utilized, was determined by volume. Past research at the University of Massachusetts Lowell (UML) has successfully utilized the compression molding method for the construction of scaffolds, but was unable to accomplish the goal of long term cell survival and complete cellular proliferation throughout a three dimensional scaffold. This research investigated various concentrations of the materials and molding temperatures used for the manufacture of scaffolds in order to improve the scaffold design and address those issues. The design of the scaffold using the compression molding process is detailed in the Method and Materials section of this thesis. The porogen (salt) used for porosity was suspected as a possible source of contamination causing cell apoptosis in past studies. This research addressed the issues for cell survival and proliferation throughout a three dimensional scaffold. The leaching of the salt was one major design modification. This research successfully used ultrasonic leaching in addition to the passive method. Prior to cell culture, the scaffolds were irradiated to 2.75 Mrad, with cobalt-60 gamma radionuclide. The tissue culture consisted of two trials: (1) cell culture in scaffolds cleaned with passive leaching; (2) cell culture with scaffolds cleaned with ultrasonic leaching. Cell survival and proliferation was accomplished only with the addition of ultrasonic leaching of the scaffolds. Analysis of the scaffolds included Scanning Electron Microscopy (SEM), Nikon light microscopy and x-ray mapping of the calcium, sodium and chloride ion distribution. The cells were analyzed by Environmental Scanning

  18. Multilayer porous UHMWPE scaffolds for bone defects replacement

    International Nuclear Information System (INIS)

    Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.

    2017-01-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  19. Multilayer porous UHMWPE scaffolds for bone defects replacement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  20. Highly charged cyanine fluorophores for trafficking scaffold degradation

    International Nuclear Information System (INIS)

    Owens, Eric A; Alyabyev, Sergey; Henary, Maged; Hyun, Hoon; Kim, Soon Hee; Lee, Jeong Heon; Park, GwangLi; Ashitate, Yoshitomo; Choi, Jungmun; Hong, Gloria H; Choi, Hak Soo; Lee, Sang Jin; Khang, Gilson

    2013-01-01

    Biodegradable scaffolds have been extensively used in the field of tissue engineering and regenerative medicine. However, noninvasive monitoring of in vivo scaffold degradation is still lacking. In order to develop a real-time trafficking technique, a series of meso-brominated near-infrared (NIR) fluorophores were synthesized and conjugated to biodegradable gelatin scaffolds. Since the pentamethine cyanine core is highly lipophilic, the side chain of each fluorophore was modified with either quaternary ammonium salts or sulfonate groups. The physicochemical properties such as lipophilicity and net charge of fluorophores played a key role in the fate of NIR-conjugated scaffolds in vivo after biodegradation. The positively charged fluorophore-conjugated scaffold fragments were found in salivary glands, lymph nodes, and most of the hepatobiliary excretion route. However, halogenated fluorophores intensively accumulated into lymph nodes and the liver. Interestingly, balanced-charged gelatin scaffolds were degraded into urine in a short period of time. These results demonstrate that the noninvasive optical imaging using NIR fluorophores can be useful for the translation of biodegradable scaffolds into the clinic. (paper)

  1. Foldability of a Natural De Novo Evolved Protein.

    Science.gov (United States)

    Bungard, Dixie; Copple, Jacob S; Yan, Jing; Chhun, Jimmy J; Kumirov, Vlad K; Foy, Scott G; Masel, Joanna; Wysocki, Vicki H; Cordes, Matthew H J

    2017-11-07

    The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S. cerevisiae, folds to a partially specific three-dimensional structure. Bsc4 forms soluble, compact oligomers with high β sheet content and a hydrophobic core, and undergoes cooperative, reversible denaturation. Bsc4 lacks a specific quaternary state, however, existing instead as a continuous distribution of oligomer sizes, and binds dyes indicative of amyloid oligomers or molten globules. The combination of native-like and non-native-like properties suggests a rudimentary fold that could potentially act as a functional intermediate in the emergence of new folded proteins de novo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Particulated articular cartilage: CAIS and DeNovo NT.

    Science.gov (United States)

    Farr, Jack; Cole, Brian J; Sherman, Seth; Karas, Vasili

    2012-03-01

    Cartilage Autograft Implantation System (CAIS; DePuy/Mitek, Raynham, MA) and DeNovo Natural Tissue (NT; ISTO, St. Louis, MO) are novel treatment options for focal articular cartilage defects in the knee. These methods involve the implantation of particulated articular cartilage from either autograft or juvenile allograft donor, respectively. In the laboratory and in animal models, both CAIS and DeNovo NT have demonstrated the ability of the transplanted cartilage cells to "escape" from the extracellular matrix, migrate, multiply, and form a new hyaline-like cartilage tissue matrix that integrates with the surrounding host tissue. In clinical practice, the technique for both CAIS and DeNovo NT is straightforward, requiring only a single surgery to affect cartilage repair. Clinical experience is limited, with short-term studies demonstrating both procedures to be safe, feasible, and effective, with improvements in subjective patient scores, and with magnetic resonance imaging evidence of good defect fill. While these treatment options appear promising, prospective randomized controlled studies are necessary to refine the indications and contraindications for both CAIS and DeNovo NT.

  3. Tubular inverse opal scaffolds for biomimetic vessels

    Science.gov (United States)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  4. Teenaged Internet Tutors' Use of Scaffolding with Older Learners

    Science.gov (United States)

    Tambaum, Tiina

    2017-01-01

    This study analyses how teenaged instructors paired with older learners make use of scaffolding. Video data were categorised according to 15 types of direct scaffolding tactics, indirect scaffolding, and unused scaffolding opportunities. The results show that a teenager who is unprepared for the role of an instructor of Internet skills for older…

  5. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Chao; Yang, Qiang; Zhu, Meifeng; Du, Lilong; Zhang, Jiamin; Ma, Xinlong; Xu, Baoshan; Wang, Lianyong

    2014-01-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus

  6. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  7. Scaffold hopping in drug discovery using inductive logic programming.

    Science.gov (United States)

    Tsunoyama, Kazuhisa; Amini, Ata; Sternberg, Michael J E; Muggleton, Stephen H

    2008-05-01

    In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse scaffolds. The comparison shows that the ILP-based method is significantly better than random selection while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as good as the other methods in this study. ILP produces human-readable rules, which makes it possible to identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping. We conclude that ILP provides a valuable new approach for scaffold hopping.

  8. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Shaoping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Teo, Wee Eong [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Zhu Xiao [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Beuerman, Roger [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Ramakrishna, Seeram [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Yung, Lin Yue Lanry [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore)]. E-mail: cheyly@nus.edu.sg

    2007-03-15

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds.

  9. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    International Nuclear Information System (INIS)

    Zhong Shaoping; Teo, Wee Eong; Zhu Xiao; Beuerman, Roger; Ramakrishna, Seeram; Yung, Lin Yue Lanry

    2007-01-01

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds

  10. Strategies for osteochondral repair: Focus on scaffolds

    Directory of Open Access Journals (Sweden)

    Seog-Jin Seo

    2014-07-01

    Full Text Available Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering.

  11. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  12. Scaffold library for tissue engineering: a geometric evaluation.

    Science.gov (United States)

    Chantarapanich, Nattapon; Puttawibul, Puttisak; Sucharitpwatskul, Sedthawatt; Jeamwatthanachai, Pongnarin; Inglam, Samroeng; Sitthiseripratip, Kriskrai

    2012-01-01

    Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE) method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO:BT) were good for making the open-cellular scaffold. The PO:BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO:BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress level were excluded. Good couples for

  13. Scaffold Library for Tissue Engineering: A Geometric Evaluation

    Directory of Open Access Journals (Sweden)

    Nattapon Chantarapanich

    2012-01-01

    Full Text Available Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO : BT were good for making the open-cellular scaffold. The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress

  14. Embroidered polymer-collagen hybrid scaffold variants for ligament tissue engineering.

    Science.gov (United States)

    Hoyer, M; Drechsel, N; Meyer, M; Meier, C; Hinüber, C; Breier, A; Hahner, J; Heinrich, G; Rentsch, C; Garbe, L-A; Ertel, W; Schulze-Tanzil, G; Lohan, A

    2014-10-01

    Embroidery techniques and patterns used for scaffold production allow the adaption of biomechanical scaffold properties. The integration of collagen into embroidered polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) scaffolds could stimulate neo-tissue formation by anterior cruciate ligament (ACL) cells. Therefore, the aim of this study was to test embroidered P(LA-CL) and PDS scaffolds as hybrid scaffolds in combination with collagen hydrogel, sponge or foam for ligament tissue engineering. ACL cells were cultured on embroidered P(LA-CL) and PDS scaffolds without or with collagen supplementation. Cell adherence, vitality, morphology and ECM synthesis were analyzed. Irrespective of thread size, ACL cells seeded on P(LA-CL) scaffolds without collagen adhered and spread over the threads, whereas the cells formed clusters on PDS and larger areas remained cell-free. Using the collagen hydrogel, the scaffold colonization was limited by the gel instability. The collagen sponge layers integrated into the scaffolds were hardly penetrated by the cells. Collagen foams increased scaffold colonization in P(LA-CL) but did not facilitate direct cell-thread contacts in the PDS scaffolds. The results suggest embroidered P(LA-CL) scaffolds as a more promising basis for tissue engineering an ACL substitute than PDS due to superior cell attachment. Supplementation with a collagen foam presents a promising functionalization strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  16. Scaffolds in regenerative endodontics: A review

    Science.gov (United States)

    Gathani, Kinjal M.; Raghavendra, Srinidhi Surya

    2016-01-01

    Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ‘A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ‘Platelet rich plasma’, ‘Platelet rich fibrin’, ‘Stem cells’, ‘Natural and artificial scaffolds’ from 1982–2015’. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon. PMID:27857762

  17. Scaffolds in regenerative endodontics: A review

    Directory of Open Access Journals (Sweden)

    Kinjal M Gathani

    2016-01-01

    Full Text Available Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ′A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ′Platelet rich plasma′, ′Platelet rich fibrin′, ′Stem cells′, ′Natural and artificial scaffolds′ from 1982-2015′. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon.

  18. Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China); Department of Bone and Joint Surgery, The affiliated hospital of Luzhou Medical College, Luzhou 646000 (China); Qing, Quan [Sichuan College of Traditional Chinese Medicine, Mianyang 621000 (China); Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041 (China); Chen, Xi; Liu, Cheng-Jun; Luo, Jing-Cong [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China); Hu, Jin-Lian [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Qin, Ting-Wu, E-mail: tingwuqin@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2016-12-01

    Highlights: • The shapes of tenocytes varied when seeded on different surface of scaffolds. • Tenocytes were flat on smooth surface and spindle on micro-grooved surface. • Tenocytes were ellipse or spindle on porous surface. • Tenocytes got varying adhesion shape and elongation index on varying surfaces. • The tenocyte survival on porous surface was superior to the other two groups. - Abstract: The purpose of this study was to investigate the effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Tenocytes were obtained from tail tendons of rats. Polydimethylsiloxane (PDMS) was used to fabricate three types of scaffolds with varying surface morphological characteristics, i.e., smooth, micro-grooved, and porous surfaces, respectively. The tenocytes were seeded on the surfaces of the scaffolds to form tenocyte-scaffold constructs. The constructs were cryopreserved in a vitreous cryoprotectant (CPA) with a multi-step protocol. The cell adhesion to scaffolds was observed with electronic scanning microscopy (SEM). The elongation index of the living tenocytes and ratio of live/dead cell number were examined based on a live/dead dual fluorescent staining technique, and the survival rate of tenocytes was studied with flow cytometry (FC). The results showed the shapes of tenocytes varied between the different groups: flat or polygonal (on smooth surface), spindle (on micro-grooved surface), and spindle or ellipse (on porous surface). After thawing, the porous surface got the most living tenocytes and a higher survival rate, suggesting its potential application for vitreous cryopreservation of engineered tendon constructs.

  19. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    Science.gov (United States)

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  20. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    Directory of Open Access Journals (Sweden)

    Lakshminath Kundanati

    2016-09-01

    Full Text Available Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions.

  1. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    International Nuclear Information System (INIS)

    Chhabra, Hemlata; Gupta, Priyanka; Verma, Paul J.; Jadhav, Sameer; Bellare, Jayesh R.

    2014-01-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold

  2. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Hemlata [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); Gupta, Priyanka [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); IITB-Monash Research Academy, Mumbai (India); Department of Chemical Engineering, Monash University, Melbourne (Australia); Verma, Paul J. [Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia (Australia); Jadhav, Sameer; Bellare, Jayesh R. [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India)

    2014-04-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold.

  3. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks.

    Science.gov (United States)

    Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian

    2015-01-01

    Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues.

  4. ASTM International Workshop on Standards & Measurements for Tissue Engineering Scaffolds

    Science.gov (United States)

    Simon, Carl G.; Yaszemski, Michael J.; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A.

    2016-01-01

    The “Workshop on Standards & Measurements for Tissue Engineering Scaffolds” was held on May 21, 2013 in Indianapolis, IN and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active “guide” documents for educational purposes, but that few standard “test methods” or “practices” have been published. Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition and drug release from scaffolds. Discussions also highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Finally, dialogue emphasized the needs to promote the use of standards in scaffold fabrication, characterization, and commercialization and to assess the use and impact of standards in the TEMPs community. Many scaffold standard needs have been identified and focus should now turn to generating these standards to support the use of scaffolds in TEMPs. PMID:25220952

  5. Scaffold translation: barriers between concept and clinic.

    Science.gov (United States)

    Hollister, Scott J; Murphy, William L

    2011-12-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.

  6. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  7. Backbone dynamics of the EIAV-Tat protein from 15N relaxation studies

    International Nuclear Information System (INIS)

    Ejchart, A.; Herrmann, F.; Roesch, P.; Sticht, H.; Willbold, D.

    1994-01-01

    The work investigates the mobility of EIAV-Tat protein backbone by measuring the relaxation parameters of the 15 N nitrogens. High degree of the flexibility, non-typical of rigid, well structured proteins was shown

  8. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    Science.gov (United States)

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  9. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  10. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  11. Scaffolding Proteins: Not Such Innocent Bystanders

    OpenAIRE

    Smith, F. Donelson; Scott, John D.

    2013-01-01

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay.

  12. Mechanical anisotropy of titanium scaffolds

    Directory of Open Access Journals (Sweden)

    Rüegg Jasmine

    2017-09-01

    Full Text Available The clinical performance of an implant, e.g. for the treatment of large bone defects, depends on the implant material, anchorage, surface topography and chemistry, but also on the mechanical properties, like the stiffness. The latter can be adapted by the porosity. Whereas foams show isotropic mechanical properties, digitally modelled scaffolds can be designed with anisotropic behaviour. In this study, we designed and produced 3D scaffolds based on an orthogonal architecture and studied its angle-dependent stiffness. The aim was to produce scaffolds with different orientations of the microarchitecture by selective laser melting and compare the angle-specific mechanical behaviour with an in-silico simulation. The anisotropic characteristics of open-porous implants and technical limitations of the production process were studied.

  13. HA/nylon 6,6 porous scaffolds fabricated by salt-leaching/solvent casting technique: effect of nano-sized filler content on scaffold properties

    Directory of Open Access Journals (Sweden)

    Mehrabanian M

    2011-08-01

    Full Text Available Mehran Mehrabanian1, Mojtaba Nasr-Esfahani21Member of Young Researchers Club, Najafabad Branch, Islamic Azad University, Isfahan, Iran; 2Department of Materials Science and Engineering, Najafabad Branch, Islamic Azad University, Isfahan, IranAbstract: Nanohydroxyapatite (n-HA/nylon 6,6 composite scaffolds were produced by means of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 60% for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained were characterized for their microstructure, mechanical stability and strength, and bioactivity. The microstructure of the composite scaffolds possessed a well-developed interconnected porosity with approximate optimal pore size ranging from 200 to 500 µm, ideal for bone regeneration and vascularization. The mechanical properties of the composite scaffolds were evaluated by compressive strength and modulus tests, and the results confirmed their similarity to cortical bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body fluid for different lengths of time and results monitored by scanning electron microscopy and energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaffold surface.Keywords: scaffold, nanohydroxyapatite, nylon 6,6, salt-leaching/solvent casting, bioactivity

  14. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    Science.gov (United States)

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  15. Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Tesavibul, Passakorn; Sitthiseripratip, Kriskrai; Chatarapanich, Nattapon; Feltis, Bryce; Wright, Paul F A; Turney, Terence W

    2017-06-01

    Scaffolds made from 45S5 Bioglass® ceramic (BG) show clinical potential in bone regeneration due to their excellent bioactivity and ability to bond to natural bone tissue. However, porous BG scaffolds are limited by their mechanical integrity and by the substantial volume contractions occurring upon sintering. This study examines stereolithographic (SLA) methods to fabricate mechanically robust and porous Bioglass®-based ceramic scaffolds, with regular and interconnected pore networks and using various computer-aided design architectures. It was found that a diamond-like (DM) architecture gave scaffolds the most controllable results without any observable closed porosity in the fired scaffolds. When the pore dimensions of the DM scaffolds of the same porosity (~60vol%) were decreased from 700 to 400μm, the compressive strength values increased from 3.5 to 6.7MPa. In addition, smaller dimensional shrinkage could be obtained by employing partially pre-sintered bioglass, compared to standard 45S5 Bioglass®. Scaffolds derived from pre-sintered bioglass also showed marginally improved compressive strength. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Scaffolds for peripheral nerve repair and reconstruction.

    Science.gov (United States)

    Yi, Sheng; Xu, Lai; Gu, Xiaosong

    2018-06-02

    Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. SCAFFOLDING IN CONNECTIVIST MOBILE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN

    2013-04-01

    Full Text Available Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: Ø to learn in a networked environment, Ø to manage their networked learning process, Ø to interact in a networked society, and Ø to use the tools belonging to the network society. The researcher described how Vygotsky's “scaffolding” concept, Berge’s “learner support” strategies, and Siemens’ “connectivism” approach can be used together to satisfy mobile learners’ needs. A connectivist mobile learning environment was designed for the research, and the research was executed as a mixed-method study. Data collection tools were Facebook wall entries, personal messages, chat records; Twitter, Diigo, blog entries; emails, mobile learning management system statistics, perceived learning survey and demographic information survey. Results showed that there were four major aspects of scaffolding in connectivist mobile learning environment as type of it, provider of it, and timing of it and strategies of it. Participants preferred mostly social scaffolding, and then preferred respectively, managerial, instructional and technical scaffolding. Social scaffolding was mostly provided by peers, and managerial scaffolding was mostly provided by instructor. Use of mobile devices increased the learner motivation and interest. Some participants stated that learning was more permanent by using mobile technologies. Social networks and mobile technologies made it easier to manage the learning process and expressed a positive impact on perceived learning.

  18. Low elastic modulus titanium–nickel scaffolds for bone implants

    International Nuclear Information System (INIS)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property

  19. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India); Verma, Sudhanshu; Manjubala, I. [Biomedical Engineering Division, School of Bio Sciences and Technology, VIT University, Vellore 632014 (India); Madhan, B., E-mail: bmadhan76@yahoo.co.in [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India)

    2014-12-01

    Keratin has gained much attention in the recent past as a biomaterial for wound healing owing to its biocompatibility, biodegradability, intrinsic biological activity and presence of cellular binding motifs. In this paper, a novel biomimetic scaffold containing keratin, chitosan and gelatin was prepared by freeze drying method. The prepared keratin composite scaffold had good structural integrity. Fourier Transform Infrared (FTIR) spectroscopy showed the retention of the native structure of individual biopolymers (keratin, chitosan, and gelatin) used in the scaffold. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) results revealed a high thermal denaturation temperature of the scaffold (200–250 °C). The keratin composite scaffold exhibited tensile strength (96 kPa), compression strength (8.5 kPa) and water uptake capacity (> 1700%) comparable to that of a collagen scaffold, which was used as control. The morphology of the keratin composite scaffold observed using a Scanning Electron Microscope (SEM) exhibited good porosity and interconnectivity of pores. MTT assay using NIH 3T3 fibroblast cells demonstrated that the cell viability of the keratin composite scaffold was good. These observations suggest that the keratin–chitosan–gelatin composite scaffold is a promising alternative biomaterial for tissue engineering applications. - Highlights: • Fabrication of novel Keratin-Chitosan-Gelatin composite scaffold • Keratin composite scaffold shows excellent water uptake capacity and porosity • Keratin composite scaffold shows good thermal and physical stability • Biocompatibility of the developed scaffold is comparable to collagen scaffolds • Developed scaffold is a promising material for soft tissue engineering applications.

  20. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  1. A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes.

    Science.gov (United States)

    Ji, Lijun; Qiao, Wei; Zhang, Yuheng; Wu, Huayu; Miao, Shiyong; Cheng, Zhilin; Gong, Qianming; Liang, Ji; Zhu, Aiping

    2017-09-01

    Mechanical properties and anti-infection are two of the most concerned issues for artificial bone grafting materials. Bone regeneration porous scaffolds with sustained drug release were developed by freeze-drying the mixture of nanosized drug-loaded halloysite nanotubes (HNTs) and gelatin. The scaffolds showed porous structure and excellent biocompatibility. The mechanical properties of the obtained composite scaffolds were enhanced significantly by HNTs to >300%, comparing to those of gelatin scaffold, and match to those of natural cancellous bones. The ibuprofen-loaded HNTs incorporated in the scaffolds allowed extended drug release over 100h, comparing to 8h when directly mixed the drug into the gelatin scaffold. The biological properties of the composite scaffolds were investigated by culturing MG63 cells on them. The HNTs/gelatin scaffolds with excellent mechanical properties and sustained drug release could be a promising artificial bone grating material. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Bioactive Nano-fibrous Scaffold for Vascularized Craniofacial Bone Regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul Damodaran; Kraft, David Christian Evar; Harkness, Linda

    2018-01-01

    the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA) - poly (ε) caprolactone (PCL) - Bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual...... electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic poly (ε) caprolactone (PCL) by combination with a hydrophilic polyvinyl alcohol (PVA) and the bioceramic (HAB) can contribute to enhance osteo-conductivity. We characterized the physicochemical...... and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; (human bone marrow skeletal (mesenchymal) stem cells (hMSC) and dental pulp stem cells (DPSC)). In addition, the scaffold supported in vitro osteogenic...

  3. Modeling material-degradation-induced elastic property of tissue engineering scaffolds.

    Science.gov (United States)

    Bawolin, N K; Li, M G; Chen, X B; Zhang, W J

    2010-11-01

    The mechanical properties of tissue engineering scaffolds play a critical role in the success of repairing damaged tissues/organs. Determining the mechanical properties has proven to be a challenging task as these properties are not constant but depend upon time as the scaffold degrades. In this study, the modeling of the time-dependent mechanical properties of a scaffold is performed based on the concept of finite element model updating. This modeling approach contains three steps: (1) development of a finite element model for the effective mechanical properties of the scaffold, (2) parametrizing the finite element model by selecting parameters associated with the scaffold microstructure and/or material properties, which vary with scaffold degradation, and (3) identifying selected parameters as functions of time based on measurements from the tests on the scaffold mechanical properties as they degrade. To validate the developed model, scaffolds were made from the biocompatible polymer polycaprolactone (PCL) mixed with hydroxylapatite (HA) nanoparticles and their mechanical properties were examined in terms of the Young modulus. Based on the bulk degradation exhibited by the PCL/HA scaffold, the molecular weight was selected for model updating. With the identified molecular weight, the finite element model developed was effective for predicting the time-dependent mechanical properties of PCL/HA scaffolds during degradation.

  4. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  5. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas

    2013-01-01

    -protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains...... of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...... to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1...

  6. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    Science.gov (United States)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  7. Patterns of Scaffolding in Computer-Mediated Collaborative Inquiry

    Science.gov (United States)

    Lakkala, Minna; Muukkonen, Hanni; Hakkarainen, Kai

    2005-01-01

    There is wide agreement on the importance of scaffolding for student learning. Yet, models of individual and face-to-face scaffolding are not necessarily applicable to educational settings in which a group of learners is pursuing a process of inquiry mediated by technology. The scaffolding needed for such a process may be examined from three…

  8. The response of tenocytes to commercial scaffolds used for rotator cuff repair

    Directory of Open Access Journals (Sweden)

    RDJ Smith

    2017-01-01

    Full Text Available Surgical repairs of rotator cuff tears have high re-tear rates and many scaffolds have been developed to augment the repair. Understanding the interaction between patients’ cells and scaffolds is important for improving scaffold performance and tendon healing. In this in vitro study, we investigated the response of patient-derived tenocytes to eight different scaffolds. Tested scaffolds included X-Repair, Poly-Tape, LARS Ligament, BioFiber (synthetic scaffolds, BioFiber-CM (biosynthetic scaffold, GraftJacket, Permacol, and Conexa (biological scaffolds. Cell attachment, proliferation, gene expression, and morphology were assessed. After one day, more cells attached to synthetic scaffolds with dense, fine and aligned fibres (X-Repair and Poly-Tape. Despite low initial cell attachment, the human dermal scaffold (GraftJacket promoted the greatest proliferation of cells over 13 days. Expression of collagen types I and III were upregulated in cells grown on non-cross-linked porcine dermis (Conexa. Interestingly, the ratio of collagen I to collagen III mRNA was lower on all dermal scaffolds compared to synthetic and biosynthetic scaffolds. These findings demonstrate significant differences in the response of patient-derived tendon cells to scaffolds that are routinely used for rotator cuff surgery. Synthetic scaffolds promoted increased cell adhesion and a tendon-like cellular phenotype, while biological scaffolds promoted cell proliferation and expression of collagen genes. However, no single scaffold was superior. Our results may help understand the way that patients’ cells interact with scaffolds and guide the development of new scaffolds in the future.

  9. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    Science.gov (United States)

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Alendronate-Eluting Biphasic Calcium Phosphate (BCP Scaffolds Stimulate Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2015-01-01

    Full Text Available Biphasic calcium phosphate (BCP scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN- eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDS, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation.

  11. Edible Scaffolds Based on Non-Mammalian Biopolymers for Myoblast Growth

    Directory of Open Access Journals (Sweden)

    Javier Enrione

    2017-12-01

    Full Text Available In vitro meat has recently emerged as a new concept in food biotechnology. Methods to produce in vitro meat generally involve the growth of muscle cells that are cultured on scaffolds using bioreactors. Suitable scaffold design and manufacture are critical to downstream culture and meat production. Most current scaffolds are based on mammalian-derived biomaterials, the use of which is counter to the desire to obviate mammal slaughter in artificial meat production. Consequently, most of the knowledge is related to the design and control of scaffold properties based on these mammalian-sourced materials. To address this, four different scaffold materials were formulated using non-mammalian sources, namely, salmon gelatin, alginate, and additives including gelling agents and plasticizers. The scaffolds were produced using a freeze-drying process, and the physical, mechanical, and biological properties of the scaffolds were evaluated. The most promising scaffolds were produced from salmon gelatin, alginate, agarose, and glycerol, which exhibited relatively large pore sizes (~200 μm diameter and biocompatibility, permitting myoblast cell adhesion (~40% and growth (~24 h duplication time. The biodegradation profiles of the scaffolds were followed, and were observed to be less than 25% after 4 weeks. The scaffolds enabled suitable myogenic response, with high cell proliferation, viability, and adequate cell distribution throughout. This system composed of non-mammalian edible scaffold material and muscle-cells is promising for the production of in vitro meat.

  12. Effect of oligonucleic acid (ONA) backbone features on assembly of ONA-star polymer conjugates: a coarse-grained molecular simulation study.

    Science.gov (United States)

    Condon, Joshua E; Jayaraman, Arthi

    2017-10-04

    Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.

  13. Effect of backbone structure on charge transport along isolated conjugated polymer chains

    International Nuclear Information System (INIS)

    Siebbeles, Laurens D.A.; Grozema, Ferdinand C.; Haas, Matthijs P. de; Warman, John M.

    2005-01-01

    Fast charge transport in conjugated polymers is essential for their application in opto-electronic devices. In the present paper, measurements and theoretical modeling of the mobility of excess charges along isolated chains of conjugated polymers in dilute solution are presented. Charge carriers were produced by irradiation of the polymer solution with 3-MeV electrons from a Van de Graaff accelerator. The mobilities of the charges along the polymer chains were obtained from time-resolved microwave conductivity measurements. The mobilities are strongly dependent on the chemical nature of the polymer backbone. Comparison of the experimental data with results from ab initio quantum mechanical calculations shows that the measured mobilities are strongly limited by torsional disorder, chemical defects and chain ends. Improvement of the structure of polymer backbones is therefore expected to significantly enhance the performance of these materials in 'plastic electronics'

  14. A comparison of scaffold-free and scaffold-based reconstructed human skin models as alternatives to animal use.

    Science.gov (United States)

    Kinikoglu, Beste

    2017-12-01

    Tissue engineered full-thickness human skin substitutes have various applications in the clinic and in the laboratory, such as in the treatment of burns or deep skin defects, and as reconstructed human skin models in the safety testing of drugs and cosmetics and in the fundamental study of skin biology and pathology. So far, different approaches have been proposed for the generation of reconstructed skin, each with its own advantages and disadvantages. Here, the classic tissue engineering approach, based on cell-seeded polymeric scaffolds, is compared with the less-studied cell self-assembly approach, where the cells are coaxed to synthesise their own extracellular matrix (ECM). The resulting full-thickness human skin substitutes were analysed by means of histological and immunohistochemical analyses. It was found that both the scaffold-free and the scaffold-based skin equivalents successfully mimicked the functionality and morphology of native skin, with complete epidermal differentiation (as determined by the expression of filaggrin), the presence of a continuous basement membrane expressing collagen VII, and new ECM deposition by dermal fibroblasts. On the other hand, the scaffold-free model had a thicker epidermis and a significantly higher number of Ki67-positive proliferative cells, indicating a higher capacity for self-renewal, as compared to the scaffold-based model. 2017 FRAME.

  15. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Hoi Man Wong

    2014-10-01

    Full Text Available In this paper, we describe the fabrication of a new biodegradable porous scaffold composed of polycaprolactone (PCL and magnesium (Mg micro-particles. The compressive modulus of PCL porous scaffold was increased to at least 150% by incorporating 29% Mg particles with the porosity of 74% using Micro-CT analysis. Surprisingly, the compressive modulus of this scaffold was further increased to at least 236% when the silane-coupled Mg particles were added. In terms of cell viability, the scaffold modified with Mg particles significantly convinced the attachment and growth of osteoblasts as compared with the pure PCL scaffold. In addition, the hybrid scaffold was able to attract the formation of apatite layer over its surface after 7 days of immersion in normal culture medium, whereas it was not observed on the pure PCL scaffold. This in vitro result indicated the enhanced bioactivity of the modified scaffold. Moreover, enhanced bone forming ability was also observed in the rat model after 3 months of implantation. Though bony in-growth was found in all the implanted scaffolds. High volume of new bone formation could be found in the Mg/PCL hybrid scaffolds when compared to the pure PCL scaffold. Both pure PCL and Mg/PCL hybrid scaffolds were degraded after 3 months. However, no tissue inflammation was observed. In conclusion, these promising results suggested that the incorporation of Mg micro-particles into PCL porous scaffold could significantly enhance its mechanical and biological properties. This modified porous bio-scaffold may potentially apply in the surgical management of large bone defect fixation.

  16. ASTM international workshop on standards and measurements for tissue engineering scaffolds.

    Science.gov (United States)

    Simon, Carl G; Yaszemski, Michael J; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A

    2015-07-01

    The "Workshop on Standards & Measurements for Tissue Engineering Scaffolds" was held on May 21, 2013 in Indianapolis, IN, and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active "guide" documents for educational purposes, but few standard "test methods" or "practices." Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition, and drug release from scaffolds. Discussions highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Workshop participants emphasized the need to promote the use of standards in scaffold fabrication, characterization, and commercialization. Finally, participants noted that standards would be more broadly accepted if their impact in the TEMPs community could be quantified. Many scaffold standard needs have been identified and focus is turning to generating these standards to support the use of scaffolds in TEMPs. © 2014 Wiley Periodicals, Inc.

  17. A scaffold easy to decontaminate

    International Nuclear Information System (INIS)

    Mourek, D.

    1992-01-01

    The conventional scaffold used in the assembling work and in revisions of technological facilities at nuclear power plants has many drawbacks. The most serious of them are a high amount of radioactive waste arising from the decontamination (planing) of the floor timber and from the discarding of damaged irreparable parts, and a considerable corrosion of the carbon steel supporting structure after the decontamination. A detailed description is given of a novel scaffold assembly which can be decontaminated and which exhibits many assets, in particular a good mechanical resistance (also to bad weather), a lower weight, and the use of prepreg floor girders for the construction of service platforms or scaffold bridges which can readily be assembled from the pressed pieces in a modular way. (Z.S.). 4 figs., 4 refs

  18. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    Science.gov (United States)

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Kumbar, S G; Toti, U S; Deng, M; James, R; Laurencin, C T; Aravamudhan, A; Harmon, M; Ramos, D M

    2011-01-01

    The success of the scaffold-based bone regeneration approach critically depends on the biomaterial's mechanical and biological properties. Cellulose and its derivatives are inherently associated with exceptional strength and biocompatibility due to their β-glycosidic linkage and extensive hydrogen bonding. This polymer class has a long medical history as a dialysis membrane, wound care system and pharmaceutical excipient. Recently cellulose-based scaffolds have been developed and evaluated for a variety of tissue engineering applications. In general porous polysaccharide scaffolds in spite of many merits lack the necessary mechanical competence needed for load-bearing applications. The present study reports the fabrication and characterization of three-dimensional (3D) porous sintered microsphere scaffolds based on cellulose derivatives using a solvent/non-solvent sintering approach for load-bearing applications. These 3D scaffolds exhibited a compressive modulus and strength in the mid-range of human trabecular bone and underwent degradation resulting in a weight loss of 10–15% after 24 weeks. A typical stress–strain curve for these scaffolds showed an initial elastic region and a less-stiff post-yield region similar to that of native bone. Human osteoblasts cultured on these scaffolds showed progressive growth with time and maintained expression of osteoblast phenotype markers. Further, the elevated expression of alkaline phosphatase and mineralization at early time points as compared to heat-sintered poly(lactic acid–glycolic acid) control scaffolds with identical pore properties affirmed the advantages of polysaccharides and their potential for scaffold-based bone regeneration.

  20. ''de novo'' aneurysms following endovascular procedures

    Energy Technology Data Exchange (ETDEWEB)

    Briganti, F.; Cirillo, S.; Caranci, F. [Department of Neurological Sciences, Services of Neuroradiology, ' ' Federico II' ' University, Naples (Italy); Esposito, F.; Maiuri, F. [Department of Neurological Sciences, Services of Neurosurgery, ' ' Federico II' ' University, Naples (Italy)

    2002-07-01

    Two personal cases of ''de novo'' aneurysms of the anterior communicating artery (ACoA) occurring 9 and 4 years, respectively, after endovascular carotid occlusion are described. A review of the 30 reported cases (including our own two) of ''de novo'' aneurysms after occlusion of the major cerebral vessels has shown some features, including a rather long time interval after the endovascular procedure of up to 20-25 years (average 9.6 years), a preferential ACoA (36.3%) and internal carotid artery-posterior communicating artery (ICA-PCoA) (33.3%) location of the ''de novo'' aneurysms, and a 10% rate of multiple aneurysms. These data are compared with those of the group of reported spontaneous ''de novo'' aneurysms after SAH or previous aneurysm clipping. We agree that the frequency of ''de novo'' aneurysms after major-vessel occlusion (two among ten procedures in our series, or 20%) is higher than commonly reported (0 to 11%). For this reason, we suggest that patients who have been submitted to endovascular major-vessel occlusion be followed up for up to 20-25 years after the procedure, using non-invasive imaging studies such as MR angiography and high-resolution CT angiography. On the other hand, periodic digital angiography has a questionable risk-benefit ratio; it may be used when a ''de novo'' aneurysm is detected or suspected on non-invasive studies. The progressive enlargement of the ACoA after carotid occlusion, as described in our case 1, must be considered a radiological finding of risk for ''de novo'' aneurysm formation. (orig.)

  1. Language and national identity in Novo Cinema Galego

    Directory of Open Access Journals (Sweden)

    Brais ROMERO SUÁREZ

    2015-12-01

    Full Text Available The talk of town since its inception in 2010, the Cinema Novo Galego has been successful in all competitions and festivals that has been present. From the FIPRESCI prize in Cannes to the Best Emerging Director at Locarno, this new wave of cinema places Galicia in the world film stage. But does Novo Cinema Galego an accurate representation of Galicia? What's the role of Galicia in this movement?

  2. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation.

    Science.gov (United States)

    Zeng, Xiao Bo; Hu, Hao; Xie, Li Qin; Lan, Fang; Jiang, Wen; Wu, Yao; Gu, Zhong Wei

    2012-01-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs) and hydroxyapatite (HA) for bone repair has been developed by our research group. In this study, to investigate the influence of the MNP content (in the scaffolds) on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2%) were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase, and bone gla protein activity tests. The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation. The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.

  3. Scaffolding proteins: not such innocent bystanders.

    Science.gov (United States)

    Smith, F Donelson; Scott, John D

    2013-06-17

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Preparation, physicochemical properties and biocompatibility of PBLG/PLGA/bioglass composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ning [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Jinlei [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ji, Chuanlei [The Orthopaedic Department, XiJing Hospital Affiliated to the Fourth Military Medical University, Xi' an 710032 (China); Xu, Weijun; Wang, Hongjie [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2017-02-01

    In this study, novel poly(γ-benzyl L-glutamate)/poly(lactic-co-glycolic acid)/bioglass (PBLG/PLGA/BG) composite scaffolds with different weight ratios were fabricated using a negative NaCl-templating method. The morphology, compression modulus and degradation kinetics of the scaffolds were characterized. The results showed that the PBLG/PLGA/BG composite scaffolds with a weight ratio of 5:5:1, namely PBLG5PLGA5BG composite scaffolds, displayed a pore size range of 50–500 μm, high compressive modulus (566.6 ± 8.8 kPa), suitable glass transition temperature (46.8 ± 0.2 °C) and low degradation rate (> 8 weeks). The in vitro biocompatibility of the scaffolds was evaluated with MC3T3-E1 cells by live-dead staining, MTT and ALP activity assays. The obtained results indicated that the PBLG5PLGA5BG composite scaffolds were more conducive to the adhesion, proliferation and osteoblastic differentiation of MC3T3-E1 cells than PBLG and PBLG/PLGA composite scaffolds. The in vivo biocompatibility of the scaffolds was evaluated in both SD rat subcutaneous model and rabbit tibia defect model. The results of H&E, Masson's trichrome and CD34 staining assays demonstrated that the PBLG5PLGA5BG composite scaffolds allowed the ingrowth of tissue and microvessels more effectively than PBLG/PLGA composite scaffolds. The results of digital radiography confirmed that the PBLG5PLGA5BG composite scaffolds significantly improved in vivo osteogenesis. Collectively, the PBLG5PLGA5BG composite scaffolds could be a promising candidate for tissue engineering applications. - Highlights: • Foamy PBLG/PLGA/bioglass composite scaffolds were fabricated by negative templating. • PBLG/PLGA/bioglass composite scaffolds displayed tunable physicochemical properties. • PBLG/PLGA/bioglass composite scaffolds had good biocompatibility in vitro and in vivo. • PBLG/PLGA/bioglass composite scaffolds could promote the healing of bone defects.

  5. Role of scaffold mean pore size in meniscus regeneration.

    Science.gov (United States)

    Zhang, Zheng-Zheng; Jiang, Dong; Ding, Jian-Xun; Wang, Shao-Jie; Zhang, Lei; Zhang, Ji-Ying; Qi, Yan-Song; Chen, Xue-Si; Yu, Jia-Kuo

    2016-10-01

    Recently, meniscus tissue engineering offers a promising management for meniscus regeneration. Although rarely reported, the microarchitectures of scaffolds can deeply influence the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation in meniscus tissue engineering. Herein, a series of three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds with three distinct mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The scaffold with the mean pore size of 215μm significantly improved both the proliferation and extracellular matrix (ECM) production/deposition of mesenchymal stem cells compared to all other groups in vitro. Moreover, scaffolds with mean pore size of 215μm exhibited the greatest tensile and compressive moduli in all the acellular and cellular studies. In addition, the relatively better results of fibrocartilaginous tissue formation and chondroprotection were observed in the 215μm scaffold group after substituting the rabbit medial meniscectomy for 12weeks. Overall, the mean pore size of 3D-printed PCL scaffold could affect cell behavior, ECM production, biomechanics, and repair effect significantly. The PCL scaffold with mean pore size of 215μm presented superior results both in vitro and in vivo, which could be an alternative for meniscus tissue engineering. Meniscus tissue engineering provides a promising strategy for meniscus regeneration. In this regard, the microarchitectures (e.g., mean pore size) of scaffolds remarkably impact the behaviors of cells and subsequent tissue formation, which has been rarely reported. Herein, three three-dimensional poly(ε-caprolactone) scaffolds with different mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The results suggested that the mean pore size significantly affected the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation. This study furthers

  6. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.; Aldhahri, Musab A.; Abdel-wahab, Mohamed Shaaban; Tamayol, Ali; Moghaddam, K. Mollazadeh; Ben Rached, Fathia; Pain, Arnab; Khademhosseini, Ali; Memic, Adnan; Chaieb, Saharoui

    2017-01-01

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  7. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  8. On the Origin of De Novo Genes in Arabidopsis thaliana Populations.

    Science.gov (United States)

    Li, Zi-Wen; Chen, Xi; Wu, Qiong; Hagmann, Jörg; Han, Ting-Shen; Zou, Yu-Pan; Ge, Song; Guo, Ya-Long

    2016-08-03

    De novo genes, which originate from ancestral nongenic sequences, are one of the most important sources of protein-coding genes. This origination process is crucial for the adaptation of organisms. However, how de novo genes arise and become fixed in a population or species remains largely unknown. Here, we identified 782 de novo genes from the model plant Arabidopsis thaliana and divided them into three types based on the availability of translational evidence, transcriptional evidence, and neither transcriptional nor translational evidence for their origin. Importantly, by integrating multiple types of omics data, including data from genomes, epigenomes, transcriptomes, and translatomes, we found that epigenetic modifications (DNA methylation and histone modification) play an important role in the origination process of de novo genes. Intriguingly, using the transcriptomes and methylomes from the same population of 84 accessions, we found that de novo genes that are transcribed in approximately half of the total accessions within the population are highly methylated, with lower levels of transcription than those transcribed at other frequencies within the population. We hypothesized that, during the origin of de novo gene alleles, those neutralized to low expression states via DNA methylation have relatively high probabilities of spreading and becoming fixed in a population. Our results highlight the process underlying the origin of de novo genes at the population level, as well as the importance of DNA methylation in this process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.

    Science.gov (United States)

    Kharaziha, Mahshid; Shin, Su Ryon; Nikkhah, Mehdi; Topkaya, Seda Nur; Masoumi, Nafiseh; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-08-01

    In the past few years, a considerable amount of effort has been devoted toward the development of biomimetic scaffolds for cardiac tissue engineering. However, most of the previous scaffolds have been electrically insulating or lacked the structural and mechanical robustness to engineer cardiac tissue constructs with suitable electrophysiological functions. Here, we developed tough and flexible hybrid scaffolds with enhanced electrical properties composed of carbon nanotubes (CNTs) embedded aligned poly(glycerol sebacate):gelatin (PG) electrospun nanofibers. Incorporation of varying concentrations of CNTs from 0 to 1.5% within the PG nanofibrous scaffolds (CNT-PG scaffolds) notably enhanced fiber alignment and improved the electrical conductivity and toughness of the scaffolds while maintaining the viability, retention, alignment, and contractile activities of cardiomyocytes (CMs) seeded on the scaffolds. The resulting CNT-PG scaffolds resulted in stronger spontaneous and synchronous beating behavior (3.5-fold lower excitation threshold and 2.8-fold higher maximum capture rate) compared to those cultured on PG scaffold. Overall, our findings demonstrated that aligned CNT-PG scaffold exhibited superior mechanical properties with enhanced CM beating properties. It is envisioned that the proposed hybrid scaffolds can be useful for generating cardiac tissue constructs with improved organization and maturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration.

    Science.gov (United States)

    Bonvallet, Paul P; Culpepper, Bonnie K; Bain, Jennifer L; Schultz, Matthew J; Thomas, Steven J; Bellis, Susan L

    2014-09-01

    The goal of this study was to synthesize skin substitutes that blend native extracellular matrix (ECM) molecules with synthetic polymers which have favorable mechanical properties. To this end, scaffolds were electrospun from collagen I (col) and poly(ɛ-caprolactone) (PCL), and then pores were introduced mechanically to promote fibroblast infiltration, and subsequent filling of the pores with ECM. A 70:30 col/PCL ratio was determined to provide optimal support for dermal fibroblast growth, and a pore diameter, 160 μm, was identified that enabled fibroblasts to infiltrate and fill pores with native matrix molecules, including fibronectin and collagen I. Mechanical testing of 70:30 col/PCL scaffolds with 160 μm pores revealed a tensile strength of 1.4 MPa, and the scaffolds also exhibited a low rate of contraction (pores. Keratinocytes formed a stratified layer on the surface of fibroblast-remodeled scaffolds, and staining for cytokeratin 10 revealed terminally differentiated keratinocytes at the apical surface. When implanted, 70:30 col/PCL scaffolds degraded within 3-4 weeks, an optimal time frame for degradation in vivo. Finally, 70:30 col/PCL scaffolds with or without 160 μm pores were implanted into full-thickness critical-sized skin defects. Relative to nonporous scaffolds or sham wounds, scaffolds with 160 μm pores induced accelerated wound closure, and stimulated regeneration of healthy dermal tissue, evidenced by a more normal-appearing matrix architecture, blood vessel in-growth, and hair follicle development. Collectively, these results suggest that microporous electrospun scaffolds are effective substrates for skin regeneration.

  11. Extreme-Scale De Novo Genome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Georganas, Evangelos [Intel Corporation, Santa Clara, CA (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Rokhsar, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yelick, Katherine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.

    2017-09-26

    De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and potentially erroneous DNA segments and is one of the most important computations in modern genomics. This work presents HipMER, a high-quality end-to-end de novo assembler designed for extreme scale analysis, via efficient parallelization of the Meraculous code. Genome assembly software has many components, each of which stresses different components of a computer system. This chapter explains the computational challenges involved in each step of the HipMer pipeline, the key distributed data structures, and communication costs in detail. We present performance results of assembling the human genome and the large hexaploid wheat genome on large supercomputers up to tens of thousands of cores.

  12. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering.

    Science.gov (United States)

    Esposito, Andrea Rodrigues; Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-04-01

    The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.

  13. Investigation of cancer cell behavior on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Szot, Christopher S.; Buchanan, Cara F. [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Gatenholm, Paul [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Rylander, Marissa Nichole [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Freeman, Joseph W., E-mail: jwfreeman@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2011-01-01

    Tissue engineering and the use of nanofibrous biomaterial scaffolds offer a unique perspective for studying cancer development in vitro. Current in vitro models of tumorigenesis are limited by the use of static, two-dimensional (2D) cell culture monolayers that lack the structural architecture necessary for cell-cell interaction and three-dimensional (3D) scaffolds that are too simplistic for studying basic pathological mechanisms. In this study, two nanofibrous biomaterials that mimic the structure of the extracellular matrix, bacterial cellulose and electrospun polycaprolactone (PCL)/collagen I, were investigated as potential 3D scaffolds for an in vitro cancer model. Multiple cancer cell lines were cultured on each scaffold material and monitored for cell viability, proliferation, adhesion, infiltration, and morphology. Both bacterial cellulose and electrospun PCL/collagen I, which have nano-scale structures on the order of 100-500 nm, have been used in many diverse tissue engineering applications. Cancer cell adhesion and growth were limited on bacterial cellulose, while all cellular processes were enhanced on the electrospun scaffolds. This initial analysis has demonstrated the potential of electrospun PCL/collagen I scaffolds toward the development of an improved 3D in vitro cancer model.

  14. Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maryam Tamaddon

    2017-01-01

    Full Text Available Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa, can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.

  15. Scaffold diversification enhances effectiveness of a superlibrary of hyperthermophilic proteins.

    Science.gov (United States)

    Hussain, Mahmud; Gera, Nimish; Hill, Andrew B; Rao, Balaji M

    2013-01-18

    The use of binding proteins from non-immunoglobulin scaffolds has become increasingly common in biotechnology and medicine. Typically, binders are isolated from a combinatorial library generated by mutating a single scaffold protein. In contrast, here we generated a "superlibrary" or "library-of-libraries" of 4 × 10(8) protein variants by mutagenesis of seven different hyperthermophilic proteins; six of the seven proteins have not been used as scaffolds prior to this study. Binding proteins for five different model targets were successfully isolated from this library. Binders obtained were derived from five out of the seven scaffolds. Strikingly, binders from this modestly sized superlibrary have affinities comparable or higher than those obtained from a library with 1000-fold higher sequence diversity but derived from a single stable scaffold. Thus scaffold diversification, i.e., randomization of multiple different scaffolds, is a powerful alternate strategy for combinatorial library construction.

  16. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2012-09-01

    Full Text Available Filoviruses, including Marburg virus (MARV and Ebola virus (EBOV, cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (dsRNA-binding domain (RBD of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.

  17. Generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation

    Directory of Open Access Journals (Sweden)

    Wang Genping

    2016-09-01

    Full Text Available Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154 and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154 were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of ‘clean’ GM wheat containing only the foreign genes of agronomic importance.

  18. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation.

    Science.gov (United States)

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

  19. Aromatic Copolyamides with Anthrazoline Units in the Backbone: Synthesis, Characterization, Pervaporation Application

    Directory of Open Access Journals (Sweden)

    Galina A. Polotskaya

    2016-10-01

    Full Text Available Copolyamides with anthrazoline units in the backbone (coPA were synthesized and dense nonporous films were prepared by solvent evaporation. Glass transition temperature, density, and fractional free volume were determined for the dense nonporous films composed of polyamide and two of its copolymers containing 20 and 30 mol % anthrazoline units in the backbone. Transport properties of the polymer films were estimated by sorption and pervaporation tests toward methanol, toluene, and their mixtures. An increase in anthrazoline fragments content leads to an increasing degree of methanol sorption but to a decreasing degree of toluene sorption. Pervaporation of a methanol–toluene mixture was studied over a wide range of feed concentration (10–90 wt % methanol. Maximal separation factor was observed for coPA-20 containing 20 mol % fragments with anthrazoline units; maximal total flux was observed for coPA-30 with the highest fractional free volume.

  20. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Liping; Duan, Zhiguang [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Mi, Yu; Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Chang, Le [School of Chemical Engineering, Northwest University, Xi' an, Shaanxi 710069 (China)

    2013-03-01

    Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive Registered-Sign Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 {+-} 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering. - Highlights: Black-Right-Pointing-Pointer Human-like collagen was first used to prepare cartilage tissue engineering scaffold. Black-Right-Pointing-Pointer Genipin, a natural biological cross-linking agent, was introduced to treat scaffold. Black-Right-Pointing-Pointer We chose market product as a control.

  1. Porous poly (lactic-co-glycolide) microsphere sintered scaffolds for tissue repair applications

    International Nuclear Information System (INIS)

    Wang Yingjun; Shi Xuetao; Ren Li; Wang Chunming; Wang Dongan

    2009-01-01

    In this paper, a new route to preparing porous poly (lactic-co-glycolide) (PLGA) scaffolds for bone tissue repair applications was developed. Novel porous PLGA scaffolds were fabricated via microsphere sintered technique and gas forming technique. Ammonium bicarbonate was used to regulate porosity of these porous scaffolds. Porosity of the scaffolds, and cell attachment, viability and proliferation on the scaffolds were evaluated. The results indicated that PLGA porous scaffolds were with the porosity from around 30% to 95% by regulating ammonium bicarbonate content from 0 to 10%. We also found that PLGA porous microsphere scaffolds benefited cell attachment and viability. Taken together, the achieved porous scaffolds have controlled porosity and also support mesenchymal stem cell proliferation, which could serve as potential scaffolds for bone repair applications.

  2. Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering.

    Science.gov (United States)

    Huang, Di; Zuo, Yi; Zou, Qin; Wang, Yanying; Gao, Shibo; Wang, Xiaoyan; Liu, Haohuai; Li, Yubao

    2012-01-01

    High porosity of scaffold is always accompanied by poor mechanical property; the aim of this study was to enhance the strength and modulus of the highly porous scaffold of nanohydroxyapatite/polyamide66 (n-HA/PA66) by coating chitosan (CS) and to investigate the effect of CS content on the scaffold physical properties and cytological properties. The results show that CS coating can reinforce the scaffold effectively. The compress modulus and strength of the CS coated n-HA/PA66 scaffolds are improved to 32.71 and 2.38 MPa, respectively, being about six times and five times of those of the uncoated scaffolds. Meanwhile, the scaffolds still exhibit a highly interconnected porous structure and the porosity is approximate about 78%, slightly lower than the value (84%) of uncoated scaffold. The cytological properties of scaffolds were also studied in vitro by cocultured with osteoblast-like MG63 cells. The cytological experiments demonstrate that the reinforced scaffolds display favorable cytocompatibility and have no significant difference with the uncoated n-HA/PA66 scaffolds. The CS reinforced n-HA/PA66 scaffolds can meet the basic mechanical requirement of bone tissue engineering scaffold, presenting a potential for biomedical application in bone reconstruction and repair. Copyright © 2011 Wiley Periodicals, Inc.

  3. Glucagon infusion increases rate of purine synthesis de novo in rat liver

    International Nuclear Information System (INIS)

    Itakura, Mitsuo; Maeda, Noriaki; Tsuchiya, Masami; Yamashita, Kamejiro

    1987-01-01

    Based on the parallel increases of glucagon, the second peak of hepatic cAMP, and the rate of purine synthesis de novo in the prereplicative period in regenerating rate liver after a 70% hepatectomy, it was hypothesized that glucagon is responsible for the increased rate of purine synthesis de novo. To test this hypothesis, the effect of glucagon or dibutyryl cAMP infusion on the rate of purine synthesis de novo in rat liver was studied. Glucagon infusion but not insulin or glucose infusion increased the rate of purine synthesis de novo, which was assayed by [ 14 C]glycine or [ 14 C]formate incorporation, by 2.7- to 4.3-fold. Glucagon infusion increased cAMP concentrations by 4.9-fold and 5-phosphoribosyl-1-pyrophosphate concentrations by 1.5-fold in liver but did not change the specific activity of amidophosphoribosyltransferase or purine ribonucleotide concentrations. Dibutyryl cAMP infusion also increased the rate of purine synthesis de novo by 2.2- to 4.0-fold. Because glucagon infusion increased the rate of purine synthesis de novo in the presence of unchanged purine ribonucleotide concentrations, it is concluded that glucagon after infusion or in animals after a 70% hepatectomy is playing an anabolic role to increase the rate of purine synthesis de novo by increasing cAMP and 5-phosphoribosyl-1-pyrophosphate concentrations

  4. CORBA and MPI-based 'backbone' for coupling advanced simulation tools

    International Nuclear Information System (INIS)

    Seydaliev, M.; Caswell, D.

    2014-01-01

    There is a growing international interest in using coupled, multidisciplinary computer simulations for a variety of purposes, including nuclear reactor safety analysis. Reactor behaviour can be modeled using a suite of computer programs simulating phenomena or predicting parameters that can be categorized into disciplines such as Thermalhydraulics, Neutronics, Fuel, Fuel Channels, Fission Product Release and Transport, Containment and Atmospheric Dispersion, and Severe Accident Analysis. Traditionally, simulations used for safety analysis individually addressed only the behaviour within a single discipline, based upon static input data from other simulation programs. The limitation of using a suite of stand-alone simulations is that phenomenological interdependencies or temporal feedback between the parameters calculated within individual simulations cannot be adequately captured. To remove this shortcoming, multiple computer simulations for different disciplines must exchange data during runtime to address these interdependencies. This article describes the concept of a new framework, which we refer to as the 'Backbone', to provide the necessary runtime exchange of data. The Backbone, currently under development at AECL for a preliminary feasibility study, is a hybrid design using features taken from the Common Object Request Broker Architecture (CORBA), a standard defined by the Object Management Group, and the Message Passing Interface (MPI), a standard developed by a group of researchers from academia and industry. Both have well-tested and efficient implementations, including some that are freely available under the GNU public licenses. The CORBA component enables individual programs written in different languages and running on different platforms within a network to exchange data with each other, thus behaving like a single application. MPI provides the process-to-process intercommunication between these programs. This paper outlines the different CORBA and

  5. Automated quality characterization of 3D printed bone scaffolds

    Directory of Open Access Journals (Sweden)

    Tzu-Liang Bill Tseng

    2014-07-01

    Full Text Available Optimization of design is an important step in obtaining tissue engineering scaffolds with appropriate shapes and inner microstructures. Different shapes and sizes of scaffolds are modeled using UGS NX 6.0 software with variable pore sizes. The quality issue we are concerned is the scaffold porosity, which is mainly caused by the fabrication inaccuracies. Bone scaffolds are usually characterized using a scanning electron microscope, but this study presents a new automated inspection and classification technique. Due to many numbers and size variations for the pores, the manual inspection of the fabricated scaffolds tends to be error-prone and costly. Manual inspection also raises the chance of contamination. Thus, non-contact, precise inspection is preferred. In this study, the critical dimensions are automatically measured by the vision camera. The measured data are analyzed to classify the quality characteristics. The automated inspection and classification techniques developed in this study are expected to improve the quality of the fabricated scaffolds and reduce the overall cost of manufacturing.

  6. Ca-C backbone fragmentation dominates in electron detachment dissociation of gas-phase polypeptide polyanions

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Silivra, Oleg A; Ivonin, Igor A

    2005-01-01

    the dissociation of oxidized radical anions [M-nH]((n-1)-*. We demonstrate that C(alpha)-C cleavages, which are otherwise rarely observed in tandem mass spectrometry, can account for most of the backbone fragmentation, with even-electron x fragments dominating over radical a* ions. Ab initio calculations at the B3...... LYP level of theory with the 6-311+G(2 p,2 d)//6-31+G(d,p) basis set suggested a unidirectional mechanism for EDD (cleavage always N-terminal to the radical site), with a*, x formation being favored over a, x* fragmentation by 74.2 kJ mol(-1). Thus, backbone C(alpha)-C bonds N-terminal to proline...

  7. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization

    Science.gov (United States)

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  8. High frequencies of de novo CNVs in bipolar disorder and schizophrenia.

    LENUS (Irish Health Repository)

    Malhotra, Dheeraj

    2011-12-22

    While it is known that rare copy-number variants (CNVs) contribute to risk for some neuropsychiatric disorders, the role of CNVs in bipolar disorder is unclear. Here, we reasoned that a contribution of CNVs to mood disorders might be most evident for de novo mutations. We performed a genome-wide analysis of de novo CNVs in a cohort of 788 trios. Diagnoses of offspring included bipolar disorder (n = 185), schizophrenia (n = 177), and healthy controls (n = 426). Frequencies of de novo CNVs were significantly higher in bipolar disorder as compared with controls (OR = 4.8 [1.4,16.0], p = 0.009). De novo CNVs were particularly enriched among cases with an age at onset younger than 18 (OR = 6.3 [1.7,22.6], p = 0.006). We also confirmed a significant enrichment of de novo CNVs in schizophrenia (OR = 5.0 [1.5,16.8], p = 0.007). Our results suggest that rare spontaneous mutations are an important contributor to risk for bipolar disorder and other major neuropsychiatric diseases.

  9. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    Science.gov (United States)

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Teaching language teachers scaffolding professional learning

    CERN Document Server

    Maggioli, Gabriel Diaz

    2012-01-01

    Teaching Language Teachers: Scaffolding Professional Learning provides an updated view of as well as a reader-friendly introduction to the field of Teaching Teachers, with special reference to language teaching. By taking a decidedly Sociocultural perspective, the book addresses the main role of the Teacher of Teachers (ToT) as that of scaffolding the professional learning of aspiring teachers.

  11. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    International Nuclear Information System (INIS)

    Sarika, P.R.; Cinthya, Kuriakose; Jayakrishnan, A.; Anilkumar, P.R.; James, Nirmala Rachel

    2014-01-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture

  12. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Cinthya, Kuriakose [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Jayakrishnan, A. [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036 (India); Anilkumar, P.R., E-mail: anilkumarpr@sctimst.ac.in [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); James, Nirmala Rachel, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture.

  13. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  14. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)

    2014-11-01

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  15. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    Science.gov (United States)

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biomimetic mineral-organic composite scaffolds with controlled internal architecture.

    Science.gov (United States)

    Manjubala, I; Woesz, Alexander; Pilz, Christine; Rumpler, Monika; Fratzl-Zelman, Nadja; Roschger, Paul; Stampfl, Juergen; Fratzl, Peter

    2005-12-01

    Bone and cartilage generation by three-dimensional scaffolds is one of the promising techniques in tissue engineering. One approach is to generate histologically and functionally normal tissue by delivering healthy cells in biocompatible scaffolds. These scaffolds provide the necessary support for cells to proliferate and maintain their differentiated function, and their architecture defines the ultimate shape. Rapid prototyping (RP) is a technology by which a complex 3-dimensional (3D) structure can be produced indirectly from computer aided design (CAD). The present study aims at developing a 3D organic-inorganic composite scaffold with defined internal architecture by a RP method utilizing a 3D printer to produce wax molds. The composite scaffolds consisting of chitosan and hydroxyapatite were prepared using soluble wax molds. The behaviour and response of MC3T3-E1 pre-osteoblast cells on the scaffolds was studied. During a culture period of two and three weeks, cell proliferation and in-growth were observed by phase contrast light microscopy, histological staining and electron microscopy. The Giemsa and Gömöri staining of the cells cultured on scaffolds showed that the cells proliferated not only on the surface, but also filled the micro pores of the scaffolds and produced extracellular matrix within the pores. The electron micrographs showed that the cells covering the surface of the struts were flattened and grew from the periphery into the middle region of the pores.

  17. Manufacture of degradable polymeric scaffolds for bone regeneration.

    Science.gov (United States)

    Ge, Zigang; Jin, Zhaoxia; Cao, Tong

    2008-06-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques.

  18. Manufacture of degradable polymeric scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Ge Zigang; Jin Zhaoxia; Cao Tong

    2008-01-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques. (topical review)

  19. Effects of backbone conformation and surface texture of polyimide alignment film on the pretilt angle of liquid crystals

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Chou, Ray-Lin; Lin, Yu-Chi; Liang, Bau-Jy; Chen, Jyun-Ji

    2011-01-01

    Polyimides (PIs) with different inclination angle of polymer backbones, together with polar hydroxyl group and/or nonpolar trifluoromethyl group at various sites of the backbone were synthesized and used as liquid crystal alignment layers. The molecular conformation, surface chemistry, surface energy, surface morphology, and pretilt angle of the PI film were investigated. The distributions of fluorinated group and hydroxyl group at different depths of the PI surfaces were analyzed by X-ray photoelectron spectroscopy. Effects of the conformation of the PI molecular backbone on the surface morphology of the rubbed PI layer, the pretilt angle and surface energy of the alignment film were studied. The PI which contains both nonpolar fluorinated groups sticking out of the surface and the polar hydroxyl groups on the surface exhibits high pretilt angle.

  20. Hybrid Carbon-Based Scaffolds for Applications in Soft Tissue Reconstruction

    Science.gov (United States)

    Lafdi, Khalid; Joseph, Robert M.; Tsonis, Panagiotis A.

    2012-01-01

    Current biomedical scaffolds utilized in surgery to repair soft tissues commonly fail to meet the optimal combination of biomechanical and tissue regenerative properties. Carbon is a scaffold alternative that potentially optimizes the balance between mechanical strength, durability, and function as a cell and biologics delivery vehicle that is necessary to restore tissue function while promoting tissue repair. The goals of this study were to investigate the feasibility of fabricating hybrid fibrous carbon scaffolds modified with biopolymer, polycaprolactone and to analyze their mechanical properties and ability to support cell growth and proliferation. Environmental scanning electron microscopy, micro-computed tomography, and cell adhesion and cell proliferation studies were utilized to test scaffold suitability as a cell delivery vehicle. Mechanical properties were tested to examine load failure and elastic modulus. Results were compared to an acellular dermal matrix scaffold control (GraftJacket® [GJ] Matrix), selected for its common use in surgery for the repair of soft tissues. Results indicated that carbon scaffolds exhibited similar mechanical maximums and capacity to support fibroblast adhesion and proliferation in comparison with GJ. Fibroblast adhesion and proliferation was collinear with carbon fiber orientation in regions of sparsely distributed fibers and occurred in clusters in regions of higher fiber density and low porosity. Overall, fibroblast adhesion and proliferation was greatest in lower porosity carbon scaffolds with highly aligned fibers. Stepwise multivariate regression showed that the variability in maximum load of carbon scaffolds and controls were dependent on unique and separate sets of parameters. These finding suggested that there were significant differences in the functional implications of scaffold design and material properties between carbon and dermis derived scaffolds that affect scaffold utility as a tissue replacement

  1. Electric field induced localization phenomena in a ladder network with superlattice configuration: Effect of backbone environment

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Paramita; Karmakar, S. N. [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata-700 064 (India); Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108 (India)

    2014-09-15

    Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.

  2. De Novo Human Cardiac Myocytes for Medical Research: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Veronique Hamel

    2017-01-01

    Full Text Available The advent of cellular reprogramming technology has revolutionized biomedical research. De novo human cardiac myocytes can now be obtained from direct reprogramming of somatic cells (such as fibroblasts, from induced pluripotent stem cells (iPSCs, which are reprogrammed from somatic cells, and from human embryonic stem cells (hESCs. Such de novo human cardiac myocytes hold great promise for in vitro disease modeling and drug screening and in vivo cell therapy of heart disease. Here, we review the technique advancements for generating de novo human cardiac myocytes. We also discuss several challenges for the use of such cells in research and regenerative medicine, such as the immature phenotype and heterogeneity of de novo cardiac myocytes obtained with existing protocols. We focus on the recent advancements in addressing such challenges.

  3. Biological effects of functionalizing copolymer scaffolds with nanodiamond particles.

    Science.gov (United States)

    Xing, Zhe; Pedersen, Torbjorn O; Wu, Xujun; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Kloss, Frank R; Waag, Thilo; Krueger, Anke; Steinmüller-Nethl, Doris; Mustafa, Kamal

    2013-08-01

    Significant evidence has indicated that poly(L-lactide)-co-(ɛ-caprolactone) [(poly(LLA-co-CL)] scaffolds could be one of the suitable candidates for bone tissue engineering. Oxygen-terminated nanodiamond particles (n-DP) were combined with poly(LLA-co-CL) and revealed to be positive for cell growth. In this study, we evaluated the influence of poly(LLA-co-CL) scaffolds modified by n-DP on attachment, proliferation, differentiation of bone marrow stromal cells (BMSCs) in vitro, and on bone formation using a sheep calvarial defect model. BMSCs were seeded on either poly(LLA-co-CL)- or n-DP-coated scaffolds and incubated for 1 h. Scanning electron microscopy (SEM) and fluorescence microscopy were used in addition to protein and DNA measurements to evaluate cellular attachment on the scaffolds. To determine the effect of n-DP on proliferation of BMSCs, cell/scaffold constructs were harvested after 3 days and evaluated by Bicinchoninic Acid (BCA) protein assay and SEM. In addition, the osteogenic differentiation of cells grown for 2 weeks on the various scaffolds and in a dynamic culture condition was evaluated by real-time RT-PCR. Unmodified and modified scaffolds were implanted into the calvaria of six-year-old sheep. The expression of collagen type I (COL I) and bone morphogenetic protein-2 (BMP-2) after 4 weeks as well as the formation of new bone after 12 and 24 weeks were analyzed by immunohistochemistry and histology. Scaffolds modified with n-DP supported increased cell attachment and the mRNA expression of osteopontin (OPN), bone sialoprotein (BSP), and BMP-2 were significantly increased after 2 weeks of culture. The BMSCs had spread well on the various scaffolds investigated after 3 days in the study with no significant difference in cell proliferation. Furthermore, the in vivo data revealed more positive staining of COL I and BMP-2 in relation to the n-DP-coated scaffolds after 4 weeks and presented more bone formation after 12 and 24 weeks. n

  4. Laser printing of cells into 3D scaffolds

    International Nuclear Information System (INIS)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B; Pflaum, M; Wilhelmi, M; Haverich, A

    2010-01-01

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  5. Melhoramento do cafeeiro: IV - Café Mundo Novo

    Directory of Open Access Journals (Sweden)

    A. Carvalho

    1952-06-01

    Full Text Available Em um conjunto de cafeeiros existentes em Mundo Novo, hoje Urupês, na região Araraquarense do Estado de São Paulo, foram feitas seleções de vários cafeeiros baseando-se no seu aspecto vegetativo, na produção existente na época da seleção e na provável produção do ano seguinte. Estudou-se a origem da plantação inicial desse café, tanto em Urupês como em Jaú, chegando-se à conclusão de que é provavelmente originário desta última localidade. Progênies do café "Mundo Novo", anteriormente conhecido por "Sumatra" e derivado de plantas selecionadas em Urupês e Jaú, acham-se em estudo em seis localidades do Estado : Campinas, Ribeirão Prêto, Pindorama, Mococa, Jaú e Monte Alegre do Sul. No presente trabalho são apenas aproveitados dados referentes à variabilidade morfológica e característicos da produção das progênies dos primeiros cafeeiros selecionados em Urupês e estudados em Campinas, Jaú, Pindorama e Mococa. Em tôdas as localidades, observou-se variação nos caracteres morfológicos das progênies, verificando-se a ocorrência de plantas quase improdutivas. A maioria das progênies, no entanto, se caracteriza por acentuado vigor vegetativo. Foram estudadas as produções totais das progénies e das plantas, no período 1946-1951, notando-se que algumas progénies se salientaram pela elevada produção em tôdas as localidades. Os tipos de sementes "moca", "concha" e "chato" foram determinados em amostras de tôdas as plantas, por um período de três anos, notando-se que a variação ocorrida é da mesma ordem que a encontrada em outros cafeeiros em seleção. Procurou-se eliminar, pela seleção, cafeeiros com elevada produção de frutos sem sementes em uma ou duas lojas, característico êsse que parece ser hereditário. Os resultados obtidos de cruzamento entre os melhores cafeeiros "Mundo Novo" de Campinas e plantas da variedade murta, indicaram que esses cafeeiros são do tipo bourbon. Provavelmente

  6. Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes

    KAUST Repository

    Fei, Zhuping

    2015-06-03

    © 2015 American Chemical Society. We report two strategies toward the synthesis of 3-alkyl-4-fluorothiophenes containing straight (hexyl and octyl) and branched (2-ethylhexyl) alkyl groups. We demonstrate that treatment of the dibrominated monomer with 1 equiv of alkyl Grignard reagent leads to the formation of a single regioisomer as a result of the pronounced directing effect of the fluorine group. Polymerization of the resulting species affords highly regioregular poly(3-alkyl-4-fluoro)thiophenes. Comparison of their properties to those of the analogous non-fluorinated polymers shows that backbone fluorination leads to an increase in the polymer ionization potential without a significant change in optical band gap. Fluorination also results in an enhanced tendency to aggregate in solution, which is ascribed to a more co-planar backbone on the basis of Raman and DFT calculations. Average charge carrier mobilities in field-effect transistors are found to increase by up to a factor of 5 for the fluorinated polymers.

  7. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  8. Electrospun PVA-PCL-HAB scaffold for craniofacial bone regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul; Kraft, David Christian Evar; Melsen, Birte

    2015-01-01

    -caprolactone (PCL)- triphasic bioceramic(HAB) scaffold to biomimic native tissue and we tested its ability to support osteogenic differentiation of stromal stem cells ( MSC) and its suitability for regeneration of craniofa- cial defects. Physiochemical characterizations of the scaffold, including con- tact angle...... body fluid immersed scaffold samples. Culturing human adult dental pulp stem cells (DPSC) and human bone marrow derived MSC seeded on PVA-PCL-HAB scaffold showed enhanced cell proliferation and in vitro osteoblastic differentiation. Cell-containing scaffolds were implanted subcutaneously in immune...... deficient mice. Histologic ex- amination of retrieved implant sections stained with H&E, Col- lagenType I and Human Vimentin antibody demonstrated that the cells survived in vivo in the implants for at least 8 weeks with evidence of osteoblastic differentiation and angiogenesis within the implants. Our...

  9. De Novo Collapsing Glomerulopathy in a Renal Allograft Recipient

    Directory of Open Access Journals (Sweden)

    Kanodia K

    2008-01-01

    Full Text Available Collapsing glomerulopathy (CG, characterized histologically by segmental/global glomerular capillary collapse, podocyte hypertrophy and hypercellularity and tubulo-interstitial injury; is characterized clinically by massive proteinuria and rapid progressive renal failure. CG is known to recur in renal allograft and rarely de novo. We report de novo CG 3 years post-transplant in a patient who received renal allograft from haplo-identical type donor.

  10. Data Acquisition Backbone Core DABC

    International Nuclear Information System (INIS)

    Adamczewski, J; Essel, H G; Kurz, N; Linev, S

    2008-01-01

    For the new experiments at FAIR new concepts of data acquisition systems have to be developed like the distribution of self-triggered, time stamped data streams over high performance networks for event building. The Data Acquisition Backbone Core (DABC) is a software package currently under development for FAIR detector tests, readout components test, and data flow investigations. All kinds of data channels (front-end systems) are connected by program plug-ins into functional components of DABC like data input, combiner, scheduler, event builder, analysis and storage components. After detailed simulations real tests of event building over a switched network (InfiniBand clusters with up to 110 nodes) have been performed. With the DABC software more than 900 MByte/s input and output per node can be achieved meeting the most demanding requirements. The software is ready for the implementation of various test beds needed for the final design of data acquisition systems at FAIR. The development of key components is supported by the FutureDAQ project of the European Union (FP6 I3HP JRA1)

  11. Purine biosynthesis de novo by lymphocytes in gout

    International Nuclear Information System (INIS)

    Kamoun, P.; Chanard, J.; Brami, M.; Funck-Brentano, J.L.

    1978-01-01

    A method of measurement in vitro of purine biosynthesis de novo in human circulating blood lymphocytes is proposed. The rate of early reactions of purine biosynthesis de novo was determined by the incorporation of [ 14 C]formate into N-formyl glycinamide ribonucleotide when the subsequent reactions of the metabolic pathway were completely inhibited by the antibiotic azaserine. Synthesis of 14 C-labelled N-formyl glycinamide ribonucleotide by lymphocytes was measured in healthy control subjects and patients with primary gout or hyperuricaemia secondary to renal failure, with or without allopurinol therapy. The average synthesis was higher in gouty patients without therapy than in control subjects, but the values contained overlap the normal range. In secondary hyperuricaemia the synthesis was at same value as in control subjects. These results are in agreement with the inconstant acceleration of purine biosynthesis de novo in gouty patients as seen by others with measurement of [ 14 C]glycine incorporation into urinary uric acid. (author)

  12. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation

    Directory of Open Access Journals (Sweden)

    Zeng XB

    2012-07-01

    Full Text Available Xiao Bo Zeng, Hao Hu, Li Qin Xie, Fang Lan, Wen Jiang, Yao Wu, Zhong Wei GuNational Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of ChinaIntroduction: In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs and hydroxyapatite (HA for bone repair has been developed by our research group.Aim and methods: In this study, to investigate the influence of the MNP content (in the scaffolds on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2% were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, alkaline phosphatase, and bone gla protein activity tests.Results: The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation.Conclusion: The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.Keywords: magnetic therapy, magnetic nanoparticles, bone repair, magnetic responsive

  13. Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment

    Science.gov (United States)

    Molenaar, Inge; Roda, Claudia; van Boxtel, Carla; Sleegers, Peter

    2012-01-01

    The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N=56) are supported with computer-generated scaffolds and students in the control condition (N=54) do not receive scaffolds. The scaffolds are…

  14. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  15. Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D

    Directory of Open Access Journals (Sweden)

    Joachim Kohn

    2012-03-01

    Full Text Available Current methods for screening cell-material interactions typically utilize a two-dimensional (2D culture format where cells are cultured on flat surfaces. However, there is a need for combinatorial and high-throughput screening methods to systematically screen cell-biomaterial interactions in three-dimensional (3D tissue scaffolds for tissue engineering. Previously, we developed a two-syringe pump approach for making 3D scaffold gradients for use in combinatorial screening of salt-leached scaffolds. Herein, we demonstrate that the two-syringe pump approach can also be used to create scaffold gradients using a gas-foaming approach. Macroporous foams prepared by a gas-foaming technique are commonly used for fabrication of tissue engineering scaffolds due to their high interconnectivity and good mechanical properties. Gas-foamed scaffold gradient libraries were fabricated from two biodegradable tyrosine-derived polycarbonates: poly(desaminotyrosyl-tyrosine ethyl ester carbonate (pDTEc and poly(desaminotyrosyl-tyrosine octyl ester carbonate (pDTOc. The composition of the libraries was assessed with Fourier transform infrared spectroscopy (FTIR and showed that pDTEc/pDTOc gas-foamed scaffold gradients could be repeatably fabricated. Scanning electron microscopy showed that scaffold morphology was similar between the pDTEc-rich ends and the pDTOc-rich ends of the gradient. These results introduce a method for fabricating gas-foamed polymer scaffold gradients that can be used for combinatorial screening of cell-material interactions in 3D.

  16. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  17. In vitro osteoclastogenesis on textile chitosan scaffold

    Directory of Open Access Journals (Sweden)

    C Heinemann

    2010-02-01

    Full Text Available Textile chitosan fibre scaffolds were evaluated in terms of interaction with osteoclast-like cells, derived from human primary monocytes. Part of the scaffolds was further modified by coating with fibrillar collagen type I in order to make the surface biocompatible. Monocytes were cultured directly on the scaffolds in the presence of macrophage colony stimulating factor (M-CSF and receptor activator of nuclear factor kappaB ligand (RANKL for up to 18 days. Confocal laser scanning microscopy (CLSM as well as scanning electron microscopy (SEM revealed the formation of multinuclear osteoclast-like cells on both the raw chitosan fibres and the collagen-coated scaffolds. The modified surface supported the osteoclastogenesis. Differentiation towards the osteoclastic lineage was confirmed by the microscopic detection of cathepsin K, tartrate resistant acid phosphatase (TRAP, acidic compartments using 3-(2,4-dinitroanillino-3’-amino-N-methyldipropylamine (DAMP, immunological detection of TRAP isoform 5b, and analysis of gene expression of the osteoclastic markers TRAP, cathepsin K, vitronectin receptor, and calcitonin receptor using reverse transcription-polymerase chain reaction (RT-PCR. The feature of the collagen-coated but also of the raw chitosan fibre scaffolds to support attachment and differentiation of human monocytes facilitates cell-induced material resorption – one main requirement for successful bone tissue engineering.

  18. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    Science.gov (United States)

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.

  19. De novo giant A2 aneurysm following anterior communicating artery occlusion.

    Science.gov (United States)

    Ibrahim, Tarik F; Hafez, Ahmad; Andrade-Barazarte, Hugo; Raj, Rahul; Niemela, Mika; Lehto, Hanna; Numminen, Jussi; Jarvelainen, Juha; Hernesniemi, Juha

    2015-01-01

    De novo intracranial aneurysms are reported to occur with varying incidence after intracranial aneurysm treatment. They are purported to be observed, however, with increased incidence after Hunterian ligation; particularly in cases of carotid artery occlusion for giant or complex aneurysms deemed unclippable. We report a case of right-sided de novo giant A2 aneurysm 6 years after an anterior communicating artery (ACoA) aneurysm clipping. We believe this de novo aneurysm developed in part due to patient-specific risk factors but also a significant change in cerebral hemodynamics. The ACoA became occluded after surgery that likely altered the cerebral hemodynamics and contributed to the de novo aneurysm. We believe this to be the first reported case of a giant de novo aneurysm in this location. Following parent vessel occlusion (mostly of the carotid artery), there are no reports of any de novo aneurysms in the pericallosal arteries let alone a giant one. The patient had a dominant right A1 and the sudden increase in A2 blood flow likely resulted in increased wall shear stress, particularly in the medial wall of the A2 where the aneurysm occurred 2 mm distal to the A1-2 junction. ACoA preservation is a key element of aneurysm surgery in this location. Suspected occlusion of this vessel may warrant closer radiographic follow-up in patients with other risk factors for aneurysm development.

  20. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Abbas [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD (Australia); Seyedjafari, Ehsan [Department of Biotechnology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Sadat Taherzadeh, Elham [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Dinarvand, Peyman [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); The Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO (United States); Soleimani, Masoud [Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-07-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers.

  1. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    International Nuclear Information System (INIS)

    Shafiee, Abbas; Seyedjafari, Ehsan; Sadat Taherzadeh, Elham; Dinarvand, Peyman; Soleimani, Masoud; Ai, Jafar

    2014-01-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers

  2. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds

    International Nuclear Information System (INIS)

    Gomes, S.R.; Rodrigues, G.; Martins, G.G.; Henriques, C.M.R.; Silva, J.C.

    2013-01-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. - Highlights: ► Electrospinning of fish gelatin dissolved in both water or concentrated acetic acid ► Glutaraldehyde, genipin and dehydrothermal treatment effectively crosslink the fish gelatin fibers ► Fibroblasts effectively adhere to and propagate on all scaffolds ► Cell population is highest for glutaraldehyde crosslinked scaffolds ► Cells exhibit more filopodia and stress fibers on glutaraldehyde crosslinked scaffolds

  3. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, S.R. [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Rodrigues, G.; Martins, G.G. [Centro de Biologia Ambiental / Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, FCUL, 1749-016 Campo Grande, Lisboa (Portugal); Henriques, C.M.R. [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Silva, J.C., E-mail: jcs@fct.unl.pt [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. - Highlights: ► Electrospinning of fish gelatin dissolved in both water or concentrated acetic acid ► Glutaraldehyde, genipin and dehydrothermal treatment effectively crosslink the fish gelatin fibers ► Fibroblasts effectively adhere to and propagate on all scaffolds ► Cell population is highest for glutaraldehyde crosslinked scaffolds ► Cells exhibit more filopodia and stress fibers on glutaraldehyde crosslinked scaffolds.

  4. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Hansen, Ole Møller; Kristiansen, Asger Albæk; Le, Dang Quang Svend; Nielsen, Agnete Desirée; Nygaard, Jens Vinge; Bünger, Cody Erik; Lind, Martin

    2012-06-01

    To develop a nano-structured porous polycaprolactone (NSP-PCL) scaffold and compare the articular cartilage repair potential with that of a commercially available collagen type I/III (Chondro-Gide) scaffold. By combining rapid prototyping and thermally induced phase separation, the NSP-PCL scaffold was produced for matrix-assisted autologous chondrocyte implantation. Lyophilizing a water-dioxane-PCL solution created micro and nano-pores. In vitro: The scaffolds were seeded with rabbit chondrocytes and cultured in hypoxia for 6 days. qRT-PCR was performed using primers for sox9, aggrecan, collagen type 1 and 2. In vivo: 15 New Zealand White Rabbits received bilateral osteochondral defects in the femoral intercondylar grooves. Autologous chondrocytes were harvested 4 weeks prior to surgery. There were 3 treatment groups: (1) NSP-PCL scaffold without cells. (2) The Chondro-Gide scaffold with autologous chondrocytes and (3) NSP-PCL scaffold with autologous chondrocytes. Observation period was 13 weeks. Histological evaluation was made using the O'Driscoll score. In vitro: The expressions of sox9 and aggrecan were higher in the NSP-PCL scaffold, while expression of collagen 1 was lower compared to the Chondro-Gide scaffold. In vivo: Both NSP-PCL scaffolds with and without cells scored significantly higher than the Chondro-Gide scaffold when looking at the structural integrity and the surface regularity of the repair tissue. No differences were found between the NSP-PCL scaffold with and without cells. The NSP-PCL scaffold demonstrated higher in vitro expression of chondrogenic markers and had higher in vivo histological scores compared to the Chondro-Gide scaffold. The improved chondrocytic differentiation can potentially produce more hyaline cartilage during clinical cartilage repair. It appears to be a suitable cell-free implant for hyaline cartilage repair and could provide a less costly and more effective treatment option than the Chondro-Gide scaffold with cells.

  5. Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds

    Science.gov (United States)

    Juan Vivanco; Joseph E. Jakes; Josh Slane; Heidi-Lynn Ploeg

    2014-01-01

    Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may...

  6. Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Eilbagi, Marjan; Emadi, Rahmatollah; Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kharaziha, Mahshid, E-mail: ma.kharaziha@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Valiani, Ali [Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2016-11-01

    Despite the attractive characteristics of three-dimensional pure hydroxyapatite (HA) scaffolds, due to their weak mechanical properties, researches have focused on the development of composite scaffolds via introducing suitable secondary components. The aim of this study was to develop, for the first time, three-dimensional HA-bredigite (Ca{sub 7}MgSi{sub 4}O{sub 16}) scaffolds containing various amounts of bredigite nanopowder (0, 5, 10 and 15 wt.%) using space holder technique. Transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction spectroscopy were applied in order to study the morphology, fracture surface and phase compositions of nanopowders and scaffolds. Furthermore, the effects of scaffold composition on the mechanical properties, bioactivity, biodegradability, and cytotoxicity were also evaluated. Results showed that the composite scaffolds with average pore size in the range of 220–310 μm, appearance porosity of 63.1–75.9% and appearance density of 1.1 ± 0.04 g/cm{sup 3} were successfully developed, depending on bredigite content. Indeed, the micropore size of the scaffolds reduced with increasing bredigite content confirming that the sinterability of the scaffolds was improved. Furthermore, the compression strength and modulus of the scaffolds significantly enhanced via incorporation of bredigite content from 0 to 15 wt.%. The composite scaffolds revealed superior bioactivity and biodegradability with increasing bredigite content. Moreover, MTT assay confirmed that HA-15 wt.% bredigite scaffold significantly promoted cell proliferation compared to tissue culture plate (control) and HA scaffold. Based on these results, three-dimensional HA-bredigite scaffolds could be promising replacements for HA scaffolds in bone regeneration. - Highlights: • Nanostructured hydroxyapatite-bredigite composite scaffolds were developed using space holder technique. • Presence of bredigite

  7. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.

    Science.gov (United States)

    Gao, Song; Sung, Wing-Kin; Nagarajan, Niranjan

    2011-11-01

    Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/ ).

  8. Metacognitive Scaffolding in an Innovative Learning Arrangement

    Science.gov (United States)

    Molenaar, Inge; van Boxtel, Carla A. M.; Sleegers, Peter J. C.

    2011-01-01

    This study examined the effects of metacognitive scaffolds on learning outcomes of collaborating students in an innovative learning arrangement. The triads were supported by computerized scaffolds, which were dynamically integrated into the learning process and took a structuring or problematizing form. In an experimental design the two…

  9. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Image-Based Three-Dimensional Analysis to Characterize the Texture of Porous Scaffolds

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2014-01-01

    Full Text Available The aim of the present study is to characterize the microstructure of composite scaffolds for bone tissue regeneration containing different ratios of chitosan/gelatin blend and bioactive glasses. Starting from realistic 3D models of the scaffolds reconstructed from micro-CT images, the level of heterogeneity of scaffold architecture is evaluated performing a lacunarity analysis. The results demonstrate that the presence of the bioactive glass component affects not only macroscopic features such as porosity, but mainly scaffold microarchitecture giving rise to structural heterogeneity, which could have an impact on the local cell-scaffold interaction and scaffold performances. The adopted approach allows to investigate the scale-dependent pore distribution within the scaffold and the related structural heterogeneity features, providing a comprehensive characterization of the scaffold texture.

  11. Osteochondral tissue engineering: scaffolds, stem cells and applications

    Science.gov (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  12. Inferential backbone assignment for sparse data

    International Nuclear Information System (INIS)

    Vitek, Olga; Bailey-Kellogg, Chris; Craig, Bruce; Vitek, Jan

    2006-01-01

    This paper develops an approach to protein backbone NMR assignment that effectively assigns large proteins while using limited sets of triple-resonance experiments. Our approach handles proteins with large fractions of missing data and many ambiguous pairs of pseudoresidues, and provides a statistical assessment of confidence in global and position-specific assignments. The approach is tested on an extensive set of experimental and synthetic data of up to 723 residues, with match tolerances of up to 0.5 ppm for C α and C β resonance types. The tests show that the approach is particularly helpful when data contain experimental noise and require large match tolerances. The keys to the approach are an empirical Bayesian probability model that rigorously accounts for uncertainty in the data at all stages in the analysis, and a hybrid stochastic tree-based search algorithm that effectively explores the large space of possible assignments

  13. SEVA Linkers: A Versatile and Automatable DNA Backbone Exchange Standard for Synthetic Biology

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Cavaleiro, Mafalda; Rennig, Maja

    2016-01-01

    flexibility, and different researchers prefer and master different molecular technologies. Here, we describe a new, highly versatile and automatable standard “SEVA linkers” for vector exchange. SEVA linkers enable backbone swapping with 20 combinations of classical enzymatic restriction/ligation, Gibson...

  14. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Deniz [Department of Engineering Sciences, Middle East Technical University (Turkey); Keskin, Dilek [Department of Engineering Sciences, Middle East Technical University (Turkey); Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University (Turkey); Tezcaner, Ayşen, E-mail: tezcaner@metu.edu.tr [Department of Engineering Sciences, Middle East Technical University (Turkey); Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University (Turkey)

    2016-12-01

    Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P{sub 80}/CA{sub 20}, P{sub 50}/CA{sub 50}, and P{sub 20}/CA{sub 80}%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve the mechanical properties and to delay fast weight loss. The lowest weight loss was observed for the groups that were crosslinked with P/STMP 2/1 for 10 min. Fiber morphologies of P{sub 50}/CA{sub 50} were more uniform without phase separation and this group was crosslinked most efficiently among groups. It was found that mechanical properties of P{sub 20}/CA{sub 80} and P{sub 50}/CA{sub 50} were higher than that of P{sub 80}/CA{sub 20.} After crosslinking strain values of P{sub 50}/CA{sub 50} scaffolds were improved and these scaffolds became more stable. Unlike P{sub 80}/CA{sub 20,} uncrosslinked P{sub 50}/CA{sub 50} and P{sub 20}/CA{sub 80} were not lost in PBS. Among all groups, crosslinked P{sub 50}/CA{sub 50} scaffolds had more uniform pores; therefore this group was used for bioactivity and cell culture studies. Apatite-like structures were observed on fibers after SBF incubation. Human Osteogenic Sarcoma Cell Line (Saos-2) seeded onto crosslinked P{sub 50}/CA{sub 50} scaffolds adhered and proliferated. The functionality of cells was tested by measuring ALP activity of the cells and the results indicated their osteoblastic differentiation. In vitro tests showed that scaffolds were cytocompatible. To sum up, crosslinked P{sub 50}/CA{sub 50} scaffolds were proposed as candidate cell carriers for bone tissue engineering applications. - Highlights: • Crosslinked 3D electrospun P/CA scaffolds were prepared for the first time. • CA

  15. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    Directory of Open Access Journals (Sweden)

    R. T. De Silva

    2017-01-01

    Full Text Available Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol (PVA polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm at a predetermined concentration (10% (w/w, is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P<0.05. In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

  16. SCAFFOLDING TUTORING STRATEGY ON VIRTUAL ENVIRONMENTS FOR TRAINING SCAFFOLDING COMO ESTRATEGIA DE TUTORIA EN ENTORNOS VIRTUALES DE ENTRENAMIENTO

    Directory of Open Access Journals (Sweden)

    Angélica de Antonio Jiménez

    2008-06-01

    Full Text Available Because the conversational capabilities of pedagogical agents (embodiments of trainers allow social interactions with learner(s, their application in 3D virtual environments for training, besides improving the interaction and giving more realism to virtual training, permits changes in tutoring strategies bringing closer the virtual experience to the real one. Scaffolding emerges from the work of some famous educators as an instructional paradigm and it is becoming more and more used in computer-based education. Of course, scaffolding application on virtual environments for trainings is very different from its original conception, and its application in a classroom. Virtual environments for training features, the pedagogical agent embodiment, and its possibilities of virtual interaction make possible the use of this strategy characterized by its adjustment to learner's performance and its dynamic use of work tools, among others. This article explores the advantages of using scaffolding on virtual environments for training as a tutoring strategy for pedagogical agents, focusing on the key features of scaffolding and how they can be applied in pedagogical activities. Activity Theory as well as roles and reusable learning objects design by contract are used to model our proposal. Finally, one procedure to apply scaffolding as a tutoring strategy for pedagogical agents in virtual environment for training designed using the "Model for Application of Intelligent Virtual Environments to Formation" is proposed.Las capacidades conversacionales de un agente pedagógico (la personificación del entrenador permiten una interacción social con los aprendices; luego, su aplicación en entornos virtuales 3D para el entrenamiento permite mejorar esta interacción y da mayor realismo al entrenamiento virtual, permitiendo cambios en las estrategias de tutorías que acercan la experiencia virtual a una real. Scaffolding emerge del trabajo de famosos educadores como

  17. Backbone dynamics of the human CC-chemokine eotaxin

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jiqing; Mayer, Kristen L.; Stone, Martin J. [Indiana University, Department of Chemistry (United States)

    1999-10-15

    Eotaxin is a CC chemokine with potent chemoattractant activity towards eosinophils. {sup 15}N NMR relaxation data have been used to characterize the backbone dynamics of recombinant human eotaxin. {sup 15}N longitudinal (R{sub 1}) and transverse (R{sub 2}) auto relaxation rates, heteronuclear {sup 1}H-{sup 15}N steady-state NOEs, and transverse cross-relaxation rates ({eta}{sub xy}) were obtained at 30 deg. C for all resolved backbone secondary amide groups using {sup 1} H-detected two-dimensional NMR experiments. Ratios of transverse auto and cross relaxation rates were used to identify NH groups influenced by slow conformational rearrangement. Relaxation data were fit to the extended model free dynamics formalism, yielding parameters describing axially symmetric molecular rotational diffusion and the internal dynamics of each NH group. The molecular rotational correlation time ({tau}{sub m}) is 5.09{+-}0.02 ns, indicating that eotaxin exists predominantly as a monomer under the conditions of the NMR study. The ratio of diffusion rates about unique and perpendicular axes (D{sub parallel}/D{sub perpendicular}) is 0.81{+-}0.02. Residues with large amplitudes of subnanosecond motion are clustered in the N-terminal region (residues 1-19), the C-terminus (residues 68-73) and the loop connecting the first two {beta}-strands (residues 30-37). N-terminal flexibility appears to be conserved throughout the chemokine family and may have implications for the mechanism of chemokine receptor activation. Residues exhibiting significant dynamics on the microsecond-millisecond time scale are located close to the two conserved disulfide bonds, suggesting that these motions may be coupled to disulfide bond isomerization.

  18. An improved polymeric sponge replication method for biomedical porous titanium scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunli; Chen, Hongjie; Zhu, Xiangdong, E-mail: zxd7303@163.com; Xiao, Zhanwen; Zhang, Kai, E-mail: kaizhang@scu.edu.cn; Zhang, Xingdong

    2017-01-01

    Biomedical porous titanium (Ti) scaffolds were fabricated by an improved polymeric sponge replication method. The unique formulations and distinct processing techniques, i.e. a mixture of water and ethanol as solvent, multiple coatings with different viscosities of the Ti slurries and centrifugation for removing the extra slurries were used in the present study. The optimized porous Ti scaffolds had uniform porous structure and completely interconnected macropores (~ 365.1 μm). In addition, two different sizes of micropores (~ 45.4 and ~ 6.2 μm) were also formed in the skeleton of the scaffold. The addition of ethanol to the Ti slurry increased the compressive strength of the scaffold by improving the compactness of the skeleton. A compressive strength of 83.6 ± 4.0 MPa was achieved for a porous Ti scaffold with a porosity of 66.4 ± 1.8%. Our cellular study also revealed that the scaffolds could support the growth and proliferation of mesenchymal stem cells (MSCs). - Highlights: • An improved sponge replication method for porous titanium scaffolds was developed. • A mixture of water and ethanol was used to make the titanium slurries. • The scaffolds have high mechanical strength for load-bearing bone repair. • The scaffolds support growth of mesenchymal stem cells.

  19. Direct Visualization of De novo Lipogenesis in Single Living Cells

    Science.gov (United States)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  20. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Liu, Mingxian; Dai, Libing; Shi, Huizhe; Xiong, Sheng; Zhou, Changren

    2015-01-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100–200 μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. - Highlights: • We fabricated HNTs reinforced alginate composite scaffolds for biomedical applications. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate scaffold. • The scaffolds exhibit a highly porous structure with interconnected pores. • HNTs can improve the cell attachment and proliferation on alginate

  1. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingxian [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China); Dai, Libing [Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital Medical College, Jinan University, Guangzhou 510220 (China); Shi, Huizhe; Xiong, Sheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China)

    2015-04-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100–200 μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. - Highlights: • We fabricated HNTs reinforced alginate composite scaffolds for biomedical applications. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate scaffold. • The scaffolds exhibit a highly porous structure with interconnected pores. • HNTs can improve the cell attachment and proliferation on alginate.

  2. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity.

    Science.gov (United States)

    Zhang, Yongliang; Zhai, Dong; Xu, Mengchi; Yao, Qingqiang; Zhu, Huiying; Chang, Jiang; Wu, Chengtie

    2017-06-20

    Bacterial infection poses a significant risk with the wide application of bone graft materials. Designing bone grafts with good antibacterial performance and excellent bone-forming activity is of particular significance for bone tissue engineering. In our study, a 3D printing method was used to prepare β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Silver (Ag) nanoparticles were uniformly dispersed on graphene oxide (GO) to form a homogeneous nanocomposite (named Ag@GO) with different Ag-to-graphene oxide mass ratios, with this being synthesized via the liquid chemical reduction approach. Ag@GO nanocomposites were successfully modified on the β-TCP scaffolds by a simple soaking method to achieve bifunctional biomaterials with antibacterial and osteogenic activity. The prepared scaffolds possessed a connected network with triangle pore morphology and the surfaces of the β-TCP scaffolds were uniformly modified by the Ag@GO nanocomposite layers. The Ag content in the scaffolds was controlled by changing the coating times and concentration of the Ag@GO nanocomposites. The antibacterial activity of the scaffolds was assessed with Gram-negative bacteria (Escherichia coli, E. coli). The results demonstrated that the scaffolds with Ag@GO nanocomposites presented excellent antibacterial activity. In addition, the scaffolds coated with Ag@GO nanocomposites conspicuously accelerated the osteogenic differentiation of rabbit bone marrow stromal cells by improving their alkaline phosphatase activity and bone-related gene expression (osteopontin, runt-related transcription factor 2, osteocalcin and bone sialoprotein). This study demonstrates that bifunctional scaffolds with a combination of antibacterial and osteogenic activity can be achieved for the reconstruction of large-bone defects while preventing or treating infections.

  3. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.

    Science.gov (United States)

    Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie

    2015-11-04

    Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.

  4. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.

    Science.gov (United States)

    Ishack, Stephanie; Mediero, Aranzazu; Wilder, Tuere; Ricci, John L; Cronstein, Bruce N

    2017-02-01

    Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3D) printing technology we have created custom 3D scaffolds of hydroxyapatite (HA)/beta-tri-calcium phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine. Nearly 15% HA:85% β-TCP scaffolds were designed using Robocad software, fabricated using a 3D Robocasting system, and sintered at 1100°C for 4 h. Scaffolds were coated with BMP-2 (200 ng mL -1 ), dypiridamole 100 µM or saline and implanted in C57B6 and adenosine A2A receptor knockout (A2AKO) mice with 3 mm cranial critical bone defects for 2-8 weeks. Dipyridamole release from scaffold was assayed spectrophotometrically. MicroCT and histological analysis were performed. Micro-computed tomography (microCT) showed significant bone formation and remodeling in HA/β-TCP-dipyridamole and HA/β-TCP-BMP-2 scaffolds when compared to scaffolds immersed in vehicle at 2, 4, and 8 weeks (n = 5 per group; p ≤ 0.05, p ≤ 0.05, and p ≤ 0.01, respectively). Histological analysis showed increased bone formation and a trend toward increased remodeling in HA/β-TCP- dipyridamole and HA/β-TCP-BMP-2 scaffolds. Coating scaffolds with dipyridamole did not enhance bone regeneration in A2AKO mice. In conclusion, scaffolds printed with HA/β-TCP promote bone regeneration in critical bone defects and coating these scaffolds with agents that stimulate A2A receptors and growth factors can further enhance bone regeneration. These coated scaffolds may be very useful for treating critical bone defects due to trauma, infection or other causes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 366-375, 2017. © 2015 Wiley Periodicals, Inc.

  5. Scaffolding students’ assignments

    DEFF Research Database (Denmark)

    Slot, Marie Falkesgaard

    2013-01-01

    This article discusses scaffolding in typical student assignments in mother tongue learning materials in upper secondary education in Denmark and the United Kingdom. It has been determined that assignments do not have sufficient scaffolding end features to help pupils understand concepts and build...... objects. The article presents the results of empirical research on tasks given in Danish and British learning materials. This work is based on a further development of my PhD thesis: “Learning materials in the subject of Danish” (Slot 2010). The main focus is how cognitive models (and subsidiary explicit...... learning goals) can help students structure their argumentative and communica-tive learning processes, and how various multimodal representations can give more open-ended learning possibilities for collaboration. The article presents a short introduction of the skills for 21st century learning and defines...

  6. Biologically inspired growth of hydroxyapatite crystals on bio-organics-defined scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunrong, E-mail: milkhoney3@163.com [Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108 (China); Li, Yuli; Nan, Kaihui [Eye Hospital, Wenzhou Medical College, Wenzhou 325027 (China)

    2013-03-15

    Graphical abstract: Petal-like crystals were observed to form on the surface of the BG/COL/ChS scaffolds. Highlights: ► Porous scaffolds were prepared using bioglass, collagen and chondroitin sulfate. ► Highly oriented HA crystals were grown on scaffolds using simulated body fluids ► The microstructure and orientation of HA were explained by molecular configuration. - Abstract: Several bio-organics-defined composite scaffolds were prepared using 58s-bioglass (BG), collagen (Col) and chondroitin sulfate (ChS). These scaffolds possess highly porous structure. X-ray diffraction of these scaffolds strongly indicated that hydroxyapatite (HA) crystals formed on their surfaces in simulated body fluids within 3 d, and similar formation process of crystals could be obtained on BG/Col and BG/Col/ChS scaffolds. The morphology and structure of the crystals were further examined by scanning electron microscopy. The results obtained indicate that an apatite with petal-like structure similar to that found on BG/Col scaffolds can be produced on BG/Col/ChS scaffolds through biomimetic synthesis, while that on BG/ChS scaffolds took place differently. The differences could be explained by self-assembly processes and the different macromolecular configurations of the Col and ChS fibrils which self-assemble spontaneously into their fibers. On the other hand, the bio-organics-defined composites have good cell biocompability. The results may be applicable to develop tailored biomaterials for peculiar bone substitute.

  7. Biologically inspired growth of hydroxyapatite crystals on bio-organics-defined scaffolds

    International Nuclear Information System (INIS)

    Yang, Chunrong; Li, Yuli; Nan, Kaihui

    2013-01-01

    Graphical abstract: Petal-like crystals were observed to form on the surface of the BG/COL/ChS scaffolds. Highlights: ► Porous scaffolds were prepared using bioglass, collagen and chondroitin sulfate. ► Highly oriented HA crystals were grown on scaffolds using simulated body fluids ► The microstructure and orientation of HA were explained by molecular configuration. - Abstract: Several bio-organics-defined composite scaffolds were prepared using 58s-bioglass (BG), collagen (Col) and chondroitin sulfate (ChS). These scaffolds possess highly porous structure. X-ray diffraction of these scaffolds strongly indicated that hydroxyapatite (HA) crystals formed on their surfaces in simulated body fluids within 3 d, and similar formation process of crystals could be obtained on BG/Col and BG/Col/ChS scaffolds. The morphology and structure of the crystals were further examined by scanning electron microscopy. The results obtained indicate that an apatite with petal-like structure similar to that found on BG/Col scaffolds can be produced on BG/Col/ChS scaffolds through biomimetic synthesis, while that on BG/ChS scaffolds took place differently. The differences could be explained by self-assembly processes and the different macromolecular configurations of the Col and ChS fibrils which self-assemble spontaneously into their fibers. On the other hand, the bio-organics-defined composites have good cell biocompability. The results may be applicable to develop tailored biomaterials for peculiar bone substitute

  8. Response monitoring in de novo patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Rita Willemssen

    Full Text Available BACKGROUND: Parkinson's disease (PD is accompanied by dysfunctions in a variety of cognitive processes. One of these is error processing, which depends upon phasic decreases of medial prefrontal dopaminergic activity. Until now, there is no study evaluating these processes in newly diagnosed, untreated patients with PD ("de novo PD". METHODOLOGY/PRINCIPAL FINDINGS: Here we report large changes in performance monitoring processes using event-related potentials (ERPs in de novo PD-patients. The results suggest that increases in medial frontal dopaminergic activity after an error (Ne are decreased, relative to age-matched controls. In contrast, neurophysiological processes reflecting general motor response monitoring (Nc are enhanced in de novo patients. CONCLUSIONS/SIGNIFICANCE: It may be hypothesized that the Nc-increase is at costs of dopaminergic activity after an error; on a functional level errors may not always be detected and correct responses sometimes be misinterpreted as errors. This pattern differs from studies examining patients with a longer history of PD and may reflect compensatory processes, frequently occurring in pre-manifest stages of PD. From a clinical point of view the clearly attenuated Ne in the de novo PD patients may prove a useful additional tool for the early diagnosis of basal ganglia dysfunction in PD.

  9. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.

    Science.gov (United States)

    Kim, Min Seong; Kim, GeunHyung

    2014-12-19

    Micro/nanofibrous scaffolds have been used widely in biomedical applications because the micro/nano-scale fibres resemble natural extracellular matrix and the high surface-to-volume ratio encourages cellular activities (attachment and proliferation). However, poor mechanical properties, low controllability of various shapes and difficulties in obtaining controllable pore structure have been obstacles to their use in hard-tissue regeneration. To overcome these shortcomings, we suggest a new composite system, which uses a combination method of wet electrospinning, rapid prototyping and a physical punching process. Using the process, we obtained polycaprolactone (PCL)/alginate composite scaffolds, consisting of electrospun PCL/alginate fibres and micro-sized PCL struts, with mean pore sizes of 821 ± 55 μm. To show the feasibility of the scaffolds for hard-tissue regeneration, the scaffolds were assessed not only for physical properties, including hydrophilicity, water absorption, and tensile and compressive strength, but also in vitro cellular responses (cell viability and proliferation) and osteogenic differentiation (alkaline phosphatase (ALP) activity, and mineralisation) by culturing with pre-osteoblasts (MC3T3-E1 cells). With the reinforcing micro-sized PCL struts, the elastic modulus of the PCL/alginate scaffold was significantly improved versus a pure PCL scaffold. Additionally, due to the alginate component in the fibrous scaffold, they showed significantly enhanced hydrophilic behaviour, water absorption (∼8-fold) and significant biological activities (∼1.6-fold for cell viability at 7 days, ∼2.3-fold for ALP activity at 14 days and ∼6.4-fold for calcium mineralisation at 14 days) compared with those of a pure PCL fibrous scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix

    Energy Technology Data Exchange (ETDEWEB)

    Cholas, Rahmatullah, E-mail: rahmat.cholas@gmail.com; Kunjalukkal Padmanabhan, Sanosh, E-mail: sanosh2001@gmail.com; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6 μm, a specific surface area of 40 m{sup 2}/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16 nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200 μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15 days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales. - Highlights: • Mesoporous hydroxyapatite microsphere(mHA) synthesized by spray drying method • Porous collagen/mHA composite scaffold made by freeze

  11. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  12. Fabrication of chitosan/gallic acid 3D microporous scaffold for tissue engineering applications.

    Science.gov (United States)

    Thangavel, Ponrasu; Ramachandran, Balaji; Muthuvijayan, Vignesh

    2016-05-01

    This study explores the potential of gallic acid incorporated chitosan (CS/GA) 3D scaffolds for tissue engineering applications. Scaffolds were prepared by freezing and lyophilization technique and characterized. FTIR spectra confirmed the presence of GA in chitosan (CS) gel. DSC and TGA analysis revealed that the structure of chitosan was not altered due to the incorporation of GA, but thermal stability was significantly increased compared to the CS scaffold. SEM micrographs showed smooth, homogeneous, and microporous architecture of the scaffolds with good interconnectivity. CS/GA scaffolds exhibited approximately 90% porosity on average, increased swelling (600-900%) and controlled biodegradation (15-40%) in PBS (pH 7.4 at 37°C) with 1 mg/mL of lysozyme. CS/GA scaffolds showed 2-4 fold decrease in CFUs (p < 0.05) for both gram positive and gram negative bacteria compared to the CS scaffold. Cytotoxicity of these scaffolds was evaluated using NIH 3T3 L1 fibroblast cells. CS/GA 0.25% scaffold showed similar viability with CS scaffold at 24 and 48 h. CS/GA scaffolds (0.5-1.0%) showed 60-75% viability at 24 h and 90% at 48 h. SEM images showed that an increased cell attachment was observed for CS/GA scaffolds compared to CS scaffolds. These findings authenticate that CS/GA scaffolds were cytocompatible and would be useful for tissue engineering applications. © 2015 Wiley Periodicals, Inc.

  13. Precise detection of de novo single nucleotide variants in human genomes.

    Science.gov (United States)

    Gómez-Romero, Laura; Palacios-Flores, Kim; Reyes, José; García, Delfino; Boege, Margareta; Dávila, Guillermo; Flores, Margarita; Schatz, Michael C; Palacios, Rafael

    2018-05-07

    The precise determination of de novo genetic variants has enormous implications across different fields of biology and medicine, particularly personalized medicine. Currently, de novo variations are identified by mapping sample reads from a parent-offspring trio to a reference genome, allowing for a certain degree of differences. While widely used, this approach often introduces false-positive (FP) results due to misaligned reads and mischaracterized sequencing errors. In a previous study, we developed an alternative approach to accurately identify single nucleotide variants (SNVs) using only perfect matches. However, this approach could be applied only to haploid regions of the genome and was computationally intensive. In this study, we present a unique approach, coverage-based single nucleotide variant identification (COBASI), which allows the exploration of the entire genome using second-generation short sequence reads without extensive computing requirements. COBASI identifies SNVs using changes in coverage of exactly matching unique substrings, and is particularly suited for pinpointing de novo SNVs. Unlike other approaches that require population frequencies across hundreds of samples to filter out any methodological biases, COBASI can be applied to detect de novo SNVs within isolated families. We demonstrate this capability through extensive simulation studies and by studying a parent-offspring trio we sequenced using short reads. Experimental validation of all 58 candidate de novo SNVs and a selection of non-de novo SNVs found in the trio confirmed zero FP calls. COBASI is available as open source at https://github.com/Laura-Gomez/COBASI for any researcher to use. Copyright © 2018 the Author(s). Published by PNAS.

  14. Online Process Scaffolding and Students' Self-Regulated Learning with Hypermedia.

    Science.gov (United States)

    Azevedo, Roger; Cromley, Jennifer G.; Thomas, Leslie; Seibert, Diane; Tron, Myriam

    This study examined the role of different scaffolding instructional interventions in facilitating students' shift to more sophisticated mental models as indicated by both performance and process data. Undergraduate students (n=53) were randomly assigned to 1 of 3 scaffolding conditions (adaptive content and process scaffolding (ACPS), adaptive…

  15. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  16. PHBV/PAM scaffolds with local oriented structure through UV polymerization for tissue engineering.

    Science.gov (United States)

    Ke, Yu; Wu, Gang; Wang, Yingjun

    2014-01-01

    Locally oriented tissue engineering scaffolds can provoke cellular orientation and direct cell spread and migration, offering an exciting potential way for the regeneration of the complex tissue. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds with locally oriented hydrophilic polyacrylamide (PAM) inside the macropores of the scaffolds were achieved through UV graft polymerization. The interpenetrating PAM chains enabled good interconnectivity of PHBV/PAM scaffolds that presented a lower porosity and minor diameter of pores than PHBV scaffolds. The pores with diameter below 100  μm increased to 82.15% of PHBV/PAM scaffolds compared with 31.5% of PHBV scaffolds. PHBV/PAM scaffold showed a much higher compressive elastic modulus than PHBV scaffold due to PAM stuffing. At 5 days of culturing, sheep chondrocytes spread along the similar direction in the macropores of PHBV/PAM scaffolds. The locally oriented PAM chains might guide the attachment and spreading of chondrocytes and direct the formation of microfilaments via contact guidance.

  17. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: In vitro cell culture studies

    International Nuclear Information System (INIS)

    Milovac, Dajana; Gamboa-Martínez, Tatiana C.; Ivankovic, Marica; Gallego Ferrer, Gloria; Ivankovic, Hrvoje

    2014-01-01

    In the present study, we examined the potential of using highly porous poly(ε-caprolactone) (PCL)-coated hydroxyapatite (HAp) scaffold derived from cuttlefish bone for bone tissue engineering applications. The cell culture studies were performed in vitro with preosteoblastic MC3T3-E1 cells in static culture conditions. Comparisons were made with uncoated HAp scaffold. The attachment and spreading of preosteoblasts on scaffolds were observed by Live/Dead staining Kit. The cells grown on the HAp/PCL composite scaffold exhibited greater spreading than cells grown on the HAp scaffold. DNA quantification and scanning electron microscopy (SEM) confirmed a good proliferation of cells on the scaffolds. DNA content on the HAp/PCL scaffold was significantly higher compared to porous HAp scaffolds. The amount of collagen synthesis was determined using a hydroxyproline assay. The osteoblastic differentiation of the cells was evaluated by determining alkaline phosphatase (ALP) activity and collagen type I secretion. Furthermore, cell spreading and cell proliferation within scaffolds were observed using a fluorescence microscope. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffold with interconnected pores was prepared • Cytotoxicity test showed that the scaffold was not cytotoxic towards MC3T3-E1 cells • The scaffold supported the attachment, proliferation and differentiation of cells • A 3D cell colonization was confirmed using the fluorescence microscopy • The scaffold might be a promising candidate for bone tissue engineering

  18. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Tao, Xiaojun [Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan (China); Zhang, Zhihua; Sun, Xiaomin [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Key Laboratory of Biomedical Materials of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. - Highlights: • Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere proposed for cartilage repair was created. • In vivo, scaffold could enhance cartilage regeneration and integration between the repaired and surrounding cartilage. • In vitro, scaffold exhibits excellent characteristics, such as, improved porosity water absorption and good cell affinity.

  19. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Doğan, Ayşegül; Demirci, Selami [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey); Bayir, Yasin [Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Halici, Zekai [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum (Turkey); Aydin, Ali [Department of Orthopedics and Traumatology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Cadirci, Elif [Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25240, Erzurum (Turkey); Albayrak, Abdulmecit [Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Demirci, Elif [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Karaman, Adem [Department of Radiology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Ayan, Arif Kursat [Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Gundogdu, Cemal [Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum (Turkey); Şahin, Fikrettin, E-mail: fsahin@yeditepe.edu.tr [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University 34755 Istanbul (Turkey)

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing.

  20. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Şahin, Fikrettin

    2014-01-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. - Highlights: • Boron containing PLGA scaffolds were developed for bone tissue engineering. • Boron incorporation increased cell viability and mineralization of stem cells. • Boron containing scaffolds increased bone-related protein expression in vivo. • Implantation of stem cells on boron containing scaffolds improved bone healing

  1. 29 CFR 1915.71 - Scaffolds or staging.

    Science.gov (United States)

    2010-07-01

    ... construction of scaffolds shall be spruce, fir, long leaf yellow pine, Oregon pine or wood of equal strength... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... accidentally disengaged from the crane hook. (c) Independent pole wood scaffolds. (1) All pole uprights shall...

  2. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  3. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L; Francis, Michael P; Simpson, David G

    2008-01-01

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml -1 were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  4. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies

    DEFF Research Database (Denmark)

    2014-01-01

    in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p...... = 8.2 × 10(-4)), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have...... analyzed exome-sequencing data of 356 trios with the "classical" epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1...

  5. Electrospinning versus knitting: two scaffolds for tisssue engineering of the aortic valve

    NARCIS (Netherlands)

    Lieshout, van M.I.; Vaz, C.M.; Rutten, M.C.M.; Peters, G.W.M.; Baaijens, F.P.T.

    2006-01-01

    Two types of scaffolds were developed for tissue engineering of the aortic valve; an electrospun valvular scaffold and a knitted valvular scaffold. These scaffolds were compared in a physiologic flow system and in a tissue-engineering process. In fibrin gel enclosed human myofibroblasts were seeded

  6. PEDOT:PSS-Containing Nanohydroxyapatite/Chitosan Conductive Bionanocomposite Scaffold: Fabrication and Evaluation

    Directory of Open Access Journals (Sweden)

    Alireza Lari

    2016-01-01

    Full Text Available Conductive poly(3,4-ethylenedioxythiophene-poly(4-styrene sulfonate (PEDOT:PSS was incorporated into nanohydroxyapatite/chitosan (nHA/CS composite scaffolds through a freezing and lyophilization technique. The bionanocomposite conductive scaffold was then characterized using several techniques. A scanning electron microscope image showed that the nHA and PEDOT:PSS were dispersed homogeneously in the chitosan matrix, which was also confirmed by energy-dispersive X-ray (EDX analysis. The conductive properties were measured using a digital multimeter. The weight loss and water-uptake properties of the bionanocomposite scaffolds were studied in vitro. An in vitro cell cytotoxicity test was carried out using mouse fibroblast (L929 cells cultured onto the scaffolds. Using a freezing and lyophilization technique, it was possible to fabricate three-dimensional, highly porous, and interconnected PEDOT:PSS/nHA/CS scaffolds with good handling properties. The porosity was 74% and the scaffold’s conductivity was 9.72±0.78 μS. The surface roughness was increased with the incorporation of nHA and PEDOT:PSS into the CS scaffold. The compressive mechanical properties increased significantly with the incorporation of nHA but did not change significantly with the incorporation of PEDOT:PSS. The PEDOT:PSS-containing nHA/CS scaffold exhibited significantly higher cell attachment. The PEDOT:PSS/nHA/CS scaffold could be a potential bionanocomposite conductive scaffold for tissue engineering.

  7. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering

    International Nuclear Information System (INIS)

    Lee, Ju-Yeon; Choi, Bogyu; Wu, Benjamin; Lee, Min

    2013-01-01

    Three-dimensional printing (3DP) is a rapid prototyping technique that can create complex 3D structures by inkjet printing of a liquid binder onto powder biomaterials for tissue engineering scaffolds. Direct fabrication of scaffolds from 3DP, however, imposes a limitation on material choices by manufacturing processes. In this study, we report an indirect 3DP approach wherein a positive replica of desired shapes was printed using gelatin particles, and the final scaffold was directly produced from the printed mold. To create patient-specific scaffolds that match precisely to a patient's external contours, we integrated our indirect 3DP technique with imaging technologies and successfully created custom scaffolds mimicking human mandibular condyle using polycaprolactone and chitosan for potential osteochondral tissue engineering. To test the ability of the technique to precisely control the internal morphology of the scaffolds, we created orthogonal interconnected channels within the scaffolds using computer-aided-design models. Because very few biomaterials are truly osteoinductive, we modified inert 3D printed materials with bioactive apatite coating. The feasibility of these scaffolds to support cell growth was investigated using bone marrow stromal cells (BMSC). The BMSCs showed good viability in the scaffolds, and the apatite coating further enhanced cellular spreading and proliferation. This technique may be valuable for complex scaffold fabrication. (paper)

  8. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  9. Novel scaffold design with multi-grooved PLA fibers

    International Nuclear Information System (INIS)

    Chung, Sangwon; King, Martin W; Gamcsik, Mike P

    2011-01-01

    A novel prototype nonwoven textile structure containing polylactide (PLA) multigrooved fibers has been proposed as a possible scaffold material for superior cell attachment and proliferation. Grooved cross-sectional fibers with larger surface area were obtained by a bi-component spinning system and the complete removal of the sacrificial component was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray photon spectroscopy (XPS) analysis. These PLA nonwoven scaffolds containing the grooved fibers exhibited enhanced wettability, greater flexibility and tensile properties, and a larger surface area compared to a traditional PLA nonwoven fabric containing round fibers. To evaluate cellular attachment on the two types of PLA nonwoven scaffolds, NIH 3T3 fibroblasts were cultured for up to 12 days. It was evident that the initial cellular attachment was superior on the scaffold with grooved fibers, which was confirmed by MTT viability assay (p < 0.01) and SEM analysis. In the future, by modulating the size of the grooves on the fibers, such a scaffold material with a large surface area could serve as an alternative matrix for culturing different types of cells.

  10. Multilayer porous UHMWPE scaffolds for bone defects replacement.

    Science.gov (United States)

    Maksimkin, A V; Senatov, F S; Anisimova, N Yu; Kiselevskiy, M V; Zalepugin, D Yu; Chernyshova, I V; Tilkunova, N A; Kaloshkin, S D

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79±2%; the pore size range was 80-700μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fabrication and characterization of calcium phosphate cement scaffolds

    International Nuclear Information System (INIS)

    Sousa, E. de; Motisuke, M.; Bertran, C.A.

    2011-01-01

    In Tissue Engineering, the need for scaffolds which are capable of guiding the organization, differentiation and growth of cells leading to the formation of new tissues is highly relevant. For the development of new scaffolds focused on bone tissue therapy, calcium phosphate cements (CPC) have great potential, because besides their resorbability, they present morphology and chemical composition similar to the bone mineral phase. Moreover, there are several processing techniques to produce ceramic scaffolds: polymeric sponge replication, incorporation of organic material into the ceramic powder, gelcasting, emulsion, among others. The aim of this work was to obtain CPCs scaffolds by using two techniques, emulsion and gelcasting. The scaffolds were characterized by their physical and mechanical properties and the crystalline phases formed after the setting reaction of cement were determined by X-ray diffraction. The samples obtained by both methods presented porosity between 61-65% and the microstructure consists of nearly spherical pores (d5o = 50-100 μm). The mechanical strength of the samples ranged from 5.5 to 1.5 MPa. The crystalline phases found were monetite (CaHPO 4 ) and brushite (CaHPO 4 2H 2 O). (author)

  12. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  13. Surface-modified functionalized polycaprolactone scaffolds for bone repair

    DEFF Research Database (Denmark)

    Jensen, Jonas; Rölfing, Jan Hendrik Duedal; Svend Le, Dang Quang

    2014-01-01

    A porcine calvaria defect study was carried out to investigate the bone repair potential of three-dimensional (3D)-printed poly-ε-caprolactone (PCL) scaffolds embedded with nanoporous PCL. A microscopic grid network was created by rapid prototyping making a 3D-fused deposition model (FDM-PCL). Af......A porcine calvaria defect study was carried out to investigate the bone repair potential of three-dimensional (3D)-printed poly-ε-caprolactone (PCL) scaffolds embedded with nanoporous PCL. A microscopic grid network was created by rapid prototyping making a 3D-fused deposition model (FDM......-PCL). Afterward, the FDM-PCL scaffolds were infused with a mixture of PCL, water, and 1,4-dioxane and underwent a thermal-induced phase separation (TIPS) followed by lyophilization. The TIPS process lead to a nanoporous structure shielded by the printed microstructure (NSP-PCL). Sixteen Landrace pigs were divided...... into two groups with 8 and 12 weeks follow-up, respectively. A total of six nonpenetrating holes were drilled in the calvaria of each animal. The size of the cylindrical defects was h 10 mm and Ø 10 mm. The defects were distributed randomly using following groups: (a) NSP-PCL scaffold, (b) FDM-PCL scaffold...

  14. Treatment Results of Injuries of Thoracic and Lumbar Backbone Departments at Osteoporosis Patients

    Directory of Open Access Journals (Sweden)

    D.Y. Sumin

    2009-06-01

    Full Text Available Information relates to radiologic (computer tomography manifestations providing the visualization of thoracic and lumbar backbone department injuries at osteoporotic patients. Contemporary methods of transcutaneous and trans-pedicle vertebroplasty with bone cement allows to obtain a stable positive healing effect against such pathologies.

  15. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Uswatta, Suren P.; Okeke, Israel U. [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  16. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    International Nuclear Information System (INIS)

    Uswatta, Suren P.; Okeke, Israel U.; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  17. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Domingos

    2009-01-01

    Full Text Available The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(ε-caprolactone was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material.

  18. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  19. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction.

    Science.gov (United States)

    Kim, Chang-Shik; Jung, Kyung-Hye; Kim, Hun; Kim, Chan-Bong; Kang, Inn-Kyu

    2016-01-01

    After tumor resection, bone reconstruction such as skull base reconstruction using interconnected porous structure is absolutely necessary. In this study, porous scaffolds for bone reconstruction were prepared using heat-pressing and salt-leaching methods. High-density polyethylene (HDPE) and poly(ethylene-co-acrylic acid) (PEAA) were chosen as the polymer composites for producing a porous scaffold of high mechanical strength and having high reactivity with biomaterials such as collagen, respectively. The porous structure was observed through surface images, and its intrusion volume and porosity were measured. Owing to the carboxylic acids on PEAA, collagen was successfully grafted onto the porous HDPE/PEAA scaffold, which was confirmed by FT-IR spectroscopy and electron spectroscopy for chemical analysis. Osteoblasts were cultured on the collagen-grafted porous scaffold, and their adhesion, proliferation, and differentiation were investigated. The high viability and growth of the osteoblasts suggest that the collagen-grafted porous HDPE/PEAA is a promising scaffold material for bone generation.

  20. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhijiang, Cai, E-mail: caizhijiang@hotmail.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); State Key Laboratory of Hollow Fiber Membrane Material and Processes, No 399 BingShuiXi Street, XiQing District, Tianjin, China, 300387 (China); Yi, Xu; Haizheng, Yang; Jia, Jianru; Liu, Yuanpei [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-01-01

    Poly(hydroxybutyrate) (PHB)/cellulose acetate (CA) blend nanofiber scaffolds were fabricated by electrospinning using the blends of chloroform and DMF as solvent. The blend nanofiber scaffolds were characterized by SEM, FTIR, XRD, DSC, contact angle and tensile test. The blend nanofibers exhibited cylindrical, uniform, bead-free and random orientation with the diameter ranged from 80–680 nm. The scaffolds had very well interconnected porous fibrous network structure and large aspect surface areas. It was found that the presence of CA affected the crystallization of PHB due to formation of intermolecular hydrogen bonds, which restricted the preferential orientation of PHB molecules. The DSC result showed that the PHB and CA were miscible in the blend nanofiber. An increase in the glass transition temperature was observed with increasing CA content. Additionally, the mechanical properties of blend nanofiber scaffolds were largely influenced by the weight ratio of PHB/CA. The tensile strength, yield strength and elongation at break of the blend nanofiber scaffolds increased from 3.3 ± 0.35 MPa, 2.8 ± 0.26 MPa, and 8 ± 0.77% to 5.05 ± 0.52 MPa, 4.6 ± 0.82 MPa, and 17.6 ± 1.24% by increasing PHB content from 60% to 90%, respectively. The water contact angle of blend nanofiber scaffolds decreased about 50% from 112 ± 2.1° to 60 ± 0.75°. The biodegradability was evaluated by in vitro degradation test and the results revealed that the blend nanofiber scaffolds showed much higher degradation rates than the neat PHB. The cytocompatibility of the blend nanofiber scaffolds was preliminarily evaluated by cell adhesion studies. The cells incubated with PHB/CA blend nanofiber scaffold for 48 h were capable of forming cell adhesion and proliferation. It showed much better biocompatibility than pure PHB film. Thus, the prepared PHB/CA blend nanofiber scaffolds are bioactive and may be more suitable for cell proliferation suggesting that these scaffolds can be used for

  1. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering

    International Nuclear Information System (INIS)

    Mota, Carlos; Danti, Serena; D’Alessandro, Delfo; Trombi, Luisa; Ricci, Claudio; Berrettini, Stefano; Puppi, Dario; Dinucci, Dinuccio; Chiellini, Federica; Milazzo, Mario; Stefanini, Cesare; Moroni, Lorenzo

    2015-01-01

    The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE. (paper)

  2. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  3. Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications.

    Science.gov (United States)

    Zakhem, Elie; Bitar, Khalil N

    2015-10-13

    Massive resections of segments of the gastrointestinal (GI) tract lead to intestinal discontinuity. Functional tubular replacements are needed. Different scaffolds were designed for intestinal tissue engineering application. However, none of the studies have evaluated the mechanical properties of the scaffolds. We have previously shown the biocompatibility of chitosan as a natural material in intestinal tissue engineering. Our scaffolds demonstrated weak mechanical properties. In this study, we enhanced the mechanical strength of the scaffolds with the use of chitosan fibers. Chitosan fibers were circumferentially-aligned around the tubular chitosan scaffolds either from the luminal side or from the outer side or both. Tensile strength, tensile strain, and Young's modulus were significantly increased in the scaffolds with fibers when compared with scaffolds without fibers. Burst pressure was also increased. The biocompatibility of the scaffolds was maintained as demonstrated by the adhesion of smooth muscle cells around the different kinds of scaffolds. The chitosan scaffolds with fibers provided a better candidate for intestinal tissue engineering. The novelty of this study was in the design of the fibers in a specific alignment and their incorporation within the scaffolds.

  4. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  5. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Yang, Sung Yeun; Hwang, Tae Heon; Ryu, WonHyoung; Che, Lihua; Oh, Jin Soo; Ha, Yoon

    2015-01-01

    Electrospun silk fibroin (SF) scaffolds have drawn much attention because of their resemblance to natural tissue architecture such as extracellular matrix, and the biocompatibility of SF as a candidate material to replace collagen. However, electrospun scaffolds lack the physical integrity of bone tissue scaffolds, which require resistance to mechanical loadings. In this work, we propose membrane-reinforced electrospun SF scaffolds by a serial process of electrospinning and freeze-drying of SF solutions in two different solvents: formic acid and water, respectively. After wet electrospinning followed by replacement of methanol with water, SF nanofibers dispersed in water were mixed with aqueous SF solution. Freeze-drying of the mixed solution resulted in 3D membrane-connected SF nanofibrous scaffolds (SF scaffolds) with a thickness of a few centimeters. We demonstrated that the SF concentration of aqueous SF solution controlled the degree of membrane reinforcement between nanofibers. It was also shown that both increase in degree of membrane reinforcement and inclusion of hydroxyapatite (HAP) nanoparticles resulted in higher resistance to compressive loadings of the SF scaffolds. Culture of human osteoblasts on collagen, SF, and SF-HAP scaffolds showed that both SF and SF-HAP scaffolds had biocompatibility and cell proliferation superior to that of the collagen scaffolds. SF-HAP scaffolds with and without BMP-2 were used for in vivo studies for 4 and 8 weeks, and they showed enhanced bone tissue formation in rat calvarial defect models. (paper)

  6. Biodegradation and bioresorption of poly(-caprolactone) nanocomposite scaffolds

    CSIR Research Space (South Africa)

    Mkhabela, V

    2015-08-01

    Full Text Available confirmed the elemental composition of the scaffolds. The phase composition of the scaffolds was shown by XRD, which also indicated a decrease in crystallinity with the introduction of nanoclay. Biodegradability studies which were conducted in simulated...

  7. Defining the maize transcriptome de novo using deep RNA-Seq

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Gross, Stephen; Choi, Cindy; Zhang, Tao; Lindquist, Erika; Wei, Chia-Lin; Wang, Zhong

    2011-06-01

    De novo assembly of the transcriptome is crucial for functional genomics studies in bioenergy research, since many of the organisms lack high quality reference genomes. In a previous study we successfully de novo assembled simple eukaryote transcriptomes exclusively from short Illumina RNA-Seq reads [1]. However, extensive alternative splicing, present in most of the higher eukaryotes, poses a significant challenge for current short read assembly processes. Furthermore, the size of next-generation datasets, often large for plant genomes, presents an informatics challenge. To tackle these challenges we present a combined experimental and informatics strategy for de novo assembly in higher eukaryotes. Using maize as a test case, preliminary results suggest our approach can resolve transcript variants and improve gene annotations.

  8. Defining the maize transcriptome de novo using deep RNA-Seq

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Gross, Stephen; Choi, Cindy; Zhang, Tao; Lindquist, Erika; Wei, Chia-Lin; Wang, Zhong

    2011-06-02

    De novo assembly of the transcriptome is crucial for functional genomics studies in bioenergy research, since many of the organisms lack high quality reference genomes. In a previous study we successfully de novo assembled simple eukaryote transcriptomes exclusively from short Illumina RNA-Seq reads [1]. However, extensive alternative splicing, present in most of the higher eukaryotes, poses a significant challenge for current short read assembly processes. Furthermore, the size of next-generation datasets, often large for plant genomes, presents an informatics challenge. To tackle these challenges we present a combined experimental and informatics strategy for de novo assembly in higher eukaryotes. Using maize as a test case, preliminary results suggest our approach can resolve transcript variants and improve gene annotations.

  9. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  10. Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds

    Science.gov (United States)

    Lan, Sheeny K.

    Bone grafts are utilized clinically to guide tissue regeneration. Autologous bone and allogeneic bone are the current clinical standards. However, there are significant limitations to their use. To address the need for alternatives to autograft and allograft, researchers have worked to develop synthetic grafts, also referred to as scaffolds. Despite extensive efforts in this area, a gap persists between basic research and clinical application. In particular, solutions for repairing critical size and/or load-bearing defects are lacking. The aim of this thesis work was to address two critical barriers preventing design of successful tissue engineering constructs for bone regeneration within critical size and/or load-bearing defects. Those barriers are insufficient osteointegration and slow neovascularization. In this work, the effects of scaffold microporosity, recombinant human bone morphogenetic protein-2 delivery and endothelial colony forming cell vasculogenesis were evaluated in the context of bone formation in vivo. This was accomplished to better understand the role of these factors in bone regeneration, which may translate to improvements in tissue engineering construct design. Biphasic calcium phosphate (BCP) scaffolds with controlled macro- and microporosity were implanted in porcine mandibular defects. Evaluation of the BCP scaffolds after in vivo implantation showed, for the first time, osteocytes embedded in bone within scaffold micropores (macro and micro length scales, leaving no "dead space" or discontinuities of bone in the defect site. The scaffold forms a living composite upon integration with regenerating bone and this has significant implications with regard to improved scaffold mechanical properties. The presence of osteocytes within scaffold micropores is an indication of scaffold osteoinductivity because a chemotactic factor must be present to induce cell migration into pores on the order of the cell diameter. It is likely that the scaffold

  11. Overlapping bio-absorbable scaffolds: Aim for D2D technique?

    Science.gov (United States)

    Khan, Asaad A; Dangas, George D

    2018-06-01

    The results of overlapping metallic stents have been concerning but this practice is often unavoidable in the setting of long or tortuous lesions, diameter discrepancy of proximal and distal vessel, and for residual dissections. Theoretically, bio-absorbable scaffolds may carry an advantage over metallic stents due to the progressive resorption of the scaffold theoretically rendering the overlap a non-issue; this has not been clinically evident. Since stent/scaffold overlap cannot be entirely avoided, improved stent delivery/deployment and scaffold design modification may reduce complications in this complex patient subset. © 2018 Wiley Periodicals, Inc.

  12. Biochemical properties of Hemigraphis alternata incorporated chitosan hydrogel scaffold.

    Science.gov (United States)

    Annapoorna, M; Sudheesh Kumar, P T; Lakshman, Lakshmi R; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, R

    2013-02-15

    In this work, Hemigraphis alternata extract incorporated chitosan scaffold was synthesized and characterized for wound healing. The antibacterial activity of Hemigraphis incorporated chitosan scaffold (HIC) against Escherichia coli and Staphylococcus aureus was evaluated which showed a reduction in total colony forming units by 45-folds toward E. coli and 25-fold against S. aureus respectively. Cell viability studies using Human Dermal Fibroblast cells (HDF) showed 90% viability even at 48 h when compared to the chitosan control. The herbal scaffold made from chitosan was highly haemostatic and antibacterial. The obtained results were in support that the herbal scaffold can be effectively applied for infectious wounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Sol-gel synthesis of bioactive glass porous scaffolds with addition of porogen agent; Sintese sol-gel de scaffolds porosos de vidro bioativo com adicao de agente porogenico

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, F.B.A.P.; Barrioni, B.R.; Oliveira, A.C.X.; Oliveira, A.A.R.; Pereira, M.M., E-mail: fabianabapg@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Escola de Engenharia. Dept. Engenharia Metalurgica e de Materiais

    2016-10-15

    The use of biomaterials capable of generating a biological response has been one of the biggest progresses in regenerative medicine, due to their ability to support growth stimulation and damaged tissue regeneration. In this context, bioceramics, particularly bioactive glass (BG), were the subject of many studies. The technique of porogen agent addition for the synthesis of scaffolds is an interesting procedure, because several types of porogen agents can be used. The aim of the present work was to obtain scaffolds using four porogen agents and to evaluate the effects that a change in treatment temperature can have on their crystallinity. Scaffolds of sol-gel bioactive glass 100S (100% SiO{sub 2}) using as porogen agents paraffin 1, paraffin 2, wax and CMC (carboxymethyl cellulose) were synthesized and characterized. As the best results were obtained with paraffin 1, scaffolds 58S (60%SiO{sub 2} -36%CaO-4%P{sub 2}O{sub 5} ) and 100S using paraffin 1 as porogen agent were prepared. The scaffolds were submitted to different treatment temperatures to evaluate the effect on their crystallinity. Pore structure was analyzed by scanning electron microscopy and micro-computed tomography. Scaffolds presented satisfactory pore size and pore size distribution, important characteristics for scaffolds because they allow cell migration, nutrient transport, vascularisation and tissue ingrowth. X-ray powder diffraction showed the amorphous nature of the scaffolds. At 900 °C, scaffolds BG 58S and 100S showed a small increase in crystallinity. BET analysis (N{sub 2} -adsorption) indicated a mesoporous structure. The specific surface area varied from 73.2 m{sup 2} /g for scaffold 58S treated at 800 °C to 331.2 m{sup 2} /g for scaffold 100S treated at 800 °C. The materials obtained showed no toxic effects by MTT cytotoxicity assays. Results showed that the development of scaffolds is possible using porogen agents, with 3D interconnected porous structure and might therefore be a

  14. Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications.

    NARCIS (Netherlands)

    Dash, M.; Samal, S.K.; Douglas, T.E.L.; Schaubroeck, D.; Leeuwenburgh, S.C.G.; Voort, P. van der; Declercq, H.A.; Dubruel, P.

    2017-01-01

    Porous biodegradable scaffolds represent promising candidates for tissue-engineering applications because of their capability to be preseeded with cells. We report an uncrosslinked chitosan scaffold designed with the aim of inducing and supporting enzyme-mediated formation of apatite minerals in the

  15. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Xin [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou (China); Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States); Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI (United States); Mi, Hao-Yang [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou (China); Salick, Max R. [Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI (United States); Department of Engineering Physics, University of Wisconsin–Madison, WI (United States); Cordie, Travis M. [Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI (United States); Department of Biomedical Engineering, University of Wisconsin–Madison, WI (United States); Peng, Xiang-Fang, E-mail: pmxfpeng@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou (China); Turng, Lih-Sheng, E-mail: turng@engr.wisc.edu [Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States); Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI (United States)

    2015-04-01

    Fabrication of small diameter vascular grafts plays an important role in vascular tissue engineering. In this study, thermoplastic polyurethane (TPU)/graphene oxide (GO) scaffolds were fabricated via electrospinning at different GO contents as potential candidates for small diameter vascular grafts. In terms of mechanical and surface properties, the tensile strength, Young's modulus, and hydrophilicity of the scaffolds increased with an increase of GO content while plasma treatment dramatically improved the scaffold hydrophilicity. Mouse fibroblast (3T3) and human umbilical vein endothelial cells (HUVECs) were cultured on the scaffolds separately to study their biocompatibility and potential to be used as vascular grafts. It was found that cell viability for both types of cells, fibroblast proliferation, and HUVEC attachment were the highest at a 0.5 wt.% GO loading whereas oxygen plasma treatment also enhanced HUVEC viability and attachment significantly. In addition, the suture retention strength and burst pressure of tubular TPU/GO scaffolds containing 0.5 wt.% GO were found to meet the requirements of human blood vessels, and endothelial cells were able to attach to the inner surface of the tubular scaffolds. Platelet adhesion tests using mice blood indicated that vascular scaffolds containing 0.5% GO had low platelet adhesion and activation. Therefore, the electrospun TPU/GO tubular scaffolds have the potential to be used in vascular tissue engineering. - Highlights: • TPU/GO vascular scaffolds were prepared via electrospinning. • The addition of GO improved the modulus and hydrophilicity of the scaffolds. • Fibroblast cell culture verified the scaffolds' biocompatibility. • Endothelial cell culture verified the scaffolds' vascular graft affinity. • The mechanical properties fulfilled the requirements of vascular grafts.

  16. Directed Self-Inquiry: A Scaffold for Teaching Laboratory Report Writing

    Science.gov (United States)

    Deiner, L. Jay; Newsome, Daniel; Samaroo, Diana

    2012-01-01

    A scaffold was created for the explicit instruction of laboratory report writing. The scaffold breaks the laboratory report into sections and teaches students to ask and answer questions in order to generate section-appropriate content and language. Implementation of the scaffold is done through a series of section-specific worksheets that are…

  17. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties.

    Science.gov (United States)

    Correia, Cristina O; Leite, Álvaro J; Mano, João F

    2015-06-05

    We propose a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce CHT/BG-NPs scaffolds that combine the shape memory properties of chitosan and the biomineralization ability of BG-NPs for applications in bone regeneration. The addition of BG-NPs prepared by a sol-gel route to the CHT polymeric matrix improved the bioactivity of the nanocomposite scaffold, as seen by the precipitation of bone-like apatite layer upon immersion in simulated body fluid (SBF). Shape memory tests were carried out while the samples were immersed in varying compositions of water/ethanol mixtures. Dehydration with ethanol enables to fix a temporary shape of a deformed scaffold that recovers the initial geometry upon water uptake. The scaffolds present good shape memory properties characterized by a recovery ratio of 87.5% for CHT and 89.9% for CHT/BG-NPs and a fixity ratio of 97.2% for CHT and 98.2% for CHT/BG-NPs (for 30% compressive deformation). The applicability of such structures was demonstrated by a good geometrical accommodation of a previously compressed scaffold in a bone defect. The results indicate that the developed CHT/BG-NPs nanocomposite scaffolds have potential for being applied in bone tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds

    International Nuclear Information System (INIS)

    Zhang Hua; Ye Xiaojian; Li Jiashun

    2009-01-01

    An apatite/wollastonite-derived (A/W) porous glass ceramic scaffold with highly interconnected pores was successfully fabricated by adding a plastic porosifier. The morphology, porosity and mechanical strength were characterized. The results showed that the glass ceramic scaffold with controllable pore size and porosity displayed open macropores. In addition, good in vitro bioactivity was found for the scaffold obtained by soaking it in simulated body fluid. Mesenchymal stem cells (MSCs) were cultured, expanded and seeded on the scaffold, and the adhesion and proliferation of MSCs were determined using MTT assay and environmental scanning electron microscopy (ESEM). The results revealed that the scaffold was biocompatible and had no negative effects on the MSCs in vitro. The in vivo biocompatibility and osteogenicity were investigated by implanting both the pure scaffold and the MSC/scaffold construct in rabbit mandibles and studying histologically. The results showed that the glass ceramic scaffold exhibited good biocompatibility and osteoconductivity. Moreover, the introduction of MSCs into the scaffold observably improved the efficiency of new bone formation, especially at the initial stage after implantation. However, the glass ceramic scaffold showed the same good biocompatibility and osteogenicity as the hybrid one at the later stage. These results indicate that porous bioactive scaffolds based on the original apatite-wollastonite glass ceramic fulfil the basic requirements of a bone tissue engineering scaffold.

  19. Novos paradigmas literários

    Directory of Open Access Journals (Sweden)

    Denise Azevedo Duarte Guimarães

    2005-12-01

    Full Text Available O artigo estuda a emergência de novos paradigmas literários, procurando refletir acerca das textualidades contemporâneas. Focaliza os hipertextos informatizados e a poesia multimídia, com o intuito de desvendar como estão sendo criados novos procedimentos expressivos e em que medida eles podem ser identificados com reflexões teóricas anteriores acerca do texto literário impresso. Remete a questões ligadas à leitura dos diferentes tipos de signos e aos modos como eles se integram para a constituição dessas novíssimas linguagens híbridas em novos suportes.El artículo estudia la emergencia de nuevos paradigmas literarios, procurando reflejar acerca de las textualidades contemporáneas. Enfoca los hipertextos informatizados y la poesía multimedia, intentando desvendar cómo están siendo creados nuevos procedimientos expresivos y en qué medida ellos pueden ser identificados a reflexiones teóricas anteriores acerca del texto literario impreso. Remite a cuestiones ligadas a la lectura de los diferentes tipos de signos y a los modos cómo ellos se interaccionan para la constitución de los novísimos lenguajes híbridos en nuevos supuestos.This article investigates the emergence of new literary paradigms as it tries to understand new contemporary textualities. It analyses some hypertexts and multimedia poetry trying to trace how new expressive procedures are being created. How can these new languages be identified and what are their relations to previous theories which dealt with the literary printed text? This study approaches questions linked to the reading of different types of signs and the modes they function towards the fabrication of these new hybrid languages.

  20. Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites

    Science.gov (United States)

    Khattak, Abraiz; Amin, Muhammad; Iqbal, Muhammad; Abbas, Naveed

    2018-02-01

    Micro and nanocomposites of ethylene propylene diene monomer (EPDM) are recently studied for different characteristics. Study on life estimation and effects of multiple stresses on its dielectric strength and backbone scission and oxidation is also vital for endorsement of these composites for high voltage insulation and other outdoor applications. In order to achieve these goals, unfilled EPDM and its micro and nanocomposites are prepared at 23 phr micro silica and 6 phr nanosilica loadings respectively. Prepared samples are energized at 2.5 kV AC voltage and subjected for a long time to heat, ultraviolet radiation, acid rain, humidity and salt fog in accelerated manner in laboratory. Dielectric strength, leakage current and intensity of saturated backbone and carbonyl group are periodically measured. Loss in dielectric strength, increase in leakage current and backbone degradation and oxidation were observed in all samples. These effects were least in the case of EPDM nanocomposite. The nanocomposite sample also demonstrated longest shelf life.

  1. Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Lu, Fang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Wang, Di [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhu, Xiaojing [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Tan, Guoxin, E-mail: tanguoxin@126.com [Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Wang, Xiaolan [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhang, Yu; Li, Lihua [General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China)

    2014-09-15

    Highlights: • Designed and reproducible porous titanium scaffolds were produced. • Hydrophilic nanoporous film was built on scaffold. • Apatite coating was deposited on scaffold under the modulation of citrate ions. • Citrate ions could affect CO{sub 3}{sup 2−} incorporation in apatite coatings. - Abstract: Scaffold functionalized with appropriate osteogenic coatings can significantly improve implant-bone response. In this study, with designed model and optimized manufacture parameters, reproducible and precise titanium scaffolds were produced. Reconstructed three-dimensional image and sectional structure of the scaffold were examined by micro-computed tomography and relative software. Alkali treatment was carried out on these manufactured porous scaffolds to produce nanoporous hydrophilic film. After 6 days deposition in simulated body fluid (SBF) containing sodium citrate (SC-SBF), plate-like amorphous calcium phosphate (ACP) coating was deposited on scaffold surface. Ultrasonication tests qualitatively indicated an enhanced adhesion force of apatite coatings deposited in SC-SBF compared to that deposited in SBF. And the effect of citrate ions on the CO{sub 3}{sup 2−} incorporation rate in apatite coating was quantitatively examined by bending vibration of CO{sub 3}{sup 2−} at ∼874 cm{sup −1}. Results indicated the highest carbonate content was obtained at the citrate ion concentration of 6 × 10{sup −5} mol/L in SC-SBF. These three-dimensional porous titanium-apatite hybrid scaffolds are expected to find application in bone tissue regeneration.

  2. Microstructures and martensitic transformation behavior of superelastic Ti-Ni-Ag scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuanglei; Kim, Eun-soo [School of Materials Science and Engineering & ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Kim, Yeon-wook [Department of Material Engineering, Keimyung University, 1000 Shindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Nam, Tae-hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering & ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2016-10-15

    Highlights: • The B2-R-B19′ transformation occurred in 49Ti-50.3Ni-0.7Ag alloy fibers. • Annealing treated alloy fibers showed superelastic recovery ratio of 93%. • Ageing treated scaffold had an elastic modulus of 0.67 GPa. • Ageing treated scaffold exhibited good superelasticity at human body temperature. - Abstract: Ti-Ni-Ag scaffolds were prepared by sintering rapidly solidified alloy fibers. Microstructures and transformation behaviors of alloy fibers and scaffolds were investigated by means of electron probe micro-analyzer (EPMA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The B2-R-B19′ transformation occurs in alloy fibers. The alloy fibers have good superelasticity with superelastic recovery ratio of 93% after annealing heat treatment. The as-sintered Ti-Ni-Ag scaffolds possess three-dimensional and interconnected pores and have the porosity level of 80%. The heat treated Ti-Ni-Ag scaffolds not only have an elastic modulus of 0.67 GPa, which match well with that of cancellous bone, but also show excellent superelasticity at human body temperature. In terms of the mechanical properties, the Ti-Ni-Ag scaffolds in this study can meet the main requirements of bone scaffold for the purpose of bone replacement applications.

  3. A Ternary Nanofibrous Scaffold Potential for Central Nerve System Tissue Engineering.

    Science.gov (United States)

    Saadatkish, Niloufar; Nouri Khorasani, Saied; Morshed, Mohammad; Allafchian, Ali-Reza; Beigi, Mohammad-Hossein; Masoudi Rad, Maryam; Nasr-Esfahani, Mohammad Hossein; Esmaeely Neisiany, Rasoul

    2018-04-10

    In the present research, a ternary Polycaprolactone (PCL)/gelatin/fibrinogen nanofibrous scaffold for tissue engineering application was developed. Through this combination, PCL improved the scaffold mechanical properties; meanwhile, gelatin and fibrinogen provided more hydrophilicity and cell proliferation. Three types of nanofibrous scaffolds containing different fibrinogen contents were prepared and characterized. Morphological study of the nanofibers showed that the prepared nanofibers were smooth, uniform without any formation of beads with a significant reduction in nanofiber diameter after incorporation of fibrinogen. The chemical characterization of the scaffolds confirmed that no chemical reaction occurred between the scaffold components. The tensile test results of the scaffolds showed that increasing in fibrinogen content led to a decrease in mechanical properties. Furthermore, Adipose-derived stem cells (ADSCs) were employed to evaluate cell-scaffold interaction. Cell culture results indicated that higher cell proliferation occurred for the higher amount of fibrinogen. Statistical analysis was also carried out to evaluate the significant difference for the obtained results of water droplet contact angle and cell culture. Therefore, the results confirmed that PCL/Gel/Fibrinogen scaffold has a good potential for tissue engineering applications including Central Nerve System (CNS) tissue engineering. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  4. Noninvasive Evaluation of Injectable Chitosan/Nano-Hydroxyapatite/Collagen Scaffold via Ultrasound

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2012-01-01

    Full Text Available To meet the challenges of designing an in situ forming scaffold and regenerating bone with complex three-dimensional (3D structures, an in situ forming hydrogel scaffold based on nano-hydroxyapatite (nHA, collagen (Col, and chitosan (CS was synthesized. Currently, only a limited number of techniques are available to mediate and visualize the injection process of the injectable biomaterials directly and noninvasively. In this study, the potential of ultrasound for the quantitative in vivo evaluation of tissue development in CS/nHAC scaffold was evaluated. The CS/nHAC scaffold was injected into rat subcutaneous tissue and evaluated for 28 days. Quantitative measurements of the gray-scale value, volume, and blood flow of the scaffold were evaluated using diagnostic technique. This study demonstrates that ultrasound can be used to noninvasively and nondestructively monitor and evaluate the in vivo characteristics of injectable bone scaffold. In comparison to the CS, the CS/nHAC scaffold showed a greater stiffness, less degradation rate, and better blood supply in the in vivo evaluation. In conclusion, the diagnostic ultrasound method is a good tool to evaluate the in vivo formation of injectable bone scaffolds and facilitates the broad use to monitor tissue development and remodeling in bone tissue engineering.

  5. A Public Trial De Novo

    DEFF Research Database (Denmark)

    Vedel, Jane Bjørn; Gad, Christopher

    2011-01-01

    This article addresses the concept of “industrial interests” and examines its role in a topical controversy about a large research grant from a private foundation, the Novo Nordisk Foundation, to the University of Copenhagen. The authors suggest that the debate took the form of a “public trial” w.......” The article ends with a discussion of some implications of the analysis, including that policy making, academic research, and public debates might benefit from more detailed accounts of interests and stakes.......This article addresses the concept of “industrial interests” and examines its role in a topical controversy about a large research grant from a private foundation, the Novo Nordisk Foundation, to the University of Copenhagen. The authors suggest that the debate took the form of a “public trial......” where the grant and close(r) intermingling between industry and public research was prosecuted and defended. First, the authors address how the grant was framed in the media. Second, they redescribe the case by introducing new “evidence” that, because of this framing, did not reach “the court...

  6. Improving Students' Speaking Ability through Scaffolding Technique

    Directory of Open Access Journals (Sweden)

    Gede Ginaya

    2018-03-01

    Full Text Available Students often got confused and felt hesitant when they speak English. This situation had caused poor speaking ability, which then lead to serious problem in the teaching-learning process.  The application of scaffolding technique in the EFL learning might be the ideal solution; it had some principles that could improve the students’ speaking ability. This research is aimed at finding out the effect of the implementing Scaffolding Technique towards the students’ speaking ability. Participants were 50 (27 males and 23 females third-semester students, enrolled in a three-year diploma program in Travel and Tourism Business, State Polytechnic of Bali in 2017/2018 academic year. The students in the experimental group were given communicative activities such as brainstorming, business games, simulation, WebQuest, problem-solving, which were carefully designed to necessitate the implementation of the scaffolding technique. The students in the control group were taught by the deductive method of the lesson book. The students’ performance in the post-test was compared for both groups in order to determine whether there were significant differences between the groups in relation to the treatment. Significant differences occurring in the experimental group’s post-test speaking performance when compared to the pre-test indicate that the implementation of scaffolding technique can improve students’ speaking ability. The result of this study indicates scaffolding technique has the potential for use in promoting students’ speaking ability

  7. Protein backbone angle restraints from searching a database for chemical shift and sequence homology

    Energy Technology Data Exchange (ETDEWEB)

    Cornilescu, Gabriel; Delaglio, Frank; Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    1999-03-15

    Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C{alpha}, 13C{beta}, 13C', 1H{alpha} and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar {phi} and {psi} backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 deg. Approximately 3% of the predictions made by TALOS are found to be in error.

  8. Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives

    KAUST Repository

    Ko, Sangwon

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone-due to an increase in the polymer ionization potential-while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2′:5′,2′′- terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C 71-butyric acid methyl ester (PC 71BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current. © 2012 American

  9. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    Science.gov (United States)

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  10. The effect of scaffold pore size in cartilage tissue engineering.

    Science.gov (United States)

    Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo

    2016-07-26

    The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.

  11. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  12. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Shanmugasundaram, Shobana; Chaudhry, Hans; Arinzeh, Treena Livingston

    2011-03-01

    Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.

  13. First-line HIV treatment: evaluation of backbone choice and its budget impact

    Directory of Open Access Journals (Sweden)

    Orietta Zaniolo

    2013-06-01

    Full Text Available OBJECTIVE: The gradual increase of persons living with HIV, mainly due to the reduced mortality achieved with effective antiretroviral therapies, calls for increased rationality and awareness in health resources consumption also during the early illness phases. Aim of this work is the estimation of the budget impact related to the variation in backbone prescribing trends in naïve patients.METHODS: Target population is the number of patients starting antiretroviral therapy each year, according to the Italian HIV surveillance registry, excluding patients receiving non-authorized or non-recommended regimens. We modeled 3-year mortality and durability rates on a dynamic cohort, basing on international literature. A prevalent patients analysis has also been conducted, for which the model is fed by a closed cohort consisting of all the patients without experience of virologic failure. The aim of this collateral analysis is to estimate the difference in current annual expenditures if the past prescription trends for patients starting therapy would have led to the evaluated hypothetical scenarios. Current Italian market shares of triple regimens containing first-choice or alternative backbones (tenofovir/emtricitabine, abacavir/lamivudine, tenofovir/lamivudine and zidovudine/lamivudine are compared to three hypothetical scenarios (base-case, minimum and maximum in which increasing shares of patients eligible to abacavir/lamivudine start first line treatment with this backbone. Annual cost for each regimen comprises drugs acquisition under hospital pricing rules, monitoring exams and preventive tests, valued basing on regional reimbursement tariffs.RESULTS: According to current prescribing trends, in the next three years about 13,000 patients starting HIV therapy will receive tenofovir/emtricitabine (83% of the target population, and minor portions other regimens (9% abacavir/lamivudine, 8% zidovudine/lamivudine. Patients that would be eligible to

  14. Scaffolding Performance in EPSSs: Bridging Theory and Practice.

    Science.gov (United States)

    Hannafin, Michael J; McCarthy, James E.; Hannafin, Kathleen M.; Radtke, Paul

    Electronic performance support systems (EPSS) help users accomplish tasks, using computational technologies. Scaffolding is the process through which efforts are supported while engaging a learning or performance task. A number of different types of scaffolds are possible, including conceptual, metacognitive, procedural, and strategic. Each of…

  15. 3D conductive nanocomposite scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Shahini A

    2013-12-01

    Full Text Available Aref Shahini,1 Mostafa Yazdimamaghani,2 Kenneth J Walker,2 Margaret A Eastman,3 Hamed Hatami-Marbini,4 Brenda J Smith,5 John L Ricci,6 Sundar V Madihally,2 Daryoosh Vashaee,1 Lobat Tayebi2,7 1School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, 2School of Chemical Engineering, 3Department of Chemistry, 4School of Mechanical and Aerospace Engineering, 5Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; 6Department of Biomaterials and Biomimetics, New York University, New York, NY; 7School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, USA Abstract: Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene poly(4-styrene sulfonate (PEDOT:PSS, in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent

  16. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-01-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  17. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  18. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit

    Czech Academy of Sciences Publication Activity Database

    Kruse, H.; Mládek, Arnošt; Gkionis, Konstantinos; Hansen, A.; Grimme, S.; Šponer, Jiří

    2015-01-01

    Roč. 11, č. 10 (2015), s. 4972-4991 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS SIMULATIONS * DENSITY-FUNCTIONAL THEORY * SUGAR-PHOSPHATE BACKBONE Subject RIV: BO - Biophysics Impact factor: 5.301, year: 2015

  19. Fabrication and In Vitro Evaluation of Nanosized Hydroxyapatite/Chitosan-Based Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2014-01-01

    Full Text Available Composite scaffolds based on biodegradable natural polymer and osteoconductive hydroxyapatite (HA nanoparticles can be promising for a variety of tissue engineering (TE applications. This study addressed the fabrication of three-dimensional (3D porous composite scaffolds composed of HA and chitosan fabricated via thermally induced phase separation and freeze-drying technique. The scaffolds produced were subsequently characterized in terms of microstructure, porosity, and mechanical property. In vitro degradation and in vitro biological evaluation were also investigated. The scaffolds were highly porous and had interconnected pore structures. The pore sizes ranged from several microns to a few hundred microns. The incorporated HA nanoparticles were well mixed and physically coexisted with chitosan in composite scaffold structures. The addition of 10% (w/w HA nanoparticles to chitosan enhanced the compressive mechanical properties of composite scaffold compared to pure chitosan scaffold. In vitro degradation results in phosphate buffered saline (PBS showed slower uptake properties of composite scaffolds. Moreover, the scaffolds showed positive response to mouse fibroblast L929 cells attachment. Overall, the findings suggest that HA/chitosan composite scaffolds could be suitable for TE applications.

  20. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  1. Design properties of hydrogel tissue-engineering scaffolds

    Science.gov (United States)

    Zhu, Junmin; Marchant, Roger E

    2011-01-01

    This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626

  2. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration

    DEFF Research Database (Denmark)

    Zanjanizadeh Ezazi, Nazanin; Shahbazi, Mohammad-Ali; Shatalin, Yuri V.

    2018-01-01

    -conductive scaffolds. Osteoblast cells were perfectly immersed into the gelatin matrix and remained viable for 14 days. Overall, new conductive composite bone scaffolds were created and the obtained results strongly verified the applicability of this conductive scaffold in drug delivery, encouraging its further...

  3. SIS: a program to generate draft genome sequence scaffolds for prokaryotes

    Directory of Open Access Journals (Sweden)

    Dias Zanoni

    2012-05-01

    Full Text Available Abstract Background Decreasing costs of DNA sequencing have made prokaryotic draft genome sequences increasingly common. A contig scaffold is an ordering of contigs in the correct orientation. A scaffold can help genome comparisons and guide gap closure efforts. One popular technique for obtaining contig scaffolds is to map contigs onto a reference genome. However, rearrangements that may exist between the query and reference genomes may result in incorrect scaffolds, if these rearrangements are not taken into account. Large-scale inversions are common rearrangement events in prokaryotic genomes. Even in draft genomes it is possible to detect the presence of inversions given sufficient sequencing coverage and a sufficiently close reference genome. Results We present a linear-time algorithm that can generate a set of contig scaffolds for a draft genome sequence represented in contigs given a reference genome. The algorithm is aimed at prokaryotic genomes and relies on the presence of matching sequence patterns between the query and reference genomes that can be interpreted as the result of large-scale inversions; we call these patterns inversion signatures. Our algorithm is capable of correctly generating a scaffold if at least one member of every inversion signature pair is present in contigs and no inversion signatures have been overwritten in evolution. The algorithm is also capable of generating scaffolds in the presence of any kind of inversion, even though in this general case there is no guarantee that all scaffolds in the scaffold set will be correct. We compare the performance of sis, the program that implements the algorithm, to seven other scaffold-generating programs. The results of our tests show that sis has overall better performance. Conclusions sis is a new easy-to-use tool to generate contig scaffolds, available both as stand-alone and as a web server. The good performance of sis in our tests adds evidence that large

  4. Web Access to Digitised Content of the Exhibition Novo Mesto 1848-1918 at the Dolenjska Museum, Novo Mesto

    Directory of Open Access Journals (Sweden)

    Majda Pungerčar

    2013-09-01

    Full Text Available EXTENDED ABSTRACTFor the first time, the Dolenjska museum Novo mesto provided access to digitised museum resources when they took the decision to enrich the exhibition Novo mesto 1848-1918 by adding digital content. The following goals were identified: the digital content was created at the time of exhibition planning and design, it met the needs of different age groups of visitors, and during the exhibition the content was accessible via touch screen. As such, it also served for educational purposes (content-oriented lectures or problem solving team work. In the course of exhibition digital content was accessible on the museum website http://www.novomesto1848-1918.si. The digital content was divided into the following sections: the web photo gallery, the quiz and the game. The photo gallery was designed in the same way as the exhibition and the print catalogue and extended by the photos of contemporary Novo mesto and accompanied by the music from the orchestron machine. The following themes were outlined: the Austrian Empire, the Krka and Novo mesto, the town and its symbols, images of the town and people, administration and economy, social life and Novo mesto today followed by digitised archive materials and sources from that period such as the Commemorative book of the Uniformed Town Guard, the National Reading Room Guest Book, the Kazina guest book, the album of postcards and the Diploma of Honoured Citizen Josip Gerdešič. The Web application was also a tool for a simple and on line selection of digitised material and the creation of new digital content which proved to be much more convenient for lecturing than Power Point presentations. The quiz consisted of 40 questions relating to the exhibition theme and the catalogue. Each question offered a set of three answers only one of them being correct and illustrated by photography. The application auto selected ten questions and valued the answers immediately. The quiz could be accessed

  5. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667 (India); Kumar, Ritesh [Center for Computational Biology, University of Kansas, Kansas 66045 (United States); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667 (India)

    2017-02-01

    In the present study, goat-lung scaffold was fabricated by decellularization of lung tissue and verified for complete cell removal by DNA quantification, DAPI and H&E staining. The scaffold was then modified by crosslinking with quercetin and nanohydroxyapatite (nHAp), and characterized to evaluate the suitability of quercetin-crosslinked nHAp-modified scaffold for regeneration of bone tissue. The crosslinking chemistry between quercetin and decellularized scaffold was established theoretically by AutoDock Vina program (in silico docking study), which predicted multiple intermolecular hydrogen bonding interactions between quercetin and decellularized scaffold, and FTIR spectroscopy analysis also proved the same. From MTT assay and SEM studies, it was found that the quercetin-crosslinked nHAp-modified decellularized scaffold encouraged better growth and proliferation of bone-marrow derived mesenchymal stem cells (BMMSCs) in comparison to unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold. Alkaline Phosphatase (ALP) assay results showed highest expression of ALP over quercetin-crosslinked nHAp-modified scaffold among all the tested scaffolds (unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold) − indicating that quercetin and nHAp is very much efficient in stimulating the differentiation of BMMSCs into osteoblast cells. Alizarin red test quantified in vitro mineralization (calcium deposits), and increased expression of alizarin red over quercetin-crosslinked nHAp-modified scaffold indicating better stimulation of osteogenesis in BMMSCs. The above findings suggest that quercetin-crosslinked nHAp-modified decellularized goat-lung scaffold provides biomimetic bone-like microenvironment for BMMSCs to differentiate into osteoblast and could be applied as a potential promising biomaterial for bone regeneration. - Highlights:

  6. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Sambit [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore); Cho-Hong, James Goh [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore); Siew-Lok, Toh [Tissue Repair Lab, Division of Bioengineering, National University of Singapore, Singapore 117574 (Singapore)

    2007-09-15

    Fibre-based scaffolds have been widely used for tendon and ligament tissue engineering. Knitted scaffolds have been proved to favour collagenous matrix deposition which is crucial for tendon/ligament reconstruction. However, such scaffolds have the limitation of being dependent on a gel system for cell seeding, which is unstable in a dynamic environment such as the knee joint. This study developed three types of hybrid scaffolds, based on knitted biodegradable polyester scaffolds, aiming to improve mechanical properties and cell attachment and proliferation on the scaffolds. The hybrid scaffolds were created by coating the knitted scaffolds with a thin film of poly ({epsilon}-caprolactone) (group I), poly (D, L-lactide-co-glycolide) nanofibres (group II) and type 1 collagen (group III). Woven scaffolds were also fabricated and compared with the various hybrid scaffolds in terms of their mechanical properties during in vitro degradation and cell attachment and growth. This study demonstrated that the coating techniques could modulate the mechanical properties and facilitate cell attachment and proliferation in the hybrid scaffold, which could be applied with promise in tissue engineering of tendons/ligaments.

  7. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering

    International Nuclear Information System (INIS)

    Sahoo, Sambit; Cho-Hong, James Goh; Siew-Lok, Toh

    2007-01-01

    Fibre-based scaffolds have been widely used for tendon and ligament tissue engineering. Knitted scaffolds have been proved to favour collagenous matrix deposition which is crucial for tendon/ligament reconstruction. However, such scaffolds have the limitation of being dependent on a gel system for cell seeding, which is unstable in a dynamic environment such as the knee joint. This study developed three types of hybrid scaffolds, based on knitted biodegradable polyester scaffolds, aiming to improve mechanical properties and cell attachment and proliferation on the scaffolds. The hybrid scaffolds were created by coating the knitted scaffolds with a thin film of poly (ε-caprolactone) (group I), poly (D, L-lactide-co-glycolide) nanofibres (group II) and type 1 collagen (group III). Woven scaffolds were also fabricated and compared with the various hybrid scaffolds in terms of their mechanical properties during in vitro degradation and cell attachment and growth. This study demonstrated that the coating techniques could modulate the mechanical properties and facilitate cell attachment and proliferation in the hybrid scaffold, which could be applied with promise in tissue engineering of tendons/ligaments

  8. Characterization and Cell Culture of a Grafted Chitosan Scaffold for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Wen-Chuan Hsieh

    2015-01-01

    Full Text Available Poly(vinyl alcohol (PVA was grafted to chitosan to form a porous scaffold. The PVA-g-chitosan 3D scaffold was then observed by Fourier transform infrared spectroscopy (FT-IR. The water absorbency of PVA-g-chitosan was increased 370% by grafting. Scanning electron microscope (SEM observations of the material revealed that the 3D scaffold is highly porous when formed using a homogenizer at 300 rpm. Compression testing demonstrated that as the amount of chitosan increases, the strength of the 3D scaffold strength reached showed that, by increasing the amount of chitosan, the strength of the 3D scaffold could be increased to 16 × 10−1 MPa. Over 35 days of enzymatic degradation, the 3D scaffold was degraded by various enzymes at rates of up to 10%. In vitro tests showed good cell proliferation and growth in the 3D scaffold.

  9. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.

    Science.gov (United States)

    Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering.

  10. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

    Science.gov (United States)

    Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Beta-scission of alkoxyl radicals on peptides and proteins can give rise to backbone cleavage and loss of side-chains

    International Nuclear Information System (INIS)

    Headlam, H.A.; Davies, M.J.; Mortimer, A.; Easton, C.J.

    2000-01-01

    Full text: Exposure of proteins to radicals in the presence of O 2 brings about multiple changes including side-chain oxidation, backbone fragmentation, cross-linking, unfolding, changes in hydrophobicity and conformation, altered susceptibility to proteolytic enzymes and formation of new reactive groups (e.g. hydroperoxides and 3,4-dihydroxyphenylalanine). All of these processes can result in loss of structural or enzymatic activity. The mechanisms that give rise to backbone cleavage are only partly understood. Whilst it is known that direct hydrogen atom abstraction at a-carbon sites gives backbone cleavages it has also been proposed that initial attack at side-chain sites might also give rise to backbone cleavage. In this study we have examined whether initial attack at the β- (C-3) position can give rise to α-carbon radicals (and hence backbone cleavage) via the formation, and subsequent β- scission, of C-3 alkoxyl radicals. This process has been observed previously with protected amino acids in organic solvents (J. Chem. Soc. Perkin Trans. 2, 1997, 503-507) but the occurrence of such reactions with proteins in aqueous solution has not been explored. Alkoxyl radicals were generated at the C-3 position of a variety of protected amino acids and small peptides by two methods: metal-ion catalysed decomposition of hydroperoxides formed as a result of γ-radiolysis in the presence of O 2 , and UV photolysis of nitrate esters. In most cases radicals have been detected by EPR spectroscopy using nitroso and nitrone spin traps, which can be assigned by comparison with literature data to α-carbon radicals; in some case assignments were confirmed by the generation of the putative species by other routes. With Ala peptide hydroperoxides and nitrate esters, and MNP as the spin trap, the major radical detected in each case has been assigned to the adduct of an α-carbon radical with partial structure - NH- . CH-C(O) - consistent with the rapid occurrence of the above

  12. Mars - robust automatic backbone assignment of proteins

    International Nuclear Information System (INIS)

    Jung, Young-Sang; Zweckstetter, Markus

    2004-01-01

    MARS a program for robust automatic backbone assignment of 13 C/ 15 N labeled proteins is presented. MARS does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds and it can work with a wide variety of NMR experiments. Using only 13 C α / 13 C β connectivity information, MARS allows automatic, error-free assignment of 96% of the 370-residue maltose-binding protein. MARS can successfully be used when data are missing for a substantial portion of residues or for proteins with very high chemical shift degeneracy such as partially or fully unfolded proteins. Other sources of information, such as residue specific information or known assignments from a homologues protein, can be included into the assignment process. MARS exports its result in SPARKY format. This allows visual validation and integration of automated and manual assignment

  13. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process

    International Nuclear Information System (INIS)

    Park, Jeong Hun; Jung, Jin Woo; Cho, Dong-Woo; Kang, Hyun-Wook

    2014-01-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes. (paper)

  14. Synthesis, characterization and in vitro behavior of nanostructured diopside/biphasic calcium phosphate scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Samira; Emadi, Rahmatollah; Kharaziha, Mahshid [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Tavangarian, Fariborz, E-mail: f_tavangarian@yahoo.com [Mechanical Engineering Program, School of Science, Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057 (United States)

    2017-01-15

    A significant challenge in bone tissue engineering is the development of 3D constructs serving as scaffolds to fill bone defects, support osteoblasts, and promote bone regeneration. In this paper, highly porous (∼79%) nanostructured diopside/biphasic calcium phosphate (BCP) scaffolds with interconnected porosity were developed using various diopside contents via space holder method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques were utilized to evaluate different samples. Furthermore, the effects of scaffold composition on mechanical properties, bioactivity, biodegradability, and cytotoxicity were studied as well. The results showed that the produced scaffolds had an average pore size and density of 200–340 μm and 2.5 ± 0.3–1.8 ± 0.3 gr/cm{sup 3}, respectively, depending on the diopside content. Besides, increasing the diopside content of scaffolds from 0 to 15 wt% enhanced the bioactivity, biodegradability, and compressive strength from 1.2 ± 0.2 to 3.2 ± 0.3 MPa, respectively. In addition, MTT assay also confirmed that the BCP15 scaffold (containing 15 wt% diopside) significantly promoted cell viability and cell adhesion compared to BCP0 scaffold. Overall, our study suggests that nanostructured diopside/BCP scaffolds with improved biological and mechanical properties could potentially be used for bone tissue engineering application. - Highlights: • Highly porous (∼79%) scaffolds were synthesized by space holder method. • Adding diopside nanopowder reduced the average pore size of the scaffolds. • Diopside increased the compressive strength of the scaffolds by three-times. • Nanostructured diopside/BCP scaffolds significantly promoted cell viability. • The nanostructured composite scaffold of BCP15 is cell-friendly.

  15. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases

    Science.gov (United States)

    Haupt, V. Joachim; Schroeder, Michael; Labudde, Dirk

    2018-01-01

    The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. PMID:29659563

  16. Metacognitive Scaffolding during Collaborative Learning: A Promising Combination

    Science.gov (United States)

    Molenaar, Inge; Sleegers, Peter; van Boxtel, Carla

    2014-01-01

    This article explores the effect of computerized scaffolding with different scaffolds (structuring vs. problematizing) on intra-group metacognitive interaction. In this study, we investigate 4 types of intra-group social metacognitive activities; namely ignored, accepted, shared and co-constructed metacognitive activities in 18 triads (6 control…

  17. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies.

    Science.gov (United States)

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2008-01-01

    Given the inherent shortcomings of autografts and allografts, donor-site morbidity and risk of disease transmission, respectively, alternatives to traditional bone grafting options are warranted. To this end, poly(lactide-co-glycolide) (PLAGA) and in situ-synthesized amorphous hydroxyapatite (HA) were used to construct three-dimensional microsphere-based composite scaffolds of varying HA content for bone regeneration. In the current study, the effect of adding amorphous HA to the PLAGA scaffolds on their physical characteristics and in vitro degradation mechanism was investigated. Porosimetry and uniaxial compression testing were used to analyze the internal structure and elastic modulus of the scaffolds, respectively. Additionally, gel permeation chromatography (GPC) was performed to assess the polymer molecular weight over the course of an 8-week degradation study. HA content (17% or 27%) of the composite scaffolds was found to increase scaffold pore volume from 33.86% for pure polymer scaffolds, to 40.49% or 46.29%, depending on the amount of incorporated HA. This increased pore volume provided the composite scaffolds with a greater surface area and a corresponding decrease in elastic modulus. Scaffold degradation studies conducted over 8 weeks showed PLAGA to degrade in a first-order mechanism, with the rate of polymer degradation for the 27% HA composite scaffold being significantly slower than that of the pure PLAGA scaffold (degradation constants of 0.0324 and 0.0232 week(-1), respectively). These results suggest that the addition of amorphous HA to PLAGA microspheres resulted in porous, bioactive scaffolds that offer potential as alternative bone grafting materials for the field of regenerative medicine. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  18. Improving VANETs Connectivity with a Totally Ad Hoc Living Mobile Backbone

    Directory of Open Access Journals (Sweden)

    Joilson Alves Junior

    2015-01-01

    Full Text Available The vehicular ad hoc network (VANET for intelligent transportation systems is an emerging concept to improve transportation security, reliability, and management. The network behavior can be totally different in topological aspects because of the mobility of vehicular nodes. The topology can be fully connected when the flow of vehicles is high and may have low connectivity or be invalid when the flow of vehicles is low or unbalanced. In big cities, the metropolitan buses that travel on exclusive lanes may be used to set up a metropolitan vehicular data network (backbone, raising the connectivity among the vehicles. Therefore, this paper proposes the implementation of a living mobile backbone, totally ad hoc (MOB-NET, which will provide infrastructure and raise the network connectivity. In order to show the viability of MOB-NET, statistical analyses were made with real data of express buses that travel through exclusive lanes, besides evaluations through simulations and analytic models. The statistic, analytic, and simulation results prove that the buses that travel through exclusive lanes can be used to build a communication network totally ad hoc and provide connectivity in more than 99% of the time, besides raising the delivery rate up to 95%.

  19. Scaffold filling, contig fusion and comparative gene order inference

    Directory of Open Access Journals (Sweden)

    Rounsley Steve

    2010-06-01

    Full Text Available Abstract Background There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form. Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in scaffold form only? Can the comparative evidence predict the location of unsequenced genes? Results Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact, polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm genomes Ricinus communis and Vitis vinifera. Conclusions The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.

  20. Scaffold filling, contig fusion and comparative gene order inference.

    Science.gov (United States)

    Muñoz, Adriana; Zheng, Chunfang; Zhu, Qian; Albert, Victor A; Rounsley, Steve; Sankoff, David

    2010-06-04

    There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form. Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in scaffold form only? Can the comparative evidence predict the location of unsequenced genes? Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact, polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm genomes Ricinus communis and Vitis vinifera. The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.

  1. 3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds

    Directory of Open Access Journals (Sweden)

    Michael Seidenstuecker

    2017-12-01

    Full Text Available The use of both bioglass (BG and β tricalcium phosphate (β-TCP for bone replacement applications has been studied extensively due to the materials’ high biocompatibility and ability to resorb when implanted in the body. 3D printing has been explored as a fast and versatile technique for the fabrication of porous bone scaffolds. This project investigates the effects of using different combinations of a composite BG and β-TCP powder for 3D printing of porous bone scaffolds. Porous 3D powder printed bone scaffolds of BG, β-TCP, 50/50 BG/β-TCP and 70/30 BG/β-TCP compositions were subject to a variety of characterization and biocompatibility tests. The porosity characteristics, surface roughness, mechanical strength, viability for cell proliferation, material cytotoxicity and in vitro bioactivity were assessed. The results show that the scaffolds can support osteoblast-like MG-63 cells growth both on the surface of and within the scaffold material and do not show alarming cytotoxicity; the porosity and surface characteristics of the scaffolds are appropriate. Of the two tested composite materials, the 70/30 BG/β-TCP scaffold proved to be superior in terms of biocompatibility and mechanical strength. The mechanical strength of the scaffolds makes them unsuitable for load bearing applications. However, they can be useful for other applications such as bone fillers.

  2. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  3. Progress in scaffold-free bioprinting for cardiovascular medicine.

    Science.gov (United States)

    Moldovan, Nicanor I

    2018-06-01

    Biofabrication of tissue analogues is aspiring to become a disruptive technology capable to solve standing biomedical problems, from generation of improved tissue models for drug testing to alleviation of the shortage of organs for transplantation. Arguably, the most powerful tool of this revolution is bioprinting, understood as the assembling of cells with biomaterials in three-dimensional structures. It is less appreciated, however, that bioprinting is not a uniform methodology, but comprises a variety of approaches. These can be broadly classified in two categories, based on the use or not of supporting biomaterials (known as "scaffolds," usually printable hydrogels also called "bioinks"). Importantly, several limitations of scaffold-dependent bioprinting can be avoided by the "scaffold-free" methods. In this overview, we comparatively present these approaches and highlight the rapidly evolving scaffold-free bioprinting, as applied to cardiovascular tissue engineering. © 2018 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    Science.gov (United States)

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    Science.gov (United States)

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  6. Recurrence risk in de novo structural chromosomal rearrangements.

    Science.gov (United States)

    Röthlisberger, Benno; Kotzot, Dieter

    2007-08-01

    According to the textbook of Gardner and Sutherland [2004], the standard on genetic counseling for chromosome abnormalities, the recurrence risk of de novo structural or combined structural and numeric chromosome rearrangements is less than 0.5-2% and takes into account recurrence by chance, gonadal mosaicism, and somatic-gonadal mosaicism. However, these figures are roughly estimated and neither any systematic study nor exact or evidence-based risk calculations are available. To address this question, an extensive literature search was performed and surprisingly only 29 case reports of recurrence of de novo structural or combined structural and numeric chromosomal rearrangements were found. Thirteen of them were with a trisomy 21 due to an i(21q) replacing one normal chromosome 21. In eight of them low-level mosaicism in one of the parents was found either in fibroblasts or in blood or in both. As a consequence of the low number of cases and theoretical considerations (clinical consequences, mechanisms of formation, etc.), the recurrence risk should be reduced to less than 1% for a de novo i(21q) and to even less than 0.3% for all other de novo structural or combined structural and numeric chromosomal rearrangements. As the latter is lower than the commonly accepted risk of approximately 0.3% for indicating an invasive prenatal diagnosis and as the risk of abortion of a healthy fetus after chorionic villous sampling or amniocentesis is higher than approximately 0.5%, invasive prenatal investigation in most cases is not indicated and should only be performed if explicitly asked by the parents subsequent to appropriate genetic counseling. (c) 2007 Wiley-Liss, Inc.

  7. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  8. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Bhaarathy, V.; Venugopal, J.; Gandhimathi, C.; Ponpandian, N.; Mangalaraj, D.; Ramakrishna, S.

    2014-01-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  9. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].

    Science.gov (United States)

    Wu, Tianqi; Yang, Chunxi

    2016-04-01

    To summarize the research progress of several three-dimensional (3-D)-printing scaffold materials in bone tissue engineering. The recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. Compared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. The development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.

  10. Characterization and Bioactivity Evaluation of (Polyetheretherketone/Polyglycolicacid-Hydroyapatite Scaffolds for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2016-11-01

    Full Text Available Bioactivity and biocompatibility are crucial for tissue engineering scaffolds. In this study, hydroxyapatite (HAP was incorporated into polyetheretherketone/polyglycolicacid (PEEK/PGA hybrid to improve its biological properties, and the composite scaffolds were developed via selective laser sintering (SLS. The effects of HAP on physical and chemical properties of the composite scaffolds were investigated. The results demonstrated that HAP particles were distributed evenly in PEEK/PGA matrix when its content was no more than 10 wt %. Furthermore, the apatite-forming ability became better with increasing HAP content after immersing in simulated body fluid (SBF. Meanwhile, the composite scaffolds presented a greater degree of cell attachment and proliferation than PEEK/PGA scaffolds. These results highlighted the potential of (PEEK/PGA-HAP scaffolds for tissue regeneration.

  11. Comparing the Reliability of Regular Topologies on a Backbone Network. A Case Study

    DEFF Research Database (Denmark)

    Cecilio, Sergio Labeage; Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir

    2009-01-01

    The aim of this paper is to compare the reliability of regular topologies on a backbone network. The study is focused on a large-scale fiberoptic network. Different regular topological solutions as single ring, double ring or 4-Regular grid are applied to the case study, and compared in terms...

  12. Generative Recurrent Networks for De Novo Drug Design.

    Science.gov (United States)

    Gupta, Anvita; Müller, Alex T; Huisman, Berend J H; Fuchs, Jens A; Schneider, Petra; Schneider, Gisbert

    2018-01-01

    Generative artificial intelligence models present a fresh approach to chemogenomics and de novo drug design, as they provide researchers with the ability to narrow down their search of the chemical space and focus on regions of interest. We present a method for molecular de novo design that utilizes generative recurrent neural networks (RNN) containing long short-term memory (LSTM) cells. This computational model captured the syntax of molecular representation in terms of SMILES strings with close to perfect accuracy. The learned pattern probabilities can be used for de novo SMILES generation. This molecular design concept eliminates the need for virtual compound library enumeration. By employing transfer learning, we fine-tuned the RNN's predictions for specific molecular targets. This approach enables virtual compound design without requiring secondary or external activity prediction, which could introduce error or unwanted bias. The results obtained advocate this generative RNN-LSTM system for high-impact use cases, such as low-data drug discovery, fragment based molecular design, and hit-to-lead optimization for diverse drug targets. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. NovoTTF™-100A System (Tumor Treating Fields) transducer array layout planning for glioblastoma: a NovoTAL™ system user study.

    Science.gov (United States)

    Chaudhry, Aafia; Benson, Laura; Varshaver, Michael; Farber, Ori; Weinberg, Uri; Kirson, Eilon; Palti, Yoram

    2015-11-11

    Optune™, previously known as the NovoTTF-100A System™, generates Tumor Treating Fields (TTFields), an effective anti-mitotic therapy for glioblastoma. The system delivers intermediate frequency, alternating electric fields to the supratentorial brain. Patient therapy is personalized by configuring transducer array layout placement on the scalp to the tumor site using MRI measurements and the NovoTAL System. Transducer array layout mapping optimizes therapy by maximizing electric field intensity to the tumor site. This study evaluated physician performance in conducting transducer array layout mapping using the NovoTAL System compared with mapping performed by the Novocure in-house clinical team. Fourteen physicians (7 neuro-oncologists, 4 medical oncologists, and 3 neurosurgeons) evaluated five blinded cases of recurrent glioblastoma and performed head size and tumor location measurements using a standard Digital Imaging and Communications in Medicine reader. Concordance with Novocure measurement and intra- and inter-rater reliability were assessed using relevant correlation coefficients. The study criterion for success was a concordance correlation coefficient (CCC) >0.80. CCC for each physician versus Novocure on 20 MRI measurements was 0.96 (standard deviation, SD ± 0.03, range 0.90-1.00), indicating very high agreement between the two groups. Intra- and inter-rater reliability correlation coefficients were similarly high: 0.83 (SD ±0.15, range 0.54-1.00) and 0.80 (SD ±0.18, range 0.48-1.00), respectively. This user study demonstrated an excellent level of concordance between prescribing physicians and Novocure in-house clinical teams in performing transducer array layout planning. Intra-rater reliability was very high, indicating reproducible performance. Physicians prescribing TTFields, when trained on the NovoTAL System, can independently perform transducer array layout mapping required for the initiation and maintenance of patients on TTFields

  14. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial

    NARCIS (Netherlands)

    Serruys, Patrick W.; Chevalier, Bernard; Dudek, Dariusz; Cequier, Angel; Carrié, Didier; Iniguez, Andres; Dominici, Marcello; van der Schaaf, René J.; Haude, Michael; Wasungu, Luc; Veldhof, Susan; Peng, Lei; Staehr, Peter; Grundeken, Maik J.; Ishibashi, Yuki; Garcia-Garcia, Hector M.; Onuma, Yoshinobu

    2015-01-01

    Despite rapid dissemination of an everolimus-eluting bioresorbable scaffold for treatment for coronary artery disease, no data from comparisons with its metallic stent counterpart are available. In a randomised controlled trial we aimed to compare an everolimus-eluting bioresorbable scaffold with an

  15. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    Science.gov (United States)

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Engineering of a polymer layered bio-hybrid heart valve scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S., E-mail: jani84@gmail.com [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Kumary, T.V., E-mail: tvkumary@yahoo.com [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Bhuvaneshwar, G.S., E-mail: gs.bhuvnesh@gmail.com [Trivitron Innovation Centre, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN (India); Natarajan, T.S., E-mail: tsniit@gmail.com [Conducting Polymer laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai 600036, TN (India); Verma, R.S., E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India)

    2015-06-01

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential. - Highlights: • A Bio-Hybrid scaffold was fabricated with PCL-CH blend and DBPECM. • PCL-CH functionally interacted with decellularized matrix without cross linking. • Modified scaffold exhibited mechanical properties similar to native heart valve. • Supported better fibroblast and endothelial cell adhesion and proliferation. • The developed scaffold can be utilized for tissue engineering of heart valve.

  17. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    Directory of Open Access Journals (Sweden)

    Kazi M. Zakir Hossain

    2015-07-01

    Full Text Available Tubular scaffolds with aligned polylactic acid (PLA fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

  18. The extension of a DNA double helix by an additional Watson-Crick base pair on the same backbone

    DEFF Research Database (Denmark)

    Kumar, P.; Sharma, P. K.; Madsen, Charlotte S.

    2013-01-01

    Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand.......Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand....

  19. Knowledge scaffolding visualizations: A guiding framework

    Directory of Open Access Journals (Sweden)

    Elitsa Alexander

    2015-06-01

    Full Text Available In this paper we provide a guiding framework for understanding and selecting visual representations in the knowledge management (KM practice. We build on an interdisciplinary analogy between two connotations of the notion of “scaffolding”: physical scaffolding from an architectural-engineering perspective and scaffolding of the “everyday knowing in practice” from a KM perspective. We classify visual structures for knowledge communication in teams into four types of scaffolds: grounded (corresponding e.g., to perspectives diagrams or dynamic facilitation diagrams, suspended (e.g., negotiation sketches, argument maps, panel (e.g., roadmaps or timelines and reinforcing (e.g., concept diagrams. The article concludes with a set of recommendations in the form of questions to ask whenever practitioners are choosing visualizations for specific KM needs. Our recommendations aim at providing a framework at a broad-brush level to aid choosing a suitable visualization template depending on the type of KM endeavour.

  20. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    Science.gov (United States)

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Scaffolding as an effort for thinking process optimization on heredity

    Science.gov (United States)

    Azizah, N. R.; Masykuri, M.; Prayitno, B. A.

    2018-04-01

    Thinking is an activity and process of manipulating and transforming data or information into memory. Thinking process is different between one and other person. Thinking process can be developed by interaction between student and their environment, such as scaffolding. Given scaffolding is based on each student necessity. There are 2 level on scaffolding such as explaining, reviewing, and restructuring; and developing conceptual thinking. This research is aimed to describe student’s thinking process on heredity especially on inheritance that is before and after scaffolding. This research used descriptive qualitative method. There were three kinds of subject degree such as the students with high, middle, and low achieving students. The result showed that subjects had some difficulty in dihybrid inheritance question in different place. Most difficulty was on determining the number of different characteristic, parental genotype, gamete, and ratio of genotype and phenotype F2. Based on discussed during scaffolding showed that the subjects have some misunderstanding terms and difficulty to determine parental, gamete, genotype, and phenotype. Final result in this research showed that the subjects develop thinking process higher after scaffolding. Therefore the subjects can solve question properly.

  2. A Terra em Transe: o cosmopolitismo às avessas do cinema novo

    Directory of Open Access Journals (Sweden)

    Angela Prysthon

    2008-11-01

    Full Text Available Usando como referencial teórico os estudos culturais, este artigo analisa o cinema novo brasileiro como parte de uma estratégia terceiro mundista de conceber a cultura. A partir da emergência do conceito de terceiro mundo e das lutas de descolonização nos anos 1950 e 1960, a ideologia cosmopolita foi sendo vista pelos intelectuais de esquerda como a versão cultural da aliança com as forças hegemônicas da Europa e dos Estados Unidos. O projeto do cinema novo chama a atenção por suas afinidades ideológicas com o terceiro mundismo, mas, paradoxalmente, trazendo à tona uma polí­tica cosmopolita da periferia. Palavras-chave cinema novo, identidade, cultura brasileira, terceiro mundismo, estudos culturais. Abstract Using the cultural studies theoretical framework, this paper analyzes the cinema novo movement in Brazil as a part of the Third World conception of culture. Following the creation of the term "Third World" and the international politics of colonial independence of the 1950s and 1960s, a cosmopolitan attitude was seen by the intellectuals of the left as a cultural version of the alliance with the hegemonic forces of Europe and North America. Even though the cinema novo project can be associated with the ideology of an united Third World ,it brings about, paradoxically, a very cosmopolitan politics of the periphery. Key words cinema novo, identity, Brazilian culture, third world, cultural studies.

  3. 3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Alm, Martin; Hemmingsen, Mette

    2016-01-01

    is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid...... technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high...... cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN...

  4. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  5. Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration.

    Science.gov (United States)

    Mahnama, Hossein; Dadbin, Susan; Frounchi, Masoud; Rajabi, Sareh

    2017-08-01

    Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the cells.

  6. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Science.gov (United States)

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  7. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    Science.gov (United States)

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  8. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Kanimozhi, K.; Khaleel Basha, S.; Sugantha Kumari, V.

    2016-01-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. - Highlights: • The porous scaffolds of CS/PVA containing different MC contents were fabricated. • Addition of MC improved the compatibility between CS and PVA. • The mechanical properties of these scaffolds were greatly improved with high swelling ratio. • Biocompatibility test showed that the different MC content scaffolds had no cytotoxicity.

  9. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kanimozhi, K. [Department of Chemistry, Auxilium College, Vellore 632 006 (India); Khaleel Basha, S. [Department of Biochemistry, C. Abdul Hakeem College, Melvisharam 632 509 (India); Sugantha Kumari, V., E-mail: sheenasahana04@gmail.com [Department of Chemistry, Auxilium College, Vellore 632 006 (India)

    2016-04-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. - Highlights: • The porous scaffolds of CS/PVA containing different MC contents were fabricated. • Addition of MC improved the compatibility between CS and PVA. • The mechanical properties of these scaffolds were greatly improved with high swelling ratio. • Biocompatibility test showed that the different MC content scaffolds had no cytotoxicity.

  10. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    Science.gov (United States)

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Characterization of Three-Dimensional Printed Composite Scaffolds Prepared with Different Fabrication Methods

    Directory of Open Access Journals (Sweden)

    Szlązak K.

    2016-06-01

    Full Text Available An optimal method for composites preparation as an input to rapid prototyping fabrication of scaffolds with potential application in osteochondral tissue engineering is still needed. Scaffolds in tissue engineering applications play a role of constructs providing appropriate mechanical support with defined porosity to assist regeneration of tissue. The aim of the presented study was to analyze the influence of composite fabrication methods on scaffolds mechanical properties. The evaluation was performed on polycaprolactone (PCL with 5 wt% beta-tricalcium phosphate (TCP scaffolds fabricated using fused deposition modeling (FDM. Three different methods of PCL-TCP composite preparation: solution casting, particles milling, extrusion and injection were used to provide material for scaffold fabrication. The obtained scaffolds were investigated by means of scanning electron microscope, x-ray micro computed tomography, thermal gravimetric analysis and static material testing machine. All of the scaffolds had the same geometry (cylinder, 4×6 mm and fiber orientation (0/60/120°. There were some differences in the TCP distribution and formation of the ceramic agglomerates in the scaffolds. They depended on fabrication method. The use of composites prepared by solution casting method resulted in scaffolds with the best combination of compressive strength (5.7±0.2 MPa and porosity (48.5±2.7 %, both within the range of trabecular bone.

  12. Developing bioactive composite scaffolds for bone tissue engineering

    Science.gov (United States)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  13. Eculizumab for drug-induced de novo posttransplantation thrombotic microangiopathy: A case report.

    Science.gov (United States)

    Safa, Kassem; Logan, Merranda S; Batal, Ibrahim; Gabardi, Steven; Rennke, Helmut G; Abdi, Reza

    2015-02-01

    De novo thrombotic microangiopathy (TMA) following renal transplantation is a severe complication associated with high rates of allograft failure. Several immunosuppressive agents are associated with TMA. Conventional approaches to managing this entity, such as withdrawal of the offending agent and/or plasmapheresis, often offer limited help, with high rates of treatment failure and graft loss. We herein report a case of drug induced de novo TMA successfully treated using the C5a inhibitor eculizumab in a renal transplant patient. This report highlights a potentially important role for eculizumab in settings where drug-induced de novo TMA is refractory to conventional therapies.

  14. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.

    Science.gov (United States)

    Shao, Huifeng; Yang, Xianyan; He, Yong; Fu, Jianzhong; Liu, Limin; Ma, Liang; Zhang, Lei; Yang, Guojing; Gao, Changyou; Gou, Zhongru

    2015-09-10

    The densification of pore struts in bioceramic scaffolds is important for structure stability and strength reliability. An advantage of ceramic ink writing is the precise control over the microstructure and macroarchitecture. However, the use of organic binder in such ink writing process would heavily affect the densification of ceramic struts and sacrifice the mechanical strength of porous scaffolds after sintering. This study presents a low-melt-point bioactive glass (BG)-assisted sintering strategy to overcome the main limitations of direct ink writing (extrusion-based three-dimensional printing) and to produce high-strength calcium silicate (CSi) bioceramic scaffolds. The 1% BG-added CSi (CSi-BG1) scaffolds with rectangular pore morphology sintered at 1080 °C have a very small BG content, readily induce apatite formation, and show appreciable linear shrinkage (∼21%), which is consistent with the composite scaffolds with less or more BG contents sintered at either the same or a higher temperature. These CSi-BG1 scaffolds also possess a high elastic modulus (∼350 MPa) and appreciable compressive strength (∼48 MPa), and show significant strength enhancement after exposure to simulated body fluid-a performance markedly superior to those of pure CSi scaffolds. Particularly, the honeycomb-pore CSi-BG1 scaffolds show markedly higher compressive strength (∼88 MPa) than the scaffolds with rectangular, parallelogram, and Archimedean chord pore structures. It is suggested that this approach can potentially facilitate the translation of ceramic ink writing and BG-assisted sintering of bioceramic scaffold technologies to the in situ bone repair.

  15. De novo autoimmune hepatitis after liver transplantation.

    Science.gov (United States)

    Lohse, Ansgar W; Weiler-Norman, Christina; Burdelski, Martin

    2007-10-01

    The Kings College group was the first to describe a clinical syndrome similar to autoimmune hepatitis in children and young adults transplanted for non-immune mediated liver diseases. They coined the term "de novo autoimmune hepatitis". Several other liver transplant centres confirmed this observation. Even though the condition is uncommon, patients with de novo AIH are now seen in most of the major transplant centres. The disease is usually characterized by features of acute hepatitis in otherwise stable transplant recipients. The most characteristic laboratory hallmark is a marked hypergammaglobulinaemia. Autoantibodies are common, mostly ANA. We described also a case of LKM1-positivity in a patients transplanted for Wilson's disease, however this patients did not develop clinical or histological features of AIH. Development of SLA/LP-autoantibodies is also not described. Therefore, serologically de novo AIH appears to correspond to type 1 AIH. Like classical AIH patients respond promptly to treatment with increased doses of prednisolone and azathioprine, while the calcineurin inhibitors cyclosporine or tacrolimus areof very limited value - which is not surprising, as almost all patients develop de novo AIH while receiving these drugs. Despite the good response to treatment, most patients remain a clinical challenge as complete stable remissions are uncommon and flares, relapses and chronic disease activity can often occur. Pathogenetically this syndrome is intriguing. It is not clear, if the immune response is directed against allo-antigens, neo-antigens in the liver, or self-antigens, possibly shared by donor and host cells. It is very likely that the inflammatory milieu due to alloreactive cells in the transplanted organ contribute to the disease process. Either leading to aberrant antigen presentation, or providing co-stimulatory signals leading to the breaking of self-tolerance. The development of this disease in the presence of treatment with calcineurin

  16. Direct write printing of three-dimensional ZrO2 biological scaffolds

    International Nuclear Information System (INIS)

    Li, Ya-yun; Li, Long-tu; Li, Bo

    2015-01-01

    Graphical abstract: Three-dimensional (3D) zirconium dioxide (ZrO 2 ) scaffolds have been fabricated for biological engineering by direct write printing method. The water-based ZrO 2 ink with a solid content fraction of 70 wt% was deposited through a fine nozzle on the substrate by a layer-by-layer sequence to produce the 3D microperiodic structures. Under a microscope, the proliferation of HCT116 cells can be observed around the 3D ZrO 2 scaffolds. 3D porous internal architecture is beneficial for cell growth by providing more locations for cell attachment and proliferation. The largest value of compressive strength reached 10 MPa, which is more than that of the hydroxyapatite (HAp) scaffold. The ability of printing 3D scaffolds with the high precise control of their internal architecture is the unique characteristics performed by the direct write technique, which will provide potential application of biomaterials and tissue engineering scaffolds. (a) Top view of the sintered 3D woodpile ZrO 2 scaffold; (b) top view of the sintered 3D cylindrical ZrO 2 scaffold. - Highlights: • 3D cylindrical and woodpile ZrO 2 scaffolds were fabricated by direct write printing method. • The compressive strength of the sample with porosity about 63% was 8 MPa. • The compressive strength of the porosity 55% sample was 10 MPa. • 3D porous ZrO 2 scaffolds with interconnected architecture are beneficial for cell attachment and proliferation. - Abstract: Three-dimensional (3D) zirconium dioxide (ZrO 2 ) scaffolds have been fabricated for biological engineering by direct write printing method. The water-based ZrO 2 ink with a solid content fraction of 70 wt% was deposited through a fine nozzle on the substrate by a layer-by-layer sequence to produce the 3D microperiodic structures. The preparation and the rheological behavior of this ink, as well as the principles of the direct write printing process were investigated systematically. Sintered at 1250 °C for 4 h was the optimal

  17. Hierarchical scaffolds enhance osteogenic differentiation of human Wharton’s jelly derived stem cells

    International Nuclear Information System (INIS)

    Canha-Gouveia, Analuce; Rita Costa-Pinto, Ana; Martins, Albino M; Sousa, Rui A; Reis, Rui L; Neves, Nuno M; Silva, Nuno A; Salgado, António J; Sousa, Nuno; Faria, Susana

    2015-01-01

    Hierarchical structures, constituted by polymeric nano and microfibers, have been considered promising scaffolds for tissue engineering strategies, mainly because they mimic, in some way, the complexity and nanoscale detail observed in real organs. The chondrogenic potential of these scaffolds has been previously demonstrated, but their osteogenic potential is not yet corroborated. In order to assess if a hierarchical structure, with nanoscale details incorporated, is an improved scaffold for bone tissue regeneration, we evaluate cell adhesion, proliferation, and osteogenic differentiation of human Wharton’s jelly derived stem cells (hWJSCs), seeded into hierarchical fibrous scaffolds. Biological data corroborates that hierarchical fibrous scaffolds show an enhanced cell entrapment when compared to rapid prototyped scaffolds without nanofibers. Furthermore, upregulation of bone specific genes and calcium phosphate deposition confirms the successful osteogenic differentiation of hWJSCs on these scaffolds. These results support our hypothesis that a scaffold with hierarchical structure, in conjugation with hWJSCs, represents a possible feasible strategy for bone tissue engineering applications. (paper)

  18. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.

    Science.gov (United States)

    Engelmayr, George C; Sacks, Michael S

    2006-08-01

    The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of approximately 3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2 = 0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175-187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore

  19. Hybrid scaffolds based on PLGA and silk for bone tissue engineering.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum

    2016-03-01

    Porous silk scaffolds, which are considered to be natural polymers, cannot be used alone because they have a long degradation rate, which makes it difficult for them to be replaced by the surrounding tissue. Scaffolds composed of synthetic polymers, such as PLGA, have a short degradation rate, lack hydrophilicity and their release of toxic by-products makes them difficult to use. The present investigations aimed to study hybrid scaffolds fabricated from PLGA, silk and hydroxyapatite nanoparticles (Hap NPs) for optimized bone tissue engineering. The results from variable-pressure field emission scanning electron microscopy (VP-FE-SEM), equipped with EDS, confirmed that the fabricated scaffolds had a porous architecture, and the location of each component present in the scaffolds was examined. Contact angle measurements confirmed that the introduction of silk and HAp NPs helped to change the hydrophobic nature of PLGA to hydrophilic, which is the main constraint for PLGA used as a biomaterial. Thermo-gravimetric analysis (TGA) and FT-IR spectroscopy confirmed thermal decomposition and different vibrations caused in functional groups of compounds used to fabricate the scaffolds, which reflected improvement in their mechanical properties. After culturing osteoblasts for 1, 7 and 14 days in the presence of scaffolds, their viability was checked by MTT assay. The fluorescent microscopy results revealed that the introduction of silk and HAp NPs had a favourable impact on the infiltration of osteoblasts. In vivo experiments were conducted by implanting scaffolds in rat calvariae for 4 weeks. Histological examinations and micro-CT scans from these experiments revealed beneficial attributes offered by silk fibroin and HAp NPs to PLGA-based scaffolds for bone induction. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Luo, Honglin; Xiong, Guangyao; Hu, Da; Ren, Kaijing; Yao, Fanglian; Zhu, Yong; Gao, Chuan; Wan, Yizao

    2013-01-01

    Introduction of active groups on the surface of bacterial cellulose (BC) nanofibers is one of the promising routes of tailoring the performance of BC scaffolds for tissue engineering. This paper reported the introduction of aldehyde groups to BC nanofibers by 2,2,6,6-tetramethylpyperidine-1-oxy radical (TEMPO)-mediated oxidation and evaluation of the potential of the TEMPO-oxidized BC as tissue engineering scaffolds. Periodate oxidation was also conducted for comparison. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses were carried out to determine the existence of aldehyde groups on BC nanofibers and the crystallinity. In addition, properties relevant to scaffold applications such as morphology, fiber diameter, mechanical properties, and in vitro degradation were characterized. The results indicated that periodate oxidation could introduce free aldehyde to BC nanofibers and the free aldehyde groups on the TEMPO-oxidized BC tended to transfer to acetal groups. It was also found that the advantageous 3D structure of BC scaffolds remained unchanged and that no significant changes in morphology, fiber diameter, tensile structure and in vitro degradation were found after TEMPO-mediated oxidation while significant differences were observed upon periodate oxidation. The present study revealed that TEMPO-oxidation could impart BC scaffolds with new functions while did not degrade their intrinsic advantages. - Highlights: • TEMPO-mediated oxidation on BC scaffold for tissue engineering use was conducted. • TEMPO-mediated oxidation did not degrade the intrinsic advantages of BC scaffold. • TEMPO-mediated oxidation could impart BC scaffold with new functional groups. • Feasibility of TEMPO-oxidized BC as tissue engineering scaffold was confirmed

  1. Design of an IPTV Multicast System for Internet Backbone Networks

    Directory of Open Access Journals (Sweden)

    T. H. Szymanski

    2010-01-01

    Full Text Available The design of an IPTV multicast system for the Internet backbone network is presented and explored through extensive simulations. In the proposed system, a resource reservation algorithm such as RSVP, IntServ, or DiffServ is used to reserve resources (i.e., bandwidth and buffer space in each router in an IP multicast tree. Each router uses an Input-Queued, Output-Queued, or Crosspoint-Queued switch architecture with unity speedup. A recently proposed Recursive Fair Stochastic Matrix Decomposition algorithm used to compute near-perfect transmission schedules for each IP router. The IPTV traffic is shaped at the sources using Application-Specific Token Bucker Traffic Shapers, to limit the burstiness of incoming network traffic. The IPTV traffic is shaped at the destinations using Application-Specific Playback Queues, to remove residual network jitter and reconstruct the original bursty IPTV video streams at each destination. All IPTV traffic flows are regenerated at the destinations with essentially zero delay jitter and essentially-perfect QoS. The destination nodes deliver the IPTV streams to the ultimate end users using the same IPTV multicast system over a regional Metropolitan Area Network. It is shown that all IPTV traffic is delivered with essentially-perfect end-to-end QoS, with deterministic bounds on the maximum delay and jitter on each video frame. Detailed simulations of an IPTV distribution system, multicasting several hundred high-definition IPTV video streams over several essentially saturated IP backbone networks are presented.

  2. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  3. Scaffold Diversity from N-Acyliminium Ions

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E

    2017-01-01

    N-Acyliminium ions are powerful reactive species for the formation of carbon-carbon and carbon-heteroatom bonds. Strategies relying on intramolecular reactions of N-acyliminium intermediates, also referred to as N-acyliminium ion cyclization reactions, have been employed for the construction...... of structurally diverse scaffolds, ranging from simple bicyclic skeletons to complex polycyclic systems and natural-product-like compounds. This review aims to provide an overview of cyclization reactions of N-acyliminium ions derived from various precursors for the assembly of structurally diverse scaffolds...

  4. A randomized, double-blind, cross-over, phase IV trial of oros-methylphenidate (CONCERTA(®)) and generic novo-methylphenidate ER-C (NOVO-generic).

    Science.gov (United States)

    Fallu, Angelo; Dabouz, Farida; Furtado, Melissa; Anand, Leena; Katzman, Martin A

    2016-08-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common neurobehavioral disorder with onset during childhood. Multiple aspects of a child's development are hindered, in both home and school settings, with negative impacts on social, emotional, and cognitive functioning. If left untreated, ADHD is commonly associated with poor academic achievement and low occupational status, as well as increased risk of substance abuse and delinquency. The objective of this study was to evaluate adult ADHD subject reported outcomes when switched from a stable dose of CONCERTA(®) to the same dose of generic Novo-methylphenidate ER-C(®). Randomized, double-blind, cross-over, phase IV trial consisted of two phases in which participants with a primary diagnosis of ADHD were randomized in a 1:1 ratio to 3 weeks of treatment with CONCERTA or generic Novo-Methylphenidate ER-C. Following 3 weeks of treatment, participants were crossed-over to receive the other treatment for an additional 3 weeks. Primary efficacy was assessed through the use of the Treatment Satisfaction Questionnaire for Medication, Version II (TSQM-II). Participants with ADHD treated with CONCERTA were more satisfied in terms of efficacy and side effects compared to those receiving an equivalent dose of generic Novo-Methylphenidate ER-C. All participants chose to continue with CONCERTA treatment at the conclusion of the study. Although CONCERTA and generic Novo-Methylphenidate ER-C have been deemed bioequivalent, however the present findings demonstrate clinically and statistically significant differences between generic and branded CONCERTA. Further investigation of these differences is warranted.

  5. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering

    International Nuclear Information System (INIS)

    Lei, Yong; Xu, Zhengliang; Ke, Qinfei; Yin, Wenjing; Chen, Yixuan; Zhang, Changqing; Guo, Yaping

    2017-01-01

    For the clinical application of bone tissue engineering with the combination of biomaterials and mesenchymal stem cells (MSCs), bone scaffolds should possess excellent biocompatibility and osteoinductivity to accelerate the repair of bone defects. Herein, strontium hydroxyapatite [SrHAP, Ca 10−x Sr x (PO 4 ) 6 (OH) 2 ]/chitosan (CS) nanohybrid scaffolds were fabricated by a freeze-drying method. The SrHAP nanocrystals with the different x values of 0, 1, 5 and 10 are abbreviated to HAP, Sr1HAP, Sr5HAP and Sr10HAP, respectively. With increasing x values from 0 to 10, the crystal cell volumes and axial lengths of SrHAP become gradually large because of the greater ion radius of Sr 2+ than Ca 2+ , while the crystal sizes of SrHAP decrease from 70.4 nm to 46.7 nm. The SrHAP/CS nanohybrid scaffolds exhibits three-dimensional (3D) interconnected macropores with pore sizes of 100–400 μm, and the SrHAP nanocrystals are uniformly dispersed within the scaffolds. In vitro cell experiments reveal that all the HAP/CS, Sr1HAP/CS, Sr5HAP/CS and Sr10HAP/CS nanohybrid scaffolds possess excellent cytocompatibility with the favorable adhesion, spreading and proliferation of human bone marrow mesenchymal stem cells (hBMSCs). The Sr5HAP nanocrystals in the scaffolds do not affect the adhesion, spreading of hBMSCs, but they contribute remarkably to cell proliferation and osteogenic differentiation. As compared with the HAP/CS nanohybrid scaffold, the released Sr 2+ ions from the SrHAP/CS nanohybrid scaffolds enhance alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization and osteogenic-related COL-1 and ALP expression levels. Especially, the Sr5HAP/CS nanohybrid scaffolds exhibit the best osteoinductivity among four groups because of the synergetic effect between Ca 2+ and Sr 2+ ions. Hence, the Sr5HAP/CS nanohybrid scaffolds with excellent cytocompatibility and osteogenic property have promising application for bone tissue engineering. - Highlights: • We

  6. Arginine de novo and nitric oxide production in disease states

    OpenAIRE

    Luiking, Yvette C.; Ten Have, Gabriella A. M.; Wolfe, Robert R.; Deutz, Nicolaas E. P.

    2012-01-01

    Arginine is derived from dietary protein intake, body protein breakdown, or endogenous de novo arginine production. The latter may be linked to the availability of citrulline, which is the immediate precursor of arginine and limiting factor for de novo arginine production. Arginine metabolism is highly compartmentalized due to the expression of the enzymes involved in arginine metabolism in various organs. A small fraction of arginine enters the NO synthase (NOS) pathway. Tetrahydrobiopterin ...

  7. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-11-01

    This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans

    Science.gov (United States)

    Buitinga, Mijke; Truckenmüller, Roman; Engelse, Marten A.; Moroni, Lorenzo; Ten Hoopen, Hetty W. M.; van Blitterswijk, Clemens A.; de Koning, Eelco JP.; van Apeldoorn, Aart A.; Karperien, Marcel

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation. PMID:23737999

  10. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate.

    Science.gov (United States)

    Huang, Boyang; Caetano, Guilherme; Vyas, Cian; Blaker, Jonny James; Diver, Carl; Bártolo, Paulo

    2018-01-14

    The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA) and β-tri-calcium phosphate (TCP)) were mixed with poly-ε-caprolactone (PCL). Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physically and chemically assessed, considering mechanical, wettability, scanning electron microscopy and thermal gravimetric tests. Cell viability, attachment and proliferation tests were performed using human adipose derived stem cells (hADSCs). Results show that scaffolds containing HA present better biological properties and TCP scaffolds present improved mechanical properties. It was also possible to observe that the addition of ceramic particles had no effect on the wettability of the scaffolds.

  11. The Role of Backbone Hydrogen Bonds in the Transition State for Protein Folding of a PDZ Domain.

    Directory of Open Access Journals (Sweden)

    Søren W. Pedersen

    Full Text Available Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a β-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding.

  12. A Guide to Scaffold Use in the Construction Industry

    National Research Council Canada - National Science Library

    2001-01-01

    On August 30, 1996, OSHA issued revised standards for scaffolds. The revised standard, known as "Safety Standards for Scaffolds Used in the Construction Industry" is found in Title 29 Code of Federal Regulations (CFR) Part, Subpart L...

  13. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    International Nuclear Information System (INIS)

    Gao, Shuang; Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun; Xi, Tingfei; Guo, Quanyi

    2017-01-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  14. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shuang [Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun [Beijing Key Lab of Regenerative Medicine in Orthopaedics, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Key Laboratory of Musculoskeletal Trauma & War Injuries, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Xi, Tingfei, E-mail: tingfeixi@163.com [Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Shenzhen Institute, Peking University, Shenzhen 518057 (China); Guo, Quanyi, E-mail: doctorguo_301@163.com [Beijing Key Lab of Regenerative Medicine in Orthopaedics, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Key Laboratory of Musculoskeletal Trauma & War Injuries, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China)

    2017-02-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  15. A novel surface modification on calcium polyphosphate scaffold for articular cartilage tissue engineering

    International Nuclear Information System (INIS)

    Lien, S.-M.; Liu, C.-K.; Huang, T.-J.

    2007-01-01

    The surface of porous three-dimensional (3D) calcium polyphosphate (CPP) scaffold was modified by treatment of quenching-after-sintering in the fabrication process. Scanning electron microscopic examination and degradation tests confirmed a new type of surface modification. A rotary-shaking culture was compared to that of a stationary culture and the results showed that rotary shaking led to enhanced extracellular matrices (ECM) secretion of both proteoglycans and collagen. Rotary-shaking cultured results showed that the quenching-treated CPP scaffold produced a better cartilage tissue, with both proteoglycans and collagen secretions enhanced, than the air-cooled-after-sintering scaffolds. Moreover, β-CPP scaffolds were better for the ECM secretion of both proteoglycans and collagen than the β-CPP + γ-CPP multiphase scaffold. However, the multiphase scaffold led to higher growth rate than that of β-CPP scaffold; the quenching-after-sintering treatment reversed this. In addition, the ECM secretions of both proteoglycans and collagen in the quenching-treated β-CPP scaffold were higher than those in the air-cooled one. Thus, the novel treatment of quenching-after-sintering has shown merits to the porous 3D CPP scaffolds for articular cartilage tissue engineering

  16. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.

    Science.gov (United States)

    Zhou, Feifei; Zhang, Xianzhu; Cai, Dandan; Li, Jun; Mu, Qin; Zhang, Wei; Zhu, Shouan; Jiang, Yangzi; Shen, Weiliang; Zhang, Shufang; Ouyang, Hong Wei

    2017-11-01

    The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1β, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature

  17. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation

    Science.gov (United States)

    Sleep, Eduard; McClendon, Mark T.; Preslar, Adam T.; Chen, Charlotte H.; Sangji, M. Hussain; Pérez, Charles M. Rubert; Haynes, Russell D.; Meade, Thomas J.; Blau, Helen M.; Stupp, Samuel I.

    2017-01-01

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice. PMID:28874575

  18. Computer aided design of architecture of degradable tissue engineering scaffolds.

    Science.gov (United States)

    Heljak, M K; Kurzydlowski, K J; Swieszkowski, W

    2017-11-01

    One important factor affecting the process of tissue regeneration is scaffold stiffness loss, which should be properly balanced with the rate of tissue regeneration. The aim of the research reported here was to develop a computer tool for designing the architecture of biodegradable scaffolds fabricated by melt-dissolution deposition systems (e.g. Fused Deposition Modeling) to provide the required scaffold stiffness at each stage of degradation/regeneration. The original idea presented in the paper is that the stiffness of a tissue engineering scaffold can be controlled during degradation by means of a proper selection of the diameter of the constituent fibers and the distances between them. This idea is based on the size-effect on degradation of aliphatic polyesters. The presented computer tool combines a genetic algorithm and a diffusion-reaction model of polymer hydrolytic degradation. In particular, we show how to design the architecture of scaffolds made of poly(DL-lactide-co-glycolide) with the required Young's modulus change during hydrolytic degradation.

  19. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.

    Science.gov (United States)

    Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe

    2017-02-10

    Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x  SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin