WorldWideScience

Sample records for nouveaux catalyseurs bio-inspires

  1. Bio-Inspired Dry Adhesives

    Science.gov (United States)

    2013-02-01

    of mask respirators with bio -inspired adhesive integrated into their peripheral seals; and (2) assessment of the competitive position of the new bio -inspired adhesives in broader fields of application.

  2. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...... that modulates the parameters of the locomotor central pattern generators. We present phonotactic performance results of the simulated lizard-salamander hybrid robot....

  3. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...... that modulates the parameters of the locomotor central pattern generators. We present phonotactic performance results of the simulated lizard-salamander hybrid robot....

  4. Bio-inspired vision

    Science.gov (United States)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  5. Bio-Inspired Odor Source Localization

    Science.gov (United States)

    2011-07-01

    1 Distribution A: Approved for Public Release; Distribution Unlimited Bio -Inspired Odor Source Localization Bio -Inspired Odor Source Localization...2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Bio -Inspired Odor Source Localization 5a. CONTRACT NUMBER 5b. GRANT...Distribution Unlimited Bio -Inspired Odor Source Localization Why study odor tracking? • Engineer odor tracking systems – Gas leaks – Hazardous waste

  6. [NiFe] hydrogenase structural and functional models: new bio-inspired catalysts for hydrogen evolution; Modeles structuraux et fonctionnels du site actif des hydrogenases [NiFe]: de nouveaux catalyseurs bio-inspires pour la production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Oudart, Y

    2006-09-15

    Hydrogenase enzymes reversibly catalyze the oxidation and production of hydrogen in a range close to the thermodynamic potential. The [NiFe] hydrogenase active site contains an iron-cyano-carbonyl moiety linked to a nickel atom which is in an all sulphur environment. Both the active site originality and the potential development of an hydrogen economy make the synthesis of functional and structural models worthy. To take up this challenge, we have synthesised mononuclear ruthenium models and more importantly, nickel-ruthenium complexes, mimicking some structural features of the [NiFe] hydrogenase active site. Ruthenium is indeed isoelectronic to iron and some of its complexes are well-known to bear hydrides. The compounds described in this study have been well characterised and their activity in proton reduction has been successfully tested. Most of them are able to catalyze this reaction though their electrocatalytic potentials remain much more negative compared to which of platinum. The studied parameters point out the importance of the complexes electron richness, especially of the nickel environment. Furthermore, the proton reduction activity is stable for several hours at good rates. The ruthenium environment seems important for this stability. Altogether, these compounds represent the very first catalytically active [NiFe] hydrogenase models. Important additional results of this study are the synergetic behaviour of the two metals in protons reduction and the evidence of a protonation step as the limiting step of the catalytic cycle. We have also shown that a basic site close to ruthenium improves the electrocatalytic potential of the complexes. (author)

  7. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  8. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  9. Bio-Inspired, Odor-Based Navigation

    Science.gov (United States)

    2006-03-01

    Bio -Inspired, Odor-Based Navigation THESIS Maynard John Porter III, Captain, USAF AFIT/GE/ENG/06-48 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...States Government. AFIT/GE/ENG/06-48 Bio -Inspired, Odor-Based Navigation THESIS Presented to the Faculty Department of Electrical and Computer...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GE/ENG/06-48 Bio -Inspired, Odor-Based Navigation Maynard John Porter III, B.S.E.E. Captain

  10. Bio-inspired variable structural color materials.

    Science.gov (United States)

    Zhao, Yuanjin; Xie, Zhuoying; Gu, Hongcheng; Zhu, Cun; Gu, Zhongze

    2012-04-21

    Natural structural color materials, especially those that can undergo reversible changes, are attracting increasing interest in a wide variety of research fields. Inspired by the natural creatures, many elaborately nanostructured photonic materials with variable structural colors were developed. These materials have found important applications in switches, display devices, sensors, and so on. In this critical review, we will provide up-to-date research concerning the natural and bio-inspired photonic materials with variable structural colors. After introducing the variable structural colors in natural creatures, we will focus on the studies of artificial variable structural color photonic materials, including their bio-inspired designs, fabrications and applications. The prospects for the future development of these fantastic variable structural color materials will also be presented. We believe this review will promote the communications among biology, bionics, chemistry, optical physics, and material science (196 references).

  11. Tough, bio-inspired hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Munch, Etienne; Launey, Maximimilan E.; Alsem, Daan H.; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2008-10-06

    The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs extremely difficult to replicate synthetically. Here we emulate Nature's toughening mechanisms through the combination of two ordinary compounds, aluminum oxide and polymethylmethacrylate, into ice-templated structures whose toughness can be over 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic material whose high yield strength and fracture toughness ({approx}200 MPa and {approx}30 MPa{radical}m) provide specific properties comparable to aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.

  12. Aurelia aurita bio-inspired tilt sensor

    Science.gov (United States)

    Smith, Colin; Villanueva, Alex; Priya, Shashank

    2012-10-01

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms.

  13. Bio-inspired odor-based navigation

    Science.gov (United States)

    Porter, Maynard J., III; Vasquez, Juan R.

    2006-05-01

    The ability of many insects, especially moths, to locate either food or a member of the opposite sex is an amazing achievement. There are numerous scenarios where having this ability embedded into ground-based or aerial vehicles would be invaluable. This paper presents results from a 3-D computer simulation of an Unmanned Aerial Vehicle (UAV) autonomously tracking a chemical plume to its source. The simulation study includes a simulated dynamic chemical plume, 6-degree of freedom, nonlinear aircraft model, and a bio-inspired navigation algorithm. The emphasis of this paper is the development and analysis of the navigation algorithm. The foundation of this algorithm is a fuzzy controller designed to categorize where in the plume the aircraft is located: coming into the plume, in the plume, exiting the plume, or out of the plume.

  14. Bio-inspired computational techniques based on advanced condition monitoring

    Institute of Scientific and Technical Information of China (English)

    Su Liangcheng; He Shan; Li Xiaoli; Li Xinglin

    2011-01-01

    The application of bio-inspired computational techniques to the field of condition monitoring is addressed.First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.

  15. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  16. Bio-inspired self-shaping ceramics

    Science.gov (United States)

    Bargardi, Fabio L.; Le Ferrand, Hortense; Libanori, Rafael; Studart, André R.

    2016-12-01

    Shaping ceramics into complex and intricate geometries using cost-effective processes is desirable in many applications but still remains an open challenge. Inspired by plant seed dispersal units that self-fold on differential swelling, we demonstrate that self-shaping can be implemented in ceramics by programming the material's microstructure to undergo local anisotropic shrinkage during heat treatment. Such microstructural design is achieved by magnetically aligning functionalized ceramic platelets in a liquid ceramic suspension, subsequently consolidated through an established enzyme-catalysed reaction. By fabricating alumina compacts exhibiting bio-inspired bilayer architectures, we achieve deliberate control over shape change during the sintering step. Bending, twisting or combinations of these two basic movements can be successfully programmed to obtain a myriad of complex shapes. The simplicity and the universality of such a bottom-up shaping method makes it attractive for applications that would benefit from low-waste ceramic fabrication, temperature-resistant interlocking structures or unusual geometries not accessible using conventional top-down manufacturing.

  17. Bio-inspired self-shaping ceramics

    Science.gov (United States)

    Bargardi, Fabio L.; Le Ferrand, Hortense; Libanori, Rafael; Studart, André R.

    2016-01-01

    Shaping ceramics into complex and intricate geometries using cost-effective processes is desirable in many applications but still remains an open challenge. Inspired by plant seed dispersal units that self-fold on differential swelling, we demonstrate that self-shaping can be implemented in ceramics by programming the material's microstructure to undergo local anisotropic shrinkage during heat treatment. Such microstructural design is achieved by magnetically aligning functionalized ceramic platelets in a liquid ceramic suspension, subsequently consolidated through an established enzyme-catalysed reaction. By fabricating alumina compacts exhibiting bio-inspired bilayer architectures, we achieve deliberate control over shape change during the sintering step. Bending, twisting or combinations of these two basic movements can be successfully programmed to obtain a myriad of complex shapes. The simplicity and the universality of such a bottom-up shaping method makes it attractive for applications that would benefit from low-waste ceramic fabrication, temperature-resistant interlocking structures or unusual geometries not accessible using conventional top–down manufacturing. PMID:28008930

  18. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  19. Bio-Inspired Political Systems. Opening a Field

    CERN Document Server

    Mezza-Garcia, Nathalie

    2012-01-01

    In this paper we highlight the scopes of engineering bio-inspired political systems, which are political systems based on the properties of life that self-organize the increasing complexity of human social systems. We describe bio-inspired political systems and conjecture about various ways to get to them, most notably, metaheuristics, modeling and simulation and complexified topologies. Bio-inspired political systems operate with nature-based dynamics, inspired on the knowledge that has been acquired about complexity from natural social systems and life. Bio-inspired political systems are presented as the best alternative for organizing human sociopolitical interactions as computation and microelectronics-based technology profoundly modify the ways in which humans decide. Therefore, weakening classical political systems. For instance, dwindling top-down power structures, modifying the notion of geographical spatiality and augmenting the political granularity. We also argue that, more than a new theoretical p...

  20. Human Factors Issues for Interaction with Bio-Inspired Swarms

    Science.gov (United States)

    2012-10-01

    subtle leaders of fish schools. Pheromone trails also suggest a way to support human interaction as has been explored to a limited extent... Human Factors issues for Interaction with Bio-Inspired Swarms Michael Lewis*, Michael Goodrich**, Katia Sycara+, Mark Steinberg++ * School of...Enabling a human to control such bio-inspired systems is a considerable challenge due to the limitations of each individual robot and the sheer

  1. Bio-Inspired Sampling and Reconstruction Framework for Scientific Visualization

    Science.gov (United States)

    2015-09-17

    AFRL-AFOSR-VA-TR-2015-0287 Bio - Inspired Sampling and Reconstruction Framework for Scientific Visualization Alireza Entezari UNIVERSITY OF FLORIDA...TITLE AND SUBTITLE A Bio - inspired Sampling and Reconstruction Framework for Scientific Visualization 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...invariant representation, one can increase the quality of signal reconstruction. Moreover, the computational cost of the reconstruction process is

  2. Bio-inspired nanotechnology from surface analysis to applications

    CERN Document Server

    Walsh, Tiffany

    2014-01-01

    This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials, and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics, and materials assembly. This book also: ·          Covers the sustainable features of bio-inspired nanotechnology ·          Includes studies on the unique applications of biomimetic materials, such as energy harvesting and biomedical diagnostics Bio-Inspired Nanotechnology: From Surface Analysis to Applications is an ideal book for researchers, students, nanomaterials engineers, bioengineers, chemists, biologists, physicists, and medical researchers.

  3. Exploring Creativity in the Bio-Inspired Design Process

    DEFF Research Database (Denmark)

    Anggakara, K.; Aksdal, T.; Onarheim, Balder

    2015-01-01

    The growing interest in the of field bio-inspired design has been driven by the acknowledgement that inspiration from nature can serve as a valuable source of innovation. As an emerging approach, there has been a focus on building a principled methodology to address the challenges that arise...

  4. Bio Inspired Algorithms in Single and Multiobjective Reliability Optimization

    DEFF Research Database (Denmark)

    Madsen, Henrik; Albeanu, Grigore; Burtschy, Bernard

    2014-01-01

    Non-traditional search and optimization methods based on natural phenomena have been proposed recently in order to avoid local or unstable behavior when run towards an optimum state. This paper describes the principles of bio inspired algorithms and reports on Migration Algorithms and Bees...

  5. 3D Printing of Bio-inspired surfaces

    DEFF Research Database (Denmark)

    Islam, Aminul; Méndez Ribó, Macarena

    The ability of the gecko to scurry across smooth or rough surfaces, regardless of inclination (vertical or even upside down), has been traced to the multiscale hierarchical structures of the gecko toe [1 - 3]. Considering all the strategies to manufacture bio-inspired surfaces, the most common is...

  6. Swimming, swarming and sensing. Bio-inspired underwater robotics

    NARCIS (Netherlands)

    Henrion, S.; Vercruyssen, T.; Müller, U.K.

    2014-01-01

    For operations in complex underwater environments, bio-inspired robots offer manoeuvrability, stealth and autonomy. They integrate propulsion and control systems into one multi-purpose undulatory propeller. By generating large counteracting forces, undulating fins generate a wide range of net

  7. Eigen values in epidemic and other bio-inspired models

    Science.gov (United States)

    Supriatna, A. K.; Anggriani, N.; Carnia, E.; Raihan, A.

    2017-08-01

    Eigen values and the largest eigen value have special roles in many applications. In this paper we will discuss its role in determining the epidemic threshold in which we can determine if an epidemic will decease or blow out eventually. Some examples and their consequences to controling the epidemic are also discusses. Beside the application in epidemic model, the paper also discusses other example of appication in bio-inspired model, such as the backcross breeding for two age classes of local and exotic goats. Here we give some elaborative examples on the use of previous backcross breeding model. Some future direction on the exploration of the relationship between these eigenvalues to different epidemic models and other bio-inspired models are also presented.

  8. Creating a Bio-Inspired Solution to Prevent Erosion

    Science.gov (United States)

    Reher, R.; Martinez, A.; Cola, J.; Frost, D.

    2016-12-01

    Through the study of geophysical sciences, lessons can be developed which allow for the introduction of bio-inspired design and art concepts to K-5 elementary students. Students are placed into an engineering mindset in which they must apply the concepts of bio-geotechnics to observe how we can use nature to prevent and abate erosion. Problems are staged for students using realistic engineering scenarios such as erosion prevention through biomimicry and the study of anchorage characteristics of root structures in regard to stability of soil. Specifically, a lesson is introduced where students research, learn, and present information about bio-inspired designs to understand these concepts. They lean how plant roots differ in size and shape to stabilize soil. In addition, students perform a series of hands-on experiments which demonstrate how bio-cements and roots can slow erosion.

  9. A bio-inspired software for segmenting digital images.

    OpenAIRE

    Díaz Pernil, Daniel; Molina Abril, Helena; Real Jurado, Pedro; Gutiérrez Naranjo, Miguel Ángel

    2010-01-01

    Segmentation in computer vision refers to the process of partitioning a digital image into multiple segments (sets of pixels). It has several features which make it suitable for techniques inspired by nature. It can be parallelized, locally solved and the input data can be easily encoded by bio-inspired representations. In this paper, we present a new software for performing a segmentation of 2D digital images based on Membrane Computing techniques.

  10. Classification of biological cells using bio-inspired descriptors

    OpenAIRE

    Bel Haj Ali, Wafa; Giampaglia, Dario; Barlaud, Michel; Piro, Paolo; Nock, Richard; Pourcher, Thierry

    2012-01-01

    International audience; This paper proposes a novel automated approach for the categorization of cells in fluorescence microscopy images. Our supervised classification method aims at recognizing patterns of unlabeled cells based on an annotated dataset. First, the cell images need to be indexed by encoding them in a feature space. For this purpose, we propose tailored bio-inspired features relying on the distribution of contrast information. Then, a supervised learning algorithm is proposed f...

  11. Vibration isolation by exploring bio-inspired structural nonlinearity.

    Science.gov (United States)

    Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert

    2015-10-08

    Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.

  12. Bio-inspired nanomaterials and their applications as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Smita Sachin Zinjarde

    2012-01-01

    Full Text Available In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of nanoparticles (NPs have been used for a number of specialized applications. In this era facing a major problem of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This review summarizes the recent developments on the biosynthesis, characterization, and applications of NPs with particular reference to their use as antimicrobial agents. Reviewed here is the synthesis of gold and silver NPs (AgNPs by a variety of biological forms and biomolecules as well as their effectiveness toward different fungal and bacterial pathogens. The use of gold NPs (bio-inspired by plants, fungi, and bacteria and AgNPs, synthesized by carbohydrates (of plant, animal, and microbial origin, plant parts (bark, callus, leaves, peels, and tubers, fungi, and bacteria have been highlighted. In addition, the use of zinc oxide NPs (although not bio-inspired as novel antimicrobial agents have also been discussed.

  13. Bio-Inspired Meta-Heuristics for Emergency Transportation Problems

    Directory of Open Access Journals (Sweden)

    Min-Xia Zhang

    2014-02-01

    Full Text Available Emergency transportation plays a vital role in the success of disaster rescue and relief operations, but its planning and scheduling often involve complex objectives and search spaces. In this paper, we conduct a survey of recent advances in bio-inspired meta-heuristics, including genetic algorithms (GA, particle swarm optimization (PSO, ant colony optimization (ACO, etc., for solving emergency transportation problems. We then propose a new hybrid biogeography-based optimization (BBO algorithm, which outperforms some state-of-the-art heuristics on a typical transportation planning problem.

  14. Limited Bandwidth Recognition of Collective Behaviors in Bio-Inspired Swarms

    Science.gov (United States)

    2014-05-01

    impedes scalable human interaction with large bio -inspired robot swarms, namely how do you know what the swarm is doing if you can’t observe every agent...samples from a small subset of agents. We present a novel framework for classifying the collective behavior of a bio -inspired robot swarm using...locally-based approximations of a swarm’s global features. We apply this framework to two bio -inspired models of swarming that exhibit a flock and torus

  15. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    Science.gov (United States)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  16. Spontaneous water filtration of bio-inspired membrane

    Science.gov (United States)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  17. Autonomous UAV persistent surveillance using bio-inspired strategies

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2012-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara, the Army Research Laboratory, the Engineer Research and Development Center, and IBM UK is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bioinspired techniques for autonomous search provide a novel strategy to detect, capture and fuse data from heterogeneous sensor networks. The bio-inspired algorithm is based on chemotaxis or the motion of bacteria seeking nutrients in their environment. Field tests of a bio-inspired system that routed UAVs were conducted in June 2011 at Camp Roberts, CA. The field test results showed that such a system can autonomously detect and locate the source of terrestrial events with very high accuracy and visually verify the event. In June 2011, field tests of the system were completed and include the use of multiple autonomously controlled UAVs, detection and disambiguation of multiple acoustic events occurring in short time frames, optimal sensor placement based on local phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric. The system demonstrated TRL 6 performance in the field at Camp Roberts.

  18. Bio-inspired fluidic lens surgical camera for MIS.

    Science.gov (United States)

    Tsai, Frank S; Johnson, Daniel; Cho, Sung Hwan; Qiao, Wen; Arianpour, Ashkan; Lo, Yu-Hwa

    2009-01-01

    We report a new type of surgical camera that will greatly improve minimally invasive surgery (MIS). The key enabling technology for this camera is a unique type of lens-bio-inspired fluidic lens, which is a bio-mimetic lens that can change its curvature, just like the way human crystalline lens can accommodate. Because of its curvature changing capability, it is now possible to design a new regime of optical systems where auto-focusing and optical zoom can be performed without moving the lens positions, as is done in typical cameras. Hence, miniaturized imaging system with high functionality can be achieved with such technology. MIS is a surgical technique where small incisions are made on the abdominal wall as opposed to a large cut in open surgery. This type of surgery ensures faster patient recovery. The key tool for MIS is its surgical camera, or laparoscope. Traditional laparoscope is long and rigid and limits the field of view. To further advance MIS technology, we utilized bio-inspired fluidic lens to design a highly versatile imager that is small, can change its field of view or zoom optically, works in low light conditions, and varies the viewing angles. The surgical camera prototype is small (total track<17 mm), possesses 3X optical zoom, operates with light emitting diode (LED) lighting, among many other unique features.

  19. Heterogeneous sensor networks: a bio-inspired overlay architecture

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Klein, Daniel; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2010-04-01

    Teledyne Scientific Company, the University of California at Santa Barbara (UCSB) and the Army Research Lab are developing technologies for automated data exfiltration from heterogeneous sensor networks through the Institute for Collaborative Biotechnologies (ICB). Unmanned air vehicles (UAV) provide an effective means to autonomously collect data from unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous data-driven collection routes. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data across heterogeneous sensors. A fast and accurate method has been developed for routing UAVs and localizing an event by fusing data from a sparse number of UGSs; it leverages a bio-inspired technique based on chemotaxis or the motion of bacteria seeking nutrients in their environment. The system was implemented and successfully tested using a high level simulation environment using a flight simulator to emulate a UAV. A field test was also conducted in November 2009 at Camp Roberts, CA using a UAV provided by AeroMech Engineering. The field test results showed that the system can detect and locate the source of an acoustic event with an accuracy of about 3 meters average circular error.

  20. Bio-Inspired Cyber Security for Smart Grid Deployments

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.; Fink, Glenn A.; Fulp, Errin W.

    2013-05-01

    mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants framework is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.

  1. Confined swimming of bio-inspired microrobots in rectangular channels.

    Science.gov (United States)

    Temel, Fatma Zeynep; Yesilyurt, Serhat

    2015-02-02

    Controlled swimming of bio-inspired microrobots in confined spaces needs to be understood well for potential use in medical applications in conduits and vessels inside the body. In this study, experimental and computational studies are performed for analysis of swimming modes of a bio-inspired microrobot in rectangular channels at low Reynolds number. Experiments are performed on smooth and rough surfaces using a magnetic helical swimmer (MHS), having 0.5 mm diameter and 2 mm length, with left-handed helical tail and radially polarized magnetic head within rotating magnetic field obtained by two electromagnetic coil pairs. Experiments indicate three motion modes of the MHS with respect to the rotation frequency: (i) lateral motion under the effect of a perpendicular force such as gravity and the surface traction at low frequencies, (ii) lateral motion under the effect of fluid forces and gravity at transition frequencies, and (iii) circular motion under the effect of fluid forces at high frequencies. Observed modes of motion for the MHS are investigated with computational fluid dynamics simulations by calculating translational and angular velocities and studying the induced flow fields for different radial positions inside the channel. Results indicate the importance of rotation frequency, surface roughness and flow field on the swimming modes and behaviour of the MHS inside the rectangular channel.

  2. Editorial:Mechanics of biological and bio-inspired materials%Editorial: Mechanics of biological and bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Baohua Jia

    2012-01-01

    The field of mechanics of biological and bio-inspired materials underwent an exciting development over the past several years,which made it stand at the cutting edge of both engineering mechanics and biomechanics.As an intriguing interdisciplinary research field,it aims at elucidating the fundamental principles in nature's design of strong,multi-functional and smart Materials by focusing on the assembly,deformation,stability and failure of the materials.These principles should have wide applications in not only material sciences and mechanical engineering but also biomedical engineering.For instance,the knowledge in Mechanical principles of biological materials is very helpful for addressing some major challenges in material sciences and engineering.They also have the potential to provide quantitative understanding about how forces and deformation affect human being's health,diseases and treatment at tissue,cellular and molecular levels.This special subject on "mechanics of biological and bio-inspired materials" collects a few studies on recent development by leading scientists in this field.The biological materials or systems in these studies include cell,cytoskeleton (e.g.,microtubulus,intermediate filaments),lipid molecules and composite system of lipid and nanoparticle,tissue,and biological attachment systems,etc.

  3. Bio-inspired artificial iriodphores based on capillary origami

    Science.gov (United States)

    Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom

    2011-03-01

    Many marine organisms have evolved complex optical mechanisms of dynamic skin color control that allow them to drastically change their visual appearance. In particular, cephalopods have developed especially effective dynamic color control mechanism based on the mechanical actuation of the micro-scale optical structures, which produce either variable degrees of area coverage by a given color (chromatophores) or variations in spatial orientation of the reflective and diffractive surfaces (iridophores). In this work we describe bio-inspired artificial iridophores based on electrowetting-controlled capillary origami. We describe the developed microfabrication approach, characterize mechanical and optical properties of the obtained microstructures and discuss their electrowetting-based actuation. The obtained experimental results are in good agreement with a simple theoretical model based on electrocapillarity and elasticity theory. The results of the work can enable a broad range of novel optical devices.

  4. Wireless synapses in bio-inspired neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  5. Performance of a bio-inspired spider web

    Science.gov (United States)

    Zheng, Lingyue; Behrooz, Majid; Li, Rui; Wang, Xiaojie; Gordaninejad, Faramarz

    2014-04-01

    The goal of this study is to investigate dynamic properties and the total energy change of a bio-inspired spider web. To better understand performance, the effects of preload, radial and spiral string stiffness and damping ratio on the natural frequency and total energy of the web are theoretically examined. Different types of web materials and configurations, such as damaged webs are investigated. It is demonstrated that the pretension, stiffness and damping ratio of the web's strings can significantly affect the natural frequency and total energy of the full and damaged webs. In addition, it is shown that by increasing the pretension in the radial strings one can compensate for the damaged strings and increase the capability of the damaged web to reach that of the full web.

  6. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  7. An introduction to bio-inspired artificial neural network architectures.

    Science.gov (United States)

    Fasel, B

    2003-03-01

    In this introduction to artificial neural networks we attempt to give an overview of the most important types of neural networks employed in engineering and explain shortly how they operate and also how they relate to biological neural networks. The focus will mainly be on bio-inspired artificial neural network architectures and specifically to neo-perceptions. The latter belong to the family of convolutional neural networks. Their topology is somewhat similar to the one of the human visual cortex and they are based on receptive fields that allow, in combination with sub-sampling layers, for an improved robustness with regard to local spatial distortions. We demonstrate the application of artificial neural networks to face analysis--a domain we human beings are particularly good at, yet which poses great difficulties for digital computers running deterministic software programs.

  8. Optimal Design of a Bio-Inspired Anthropocentric Shoulder Rehabilitator

    Directory of Open Access Journals (Sweden)

    S. K. Mustafa

    2006-01-01

    Full Text Available This paper presents the design of a bio-inspired anthropocentric 7-DOF wearable robotic arm for the purpose of stroke rehabilitation. The proposed arm rehabilitator synergistically utilizes the human arm structure with non-invasive kinematically under-deterministic cable-driven mechanisms to form a completely deterministic structure. It offers the advantages of being lightweight and having high dexterity. Adopting an anthropocentric design concept also allows it to conform to the human anatomical structure. The focus of this paper is on the analysis and design of the 3-DOF-shoulder module, called the shoulder rehabilitator. The design methodology is divided into three main steps: (1 performance evaluation of the cable-driven shoulder rehabilitator, (2 performance requirements of the shoulder joint based on its physiological characteristics and (3 design optimization of the shoulder rehabilitator based on shoulder joint physiological limitations. The aim is to determine a suitable configuration for the development of a shoulder rehabilitator prototype.

  9. Copper removal using bio-inspired polydopamine coated natural zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shapter, Joseph G. [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia); Popelka-Filcoff, Rachel [School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia); Bennett, John W. [Centre for Nuclear Applications, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Ellis, Amanda V., E-mail: Amanda.Ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia)

    2014-05-01

    Highlights: • Natural zeolites were modified with bio-inspired polydopamine. • A 91.4% increase in Cu(II) ion adsorption capacity was observed. • Atomic absorption and neutron activation analysis gave corroborative results. • Neutron activation analysis was used to provide accurate information on 30+ elements. • Approximately 90% of the adsorbed copper could be recovered by 0.1 M HCl treatment. - Abstract: Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2–5.5), PDA treatment time (3–24 h), contact time (0 to 24 h) and initial Cu(II) ion concentrations (1 to 500 mg dm{sup −3}) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93 mg g{sup −1} for pristine natural zeolite and 28.58 mg g{sup −1} for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01 M or 0.1 M) of either acid or base.

  10. Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems

    Science.gov (United States)

    Manzalini, Antonio; Minerva, Roberto; Moiso, Corrado

    Today, people are making use of several devices for communications, for accessing multi-media content services, for data/information retrieving, for processing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras, mp3 players, smart cards and smart appliances. One of the most attracting service scenarios for future Telecommunications and Internet is the one where people will be able to browse any object in the environment they live: communications, sensing and processing of data and services will be highly pervasive. In this vision, people, machines, artifacts and the surrounding space will create a kind of computational environment and, at the same time, the interfaces to the network resources. A challenging technological issue will be interconnection and management of heterogeneous systems and a huge amount of small devices tied together in networks of networks. Moreover, future network and service infrastructures should be able to provide Users and Application Developers (at different levels, e.g., residential Users but also SMEs, LEs, ASPs/Web2.0 Service roviders, ISPs, Content Providers, etc.) with the most appropriate "environment" according to their context and specific needs. Operators must be ready to manage such level of complication enabling their latforms with technological advanced allowing network and services self-supervision and self-adaptation capabilities. Autonomic software solutions, enhanced with innovative bio-inspired mechanisms and algorithms, are promising areas of long term research to face such challenges. This chapter proposes a bio-inspired autonomic middleware capable of leveraging the assets of the underlying network infrastructure whilst, at the same time, supporting the development of future Telecommunications and Internet Ecosystems.

  11. Bio-Inspired Computation: Clock-Free, Grid-Free, Scale-Free and Symbol Free

    Science.gov (United States)

    2015-06-11

    AFRL-AFOSR-JP-TR-2015-0002 Bio -inspired computation: clock-free, grid-free, scale-free, and symbol free Janet Wiles THE UNIVERSITY OF QUEENSLAND...SUBTITLE Bio -inspired computation: clock-free, grid-free, scale-free, and symbol free 5a. CONTRACT NUMBER FA2386-12-1-4050 5b. GRANT NUMBER 5c...SUPPLEMENTARY NOTES 14. ABSTRACT The project developed a new fundamental component for bio -inspired computing, based on a new way of modelling

  12. An Approach of Bio-inspired Hybrid Model for Financial Markets

    Science.gov (United States)

    Simić, Dragan; Gajić, Vladeta; Simić, Svetlana

    Biological systems are inspiration for the design of optimisation and classification models. Applying various forms of bio-inspired algorithms may be a very high-complex system. Modelling of financial markets is challenging for several reasons, because many plausible factors impact on it. An automated trading on financial market is not a new phenomenon. The model of bio-inspired hybrid adaptive trading system based on technical indicators usage by grammatical evolution and moving window is presented in this paper. The proposed system is just one of possible bio-inspired system which can be used in financial forecast, corporate failure prediction or bond rating company.

  13. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  14. Electrowetting-controlled bio-inspired artificial iridophores

    Science.gov (United States)

    Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom

    2011-10-01

    Many marine organisms have evolved complex optical mechanisms of dynamic skin color control that allow them to drastically change their visual appearance. In particular, cephalopods have developed especially effective dynamic color control mechanism based on the mechanical actuation of the micro-scale optical structures, which produce either variable degrees of area coverage by a given color (chromatophores) or variations in spatial orientation of the reflective and diffractive surfaces (iridophores). In this work we describe the design, fabrication and characterization of electrowetting-controlled bio-inspired artificial iridophores. The developed iridophores geometrically resemble microflowers with flexible reflective petals. The microflowers are fabricated on a silicon substrate using surface micromachining techniques. After fabrication a small droplet of conductive liquid is deposited at the center of each microflower. This causes the flower petals to partially wrap around the droplet forming a structure similar to capillary origami. The dynamic control over the degree of wrapping is achieved by applying a voltage differential between the conductive core of the petals and the droplet. The applied voltage causes dynamic contact angle change between the droplet and each of the petals due to the electrowetting effect. We have characterized mechanical and optical properties of the microstructures and discuss their electrowetting-based actuation. These experimental results are in good agreement with a 3D theoretical model based on electrocapillarity and elasticity theory. This work forms the basis for a broad range of novel optical devices.

  15. Optical properties of bio-inspired peptide nanotubes

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Rosenman, Gil

    2016-04-01

    Supramolecular self-assembled bio-inspired peptide nanostructures are favorable to be implemented in diverse nanophotonics applications due to their superior physical properties such as wideband optical transparency, high second-order nonlinear response, waveguiding properties and more. Here, we focus on the optical properties found in di-phenylalanine peptide nano-architectures, with special emphasize on their linear and nonlinear optical waveguiding effects. Using both simulation and experiments, we show their ability to passively guide light at both fundamental and second-harmonic frequencies. In addition, we show that at elevated temperatures, 140-180°C, these native supramolecular structures undergo irreversible thermally induced transformation via re-assembling into completely new thermodynamically stable phase having nanofiber morphology similar to those of amyloid fibrils. In this new phase, the peptide nanofibers lose their second-order nonlinear response, while exhibit profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL). Our study propose a new generation of multifunctional optical waveguides with variety of characteristics, which self-assembled into 1D-elongated nanostructures and could be used as building blocks of many integrated photonic devices.

  16. SABRE: a bio-inspired fault-tolerant electronic architecture.

    Science.gov (United States)

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  17. A bio-inspired image coder with temporal scalability

    CERN Document Server

    Masmoudi, Khaled; Kornprobst, Pierre

    2011-01-01

    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalians retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, compared to the JPEG standards, our decoded images do not show annoying art...

  18. Copper removal using bio-inspired polydopamine coated natural zeolites.

    Science.gov (United States)

    Yu, Yang; Shapter, Joseph G; Popelka-Filcoff, Rachel; Bennett, John W; Ellis, Amanda V

    2014-05-30

    Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2-5.5), PDA treatment time (3-24h), contact time (0 to 24h) and initial Cu(II) ion concentrations (1 to 500mgdm(-3)) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93mgg(-1) for pristine natural zeolite and 28.58mgg(-1) for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01M or 0.1M) of either acid or base. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Bio-inspired Murray materials for mass transfer and activity

    Science.gov (United States)

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-04-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

  20. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    Science.gov (United States)

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  1. A Bio-Inspired Herbal Tea Flavour Assessment Technique

    Directory of Open Access Journals (Sweden)

    Nur Zawatil Isqi Zakaria

    2014-07-01

    Full Text Available Herbal-based products are becoming a widespread production trend among manufacturers for the domestic and international markets. As the production increases to meet the market demand, it is very crucial for the manufacturer to ensure that their products have met specific criteria and fulfil the intended quality determined by the quality controller. One famous herbal-based product is herbal tea. This paper investigates bio-inspired flavour assessments in a data fusion framework involving an e-nose and e-tongue. The objectives are to attain good classification of different types and brands of herbal tea, classification of different flavour masking effects and finally classification of different concentrations of herbal tea. Two data fusion levels were employed in this research, low level data fusion and intermediate level data fusion. Four classification approaches; LDA, SVM, KNN and PNN were examined in search of the best classifier to achieve the research objectives. In order to evaluate the classifiers’ performance, an error estimator based on k-fold cross validation and leave-one-out were applied. Classification based on GC-MS TIC data was also included as a comparison to the classification performance using fusion approaches. Generally, KNN outperformed the other classification techniques for the three flavour assessments in the low level data fusion and intermediate level data fusion. However, the classification results based on GC-MS TIC data are varied.

  2. Bio-inspired Self-Adaptive Agents in Distributed Systems

    Directory of Open Access Journals (Sweden)

    Ichiro SATOH

    2013-06-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} This paper proposes a bio-inspired middleware for selfadaptive software agents on distributed systems. It is unique to other existing approaches for software adaptation because it introduces the notions of differentiation, dedifferentiation, and cellular division in cellular slime molds, e.g., dictyostelium discoideum, into real distributed systems. When an agent delegates a function to another agent coordinating with it, if the former has the function, this function becomes lessdeveloped and the latter’s function becomes welldeveloped.

  3. Bio-inspired color sketch for eco-friendly printing

    Science.gov (United States)

    Safonov, Ilia V.; Tolstaya, Ekaterina V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sang Ho; Choi, Donchul

    2012-01-01

    Saving of toner/ink consumption is an important task in modern printing devices. It has a positive ecological and social impact. We propose technique for converting print-job pictures to a recognizable and pleasant color sketches. Drawing a "pencil sketch" from a photo relates to a special area in image processing and computer graphics - non-photorealistic rendering. We describe a new approach for automatic sketch generation which allows to create well-recognizable sketches and to preserve partly colors of the initial picture. Our sketches contain significantly less color dots then initial images and this helps to save toner/ink. Our bio-inspired approach is based on sophisticated edge detection technique for a mask creation and multiplication of source image with increased contrast by this mask. To construct the mask we use DoG edge detection, which is a result of blending of initial image with its blurred copy through the alpha-channel, which is created from Saliency Map according to Pre-attentive Human Vision model. Measurement of percentage of saved toner and user study proves effectiveness of proposed technique for toner saving in eco-friendly printing mode.

  4. Bio-inspired Self-Adaptive Agents in Distributed Systems

    Directory of Open Access Journals (Sweden)

    Ichiro SATOH

    2012-09-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} This paper proposes a bio-inspired middleware for selfadaptive software agents on distributed systems. It is unique to other existing approaches for software adaptation because it introduces the notions of differentiation, dedifferentiation, and cellular division in cellular slime molds, e.g., dictyostelium discoideum, into real distributed systems. When an agent delegates a function to another agent coordinating with it, if the former has the function, this function becomes lessdeveloped and the latter’s function becomes welldeveloped.

  5. Optimization of PID Controller for Brushless DC Motor by using Bio-inspired Algorithms

    National Research Council Canada - National Science Library

    Sanjay Kr. Singh; Nitish Katal; S.G. Modani

    2014-01-01

    This study presents the use and comparison of various bio-inspired algorithms for optimizing the response of a PID controller for a Brushless DC Motor in contrast to the conventional methods of tuning...

  6. Fifth International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Abraham, Ajith; Snášel, Václav

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2014, the 5th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2014 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing remains to be one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference was to further explore the intriguing potential of Bio-inspired Computing. IBICA 2014 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.

  7. Robust, Self-Contained and Bio-Inspired Shear Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a robust, bio-inspired, and self-contained sensor array for the measurement of shear stress. The proposed system uses commercially...

  8. Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    Science.gov (United States)

    Duong, Tuan A. (Inventor)

    2015-01-01

    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation.

  9. Bio-Inspired Autonomous Communications Systems with Anomaly Detection Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate BioComm, a bio-inspired autonomous communications system (ACS) aimed at dynamically reconfiguring and redeploying autonomous...

  10. Bio-Inspired Clustering of Complex Products Structure based on DSM

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-08-01

    Full Text Available Clustering plays an important role in the decomposition of complex products structure. Different clustering algorithms may achieve different effects of the decomposition. This paper aims to proposes a bio-inspired genetic algorithm that is implemented based on its reliable fitness function and design structure matrix (DSM for clustering analysis of complex products. This new bio-inspired genetic algorithm captures the features of DSM, which is base on the biological evolution theory. Examples of these products include motorcycle engines that are presented for clustering. The five cluster alternatives are obtained from the regular clustering algorithm and the bio-inspired genetic algorithm, while the best cluster alternative comes from the bio-inspired genetic algorithm. The results show that this algorithm is well adaptable, especially when the product elements have complicated and asymmetric connections.

  11. 4th International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Krömer, Pavel; Snášel, Václav

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2013, the 4th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2013 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing is currently one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference is to further explore the intriguing potential of Bio-inspired Computing. IBICA 2013 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.

  12. A bio-inspired test system for bionic above-knee prosthetic knees

    Science.gov (United States)

    Wang, Dai-Hua; Xu, Lei; Fu, Qiang; Yuan, Gang

    2013-04-01

    Recently, prosthetic knees in the developing stage are usually tested by installing them on amputees' stumps directly or on above-knee prostheses (AKPs) test platforms. Although amputees can fully provide the actual motion state of the thigh, immature prosthetic knees may hurt amputees. For AKPs test platforms, it just can partly simulate the actual motion state of the thigh with limitation of the motion curve of the thigh, the merits or demerits of newly developed bionic above-knee prosthetic knees cannot be accessed thoroughly. Aiming at the defects of two testing methods, this paper presents a bio-inspired AKPs test system for bionic above-knee prosthetic knees. The proposed bio-inspired AKPs test system is composed of a AKPs test platform, a control system, and a bio-inspired system. The AKPs test platform generates the motion of the thigh simulation mechanism (TSM) via two screw pairs with servo motors. The bio-inspired system includes the tester and the bio-inspired sensor wore by the tester. The control system, which is inspired by the bio-inspired system, generates the control command signal to move the TSM of the AKPs test platform. The bio-inspired AKPs test system is developed and experimentally tested with a commercially available prosthetic knee. The research results show that the bio-inspired AKPs test system can not only ensure the safety of the testers, but also track all kinds of the actual motion state of the thigh of the testers in real time.

  13. A new bio-inspired decision chain for UAV sense-and-avoid applications

    Science.gov (United States)

    Fallavollita, P.; Cimini, F.; Balsi, M.; Esposito, S.; Jankowski, S.

    This work, after a preliminary feasibility study using a Matlab environment simulation, defines the design and the real hardware testing of a new bio-inspired decision chain for UAV sense-and-avoid applications. Relying on a single and cheap visible camera sensor, computer vision, bio-inspired and automatic decision algorithms have been adopted and implemented on a specific ARM embedded platform through C++/OpenCV coding. A first data set processing, really captured on flight, has been presented.

  14. 7th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Singh, Pramod; Deep, Kusum; Pant, Millie; Nagar, Atulya

    2013-01-01

    The book is a collection of high quality peer reviewed research papers presented in Seventh International Conference on Bio-Inspired Computing (BIC-TA 2012) held at ABV-IIITM Gwalior, India. These research papers provide the latest developments in the broad area of "Computational Intelligence". The book discusses wide variety of industrial, engineering and scientific applications of nature/bio-inspired computing and presents invited papers from the inventors/originators of novel computational techniques.

  15. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  16. Bio-inspired Nanomaterials for Biosensing and Cell Response

    Science.gov (United States)

    Stevens, Molly

    2012-02-01

    This talk will provide an overview of our recent developments in bio-inspired nanomaterials for tissue regeneration and sensing. Bio-responsive nanomaterials are of growing importance with potential applications including drug delivery, diagnostics and tissue engineering [1]. DNA-, protein- or peptide-functionalised nanoparticle (NP) aggregates are particularly useful systems since triggered changes in their aggregation states may be readily monitored. Our recent simple conceptually novel approaches to real-time monitoring of protease, lipase and kinase enzyme action using modular peptide functionalized NPs will be presented [2,3,4]. The highly interdisciplinary field of Tissue Engineering (TE) can also benefit from advances in the design of bio-responsive nanomaterials. TE involves the development of artificial scaffold structures on which new cells are encouraged to grow. The ability to control topography and chemistry at the nanoscale offers exciting possibilities for stimulating growth of new tissue through the development of novel nanostructured scaffolds that mimic the nanostructure of the tissues in the body [1,5,6]. Recent developments in this context will be discussed as well as novel approaches to in vivo tissue regeneration of large volumes of highly vascularised and hierarchically organized tissue [7,8,9]. [4pt] [1] MM Stevens, J George. Science 310:1135-1138 (2005)[0pt] [2] A Laromaine, L Koh, M Murugesan, RV Ulijn, MM Stevens. Journal of the American Chemical Society 129:4156-4157 (2007)[0pt] [3] J Ghadiali, MM Stevens. Advanced Materials 20: 4359-4363 (2008); J Ghadiali et al, ACS Nano 4:4915-4919 (2010)[0pt] [4] D Aili, M Mager, D Roche, MM Stevens. Nano Letters 11:1401-1405 (2011) [0pt] [5] E Place, ND Evans, MM Stevens. Nature Materials 8:457-470 (2009)[0pt] [6] MD Mager, V LaPointe, MM Stevens. Nature Chemistry 3:582-589 (2011)[0pt] [7] MM Stevens et. al. Proc. Natl. Acad. Sci. USA 102:11450-11455 (2005)[0pt] [8] E Gentleman et al. Nature

  17. Development of a bio-inspired UAV perching system

    Science.gov (United States)

    Xie, Pu

    of animals and human arms approaching to a fixed or moving target for grasping or capturing. The autonomous flight control was also implemented through a PID controller. Autonomous flight performance was proved through simulation in SimMechanics. Finally, the prototyping of our designs were conducted in different generations of our bio-inspired UAV perching system, which include the leg prototype, gripper prototype, and system prototype. Both the machined prototype and 3D printed prototype were tried. The performance of these prototypes was tested through experiments.

  18. Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. Arvind; Siyuan, L.; Satyanarayana, N. [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Kustandi, T.S. [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, Singapore 117602 (Singapore); Sinha, Sujeet K., E-mail: mpesks@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2011-10-10

    At micro/nano-scale, friction force dominates at the interface between bodies moving in relative motion and severely affects their smooth operation. This effect limits the performance of microsystem devices such as micro-electro-mechanical systems (MEMS). In addition, friction force also leads to material removal or wear and thereby reduces the durability i.e. the useful operating life of the devices. In this work, we fabricated bio-inspired polymeric patterns for tribological applications. Inspired by the surface features on lotus leaves namely, the protuberances and wax, SU-8 polymeric films spin-coated on silicon wafers were topographically and chemically modified. For topographical modification, micro-scale patterns were fabricated using nanoimprint lithography and for chemical modification, the micro-patterns were coated with perfluoropolyether nanolubricant. Tribological investigation of the bio-inspired patterns revealed that the friction coefficients reduced significantly and the wear durability increased by several orders. In order to enhance the wear durability much further, the micro-patterns were exposed to argon/oxygen plasma and were subsequently coated with the perfluoropolyether nanolubricant. Bio-inspired patterns with enhanced wear durability, such as the ones investigated in the current work, have potential tribological applications in MEMS/Bio-MEMS actuator-based devices. Highlights: {yields}Bio-inspired polymeric patterns for tribological applications in microsystems. {yields}Novel surface modification for the patterns to enhance tribological properties. {yields}Patterns show low friction properties and extremely high wear durability.

  19. Bio-Inspired Energy-Aware Protocol Design for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Perrucci, Gian Paolo; Anggraeni, Puri Novelti; Wardana, Satya Ardhy;

    2011-01-01

    In this work, bio-inspired cooperation rules are applied to wireless communication networks. The main goal is to derive cooperative behaviour rules to improve the energy consumption of each mobile device. A medium access control (MAC) protocol particularly designed for peer-to-peer communication ...

  20. Bio-Inspired Intelligent Sensing Materials for Fly-by-Feel Autonomous Vehicle

    Science.gov (United States)

    2012-08-01

    Method of Approach Ni nanoparticles • Magnetoelectric composite induces strain in Ni nanoparticles • E=0 produces superparamagnetic behavior • E...AFOSR-MURI Bio-inspired Sensory Network current strain Change in resistance and gauge factor K under uniaxial tensile strain . Measured...Effects Ambient temperature, humidity . moisture….. State field distribution -Temperature -Pressure - Air-flow - Strain - Structural damage

  1. Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning

    Science.gov (United States)

    Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao

    2015-01-01

    This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…

  2. A bio-inspired apposition compound eye machine vision sensor system.

    Science.gov (United States)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-12-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  3. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    Science.gov (United States)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  4. 6th International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Abraham, Ajith; Krömer, Pavel; Pant, Millie; Muda, Azah

    2016-01-01

    This Volume contains the papers presented during the 6th International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2015 which was held in Kochi, India during December 16-18, 2015. The 51 papers presented in this Volume were carefully reviewed and selected. The 6th International Conference IBICA 2015 has been organized to discuss the state-of-the-art as well as to address various issues in the growing research field of Bio-inspired Computing which is currently one of the most exciting research areas, and is continuously demonstrating exceptional strength in solving complex real life problems. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  5. Biophysics and Thermodynamics: The Scientific Building Blocks of Bio-inspired Drug Delivery Nano Systems.

    Science.gov (United States)

    Demetzos, Costas

    2015-06-01

    Biophysics and thermodynamics are considered as the scientific milestones for investigating the properties of materials. The relationship between the changes of temperature with the biophysical variables of biomaterials is important in the process of the development of drug delivery systems. Biophysics is a challenge sector of physics and should be used complementary with the biochemistry in order to discover new and promising technological platforms (i.e., drug delivery systems) and to disclose the 'silence functionality' of bio-inspired biological and artificial membranes. Thermal analysis and biophysical approaches in pharmaceuticals present reliable and versatile tools for their characterization and for the successful development of pharmaceutical products. The metastable phases of self-assembled nanostructures such as liposomes should be taken into consideration because they represent the thermal events can affect the functionality of advanced drug delivery nano systems. In conclusion, biophysics and thermodynamics are characterized as the building blocks for design and development of bio-inspired drug delivery systems.

  6. A bio-inspired apposition compound eye machine vision sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J D [Applied Research Laboratories, University of Texas, 10000 Burnet Rd, Austin, TX 78757 (United States); Barrett, S F; Wright, C H G [Electrical and Computer Engineering, University of Wyoming, Dept 3295 1000 E. University Ave, Laramie, WY 82071 (United States); Wilcox, M, E-mail: steveb@uwyo.ed [Department of Biology, United States Air Force Academy, CO 80840 (United States)

    2009-12-15

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  7. Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects.

    Science.gov (United States)

    Boyer, Frédéric; Porez, Mathieu

    2015-03-26

    This article presents a set of generic tools for multibody system dynamics devoted to the study of bio-inspired locomotion in robotics. First, archetypal examples from the field of bio-inspired robot locomotion are presented to prepare the ground for further discussion. The general problem of locomotion is then stated. In considering this problem, we progressively draw a unified geometric picture of locomotion dynamics. For that purpose, we start from the model of discrete mobile multibody systems (MMSs) that we progressively extend to the case of continuous and finally soft systems. Beyond these theoretical aspects, we address the practical problem of the efficient computation of these models by proposing a Newton-Euler-based approach to efficient locomotion dynamics with a few illustrations of creeping, swimming, and flying.

  8. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.

    Science.gov (United States)

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications.

  9. Feasibility Study of a Bio-inspired Artificial Pancreas in Adults with Type 1 Diabetes

    OpenAIRE

    Reddy, Monika; Herrero, Pau; El Sharkawy, Mohamed; Pesl, Peter; Jugnee, Narvada; Thomson, Hazel; Pavitt, Darrell; Toumazou, Christofer; Johnston, Desmond; Georgiou, Pantelis; Oliver, Nick

    2014-01-01

    Background: This study assesses proof of concept and safety of a novel bio-inspired artificial pancreas (BiAP) system in adults with type 1 diabetes during fasting, overnight, and postprandial conditions. In contrast to existing glucose controllers in artificial pancreas systems, the BiAP uses a control algorithm based on a mathematical model of β-cell physiology. The algorithm is implemented on a miniature silicon microchip within a portable hand-held device that interfaces the components of...

  10. Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study

    Science.gov (United States)

    Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul

    2016-10-01

    Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.

  11. Protocols for Bio-Inspired Resource Discovery and Erasure Coded Replication in P2P Networks

    CERN Document Server

    Thampi, Sabu M

    2010-01-01

    Efficient resource discovery and availability improvement are very important issues in unstructured P2P networks. In this paper, a bio-inspired resource discovery scheme inspired by the principle of elephants migration is proposed. A replication scheme based on Q-learning and erasure codes is also introduced. Simulation results show that the proposed schemes significantly increases query success rate and availability, and reduces the network traffic as the resources are effectively distributed to well-performing nodes.

  12. Limited Bandwidth Recognition of Collective Behaviors in Bio-Inspired Swarms

    Science.gov (United States)

    2014-05-09

    UAV path planning and applies to some constant-speed, non-holonomic ground robots [5]. Similar to the Couzin model of biological swarms [3] and the...BEHAVIORS IN BIO-INSPIRED SWARMS 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62788F 6. AUTHOR(S) Daniel S. Brown (AFRL... swarming and modes of controlling them are numerous; however, to date swarm researchers have mostly ignored a fundamental problem that impedes

  13. An experimental study on adhesive or antiadhesiveand strong bio-inspired nanomaterials

    OpenAIRE

    Lepore, Emiliano

    2012-01-01

    This experimental PhD thesis presents the results of research performed in five different facilities: in the Laboratory of Bio-inspired Nanomechanics "Giuseppe Maria Pugno" at the Politecnico of Torino, the "Nanofacility Piemonte" at the INRIM Institute in Torino, the Division of Dental Sciences and Biomaterials of the Department of Biomedicine at the University of Trieste, the Physics Department of the Politecnico of Torino, the Toscano- Buono Veterinary Surgery in Torino and the Department ...

  14. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  15. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    OpenAIRE

    Mi Jeong Kim; Sung Joon Maeng; Yong Soo Cho

    2015-01-01

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity...

  16. Correction: Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis.

    Science.gov (United States)

    Alqahtani, Norah; Porwal, Suheel K; James, Elle D; Bis, Dana M; Karty, Jonathan A; Lane, Amy L; Viswanathan, Rajesh

    2015-09-21

    Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

  17. Bio-inspired dental multilayers: effects of layer architecture on the contact-induced deformation.

    Science.gov (United States)

    Du, J; Niu, X; Rahbar, N; Soboyejo, W

    2013-02-01

    The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin-enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.

  18. A Bio-Inspired QoS-Oriented Handover Model in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2014-01-01

    Full Text Available We propose a bio-inspired model for making handover decision in heterogeneous wireless networks. It is based on an extended attractor selection model, which is biologically inspired by the self-adaptability and robustness of cellular response to the changes in dynamic environments. The goal of the proposed model is to guarantee multiple terminals’ satisfaction by meeting the QoS requirements of those terminals’ applications, and this model also attempts to ensure the fairness of network resources allocation, in the meanwhile, to enable the QoS-oriented handover decision adaptive to dynamic wireless environments. Some numerical simulations are preformed to validate our proposed bio-inspired model in terms of adaptive attractor selection in different noisy environments. And the results of some other simulations prove that the proposed handover scheme can adapt terminals’ network selection to the varying wireless environment and benefits the QoS of multiple terminal applications simultaneously and automatically. Furthermore, the comparative analysis also shows that the bio-inspired model outperforms the utility function based handover decision scheme in terms of ensuring a better QoS satisfaction and a better fairness of network resources allocation in dynamic heterogeneous wireless networks.

  19. Cochlear outer hair cell bio-inspired metamaterial with negative effective parameters

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Zhang, Siwen

    2016-05-01

    Inspired by periodical outer hair cells (OHCs) and stereocilia clusters of mammalian cochlear, a type of bio-inspired metamaterial with negative effective parameters based on the OHC structure is proposed. With the structural parameters modified and some common engineering materials adopted, the bio-inspired structure design with length scales of millimeter and lightweight is presented, and then, a bending wave bandgap in a favorable low-frequency with width of 55 Hz during the interval 21-76 or 116 Hz during the interval 57-173 Hz is obtained, i.e., the excellent low-frequency acoustic performance turns up. Compared with the local resonance unit in previous literatures, both the size and weight are greatly reduced in our bio-inspired structure. In addition, the lower edge of low-frequency bandgap is reduced by an order of magnitude, almost to the lower limit frequency of the hearing threshold as well, which achieves an important breakthrough on the aspect of low-frequency and great significance on the noise and vibration reduction in low-frequency range.

  20. How flexibility and dynamic ground effect could improve bio-inspired propulsion

    Science.gov (United States)

    Quinn, Daniel

    2016-11-01

    Swimming animals use complex fin motions to reach remarkable levels of efficiency, maneuverability, and stealth. Propulsion systems inspired by these motions could usher in a new generation of advanced underwater vehicles. Two aspects of bio-inspired propulsion are discussed here: flexibility and near-boundary swimming. Experimental work on flexible propulsors shows that swimming efficiency depends on wake vortex timing and boundary layer attachment, but also on fluid-structure resonance. As a result, flexible vehicles or animals could potentially improve their performance by tracking their resonance properties. Bio-inspired propulsors were also found to produce more thrust with no loss in efficiency when swimming near a solid boundary. Higher lift-to-drag ratios for near-ground fixed-wing gliders is commonly known as ground effect. This newly observed "dynamic ground effect" suggests that bio-inspired vehicles and animals could save energy by harnessing the performance gains associated with near-boundary swimming. This work was supported by the Office of Naval Research (MURI N00014-08-1-0642, Program Director Dr. Bob Brizzolara) and the National Science Foundation (DBI-1062052, PI Lisa Fauci; EFRI-0938043, PI George Lauder).

  1. Bio-inspired approaches to sensing for defence and security applications.

    Science.gov (United States)

    Biggins, Peter D E; Kusterbeck, Anne; Hiltz, John A

    2008-05-01

    Interdisciplinary research in biotechnology and related scientific areas has increased tremendously over the past decade. This rapid pace, in conjunction with advances in microfabricated systems, computer hardware, bioengineering and the availability of low-powered miniature components, has now made it feasible to design bio-inspired materials, sensors and systems with tremendous potential for defence and security applications. To realize the full potential of biotechnology and bio-inspiration, there is a need to define specific requirements to meet the challenges of the changing world and its threats. One approach to assisting the defence and security communities in defining their requirements is through the use of a conceptual model. The distributed or intelligent autonomous sensing (DIAS) system is one such model. The DIAS model is not necessarily aimed at a single component, for instance a sensor, but can include a system, or even a system of systems in the same way that a single organism, a multi-cellular organism or group of organisms is configured. This paper provides an overview of the challenges to and opportunities for bio-inspired sensors and systems together with examples of how they are being implemented. Examples focus on both learning new things from biological organisms that have application to the defence and security forces and adapting known discoveries in biology and biochemistry for practical use by these communities.

  2. Vision-based bio-inspired guidance law for small aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    Wang Zhengjie; Huang Weilin; Yan Yonghong

    2015-01-01

    During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aer-ial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical sim-ulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker, but the performance of it can be better than that of the proportional guidance law.

  3. Vision-based bio-inspired guidance law for small aerial vehicle

    Directory of Open Access Journals (Sweden)

    Wang Zhengjie

    2015-02-01

    Full Text Available During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aerial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical simulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker, but the performance of it can be better than that of the proportional guidance law.

  4. Bio-inspired motion estimation – From modelling to evaluation, can biology be a source of inspiration?

    OpenAIRE

    Tlapale, Émilien; Kornprobst, Pierre; Masson, Guillaume; Faugeras, Olivier; Bouecke, Jan,; Neumann, Heiko

    2010-01-01

    We propose a bio-inspired approach to motion estimation based on recent neuroscience findings concerning the motion pathway. Our goal is to identify the key biological features in order to reach a good compromise between bio-inspiration and computational efficiency. Here we choose the neural field formalism which provides a sound mathematical framework to describe the model at a macroscopic scale. Within this framework we define the cortical activity as coupled integro-differential equations ...

  5. [Total synthesis of biologically active alkaloids using bio-inspired indole oxidation].

    Science.gov (United States)

    Ishikawa, Hayato

    2015-01-01

    Many tryptophan-based dimeric diketopiperazine (DKP) alkaloids including WIN 64821 and ditryptophenaline, which exhibit fascinating biological activities, have been isolated from fungi. These alkaloids possess a unique architecture; therefore several total syntheses of these compounds have been accomplished via bio-inspired reactions. Despite these elegant strategies, we were convinced that a more direct bio-inspired solution for the preparation of tryptophan-based DKP alkaloids was possible because in a true biosynthesis, direct dimerization of tryptophan occurs in aqueous media without incorporation of a protecting group on the substrates. Thus we developed direct bio-inspired dimerization reactions in aqueous, acidic media, along with a novel biomimetic pathway, to provide C2-symmetric and non-symmetric dimeric compounds from commercially available amine-free tryptophan derivatives using Mn(OAc)3, VOF3, and V2O5 as one-electron oxidants. In addition, concise two-pot or three-step syntheses of the naturally occurring dimeric DKP alkaloids (+)-WIN 64821, (-)-ditryptophenaline, and (+)-naseseazine B were accomplished with total yields of 20%, 13%, and 20%, respectively. The present synthesis has several noteworthy features: 1) the tryptophan-based C2-symmetric and non-symmetric dimeric key intermediates can be prepared on a multigram scale in one step; 2) the developed oxidation reaction was carried out in aqueous, acidic solution without deactivation of the metal oxidants; 3) protection of the primary amine can be avoided by salt formation in aqueous acid; 4) for the total two-pot operation, the reaction media are environmentally friendly water and ethanol; 5) satisfactory total yields are obtained compared with previously reported syntheses.

  6. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA

  7. Bio-inspired artificial iridophores based on capillary origami: Fabrication and device characterization

    Science.gov (United States)

    Manakasettharn, Supone; Ashley Taylor, J.; Krupenkin, Tom N.

    2011-10-01

    Cephalopods have evolved complex optical mechanisms of dynamic skin color control based on mechanical actuation of micro-scale optical structures such as iridophores and chromatophores. In this work, we describe the design, fabrication, and characterization of bio-inspired artificial iridophores, which resemble microflowers with flexible reflective petals, based on capillary origami microstructures. Two methods of petal actuation have been demonstrated—one based on the electrowetting process and the other by volume change of the liquid droplet. These results were in good agreement with a model derived to characterize the actuation dynamics.

  8. Quantum design of photosynthesis for bio-inspired solar-energy conversion

    Science.gov (United States)

    Romero, Elisabet; Novoderezhkin, Vladimir I.; van Grondelle, Rienk

    2017-03-01

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.

  9. Autonomic networking-on-chip bio-inspired specification, development, and verification

    CERN Document Server

    Cong-Vinh, Phan

    2011-01-01

    Despite the growing mainstream importance and unique advantages of autonomic networking-on-chip (ANoC) technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The FIRST Book to Assess Research Results, Opportunities, & Trends in ""BioChipNets"" The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent re

  10. Quantum design of photosynthesis for bio-inspired solar-energy conversion.

    Science.gov (United States)

    Romero, Elisabet; Novoderezhkin, Vladimir I; van Grondelle, Rienk

    2017-03-15

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.

  11. Bio-inspired tactile sensor with arrayed structures based on electroactive polymers

    Science.gov (United States)

    Wang, Jin; Sato, Hiroshi; Taya, Minoru

    2009-03-01

    We reported some work on flexible tactile sensors based on Flemion ionic polymer metal composites previously. In this work, we compared the signals in both voltage and current with the signals obtained from a giant nerve fiber reported previously by other researchers. We found some similarities between the artificial tactile sensor and the nerve fiber, in both of which ionic movement play a very important role. This bio-inspired Flemion based ionic polymer metal composites would be a good candidate for bio-related sensors especially for prosthetic limb socket interface applications.

  12. Nanoparticles assembly-induced special wettability for bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Shuai Yang; Xu Jin; Kesong Liu; Lei Jiang

    2013-01-01

    Through billions of years of evolution,nature has optimized the programmed assembly of the nano-and micro-scale structures of biological materials.Nanoparticle assembly provides an avenue for mimicking these multiscale functional structures.Bio-inspired surfaces with special wettability have attracted much attention for both fundamental research and practical applications,tn this review,we focus on recent progress in nanoparticle assembly-induced special wettability,including superhydrophilic surfaces,superhydrophobic surfaces,superamphiphobic surfaces,stimuli-responsive surfaces,and selfhealing surfaces.A brief summary and an outlook of the future of this research field are also provided.

  13. Bio-Inspired Energy-Aware Protocol Design for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Perrucci, Gian Paolo; Anggraeni, Puri Novelti; Wardana, Satya Ardhy

    2011-01-01

    In this work, bio-inspired cooperation rules are applied to wireless communication networks. The main goal is to derive cooperative behaviour rules to improve the energy consumption of each mobile device. A medium access control (MAC) protocol particularly designed for peer-to-peer communication...... among cooperative wireless mobile devices is described. The work is based on a novel communication architecture, where a group of mobile devices are connected both to a cellular base station and among them using short-range communication links. A prior work has investigated the energy saving that can...

  14. Bio-inspiring cyber security and cloud services trends and innovations

    CERN Document Server

    Kim, Tai-Hoon; Kacprzyk, Janusz; Awad, Ali

    2014-01-01

    This volume presents recent research in cyber security, and reports how organizations can gain competitive advantages by applying the different security techniques in real-world scenarios. The volume provides reviews of cutting–edge technologies, algorithms, applications and insights for bio-inspiring cyber security-based systems. The book will be a valuable companion and comprehensive reference for both postgraduate and senior undergraduate students who are taking a course in cyber security. The volume is organized in self-contained chapters to provide greatest reading flexibility.  

  15. A Bio-Inspired Method for the Constrained Shortest Path Problem

    Directory of Open Access Journals (Sweden)

    Hongping Wang

    2014-01-01

    optimization, crew scheduling, network routing and so on. It is an open issue since it is a NP-hard problem. In this paper, we propose an innovative method which is based on the internal mechanism of the adaptive amoeba algorithm. The proposed method is divided into two parts. In the first part, we employ the original amoeba algorithm to solve the shortest path problem in directed networks. In the second part, we combine the Physarum algorithm with a bio-inspired rule to deal with the CSP. Finally, by comparing the results with other method using an examples in DCLC problem, we demonstrate the accuracy of the proposed method.

  16. Guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata

    Directory of Open Access Journals (Sweden)

    Won-Gyu Bae

    2015-12-01

    Full Text Available Engineering complex extracellular matrix (ECM is an important challenge for cell and tissue engineering applications as well as for understanding fundamental cell biology. We developed the methodology for fabrication of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with original wrinkling technique for the generation of well-defined native ECM-like platforms by culturing fibroblast cells on the multiscale substrata [1]. This paper provides information on detailed characteristics of polyethylene glycol-diacrylate multiscale substrata. In addition, a possible model for guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata is proposed.

  17. A bio-inspired approach for in situ synthesis of tunable adhesive.

    Science.gov (United States)

    Sun, Leming; Yi, Sijia; Wang, Yongzhong; Pan, Kang; Zhong, Qixin; Zhang, Mingjun

    2014-03-01

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis.

  18. Bio-inspired synthesis of ZnO polyhedral single crystals under eggshell membrane direction

    Energy Technology Data Exchange (ETDEWEB)

    Su, Huilan; Song, Fang; Dong, Qun; Li, Tuoqi; Zhang, Xin; Zhang, Di [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, Shanghai (China)

    2011-07-15

    A simple and versatile technique was developed to prepare hierarchical ZnO single crystals by introducing eggshell membrane (ESM) to a bio-inspired approach. Based on the control of nucleation and gestation, ZnO nanocrystallites could grow at three dimensions into polyhedral single crystals through a surface sol-gel process followed by a calcination treatment. Different from traditional wet chemical techniques, our synthetic process depends more on the restrictive or directing functions of the ESM biomacromolecules. The hierarchical ZnO nanostructures doped with polyhedral single crystallites could be desirable for catalysts, photoelectrochemical devices, especially solar cells. (orig.)

  19. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    Science.gov (United States)

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.

  20. A bio-inspired force control for cyclic manipulation of prosthetic hands.

    Science.gov (United States)

    Ciancio, A L; Barone, R; Zollo, L; Carpino, G; Davalli, A; Sacchetti, R; Guglielmelli, E

    2015-01-01

    The human hand is considered as the highest example of dexterous system capable of interacting with different objects and adapting its manipulation abilities to them. The control of poliarticulated prosthetic hands represents one important research challenge, typically aiming at replicating the manipulation capabilities of the natural hand. For this reason, this paper wants to propose a bio-inspired learning architecture based on parallel force/position control for prosthetic hands, capable of learning cyclic manipulation capabilities. To this purpose, it is focused on the control of a commercial biomechatronic hand (the IH2 hand) including the main features of recent poliarticulated prosthetic hands. The training phase of the hand was carried out in simulation, the parallel force/position control was tested in simulation whereas preliminary tests were performed on the real IH2 hand. The results obtained in simulation and on the real hand provide an important evidence of the applicability of the bio-inspired neural control to real biomechatronic hand with the typical features of a hand prosthesis.

  1. Bio-Inspired Control of an Arm Exoskeleton Joint with Active-Compliant Actuation System

    Directory of Open Access Journals (Sweden)

    Michele Folgheraiter

    2009-01-01

    Full Text Available This paper presents the methodology followed on the design of a multi-contact point haptic interface that uses a bio-inspired control approach and a novel actuation system. The combination of these components aims at creating a system that increases the operability of the target, and, at the same time, enables an intuitive and safe tele-operation of any complex robotic system of any given morphology. The novelty lies on the combination of a thoughtful kinematic structure driven by an active-compliant actuation system and a bio-inspired paradigm for its regulation. Due to the proposed actuation approach, the final system will achieve the condition of wearable system. On that final solution, each joint will be able to change its stiffness depending on the task to be executed, and on the anatomical features of each individual. Moreover, the system provides a variety of safety mechanisms at different levels to prevent causing any harm to the operator. In future, the system should allow the complete virtual immersion of the user within the working scenario.

  2. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.

  3. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    Science.gov (United States)

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-05-26

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system.

  4. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2016-11-01

    Full Text Available Bio-inspired engineering has been envisioned in a wide array of applications. All living bodies on Earth, including animals and plants, have well organized functional systems developed by nature. These naturally designed functional systems inspire scientists and engineers worldwide to mimic the system for practical applications by human beings. Researchers in the academic world and industries have been trying, for hundreds of years, to demonstrate how these natural phenomena could be translated into the real world to save lives, money and time. One of the most fascinating natural phenomena is the resistance of living bodies to contamination by dust and other pollutants, thus termed as self-cleaning phenomenon. This phenomenon has been observed in many plants, animals and insects and is termed as the Lotus Effect. With advancement in research and technology, attention has been given to the exploration of the underlying mechanisms of water repellency and self-cleaning. As a result, various concepts have been developed including Young’s equation, and Wenzel and Cassie–Baxter theories. The more we unravel this process, the more we get access to its implications and applications. A similar pursuit is emphasized in this review to explain the fundamental principles, mechanisms, past experimental approaches and ongoing research in the development of bio-inspired superhydrophobic textiles.

  5. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles.

    Science.gov (United States)

    Ahmad, Ishaq; Kan, Chi-Wai

    2016-11-03

    Bio-inspired engineering has been envisioned in a wide array of applications. All living bodies on Earth, including animals and plants, have well organized functional systems developed by nature. These naturally designed functional systems inspire scientists and engineers worldwide to mimic the system for practical applications by human beings. Researchers in the academic world and industries have been trying, for hundreds of years, to demonstrate how these natural phenomena could be translated into the real world to save lives, money and time. One of the most fascinating natural phenomena is the resistance of living bodies to contamination by dust and other pollutants, thus termed as self-cleaning phenomenon. This phenomenon has been observed in many plants, animals and insects and is termed as the Lotus Effect. With advancement in research and technology, attention has been given to the exploration of the underlying mechanisms of water repellency and self-cleaning. As a result, various concepts have been developed including Young's equation, and Wenzel and Cassie-Baxter theories. The more we unravel this process, the more we get access to its implications and applications. A similar pursuit is emphasized in this review to explain the fundamental principles, mechanisms, past experimental approaches and ongoing research in the development of bio-inspired superhydrophobic textiles.

  6. Bio-inspired Trajectory Generation for UAV Perching Movement Based on Tau Theory

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-09-01

    Full Text Available This paper offers a bio-inspired trajectory generation method for UAV/MAV perching (i.e., the final approach to, and landing on, a target. The method is based on tau theory, which was established based on the study of the natural motion patterns of animals (including humans when they approach a fixed or moving object for perching or capturing prey. In our research, tau theory is applied to the trajectory generation problem of an air vehicle for perching on a target object. Three bio-inspired strategies, namely the tau in the action gap strategy, the tau coupling strategy and the intrinsic tau gravity strategy are studied for perching tasks. A key parameter of the method inspired by biological systems is discussed. Two perching scenarios, one from a flight state (with non-zero initial velocity and one from a hovering state (with zero initial velocity, are studied. Numerical simulations with a rotary vehicle are presented as examples to demonstrate the performance of the proposed approach. The simulation results show that the resulting flight trajectories meet all the desired requirements for the vehicle in perching on an object.

  7. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  8. Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings

    Science.gov (United States)

    Slesarenko, Viacheslav; Kazarinov, Nikita; Rudykh, Stephan

    2017-03-01

    The superior mechanical properties of biological materials originate in their complex hierarchical microstructures, combining stiff and soft constituents at different length scales. In this work, we employ a three-dimensional multi-materials printing to fabricate the bio-inspired staggered composites, and study their mechanical properties and failure mechanisms. We observe that bio-inspired staggered composites with inclined stiff tablets are able to undergo two different failure modes, depending on the inclination angle. We find that such artificial structure demonstrates high toughness only under loading applied at relatively small angle to the tablets stacking direction, while for higher angles the composites fail catastrophically. This aspect of the failure behavior was captured experimentally as well as by means of the finite element analysis. We show that even a relatively simple failure model with a strain energy limiter, can be utilized to qualitatively distinguish these two different modes of failure, occurring in the artificial bio-inspired composites.

  9. Segmentation algorithm via Cellular Neural/Nonlinear Network: implementation on Bio-inspired hardware platform

    Science.gov (United States)

    Karabiber, Fethullah; Vecchio, Pietro; Grassi, Giuseppe

    2011-12-01

    The Bio-inspired (Bi-i) Cellular Vision System is a computing platform consisting of sensing, array sensing-processing, and digital signal processing. The platform is based on the Cellular Neural/Nonlinear Network (CNN) paradigm. This article presents the implementation of a novel CNN-based segmentation algorithm onto the Bi-i system. Each part of the algorithm, along with the corresponding implementation on the hardware platform, is carefully described through the article. The experimental results, carried out for Foreman and Car-phone video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frames/s. Comparisons with existing CNN-based methods show that the conceived approach is more accurate, thus representing a good trade-off between real-time requirements and accuracy.

  10. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  11. Towards a Bio-inspired Security Framework for Mission-Critical Wireless Sensor Networks

    Science.gov (United States)

    Ren, Wei; Song, Jun; Ma, Zhao; Huang, Shiyong

    Mission-critical wireless sensor networks (WSNs) have been found in numerous promising applications in civil and military fields. However, the functionality of WSNs extensively relies on its security capability for detecting and defending sophisticated adversaries, such as Sybil, worm hole and mobile adversaries. In this paper, we propose a bio-inspired security framework to provide intelligence-enabled security mechanisms. This scheme is composed of a middleware, multiple agents and mobile agents. The agents monitor the network packets, host activities, make decisions and launch corresponding responses. Middleware performs an infrastructure for the communication between various agents and corresponding mobility. Certain cognitive models and intelligent algorithms such as Layered Reference Model of Brain and Self-Organizing Neural Network with Competitive Learning are explored in the context of sensor networks that have resource constraints. The security framework and implementation are also described in details.

  12. Bio-inspired synthesis and characterization of superparamagnetic particles; Sintese e caracterizacao bioinspirada de particulas superparamagneticas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vinicius F., E-mail: vfc_mg@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Queiroz, Alvaro A.A. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Centro de Estudos e Inovacao em Materiais Biofuncionais Avancados

    2012-08-15

    This paper discusses the bio-inspired synthesis of type YFeAl ferrites encapsulated into polyglycerol dendrimers (PGLD) generation 3. The structure and morphological properties of the system YFeAl/PGLD was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The magnetic properties were studied through the techniques of Moessbauer spectroscopy and magnetization. The cytotoxicity of the nanoparticles encapsulated in dendrimers PGLD G3 at the cell membrane was studied against mammalian cell line CHO.K1 measuring the amount of lactate dehydrogenase (LDH) released by the cell damage. Microscopy TEM and XRD analysis indicate that spherical nanoparticles were obtained highly crystalline and monodisperse with size 20 nm

  13. Bio-inspired design strategies for central pattern generator control in modular robotics

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Carron, F; Rodriguez, F B; Varona, P, E-mail: fernando.herrero@uam.es, E-mail: f.rodriguez@uam.es, E-mail: pablo.varona@uam.es [Grupo de Neurocomputacion Biologica (GNB), Departamento de Ingenieria Informatica, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, 28049 Madrid (Spain)

    2011-03-15

    New findings in the nervous system of invertebrates have shown how a number of features of central pattern generator (CPG) circuits contribute to the generation of robust flexible rhythms. In this paper we consider recently revealed strategies that living CPGs follow to design CPG control paradigms for modular robots. To illustrate them, we divide the task of designing an example CPG for a modular robot into independent problems. We formulate each problem in a general way and provide a bio-inspired solution for each of them: locomotion information coding, individual module control and inter-module coordination. We analyse the stability of the CPG numerically, and then test it on a real robot. We analyse steady state locomotion and recovery after perturbations. In both cases, the robot is able to autonomously find a stable effective locomotion state. Finally, we discuss how these strategies can result in a more general design approach for CPG-based locomotion.

  14. 8th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Pan, Linqiang; Fang, Xianwen

    2013-01-01

    International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) is one of the flagship conferences on Bio-Computing, bringing together the world’s leading scientists from different areas of Natural Computing. Since 2006, the conferences have taken place at Wuhan (2006), Zhengzhou (2007), Adelaide (2008), Beijing (2009), Liverpool & Changsha (2010), Malaysia (2011) and India (2012). Following the successes of previous events, the 8th conference is organized and hosted by Anhui University of Science and Technology in China. This conference aims to provide a high-level international forum that researchers with different backgrounds and who are working in the related areas can use to present their latest results and exchange ideas. Additionally, the growing trend in Emergent Systems has resulted in the inclusion of two other closely related fields in the BIC-TA 2013 event, namely Complex Systems and Computational Neuroscience. These proceedings are intended for researchers in the fiel...

  15. A bio-inspired approach for the reduction of left ventricular workload.

    Directory of Open Access Journals (Sweden)

    Niema M Pahlevan

    Full Text Available Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta.

  16. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device.

    Science.gov (United States)

    Zeng, Lu; Yang, Zhe; Zhang, Huacheng; Hou, Xu; Tian, Ye; Yang, Fu; Zhou, Jianjun; Li, Lin; Jiang, Lei

    2014-02-26

    Inspired by the cooperative functions of the asymmetrical ion channels in living cells, a constructive bi-channel nanofluidic device that demonstrates the enhanced capability of multiple regulations over both the ion flux amount and the ionic rectification property is prepared. In this bi-channel system, the construction routes of the two asymmetric conical nanochannels provide a way to efficiently transform the nanodevice into four different functional working modes. In addition, the variation of external pH conditions leads the nanodevice to the uncharged, semi-charged and charged states, where the multistory ionic regulating function property is enhanced by the charged degree. This intelligent integration of the single functional nanochannels demonstrates a promising future for building more functional multi-channel integrated nanodevices as well as expands the functionalities of the bio-inspired smart nanochannels.

  17. Bio-Inspired Principles Applied to the Guidance, Navigation and Control of UAS

    Directory of Open Access Journals (Sweden)

    Reuben Strydom

    2016-07-01

    Full Text Available This review describes a number of biologically inspired principles that have been applied to the visual guidance, navigation and control of Unmanned Aerial System (UAS. The current limitations of UAS systems are outlined, such as the over-reliance on GPS, the requirement for more self-reliant systems and the need for UAS to have a greater understanding of their environment. It is evident that insects, even with their small brains and limited intelligence, have overcome many of the shortcomings of the current state of the art in autonomous aerial guidance. This has motivated research into bio-inspired systems and algorithms, specifically vision-based navigation, situational awareness and guidance.

  18. Segmentation algorithm via Cellular Neural/Nonlinear Network: implementation on Bio-inspired hardware platform

    Directory of Open Access Journals (Sweden)

    Vecchio Pietro

    2011-01-01

    Full Text Available Abstract The Bio-inspired (Bi-i Cellular Vision System is a computing platform consisting of sensing, array sensing-processing, and digital signal processing. The platform is based on the Cellular Neural/Nonlinear Network (CNN paradigm. This article presents the implementation of a novel CNN-based segmentation algorithm onto the Bi-i system. Each part of the algorithm, along with the corresponding implementation on the hardware platform, is carefully described through the article. The experimental results, carried out for Foreman and Car-phone video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frames/s. Comparisons with existing CNN-based methods show that the conceived approach is more accurate, thus representing a good trade-off between real-time requirements and accuracy.

  19. Multi-AUV Hunting Algorithm Based on Bio-inspired Neural Network in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2015-11-01

    Full Text Available The multi-AUV hunting problem is one of the key issues in multi-robot system research. In order to hunt the target efficiently a new hunting algorithm based on a bio-inspired neural network has been proposed in this paper. Firstly, the AUV's working environment can be represented, based on the biological-inspired neural network model. There is one-to-one correspondence between each neuron in the neural network and the position of the grid map in the underwater environment. The activity values of biological neurons then guide the AUV's sailing path and finally the target is surrounded by AUVs. In addition, a method called negotiation is used to solve the AUV's allocation of hunting points. The simulation results show that the algorithm used in the paper can provide rapid and highly efficient path planning in the unknown environment with obstacles and non-obstacles.

  20. INVESTIGATING PECTORAL SHAPES AND LOCOMOTIVE STRATEGIES FOR CONCEPTUAL DESIGNING BIO-INSPIRED ROBOTIC FISH

    Directory of Open Access Journals (Sweden)

    A. I. MAINONG

    2017-01-01

    Full Text Available This paper describes the performance analysis of a conceptual bio-inspired robotic fish design, which is based on the morphology similar to the boxfish (Ostracion melagris. The robotic fish prototype is driven by three micro servos; two on the pectoral fins, and one on the caudal fin. Two electronic rapid prototyping boards were employed; one for the movement of robotic fish, and one for the force sensors measurements. The robotic fish were built using fused deposition modeling (FDM, more popularly known as the 3D printing method. Several designs of pectoral fins (rectangular, triangular and quarter-ellipse with unchanging the value of aspect ratio (AR employed to measure the performance of the prototype robotic fish in terms of hydrodynamics, thrust and maneuvering characteristics. The analysis of the unmanned robotic system performance is made experimentally and the results show that the proposed bioinspired robotic prototype opens up the possibility of design optimization research for future work.

  1. A Bio-Inspired Robust Adaptive Random Search Algorithm for Distributed Beamforming

    CERN Document Server

    Tseng, Chia-Shiang; Lin, Che

    2010-01-01

    A bio-inspired robust adaptive random search algorithm (BioRARSA), designed for distributed beamforming for sensor and relay networks, is proposed in this work. It has been shown via a systematic framework that BioRARSA converges in probability and its convergence time scales linearly with the number of distributed transmitters. More importantly, extensive simulation results demonstrate that the proposed BioRARSA outperforms existing adaptive distributed beamforming schemes by as large as 29.8% on average. This increase in performance results from the fact that BioRARSA can adaptively adjust its sampling stepsize via the "swim" behavior inspired by the bacterial foraging mechanism. Hence, the convergence time of BioRARSA is insensitive to the initial sampling stepsize of the algorithm, which makes it robust against the dynamic nature of distributed wireless networks.

  2. A Bio-inspired Approach for Power and Performance Aware Resource Allocation in Clouds

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2016-01-01

    Full Text Available In order to cope with increasing demand, cloud market players such as Amazon, Microsoft, Google, Gogrid, Flexiant, etc. have set up large sized data centers. Due to monotonically increasing size of data centers and heterogeneity of resources have made resource allocation a challenging task. A large percentage of total energy consumption of the data centers gets wasted because of under-utilization of resources. Thus, there is a need of resource allocation technique that improves the utilization of resources with effecting performance of services being delivered to end users. In this work, a bio-inspired resource allocation approach is proposed with the aim to improve utilization and hence the energy efficiency of the cloud infrastructure. The proposed approach makes use of Cuckoo search for power and performance aware allocation of resources to the services hired by the end users. The proposed approach is implemented in CloudSim. The simulation results have shown approximately 12% saving in energy consumption.

  3. Bio-inspired design strategies for central pattern generator control in modular robotics.

    Science.gov (United States)

    Herrero-Carrón, F; Rodríguez, F B; Varona, P

    2011-03-01

    New findings in the nervous system of invertebrates have shown how a number of features of central pattern generator (CPG) circuits contribute to the generation of robust flexible rhythms. In this paper we consider recently revealed strategies that living CPGs follow to design CPG control paradigms for modular robots. To illustrate them, we divide the task of designing an example CPG for a modular robot into independent problems. We formulate each problem in a general way and provide a bio-inspired solution for each of them: locomotion information coding, individual module control and inter-module coordination. We analyse the stability of the CPG numerically, and then test it on a real robot. We analyse steady state locomotion and recovery after perturbations. In both cases, the robot is able to autonomously find a stable effective locomotion state. Finally, we discuss how these strategies can result in a more general design approach for CPG-based locomotion.

  4. Bio-inspired Methods for Dynamic Network Analysis in Science Mapping

    CERN Document Server

    Soos, Sandor

    2011-01-01

    We apply bio-inspired methods for the analysis of different dynamic bibliometric networks (linking papers by citation, authors, and keywords, respectively). Biological species are clusters of individuals defined by widely different criteria and in the biological perspective it is natural to (1) use different categorizations on the same entities (2) to compare the different categorizations and to analyze the dissimilarities, especially as they change over time. We employ the same methodology to comparisons of bibliometric classifications. We constructed them as analogs of three species concepts: cladistic or lineage based, similarity based, and "biological species" (based on co-reproductive ability). We use the Rand and Jaccard indexes to compare classifications in different time intervals. The experiment is aimed to address the classic problem of science mapping, as to what extent the various techniques based on different bibliometric indicators, such as citations, keywords or authors are able to detect conve...

  5. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm.

    Science.gov (United States)

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-07-28

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  6. Parallel Processing and Bio-inspired Computing for Biomedical Image Registration

    Directory of Open Access Journals (Sweden)

    Silviu Ioan Bejinariu

    2014-07-01

    Full Text Available Image Registration (IR is an optimization problem computing optimal parameters of a geometric transform used to overlay one or more source images to a given model by maximizing a similarity measure. In this paper the use of bio-inspired optimization algorithms in image registration is analyzed. Results obtained by means of three different algorithms are compared: Bacterial Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and Clonal Selection Algorithm (CSA. Depending on the images type, the registration may be: area based, which is slow but more precise, and features based, which is faster. In this paper a feature based approach based on the Scale Invariant Feature Transform (SIFT is proposed. Finally, results obtained using sequential and parallel implementations on multi-core systems for area based and features based image registration are compared.

  7. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2015-07-01

    Full Text Available In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA-based wireless mesh network (WMN with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  8. Book Titled Autonomic Networking-on-Chip: Bio-Inspired Specification, Development, and Verification: An Introduction

    Directory of Open Access Journals (Sweden)

    Phan Cong Vinh

    2015-03-01

    Full Text Available Despite the growing mainstream importance and unique advantages of autonomic networking-onchip (ANoC technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent researchers in industry and academia around the world. A response to the critical need for a global information exchange and dialogue, it is written for engineers, scientists, practitioners, and other researchers who have a basic understanding of NoC and are now ready to learn how to specify, develop, and verify ANoC using rigorous approaches.

  9. Multi-AUV Hunting Algorithm Based on Bio-inspired Neural Network in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2015-11-01

    Full Text Available The multi-AUV hunting problem is one of the key issues in multi-robot system research. In order to hunt the target efficiently, a new hunting algorithm based on a bio-inspired neural network has been proposed in this paper. Firstly, the AUV’s working environment can be represented, based on the biological-inspired neural network model. There is one-to-one correspondence between each neuron in the neural network and the position of the grid map in the underwater environment. The activity values of biological neurons then guide the AUV’s sailing path and finally the target is surrounded by AUVs. In addition, a method called negotiation is used to solve the AUV’s allocation of hunting points. The simulation results show that the algorithm used in the paper can provide rapid and highly efficient path planning in the unknown environment with obstacles and non-obstacles.

  10. A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology

    Science.gov (United States)

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-01-01

    Introduction Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. Methods A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Results Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. Conclusions This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. PMID:22768892

  11. Bio-inspired catechol chemistry: a new way to develop a re-moldable and injectable coacervate hydrogel.

    Science.gov (United States)

    Oh, Yeon Jeong; Cho, Il Hwan; Lee, Haeshin; Park, Ki-Jung; Lee, Hyukjin; Park, Sung Young

    2012-12-18

    A new way is demonstrated to develop a bio-inspired coacervate hydrogel by following catechol chemistry showing injectable and re-moldable physical properties. The formed coacervate shows potential long-term stability under water. Depending on pH, formation of the coacervate has been verified which is confirmed by XPS and zeta potential measurements.

  12. Optimizing the design of bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations.

    Science.gov (United States)

    Cui, Chang; Sun, Jian

    2014-01-01

    Due to elastic modulus mismatch between the different layers in all-ceramic dental restorations, high tensile stress concentrates at the interface between the ceramic core and cement. In natural tooth structure, stress concentration is reduced by the functionally graded structure of dentin-enamel junction (DEJ) which interconnects enamel and dentin. Inspired by DEJ, the aim of this study was to explore the optimum design of a bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations to achieve excellent stress reduction and distribution. Three-dimensional finite element model of a multi-layer structure was developed, which comprised bilayered ceramic, bio-inspired FGM layer, cement, and dentin. Finite element method and first-order optimization technique were used to realize the optimal bio-inspired FGM layer design. The bio-inspired FGM layer significantly reduced stress concentration at the interface between the crown and cement, and stresses were evenly distributed in FGM layer. With the optimal design, an elastic modulus distribution similar to that in DEJ occurred in the FGM layer.

  13. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    Science.gov (United States)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed

  14. Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ming-Hsun; Chen, Shentan; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris; Raugei, Simone

    2013-06-03

    Recent advances in Ni-based bio-inspired catalysts obtained in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center (EFRC) at the Pacific Northwest National Laboratory, demonstrated the possibility of cleaving H2 or generating H2 heterolytically with turnover frequencies comparable or superior to those of hydrogenase enzymes. In these catalysts the transformation between H2 and protons proceeds via an interplay between proton, hydride and electron transfer steps and involves the interaction of a dihydrogen molecule with both a Ni(II) center and with pendant amine bases incorporated in a six-membered ring, which act as proton relays. These catalytic platforms are well designed in that when protons are correctly positioned (endo) toward the Raugei-ACS-Books.docxPrinted 12/18/12 2 metal center, catalysis proceeds at very high rates. We will show that the proton removal (for H2 oxidation) and proton delivery (for H2 production) are often the rate determining steps. Furthermore, the presence of multiple protonation sites gives rise to reaction intermediates with protons not correctly positioned (exo relative to the metal center). These isomers are easily accessible kinetically and are detrimental to catalysis because of the slow isomerization processes necessary to convert them to the catalytically competent endo isomers. In this chapter we will review the major findings of our computational investigation on the role of proton relays for H2 chemistry and provide guidelines for the design of new catalysts. This research was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a Raugei-Bio-Inspired Molecular-Catalysts-for-Hydrogen- Oxidation

  15. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    Science.gov (United States)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  16. Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

    Science.gov (United States)

    Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick

    2017-08-01

    In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

  17. Implementation of an Innovative Bio Inspired GA and PSO Algorithm for Controller design considering Steam GT Dynamics

    CERN Document Server

    Shivakumar, R

    2010-01-01

    The Application of Bio Inspired Algorithms to complicated Power System Stability Problems has recently attracted the researchers in the field of Artificial Intelligence. Low frequency oscillations after a disturbance in a Power system, if not sufficiently damped, can drive the system unstable. This paper provides a systematic procedure to damp the low frequency oscillations based on Bio Inspired Genetic (GA) and Particle Swarm Optimization (PSO) algorithms. The proposed controller design is based on formulating a System Damping ratio enhancement based Optimization criterion to compute the optimal controller parameters for better stability. The Novel and contrasting feature of this work is the mathematical modeling and simulation of the Synchronous generator model including the Steam Governor Turbine (GT) dynamics. To show the robustness of the proposed controller, Non linear Time domain simulations have been carried out under various system operating conditions. Also, a detailed Comparative study has been don...

  18. Pushing the lipid envelope: using bio-inspired nanocomposites to understand and exploit lipid membrane limitations

    Science.gov (United States)

    Montano, Gabriel

    Lipids serve as the organizing matrix material for biological membranes, the site of interaction of cells with the external environment. . As such, lipids play a critical role in structure/function relationships of an extraordinary number of critical biological processes. In this talk, we will look at bio-inspired membrane assemblies to better understand the roles of lipids in biological systems as well as attempt to generate materials that can mimic and potentially advance upon biological membrane processes. First, we will investigate the response of lipids to adverse conditions. In particular, I will present data that demonstrates the response of lipids to harsh conditions and how such responses can be exploited to generate nanocomposite rearrangements. I will also show the effect of adding the endotoxin lipopolysaccharide (LPS) to lipid bilayer assemblies and describe implications on our understanding of LPS organization in biological systems as well as describe induced lipid modifications that can be exploited to organize membrane composites with precise, two-dimensional geometric control. Lastly, I will describe the use of amphiphilic block copolymers to create membrane nanocomposites capable of mimicking biological systems. In particular, I will describe the use of our polymer-based membranes in creating artificial photosynthetic assemblies that rival biological systems in function in a more flexible, dynamic matrix.

  19. Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites

    Science.gov (United States)

    Han, Yue; Zhang, Xiaohua; Yu, Xueping; Zhao, Jingna; Li, Shan; Liu, Feng; Gao, Peng; Zhang, Yongyi; Zhao, Tong; Li, Qingwen

    2015-01-01

    High performance nanocomposites require well dispersion and high alignment of the nanometer-sized components, at a high mass or volume fraction as well. However, the road towards such composite structure is severely hindered due to the easy aggregation of these nanometer-sized components. Here we demonstrate a big step to approach the ideal composite structure for carbon nanotube (CNT) where all the CNTs were highly packed, aligned, and unaggregated, with the impregnated polymers acting as interfacial adhesions and mortars to build up the composite structure. The strategy was based on a bio-inspired aggregation control to limit the CNT aggregation to be sub 20–50 nm, a dimension determined by the CNT growth. After being stretched with full structural relaxation in a multi-step way, the CNT/polymer (bismaleimide) composite yielded super-high tensile strengths up to 6.27–6.94 GPa, more than 100% higher than those of carbon fiber/epoxy composites, and toughnesses up to 117–192 MPa. We anticipate that the present study can be generalized for developing multifunctional and smart nanocomposites where all the surfaces of nanometer-sized components can take part in shear transfer of mechanical, thermal, and electrical signals. PMID:26098627

  20. Novel bio-inspired smart control for hazard mitigation of civil structures

    Science.gov (United States)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  1. An Experimental Investigation on Bio-inspired Icephobic Coatings for Aircraft Icing Mitigation

    Science.gov (United States)

    Hu, Hui; Li, Haixing; Waldman, Rye

    2016-11-01

    By leveraging the Icing Research Tunnel available at Iowa State University (ISU-IRT), a series of experimental investigations were conducted to elucidate the underlying physics pertinent to aircraft icing phenomena. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were developed and applied to quantify the transient behavior of water droplet impingement, wind-driven surface water runback, unsteady heat transfer and dynamic ice accreting process over the surfaces of airfoil/wing models. The icephobic performance of various bio-inspired superhydrophobic coatings were evaluated quantitatively at different icing conditions. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather. The research work is partially supported by NASA with Grant Number NNX12AC21A and National Science Foundation under Award Numbers of CBET-1064196 and CBET-1435590.

  2. Design and Dynamics Analysis of a Bio-Inspired Intermittent Hopping Robot for Planetary Surface Exploration

    Directory of Open Access Journals (Sweden)

    Long Bai

    2012-10-01

    Full Text Available A small, bio-inspired and minimally actuated intermittent hopping robot for planetary surface exploration is proposed in this paper. The robot uses a combined-geared six-bar linkage/spring mechanism, which has a possible rich trajectory and metamorphic characteristics and, due to this, the robot is able to recharge, lock/release and jump by using just a micro-power motor as the actuator. Since the robotic system has a closed-chain structure and employs underactuated redundant motion, the constrained multi-body dynamics are derived with time-varying driving parameters and ground unilateral constraint both taken into consideration. In addition, the established dynamics equations, mixed of higher order differential and algebraic expressions, are solved by the immediate integration algorithm. A prototype is implemented and experiments are carried out. The results show that the robot, using a micro-power motor as the actuator and solar cells as the power supply, can achieve a biomimetic multi-body hopping stance and a nonlinearly increasing driving force. Typically, the robot can jump a horizontal distance of about 1 m and a vertical height of about 0.3 m, with its trunk and foot moving stably during takeoff. In addition, the computational and experimental results are consistent as regards the hopping performance of the robot, which suggests that the proposed dynamics model and its solution have general applicability to motion prediction and the performance analysis of intermittent hopping robots.

  3. LINEBACKER: LINE-speed Bio-inspired Analysis and Characterization for Event Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Oehmen, Christopher S.; Bruillard, Paul J.; Matzke, Brett D.; Phillips, Aaron R.; Star, Keith T.; Jensen, Jeffrey L.; Nordwall, Douglas J.; Thompson, Seth R.; Peterson, Elena S.

    2016-08-04

    The cyber world is a complex domain, with digital systems mediating a wide spectrum of human and machine behaviors. While this is enabling a revolution in the way humans interact with each other and data, it also is exposing previously unreachable infrastructure to a worldwide set of actors. Existing solutions for intrusion detection and prevention that are signature-focused typically seek to detect anomalous and/or malicious activity for the sake of preventing or mitigating negative impacts. But a growing interest in behavior-based detection is driving new forms of analysis that move the emphasis from static indicators (e.g. rule-based alarms or tripwires) to behavioral indicators that accommodate a wider contextual perspective. Similar to cyber systems, biosystems have always existed in resource-constrained hostile environments where behaviors are tuned by context. So we look to biosystems as an inspiration for addressing behavior-based cyber challenges. In this paper, we introduce LINEBACKER, a behavior-model based approach to recognizing anomalous events in network traffic and present the design of this approach of bio-inspired and statistical models working in tandem to produce individualized alerting for a collection of systems. Preliminary results of these models operating on historic data are presented along with a plugin to support real-world cyber operations.

  4. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.

    Science.gov (United States)

    Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei

    2014-09-23

    Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.

  5. Medical Image Registration by means of a Bio-Inspired Optimization Strategy

    Directory of Open Access Journals (Sweden)

    Hariton Costin

    2012-07-01

    Full Text Available Medical imaging mainly treats and processes missing, ambiguous, complementary, redundant and distorted data. Biomedical image registration is the process of geometric overlaying or alignment of two or more 2D/3D images of the same scene, taken at different time slots, from different angles, and/or by different acquisition systems. In medical practice, it is becoming increasingly important in diagnosis, treatment planning, functional studies, computer-guided therapies, and in biomedical research. Technically, image registration implies a complex optimization of different parameters, performed at local or/and global levels. Local optimization methods frequently fail because functions of the involved metrics with respect to transformation parameters are generally nonconvex and irregular. Therefore, global methods are often required, at least at the beginning of the procedure. In this paper, a new evolutionary and bio-inspired approach -- bacterial foraging optimization -- is adapted for single-slice to 3-D PET and CT multimodal image registration. Preliminary results of optimizing the normalized mutual information similarity metric validated the efficacy of the proposed method by using a freely available medical image database.

  6. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures

    Science.gov (United States)

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-02-01

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A-1 without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.

  7. Bio-inspired adaptive feedback error learning architecture for motor control.

    Science.gov (United States)

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  8. The tubercles on humpback whales' flippers: application of bio-inspired technology.

    Science.gov (United States)

    Fish, Frank E; Weber, Paul W; Murray, Mark M; Howle, Laurens E

    2011-07-01

    The humpback whale (Megaptera novaeangliae) is exceptional among the large baleen whales in its ability to undertake aquabatic maneuvers to catch prey. Humpback whales utilize extremely mobile, wing-like flippers for banking and turning. Large rounded tubercles along the leading edge of the flipper are morphological structures that are unique in nature. The tubercles on the leading edge act as passive-flow control devices that improve performance and maneuverability of the flipper. Experimental analysis of finite wing models has demonstrated that the presence of tubercles produces a delay in the angle of attack until stall, thereby increasing maximum lift and decreasing drag. Possible fluid-dynamic mechanisms for improved performance include delay of stall through generation of a vortex and modification of the boundary layer, and increase in effective span by reduction of both spanwise flow and strength of the tip vortex. The tubercles provide a bio-inspired design that has commercial viability for wing-like structures. Control of passive flow has the advantages of eliminating complex, costly, high-maintenance, and heavy control mechanisms, while improving performance for lifting bodies in air and water. The tubercles on the leading edge can be applied to the design of watercraft, aircraft, ventilation fans, and windmills.

  9. Bio-inspired Miniature Suction Cups Actuated by Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Hu Bing-Shan

    2009-09-01

    Full Text Available Wall climbing robots using negative pressure suction always employ air pumps which have great noise and large volume. Two prototypes of bio-inspired miniature suction cup actuated by shape memory alloy (SMA are designed based on studying characteristics of biologic suction apparatuses, and the suction cups in this paper can be used as adhesion mechanisms for miniature wall climbing robots without air pumps. The first prototype with a two-way shape memory effect (TWSME extension TiNi spring imitates the piston structure of the stalked sucker; the second one actuated by a one way SMA actuator with a bias has a basic structure of stiff margin, guiding element, leader and elastic element. Analytical model of the second prototype is founded considering the constitutive model of the SMA actuator, the deflection of the thin elastic plate under compound load and the thermo-dynamic model of the sealed air cavity. Experiments are done to test their suction characteristics, and the analytical model of the second prototype is simulated on Matlab/simulink platform and validated by experiments.

  10. Data-Foraging-Oriented Reconnaissance Based on Bio-Inspired Indirect Communication for Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Josué Castañeda Cisneros

    2017-07-01

    Full Text Available In recent years, aerial vehicles have allowed exploring scenarios with harsh conditions. These can conduct reconnaissance tasks in areas that change periodically and have a high spatial and temporal resolution. The objective of a reconnaissance task is to survey an area and retrieve strategic information. The aerial vehicles, however, have inherent constraints in terms of energy and transmission range due to their mobility. Despite these constraints, the Data Foraging problem requires the aerial vehicles to exchange information about profitable data sources. In Data Foraging, establishing a single path is not viable because of dynamic conditions of the environment. Thus, reconnaissance must be focused on periodically searching profitable environmental data sources, as some animals perform foraging. In this work, a data-foraging-oriented reconnaissance algorithm based on bio-inspired indirect communication for aerial vehicles is presented. The approach establishes several paths that overlap to identify valuable data sources. Inspired by the stigmergy principle, the aerial vehicles indirectly communicate through artificial pheromones. The aerial vehicles traverse the environment using a heuristic algorithm that uses the artificial pheromones as feedback. The solution is formally defined and mathematically evaluated. In addition, we show the viability of the algorithm by simulations which have been tested through various statistical hypothesis.

  11. A compact bio-inspired visible/NIR imager for image-guided surgery (Conference Presentation)

    Science.gov (United States)

    Gao, Shengkui; Garcia, Missael; Edmiston, Chris; York, Timothy; Marinov, Radoslav; Mondal, Suman B.; Zhu, Nan; Sudlow, Gail P.; Akers, Walter J.; Margenthaler, Julie A.; Liang, Rongguang; Pepino, Marta; Achilefu, Samuel; Gruev, Viktor

    2016-03-01

    Inspired by the visual system of the morpho butterfly, we have designed, fabricated, tested and clinically translated an ultra-sensitive, light weight and compact imaging sensor capable of simultaneously capturing near infrared (NIR) and visible spectrum information. The visual system of the morpho butterfly combines photosensitive cells with spectral filters at the receptor level. The spectral filters are realized by alternating layers of high and low dielectric constant, such as air and cytoplasm. We have successfully mimicked this concept by integrating pixelated spectral filters, realized by alternating silicon dioxide and silicon nitrate layers, with an array of CCD detectors. There are four different types of pixelated spectral filters in the imaging plane: red, green, blue and NIR. The high optical density (OD) of all spectral filters (OD>4) allow for efficient rejections of photons from unwanted bands. The single imaging chip weighs 20 grams with form factor of 5mm by 5mm. The imaging camera is integrated with a goggle display system. A tumor targeted agent, LS301, is used to identify all spontaneous tumors in a transgenic PyMT murine model of breast cancer. The imaging system achieved sensitivity of 98% and selectivity of 95%. We also used our imaging sensor to locate sentinel lymph nodes (SLNs) in patients with breast cancer using indocyanine green tracer. The surgeon was able to identify 100% of SLNs when using our bio-inspired imaging system, compared to 93% when using information from the lymphotropic dye and 96% when using information from the radioactive tracer.

  12. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  13. Artificial Roughness Encoding with a Bio-inspired MEMS-based Tactile Sensor Array

    Directory of Open Access Journals (Sweden)

    Calogero Maria Oddo

    2009-04-01

    Full Text Available A compliant 2x2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad.

  14. Performances of Three Miniature Bio-inspired Optic Flow Sensors under Natural Conditions

    Directory of Open Access Journals (Sweden)

    Stéphane Viollet

    2011-02-01

    Full Text Available Considerable attention has been paid during the last decade to vision-based navigation systems based on optic flow (OF cues. OF-based systems have been implemented on an increasingly large number of sighted autonomous robotic platforms. Nowadays, the OF is measured using conventional cameras, custom-made sensors and even optical mouse chips. However, very few studies have dealt so far with the reliability of these OF sensors in terms of their precision, range and sensitivity to illuminance variations. Three miniature custom-made OF sensors developed at our laboratory, which were composed of photosensors connected to an OF processing unit were tested and compared in this study, focusing on their responses and characteristics in real indoor and outdoor environments in a large range of illuminance. It was concluded that by combining a custom-made aVLSI retina equipped with Adaptive Pixels for Insect-based Sensor (APIS with a bio-inspired visual processing system, it is possible to obtain highly effective miniature sensors for measuring the OF under real environmental conditions.

  15. Optimization of PID Controller for Brushless DC Motor by using Bio-inspired Algorithms

    Directory of Open Access Journals (Sweden)

    Sanjay Kr. Singh

    2014-02-01

    Full Text Available This study presents the use and comparison of various bio-inspired algorithms for optimizing the response of a PID controller for a Brushless DC Motor in contrast to the conventional methods of tuning. For the optimization of the PID controllers Genetic Algorithm, Multi-objective Genetic Algorithm and Simulated Annealing have been used. PID controller tuning with soft-computing algorithms comprises of obtaining the best possible outcome for the three PID parameters for improving the steady state characteristics and performance indices like overshoot percentage, rise time and settling time. For the calculation and simulation of the results the Brushless DC Motor model, Maxon EC 45 flat ф 45 mm with Hall Sensors Motor has been used. The results obtained the optimization using Genetic Algorithms, Multi-objective Genetic Algorithm and Simulated Annealing is compared with the ones derived from the Ziegler-Nichols method and the MATLAB SISO Tool. And it is observed that comparatively better results are obtained by optimization using Simulated Annealing offering better steady state response.

  16. Adhesive Contact in Animal: Morphology, Mechanism and Bio-Inspired Application

    Institute of Scientific and Technical Information of China (English)

    Aihong Ji; Longbao Han; Zhendong Dai

    2011-01-01

    Many animals possess adhesive pads on their feet,which are able to attach to various substrates while controlling adhesive forces during locomotion.This review article studies the morphology of adhesive devices in animals,and the physical mechanisms of wet adhesion and dry adhesion.The adhesive pads are either ‘smooth' or densely covered with special adhesive setae.Smooth pads adhere by wet adhesion,which is facilitated by fluid secreted from the pads,whereas hairy pads can adhere by dry adhesion or wet adhesion.Contact area,distance between pad and substrate,viscosity and surface tension of the liquid filling the gap between pad and substrate are the most important factors which determine the wet adhesion.Dry adhesion was found only in hairy pads,which occurs in geckos and spiders.It was demonstrated that van der Waals interaction is the dominant adhesive force in geckos' adhesion.The bio-inspired applications derived from adhesive pads are also reviewed.

  17. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications.

    Science.gov (United States)

    Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe

    2015-12-01

    Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering.

  18. B-iTRS: A Bio-Inspired Trusted Routing Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mingchuan Zhang

    2015-01-01

    Full Text Available In WSNs, routing algorithms need to handle dynamical changes of network topology, extra overhead, energy saving, and other requirements. Therefore, routing in WSNs is an extremely interesting and challenging issue. In this paper, we present a novel bio-inspired trusted routing scheme (B-iTRS based on ant colony optimization (ACO and Physarum autonomic optimization (PAO. For trust assessment, B-iTRS monitors neighbors’ behavior in real time, receives feedback from Sink, and then assesses neighbors’ trusts based on the acquired information. For routing scheme, each node finds routes to the Sink based on ACO and PAO. In the process of path finding, B-iTRS senses the load and trust value of each node and then calculates the link load and link trust of the found routes to support the route selection. Moreover, B-iTRS also assesses the route based on PAO to maintain the route table. Simulation results show how B-iTRS can achieve the effective performance compared to existing state-of-the-art algorithms.

  19. Bio-Inspired Supramolecular Chemistry Provides Highly Concentrated Dispersions of Carbon Nanotubes in Polythiophene

    Directory of Open Access Journals (Sweden)

    Yen-Ting Lin

    2016-06-01

    Full Text Available In this paper we report the first observation, through X-ray diffraction, of noncovalent uracil–uracil (U–U dimeric π-stacking interactions in carbon nanotube (CNT–based supramolecular assemblies. The directionally oriented morphology determined using atomic force microscopy revealed highly organized behavior through π-stacking of U moieties in a U-functionalized CNT derivative (CNT–U. We developed a dispersion system to investigate the bio-inspired interactions between an adenine (A-terminated poly(3-adeninehexyl thiophene (PAT and CNT–U. These hybrid CNT–U/PAT materials interacted through π-stacking and multiple hydrogen bonding between the U moieties of CNT–U and the A moieties of PAT. Most importantly, the U···A multiple hydrogen bonding interactions between CNT–U and PAT enhanced the dispersion of CNT–U in a high-polarity solvent (DMSO. The morphology of these hybrids, determined using transmission electron microscopy, featured grape-like PAT bundles wrapped around the CNT–U surface; this tight connection was responsible for the enhanced dispersion of CNT–U in DMSO.

  20. Bio-inspired annelid robot: a dielectric elastomer actuated soft robot.

    Science.gov (United States)

    Xu, Liang; Chen, Han-Qing; Zou, Jiang; Dong, Wan-Ting; Gu, Guo-Ying; Zhu, Li-Min; Zhu, Xiang-Yang

    2017-01-31

    Biologically inspired robots with inherent softness and body compliance increasingly attract attention in the field of robotics. Aimed at solving existing problems with soft robots, regarding actuation technology and biological principles, this paper presents a soft bio-inspired annelid robot driven by dielectric elastomer actuators (DEAs) that can advance on flat rigid surfaces. The DEA, a kind of soft functional actuator, is designed and fabricated to mimic the axial elongation and differential friction of a single annelid body segment. Several (at least three) DEAs are connected together into a movable multi-segment robot. Bristles are attached at the bottom of some DEAs to achieve differential friction for imitating the setae of annelids. The annelid robot is controlled by periodic square waves, propagating from the posterior to the anterior, which imitate the peristaltic waves of annelids. Controlled by these waves, each DEA, one-by-one from tail to head, anchors to the ground by circumferential distention and pushes the front DEAs forward by axial elongation, enabling the robot to advance. Preliminary tests demonstrate that a 3-segment robot can reach an average speed of 5.3 mm s(-1) (1.871 body lengths min(-1)) on flat rigid surfaces and can functionally mimic the locomotion of annelids. Compared to the existing robots that imitate terrestrial annelids our annelid robot shows advantages in terms of speed and bionics.

  1. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures

    Science.gov (United States)

    Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N.; Applegate, Matthew B.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-05-01

    In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.

  2. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor

    Energy Technology Data Exchange (ETDEWEB)

    Curet, Oscar M; Patankar, Neelesh A; MacIver, Malcolm A [Department of Mechanical Engineering, Northwestern University, Evanston, IL (United States); Lauder, George V, E-mail: maciver@northwestern.edu [Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA (United States)

    2011-06-15

    South American electric knifefish are a leading model system within neurobiology. Recent efforts have focused on understanding their biomechanics and relating this to their neural processing strategies. Knifefish swim by means of an undulatory fin that runs most of the length of their body, affixed to the belly. Propelling themselves with this fin enables them to keep their body relatively straight while swimming, enabling straightforward robotic implementation with a rigid hull. In this study, we examined the basic properties of undulatory swimming through use of a robot that was similar in some key respects to the knifefish. As we varied critical fin kinematic variables such as frequency, amplitude, and wavelength of sinusoidal traveling waves, we measured the force generated by the robot when it swam against a stationary sensor, and its velocity while swimming freely within a flow tunnel system. Our results show that there is an optimal operational region in the fin's kinematic parameter space. The optimal actuation parameters found for the robotic knifefish are similar to previously observed parameters for the black ghost knifefish, Apteronotus albifrons. Finally, we used our experimental results to show how the force generated by the robotic fin can be decomposed into thrust and drag terms. Our findings are useful for future bio-inspired underwater vehicles as well as for understanding the mechanics of knifefish swimming.

  3. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.

    Science.gov (United States)

    Curet, Oscar M; Patankar, Neelesh A; Lauder, George V; MacIver, Malcolm A

    2011-06-01

    South American electric knifefish are a leading model system within neurobiology. Recent efforts have focused on understanding their biomechanics and relating this to their neural processing strategies. Knifefish swim by means of an undulatory fin that runs most of the length of their body, affixed to the belly. Propelling themselves with this fin enables them to keep their body relatively straight while swimming, enabling straightforward robotic implementation with a rigid hull. In this study, we examined the basic properties of undulatory swimming through use of a robot that was similar in some key respects to the knifefish. As we varied critical fin kinematic variables such as frequency, amplitude, and wavelength of sinusoidal traveling waves, we measured the force generated by the robot when it swam against a stationary sensor, and its velocity while swimming freely within a flow tunnel system. Our results show that there is an optimal operational region in the fin's kinematic parameter space. The optimal actuation parameters found for the robotic knifefish are similar to previously observed parameters for the black ghost knifefish, Apteronotus albifrons. Finally, we used our experimental results to show how the force generated by the robotic fin can be decomposed into thrust and drag terms. Our findings are useful for future bio-inspired underwater vehicles as well as for understanding the mechanics of knifefish swimming.

  4. Bio-inspired online variable recruitment control of fluidic artificial muscles

    Science.gov (United States)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  5. Biomimicry as an approach for bio-inspired structure with the aid of compu

    Directory of Open Access Journals (Sweden)

    Moheb Sabry Aziz

    2016-03-01

    Full Text Available Biomimicry is the study of emulating and mimicking nature, where it has been used by designers to help in solving human problems. From centuries ago designers and architects looked at nature as a huge source of inspiration. Biomimicry argues that nature is the best, most influencing and the guaranteed source of innovation for the designers as a result of nature’s 3.85 billion years of evolution, as it holds a gigantic experience of solving problems of the environment and its inhabitants. The biomimicry emerging field deals with new technologies honed from bio-inspired engineering at the micro and macro scale levels. Architects have been searching for answers from nature to their complex questions about different kinds of structures, and they have mimicked a lot of forms from nature to create better and more efficient structures for different architectural purposes. Without computers these complex ways and forms of structures couldn’t been mimicked and thus using computers had risen the way of mimicking and taking inspiration from nature because it is considered a very sophisticated and accurate tool for simulation and computing, as a result designers can imitate different nature’s models in spite of its complexity.

  6. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    Science.gov (United States)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  7. Bio-inspired Miniature Suction Cups Actuated by Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Hu Bing-shan

    2010-02-01

    Full Text Available Wall climbing robots using negative pressure suction always employ air pumps which have great noise and large volume. Two prototypes of bio-inspired miniature suction cup actuated by shape memory alloy (SMA are designed based on studying characteristics of biologic suction apparatuses, and the suction cups in this paper can be used as adhesion mechanisms for miniature wall climbing robots without air pumps. The first prototype with a two-way shape memory effect (TWSME extension TiNi spring imitates the piston structure of the stalked sucker; the second one actuated by a one way SMA actuator with a bias has a basic structure of stiff margin, guiding element, leader and elastic element. Analytical model of the second prototype is founded considering the constitutive model of the SMA actuator, the deflection of the thin elastic plate under compound load and the thermo-dynamic model of the sealed air cavity. Experiments are done to test their suction characteristics, and the analytical model of the second prototype is simulated on Matlab/simulink platform and validated by experiments.

  8. Research on one Bio-inspired Jumping Locomotion Robot for Search and Rescue

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2014-10-01

    Full Text Available Jumping locomotion is much more effective than other locomotion means in order to tackle the unstructured and complex environment in research and rescue. Here, a bio-inspired jumping robot with a closed-chain mechanism is proposed to achieve the power amplification during taking-off. Through actuating one variable transmission mechanism to change the transmission ratio, the jumping robot reveals biological characteristics in the phase of posture adjustment when adjusting the height and distance of one jump. The kinematics and dynamics of the simplified jumping mechanism model in one jumping cycle sequence are analysed. A compliant contact model considering nonlinear damping is investigated for jumping performance under different terrain characteristics. The numerical simulation algorithm with regard to solving the dynamical equation is described and simulation results are discussed. Finally, one primary prototype and experiment are described. The experimental results show the distance of jumping in the horizontal direction increases with the increasing gear ratio, while the height of jumping decreases in reverse. The jumping robot can enhance the capability to adapt to unknown cluttered environments, such as those encountered in research and rescue, using this strategy.

  9. Bio-inspired benchmark generator for extracellular multi-unit recordings

    Science.gov (United States)

    Mondragón-González, Sirenia Lizbeth; Burguière, Eric

    2017-01-01

    The analysis of multi-unit extracellular recordings of brain activity has led to the development of numerous tools, ranging from signal processing algorithms to electronic devices and applications. Currently, the evaluation and optimisation of these tools are hampered by the lack of ground-truth databases of neural signals. These databases must be parameterisable, easy to generate and bio-inspired, i.e. containing features encountered in real electrophysiological recording sessions. Towards that end, this article introduces an original computational approach to create fully annotated and parameterised benchmark datasets, generated from the summation of three components: neural signals from compartmental models and recorded extracellular spikes, non-stationary slow oscillations, and a variety of different types of artefacts. We present three application examples. (1) We reproduced in-vivo extracellular hippocampal multi-unit recordings from either tetrode or polytrode designs. (2) We simulated recordings in two different experimental conditions: anaesthetised and awake subjects. (3) Last, we also conducted a series of simulations to study the impact of different level of artefacts on extracellular recordings and their influence in the frequency domain. Beyond the results presented here, such a benchmark dataset generator has many applications such as calibration, evaluation and development of both hardware and software architectures. PMID:28233819

  10. Bio-inspired classifier for road extraction from remote sensing imagery

    Science.gov (United States)

    Xu, Jiawei; Wang, Ruisheng; Yue, Shigang

    2014-01-01

    An adaptive approach for road extraction inspired by the mechanism of primary visual cortex (V1) is proposed. The motivation is originated by the characteristics in the receptive field from V1. It has been proved that human or primate visual systems can distinguish useful cues from real scenes effortlessly while traditional computer vision techniques cannot accomplish this task easily. This idea motivates us to design a bio-inspired model for road extraction from remote sensing imagery. The proposed approach is an improved support vector machine (SVM) based on the pooling of feature vectors, using an improved Gaussian radial basis function (RBF) kernel with tuning on synaptic gains. The synaptic gains comprise the feature vectors through an iterative optimization process representing the strength and width of Gaussian RBF kernel. The synaptic gains integrate the excitation and inhibition stimuli based on internal connections from V1. The summation of synaptic gains contributes to pooling of feature vectors. The experimental results verify the correlation between the synaptic gain and classification rules, and then show better performance in comparison with hidden Markov model, SVM, and fuzzy classification approaches. Our contribution is an automatic approach to road extraction without prelabeling and postprocessing work. Another apparent advantage is that our method is robust for images taken even under complex weather conditions such as snowy and foggy weather.

  11. Bio-Inspired Vision-Based Leader-Follower Formation Flying in the Presence of Delays

    Directory of Open Access Journals (Sweden)

    John Oyekan

    2016-08-01

    Full Text Available Flocking starlings at dusk are known for the mesmerizing and intricate shapes they generate, as well as how fluid these shapes change. They seem to do this effortlessly. Real-life vision-based flocking has not been achieved in micro-UAVs (micro Unmanned Aerial Vehicles to date. Towards this goal, we make three contributions in this paper: (i we used a computational approach to develop a bio-inspired architecture for vision-based Leader-Follower formation flying on two micro-UAVs. We believe that the minimal computational cost of the resulting algorithm makes it suitable for object detection and tracking during high-speed flocking; (ii we show that provided delays in the control loop of a micro-UAV are below a critical value, Kalman filter-based estimation algorithms are not required to achieve Leader-Follower formation flying; (iii unlike previous approaches, we do not use external observers, such as GPS signals or synchronized communication with flock members. These three contributions could be useful in achieving vision-based flocking in GPS-denied environments on computationally-limited agents.

  12. Synthesis of bio-inspired Ag–Au nanocomposite and its anti-biofilm efficacy

    Indian Academy of Sciences (India)

    S NEWASE; A V BANKAR

    2017-02-01

    In the present study, bio-inspired Ag–Au nanocomposite was synthesized using banana peel extract (BPE) powder. The Ag–Au nanocomposite was characterized using various techniques such as UV–vis spectrophotometry,transmission electron microscopy (TEM) attached with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Efficiency of AuNPs, AgNPs and Ag–Au nanocomposite was tested for their antibacterial activity against Pseudomonas aeruginosa NCIM 2948. The Ag–Au nanocomposite exhibits enhanced antimicrobial activity over its monometallic counterparts. Anti-biofilm activity of AgNPs, AuNPs and Ag–Au nanocomposite against P. aeruginosa was evaluated on glass surfaces. The Ag–Au nanocomposite exhibited the highest biofilm reduction (70–80%) when compared with individual AgNPs and AuNPs. Effect of AuNPs, AgNPs and Ag–Au nanocomposite on biofilm formation was evaluated in 96 wells microtiter plates. The percentage of biofilm inhibition was sharply increased with increasing concentration of AuNPs, AgNPs and Ag–Au composite. However, Au–Ag nanocomposite showed the highest biofilm inhibition when compared with individual AuNPs and AgNPs. This synergistic anti-biofilm activity of Ag–Au nanocomposite has an importance in the development of novel therapeutics against multidrug-resistant bacterial biofilm.

  13. Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction.

    Science.gov (United States)

    Xi, Yue-Ting; Wei, Ping-Jie; Wang, Ru-Chun; Liu, Jin-Gang

    2015-05-01

    Inspired by the multicopper active site of laccase, which efficiently catalyzes the oxygen reduction reaction (ORR), herein we report a novel bio-inspired ORR catalyst composed of a multinuclear copper complex that was immobilized on the surface of reduced graphene oxide (rGO) via the covalently grafted triazole-dipyridine (TADPy) dinucleating ligand. This rGO-TADPyCu catalyst exhibited high ORR activity and superior long-term stability compared to Pt/C in alkaline media.

  14. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications.

    Science.gov (United States)

    Chen, Chengjun; Liu, Kai; Li, Junbai; Yan, Xuehai

    2015-11-01

    Getting inspiration from nature and further developing functional architectures provides an effective way to design innovative materials and systems. Among bio-inspired materials, dipeptides and its self-assembled architectures with functionalities have recently been the subject of intensive studies. However, there is still a great challenge to explore its applications likely due to the lack of effective adaptation of their self-assembled structures as well as a lack of understanding of the self-assembly mechanisms. In this context, taking diphenylalanine (FF, a core recognition motif for molecular self-assembly of the Alzheimer's β-amyloid polypeptides) as a model of bio-inspired dipeptides, recent strategies on modulation of dipeptide-based architectures were introduced with regard to both covalent (architectures modulation by coupling functional groups) and non-covalent ways (controlled architectures by different assembly pathways). Then, applications are highlighted in some newly emerging fields of innovative photoelectronic devices and materials, such as artificial photosynthetic systems for renewable solar energy storage and renewable optical waveguiding materials for optoelectronic devices. At last, the challenges and future perspectives of these bio-inspired dipeptides are also addressed.

  15. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.

    Science.gov (United States)

    Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A

    2011-12-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s⁻¹, operate in a Reynolds number regime of 10⁵ or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  16. Bio-inspired evolutionary oral tract shape modeling for physical modeling vocal synthesis.

    Science.gov (United States)

    Howard, David M; Tyrrell, Andy M; Murphy, Damian T; Cooper, Crispin; Mullen, Jack

    2009-01-01

    Physical modeling using digital waveguide mesh (DWM) models is an audio synthesis method that has been shown to produce an acoustic output in music synthesis applications that is often described as being "organic," "warm," or "intimate." This paper describes work that takes its inspiration from physical modeling music synthesis and applies it to speech synthesis through a physical modeling mesh model of the human oral tract. Oral tract shapes are found using a computational technique based on the principles of biological evolution. Essential to successful speech synthesis using this method is accurate measurements of the cross-sectional area of the human oral tract, and these are usually derived from magnetic resonance imaging (MRI). However, such images are nonideal, because of the lengthy exposure time (relative to the time of articulation of speech sounds) required, the local ambient acoustic noise associated with the MRI machine itself and the required supine position for the subject. An alternative method is described where a bio-inspired computing technique that simulates the process of evolution is used to evolve oral tract shapes. This technique is able to produce appropriate oral tract shapes for open vowels using acoustic and excitation data from two adult males and two adult females, but shapes for close vowels that are less appropriate. This technique has none of the drawbacks associated with MRI, because all it requires from the subject is an acoustic and electrolaryngograph (or electroglottograph) recording. Appropriate oral tract shapes do enable the model to produce excellent quality synthetic speech for vowel sounds, and sounds that involve dynamic oral tract shape changes, such as diphthongs, can also be synthesized using an impedance mapped technique. Efforts to improve performance by reducing mesh quantization for close vowels had little effect, and further work is required.

  17. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    Science.gov (United States)

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  18. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  19. Superhydro-oleophobic bio-inspired polydimethylsiloxane micropillared surface via FDTS coating/blending approaches

    Science.gov (United States)

    Pan, Zihe; Shahsavan, Hamed; Zhang, Wei; Yang, Fut K.; Zhao, Boxin

    2015-01-01

    In this work we render superhydro-oleophobic properties to the surface of polydimethylsiloxane (PDMS) elastomer through bio-inspired micropillar surface and chemical modification with a fluorosilane polymer, trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FDTS). Two different chemical modification approaches were applied on both flat and micropillar PDMS: (1) vapor deposition of FDTS on cured PDMS surface, and (2) blending FDTS with the liquid PDMS precursor before curing. Comparative studies of the water and oil contact angles on the neat and FDTS-modified PDMS (both flat and micropillar) indicated that superhydro-oleophobicity was delivered by a combination of FDTS chemistry and micropillar geometry. FDTS-blended PDMS micropillar displayed better oleophobicity with an oil contact angle of ∼141° than FDTS-coated PDMS micropillar (∼115°). In contrast to the smooth surface of FDTS-blended PDMS micropillar, rough surface with some structure defects were found on the FDTS-coated micropillar surface caused by the vapor deposition process; the surface defects might be responsible for the observed low oleophobicity of FDTS-coated PDMS micropillar. Superhydrophobicity of FDTS-blended PDMS micropillar in terms of water contact angles was found to be independent of the quantity of FDTS. However, the oleophobicity of FDTS-blended PDMS micropillar was found to be dependent of the quantity of FDTS; with the increased weight concentration of FDTS in PDMS, the oils contact angle first increased and then leveled out at a finite concentration. FTIR and XPS were applied to analyze surface chemistry information suggesting the blended FDTS segregated from bulk PDMS and enriched at the surface to reduce surface tension so as to make surface super-oleophobic.

  20. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    Science.gov (United States)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  1. Investigation of Bio-Inspired Hybrid Materials through Polymer Infiltration of Thermal Spray Formed Ceramic Templates

    Science.gov (United States)

    Flynn, Katherine Claire

    certain degree of porosity (up to approximately 20%). Often, porosity is interconnected and is controlled by varying processing parameters. Through the introduction of an appropriate polymer at the porosity interface, it may be possible to achieve synergistic benefits in terms of both strength and toughness of the sprayed material. This dissertation will focus on the fabrication and evaluation of property enhancements of bio-inspired materials based on ceramic thermally sprayed scaffolds through post deposition polymer impregnation.

  2. AER synthetic generation in hardware for bio-inspired spiking systems

    Science.gov (United States)

    Linares-Barranco, Alejandro; Linares-Barranco, Bernabe; Jimenez-Moreno, Gabriel; Civit-Balcells, Anton

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. This paper addresses the problem of converting, in a computer, a conventional frame-based video stream into the spike event based representation AER. There exist several proposed software methods for synthetic generation of AER for bio-inspired systems. This paper presents a hardware implementation for one method, which is based on Linear-Feedback-Shift-Register (LFSR) pseudo-random number generation. The sequence of events generated by this hardware, which follows a Poisson distribution like a biological neuron, has been reconstructed using two AER integrator cells. The error of reconstruction for a set of images that produces different traffic loads of event in the AER bus is used as evaluation criteria. A VHDL description of the method, that includes the Xilinx PCI Core, has been implemented and tested using a general purpose PCI-AER board. This PCI-AER board has been developed by authors, and uses

  3. Constrained VPH+: a local path planning algorithm for a bio-inspired crawling robot with customized ultrasonic scanning sensor.

    Science.gov (United States)

    Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan

    This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.

  4. In situ synthesis of lead sulfide nanoclusters on eggshell membrane fibers by an ambient bio-inspired technique

    Science.gov (United States)

    Su, Huilan; Han, Jie; Wang, Na; Dong, Qun; Zhang, Di; Zhang, Chunfu

    2008-02-01

    An ambient aqueous soakage technique is successfully developed to prepare PbS nanoclusters on eggshell membrane (ESM) fibers containing some active functional groups (hydroxyl, amine, imine, etc). Based on the biomaterial ESM serving as the reactive substrate and some ESM biomacromolecules acting as the surfactant, PbS nanocrystallites are in situ formed and further assembled into well-distributed nanoparticle aggregations. This moderate bio-inspired strategy would be of great value in preparing novel functional nanomaterials. The as-prepared hybrid PbS/ESM nanocomposites could have great potential for applications in semiconductor industries, optoelectronic fields, and nanostructured devices.

  5. The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics.

    Science.gov (United States)

    Chinellato, Eris; Del Pobil, Angel P

    2009-06-01

    The topic of vision-based grasping is being widely studied in humans and in other primates using various techniques and with different goals. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic applications.

  6. Multiple Decoupled CPGs with Local Sensory Feedback for Adaptive Locomotion Behaviors of Bio-inspired Walking Robots

    DEFF Research Database (Denmark)

    Shaker Barikhan, Subhi; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Walking animals show versatile locomotion. They can also adapt their movement according to the changes of their morphology and the environmental conditions. These emergent properties are realized by biomechanics, distributed central pattern generators (CPGs), local sensory feedback, and their int...... of the front legs, to deal with morphological change, and to synchronize its movement with another robot during a collaborative task....... and the environment through local sensory feedback of each leg. Simulation results show that this bio-inspired approach generates self-organizing emergent locomotion allowing the robot to adaptively form regular patterns, to stably walk while pushing an object with its front legs or performing multiple stepping...

  7. Analytical development of a binuclear oxo-manganese complex bio-inspired on oxidase enzyme for doping control analysis of acetazolamide.

    Science.gov (United States)

    Machini, Wesley B S; Teixeira, Marcos F S

    2016-05-15

    A bio-inspired electrochemical sensor using a binuclear oxo-manganese complex was evaluated and applied in the detection of a substance associated with doping in sports: acetazolamide (ACTZ). Investigation was made of the influence of different experimental variables on the electrocatalytic oxidation of ACTZ by the bio-inspired sensor, such as pH and interfering species. The bio-inspired sensor showed the best response in the range from 5.00×10(-9) to 7.00×10(-8) mol L(-1) ACTZ, with a linear range from 5.00×10(-9) to 2.50×10(-8) mol L(-1) and a detection limit of 4.76×10(-9) mol L(-1). The sensor exhibited characteristics similar to the Michaelis-Menten model of an enzymatic electrode, due to the use of a multinucleated complex of manganese with μ-oxo units, which was able to mimic the properties of enzymes with manganese as a cofactor in their composition, such as Mn-containing oxidase. The determination of ACTZ with the bio-inspired sensor was evaluated using three different synthetic biological fluids (plasma, saliva, and urine), demonstrating its viability for use with real samples. The analysis of ACTZ in real urine samples using the bio-inspired sensor, simulating the method adopted by the World Anti-Doping Agency, which revealed viable, suggesting a new and promising platform to be used in these analysis.

  8. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    Science.gov (United States)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  9. Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Shi Jiafu; Yang Dong; Jiang Zhongyi, E-mail: zhyjiang@tju.edu.cn [Tianjin University, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology (China); Jiang Yanjun [Hebei University of Technology, Department of Bioengineering, School of Chemical Engineering (China); Liang Yanpeng; Zhu Yuanyuan; Wang Xiaoli; Wang Huihui [Tianjin University, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology (China)

    2012-09-15

    Simultaneous size control and surface functionalization of inorganic nanoparticles (NPs) are often desired for their efficient applications in (bio)catalysis, drug and/or DNA delivery, and photonics, etc. In this study, a novel strategy 'bioadhesion-assisted bio-inspired mineralization (BABM)' was put forward to prepare titania nanoparticles (TiNPs) with tunable particle size and multiple surface functionality. Specifically, the initial formation and subsequent growth of TiNPs were enabled by arginine via bio-inspired mineralization, while the mineralization process was terminated through the addition of the pre-polymerized dopa (oligodopa). By adjusting the addition time of oligodopa, the size of TiNPs could be facilely tailored from ca. 30-350 nm; meanwhile, the surface of TiNPs could be functionalized by oligodopa through metal-catechol coordination interaction (a typical bioadhesion phenomenon). In other words, oligodopa coating could not only exquisitely control the size of TiNPs, but also render TiNPs surface multifunctional groups for secondary treatment such as conjugating proteins through amine-catechol adduct formation. Hopefully, this BABM approach will construct a versatile platform for green and facile synthesis of inorganic NPs, in particular transition metal oxide NPs.

  10. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints

    Directory of Open Access Journals (Sweden)

    Evangelos I. Avgoulas

    2016-07-01

    Full Text Available There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.

  11. Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot's controller.

    Science.gov (United States)

    Cyr, André; Boukadoum, Mounir; Thériault, Frédéric

    2014-01-01

    In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors.

  12. Operant Conditioning: A Minimal Components Requirement in Artificial Spiking Neurons Designed for Bio-Inspired Robot’s Controller

    Directory of Open Access Journals (Sweden)

    André eCyr

    2014-07-01

    Full Text Available We demonstrate the operant conditioning (OC learning process within a basic bio-inspired robot controller paradigm, using an artificial spiking neural network (ASNN with minimal component count as artificial brain. In biological agents, OC results in behavioral changes that are learned from the consequences of previous actions, using progressive prediction adjustment triggered by reinforcers. In a robotics context, virtual and physical robots may benefit from a similar learning skill when facing unknown environments with no supervision. In this work, we demonstrate that a simple ASNN can efficiently realise many OC scenarios. The elementary learning kernel that we describe relies on a few critical neurons, synaptic links and the integration of habituation and spike-timing dependent plasticity (STDP as learning rules. Using four tasks of incremental complexity, our experimental results show that such minimal neural component set may be sufficient to implement many OC procedures. Hence, with the described bio-inspired module, OC can be implemented in a wide range of robot controllers, including those with limited computational resources.

  13. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    Science.gov (United States)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to

  14. Implementation of a cellular neural network-based segmentation algorithm on the bio-inspired vision system

    Science.gov (United States)

    Karabiber, Fethullah; Grassi, Giuseppe; Vecchio, Pietro; Arik, Sabri; Yalcin, M. Erhan

    2011-01-01

    Based on the cellular neural network (CNN) paradigm, the bio-inspired (bi-i) cellular vision system is a computing platform consisting of state-of-the-art sensing, cellular sensing-processing and digital signal processing. This paper presents the implementation of a novel CNN-based segmentation algorithm onto the bi-i system. The experimental results, carried out for different benchmark video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frame/sec. Comparisons with existing CNN-based methods show that, even though these methods are from two to six times faster than the proposed one, the conceived approach is more accurate and, consequently, represents a satisfying trade-off between real-time requirements and accuracy.

  15. Architecture for persistent surveillance using mast and UAS-based autonomous sensing with bio-inspired technologies

    Science.gov (United States)

    Burman, Jerry

    2014-06-01

    A sophisticated real time architecture for capturing relevant battlefield information of personnel and terrestrial events from a network of mast based imaging and unmanned aerial systems (UAS) with target detection, tracking, classification and visualization is presented. Persistent surveillance of personnel and vehicles is achieved using a unique spatial and temporally invariant motion detection and tracking algorithm for mast based cameras in combination with aerial remote sensing to autonomously monitor unattended ground based sensor networks. UAS autonomous routing is achieved using bio-inspired algorithms that mimic how bacteria locate nutrients in their environment. Results include field test data, performance and lessons learned. The technology also has application to detecting and tracking low observables (manned and UAS), counter MANPADS, airport bird detection and search and rescue operations.

  16. Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation.

    Science.gov (United States)

    Lu, Luhua; Chen, Wei

    2011-06-01

    Biopolymers are important natural multifunctional macromolecules for biomimetic and bio-inspired advanced functional material design. They are not only simple dispersants for carbon nanotube stabilization as they have been found to have specific interactions with carbon nanotubes. Their molecular activity, orientation and crystallization are influenced by the CNTs, which endow their composites with a variety of novel sensing and actuation performances. This review focuses on the progress in supramolecular self-assembly of biopolymers with carbon nanotubes, and their advances in sensing and actuation. To promote the development of advanced biopolymer/CNT functional materials, new electromechanical characteristics of biopolymer/CNT composites are discussed in detail based on the relationship between the microscopic biopolymer structures and the macroscopic composite properties.

  17. A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network.

    Science.gov (United States)

    Amiri, Masoud; Amiri, Mahmood; Nazari, Soheila; Faez, Karim

    2016-12-07

    Hyper-synchronous neural oscillations are the character of several neurological diseases such as epilepsy. On the other hand, glial cells and particularly astrocytes can influence neural synchronization. Therefore, based on the recent researches, a new bio-inspired stimulator is proposed which basically is a dynamical model of the astrocyte biophysical model. The performance of the new stimulator is investigated on a large-scale, cortical network. Both excitatory and inhibitory synapses are also considered in the simulated spiking neural network. The simulation results show that the new stimulator has a good performance and is able to reduce recurrent abnormal excitability which in turn avoids the hyper-synchronous neural firing in the spiking neural network. In this way, the proposed stimulator has a demand controlled characteristic and is a good candidate for deep brain stimulation (DBS) technique to successfully suppress the neural hyper-synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Extensive Investigations on Bio-Inspired Trust and Reputation Model over Hops Coefficient Factor in Distributed Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Verma

    2014-08-01

    Full Text Available Resource utilization requires a substantial consideration for a trust and reputation model to be deployed within a wireless sensor network (WSN. In the evaluation, our attention is focused on the effect of hops coefficient factor estimation on WSN with bio-inspired trust and reputation model (BTRM. We present the state-of-the-art system level evaluation of accuracy and path length of sensor node operations for their current and average scenarios. Additionally, we emphasized over the energy consumption evaluation for static, dynamic and oscillatory modes of BTRM-WSN model. The performance of the hops coefficient factor for our proposed framework is evaluated via analytic bounds and numerical simulations.

  19. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    Science.gov (United States)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  20. 桥梁设计过程中仿生理念的应用研究%Application research of bio-inspired concept in bridge design

    Institute of Scientific and Technical Information of China (English)

    周翠芳

    2014-01-01

    对桥梁设计中的仿生理念,微观仿生和宏观仿生三方面的内容进行了详细的分析和探讨,论述了仿生理念在我国桥梁工程设计工作中的具体应用情况,指出在桥梁设计中应用仿生理念,解决了设计过程中存在的问题,提升了桥梁设计方案的创新性。%The paper analyzes and explores bridge design contents including bio-inspired concept,micro-bio-inspired and macro-bio-inspired method,discusses its specific application conditions in domestic bridge engineering design,and points out that:the bio-inspired concept applica-tion in bridge design both solves the design problems and improves creativity of bridge design scheme.

  1. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature’s far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings’ 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  2. In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-08-01

    Full Text Available Through billions of years of evolution, nature has been able to create highly sophisticated and ordered structures in living systems, including cells, cellular components and viruses. The formation of these structures involves nucleation and self-assembly, which are fundamental physical processes associated with the formation of any ordered structure. It is important to understand how biogenic materials self-assemble into functional and highly ordered structures in order to determine the mechanisms of biological systems, as well as design and produce new classes of materials which are inspired by nature but equipped with better physiochemical properties for our purposes. An ideal tool for the study of nucleation and self-assembly is in situ atomic force microscopy (AFM, which has been widely used in this field and further developed for different applications in recent years. The main aim of this work is to review the latest contributions that have been reported on studies of nucleation and self-assembly of biogenic and bio-inspired materials using in situ AFM. We will address this topic by introducing the background of AFM, and discussing recent in situ AFM studies on nucleation and self-assembly of soft biogenic, soft bioinspired and hard materials.

  3. Bio-inspired nano-photodiode for Low Light, High Resolution and crosstalk-free CMOS image sensing

    KAUST Repository

    Saffih, Faycal

    2011-05-01

    Previous attempts have been devoted to mimic biological vision intelligence at the architectural system level. In this paper, a novel imitation of biological visual system intelligence is suggested, at the device level with the introduction of novel photodiode morphology. The proposed bio-inspired nanorod photodiode puts the depletion region length on the path of the incident photon instead of on its width, as the case is with the planar photodiodes. The depletion region has a revolving volume to increase the photodiode responsivity, and thus its photosensitivity. In addition, it can virtually boost the pixel fill factor (FF) above the 100% classical limit due to decoupling of its vertical sensing area from its limited planar circuitry area. Furthermore, the suggested nanorod photodiode photosensitivity is analytically proven to be higher than that of the planar photodiode. We also show semi-empirically that the responsivity of the suggested device varies linearly with its height; this important feature has been confirmed using Sentaurus simulation. The proposed nano-photorod is believed to meet the increasingly stringent High-Resolution-Low-Light (HRLL) detection requirements of the camera-phone and biomedical imaging markets. © 2011 IEEE.

  4. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  5. A low-cost bio-inspired integrated carbon counter electrode for high conversion efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Wang, Chunlei; Meng, Fanning; Wu, Mingxing; Lin, Xiao; Wang, Tonghua; Qiu, Jieshan; Ma, Tingli

    2013-09-14

    A novel bio-inspired Pt- and FTO-free integrated pure carbon counter electrode (CE) for dye-sensitized solar cells (DSSCs) has been designed and fabricated using a porous carbon sheet as a conducting substrate and ordered mesoporous carbon (OMC) as the catalytic layer. A rigid, crustose lichen-like, integrated carbon-carbon composite architecture with a catalytic layer rooted in a porous conducting substrate was formed by a process of polymer precursor spin coating, infiltration and pyrolysis. The integrated pure carbon CE shows very low series resistance (R(s)), owing to the high conductivity of the carbon sheet (sheet resistance of 488 mΩ □(-1)) and low charge-transfer resistance (R(ct)), due to the large specific surface area of the OMC layer that is accessible to the redox couple. The values of R(s) and R(ct) are much lower than those of a platinized fluorine-doped thin oxide glass (Pt/FTO) electrode. Cells with this CE show high solar-to-electricity conversion efficiencies (8.11%), comparable to that of Pt/FTO based devices (8.16%).

  6. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    Science.gov (United States)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  7. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gentil, Solène [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Lalaoui, Noémie [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Dutta, Arnab [Pacific Northwest National Laboratory, Richland WA 99532 USA; Current address: Chemistry Department, IIT Gandhinagar, Gujarat 382355 India; Nedellec, Yannig [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Cosnier, Serge [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Shaw, Wendy J. [Pacific Northwest National Laboratory, Richland WA 99532 USA; Artero, Vincent [Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Le Goff, Alan [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France

    2017-01-12

    A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with a multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.

  8. Bio-inspired piezoelectric linear motor driven by a single-phase harmonic wave with an asymmetric stator

    Science.gov (United States)

    Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo

    2017-07-01

    A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 Vp-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.

  9. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.

    Science.gov (United States)

    Ding, Yu; Yu, Guihua

    2016-04-04

    Wide-scale exploitation of renewable energy requires low-cost efficient energy storage devices. The use of metal-free, inexpensive redox-active organic materials represents a promising direction for environmental-friendly, cost-effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g(-1) and stable capacity retention about 99.7% per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio-electrochemical process of quinones in nature, using such a bio-inspired organic compound in batteries enables access to greener and more sustainable energy-storage technology.

  10. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity

    Science.gov (United States)

    Prasad, Ch.; Gangadhara, S.; Venkateswarlu, P.

    2016-08-01

    Novel and bio-inspired magnetic nanoparticles were synthesized using watermelon rinds (WR) which are nontoxic and biodegradable. Watermelon rind extract was used as a solvent and capping and reducing agent in the synthesis. The Fe3o4 MNPs were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer techniques (VSM). XRD studies revealed a high degree of crystalline and monophasic Fe nanoparticles of face-centered cubic stricture. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process in an excellent candidate for the synthesis of iron nanoparticles that is simple, easy to execute, pollutant free and inexpensive. A practical and convenient method for the synthesis of highly stable and small-sized iron nanoparticles with a narrow distribution from 2 to 20 nm is reported. Also, the MNPs present in higher saturation magnetization (Ms) of 14.2 emu/g demonstrate tremendous magnetic response behavior. However, the synthesized iron nanoparticles were used as a catalyst for the preparation of biologically interesting 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives in high yields. These results exhibited that the synthesized Fe3O4 MNPs could be used as a catalyst in organic synthesis.

  11. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022 (China); Li, Shuyi; Niu, Shichao [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Cao, Xiaowen [Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2016-08-30

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  12. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    Science.gov (United States)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-08-01

    Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  13. A Bio-Inspired Model-Based Approach for Context-Aware Post-WIMP Tele-Rehabilitation

    Directory of Open Access Journals (Sweden)

    Víctor López-Jaquero

    2016-10-01

    Full Text Available Tele-rehabilitation is one of the main domains where Information and Communication Technologies (ICT have been proven useful to move healthcare from care centers to patients’ home. Moreover, patients, especially those carrying out a physical therapy, cannot use a traditional Window, Icon, Menu, Pointer (WIMP system, but they need to interact in a natural way, that is, there is a need to move from WIMP systems to Post-WIMP ones. Moreover, tele-rehabilitation systems should be developed following the context-aware approach, so that they are able to adapt to the patients’ context to provide them with usable and effective therapies. In this work a model-based approach is presented to assist stakeholders in the development of context-aware Post-WIMP tele-rehabilitation systems. It entails three different models: (i a task model for designing the rehabilitation tasks; (ii a context model to facilitate the adaptation of these tasks to the context; and (iii a bio-inspired presentation model to specify thoroughly how such tasks should be performed by the patients. Our proposal overcomes one of the limitations of the model-based approach for the development of context-aware systems supporting the specification of non-functional requirements. Finally, a case study is used to illustrate how this proposal can be put into practice to design a real world rehabilitation task.

  14. Improvement of water-repellent and hydrodynamic drag reduction properties on bio-inspired surface and exploring sharkskin effect mechanism

    Science.gov (United States)

    Luo, Yuehao; Liu, Yufei; Anderson, James; Li, Xiang; Li, Yuanyue

    2015-07-01

    Bio-inspired/biomimetic surface technologies focusing on sharkskin, lotus leaf, gecko feet, and others have attracted so lots of attentions from all over the world; meanwhile, they have also brought great advantages and profits for mankind. Sharkskin drag-reducing/low-resistance surface is the imperative consequence of nature selection and self-evolution in the long history, which can enable itself accommodate the living environments perfectly. Generally speaking, sharkskin effect can become transparent only in some certain velocity scope. How to expand its application range and enhance the drag reduction function further has developed into the urgent issue. In this article, the water-repellent and hydrodynamic drag-reducing effects are improved by adjusting sharkskin texture. The experimental results show that contact angle of more than 150° is achieved, and drag-reducing property is improved to some extent. In addition, the drag-reducing mechanism is explored and generalized from different aspects adopting the numerical simulation, which has important significance to comprehend sharkskin effect.

  15. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells

    Science.gov (United States)

    Kloess, Jason P.; Wang, Xia; Liu, Joan; Shi, Zhongying; Guessous, Laila

    Proton exchange membrane (PEM) fuel cell performance is directly related to the flow channel design on bipolar plates. Power gains can be found by varying the type, size, or arrangement of channels. The objective of this paper is to present two new flow channel patterns: a leaf design and a lung design. These bio-inspired designs combine the advantages of the existing serpentine and interdigitated patterns with inspiration from patterns found in nature. Both numerical simulation and experimental testing have been conducted to investigate the effects of two new flow channel patterns on fuel cell performance. From the numerical simulation, it was found that there is a lower pressure drop from the inlet to outlet in the leaf or lung design than the existing serpentine or interdigitated flow patterns. The flow diffusion to the gas diffusion layer was found be to more uniform for the new flow channel patterns. A 25 cm 2 fuel cell was assembled and tested for four different flow channels: leaf, lung, serpentine and interdigitated. The polarization curve has been obtained under different operating conditions. It was found that the fuel cell with either leaf or lung design performs better than the convectional flow channel design under the same operating conditions. Both the leaf and lung design show improvements over previous designs by up to 30% in peak power density.

  16. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kloess, Jason P. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States); Wang, Xia; Shi, Zhongying; Guessous, Laila [Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 (United States); Liu, Joan [Department of Mechanical Engineering, Olin College of Engineering, MA (United States)

    2009-03-01

    Proton exchange membrane (PEM) fuel cell performance is directly related to the flow channel design on bipolar plates. Power gains can be found by varying the type, size, or arrangement of channels. The objective of this paper is to present two new flow channel patterns: a leaf design and a lung design. These bio-inspired designs combine the advantages of the existing serpentine and interdigitated patterns with inspiration from patterns found in nature. Both numerical simulation and experimental testing have been conducted to investigate the effects of two new flow channel patterns on fuel cell performance. From the numerical simulation, it was found that there is a lower pressure drop from the inlet to outlet in the leaf or lung design than the existing serpentine or interdigitated flow patterns. The flow diffusion to the gas diffusion layer was found be to more uniform for the new flow channel patterns. A 25 cm{sup 2} fuel cell was assembled and tested for four different flow channels: leaf, lung, serpentine and interdigitated. The polarization curve has been obtained under different operating conditions. It was found that the fuel cell with either leaf or lung design performs better than the convectional flow channel design under the same operating conditions. Both the leaf and lung design show improvements over previous designs by up to 30% in peak power density. (author)

  17. Electrochemical properties of large-sized pouch-type lithium ion batteries with bio-inspired organic cathode materials

    Science.gov (United States)

    Yeo, Jae-Seong; Yoo, Eun-Ji; Ha, Sang-Hyeon; Cheong, Dong-Ik; Cho, Sung-Baek

    2016-05-01

    To investigate the feasibility of scaling up bio-inspired organic materials as cathode materials in lithium ion batteries, large-sized pouch cells are successfully prepared via tape casting using lumichrome with an alloxazine structure and aqueous styrene butadiene rubber-carboxymethyl cellulose (SBR-CMC) binders. A battery module with a two-in-series, six-in-parallel (2S6P) configuration is also successfully fabricated and is able to power blue LEDs (850 mW). Lumichrome shows no structural changes during the fabrication processes used to produce the positive electrode. The large-sized pouch cells show two sets of cathodic and anodic peaks with average potentials of 2.58 V and 2.26 V vs. Li/Li+, respectively. The initial discharge capacities are 142 mAh g-1 and 148 mAh g-1 for ethylene carbonate-dimethyl carbonate (EC-DMC) and tetraethylene glycol dimethyl ether (TEGDME) electrolytes, respectively, similar to that of a coin cell (149 mAh g-1). The EC-DMC-injected pouch cells exhibit higher rate performance and cyclability than the TEGDME-injected ones. The TEGDME electrolyte is not suitable for lithium metal anodes because of electrolyte decomposition and subsequent cell swelling.

  18. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Wei [Jiangsu Provincial Key Lab for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Qiang, E-mail: shiqiang@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Hou, Jianwen; Gao, Jian; Li, Chunming; Jin, Jing; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua, E-mail: yinjh@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-10-01

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field.

  19. Obstacle traversal and self-righting of bio-inspired robots reveal the physics of multi-modal locomotion

    Science.gov (United States)

    Li, Chen; Fearing, Ronald; Full, Robert

    Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.

  20. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis.

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-28

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature's far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings' 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  1. Experimental study of surface pattern effects on the propulsive performance and wake of a bio-inspired pitching panel

    Science.gov (United States)

    King, Justin; Kumar, Rajeev; Green, Melissa

    2016-11-01

    Force measurements and stereoscopic particle image velocimetry (PIV) were used to characterize the propulsive performance and wake structure of rigid, bio-inspired trapezoidal pitching panels. In the literature, it has been demonstrated that quantities such as thrust coefficient and propulsive efficiency are affected by changes in the surface characteristics of a pitching panel or foil. More specifically, the variation of surface pattern produces significant changes in wake structure and dynamics, especially in the distribution of vorticity in the wake. Force measurements and PIV data were collected for multiple surface patterns chosen to mimic fish surface morphology over a Strouhal number range of 0.17 to 0.56. Performance quantities are compared with the three-dimensional vortex wake structure for both the patterned and smooth panels to determine the nature and magnitude of surface pattern effects in terms of thrust produced, drag reduced, and wake vortices reshaped and reorganized. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

  2. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    Science.gov (United States)

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2 /2 H(+) interconversion from pH 0 to 9, with catalytic preference for H2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm(-2) , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm(-2) , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Bio-Inspired Model-Based Approach for Context-Aware Post-WIMP Tele-Rehabilitation †

    Science.gov (United States)

    López-Jaquero, Víctor; Rodríguez, Arturo C.; Teruel, Miguel A.; Montero, Francisco; Navarro, Elena; Gonzalez, Pascual

    2016-01-01

    Tele-rehabilitation is one of the main domains where Information and Communication Technologies (ICT) have been proven useful to move healthcare from care centers to patients’ home. Moreover, patients, especially those carrying out a physical therapy, cannot use a traditional Window, Icon, Menu, Pointer (WIMP) system, but they need to interact in a natural way, that is, there is a need to move from WIMP systems to Post-WIMP ones. Moreover, tele-rehabilitation systems should be developed following the context-aware approach, so that they are able to adapt to the patients’ context to provide them with usable and effective therapies. In this work a model-based approach is presented to assist stakeholders in the development of context-aware Post-WIMP tele-rehabilitation systems. It entails three different models: (i) a task model for designing the rehabilitation tasks; (ii) a context model to facilitate the adaptation of these tasks to the context; and (iii) a bio-inspired presentation model to specify thoroughly how such tasks should be performed by the patients. Our proposal overcomes one of the limitations of the model-based approach for the development of context-aware systems supporting the specification of non-functional requirements. Finally, a case study is used to illustrate how this proposal can be put into practice to design a real world rehabilitation task. PMID:27754371

  4. Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler

    CERN Document Server

    Gidoni, Paolo

    2016-01-01

    We formulate and solve the locomotion problem for a bio-inspired crawler consisting of two active elastic segments (i.e., capable of changing their rest lengths), resting on three supports providing directional frictional interactions. The problem consists in finding the motion produced by a given, slow actuation history. By focusing on the tensions in the elastic segments, we show that the evolution laws for the system are entirely analogous to the flow rules of elasto-plasticity. In particular, sliding of the supports and hence motion cannot occur when the tensions are in the interior of certain convex regions (stasis domains), while support sliding (and hence motion) can only take place when the tensions are on the boundary of such regions (slip surfaces). We solve the locomotion problem explicitly in a few interesting examples. In particular, we show that, for a suitable range of the friction parameters, specific choices of the actuation strategy can lead to net displacements also in the direction of high...

  5. Fluorimetric Mercury Test Strips with Suppressed “Coffee Stains” by a Bio-inspired Fabrication Strategy

    Science.gov (United States)

    Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua

    2016-11-01

    A fluorimetric Hg2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the “coffee stains” toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized “coffee stains”. On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of “coffee stains” on test strips may expand the scope of applications of test strips-based “point-of-care” analysis methods or detection devices in the biomedical and environmental fields.

  6. System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm

    Science.gov (United States)

    Wang, Danshi; Zhang, Min; Li, Ze; Song, Chuang; Fu, Meixia; Li, Jin; Chen, Xue

    2017-09-01

    A bio-inspired detector based on the artificial neural network (ANN) and genetic algorithm is proposed in the context of a coherent optical transmission system. The ANN is designed to mitigate 16-quadrature amplitude modulation system impairments, including linear impairment: Gaussian white noise, laser phase noise, in-phase/quadrature component imbalance, and nonlinear impairment: nonlinear phase. Without prior information or heuristic assumptions, the ANN, functioning as a machine learning algorithm, can learn and capture the characteristics of impairments from observed data. Numerical simulations were performed, and dispersion-shifted, dispersion-managed, and dispersion-unmanaged fiber links were investigated. The launch power dynamic range and maximum transmission distance for the bio-inspired method were 2.7 dBm and 240 km greater, respectively, than those of the maximum likelihood estimation algorithm. Moreover, the linewidth tolerance of the bio-inspired technique was 170 kHz greater than that of the k-means method, demonstrating its usability for digital signal processing in coherent systems.

  7. BIO-INSPIRED SELF-ADAPTIVE MANUFACTURING SYSTEM CONTROL ARCHITECTURE%类生物化自适应制造系统控制结构

    Institute of Scientific and Technical Information of China (English)

    王雷; 唐敦兵; 万敏; 袁伟东; 许美健

    2009-01-01

    未来的制造系统需要应对多变的不可预测环境的干扰,因此要求制造系统的控制结构具有较好的自适应性、自组织性、敏捷性、智能性和鲁棒性.而具有这些生物行为特征的类生物化制造系统能够很好的满足这一要求.因此,借鉴生物系统的组织结构、控制机理和运行模式,从一个全新角度提出了有机制造单元的概念,并结合基于激素分泌调节的超短反馈机制,建立了类生物化生产系统自适应控制模型;基于神经-内分泌-免疫系统调节机制,建立了类生物化自适应制造系统控制结构模型.最后,通过一个基于信息素通信机制的实例表明:整个系统具有较强的鲁棒性.%Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A bio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.

  8. 生物启发计算研究现状与发展趋势%Research Status and Development Trends of the Bio-inspired Computation

    Institute of Scientific and Technical Information of China (English)

    朱云龙; 申海; 陈瀚宁; 吕赐兴; 张丁一

    2016-01-01

    Bio-inspired computation aims to study the biology function,characteristic and mechanism of the various levels of nature,from biological individual,population,colony until ecosystem,and set up a relevant model and computing method,so as to serve the scientific research and engineering application of human society.It is not only the inheritance and development of artificial intelligence,but also from a new point to understand and grasp the intelligent intrinsic.First,we introduce the bio-inspired computation theoretical origin,invol-ving the biological evolutionism theory,the symbiosis evolution theory and the complex adaptive system theo-ry.Then,we review algorithm research progress and discuss about application research progress from three aspects including optimal plan,optimal analysis and optimal control.Based on comprehensive analysis and summarize existing bio-inspired optimization algorithms,a bio-inspired computation unified framework model is proposed.Finally,a few future directions and research challenges are presented,such as parallel bio-in-spired computation,bio-inspired computation with reasoning and knowledge,bio-inspired dynamics computa-tion,bio-inspired computation based on quorum sensing,artificial brain,evolutionary hardware,big data, swarm robot,virtual biological,cloud computing,etc.%生物启发计算的宗旨是研究自然界生物个体、群体、群落乃至生态系统不同层面的功能、特点和作用机制,建立相应的模型与计算方法,从而服务于人类社会的科学研究与工程应用。它既是人工智能的继承与发展,同时也是从新的角度理解和把握智能本质的方法。本文阐述了生物启发计算所涉及的生物进化论、共生进化论和复杂适应系统的理论起源。在对生物启发计算进行分析、归纳和总结的基础上,介绍了现有生物启发计算算法研究成果,并从最优设计、最优分析和最优控制3个方面对生物启发计算的

  9. Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance

    Science.gov (United States)

    Choi, Seon-Jin; Chattopadhyay, Saptarshi; Kim, Jae Jin; Kim, Sang-Joon; Tuller, Harry L.; Rutledge, Gregory C.; Kim, Il-Doo

    2016-04-01

    Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition, catalytic Pd nanoparticles (NPs) were synthesized using bio-inspired protein cages, i.e., apoferritin, and uniformly dispersed within the shell solution and subsequently on the WO3 NTs. The resulting Pd functionalized macroporous WO3 NTs were demonstrated to be high performance hydrogen (H2) sensors. In particular, Pd-functionalized macroporous WO3 NTs exhibited a very high H2 response (Rair/Rgas) of 17.6 at 500 ppm with a short response time. Furthermore, the NTs were shown to be highly selective for H2 compared to other gases such as carbon monoxide (CO), ammonia (NH3), and methane (CH4). The results demonstrate a new synthetic method to prepare highly porous nanotubular structures with well-dispersed nanoscale catalysts, which can provide improved microstructures for chemical sensing.Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition

  10. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?

    Science.gov (United States)

    Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.

  11. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model

    Science.gov (United States)

    Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan

    2017-04-01

    Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.

  12. Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle

    Science.gov (United States)

    Takizawa, Kenji; Kostov, Nikolay; Puntel, Anthony; Henicke, Bradley; Tezduyar, Tayfun E.

    2012-12-01

    We present a detailed computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle (MAV). The computational techniques used include the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation, which serves as the core computational technique. The DSD/SST formulation is a moving-mesh technique, and in the computations reported here we use the space-time version of the residual-based variational multiscale (VMS) method, which is called "DSD/ SST-VMST." The motion and deformation of the wings are based on data extracted from the high-speed, multi-camera video recordings of a locust in a wind tunnel. A set of special space-time techniques are also used in the computations in conjunction with the DSD/SST method. The special techniques are based on using, in the space-time flow computations, NURBS basis functions for the temporal representation of the motion and deformation of the wings and for the mesh moving and remeshing. The computational analysis starts with the computation of the base case, and includes computations with increased temporal and spatial resolutions compared to the base case. In increasing the temporal resolution, we separately test increasing the temporal order, the number of temporal subdivisions, and the frequency of remeshing. In terms of the spatial resolution, we separately test increasing the wing-mesh refinement in the normal and tangential directions and changing the way node connectivities are handled at the wingtips. The computational analysis also includes using different combinations of wing configurations for the MAV and investigating the beneficial and disruptive interactions between the wings and the role of wing camber and twist.

  13. Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?

    Directory of Open Access Journals (Sweden)

    Victor eHernandez Bennetts

    2012-01-01

    Full Text Available Roboticists often take inspiration from animals for designing sensors, actuators or algorithms that control the behaviour of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odour plume. In particular the task of tracking an odour plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behaviour of moths, dungbeetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro drone in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is at the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behaviour of animals, can be usefully translated into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically-inspired algorithms.

  14. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes.

    Science.gov (United States)

    Bertrand, Olivier J N; Lindemann, Jens P; Egelhaaf, Martin

    2015-11-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation

  15. Comparative Study of Effect of Fin Arrangement on Propulsion Performance of Bio-inspired Underwater Vehicles with Multiple SMA Fins

    Directory of Open Access Journals (Sweden)

    Jian-hui He

    2015-09-01

    Full Text Available A biologically inspired underwater vehicle (BIUV was built using multiple lightweight bio inspired shape memory alloy (SMA fins. An unsteady 3D computational fluid dynamics (CFD method using an unstructured, grid-based, and unsteady Navier-Stokes solver with automatic adaptive re-meshing was adopted to compute unsteady flow. The hydrodynamics of multiple fins at a certain Reynolds number (Re = Uc/ν, where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity was studied and simulated using CFD to estimate hydrodynamic forces and characterize flow and vortex patterns created by the fins. Two common arrangements of multiple fins on the BIUV were considered: a posterior fin that is parallel to the anterior fins (case 1 and a posterior fin that is perpendicular to the anterior fins (case 2. First, the influence of the distance between two anterior undulating fins on the propulsion performance of both arrangements of multiple fins on the BIUV was investigated. The effect of the distance between the anterior undulating fins and the posterior oscillating fin was also analysed. The length of the posterior oscillating fin was varied and the fin surface area was held constant (24 mm2 to illustrate the influence of this parameter. Finally, the effect of frequency, amplitude, and wave number of anterior undulating fins on the non-dimensional drag coefficient of the posterior oscillating fin was investigated. Based on the flow structures, the reasons for the different performances of the BIUV are discussed. BIUV performances largely depend on the arrangements of multiple fins and the gap between the fins. Dimension and kinematic parameters also affect the performance of the BIUV. The results provide a physical insight into the understanding of fin interaction in fish or BIUVs that are propelled by multiple fins.

  16. Forage alternatif dual de régolithe extra-terrestre : évolution d’une solution bio-inspirée

    OpenAIRE

    Gouache, Thibault

    2011-01-01

    Identifier des traces de vie sur la Lune ou sur Mars requiert des forages. Les contraintes très fortes sur les systèmes spatiaux et les environnements à faible gravité nuisent aux performances des foreuses rotatives. Une solution innovante a été identifiée chez un insecte qui creuse dans le bois pour déposer ses oeufs. Des tests ont montré la faisabilité d’imiter cet insecte pour creuser sans force ou appui extérieur. Ce doctorat poursuit le développement du concept de forage bio-inspiré s...

  17. Quality-of-service sensitivity to bio-inspired/evolutionary computational methods for intrusion detection in wireless ad hoc multimedia sensor networks

    Science.gov (United States)

    Hortos, William S.

    2012-06-01

    In the author's previous work, a cross-layer protocol approach to wireless sensor network (WSN) intrusion detection an identification is created with multiple bio-inspired/evolutionary computational methods applied to the functions of the protocol layers, a single method to each layer, to improve the intrusion-detection performance of the protocol over that of one method applied to only a single layer's functions. The WSN cross-layer protocol design embeds GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layer, respectively. The construct neglects to assess the net effect of the combined bioinspired methods on the quality-of-service (QoS) performance for "normal" data streams, that is, streams without intrusions. Analytic expressions of throughput, delay, and jitter, coupled with simulation results for WSNs free of intrusion attacks, are the basis for sensitivity analyses of QoS metrics for normal traffic to the bio-inspired methods.

  18. Design of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks

    Science.gov (United States)

    Trueba, Isidoro

    fossil fuels to biofuels. In many ways biomass is a unique renewable resource. It can be stored and transported relatively easily in contrast to renewable options such as wind and solar, which create intermittent electrical power that requires immediate consumption and a connection to the grid. This thesis presents two different models for the design optimization of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks. This work compares the performance and solutions obtained by two types of metaheuristic approaches; genetic algorithm and ant colony optimization. Compared to rigorous mathematical optimization methods or iterative algorithms, metaheuristics do not guarantee that a global optimal solution can be found on some class of problems. Problems with similar characteristics to the one presented in this thesis have been previously solved using linear programming, integer programming and mixed integer programming methods. However, depending on the type of problem, these mathematical or complete methods might need exponential computation time in the worst-case. This often leads to computation times too high for practical purposes. Therefore, this thesis develops two types of metaheuristic approaches for the design optimization of a biomass-to-biorefinery logistics system considering multiple types of feedstocks and shows that metaheuristics are highly suitable to solve hard combinatorial optimization problems such as the one addressed in this research work.

  19. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    Directory of Open Access Journals (Sweden)

    Li-Chun Wang

    2015-03-01

    Full Text Available In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine.

  20. Bio-inspired approach of the fluorescence emission properties in the scarabaeid beetle Hoplia coerulea (Coleoptera): Modeling by transfer-matrix optical simulations

    Science.gov (United States)

    Van Hooijdonk, Eloise; Berthier, Serge; Vigneron, Jean-Pol

    2012-12-01

    Scales of the scarabaeid beetle Hoplia coerulea (Coleoptera) contain fluorescent molecules embedded in a multilayer structure. The consequence of this source confinement is a modification of the fluorescence properties, i.e., an enhancement or inhibition of the emission of certain wavelengths. In this work, we propose a bio-inspired approach to this problem. In other words, we use numerical simulations based on the one-dimensional transfer-matrix formalism to investigate the influence of a Hoplia-like system on emission characteristics and, from the results, we deduce potential technical applications. We reveal that depending on the choice of some parameters (layer thickness, dielectric constant, and position of the emitting source in the structure), it is possible to enhance or inhibit the fluorescence emission for certain wavelengths. This observation could be of great interest to design new optical devices in the field of optoelectronic, solar cells, biosensors, etc.

  1. Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors.

    Science.gov (United States)

    Lodeiro, Carlos; Capelo, José Luis; Mejuto, Juan Carlos; Oliveira, Elisabete; Santos, Hugo M; Pedras, Bruno; Nuñez, Cristina

    2010-08-01

    This critical review describes some developments on the chemistry of fluorescent and colorimetric molecular probes or chemosensors, based on polyamines and associated compounds having oxygen and/or sulfur as donor atoms. The reported systems are essentially based on some selected published work in this field in the last five years, and in the work developed by the authors from 2000 onwards. Some interesting properties beyond sensing molecules, ions or/and cations by fluorescence, colorimetry as well as by MALDI-TOF MS spectrometry can arise from these systems. A short brief on different examples activated by PET (photoinduced electron transfer), ICT (internal charge transfer) and EET (electronic energy transfer) phenomena will be provided. Finally the introduction of bio-inspired compounds derived from emissive amino acid or short peptide systems and nanoparticle devices to detect metal ions will be reviewed (202 references).

  2. A bio-inspired, computational model suggests velocity gradients of optic flow locally encode ordinal depth at surface borders and globally they encode self-motion.

    Science.gov (United States)

    Raudies, Florian; Ringbauer, Stefan; Neumann, Heiko

    2013-09-01

    Visual navigation requires the estimation of self-motion as well as the segmentation of objects from the background. We suggest a definition of local velocity gradients to compute types of self-motion, segment objects, and compute local properties of optical flow fields, such as divergence, curl, and shear. Such velocity gradients are computed as velocity differences measured locally tangent and normal to the direction of flow. Then these differences are rotated according to the local direction of flow to achieve independence of that direction. We propose a bio-inspired model for the computation of these velocity gradients for video sequences. Simulation results show that local gradients encode ordinal surface depth, assuming self-motion in a rigid scene or object motions in a nonrigid scene. For translational self-motion velocity, gradients can be used to distinguish between static and moving objects. The information about ordinal surface depth and self-motion can help steering control for visual navigation.

  3. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.

    Science.gov (United States)

    Russo, R S; Blemker, S S; Fish, F E; Bart-Smith, H

    2015-06-16

    Growing interest in the development of bio-inspired autonomous underwater vehicles (AUVs) has motivated research in understanding the mechanisms behind the propulsion systems of marine animals. For example, the locomotive behavior of rays (Batoidea) by movement of the pectoral fins is of particular interest due to their superior performance characteristics over contemporary AUV propulsion systems. To better understand the mechanics of pectoral fin propulsion, this paper introduces a biomechanical model that simulates how batoid skeletal structures function to achieve the swimming locomotion observed in nature. Two rays were studied, Dasyatis sabina (Atlantic ray), and Rhinoptera bonasus (cownose ray). These species were selected because they exhibit very different swimming styles (undulation versus oscillation), but all use primarily their pectoral fins for propulsion (unlike electric rays or guitarfishes). Computerized tomography scans of each species were taken to image the underlying structure, which reveal a complex system of cartilaginous joints and linkages. Data collected from these images were used to quantify the complete skeletal morphometry of each batoid fin. Morphological differences were identified in the internal cartilage arrangement between each species including variations in the orientation of the skeletal elements, or radials, and the joint patterns between them, called the inter-radial joint pattern. These data were used as the primary input into the biomechanical model to couple a given ray skeletal structure with various swimming motions. A key output of the model is an estimation of the uniaxial strain that develops in the skeletal connective tissue in order for the structure to achieve motions observed during swimming. Tensile load tests of this connective tissue were conducted to further investigate the implications of the material strain predictions. The model also demonstrates that changes in the skeletal architecture (e.g., joint

  4. Characterization of anthocyanin based dye-sensitized organic solar cells (DSSC) and modifications based on bio-inspired ion mobility improvements

    Science.gov (United States)

    Mawyin, Jose Amador

    The worldwide electrical energy consumption will increase from currently 10 terawatts to 30 terawatts by 2050. To decrease the current atmospheric CO2 would require our civilization to develop a 20 terawatts non-greenhouse emitting (renewable) electrical power generation capability. Solar photovoltaic electric power generation is thought to be a major component of proposed renewable energy-based economy. One approach to less costly, easily manufactured solar cells is the Dye-sensitized solar cells (DSSC) introduced by Greatzel and others. This dissertation describes the work focused on improving the performance of DSSC type solar cells. In particular parameters affecting dye-sensitized solar cells (DSSC) based on anthocyanin pigments extracted from California blackberries (Rubus ursinus) and bio-inspired modifications were analyzed and solar cell designs optimized. Using off-the-shelf materials DSSC were constructed and tested using a custom made solar spectrum simulator and photoelectric property characterization. This equipment facilitated the taking of automated I-V curve plots and the experimental determination of parameters such as open circuit voltage (V OC), short circuit current (JSC), fill factor (FF), etc. This equipment was used to probe the effect of various modifications such as changes in the annealing time and composition of the of the electrode counter-electrode. Solar cell optimization schemes included novel schemes such as solar spectrum manipulation to increase the percentage of the solar spectrum capable of generating power in the DSSC. Solar manipulation included light scattering and photon upconversion. Techniques examined here focused on affordable materials such as silica nanoparticles embedded inside a TiO2 matrix. Such materials were examined for controlled scattering of visible light and optimize light trapping within the matrix as well as a means to achieve photon up-energy-conversion using the Raman effect in silica nano-particles (due

  5. Bio-Inspired/-Functional Colloidal Core-Shell Polymeric-Based NanoSystems: Technology Promise in Tissue Engineering, Bioimaging and NanoMedicine

    Directory of Open Access Journals (Sweden)

    Ziyad S. Haidar

    2010-09-01

    Full Text Available Modern breakthroughs in the fields of proteomics and DNA micro-arrays have widened the horizons of nanotechnology for applications with peptides and nucleic acids. Hence, biomimetic interest in the study and formulation of nanoscaled bio-structures, -materials, -devices and -therapeutic agent delivery vehicles has been recently increasing. Many of the currently–investigated functionalized bio-nanosystems draw their inspiration from naturally-occurring phenomenon, prompting the integration of molecular signals and mimicking natural processes, at the cell, tissue and organ levels. Technologically, the ability to obtain spherical nanostructures exhibiting combinations of several properties that neither individual material possesses on its own renders colloidal core-shell architectured nanosystems particularly attractive. The three main developments presently foreseen in the nanomedicine sub-arena of nanobiotechnology are: sensorization (biosensors/ biodetection, diagnosis (biomarkers/bioimaging and drug, protein or gene delivery (systemic vs. localized/targeted controlled–release systems. Advances in bio-applications such as cell-labelling/cell membrane modelling, agent delivery and targeting, tissue engineering, organ regeneration, nanoncology and immunoassay strategies, along the major limitations and potential future and advances are highlighted in this review. Herein, is an attempt to address some of the most recent works focusing on bio-inspired and -functional polymeric-based core-shell nanoparticulate systems aimed for agent delivery. It is founded, mostly, on specialized research and review articles that have emerged during the last ten years.

  6. Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions

    Science.gov (United States)

    Wang, Ai-Jun; Ju, Ke-Jian; Zhang, Qian-Li; Song, Pei; Wei, Jie; Feng, Jiu-Ju

    2016-09-01

    Folic acid (FA), as an important biomolecule in cell division and growth, is firstly employed as the structure director and stabilizing agent for controlled synthesis of uniform Au65Pt35 nanodendrites (NDs) by a one-pot wet-chemical bio-inspired route at room temperature. No pre-seed, template, organic solvent, polymer, surfactant or complex instrument is involved. The products are mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), and X-Ray photoelectron spectroscopy (XPS). The architectures have enlarged electrochemically active surface area (60.6 m2 gPt-1), enhanced catalytic activity and durability for methanol and ethanol oxidation in contrast with commercial Pt black and the other AuPt alloys by tuning the molar ratios of Au to Pt (e.g., Au31Pt69 and Au82Pt18 nanoparticles). This strategy would be applied to fabricate other bimetallic nanocatalysts in fuel cells.

  7. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    Science.gov (United States)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  8. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro.

    Science.gov (United States)

    Cheng, Alice; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.

  9. Bio-Inspired Fluoro-polydopamine Meets Barium Titanate Nanowires: A Perfect Combination to Enhance Energy Storage Capability of Polymer Nanocomposites.

    Science.gov (United States)

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-03-01

    Rapid evolution of energy storage devices expedites the development of high-energy-density materials with excellent flexibility and easy processing. The search for such materials has triggered the development of high-dielectric-constant (high-k) polymer nanocomposites. However, the enhancement of k usually suffers from sharp reduction of breakdown strength, which is detrimental to substantial increase of energy storage capability. Herein, the combination of bio-inspired fluoro-polydopamine functionalized BaTiO3 nanowires (NWs) and a fluoropolymer matrix offers a new thought to prepare polymer nanocomposites. The elaborate functionalization of BaTiO3 NWs with fluoro-polydopamine has guaranteed both the increase of k and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. The nanocomposite with 5 vol % functionalized BaTiO3 NWs discharges an ultrahigh energy density of 12.87 J cm(-3) at a relatively low electric field of 480 MV m(-1), more than three and a half times that of biaxial-oriented polypropylene (BOPP, 3.56 J cm(-3) at 600 MV m(-1)). This superior energy storage capability seems to rival or exceed some reported advanced nanoceramics-based materials at 500 MV m(-1). This new strategy permits insights into the construction of polymer nanocomposites with high energy storage capability.

  10. Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions.

    Science.gov (United States)

    Park, Hyun-Ji; Yang, Kisuk; Kim, Mun-Jung; Jang, Jiho; Lee, Mihyun; Kim, Dong-Wook; Lee, Haeshin; Cho, Seung-Woo

    2015-05-01

    Current protocols for human pluripotent stem cell (hPSC) expansion require feeder cells or matrices from animal sources that have been the major obstacle to obtain clinical grade hPSCs due to safety issues, difficulty in quality control, and high expense. Thus, feeder-free, chemically defined synthetic platforms have been developed, but are mostly confined to typical polystyrene culture plates. Here, we report a chemically defined, material-independent, bio-inspired surface coating allowing for feeder-free expansion and maintenance of self-renewal and pluripotency of hPSCs on various polymer substrates and devices. Polydopamine (pDA)-mediated immobilization of vitronectin (VN) peptides results in surface functionalization of VN-dimer/pDA conjugates. The engineered surfaces facilitate adhesion, proliferation, and colony formation of hPSCs via enhanced focal adhesion, cell-cell interaction, and biophysical signals, providing a chemically defined, xeno-free culture system for clonal expansion and long-term maintenance of hPSCs. This surface engineering enables the application of clinically-relevant hPSCs to a variety of biomedical systems such as tissue-engineering scaffolds and medical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings

    Science.gov (United States)

    Zahran, Zaki N.; Mohamed, Eman A.; Naruta, Yoshinori

    2016-04-01

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.

  12. Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system.

    Science.gov (United States)

    Diamond, A; Schmuker, M; Berna, A Z; Trowell, S; Nowotny, Thomas

    2016-02-18

    In many application domains, conventional e-noses are frequently outperformed in both speed and accuracy by their biological counterparts. Exploring potential bio-inspired improvements, we note a number of neuronal network models have demonstrated some success in classifying static datasets by abstracting the insect olfactory system. However, these designs remain largely unproven in practical settings, where sensor data is real-time, continuous, potentially noisy, lacks a precise onset signal and accurate classification requires the inclusion of temporal aspects into the feature set. This investigation therefore seeks to inform and develop the potential and suitability of biomimetic classifiers for use with typical real-world sensor data. Taking a generic classifier design inspired by the inhibition and competition in the insect antennal lobe, we apply it to identifying 20 individual chemical odours from the timeseries of responses of metal oxide sensors. We show that four out of twelve available sensors and the first 30 s (10%) of the sensors' continuous response are sufficient to deliver 92% accurate classification without access to an odour onset signal. In contrast to previous approaches, once training is complete, sensor signals can be fed continuously into the classifier without requiring discretization. We conclude that for continuous data there may be a conceptual advantage in using spiking networks, in particular where time is an essential component of computation. Classification was achieved in real time using a GPU-accelerated spiking neural network simulator developed in our group.

  13. Well-defined functional mesoporous silica/polymer hybrids prepared by an ICAR ATRP technique integrated with bio-inspired polydopamine chemistry for lithium isotope separation.

    Science.gov (United States)

    Liu, Yuekun; Liu, Xuegang; Ye, Gang; Song, Yang; Liu, Fei; Huo, Xiaomei; Chen, Jing

    2017-05-09

    Mesoporous silica/polymer hybrids with well-preserved mesoporosity were prepared by integrating the initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) technique with the bio-inspired polydopamine (PDA) chemistry. By manipulating the auto-oxidative polymerization of dopamine, uniform PDA layers were deposited on the surfaces and pore walls of ordered mesoporous silicas (OMSs), thereby promoting the immobilization of ATRP initiators. Poly(glycidyl methacrylate) (PGMA) brushes were then grown from the OMSs by using the ICAR ATRP technique. The evolution of the mesoporous silica/polymer hybrids during synthesis, in terms of morphology, structure, surface and porous properties, was detailed. And, parameters influencing the controlled growth of polymer chains in the ICAR ATRP system were studied. Taking advantage of the abundant epoxy groups in the PGMA platform, post-functionalization of the mesoporous silica/polymer hybrids by the covalent attachment of macrocyclic ligands for the adsorptive separation of lithium isotopes was realized. Adsorption behavior of the functionalized hybrids toward lithium ions was fully investigated, highlighting the good selectivity, and effects of temperature, solvent and counter ions. The ability for lithium isotope separation was evaluated. A higher separation factor could be obtained in systems with softer counter anions and lower polarity solvents. More importantly, due to the versatility of the ICAR ATRP technique, combined with the non-surface specific PDA chemistry, the methodology established in this work would provide new opportunities for the preparation of advanced organic-inorganic porous hybrids for broadened applications.

  14. Bio-inspired Fault-tolerant Approach for Sobel Operator%一种基于仿生原理的Sobel算子容错方法

    Institute of Scientific and Technical Information of China (English)

    吕启; 窦勇; 徐佳庆; 冯雪

    2012-01-01

    提出一种基于仿生原理的Sobel算子容错方法.通过对蛋白质标记与识别、同类细胞替换、干细胞分化和异类细胞转换4种生物机制的模仿,设计了电子组织的结构,该结构具有层次化自修复的能力.用MPI编程的方式实现了根据Sobel算子定制的电子组织,并且通过故障注入实验验证了该方法对Sobel算子容错的可行性.%A bio-inspired fault-tolerant approach for Sobel operator was described in this paper. By imitating four biological principles,namely,match-based recognition in protein sorting,substitution among homogeneous cells,differentiation of stem cells,and conversion between heterogeneous cells, we designed the architecture of electronic tissue (eTis-sue), which supports hierarchical self-healing. We then implemented the eTissue architecture which is specific to Sobel operator by programming with MPL Our fault-injection experiments prove the feasibility of this fault-tolerant approach.

  15. A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming.

    Science.gov (United States)

    Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid

    2016-01-01

    In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.

  16. Research on Evolvable Repairing Ability of Bio-inspired Fault-tolerance System%仿生容错系统演化修复能力研究

    Institute of Scientific and Technical Information of China (English)

    巨政权; 满梦华; 褚杰; 常小龙

    2012-01-01

    基于演化硬件技术构建一种仿生容错系统,通过不同模式、数量的故障注入对其演化修复能力进行研究,得到系统故障状况与演化修复能力间的关系:(1)随着故障数量的增加,系统演化修复能力的主要影响因素从演化算法的效率逐步向演化修复过程中的故障“躲避”概率转移;(2)系统的演化修复能力与故障数量符合指数衰减规律.%Based on the Evolvable Hardware EH W) technique, a bio-inspired fault-tolerance system is design and constructed, and the evolvable repairing ability is researched under the different fault modes and quantities. This paper obtains some relations between the faults and the evolvable repairing ability through analyzing the measured data. And there are two most valuable results: (l)With the increase of the quantity of faults, the main influence factors of the evolvable repairing ability are shift from the efficiency of evolution strategy to the probability of the fault avoided; (2)The evolvable repairing ability and the fault quantity are in accord with the exponential decay law.

  17. 仿生自修复硬件多层结构模型%Multi-layer structural architecture for bio-inspired self-healing hardware

    Institute of Scientific and Technical Information of China (English)

    王南天; 钱彦岭; 李岳

    2016-01-01

    Inspired by the circulatory secretion and paracrine of hormone,aimed at solving the problems such as low efficiency and complexity during the cellular communicating,a four-layer structural architecture for bio-inspired self-healing hardware based on NoC (network on chip)and neighborhood connections was proposed.A self-healing hardware realizing an FIR (finite impulse response)filter based on the architecture was brought in to explain the architecture in detail.The hardware shows flexible routing ability and good fault-tolerant ability.It indicates that the structural architecture provides a new approach to design a self-healing hardware with high reliability.%针对仿生自修复硬件细胞间信号传输复杂、效率低等问题,借鉴内分泌系统中激素的传输方式,提出基于片上网络和近邻连接的4层仿生自修复硬件结构模型,并以实现有限脉冲响应滤波器为例,对模型进行详细论述。基于该模型的自修复硬件,具有灵活的布线能力与良好的容错能力,表明该模型为高可靠性自修复硬件设计提供了新途径。

  18. Research on the bio-inspired micro jumping robot%微型仿生跳跃机器人的研究与发展

    Institute of Scientific and Technical Information of China (English)

    陈大竞; 朱丹华; 刘伟庭; 陈裕泉

    2008-01-01

    对比了仿生跳跃机器人较轮式、履带式等其他类型机器人在复杂地形下运动的特定优势.根据生物界不同物种间相对运动速度的对比验证了尺度效应.引入弗劳德系数论证了跳跃方式在小型物体运动中的优势.介绍了日本、美国、意大利等国研究机构有关跳跃机器人的设计方案、研制现状及应用前景.分析了跳跃机器人所涉及的关键技术,提出了微型仿生跳跃机器人的设计方案,包括动力提供、储能和释放、稳定性维持、障碍探测、传感器集成等问题.对跳跃机器人应用领域做了分析和展望.%This paper presents a review over bio-inspired concept of jumping robot for locomotion on uneven terrains.First,scale effect is proved by comparison of different speeds of animals and Froude number is introduced to demonstrate the higher effectiveness of jumping mode:in the small robots.The worldwide development of design and application of jumping robots in Japan,USA.Italy,etc,is introduced.Also,description over key techniques used in the robot is given about locomotion,energy storing and releasing,stabilization,sensor integration and obstacle detection.The prospect of the application area is discussed in the end.

  19. Catalyseurs et procédés catalytiques utilisés dans la production des grands intermédiaires pétrochimiques. Situation actuelle et futur Catalysts and Catalytic Processes Used for the Production of the Major Petrochemical Building Blocks. Present Situation and the Future

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.

    2006-11-01

    Full Text Available La pétrochimie représente une part modeste du marché des catalyseurs, mais les dix dernières années ont vu des améliorations substantielles des catalyseurs et des procédés utilisés. Ces améliorations ont permis de mieux répondre à la demande en grands intermédiaires pétrochimiques. Cette évolution est bien illustrée par les hydrogénations, autour du vapocraquage destiné à produire des oléfines, par le reformage catalytique et les procédés satellites destinés à produire des aromatiques et par les nouveaux procédés de déshydrogénation, métathèse, oligomérisation. . . qui permettent de mieux équilibrer le marché des oléfines. Petrochemicals account for a modest share of the market for catalysts, but there have been substantial improvements in the catalysts and processes used in the last ten years. These improvements have brought about a better response to the demand for major petrochemical building blocks. This trend is clearly illustrated by hydrogenations in the field of steam cracking to produce olefins, by catalytic reforming and satellite processes to produce aromatics, and by new processes such as dehydrogenation, metathesis and oligomerization which provide better balance to the market for olefins.

  20. Bio-inspired dynamic robots

    Science.gov (United States)

    Rudolph, Alan S.; Wax, Steven G.; Christodoulou, Leo

    2003-09-01

    The unique performance of biological systems across a wide spectrum of phylogenetic species has historically provided inspirations for roboticists in new designs and fabrication of new robotic platforms. Of particular interest to a number of important applications is to create dynamic robots able to adapt to a change in their world, unplanned events that are sometimes unexpected, and sometimes unstable, harsh conditions. It is likely that the exploring dynamics in biological systems will continue to provide rich solutions to attaining robots capable of more complex tasks for this purpose. This is because the long-term design process of evolution utilizes a natural selection process that responds to such changes. Recently, there have been significant advances across a number of interdisciplinary efforts that have generated new capabilities in biorobotics. Whole body dynamics that capture the force dynamics and functional stability of legged systems over rough terrain have been elucidated and applied in legged robotic systems. Exploying the force dynamics of flapping winged insect flight has provided key discoveries and enabled the fabrication of new micro air vehicles. New classes of materials are being developed that emulate the ability of natural muscle, capturing the compliant and soft subtle movement and performance of biological appendages. In addition, classes of new multifunctional materials are being developed to enable the design of biorobotics with the structural and functional efficiency of living organisms. Optical flow and other sensors based on the principles of invertebrate vision have been implemented on robotic platforms for autonomous robotic guidance and control. These fundamental advances have resulted in the emergence of a new generation of bioinspired dynamic robots which show significant performance improvements in early prototype testing and that could someday be useful in a number of significant applications such as search and rescue and entertainment.

  1. Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes: A 24-Hour Randomized Controlled Crossover Study.

    Science.gov (United States)

    Reddy, Monika; Herrero, Pau; Sharkawy, Mohamed El; Pesl, Peter; Jugnee, Narvada; Pavitt, Darrell; Godsland, Ian F; Alberti, George; Toumazou, Christofer; Johnston, Desmond G; Georgiou, Pantelis; Oliver, Nick S

    2015-11-17

    The Bio-inspired Artificial Pancreas (BiAP) is a closed-loop insulin delivery system based on a mathematical model of beta-cell physiology and implemented in a microchip within a low-powered handheld device. We aimed to evaluate the safety and efficacy of the BiAP over 24 hours, followed by a substudy assessing the safety of the algorithm without and with partial meal announcement. Changes in lactate and 3-hydroxybutyrate concentrations were investigated for the first time during closed-loop. This is a prospective randomized controlled open-label crossover study. Participants were randomly assigned to attend either a 24-hour closed-loop visit connected to the BiAP system or a 24-hour open-loop visit (standard insulin pump therapy). The primary outcome was percentage time spent in target range (3.9-10 mmol/l) measured by sensor glucose. Secondary outcomes included percentage time in hypoglycemia (10 mmol/l). Participants were invited to attend for an additional visit to assess the BiAP without and with partial meal announcements. A total of 12 adults with type 1 diabetes completed the study (58% female, mean [SD] age 45 [10] years, BMI 25 [4] kg/m(2), duration of diabetes 22 [12] years and HbA1c 7.4 [0.7]% [58 (8) mmol/mol]). The median (IQR) percentage time in target did not differ between closed-loop and open-loop (71% vs 66.9%, P = .9). Closed-loop reduced time spent in hypoglycemia from 17.9% to 3.0% (P time was spent in hyperglycemia (10% vs 28.9%, P = .01). The percentage time in target was higher when all meals were announced during closed-loop compared to no or partial meal announcement (65.7% [53.6-80.5] vs 45.5% [38.2-68.3], P = .12). The BiAP is safe and achieved equivalent time in target as measured by sensor glucose, with improvement in hypoglycemia, when compared to standard pump therapy. © 2015 Diabetes Technology Society.

  2. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.

    Science.gov (United States)

    Diamond, Alan; Nowotny, Thomas; Schmuker, Michael

    2015-01-01

    Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and "neuromorphic algorithms" are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for

  3. A bio-inspired approach for the design of a multifunctional robotic end-effector customized for automated maintenance of a reconfigurable vibrating screen.

    Science.gov (United States)

    Makinde, O A; Mpofu, K; Vrabic, R; Ramatsetse, B I

    2017-01-01

    The development of a robotic-driven maintenance solution capable of automatically maintaining reconfigurable vibrating screen (RVS) machine when utilized in dangerous and hazardous underground mining environment has called for the design of a multifunctional robotic end-effector capable of carrying out all the maintenance tasks on the RVS machine. In view of this, the paper presents a bio-inspired approach which unfolds the design of a novel multifunctional robotic end-effector embedded with mechanical and control mechanisms capable of automatically maintaining the RVS machine. To achieve this, therblig and morphological methodologies (which classifies the motions as well as the actions required by the robotic end-effector in carrying out RVS machine maintenance tasks), obtained from a detailed analogy of how human being (i.e. a machine maintenance manager) will carry out different maintenance tasks on the RVS machine, were used to obtain the maintenance objective functions or goals of the multifunctional robotic end-effector as well as the maintenance activity constraints of the RVS machine that must be adhered to by the multifunctional robotic end-effector during the machine maintenance. The results of the therblig and morphological analyses of five (5) different maintenance tasks capture and classify one hundred and thirty-four (134) repetitive motions and fifty-four (54) functions required in automating the maintenance tasks of the RVS machine. Based on these findings, a worm-gear mechanism embedded with fingers extruded with a hexagonal shaped heads capable of carrying out the "gripping and ungrasping" and "loosening and bolting" functions of the robotic end-effector and an electric cylinder actuator module capable of carrying out "unpinning and hammering" functions of the robotic end-effector were integrated together to produce the customized multifunctional robotic end-effector capable of automatically maintaining the RVS machine. The axial forces ([Formula

  4. Comparing neuromorphic solutions in action: implementing a bio-inspired solution to a benchmark classification task on three parallel-computing platforms

    Directory of Open Access Journals (Sweden)

    Alan eDiamond

    2016-01-01

    Full Text Available Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and neuromorphic algorithms are being developed. As they are maturing towards deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability and power efficiency.Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analogue Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task.We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model’s ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached.With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication

  5. 电磁防护仿生技术研究的进展与展望%Research progress and prospect on study of Bio-inspired electromagnetic protection technology

    Institute of Scientific and Technical Information of China (English)

    常小龙; 赵国亮; 武翠霞; 满梦华

    2013-01-01

    In order to acquire the thoughts from the biology and design electronic system with high reliability using mechanism from biology, the development of bio-inspired electromagnetic protection is summarized newly appeared these years. The content of investigation about bio-inspired electromagnetic protection is illustrated and the fruits having been obtained are displayed. Biological neural system is a high complicated information processing and controlling system with the characteristic of self-organization and self-adaptatioa And neural system is very robust for its ability of fault tolerance. So a novel thought to study bio-inspired electromagnetic protection is discussed based on the way of neural information processing and coding, as well as implementation by integrated circuit.%为了从生物中汲取灵感,进而设计抗干扰能力强、可靠性高的电子系统,对近些年新兴的电磁防护仿生技术的发展脉络进行了详细总结.阐述了电磁防护仿生技术主要研究内容,并展示了现阶段电磁防护仿生研究已取得的成果.生物的神经系统是高度复杂的信息处理和控制系统,具有自组织和自适应的优良特性,同时也具有很高的容错能力.因此,结合神经信息处理方式、编码特点和集成电路实现,进一步探讨和分析了进行电磁防护仿生研究的新思路.

  6. Development of Asymmetric Hydrogenation Catalysts via High Throughput Experimentation Développement de catalyseurs d’hydrogénation asymétrique par criblage haut débit

    Directory of Open Access Journals (Sweden)

    de Vries J. G.

    2013-02-01

    Full Text Available The dynamics of drugs discovery imposes severe time constraints on the development chemist in charge of implementing the large scale production of a new Active Pharmaceutical Ingredient (API. This results in the use of well-established and robust transformations at the expense of the cost-efficiency and the sustainability of the process. In order to cope with the short development time and allow the implementation of new more efficient production technologies such as asymmetric hydrogenation, we have turned towards the use of high throughput experimentation for the discovery of new catalysts. The protocol for the preparation of a library of chiral ligands and its application to real-life pharmaceutical molecules is described in this article. La découverte de nouvelles molécules pharmaceutiques a sa propre dynamique qui impose des contraintes temporelles très strictes au chimiste en charge de développer la production du principe actif à large échelle. En conséquence, ce dernier va se tourner vers l’utilisation de technologies éprouvées et robustes quitte à rendre le procédé plus coûteux ou plus polluant. Afin de pouvoir faire face à des temps de développement très courts et d’introduire en production des technologies modernes et non polluantes comme l’hydrogénation asymétrique, nous avons développé une plateforme de criblage haut débit pour la découverte de nouveaux catalyseurs. Dans cet article, nous décrivons une des facettes de cette plateforme qui est la synthèse de librairies de ligands chiraux et leur application au cas réel d’une molécule pharmaceutique.

  7. Marché des catalyseurs d'hydrogénation The Market for Hydrogenation Catalysts

    Directory of Open Access Journals (Sweden)

    Mace J. M.

    2006-11-01

    Full Text Available L'institut Français du Pétrole (IFP ayant acquis une grande expérience dans le domaine des catalyseurs d'hydrogénation, en particulier dans l'utilisation du nickel soluble et des catalyseurs bimétalliques à base de palladium, une étude a été effectuée pour évaluer le marché potentiel des catalyseurs d'hydrogénation intervenant dans la synthèse de quelques grands intermédiaires pétrochimiques : le cyclohexane, la cyclohexanone, les alcools oxo, le butanediol, le sorbitol, le toluylène diamine, l'hexaméthylène diamine, l'eau oxygénée et l'acide téréphtalique. Ce marché atteint pour les produits considérés 63 M$ pour 3500 t/an de catalyseurs commercialisés et représente globalement 7 % de celui des catalyseurs utilisés en pétrochimie. Les débouchés les plus importants sont ceux des catalyseurs nécessaires pour la production de toluylène diamine (14,4×10·6 $, d'hexaméthylène diamine (11,5×10·6 $ et d'eau oxygénée (11,5×10·6 $. Ces hydrogénations sont effectuées pour l'essentiel en présence de 3 métaux: le nickel, 2300 t/an, le cuivre, 680 t/an et le palladium, 560 t/an. Le nickel continue d'être utilisé en majeure partie sous forme de nickel de Raney. Le nickel soluble de I'IFP, bien qu'étant plus sensible au soufre et à l'eau, devrait pouvoir trouver des applications pour l'hydrogénation d'autres composés possédant des doubles liaisons aromatiques. Les catalyseurs au palladium s'imposent lorsque l'on recherche une sélectivité dans l'hydrogénation d'une fonction sans toucher à une autre fonction. L'exemple type est, dans la préparation de l'eau oxygénée, celui de l'hydrogénation des fonctions quinone sans toucher aux liaisons aromatiques. On the basis of the great experience gained by Institut Français du Pétrole (IFP in the field of hydrogenation catalysts, especially in using soluble nickel and bimetallic palladium-base catalysts, a survey was made to assess the potential market for

  8. Modified bio-inspired algorithm based on membrane computing and application in gasoline blending%改进的膜计算仿生优化算法及在汽油调和中的应用

    Institute of Scientific and Technical Information of China (English)

    赵进慧; 柴天佑; 周平

    2012-01-01

    为提高膜计算仿生优化算法在求解流程工业复杂优化问题的计算性能,提出一种改进的膜计算仿生优化算法.该算法采用一个新的不确定性提取规则取代改进前的提取规则.4个有约束标准测试函数被用于检验该算法的计算性能,计算结果及对比显示了改进算法在鲁棒性和效率等方面优于改进前算法.改进算法应用于汽油调和优化问题,更高利润的配方及算法的计算效率证实了改进算法的优越性和实用性.%Aiming at improving the computational performance of bio-inspired algorithm based on membrane computing (BIAMC) in solving complex optimization problems in process manufacturing, a modified bio-inspired algorithm based on membrane computing (MBIAMC) is proposed. In MBIAMC, a new indeterministic abstraction rule is applied which substitutes the abstraction rule of BIAMC, and the algorithmic framework and other rules are inherited from BIAMC. For solving constrained optimization problems, the quadratic penalty function method is introduced in MBIAMC. Four constrained benchmark functions are used to evaluate computational performance of MBIAMC. The results and comparison with other two algorithms handling constraints problems reveal that MBIAMC is efficiency and superiority to BIAMC in accuracy and robustness. As a case study, MBIAMC is used to solve gasoline blending optimization problem, the better recipes and its lower computational cost validate its higher efficiency and more practicability.

  9. 面向电力行业的生物启发计算的最优潮流优化方法研究%OPF Bio-Inspired Computing for the Power Industry Optimization Method

    Institute of Scientific and Technical Information of China (English)

    谢敏敏

    2014-01-01

    OPF problem is for power system operation to strike its node voltage and power distribution, an effective method to assess the stability of the power system, aiming at optimal power flow problem, based on bio-inspired computing methods were designed based on GA, PSO and AI optimization of three bio-inspired technology. Firstly, a needle-based coding method using real number of chromosomes, the genetic algorithm into OPF problem, the first of IEEE14 bus system analysis, the results indicate that the model proposed algorithm can quickly converge to the global or approximate Global Solutions, in addition, operating results and Matpower classic model of this algorithm to compare, can achieve better optimization results. Secondly, this paper has designed an optimal power flow calculation based on particle swarm optimization based on optimal power flow optimization and artificial immune computing, then analyzes the pros and cons of the three algorithms to get a conclusion.%最优潮流问题是针对电力系统运行状态,根据其节点电压和功率分布计算信息,所采取的一种有效的评估电力系统稳定性的方法,针对最优潮流问题,基于生物启发计算方法分别设计了基于GA、PSO和AI三种生物启发技术的优化方法。首先提出了一种针基于采用实数染色体编码法,将遗传算法引入到最优潮流问题中,以IEEE14节点系统为算例进行分析,分析结果印证了所提出模型的有效性,能快速地收敛到全局或近似全局最优解。同时,将模型的运行结果与Matpower的经典求解算法进行比较,能取得较好的优化结果。其次,又设计了一种基于粒子群计算的最优潮流优化和基于人工免疫计算的最优潮流优化,分析三种算法的优劣,得出结论。

  10. Derivation of the stress-strain behavior of the constituents of bio-inspired layered TiO2/PE-nanocomposites by inverse modeling based on FE-simulations of nanoindentation test.

    Science.gov (United States)

    Lasko, G; Schäfer, I; Burghard, Z; Bill, J; Schmauder, S; Weber, U; Galler, D

    2013-03-01

    Owing to the apparent simple morphology and peculiar properties, nacre, an iridescent layer, coating of the inner part of mollusk shells, has attracted considerable attention of biologists, material scientists and engineers. The basic structural motif in nacre is the assembly of oriented plate-like aragonite crystals with a 'brick' (CaCO3 crystals) and 'mortar' (macromolecular components like proteins) organization. Many scientific researchers recognize that such structures are associated with the excellent mechanical properties of nacre and biomimetic strategies have been proposed to produce new layered nanocomposites. During the past years, increasing efforts have been devoted towards exploiting nacre's structural design principle in the synthesis of novel nanocomposites. However, the direct transfer of nacre's architecture to an artificial inorganic material has not been achieved yet. In the present contribution we report on laminated architecture, composed of the inorganic oxide (TiO2) and organic polyelectrolyte (PE) layers which fulfill this task. To get a better insight and understanding concerning the mechanical behaviour of bio-inspired layered materials consisting of oxide ceramics and organic layers, the elastic-plastic properties of titanium dioxide and organic polyelectrolyte phase are determined via FE-modelling of the nanoindentation process. With the use of inverse modeling and based on numerical models which are applied on the microscopic scale, the material properties of the constituents are derived.

  11. Hydroprocessing Catalysts. Utilization and Regeneration Schemes Catalyseurs d'hydrotraitement. Schémas d'utilisation et de régénération

    Directory of Open Access Journals (Sweden)

    Furimsky E.

    2006-11-01

    Full Text Available The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off -site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed. La quantité de catalyseurs utilisée représente une part importante du coût d'une opération d'hydrotraitement. Le choix d'un réacteur et d'un catalyseur approprié dépend des propriétés de la charge. On préfère utiliser les procédés permettant un fonctionnement continu pendant le chargement et le soutirage du catalyseur lorsqu'il s'agit de traiter des charges à haute teneur en asphaltène et en métaux. Le catalyseur usé peut être régénéré et remis en fonctionnement s'il n'est pas trop désactivé. La régénération peut être réalisée in situ ou hors du site. La première solution convient pour les réacteurs à lit fixe, tandis que le catalyseur de réacteurs à lit bouillonnant doit être régénéré hors du site. La régénération de catalyseurs usés fortement chargés en métaux tels que le vanadium, le nickel et le fer n'apparaît pas économique. De tels catalyseurs peuvent convenir pour la récupération des métaux. On doit trouver une méthode sans danger pour l

  12. eTissue: An Adaptive Reconfigurable Bio-Inspired Hardware Architecture%电子组织:一种具有自适应能力的可重构仿生硬件结构

    Institute of Scientific and Technical Information of China (English)

    徐佳庆; 窦勇; 吕启; 冯雪

    2012-01-01

    In the field of fault tolerance, adaptive bio-inspired hardware is springing up in recent years. The robustness of human blood system is derived from substitution among homogeneous cells mechanism, differentiation of adult stem cells mechanism, and conversion between heterogeneous cells mechanism. Illumined by the mechanisms mentioned above, this paper presents a bio-inspired adaptive reconfigurable hardware architecture named electronic tissue (eTissue). Different from existing multicellular array, eTissue recognizes and processes data based on data tag, which loosely couples operations and processing elements, consequently equips eTissue with flexible cell replacement capability. We implement substitution among homogeneous cells, differentiation of adult stem cells, and conversion between heterogeneous cells based on this flexible cell replacement capability. These mechanisms compose the hierarchical self-healing of eTissue, and the self-evolution of eTissue is derived from differentiation of adult stem cells and conversion between heterogeneous cells. We implement the eTissue prototype system in FPGA, and conduct fault-injection experiments to attest to its self-healing and self-evolution capability. Finally, we analyze and discuss the robustness of eTissue.%具有自适应能力的仿生硬件是容错领域一个新兴的研究方向.同类细胞替换、成体干细胞分化和异类细胞转化等生物机制是人体血液组织健壮性的重要来源.受这些生物机制的启发,提出了一种名为电子组织的自适应可重构多细胞阵列结构.该结构采用了基于标记与识别的数据处理方式,解除了传统多细胞阵列结构中操作与细胞单元间的严格绑定的数据处理方式,使得电子组织具备了更为灵活的细胞单元替换能力,并在此基础上实现了同类细胞替换、成体干细胞分化和异类细胞转化3种仿生机制.这3种机制使电子组织具备了层次化的自我修复能力;成

  13. Research on Key Technologies of Self-adaptive Immune Monitoring of Bio-inspired Manufacturing System%类生物化制造系统自适应免疫监控关键技术研究

    Institute of Scientific and Technical Information of China (English)

    唐敦兵; 郑堃; 顾文斌; 汤定山

    2011-01-01

    利用生物免疫机制及人工免疫系统的相关算法,结合类生物化制造系统模型,建立了一套制造系统免疫监控系统,并运用层次分析模型给出了该免疫监控系统健康评估的策略.对模拟实验的结果进行了分析,结果表明,所设计的免疫监控系统对制造系统的内外环境干扰具有良好的自适应性,对系统的健康状态评估也与系统的实际状况相符,从而证明了该免疫监控系统的有效性.%Combining the control model of bio-inspired manufacturing system (BIMS) with the algorithms of artificial immune system (ALS), this paper established an immune monitoring system (IMS). Besides, this paper proposed the strategies of health assessment of manufacturing system with the help of analytic hierarchy process(AHP) model. Finally,a simulation experiment was carried out based on the IMS proposed herein, and the results show that the system has a good adaptability for the changes of internal and external environments of manufacturing system. It can also give a reasonable evaluation of the manufacturing system which can match the actual state very well.Therefore, the proposed IMS has good effectiveness and reliability.

  14. Research on a Bio-Inspired Multidimensional Network Security Model and Its Implementation Mode%生物启发的多维网络安全模型及实现模式研究

    Institute of Scientific and Technical Information of China (English)

    郑瑞娟; 王慧强; 徐东

    2006-01-01

    在多变的生态环境中,生物系统的安全机制展示了非凡的适应性和鲁棒性.当前网络安全面临巨大挑战,生物启发理论为该问题的解决提供一条新思路,但当前该领域的研究仅停留在人体内部系统--免疫系统上,无法建立完整的空间模型.首次依据生物系统安全机制的层次性、系统性和多网并行等特征,综合子网类型、群体规模和时序阶段3个角度提出了基于"三网并行(three-net parallel, TNP)"结构的生物启发多维网络安全模型(bio-inspired multidimensional network security model, BMNSM).首先提取网络与生物系统安全运行机制的拟合点,建立BMNSM概念模型;然后在状态分析抽象的基础上,证明模型的线性状态空间特性,验证其完备性、可行性;最后依据Markov平稳分布理论,定量比较 TNP结构优化实现模式的平稳性,验证了BMNSM的优良性能.

  15. Marché des catalyseurs d'hydrogénation des corps gras Market of Hydrogenation Catalysts for Fats and Derivatives

    OpenAIRE

    Barraque M.; Stern R.; Torck B.

    2006-01-01

    L'institut Français du Pétrole (IFP) ayant acquis une grande expérience dans le domaine des catalyseurs, notamment d'hydrogénation, le Département Evaluation a effectué à diverses reprises des études qui en évaluent les marchés potentiels. L'analyse qui suit a été réalisée en vue de déterminer les débouchés possibles des catalyseurs utilisés dans l'hydrogénation des corps gras; elle couvre l'industrie alimentaire, l'hydrogénation des acides gras d'origine animale ou végétale, la production d'...

  16. Slow Movements of Bio-Inspired Limbs

    Science.gov (United States)

    Babikian, Sarine; Valero-Cuevas, Francisco J.; Kanso, Eva

    2016-10-01

    Slow and accurate finger and limb movements are essential to daily activities, but the underlying mechanics is relatively unexplored. Here, we develop a mathematical framework to examine slow movements of tendon-driven limbs that are produced by modulating the tendons' stiffness parameters. Slow limb movements are driftless in the sense that movement stops when actuations stop. We demonstrate, in the context of a planar tendon-driven system representing a finger, that the control of stiffness suffices to produce stable and accurate limb postures and quasi-static (slow) transitions among them. We prove, however, that stable postures are achievable only when tendons are pretensioned, i.e., they cannot become slack. Our results further indicate that a non-smoothness in slow movements arises because the precision with which individual stiffnesses need to be altered changes substantially throughout the limb's motion.

  17. Bio-inspired nano tools for neuroscience.

    Science.gov (United States)

    Das, Suradip; Carnicer-Lombarte, Alejandro; Fawcett, James W; Bora, Utpal

    2016-07-01

    Research and treatment in the nervous system is challenged by many physiological barriers posing a major hurdle for neurologists. The CNS is protected by a formidable blood brain barrier (BBB) which limits surgical, therapeutic and diagnostic interventions. The hostile environment created by reactive astrocytes in the CNS along with the limited regeneration capacity of the PNS makes functional recovery after tissue damage difficult and inefficient. Nanomaterials have the unique ability to interface with neural tissue in the nano-scale and are capable of influencing the function of a single neuron. The ability of nanoparticles to transcend the BBB through surface modifications has been exploited in various neuro-imaging techniques and for targeted drug delivery. The tunable topography of nanofibers provides accurate spatio-temporal guidance to regenerating axons. This review is an attempt to comprehend the progress in understanding the obstacles posed by the complex physiology of the nervous system and the innovations in design and fabrication of advanced nanomaterials drawing inspiration from natural phenomenon. We also discuss the development of nanomaterials for use in Neuro-diagnostics, Neuro-therapy and the fabrication of advanced nano-devices for use in opto-electronic and ultrasensitive electrophysiological applications. The energy efficient and parallel computing ability of the human brain has inspired the design of advanced nanotechnology based computational systems. However, extensive use of nanomaterials in neuroscience also raises serious toxicity issues as well as ethical concerns regarding nano implants in the brain. In conclusion we summarize these challenges and provide an insight into the huge potential of nanotechnology platforms in neuroscience.

  18. Bio-inspired impact-resistant composites.

    Science.gov (United States)

    Grunenfelder, L K; Suksangpanya, N; Salinas, C; Milliron, G; Yaraghi, N; Herrera, S; Evans-Lutterodt, K; Nutt, S R; Zavattieri, P; Kisailus, D

    2014-09-01

    Through evolutionary processes, biological composites have been optimized to fulfil specific functions. This optimization is exemplified in the mineralized dactyl club of the smashing predator stomatopod (specifically, Odontodactylus scyllarus). This crustacean's club has been designed to withstand the thousands of high-velocity blows that it delivers to its prey. The endocuticle of this multiregional structure is characterized by a helicoidal arrangement of mineralized fiber layers, an architecture which results in impact resistance and energy absorbance. Here, we apply the helicoidal design strategy observed in the stomatopod club to the fabrication of high-performance carbon fiber-epoxy composites. Through experimental and computational methods, a helicoidal architecture is shown to reduce through-thickness damage propagation in a composite panel during an impact event and result in an increase in toughness. These findings have implications in the design of composite parts for aerospace, automotive and armor applications.

  19. Bio-Inspired Micromechanical Directional Acoustic Sensor

    Science.gov (United States)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  20. Bio-inspired organic field effect transistors

    Science.gov (United States)

    Irimia-Vladu, Mihai; Troshin, Pavel A.; Schwabegger, Günther; Bodea, Marius; Schwödiauer, Reinhard; Fergus, Jeffrey W.; Razumov, Vladimir; Bauer, Siegfried; Sariciftci, Niyazi Serdar

    2010-08-01

    Two major concerns in the world nowadays are the plastic consumption and waste. Because to the economic growth and the incessant demand of plastics in developing countries, plastics consumption is projected to increase by a factor of two to three during the actual decade1. As an intuitive example, the amount of municipal solid waste (estimated per person per year) averages ~440 kg for China, ~550 kg for the European Union and ~790 kg for the United States, with almost 50% of the waste being electronic products and plastics1,2. Green technology based on biodegradable/compostable materials is perceived as an ultimate goal for solving waste problems. Currently there are numerous efforts for producing compostable plastic materials for applications in daily life products, such as plastic bags and disposable dishware. When such low-end products are fabricated with compostable materials, electronics included in such goods should be also based on materials that are easily compostable.

  1. Bio-Inspired Ceramic/Carbon Composites

    Science.gov (United States)

    2013-05-01

    reduction /formation   of   metallic   catalyst  particles  and  chemical   vapour  deposition.  A  1.1  M...were   grown   inside  a   freeze  casted  alumina  scaffold   by   first   infiltrating   a   catalyst   precursor...solution  of   iron   (III)   nitrate   in   isopropanol   was   infiltrated   in   the   scaffolds  

  2. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately model biological systems at the molecular and cellular level. The project's impact encompasses applications to biofuels, to novel sensors and to materials with broad use for energy or threat reduction. The broad, interdisciplinary approach of CNLS offers the unparalleled strength of combining science backgrounds and expertise -a unique and important asset in attacking the complex science of biological organisms. This approach also allows crossfertilization, with concepts and techniques transferring across field boundaries.

  3. Novel Bio-inspired Aquatic Flow Sensors

    Science.gov (United States)

    2012-06-18

    hot - wire elements to detect changes in flow [19- 21]. Specifically, these thermal flow sensors work by using thermal anemometry , which...correlates the convective heat transfer from the hot wire to the flow rate. As a result of this property, they can also be utilized as temperature sensors...A.  E.  Perry  and  P.  A.  Libby,  " Hot -­‐ Wire   Anemometry ,"  Journal  of  Applied  Mechanics,   vol.  50,

  4. Bio-inspired color image enhancement model

    Science.gov (United States)

    Zheng, Yufeng

    2009-05-01

    Human being can perceive natural scenes very well under various illumination conditions. Partial reasons are due to the contrast enhancement of center/surround networks and opponent analysis on the human retina. In this paper, we propose an image enhancement model to simulate the color processes in the human retina. Specifically, there are two center/surround layers, bipolar/horizontal and ganglion/amacrine; and four color opponents, red (R), green (G), blue (B), and yellow (Y). The central cell (bipolar or ganglion) takes the surrounding information from one or several horizontal or amacrine cells; and bipolar and ganglion both have ON and OFF sub-types. For example, a +R/-G bipolar (red-center- ON/green-surround-OFF) will be excited if only the center is illuminated, or inhibited if only the surroundings (bipolars) are illuminated, or stay neutral if both center and surroundings are illuminated. Likewise, other two color opponents with ON-center/OFF-surround, +G/-R and +B/-Y, follow the same rules. The yellow (Y) channel can be obtained by averaging red and green channels. On the other hand, OFF-center/ON-surround bipolars (i.e., -R/+G and -G/+R, but no - B/+Y) are inhibited when the center is illuminated. An ON-bipolar (or OFF-bipolar) only transfers signals to an ONganglion (or OFF-ganglion), where amacrines provide surrounding information. Ganglion cells have strong spatiotemporal responses to moving objects. In our proposed enhancement model, the surrounding information is obtained using weighted average of neighborhood; excited or inhibited can be implemented with pixel intensity increase or decrease according to a linear or nonlinear response; and center/surround excitations are decided by comparing their intensities. A difference of Gaussian (DOG) model is used to simulate the ganglion differential response. Experimental results using natural scenery pictures proved that, the proposed image enhancement model by simulating the two-layer center/surrounding retinal networks can effectively enhance color images in terms of color contrast and image details.

  5. Bio-inspired Hybrid Carbon Nanotube Muscles

    Science.gov (United States)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  6. Bio-inspired materials for electrochemical devices

    Science.gov (United States)

    Pawlicka, A.; Firmino, A.; Sentanin, F.; Sabadini, R. C.; Jimenez, D. E. Q.; Jayme, C. C.; Mindroiu, M.; Zgarian, R. G.; Tihan, G. T.; Rau, I.; Silva, M. M.; Nogueira, A. F.; Kanicki, J.; Kajzar, F.

    2015-10-01

    Natural macromolecules are very promising row materials to be used in modern technology including security and defense. They are abundant in nature, easy to extract and possess biocompatibility and biodegradability properties. These materials can be modified throughout chemical or physical processes, and can be doped with lithium and rare earth salts, ionic liquids, organic and inorganic acids. In this communication samples of DNA and modified DNA were doped with Prussian Blue (PB), poly(ethylene dioxythiophene) (PEDOT), europium and erbium triflate and organic dyes such as Nile Blue (NB), Disperse Red 1 (DR1) and Disperse Orange 3 (DO3). The colored or colorless membranes were characterized by electrochemical and spectroscopic measurements, and they were applied in electrochromic devices (ECDs) and dye sensitized solar cells (DSSC). ECDs change the color under applied potential, so they can modulate the intensity of transmitted light of 15 to 35%. As the electrochromic materials, WO3 or Prussian blue (PB), are usually blue colored, the color change is from transparent to blue. DNA, and the complexes: DNA-CTMA, DNA-DODA and DNAPEDOT: PSS were also investigated as either hole carrier material (HTM) or polymer electrolyte in dye-sensitized solar cells (DSSC). The DNA-based samples as HTM in small DSSCs revealed a solar energy conversion efficiency of 0.56%. Polymer electrolytes of DNA-CTMA and DNA-DODA, both with 10 wt% of LiI/I2, applied in small DSSC, exhibited the efficiencies of 0.18 and 0.66%, respectively. The obtained results show that natural macromolecules-based membranes are not only environmentally friendly but are also promising materials to be investigated for several electrochemical devices. However, to obtain better performances more research is still needed.

  7. Dynamically reconfigurable bio-inspired hardware

    OpenAIRE

    Upegui Posada, Andres Emilio

    2006-01-01

    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable c...

  8. Bio-inspired speed detection and discrimination

    OpenAIRE

    Cerda, Mauricio; Terissi, Lucas; Girau, Bernard

    2009-01-01

    International audience; In the field of computer vision, a crucial task is the detection of motion (also called optical flow extraction). This operation allows analysis such as 3D reconstruction, feature tracking, time-to-collision and novelty detection among others. Most of the optical flow extraction techniques work within a finite range of speeds. Usually, the range of detection is extended towards higher speeds by combining some multiscale information in a serial architecture. This serial...

  9. Bio-inspired Ant Algorithms: A review

    Directory of Open Access Journals (Sweden)

    Sangita Roy

    2013-05-01

    Full Text Available Ant Algorithms are techniques for optimizing which were coined in the early 1990’s by M. Dorigo. The techniques were inspired by the foraging behavior of real ants in the nature. The focus of ant algorithms is to find approximate optimized problem solutions using artificial ants and their indirect decentralized communications using synthetic pheromones. In this paper, at first ant algorithms are described in details, then transforms to computational optimization techniques: the ACO metaheuristics and developed ACO algorithms. A comparative study of ant algorithms also carried out, followed by past and present trends in AAs applications. Future prospect in AAs also covered in this paper. Finally a comparison between AAs with well-established machine learning techniques were focused, so that combining with machine learning techniques hybrid, robust, novel algorithms could be produces for outstanding result in future.

  10. Bio-Inspired Flexible Cellular Actuating Systems

    Science.gov (United States)

    2013-11-21

    Volterra transform v(t, y) = w(t, y)− ∫ y L k(y, x)w(t, x)dx (12) and the v-dynamics vtt −bvtyy − avyy = Mv − bpvt − apv, v(t, L) = 0, p > 0. (13) Note...L− y)2 − (L− x)2))√ p((L− y)2 − (L− x)2) . (17) Proof: We can derive expressions for vtt and vyy from (12) vtt = wtt − ∫ y L k(y, x)wtt (x)dx = bwty y

  11. Bio-Inspired Innovation and National Security

    Science.gov (United States)

    2010-01-01

    spongiform encephalopathy (BSE), popularly known as mad cow disease. In December 2003, a single case of BSE was detected in the American food chain. This...the energy conversion processes of photosynthesis can be mimicked abiotically.73 Like the mitochondrial -based oxidative phosphorylation systems...inner mitochondrial membrane, are all critical in finality to production of ATP, and can be manipulated experimentally. Additionally, respirasomes are

  12. Bio-Inspired Polymer Membrane Surface Cleaning

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2017-03-01

    Full Text Available To generate polyethersulfone membranes with a biocatalytically active surface, pancreatin was covalently immobilized. Pancreatin is a mixture of digestive enzymes such as protease, lipase, and amylase. The resulting membranes exhibit self-cleaning properties after “switching on” the respective enzyme by adjusting pH and temperature. Thus, the membrane surface can actively degrade a fouling layer on its surface and regain initial permeability. Fouling tests with solutions of protein, oil, and mixtures of both, were performed, and the membrane’s ability to self-clean the fouled surface was characterized. Membrane characterization was conducted by investigation of the immobilized enzyme concentration, enzyme activity, water permeation flux, fouling tests, porosimetry, X-ray photoelectron spectroscopy, and scanning electron microscopy.

  13. Una propuesta para el diagnóstico de fallos en sistemas industriales mediante el uso de estrategias bioinspiradas A proposal to fault diagnosis in industrial systems using bio-inspired strategies

    Directory of Open Access Journals (Sweden)

    Lídice Camps Echevarría

    2011-08-01

    Full Text Available In this work a study on the application of bio-inspired strategies for optimization to Fault Diagnosis in industrial systems is presented. The principal aim is to establish a basis for the development of new and viable model-based Fault Diagnosis Methods which improve some difficulties that the current methods cannot avoid. These difficulties are related mainly with fault sensitivity and robustness to external disturbances. In this study, there have been considered the Differential Evolution and the Ant Colony Optimization algorithms. This application is illustrated using simulated data of the Two tanks system benchmark. In order to analyze the advantages of these algorithms to obtain a diagnosis which needs to be sensitive to faults and robust to external disturbances, some experiments with incipient faults and noisy data have been simulated. The results indicate that the proposed approach, basically the combination of the two algorithms, characterizes a promising methodology for Fault Diagnosis.En el presente trabajo se presenta un estudio sobre la aplicación de estrategias bioinspiradas para la optimización al diagnóstico de fallos en sistemas industriales. El objetivo principal es establecer una base para el desarrollo de nuevos y viables métodos de diagnóstico de fallos basados en modelos que permitan mejorar las dificultades de los métodos actuales. Estas dificultades están relacionadas, fundamentalmente, con la sensibilidad ante la presencia de fallos y la robustez ante perturbaciones externas. En el estudio se consideraron los algoritmos Evolución Diferencial y Optimización por Colonia de Hormigas. La efectividad de la propuesta es analizada mediante experimentos con el conocido problema de prueba de los dos tanques. Los experimentos consideraron presencia de ruido en la información y fallos incipientes de manera que fuera posible analizar las ventajas de la propuesta en cuanto a diagnóstico robusto y sensible. Los resultados

  14. 一种仿生的面向可重构多细胞阵列的分布式定序方法%Bio-inspired Distributed Ranking Approach for Reconfigurable Multicellular Array

    Institute of Scientific and Technical Information of China (English)

    吕启; 徐佳庆; 窦勇; 冯雪

    2011-01-01

    提出一种仿生的面向多细胞阵列的分布式定序方法.该方法是基于生物学上的图式形成理论,通过催化剂-抑制剂模型在多细胞阵列中建立浓度梯度,并在此基础上进行定序.该方法具有如下的特点:跟现有的多细胞阵列维序方法相比,它采用主动的维序方式;跟传统的分布式定序方法相比,它不需要初始特征值就能实现定序和维序.故障注入实验表明,该定序方法较现有的方法具有更强的鲁棒性,在细胞出错的情况下能够重新建立浓度梯度和重新定序.此外,我们在Xilinx公司的型号为Virtex-6 XC6VLX760的FPGA芯片上实现了5x5多细胞阵列,对浓度梯度建立和重建时间及硬件资源开销进行了评估.%A bio-inspired distributed ranking approach for reconfigurable multicellular array architecture is presented in this paper. It is based on the pattern formation theory in biology. We first set up the morphogen gradient through the activator-inhibitor model, and then propose the distributed ranking method based on this. Our method has two characteristics: first, it's an active cell ranking and sequence number maintaining method compared to existing passive cell sequence number maintaining methods in multicellular array architectures; second, it doesn't need initial value to rank and maintain cell sequence numbers, which is different from ordinary distributed ranking methods. The results of fault-injection experiments show our method has better robustness than existing methods, that is, when cells die, concentration gradient is re-established and a new ranking process is started. We also implemented the 5x5 cellular array with a Xilinx Virtex-6 XC6VLX760 FPGA, and has evaluated the gradient establish or re-establish time, as well as the hardware cost.

  15. Improvement to the pattern of control rods of the equilibrium cycle of 18 months for the CLV using bio-inspired algorithms; Mejora del patron de barras de control del ciclo de equilibrio de 18 meses para la CLV empleando algoritmos bio-inspirados

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Ortiz, J.J.; Montes, J.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: rpc@nuclear.inin.mx

    2003-07-01

    Nowadays in the National Institute of Nuclear Research are carried out studies with some bio-inspired optimization techniques to improve the performance of the fuel cycles of the boiling water reactors of the Laguna Verde power plant (CLV). In the present work two bio-inspired techniques were applied with the purpose of improving the performance of a balance cycle of 18 months developed for the CLV: genetic algorithms (AG) and systems based on ants colonies (SCH). The design of the reference cycle it represents in several aspects an optimal cycle proposed starting from the experience of several operation decades with the boiling water reactors (BWR initials for Boiling Water Reactor) in the world. To try to improve their performance is beforehand a difficult challenge and it puts on test the feasibility of the optimization methods in the reloads design. The study of the bio-inspired techniques was centered exclusively on the obtaining of the control rod patterns (PBC) trying to overcome the capacity factor reached in the design of the reference cycle. It was fixed the cycle length such that the decrease of the coast down period would represent an increase of the capacity factor of the cycle; so that, it diminishes the annual cost associated with the capital cost of the plant. As consequence of the study, was found that the algorithm based on the ants colonies reaches to diminish the coast down period in five and half days respect to the original balance cycle, what represents an annual saving of $US 74,000. Since the original cycle was optimized, the above-mentioned, shows the ability of the SCH for the optimization of the cycle design. With the AG it was reach to approach to the original balance cycle with a coast down period greater in seven days estimating an annual penalization of $US 130,000. (Author)

  16. Les nouveaux acteurs de la coopération en Afrique

    Directory of Open Access Journals (Sweden)

    Philippe Hugon

    2010-03-01

    Full Text Available Dans le contexte de la mondialisation et, aujourd’hui, de la crise financière mondiale, de nouveaux acteurs de la coopération émergent en Afrique. Ces partenaires desserrent la contrainte financière et les conditionnalités, augmentent les marges de manœuvre et dopent le marché des matières premières, mais ils accroissent aussi les risques de réendettement et de faiblesse de la coordination des politiques d’aide. Ces partenariats remettent-ils en question les nouvelles pratiques de la coopération des pays de l’OCDE ? Justifient-ils le retour à une realpolitik ou reproduisent-ils les anciennes erreurs des puissances industrielles ? Ces erreurs peuvent-elles être corrigées ? La question se pose également de savoir si la crise mondiale qui touche profondément l’Afrique conduira à un retrait ou à un relais des nouvelles puissances émergentes. Ce chapitre distingue les nouveaux enjeux géopolitiques de l’Afrique dans un monde multipolaire puis les nouveaux acteurs de la coopération en Afrique, avant d’explorer les perspectives qui s’ouvrent pour la coopération en Afrique, notamment eu égard à la crise mondiale.

  17. D'une olivine naturelle à un catalyseur industriel au nickel pour la production d'hydrogène à partir de biomasse

    Science.gov (United States)

    Świerczyński, D.; Courson, C.; Guille, J.; Kiennemann, A.

    2004-11-01

    L'olivine naturelle ((Mg,Fe){2}SiO{4}) présente un double intérêt comme catalyseur de gazéification de la biomasse en lit fluidisé circulant : son activité catalytique supérieure à la silice et sa grande dureté lui conférant une résistance à l'attrition. L'addition de nickel à l'olivine naturelle permet d'obtenir un catalyseur de reformage du méthane et des goudrons répondant aux exigences liées au procédé, à savoir une utilisation en lit fluidisé circulant alternativement en phase réductrice et oxydante et une association forte nickel-olivine. Le rôle des différentes phases présentes dans l'olivine est mis en évidence par DRX, TPR, MEB et spectroscopie Mössbauer. Cette étude permet d'identifier les interactions nickel-support du catalyseur créées à différentes températures de calcination et d'expliquer les mécanismes de formation du catalyseur actif. Un rejet de fer sous forme d'oxyde est observé. Il peut être expliqué soit par à un échange avec le nickel, sans modification de la structure olivine initiale, conduisant à la formulation ((Mg,Ni){2}SiO{4}), soit par la précipitation d'une phase MgO avec formation d'une solution solide NiO-MgO. La deuxième hypothèse est privilégiée car la présence de cette phase est cohérente avec l'existence d'interactions fortes nickel-olivine et avec les rapports Ni/Mg {=} 1 à la surface des grains sur l'échantillon Ni/olivine calciné à 1100circC. Elle explique la grande activité catalytique de cet échantillon en reformage du méthane.

  18. Et si nos déchets devenaient la source de nouveaux produits. Notion d'économie circulaire

    OpenAIRE

    2015-01-01

    Notre objectif et nos recherches se concentrent sur l'utilisation des déchets agricoles et forestiers, les déchets végétaux et industriels et nos déchets ménagers pour produire une gamme de nouveaux produits, biocarburants ou molécules chimiques.

  19. Marché des catalyseurs d'hydrogénation des corps gras Market of Hydrogenation Catalysts for Fats and Derivatives

    Directory of Open Access Journals (Sweden)

    Barraque M.

    2006-11-01

    Full Text Available L'institut Français du Pétrole (IFP ayant acquis une grande expérience dans le domaine des catalyseurs, notamment d'hydrogénation, le Département Evaluation a effectué à diverses reprises des études qui en évaluent les marchés potentiels. L'analyse qui suit a été réalisée en vue de déterminer les débouchés possibles des catalyseurs utilisés dans l'hydrogénation des corps gras; elle couvre l'industrie alimentaire, l'hydrogénation des acides gras d'origine animale ou végétale, la production d'alcools gras et d'amines grasses. Ce marché dépasse 60 millions de dollars/an et correspond à près de 11 000 t/an de catalyseurs utilisés. Ces valeurs tiennent compte des consommations captives de catalyseurs produits par les compagnies utilisatrices. Ce chiffre d'affaires est du même ordre que celui des catalyseurs d'hydrogénation utilisés dans la synthèse des grands intermédiaires pétrochimiques. Plus de 64 % des applications concernent l'industrie alimentaire : production de margarine et shortening, hydrogénation d'huiles de salade et de friture aux États-Unis. Alors que la consommation de catalyseurs utilisés en lipochimie est très fortement concentrée dans les principales régions industrialisées : États-Unis, Europe occidentale et Japon, celle de I'lindustrie alimentaire est beaucoup plus dispersée : les 3 régions précitées représentent moins de 64 % de la consommation mondiale. Les débouchés estimés représentent des chiffres d'affaires annuels de 41×10·6 dollars pour l'industrie alimentaire, 8,3×10·6 dollars pour la production d'acide gras, 11×10·6 dollars pour la production d'alcools gras et 1,3×10·6 dollars pour la production d'amines grasses. Ces hydrogénations sont effectuées en présence de nickel sur support (industrie alimentaire, production d'acides gras et d'amines secondaires et tertiaires, en présence de nickel de Raney (production d'amines primaires ou de chromite de cuivre

  20. Bertrand Badie, Dominique Vidal (dir.), Nouveaux acteurs, nouvelle donne. L'état du monde 2012

    OpenAIRE

    2014-01-01

    Cette édition 2012 de L’état du monde, dirigée par Bertrand Badie et Dominique Vidal ambitionne examiner les modalités d’action des « nouveaux acteurs » qui émergent dans un contexte de « nouvelle donne » où l’hyper puissance américaine se trouve en perte de vitesse alors que les printemps arabes induisent de profonds changements dans l’ordre social établi. Le projet des contributeurs de l’ouvrage est clair : prendre la mesure de la déstabilisation du monde et des rééquilibrages qu’elle impli...

  1. Mise au point de deux nouveaux matériaux à base de cobalt

    OpenAIRE

    CEA

    2014-01-01

    Des chercheurs du CEA, du CNRS, du Collège de France et de l’Université de Grenoble ont mis au point deux nouveaux matériaux à base de cobalt capables de remplacer le platine, métal rare et cher, dans la production d’hydrogène à partir d’eau (électrolyse). L’un peut fonctionner en solution aqueuse de pH neutre. Le second constitue le premier matériau catalytique « commutable » et sans métaux nobles jamais créé capable d’intervenir dans les deux réactions chimiques essentielles à l’électrolys...

  2. Méthodes générales de synthèse des catalyseurs à base d'oxydes General Synthesis Methods for Mixed Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Courty Ph.

    2006-11-01

    Full Text Available De nombreux procédés industriels (industrie céramique, électronique, nucléaire catalyse hétérogène utilisent des matériaux constitués d'oxydes mixtes. Les études fondamentales réalisées en catalyse et leurs applications industrielles montrent qu'au-delà des diverses interprétations fines de l'activité catalytique des oxydes mixtes, une notion plus générale se dégage, celle de l'homogénéité de la phase active, donc du premier intermédiaire de fabrication du catalyseur (le précurseur. Les différentes méthodes de synthèse des oxydes mixtes, puis des catalyseurs, sont alors exposées. Pour chacune d'entre elles, il est montré comment l'obtention d'un précurseur homogène peut être favorisée et maintenue. Un exemple illustre le cas de l'oxyde mixte déposé sur support. Finalement, l'étape de mise en forme de l'oxyde mixte est évoquée, l'aspect économique de la fabrication du catalyseur conclut ce texte. A great mony industrial processes (ceramics, electronics, nuclear energy, hererogeneous catalysis use materials made up of mixed oxides. Fundamental research on catalysis and its industrial applications has shown that, over and beyond the various subtle interpretations of the catalytic activity of mixed oxides, a more general concept emerges, i. e. that of the homogeneity of the active phase, hence of the first catalyst-manufacturing intermediate (the precursor. Different synthesis methods for mixed oxides, and then for cotalysts, are described. The demonstration is made for each of them how the production of a homogeneous precursor con be enhanced and maintained. An example illustrotes the case of a mixed oxide deposited on a carrier. To conclude, the shaping of the mixed oxide is described, followed by the economic aspect of catalyst manufacturing.

  3. La préparation des catalyseurs. Première partie : Germination et croissance des particules. Importance de la sursaturation du milieu Preparation of Catalysts. Part One: Particle Germination and Growth. Importance of the Supersaturation of the Medium

    OpenAIRE

    Marcilly C.

    2006-01-01

    Cet article présente les deux notions fondamentales et générales de germination et croissance des particules ou cristaux élémentaires qui peuvent former aussi bien le support du catalyseur que l'agent actif dispersé à sa surface. Germination et croissance sont deux étapes très importantes qui interviennent à divers stades de la préparation des catalyseurs : précipitation, séchage, calcination, etc. On montre que le paramètre essentiel qui régit ces deux étapes et qui détermine la dimension, l...

  4. Evaluation experimentale et theorique du comportement a la flexion de nouveaux poteaux en materiaux composites

    Science.gov (United States)

    Metiche, Slimane

    La demande croissante en poteaux pour les differents reseaux d'electricite et de telecommunications a rendu necessaire l'utilisation de materiaux innovants, qui preservent l'environnement. La majorite des poteaux electriques existants au Canada ainsi qu'a travers le monde, sont fabriques a partir de materiaux traditionnels tel que le bois, le beton ou l'acier. Les motivations des industriels et des chercheurs a penser a d'autres solutions sont diverses, citons entre autre: La limitation en longueur des poteaux en bois ainsi que la vulnerabilite des poteaux fabriques en beton ou en acier aux agressions climatiques. Les nouveaux poteaux en materiaux composites se presentent comme de bons candidats a cet effet, cependant; leur comportement structural n'est pas connu et des etudes theoriques et experimentales approfondies sont necessaires avant leur mise en marche a grande echelle. Un programme de recherche intensif comportant plusieurs projets experimentaux, analytiques et numeriques est en cours a l'Universite de Sherbrooke afin d'evaluer le comportement a court et a long termes de ces nouveaux poteaux en Polymeres Renforces de Fibres (PRF). C'est dans ce contexte que s'inscrit la presente these, et notre recherche vise a evaluer le comportement a la flexion de nouveaux poteaux tubulaires coniques fabriques en materiaux composites par enroulement filamentaire et ce, a travers une etude theorique, ainsi qu'a travers une serie d'essais de flexion en "grandeur reelle" afin de comprendre le comportement structural de ces poteaux, d'optimiser la conception et de proposer une procedure de dimensionnement pour les utilisateurs. Les poteaux en Polymeres Renforces de Fibres (PRF) etudies dans cette these sont fabriques avec une resine epoxyde renforcee de fibres de verre type E. Chaque type poteaux est constitue principalement de trois zones ou les proprietes geometriques (epaisseur, diametre) et les proprietes mecaniques sont differentes d'une zone a l'autre. La difference

  5. Traité des nouveaux risques précaution, crise, assurance

    CERN Document Server

    Godard, Olivier; Lagadec, Patrick; Michel-Kerjan, Erwann

    2002-01-01

    Au-delà des dénonciations de la technologie prométhéenne, s'appuyant sur les acquis de la recherche économique et d'autres disciplines des sciences sociales, cet ouvrage pionnier rassemble les pièces d'un puzzle dispersé. Le motif en est clair: dégager les axes d'une gouvernance des nouveaux risques. Celle-ci repose sur trois piliers qui organisent le panorama offert : la précaution - de la théorie du risque à celle des régimes politiques dans un univers à la fois non probabiliste et controversé; la prévention et la gestion de crises - dont les traits saillants sont montrés à partir de trois cas exemplaires : la contamination criminelle d'un produit pharmaceutique ; la destruction du réseau électrique québécois en 1998 ; l'épidémie de la vache folle au Royaume-Uni ; l'assurance des risques à grande échelle (désastres naturels, catastrophes technologiques et terrorisme de masse) qui, avérés ou potentiels, bouleversent l'économie de l'assurance. Pourquoi un Traité ? La raison en es...

  6. Off-Site Regeneration of Hydroprocessing Catalysts Régénération hors-site de catalyseurs d'hydrotraitement

    Directory of Open Access Journals (Sweden)

    Dufresne P.

    2006-11-01

    Full Text Available This paper describes the basic phenomena occurring during oxidative regeneration of hydroprocessing catalysts, as well as laboratory experiments studying the removal of carbon and sulfur as a function of temperature. In addition, the evolution of Surface Area (SA and Dynamic Oxygen Chemisorption (DOC values versus regeneration temperature applied is discussed. DOC is used to evaluate the dispersion of the active metal-sulfide phase. DOC and SA measurements are complementary techniques for quality assurance of the regeneration process. A substantial loss of SA is found above 600°C while DOC values begin to decrease at lower temperatures. As regards combustion of C and S, it was found that carbon is readily eliminated in a single step between 300 and 450°C. The elimination of sulfur starts as low as 150°C and is terminated only at high temperatures (>600°C. The combustion of C and S, however, seems to be limited by an oxygen diffusion effect into the pores of the catalyst. The EURECAT regeneration process is described as well as an example of an industrial regeneration. Finally, the regulation aspects concerning handling and transport of spent hydroprocessing catalyst are discussed. The safety aspects for unregenerated catalysts are covered by ADR and IMDG codes, but new European legislation exists concerning waste transport including spent catalyst transport. This may result in stricter regulations concerning the transport of spent catalyst from refinery to regeneration facilities in the very near future. Les phénomènes principaux auxquels sont soumis les catalyseurs d'hydrotraitement pendant une régénération oxydante sont décrits, ainsi que des études laboratoires de l'enlèvement du carbone et du soufre en fonction de la température. La qualité du catalyseur est suivie par mesure de la surface spécifique et de la chimisorption d'oxygène (Dynamic Oxygen Chemisorption, DOC. Les mesures de DOC et de surface sont des techniques compl

  7. Etude de la desactivation des catalyseurs d'hydrotraitement par cokage. Synthèse bibliographique Study of the Deactivation of Hydrotreating Catalysts by Coking. Bibliographic Synthesis

    Directory of Open Access Journals (Sweden)

    Gualda G.

    2006-11-01

    Full Text Available Ce travail effectue la synthèse de la littérature disponible en février 1987 sur le phénomène de cokage en hydrotraitement entraînant la désactivation des catalyseurs. Il propose trois angles d'étude apportant chacun un éclairage complémentaire sur le sujet : - un angle physico-chimique qui décrit les méthodes de caractérisation du coke et des catalyseurs usés utilisées par les auteurs, et les informations qu'elles fournissent; - un angle d'observation macroscopique du phénomène de désactivation par cokage, par la confrontation de modèles et de résultats expérimentaux; - un angle plus fondamental faisant état des mécanismes proposés pour la formation du coke dans les conditions d'hydrotraitement des fractions lourdes du pétrole en particulier. Il ressort de cette étude la très grande hétérogénéité des travaux, tant du point de vue des protocoles expérimentaux que des interprétations mécanistiques. Une étude rigoureuse et systématique s'impose donc dans ce domaine. Toutefois, il semble bien établi que l'on puisse faire la différence entre un coke fatal formé par dégradation thermique des hydrocarbures, et un coke dépendant des propriétés des catalyseurs mis en oeuvre. This article makes a synthesis of the literature available in February 1987 on the coking phenomenon in hydrotreating causing catalyst deactivation. It proposes three angles of study, each giving complementary light on the subject:(a a physicochemical angle describing methods of characterizing the coke and catalysts used by the authors, and the information they provide;(b a macroscopic observation angle of the deactivation phenomenon by coking, by comparing models and experimental results;(c a more fundamental angle bearing on the mechanisms proposed for coke formation under hydrotreatment conditions of heavy oil fractions in particular. This study shows the great heterogeneity of research, from the standpoint of both experimental

  8. De nouveaux acteurs de la régulation du travail dans la gestion par projets

    Directory of Open Access Journals (Sweden)

    Marie-Josée Legault

    2009-03-01

    Full Text Available Dans le contexte d’une grande transformation de l’économie mondiale, on constate de plus en plus l’inadéquation des efforts de théorisation des relations de travail qui datent du fordisme, notamment du modèle d’analyse systémique (Dunlop, 1958 comme du modèle stratégique (Kochan, Katz et McKersie, 1986 ; dans ces deux modèles en effet, trois acteurs se partagent exclusivement la scène de l’action : les syndicats, les employeurs et l’État, et leurs interactions se déroulent essentiellement dans le cadre de l’État-nation. Or, on voit émerger de nouveaux modes de régulation qui, à leur tour, illustrent la nécessité d’intégrer de nouveaux acteurs et de nouvelles frontières aux modèles théoriques du système de relations industrielles. Une enquête menée auprès de 88 professionnels de l’informatique des entreprises de services technologiques aux entreprises, dans une population composée à parts égales d’hommes et de femmes, a permis d’y relever des pratiques de régulation qui non seulement remettent en cause les termes traditionnels de la régulation fordiste qui hier encore dominaient les bureaucraties professionnelles où on employait les professionnels de l’informatique, mais encore les frontières traditionnelles du système de relations industrielles selon deux aspects : celui des trois acteurs principaux : les employeurs, les travailleurs et l’État, par l’ajout du client et des équipes de travail ; et celui de la séparation entre les contextes du système de relations industrielles et ce système lui-même.As the global economy undergoes a major transformation, the inadequacy of labour relations theories dating back to Fordism, especially the systemic analysis model (Dunlop, 1958 and the strategic model (Kochan, Katz, & McKersie, 1986, in which only three actors—union, employer and State—share the stage is becoming increasingly obvious. A good example is provided by companies

  9. Nouveaux pétroles : quel avenir ? Partie 2 New Oil: What's in the Future? Part Two

    Directory of Open Access Journals (Sweden)

    Boy De la Tour X.

    2006-11-01

    Full Text Available PaL'accroissement des prix de 1973 a rendu accessible toute une plage de pétroles chers, mais ces nouveaux pétroles soulèvent encore des problèmes techniques considérables et leur compétitivité économique a été très affectée par le retournement du marché pétrolier. Quel est l'état des technologies ? Que reste-t-il des ambitieux projets conçus dans les années 70 ? Aux horizons 2000/2010, quel sera l'impact de ces nouveaux pétroles, en terme de quantités et au plan stratégique ? Telles sont les questions auxquelles la présente étude tente de répondre. The increase in oil prices in 1973 made an entire range of expensive oil available, but this new oil still raises considerable technical problems, and its economic competitiveness has been greatly affected by the downturn in the oil market. What is the state of the art of existing technologies ? What remains of the ambitious projects conceived in the 1970s? As of 2000/2010, what will the impact of this new oil be in terms of amounts and from the strategic standpoint? These are the questions that the present study attempts to answer.

  10. Bio-inspired homogeneous multi-scale place recognition.

    Science.gov (United States)

    Chen, Zetao; Lowry, Stephanie; Jacobson, Adam; Hasselmo, Michael E; Milford, Michael

    2015-12-01

    Robotic mapping and localization systems typically operate at either one fixed spatial scale, or over two, combining a local metric map and a global topological map. In contrast, recent high profile discoveries in neuroscience have indicated that animals such as rodents navigate the world using multiple parallel maps, with each map encoding the world at a specific spatial scale. While a number of theoretical-only investigations have hypothesized several possible benefits of such a multi-scale mapping system, no one has comprehensively investigated the potential mapping and place recognition performance benefits for navigating robots in large real world environments, especially using more than two homogeneous map scales. In this paper we present a biologically-inspired multi-scale mapping system mimicking the rodent multi-scale map. Unlike hybrid metric-topological multi-scale robot mapping systems, this new system is homogeneous, distinguishable only by scale, like rodent neural maps. We present methods for training each network to learn and recognize places at a specific spatial scale, and techniques for combining the output from each of these parallel networks. This approach differs from traditional probabilistic robotic methods, where place recognition spatial specificity is passively driven by models of sensor uncertainty. Instead we intentionally create parallel learning systems that learn associations between sensory input and the environment at different spatial scales. We also conduct a systematic series of experiments and parameter studies that determine the effect on performance of using different neural map scaling ratios and different numbers of discrete map scales. The results demonstrate that a multi-scale approach universally improves place recognition performance and is capable of producing better than state of the art performance compared to existing robotic navigation algorithms. We analyze the results and discuss the implications with respect to several recent discoveries and theories regarding how multi-scale neural maps are learnt and used in the mammalian brain.

  11. Bio-inspired novel design principles for artificial molecular motors.

    Science.gov (United States)

    Hugel, Thorsten; Lumme, Christina

    2010-10-01

    Since we have learned that biological organisms like ourselves are driven by tiny biological molecular motors we try to design and produce artificial molecular motors. However, despite the huge efforts since decades, man-made artificial molecular motors are still far from biological molecular motors or macroscopic motors with regard to performance, especially with respect to energy efficiency. This review highlights recent progress towards artificial molecular motors and discusses how their design and development can be guided by the design concepts of biological molecular motors or macroscopic motors.

  12. Bio-Inspired Distributed Decision Algorithms for Anomaly Detection

    Science.gov (United States)

    2017-03-01

    NUMBER RU 5f. WORK UNIT NUMBER TG 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Rutgers University New Brunswick, NJ 08901 8. PERFORMING... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) Air Force Research Laboratory/RIG 525 Brooks Road Rome NY 13441-4505...algorithm ia with thresholds tist , . We then defined four different test functions tic , for all nodes in order to explore the impact of different

  13. Bio-inspired MEMS flow and inertial sensors

    NARCIS (Netherlands)

    Droogendijk, Harmen

    2014-01-01

    In biology, mechanosensors, equipped with differing hair-like structures for signal pick-up, are sensitive to a variety of physical quantities like: acceleration, flow, rotational rate, balancing and IR-light. As an example, crickets use filiform hairs for sensing of low-frequency flows to obtain in

  14. 3D printed bio-inspired angular acceleration sensor

    NARCIS (Netherlands)

    Tiem, van Joël; Groenesteijn, Jarno; Sanders, Remco; Krijnen, Gijs

    2015-01-01

    We present a biomimetic angular acceleration sensor inspired by the vestibular system, as found e.g. in mammals and fish. The sensor consist of a fluid filled circular channel. When exposed to angular accelerations the fluid flows relative to the channel. Read-out is based on electromagnetic flow se

  15. Bio-inspired MEMS flow and inertial sensors

    NARCIS (Netherlands)

    Droogendijk, H.

    2014-01-01

    In biology, mechanosensors, equipped with differing hair-like structures for signal pick-up, are sensitive to a variety of physical quantities like acceleration, flow, rotational rate, balancing and IR-light. As an example, crickets use filiform hairs for sensing of low-frequency flows to obtain

  16. A bio-inspired hair- based acceleration sensor

    NARCIS (Netherlands)

    Droogendijk, H.

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU- 8 lithography. Measu- rements show

  17. Programmable snapping composites with bio-inspired architecture.

    Science.gov (United States)

    Schmied, Jascha U; Le Ferrand, Hortense; Ermanni, Paolo; Studart, André R; Arrieta, Andres F

    2017-03-13

    The development of programmable self-shaping materials enables the onset of new and innovative functionalities in many application fields. Commonly, shape adaptation is achieved by exploiting diffusion-driven swelling or nano-scale phase transition, limiting the change of shape to slow motion predominantly determined by the environmental conditions and/or the materials specificity. To address these shortcomings, we report shape adaptable programmable shells that undergo morphing via a snap-through mechanism inspired by the Dionaea muscipula leaf, known as the Venus fly trap. The presented shells are composite materials made of epoxy reinforced by stiff anisotropic alumina micro-platelets oriented in specific directions. By tailoring the microstructure via magnetically-driven alignment of the platelets, we locally tune the pre-strain and stiffness anisotropy of the composite. This novel approach enables the fabrication of complex shapes showing non-orthotropic curvatures and stiffness gradients, radically extending the design space when compared to conventional long-fibre reinforced multi-stable composites. The rare combination of large stresses, short actuation times and complex shapes, results in hinge-free artificial shape adaptable systems with large design freedom for a variety of morphing applications.

  18. Bio-Inspired Microsystem for Robust Genetic Assay Recognition

    Directory of Open Access Journals (Sweden)

    Jaw-Chyng Lue

    2008-01-01

    Full Text Available A compact integrated system-on-chip (SoC architecture solution for robust, real-time, and on-site genetic analysis has been proposed. This microsystem solution is noise-tolerable and suitable for analyzing the weak fluorescence patterns from a PCR prepared dual-labeled DNA microchip assay. In the architecture, a preceding VLSI differential logarithm microchip is designed for effectively computing the logarithm of the normalized input fluorescence signals. A posterior VLSI artificial neural network (ANN processor chip is used for analyzing the processed signals from the differential logarithm stage. A single-channel logarithmic circuit was fabricated and characterized. A prototype ANN chip with unsupervised winner-take-all (WTA function was designed, fabricated, and tested. An ANN learning algorithm using a novel sigmoid-logarithmic transfer function based on the supervised backpropagation (BP algorithm is proposed for robustly recognizing low-intensity patterns. Our results show that the trained new ANN can recognize low-fluorescence patterns better than an ANN using the conventional sigmoid function.

  19. Colloidal-based additive manufacturing of bio-inspired composites

    Science.gov (United States)

    Studart, Andre R.

    Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.

  20. A bio-inspired total synthesis of tetrahydrofuran lignans.

    Science.gov (United States)

    Albertson, Anna K F; Lumb, Jean-Philip

    2015-02-01

    Lignan natural products comprise a broad spectrum of biologically active secondary metabolites. Their structural diversity belies a common biosynthesis, which involves regio- and chemoselective oxidative coupling of propenyl phenols. Attempts to replicate this oxidative coupling have revealed significant challenges for controlling selectivity, and these challenges have thus far prevented the development of a unified biomimetic route to compounds of the lignan family. A practical solution is presented that hinges on oxidative ring opening of a diarylcyclobutane to intercept a putative biosynthetic intermediate. The effectiveness of this approach is demonstrated by the first total synthesis of tanegool in 4 steps starting from ferulic acid, as well as a concise synthesis of the prototypical furanolignan pinoresinol.

  1. Nanophotonics of Chloroplasts for Bio-Inspired Solar Energy Materials

    Science.gov (United States)

    Gourley, Paul L.; Gourley, Cheryl R.

    2011-03-01

    In the search for new energy sources, lessons can be learned from chloroplast photonics. The nano-architecture of chloroplasts is remarkably well-adapted to mediate sunlight interactions for efficient energy conversion. We carried out experiments with chloroplasts isolated from spinach and leaf lettuce to elucidate the relationship between nano-architecture, biomolecular composition and photonic properties. We obtained high-resolution microscopic images of single chloroplasts to identify geometries of chloroplasts and interior grana. We performed micro-spectroscopy to identify strengths of absorption and fluorescence transitions and related them to broadband reflectance and transmittance spectra of whole leaf structures. Finally, the nonlinear optical properties were investigated with nanolaser spectroscopy by placing chloroplasts into micro-resonators and optically pumping. These spectra reveal chloroplast photonic modes and allow measurement of single chloroplast light scattering cross section, polarizability, and refractive index. The nanolaser spectra recorded at increasing pump powers enabled us to observe non-linear optics, photon dynamics, and stimulated emission from single chloroplasts. All of these experiments provide insight into plant photonics and inspiration of paradigms for synthetic biomaterials to harness sunlight in new ways.

  2. Vorticella: A Protozoan for Bio-Inspired Engineering

    Directory of Open Access Journals (Sweden)

    Sangjin Ryu

    2016-12-01

    Full Text Available In this review, we introduce Vorticella as a model biological micromachine for microscale engineering systems. Vorticella has two motile organelles: the oral cilia of the zooid and the contractile spasmoneme in the stalk. The oral cilia beat periodically, generating a water flow that translates food particles toward the animal at speeds in the order of 0.1–1 mm/s. The ciliary flow of Vorticella has been characterized by experimental measurement and theoretical modeling, and tested for flow control and mixing in microfluidic systems. The spasmoneme contracts in a few milliseconds, coiling the stalk and moving the zooid at 15–90 mm/s. Because the spasmoneme generates tension in the order of 10–100 nN, powered by calcium ion binding, it serves as a model system for biomimetic actuators in microscale engineering systems. The spasmonemal contraction of Vorticella has been characterized by experimental measurement of its dynamics and energetics, and both live and extracted Vorticellae have been tested for moving microscale objects. We describe past work to elucidate the contraction mechanism of the spasmoneme, recognizing that past and continuing efforts will increase the possibilities of using the spasmoneme as a microscale actuator as well as leading towards bioinspired actuators mimicking the spasmoneme.

  3. Force generation of bio-inspired hover kinematics

    NARCIS (Netherlands)

    Vandenheede, R.B.R.; Bernal, L.P.; Morrison, C.L.; Humbert, S.

    2012-01-01

    This paper presents the results of an experimental study of the aerodynamics of an elliptical flap plate wing in pitch-plunge motion. Several wing motion kinematics are derived from the kinematics of the Agrius Convolvuli (hawk moth) in hover. The experiments are conducted at a Reynolds number of 4,

  4. Bio-Inspired Human-Level Machine Learning

    Science.gov (United States)

    2015-10-25

    long stream of video data. Motivated by the cognitive developmental process of children constructing the visually grounded concepts from multimodal...accumulating new conceptual knowledge. Using a series of approximately 200 episodes of educational cartoon videos we examined the emergence and...and predictive information, empowerment which measures how much influence an agent has on its environment, and the value function or the expected

  5. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  6. Superparamagnetic tunnel junctions for bio-inspired computing (Conference Presentation)

    Science.gov (United States)

    Grollier, Julie; Torrejon, Jacob; Riou, Mathieu; Cros, Vincent; Querlioz, Damien; Tsunegi, Sumito; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D.; Khalsa, Guru

    2016-10-01

    The brain displays many features typical of non-linear dynamical networks, such as synchronization or chaotic behaviour. These observations have inspired a whole class of models that harness the power of complex non-linear dynamical networks for computing. In this framework, neurons are modeled as non-linear oscillators, and synapses as the coupling between oscillators. These abstract models are very good at processing waveforms for pattern recognition or at generating precise time sequences useful for robotic motion. However there are very few hardware implementations of these systems, because large numbers of interacting non-linear oscillators are indeed. In this talk, I will show that coupled spin-torque nano-oscillators are very promising for realizing cognitive computing at the nanometer and nanosecond scale, and will present our first results in this direction.

  7. TRIBOLOGY OF BIO-INSPIRED NANOWRINKLED FILMS ON ULTRASOFT SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Juergen M. Lackner

    2013-03-01

    Full Text Available Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum with high elasticity of the bulk (epidermis, dermis, hypodermis. The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue: Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC.

  8. Bio-inspired smart sensors for a hexapod robot

    DEFF Research Database (Denmark)

    Bilberg, Arne

    2011-01-01

    EMICAB (Embodied Motion Intelligence for Cognitive, Autonomous Robots) is an EU founded project where a consortium of 4 Universities is working together to integrate smart body mechanics and sensors with intelligent planning and motor behavior in order to make a holistic approach to artificial...... on limbs of for instance stick insects. Key words :( Smart sensor material, distributed sensor network, Bio-mechatronics, DEAP.)...

  9. Bio-inspired visual ego-rotation sensor for MAVs.

    Science.gov (United States)

    Plett, Johannes; Bahl, Armin; Buss, Martin; Kühnlenz, Kolja; Borst, Alexander

    2012-01-01

    Flies are capable of extraordinary flight maneuvers at very high speeds largely due to their highly elaborate visual system. In this work we present a fly-inspired FPGA based sensor system able to visually sense rotations around different body axes, for use on board micro aerial vehicles (MAVs). Rotation sensing is performed analogously to the fly's VS cell network using zero-crossing detection. An additional key feature of our system is the ease of adding new functionalities akin to the different tasks attributed to the fly's lobula plate tangential cell network, such as object avoidance or collision detection. Our implementation consists of a modified eneo SC-MVC01 SmartCam module and a custom built circuit board, weighing less than 200 g and consuming less than 4 W while featuring 57,600 individual two-dimensional elementary motion detectors, a 185° field of view and a frame rate of 350 frames per second. This makes our sensor system compact in terms of size, weight and power requirements for easy incorporation into MAV platforms, while autonomously performing all sensing and processing on-board and in real time.

  10. BioAir: Bio-Inspired Airborne Infrastructure Reconfiguration

    Science.gov (United States)

    2016-01-01

    UAV ) in order to autonomously form and maintain a dynamic communication network. This system draws upon inspirations from biological cell...presents the BioAIR system for autonomous communication , command and control of a swarm of UAVs . The idea is to form a communication network comprised of...deployment, yet maintaining communications should not interfere with the primary tasks of these entities. The BioAIR system was developed to coordinate

  11. Bio-inspired signal transduction with heterogeneous networks of nanoscillators

    Science.gov (United States)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2012-02-01

    Networks of single-electron transistors mimic some of the essential properties of neuron populations, because weak electrical signals trigger network oscillations with a frequency proportional to the input signal. Input potentials representing the pixel gray level of a grayscale image can then be converted into rhythms and the image can be recovered from these rhythms. Networks of non-identical nanoscillators complete the noisy transduction more reliably than identical ones. These results are important for signal processing schemes and could support recent studies suggesting that neuronal variability enhances the processing of biological information.

  12. Bio-inspired smart sensors for a hexapod robot

    DEFF Research Database (Denmark)

    Bilberg, Arne

    2011-01-01

    EMICAB (Embodied Motion Intelligence for Cognitive, Autonomous Robots) is an EU founded project where a consortium of 4 Universities is working together to integrate smart body mechanics and sensors with intelligent planning and motor behavior in order to make a holistic approach to artificial...

  13. Bio-Inspired Nanomaterials: Protein Cage Nano-Architectures

    Science.gov (United States)

    2008-04-01

    eluted from a and stirred overnight at room temperature. The product was collected Thermoelectric Biobasic size exclusion column (250 x I (mm)) in by...rigorously, kinetic plasticity in biological function is well documented hydrolysis allows the determination of conforma- for large complexes such as the

  14. Vorticella: A Protozoan for Bio-Inspired Engineering

    OpenAIRE

    Sangjin Ryu; Pepper, Rachel E.; Moeto Nagai; Danielle C. France

    2016-01-01

    In this review, we introduce Vorticella as a model biological micromachine for microscale engineering systems. Vorticella has two motile organelles: the oral cilia of the zooid and the contractile spasmoneme in the stalk. The oral cilia beat periodically, generating a water flow that translates food particles toward the animal at speeds in the order of 0.1–1 mm/s. The ciliary flow of Vorticella has been characterized by experimental measurement and theoretical modeling, and tested for flow co...

  15. Bio-inspired hierarchical polymer fiber-carbon nanotube adhesives.

    Science.gov (United States)

    Rong, Zhuxia; Zhou, Yanmin; Chen, Bingan; Robertson, John; Federle, Walter; Hofmann, Stephan; Steiner, Ullrich; Goldberg-Oppenheimer, Pola

    2014-03-01

    Hierarchical pillar arrays consisting of micrometer-sized polymer setae covered by carbon nanotubes are engineered to deliver the role of spatulae, mimicking the fibrillar adhesive surfaces of geckos. These biomimetic structures conform well and achieve better attachment to rough surfaces, providing a new platform for a variety of applications.

  16. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  17. A tale of three bio-inspired computational approaches

    Science.gov (United States)

    Schaffer, J. David

    2014-05-01

    I will provide a high level walk-through for three computational approaches derived from Nature. First, evolutionary computation implements what we may call the "mother of all adaptive processes." Some variants on the basic algorithms will be sketched and some lessons I have gleaned from three decades of working with EC will be covered. Then neural networks, computational approaches that have long been studied as possible ways to make "thinking machines", an old dream of man's, and based upon the only known existing example of intelligence. Then, a little overview of attempts to combine these two approaches that some hope will allow us to evolve machines we could never hand-craft. Finally, I will touch on artificial immune systems, Nature's highly sophisticated defense mechanism, that has emerged in two major stages, the innate and the adaptive immune systems. This technology is finding applications in the cyber security world.

  18. Adaptive bio-inspired navigation for planetary exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Exploration of planetary environments with current robotic technologies relies on human control and power-hungry active sensors to perform even the most elementary...

  19. Towards Bio-inspired and Functionalized Peptide Materials

    NARCIS (Netherlands)

    van der Wal, S.|info:eu-repo/dai/nl/314571671

    2014-01-01

    Peptide-based materials constitute a class of molecules that play an important role in many biological processes and are utilized by many organisms to interact with their environment. One of the most well-known examples is spider silk, a material produced by web-spinning spiders composed of

  20. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    OpenAIRE

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structur...

  1. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro

    2017-01-20

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  2. Investigation of a Bio-Inspired Liner Concept

    Science.gov (United States)

    Koch, L. Danielle

    2017-01-01

    Four samples of natural reeds, Phragmites australis, were tested in the NASA Langley and Glenn Normal Incidence Impedance Tubes in order to experimentally determine the acoustic absorption coefficients as a function of frequency from 400 to 3000 Hz. Six samples that mimicked the geometry of the assemblies of natural reeds were also designed and additively manufactured from ASA thermoplastic and tested. Results indicate that structures can be manufactured of synthetic materials that mimic the geometry and the low frequency acoustic absorption of natural reeds. This accomplishment demonstrates that a new class of structures can now be considered for a wide range of industrial products that need thin, lightweight, broadband acoustic absorption effective at frequencies below 1000 Hz. Aircraft engine acoustic liners and aircraft cabin acoustic liners, in particular, are two aviation applications that might benefit from further development of this concept.

  3. Bio-inspired cisplatin nanocarriers for osteosarcoma treatment

    National Research Council Canada - National Science Library

    Zhou, Haidong; Wang, Gangxiang; Lu, Yiyun; Pan, Zhijun

    2016-01-01

    In this study, cisplatin ( cis -diaminedichloroplatinum, CDDP) nanocarriers with phosphorylcholine surface tailoring were developed to enhance the anti-tumor potential of CDDP for the treatment of osteosarcoma. Poly...

  4. Bio-inspired nourishing relationship between human and systems

    Science.gov (United States)

    Kawakami, Hiroshi

    2017-07-01

    This paper discuses on the adaptive systems in the near future from the viewpoint of nourishing relationship. Based on the assumption that the social system is so-called "system of systems," managing adaptive systems within the social system puts emphasis rather on relationship among systems than on each element of systems with the help of ecological approach to systems science. Inspired by natural biological systems, the relationship between adaptive systems and users are formalized as a mutual nurturing, then this paper discusses on principle of designing such relationship.

  5. Bio-inspired nanomedicine strategies for artificial blood components.

    Science.gov (United States)

    Sen Gupta, Anirban

    2017-03-15

    Blood is a fluid connective tissue where living cells are suspended in noncellular liquid matrix. The cellular components of blood render gas exchange (RBCs), immune surveillance (WBCs) and hemostatic responses (platelets), and the noncellular components (salts, proteins, etc.) provide nutrition to various tissues in the body. Dysfunction and deficiencies in these blood components can lead to significant tissue morbidity and mortality. Consequently, transfusion of whole blood or its components is a clinical mainstay in the management of trauma, surgery, myelosuppression, and congenital blood disorders. However, donor-derived blood products suffer from issues of shortage in supply, need for type matching, high risks of pathogenic contamination, limited portability and shelf-life, and a variety of side-effects. While robust research is being directed to resolve these issues, a parallel clinical interest has developed toward bioengineering of synthetic blood substitutes that can provide blood's functions while circumventing the above problems. Nanotechnology has provided exciting approaches to achieve this, using materials engineering strategies to create synthetic and semi-synthetic RBC substitutes for enabling oxygen transport, platelet substitutes for enabling hemostasis, and WBC substitutes for enabling cell-specific immune response. Some of these approaches have further extended the application of blood cell-inspired synthetic and semi-synthetic constructs for targeted drug delivery and nanomedicine. The current study provides a comprehensive review of the various nanotechnology approaches to design synthetic blood cells, along with a critical discussion of successes and challenges of the current state-of-art in this field. For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. Bio-inspired functional surfaces for advanced applications

    DEFF Research Database (Denmark)

    Malshe, Ajay; Rajurkar, Kamlakar; Samant, Anoop

    2013-01-01

    surface strategies in order to learn clever surface architectures and implement those architectures to impart advanced functionalities into manufactured consumer products. This keynote paper delivers a critical review of such inspiring biological surfaces and their nonbiological product analogs, where...... manufacturing science and engineering have adopted such advanced functional surface architectures.......Over millions of years, biological subjects have been in continuous combat with extreme environmental conditions. The fittest have survived through continuous evolution, an ongoing process. In particular, biological surfaces, which are the active interfaces between subjects and the environment...

  7. Bio-Inspired Miniature Direction Finding Acoustic Sensor

    Science.gov (United States)

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-07-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy.

  8. Behavior of an adaptive bio-inspired spider web

    Science.gov (United States)

    Zheng, Lingyue; Behrooz, Majid; Huie, Andrew; Hartman, Alex; Gordaninejad, Faramarz

    2015-03-01

    The goal of this study is to demonstrate the feasibility of an artificial adaptive spider web with comparable behavior to a real spider web. First, the natural frequency and energy absorption ability of a passive web is studied. Next, a control system that consists of stepper motors, load cells and an Arduino, is constructed to mimic a spider's ability to control the tension of radial strings in the web. The energy related characteristics in the artificial spider web is examined while the pre-tension of the radial strings are varied. Various mechanical properties of a damaged spider web are adjusted to study their effect on the behavior of the web. It is demonstrated that the pre-tension and stiffness of the web's radial strings can significantly affect the natural frequency and the total energy of the full and damaged webs.

  9. Bio-inspired microstructures in collagen type I hydrogel.

    Science.gov (United States)

    Hosseini, Yahya; Verbridge, Scott S; Agah, Masoud

    2015-06-01

    This article presents a novel technique to fabricate complex type I collagen hydrogel structures, with varying depth and width defined by a single fabrication step. This technique takes advantage of reactive ion etching lag to fabricate three-dimensional (3-D) structures in silicon. Then, a polydimethylsiloxane replica was fabricated utilizing soft lithography and used as a stamp on collagen hydrogel to transfer these patterns. Endothelial cells were seeded on the hydrogel devices to measure their interaction with these more physiologically relevant cell culture surfaces. Confocal imaging was utilized to image the hydrogel devices to demonstrate the robustness of the fabrication technique, and to study the cell-extracellular matrix interaction after cell seeding. In this study, we observed that endothelial cells remodeled the sharp scallops of collagen hydrogel structures and compressed the structures with low degree of slope. Such patterning techniques will enhance the physiological relevance of existing 3-D cell culture platforms by providing a technical bridge between the high resolution yet planar techniques of standard lithography with more complex yet low resolution 3-D printing methods.

  10. Bio-inspired nanostructures for implementing vertical pn-junctions

    KAUST Repository

    Saffih, Faycal

    2011-08-04

    An apparatus, system, and method having a 3D pn-junction structure are presented. One embodiment of an apparatus includes a substrate, a first doped structure, and a second doped structure. In one embodiment, the first doped structure has a first doping type. The first doped structure may be formed above the substrate and extend outwardly from an upper surface of the substrate. In one embodiment, the second doped structure has a second doping type. The second doped structure may be formed above the substrate and in contact with the first doped structure. Additionally, the second doped structure may extend outwardly from the upper surface of the substrate.

  11. (YIP 10) - Bio-Inspired Interfaces for Hybrid Structures

    Science.gov (United States)

    2013-07-01

    Robotics, IEEE Transactions on, 2008. 24(2): p. 341-347. 43. Hu, D.L., et al., Water - walking devices. Experiments in Fluids, 2007. 43(5): p. 769-778...is one of the most effective adhesion systems found in nature, giving gecko lizards the ability to efficiently climb on both smooth and rough...investigations are discussed below and in more details in the following sections: Bioinspired surfaces: The foot of many of insects and lizards is covered by

  12. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi; Davis, Ryan Wesley

    2014-09-01

    Lignin is a potentially plentiful source of renewable organics, with %7E50Mtons/yr produced by the pulp/paper industry and 200-300 Mtons/yr projected production by a US biofuels industry. This industry must process approximately 1 billion tons of biomass to meet the US Renewable Fuel goals. However, there are currently no efficient processes for converting lignin to value-added chemicals and drop-in fuels. Lignin is therefore an opportunity for production of valuable renewable chemicals, but presents staggering technical and economic challenges due to the quantities of material involved and the strong chemical bonds comprising this polymer. Aggressive chemistries and high temperatures are required to degrade lignin without catalysts. Moreover, chemical non-uniformity among lignins leads to complex product mixtures that tend to repolymerize. Conventional petrochemical approaches (pyrolysis, catalytic cracking, gasification) are energy intensive (400-800 degC), require complicated separations, and remove valuable chemical functionality. Low-temperature (25-200 degC) alternatives are clearly desirable, but enzymes are thermally fragile and incompatible with liquid organic compounds, making them impractical for large-scale biorefining. Alternatively, homogeneous catalysts, such as recently developed vanadium complexes, must be separated from product mixtures, while many heterogenous catalysts involve costly noble metals. The objective of this project is to demonstrate proof of concept that an entirely new class of biomimetic, efficient, and industrially robust synthetic catalysts based on nanoporous Metal- Organic Frameworks (MOFs) can be developed. Although catalytic MOFs are known, catalysis of bond cleavage reactions needed for lignin degradation is completely unexplored. Thus, fundamental research is required that industry and most sponsoring agencies are currently unwilling to undertake. We introduce MOFs infiltrated with titanium and nickel species as catalysts for the C-O bond hydrogenolysis in model compounds, which mimic the b-O-4, a-O-4, and 4-O-5 linkages of natural lignin. The versatile IRMOF-74(n) series is proposed as a platform for creating efficient hydrogenolysis catalysts as it not only displays tunable pore sizes, but also has the required thermal and chemical stability. The catalytic C-O bond cleavage occurs at 10 bar hydrogen pressure and temperatures as low as 120 degC. The conversion efficiency of the aromatic ether substrates into the corresponding hydrocarbons and phenols varies as PhCH 2 CH 2 OPh > PhCH 2 OPh > PhOPh (Ph = phenyl), while the catalytic activity generally follows the following trend Ni@IRMOF-74>Ti@IRMOF-74>IRMOF-74. Conversions as high as 80%, coupled with good selectivity for hydrogenolysis vs. hydrogenation, highlight the potential of MOF-based catalysts for the selective cleavage of recalcitrant aryl-ether bonds found in lignin and other biopolymers. This project supports the DOE Integrated Biorefinery Program goals, the objective of which is to convert biomass to fuels and high-value chemicals, by addressing an important technology gap: the lack of low-temperature catalysts suitable for industrial lignin degradation. Biomass, which is %7E30 wt% lignin, constitutes a potentially major source of platform chemicals that could improve overall profitability and productivity of all energy-related products, thereby benefiting consumers and reducing national dependence on imported oil. Additionally, DoD has a strong interest in low-cost drop-in fuels (Navy Biofuel Initiative) and has signed a Memorandum of Understanding with DOE and USDA to develop a sustainable biofuels industry.

  13. Towards Bio-inspired and Functionalized Peptide Materials

    NARCIS (Netherlands)

    van der Wal, S.

    2014-01-01

    Peptide-based materials constitute a class of molecules that play an important role in many biological processes and are utilized by many organisms to interact with their environment. One of the most well-known examples is spider silk, a material produced by web-spinning spiders composed of repeatin

  14. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates.

    Science.gov (United States)

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul

    2013-01-01

    Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC.

  15. Bio-Inspired Stretchable Network-Based Intelligent Composites

    Science.gov (United States)

    2012-05-03

    temperature sensors, strain sensors, ultrasonic actuators, ultrasonic sensors, addressing and processing capabilities. During fabrica - tion, the substrate is...opposed to the typical gold or aluminum conductors demonstrated in the past, also complicated the fabrica - tion process, specifically the plasma etch

  16. BioMAV: bio-inspired intelligence for autonomous flight

    NARCIS (Netherlands)

    Gerke, P.K.; Langevoort, J.; Lagarde, S.; Bax, L.; Grootswagers, T.; Drenth, R.-J.; Slieker, V.; Vuurpijl, L.; Haselager, P.; Sprinkhuizen-Kuyper, I.; Van Otterlo, M.; De Croon, G.C.H.E.

    2011-01-01

    This paper aims to contribute to research on biologically inspired micro air vehicles in two ways: (i) it explores a novel repertoire of behavioral modules which can be controlled through finite state machines (FSM) and (ii) elementary movement detectors (EMD) are combined with a center/surround edge

  17. BioMAV: bio-inspired intelligence for autonomous flight

    NARCIS (Netherlands)

    Gerke, P.K.; Langevoort, J.E.; Lagarde, S.; Bax, L.; Grootswagers, T.; Drenth, R.; Slieker, V.M.; Vuurpijl, L.G.; Haselager, W.F.G.; Sprinkhuizen-Kuyper, I.G.; Otterlo, M. van; Croon, G.C.H.E. de

    2011-01-01

    This paper aims to contribute to research on biologically inspired micro air vehicles in two ways: (i) it explores a novel repertoire of behavioral modules which can be controlled through finite state machines (FSM) and (ii) elementary movement detectors (EMD) are combined with a center/ surround ed

  18. Demonstrations of bio-inspired perching landing gear for UAVs

    Science.gov (United States)

    Tieu, Mindy; Michael, Duncan M.; Pflueger, Jeffery B.; Sethi, Manik S.; Shimazu, Kelli N.; Anthony, Tatiana M.; Lee, Christopher L.

    2016-04-01

    Results are presented which demonstrate the feasibility and performance of two concepts of biologically-inspired landing-gear systems that enable bird-sized, unmanned aerial vehicles (UAV's) to land, perch, and take-off from branchlike structures and/or ledges. The first concept follows the anatomy of birds that can grasp ahold of a branch and perch as tendons in their legs are tensioned. This design involves a gravity-activated, cable-driven, underactuated, graspingfoot mechanism. As the UAV lands, its weight collapses a four-bar linkage pulling a cable which curls two opposing, multi-segmented feet to grasp the landing target. Each foot is a single, compliant mechanism fabricated by simultaneouly 3D-printing a flexible thermo-plastic and a stiffer ABS plastic. The design is optimized to grasp structures over a range of shapes and sizes. Quasi-static and flight tests of this landing gear affixed to RC rotorcraft (24 cm to 550 cm in diameter) demonstrate that the aircraft can land, perch, and take-off from a tree branch, rectangular wood board, PVC pipe, metal hand rail, chair armrest, and in addition, a stone wall ledge. Stability tests show that perching is maintained under base and wind disturbances. The second design concept, inspired by roosting bats, is a two-material, 3D-printed hooking mechanism that enables the UAV to stably suspend itself from a wire or small-diameter branch. The design balances structural stiffness for support and flexibility for the perching process. A flight-test demonstrates the attaching and dis-engaging of a small, RC quadcopter from a suspended line.

  19. Bio-inspired step-climbing in a hexapod robot.

    Science.gov (United States)

    Chou, Ya-Cheng; Yu, Wei-Shun; Huang, Ke-Jung; Lin, Pei-Chun

    2012-09-01

    Inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, we report on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables a RHex-style hexapod robot to reliably climb a step up to 230% higher than the length of its leg. Similar to the climbing strategy most used by cockroaches, the proposed maneuver is composed of two stages. The first stage is the 'rearing stage,' inclining the body so the front side of the body is raised and it is easier for the front legs to catch the top of the step, followed by the 'rising stage,' maneuvering the body's center of mass to the top of the step. Two infrared range sensors are installed on the front of the robot to detect the presence of the step and its orientation relative to the robot's heading, so that the robot can perform automatic gait transition, from walking to step-climbing, as well as correct its initial tilt approaching posture. An inclinometer is utilized to measure body inclination and to compute step height, thus enabling the robot to adjust its gait automatically, in real time, and to climb steps of different heights and depths successfully. The algorithm is applicable for the robot to climb various rectangular obstacles, including a narrow bar, a bar and a step (i.e. a bar of infinite width). The performance of the algorithm is evaluated experimentally, and the comparison of climbing strategies and climbing behaviors in biological and robotic systems is discussed.

  20. Bio-inspired diversity for increasing attacker workload

    Science.gov (United States)

    Kuhn, Stephen

    2014-05-01

    Much of the traffic in modern computer networks is conducted between clients and servers, rather than client-toclient. As a result, servers represent a high-value target for collection and analysis of network traffic. As they reside at a single network location (i.e. IP/MAC address) for long periods of time. Servers present a static target for surveillance, and a unique opportunity to observe the network traffic. Although servers present a heightened value for attackers, the security community as a whole has shifted more towards protecting clients in recent years leaving a gap in coverage. In addition, servers typically remain active on networks for years, potentially decades. This paper builds on previous work that demonstrated a proof of concept leveraging existing technology for increasing attacker workload. Here we present our clean slate approach to increasing attacker workload through a novel hypervisor and micro-kernel, utilizing next generation virtualization technology to create synthetic diversity of the server's presence including the hardware components.

  1. Bio-inspired nano-sensor-enhanced CNN visual computer.

    Science.gov (United States)

    Porod, Wolfgang; Werblin, Frank; Chua, Leon O; Roska, Tamas; Rodriguez-Vazquez, Angel; Roska, Botond; Fay, Patrick; Bernstein, Gary H; Huang, Yih-Fang; Csurgay, Arpad I

    2004-05-01

    Nanotechnology opens new ways to utilize recent discoveries in biological image processing by translating the underlying functional concepts into the design of CNN (cellular neural/nonlinear network)-based systems incorporating nanoelectronic devices. There is a natural intersection joining studies of retinal processing, spatio-temporal nonlinear dynamics embodied in CNN, and the possibility of miniaturizing the technology through nanotechnology. This intersection serves as the springboard for our multidisciplinary project. Biological feature and motion detectors map directly into the spatio-temporal dynamics of CNN for target recognition, image stabilization, and tracking. The neural interactions underlying color processing will drive the development of nanoscale multispectral sensor arrays for image fusion. Implementing such nanoscale sensors on a CNN platform will allow the implementation of device feedback control, a hallmark of biological sensory systems. These biologically inspired CNN subroutines are incorporated into the new world of analog-and-logic algorithms and software, containing also many other active-wave computing mechanisms, including nature-inspired (physics and chemistry) as well as PDE-based sophisticated spatio-temporal algorithms. Our goal is to design and develop several miniature prototype devices for target detection, navigation, tracking, and robotics. This paper presents an example illustrating the synergies emerging from the convergence of nanotechnology, biotechnology, and information and cognitive science.

  2. Bio-inspired algorithms applied to molecular docking simulations.

    Science.gov (United States)

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  3. A Distributed Bio-Inspired Method for Multisite Grid Mapping

    Directory of Open Access Journals (Sweden)

    I. De Falco

    2010-01-01

    Full Text Available Computational grids assemble multisite and multiowner resources and represent the most promising solutions for processing distributed computationally intensive applications, each composed by a collection of communicating tasks. The execution of an application on a grid presumes three successive steps: the localization of the available resources together with their characteristics and status; the mapping which selects the resources that, during the estimated running time, better support this execution and, at last, the scheduling of the tasks. These operations are very difficult both because the availability and workload of grid resources change dynamically and because, in many cases, multisite mapping must be adopted to exploit all the possible benefits. As the mapping problem in parallel systems, already known as NP-complete, becomes even harder in distributed heterogeneous environments as in grids, evolutionary techniques can be adopted to find near-optimal solutions. In this paper an effective and efficient multisite mapping, based on a distributed Differential Evolution algorithm, is proposed. The aim is to minimize the time required to complete the execution of the application, selecting from among all the potential ones the solution which reduces the use of the grid resources. The proposed mapper is tested on different scenarios.

  4. ENHANCED BIO-INSPIRED ALGORITHM FOR CONSTRUCTING PHYLOGENETIC TREE

    Directory of Open Access Journals (Sweden)

    J. Jayapriya

    2015-10-01

    Full Text Available This paper illustrates an enhanced algorithm based on one of the swarm intelligence techniques for constructing the Phylogenetic tree (PT, which is used to study the relationship between species. The main scheme is to formulate a PT, an NP- complete problem through an evolutionary algorithm called Artificial Bee Colony (ABC. The tradeoff between the accuracy and the computational time taken for constructing the tree makes way for new variants of algorithms. A new variant of ABC algorithm is proposed to promote the convergence rate of general ABC algorithm through recommending a new formula for searching solution. In addition, a searching step has been included so that it constructs the tree faster with a nearly optimal solution. Experimental results are compared with the ABC algorithm, Genetic Algorithm and the state-of-the-art techniques like unweighted pair group method using arithmetic mean, Neighbour-joining and Relaxed Neighbor Joining. For results discussion, we used one of the standard dataset Treesilla. The results show that the Enhanced ABC (EABC algorithm converges faster than others. The claim is supported by a distance metric called the Robinson-Foulds distance that finds the dissimilarity of the PT, constructed by different algorithms.

  5. Bio-inspired canopies for the reduction of roughness noise

    Science.gov (United States)

    Clark, Ian A.; Daly, Conor A.; Devenport, William; Alexander, W. Nathan; Peake, Nigel; Jaworski, Justin W.; Glegg, Stewart

    2016-12-01

    This work takes inspiration from the structure of the down covering the flight feathers of larger species of owls, which contributes to their ability to fly almost silently at frequencies above 1.6 kHz. Microscope photographs of the down show that it consists of hairs that form a structure similar to that of a forest. The hairs initially rise almost perpendicular to the feather surface but then bend over in the flow direction to form a canopy with an open area ratio of about 70 percent. Experiments have been performed to examine the noise radiated by a large open area ratio canopy suspended above a surface. The canopy is found to dramatically reduce pressure fluctuations on the underlying surface. While the canopy can produce its own sound, particularly at high frequencies, the reduction in surface pressure fluctuations can reduce the noise scattered from an underlying rough surface at lower frequencies. A theoretical model is developed which characterizes the mechanism of surface pressure reduction as a result of the mixing layer instability of flow over forest canopies.

  6. Fast nastic motion of plants and bio-inspired structures

    CERN Document Server

    Guo, Qiaohang; Han, Xiaomin; Xie, Stephen; Chao, Eric; Chen, Zi

    2015-01-01

    The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients, and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements still are not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera, and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary stu...

  7. Bio-Inspired Sensing and Display of Polarization Imagery

    Science.gov (United States)

    2005-07-17

    34] S.-S. Lin, K. M. Yemelyanov, W. Q. Luis, E. N. Pugh, Jr., and N. Engheta, " Biomimetic , adaptive, optimum polarization-opponent imaging of...perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies ," The Journal of Experimental

  8. Adaptive bio-inspired navigation for planetary exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface exploration of planetary environments with current robotic technologies relies heavily on human control and power-hungry active sensors to perform even the...

  9. Bio-inspired nanocomposite assemblies as smart skin components.

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Gabriel A.; Xiao, Xiaoyin; Achyuthan, Komandoor E.; Allen, Amy; Brozik, Susan Marie; Edwards, Thayne L.; Frischknecht, Amalie Lucile; Wheeler, David Roger

    2011-09-01

    There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats, communicating with the cell, and triggering automatic responses such as the opening and closing of ion channels. The purpose of this project was to learn how to replicate simple threat detection and response functions within artificial membrane systems. The original goals toward developing 'smart skin' assemblies included: (1) synthesizing functionalized nanoparticles to produce electrochemically responsive systems within a lipid bilayer host matrices, (2) calculating the energetics of nanoparticle-lipid interactions and pore formation, and (3) determining the mechanism of insertion of nanoparticles in lipid bilayers via imaging and electrochemistry. There are a few reports of the use of programmable materials to open and close pores in rigid hosts such as mesoporous materials using either heat or light activation. However, none of these materials can regulate themselves in response to the detection of threats. The strategies we investigated in this project involve learning how to use programmable nanomaterials to automatically eliminate open channels within a lipid bilayer host when 'threats' are detected. We generated and characterized functionalized nanoparticles that can be used to create synthetic pores through the membrane and investigated methods of eliminating the pores either through electrochemistry, change in pH, etc. We also focused on characterizing the behavior of functionalized gold NPs in different lipid membranes and lipid vesicles and coupled these results to modeling efforts designed to gain an understanding of the interaction of nanoparticles within lipid assemblies.

  10. Bio-inspired wooden actuators for large scale applications.

    Directory of Open Access Journals (Sweden)

    Markus Rüggeberg

    Full Text Available Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.

  11. Bio-inspired microfluidics: The case of the velvet worm

    Science.gov (United States)

    Concha, Andres; Mellado, Paula; Morera-Brenes, Bernal; Sampaio-Costa, Cristiano; Mahadevan, L.; Monge-Najera, Julian

    The rapid squirt of a proteinaceous slime jet endow velvet worms (Onychophora) with a unique mechanism for defense from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date neither qualitative nor quantitative descriptions have been provided for this unique adaptation. We have investigated the mechanism that allows velvet worms the fast oscillatory motion of their oral papillae and the exiting liquid jet that oscillates with frequencies f ~ 30 - 60 Hz. Using anatomical images and high speed videography, we show that even without fast muscular action of the papilla, a strong contraction of the slime reservoir and the geometry of the reservoir-papilla system suffices to accelerate the slime to speeds up to v ~ 5 m /s in about Δt ~ 60 ms. A theoretical analysis and a physical simulacrum allow us to infer that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. We propose several applications that can be implemented using this instability, ranging from high-throughput droplet production, printing, and micro-nanofiber production among others. A.C was partially supported by Fondecyt Grant 11130075.

  12. Bio-Inspired Neural Model for Learning Dynamic Models

    Science.gov (United States)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  13. Towards Bio-Inspired Chromatic Behaviours in Surveillance Robots

    Directory of Open Access Journals (Sweden)

    Sampath Kumar Karutaa Gnaniar

    2016-09-01

    Full Text Available The field of Robotics is ever growing at the same time as posing enormous challenges. Numerous works has been done in biologically inspired robotics emulating models, systems and elements of nature for the purpose of solving traditional robotics problems. Chromatic behaviours are abundant in nature across a variety of living species to achieve camouflage, signaling, and temperature regulation. The ability of these creatures to successfully blend in with their environment and communicate by changing their colour is the fundamental inspiration for our research work. In this paper, we present dwarf chameleon inspired chromatic behaviour in the context of an autonomous surveillance robot, “PACHONDHI”. In our experiments, we successfully validated the ability of the robot to autonomously change its colour in relation to the terrain that it is traversing for maximizing detectability to friendly security agents and minimizing exposure to hostile agents, as well as to communicate with fellow cooperating robots.

  14. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Sera Shin

    2016-02-01

    Full Text Available Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

  15. Robot fish bio-inspired fishlike underwater robots

    CERN Document Server

    Li, Zheng; Youcef-Toumi, Kamal; Alvarado, Pablo

    2015-01-01

    This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.

  16. Novel Approaches for Bio-inspired Mechano-Sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Bilberg, Arne

    2011-01-01

    the principles of PVDF piezoelectric thin lms and how can they be used for sensing. The data acquisition system to process the information from the tactile arrays is covered further. We validate the proposed approaches by a number of applications: classi- fying a number of fruits and vegetables using only...... the haptic feedback during their palpation, recognizing objects based on their contact prole and detecting gentle contact and vibrations using the piezoelectric sen- sor. We conclude by showing what needs to be improved and addressed further to achieve human-like tactile sensing for robots....

  17. Influence des catalyseurs hétérogènes sur le coprocessing d'un lignite du Berguedà avec un résidu de distillation sous vide Influence of Heterogeneous Catalysts on the Coprocessing of Berguedà Lignite with a Vacuum Residue

    Directory of Open Access Journals (Sweden)

    Moros A.

    2006-11-01

    Full Text Available Cet article étudie le co-traitement catalytique sous atmosphère d'hydrogène d'un lignite de la Catalogne (Espagne avec un résidu de distillation sous vide, en utilisant sept catalyseurs hétérogènes différents. Cinq d'entre eux sont de conception propre : quatre à base de fer avec des quantités respectives de 6, 10, 18 et 25 % en poids d'oxydes et un à base de fer-molybdène avec des quantités de 25 et 10 % respectivement. Tous ces catalyseurs sont déposés sur gamma-alumine. Les deux autres sont des catalyseurs commerciaux d'hydrotraitement à base de cobalt-molybdène et nickel-molybdène. Des essais à blanc ont été également réalisés avec de la gamma-alumine et sans catalyseur. Les résultats expérimentaux montrent que la performance des catalyseurs a été modifiée à cause de la présence d'une grande quantité de matière minérale contenue dans le charbon. Ces résultats sont confirmés par le fait que les trois valeurs maximales de conversion du charbon ont été obtenues lors de l'utilisation du catalyseur à base de fer à 25 %, avec ou sans molybdène, et sans catalyseur. Le pourcentage de fer dans les autres catalyseurs n'affecte pas de façon significative la conversion du charbon ou la production d'huile. Par ailleurs, la production d'huile augmente lors de l'utilisation des catalyseurs commerciaux d'hydrotraitement, mais la qualité des produits obtenus ne diffère pas réellement de celle obtenue avec les autres catalyseurs. Seven different heterogeneous catalysts are tested for the catalytic coprocessing of a Catalan lignite with vacuum residue under atmosphere of hydrogen. Four of these catalysts were iron-based catalysts supported on gamma-alumina with increasing loading of iron oxide. The fifth was a bimodal catalyst of iron and molybdenum. The last two catalysts were commercial hydrotreatment catalysts. Also, tests were conducted with gamma-alumina and without catalyst. The experimental results show that

  18. Les nouveaux critères de la Maladie d’Alzheimer – Perspective gériatrique*

    Science.gov (United States)

    Molin, Pierre; Rockwood, Kenneth

    2016-01-01

    RÉSUMÉ Deux nouvelles séries de critères pour le diagnostic de la maladie d’Alzheimer sont maintenant en vigueur, incluant une série publiée en 2014. Un « nouveau lexique » conceptualisant la maladie a également été proposé. En 2012, la Conférence consensuelle canadienne affirmait que, pour l’instant, ni les nouveaux critères ni la nouvelle terminologie ne modifiaient la pratique en première ligne. Néanmoins, pour les consultants spécialisés en démence, l’avènement de ces critères ouvre la porte à de nombreux défis et occasions. En général, les nouveaux critères accordent une place grandissante aux biomarqueurs. Toutefois, les évidences qui sous-tendent leur utilisation demeurent incomplètes. L’étude de sujets provenant de la communauté ayant raffiné notre compréhension des critères neuropathologiques des démences, il est probable que notre expérience avec les biomarqueurs en bénéficierait également. Pour l’instant, ces critères sont réservés à la recherche. Cependant, leur adoption à plus large échelle est pressentie, particulièrement aux États-Unis. Les gériatres canadiens doivent être conscients de la terminologie maintenant utilisée et du changement fondamental qui en découle : un diagnostic de maladie d’Alzheimer ne requiert plus un diagnostic de démence. Dans l’attente de nouvelles données – auxquelles les gériatres peuvent contribuer – il y a lieu de faire preuve de prudence dans l’adoption des nouveaux critères, car ils sont susceptibles de moins bien s’appliquer aux personnes âgées. PMID:27403215

  19. La préparation des catalyseurs. Première partie : Germination et croissance des particules. Importance de la sursaturation du milieu Preparation of Catalysts. Part One: Particle Germination and Growth. Importance of the Supersaturation of the Medium

    Directory of Open Access Journals (Sweden)

    Marcilly C.

    2006-11-01

    Full Text Available Cet article présente les deux notions fondamentales et générales de germination et croissance des particules ou cristaux élémentaires qui peuvent former aussi bien le support du catalyseur que l'agent actif dispersé à sa surface. Germination et croissance sont deux étapes très importantes qui interviennent à divers stades de la préparation des catalyseurs : précipitation, séchage, calcination, etc. On montre que le paramètre essentiel qui régit ces deux étapes et qui détermine la dimension, la structure et le faciès des particules élémentaires est la sursaturation du milieu. This article describes the two fundamental and general concepts of germination and growth of elementary particles or crystals which may form either the catalyst support or the dispersed active agent on its surface. Germination and growth are two very important steps which occur at dif-ferent stages of the preparation of catalysts, i,e. precipitation, drying, calcination, etc. The supersaturation of the medium is shown to be the essential parameter governing these two steps and determining the size, structure and facies of elementary particles.

  20. Approche à l’égard des nouveaux anticoagulants oraux en pratique familiale

    Science.gov (United States)

    Douketis, James; Bell, Alan David; Eikelboom, John; Liew, Aaron

    2014-01-01

    Résumé Objectif Traiter des différentes éventualités pouvant survenir durant le suivi clinique et la prise en charge prolongés des patients prenant de nouveaux anticoagulants oraux (NACO). Qualité des données Aux fins de cette révision narrative (non systématique), nous avons effectué une recherche dans la base de données PubMed afin de relever des études cliniques récentes (soit de janvier 2008 à la semaine 32 de 2013) portant sur l’emploi des NACO pour la prévention des AVC dans les cas de fibrillation auriculaire et le traitement de la thromboembolie veineuse aiguë. Nous avons utilisé cette base de données probantes pour répondre à nos questions prédéfinies ayant trait à l’emploi des NACO en pratique générale. Message principal Le dabigatran et le rivaroxaban doivent être pris avec les repas afin de limiter la dyspepsie et de favoriser l’absorption, respectivement. Aucun NACO n’est accompagné de restrictions alimentaires, à l’exception de la consommation modérée d’alcool, et le rivaroxaban et l’apixaban peuvent être écrasés, au besoin. Les antiacides ne semblent pas perturber l’efficacité des NACO. Comme c’est le cas avec la warfarine, les patients traités aux NACO doivent éviter l’emploi prolongé d’anti-inflammatoires non stéroïdiens et d’antiplaquettaires. Chez les patients devant subir une chirurgie, il faut interrompre la prise de NACO de 2 à 5 jours avant l’intervention, en fonction du risque de saignement, et le traitement par le NACO doit être habituellement repris au moins 24 heures après la chirurgie. Il n’est habituellement pas nécessaire d’effectuer un test préopératoire de coagulation. Chez les patients qui développent un saignement, un saignement mineur ne justifie habituellement pas un test de laboratoire ni l’interruption du traitement par le NACO; dans le cas des saignements majeurs, il faut se concentrer sur l’application de mesures localisées visant à endiguer le

  1. Approche à l’égard des nouveaux anticoagulants oraux en pratique familiale

    Science.gov (United States)

    Douketis, James; Bell, Alan David; Eikelboom, John; Liew, Aaron

    2014-01-01

    Résumé Objectif Comparer les caractéristiques principales des nouveaux anticoagulants oraux (NACO), soit le dabigatran, le rivaroxaban et l’apixaban, et répondre aux questions qui font surface lors de la comparaison de ces agents. Qualité des données Une recherche dans PubMed a été effectuée afin de relever les études cliniques récentes (de janvier 2008 à la semaine 32 de 2013) portant sur l’emploi des NACO pour la prévention des AVC dans les cas de fibrillation auriculaire (FA) et pour le traitement de la thromboembolie veineuse aiguë. Message principal Selon 3 essais d’envergure, tous les NACO sont au moins aussi efficaces que la warfarine dans la prévention des AVC chez les patients atteints d’une FA non valvulaire, et au moins aussi sûrs pour ce qui est du risque de saignement. Des méta-analyses de ces essais ont montré que, comparativement au traitement par la warfarine, les NACO avaient réduit la mortalité totale, la mortalité d’origine cardiovasculaire et les saignements intracrâniens, et était aussi ressortie une tendance vers la réduction des saignements généraux. Du côté pratique, les avantages des NACO par rapport à la warfarine sont : posologie orale fixe uniquotidienne ou biquotidienne sans devoir surveiller la coagulation et peu d’interactions connues ou définies avec d’autres médicaments ou des aliments. Les désavantages potentiels des NACO sont notamment un risque de saignement qui serait accru chez les patients de plus de 75 ans, une hausse des saignements gastro-intestinaux majeurs avec des doses élevées de dabigatran, une hausse des cas de dyspepsie avec le dabigatran, l’absence d’un test de laboratoire de routine visant à mesurer de façon fiable l’effet anticoagulant et l’absence d’antidote pour renverser l’effet anticoagulant. Aucun essai randomisé contrôlé n’a effectué de comparaison directe des NACO, et le choix d’un NACO est influencé par les caract

  2. Knowledge Based Catalyst Design by High Throughput Screening of Model Reactions and Statistical Modelling Conception de catalyseur par criblage à haut débit de réactions modèles et modélisation statistique

    Directory of Open Access Journals (Sweden)

    Morra G.

    2013-08-01

    Full Text Available Material design and synthesis are key steps in the development of catalysts. They are usually based on an empiric and/or theoretical approach. The recently developed high-throughput experimentation can accelerate optimisation of new catalytic formulations by systematic screening in a predefined study domain. This work aims at developing a QSAR (Quantitative Structure Activity Relationship method based on kinetic and mechanistic descriptors for metal and acid catalysis. Physico-chemicalfeatures of approximately sixty bimetallic catalysts have been measured according to their performance in two model reactions: xylene hydrogenation for catalysis on metallic sites and isomerisation of 3,3-dimethyl-l-butene for catalysis on acid sites. These descriptors were finally used to model the performances of around twenty catalysts for a more complex reaction: n-decane dehydrogenation. La définition et la préparation de matériaux sont des étapes clés dans le développement de catalyseurs. Celles-ci peuvent être effectuées de façon empirique et/ou à partir de bases théoriques. Par ailleurs, l’expérimentation à haut débit, technologie récente, permet d’accélérer l’optimisation de formulations catalytiques par exemple par criblage systématique d’un espace d’étude prédéfini. Cet article a pour objet de développer une méthode QSAR (Quantitative Structure Activity Relationship basée sur la recherche de descripteurs cinétiques et mécanistiques, dans le domaine de la catalyse acide et métallique supportée. Des caractéristiques physico-chimiques (descripteurs d’une soixantaine de catalyseurs bimétalliques ont été mesurées suivant leur performance dans deux réactions modèles : l’hydrogénation de ro-xylène pour rendre compte de la catalyse par le métal et l’isomérisation du diméthyl-3,3butène-1 pour la catalyse par les sites acides. Ces descripteurs ont été ensuite mis à profit pour modéliser les performances

  3. O. Godard, C. Henry, P. Lagadec, E. Michel-Kerjan, 2002, Traité des nouveaux risques, éditions Gallimard, collection folio-actuel.

    Directory of Open Access Journals (Sweden)

    Bertrand Zuindeau

    2003-01-01

    Full Text Available Si le risque est inhérent à la condition humaine elle-même, ces dernières décennies ont néanmoins permis de faire apparaître des types de risques inconnus jusqu’alors. Les risques consécutifs au réchauffement climatique, les risques supposés liés aux OGM, de possibles nouveaux vecteurs de transmission pathologique (maladie de la vache folle ne sont que quelques exemples de ces nouveaux risques, dont la première caractéristique évidente est l’origine anthropique, mais qui ont surtout pour dén...

  4. Préparation de diglycérol et triglycérol par polymérisation directe du glycérol en présence de catalyseurs mésoporeux basiques

    Directory of Open Access Journals (Sweden)

    Charles Gwénaëlle

    2003-01-01

    Full Text Available La réaction d’éthérification directe du glycérol en di- ou triglycérol est une voie intéressante de transformation du glycérol. En effet, les polyglycérols mais aussi les esters de polyglycérols trouvent de nombreuses applications comme tensioactifs dans l’industrie chimique. Toutefois les procédés industriels ne conduisent qu’à des mélanges de polyglycérols en utilisant des catalyseurs homogènes très polluants. Ainsi l’objectif de ce travail est la synthèse directe d’une coupe de polyglycérols de faible degré de polycondensation (di + triglycérol à partir de glycérol en présence de solides mésoporeux basiques et en absence de solvant. La partie essentielle de cette étude a consisté en la synthèse et la modification de solides mésoporeux afin de les rendre actifs, sélectifs et stables dans la réaction d’éthérification du glycérol. Ces modifications se font soit par incorporation soit par imprégnation de différents éléments alcalins ou alcalino-terreux. Les résultats catalytiques obtenus ont montré que les catalyseurs imprégnés par du césium sont les plus actifs pour la préparation de polyglycérols mais qu’ils permettent surtout l’obtention d’une coupe (di + tri avec une sélectivité proche de 100%.

  5. L’Historia Silensis, chronique écrite par un moine de Sahagún. Nouveaux arguments

    Directory of Open Access Journals (Sweden)

    Patrick Henriet

    2012-01-01

    Full Text Available On entend suggérer dans cet article que contrairement à ce que l’on pense généralement aujourd’hui, l’auteur de l’Historia Silensis n’est pas un clerc de Saint-Isidore de León ou même de León. Pour ce faire, il soumet à un examen approfondi les mots cenobium, domus seminis et habitum monachalem. Dans un second temps, il reprend avec de nouveaux arguments la proposition de J.M. Canal Sánchez-Pagin selon laquelle l’auteur de la Silensis ne peut guère être qu’un moine du monastère bénédictin de Sahagún.Se quiere sugerir en este artículo que contrariamente a lo que se dice generalmente hoy, el autor de la Historia Silensis no era un clérigo de San Isidoro de León o incluso de León. Para demostrarlo, se examina cuidadosamente las palabras cenobium, domus seminis y habitum monachalem. Despues de eso, se vuelve con nuevos argumentos a la proposición de J.M. Canal Sánchez-Pagin según la cual el autor de la Silensis solo pudo ser un monje del monasterio benedictino de Sahagún.

  6. 集成无线传感器-执行器网络的主动结构:一种仿生控制框架%Active structures integrated with wireless sensor and actuator networks:a bio-inspired control framework

    Institute of Scientific and Technical Information of China (English)

    Peng-cheng YANG; Yan-bin SHEN; Yao-zhi LUO‡

    2016-01-01

    practical use of AS in civil engineering. Moreover, additive errors may be produced because of the discrepancy between analytic models and real structures. To overcome these limitations, this paper presents a compound system called WAS, which combines AS with a wireless sensor and actuator network (WSAN). A bio-inspired control framework imitating the activity of the nervous systems of animals is proposed for WAS. A typical example is tested for verification. In the example, a triangular tensegrity prism that aims to maintain its original height is integrated with a WSAN that consists of a central controller, three actuators, and three sensors. The result demonstrates the feasibility of the pro-posed concept and control framework in cases of unknown loads that include different types, distributions, magnitudes, and directions. The proposed control framework can also act as a supplementary means to improve the efficiency and accuracy of control frameworks based on a common stochastic search.

  7. Elements optiques diffractifs concus avec des ouvertures trapezoidales et polygonales et de nouveaux algorithmes d'optimisation

    Science.gov (United States)

    Gillet, Jean-Numa

    Nous avons realise de nouveaux encodages et algorithmes d'optimisation destines aux elements optiques diffractis et hologrammes generes par ordinateur (HGO). Un algorithme novateur de condensation rapide simulee iterative permet la resolution de problemes avec plusieurs milliers de variables. Malgre un horaire de refroidissement rapide, de nombreuses solutions sous-optimales sont evitees par des reechelonnements de temperature ramenant le systeme a l'equilibre thermodynamique. L'etat final atteint par le nouvel algorithme a une energie beaucoup plus basse que celle obtenue par d'autres algorithmes. Les generateurs de tableaux irreguliers de points lumineux concus avec la condensation rapide simulee iterative et des ouvertures trapezoidales de hauteurs variables presentent de meilleures performances et beaucoup moins d'ouvertures comparativement a ceux concus avec d'autres methodes. Nous avons aussi realise un HGO multiplexe de taille extremement grande forme d'ouvertures polygonales et le nouvel algorithme iteratif de conception des sous-hologrammes pour generer des images de tres grandes dimensions. Nous utilisons la transformee d'Abbe pour calculer la diffraction des ouvertures polygonales, ce qui permet d'accelerer substantiellement le calcul de la transformee de Fourier de l'hologramme total. La taille en pixels de l'HGO multiplexe forme d'ouvertures polygonales est plus de mille fois superieure a celle d'un HGO conventionnel et sa fenetre objet beaucoup plus grande. L'HGO multiplexe forme d'ouvertures polygonales presente des performances beaucoup plus elevees que celles d'HGO conventionnels ou multiplexes concus avec les methodes precedentes.

  8. Fuel Penalty Comparison for (Electrically Heated Catalyst Technology Comparaison de l’augmentation de consommation de carburant pour la technologie de catalyseurs chauffés à l’électricité

    Directory of Open Access Journals (Sweden)

    Kessels J. T.B.A.

    2010-03-01

    Full Text Available The conversion efficiency of three way catalytic converters is mainly defined by the temperature range wherein they are operating. Traditionally, ignition retard has been used to reduce the light-off time of the catalyst. This is however associated with a fuel penalty. With increasing vehicle electrification, electrically heating facilities present an alternative, especially for hybrid vehicles. Nevertheless, system complexity of hybrid vehicles prevents engineers to evaluate possible heating technologies and their corresponding fuel penalty with respect to traditional solutions. This paper evaluates the application of an electrically heated catalyst on a hybrid vehicle equipped with a Natural Gas (NG engine. The effect of heating power on light-off time and fuel penalty is determined, using analysis techniques emerging from integrated powertrain control. By means of a case study, the importance of an integral approach is explained by comparing the fuel penalty and conversion efficiency improvement of electric heating with that of ignition retard. In this process, a mix of simulation and test data were combined, forming the foundations for future control developments of a suitable light-off strategy. L’efficacité de conversion des catalyseurs est principalement définie par la gamme de température dans laquelle ils fonctionnent. Un retard du point d’allumage a traditionnellement été utilisé pour réduire le temps d’amorçage du catalyseur. Ceci est cependant associé à une augmentation de la consommation de carburant. Avec l’électrification des véhicules, la possibilité de chauffage électrique représente véritablement une alternative, tout particulièrement pour les véhicules hybrides. Cependant, la complexité des véhicules hybrides rend difficile l’évaluation des technologies de chauffage éventuelles ainsi que l’augmentation de la consommation de carburant associée ; il est aussi difficile de comparer ces r

  9. Deux Mycena nouveaux

    NARCIS (Netherlands)

    Huijsman, H.S.C.

    1958-01-01

    Mycena nucicola Huijsm. sp. nov. — Fig. 1 — Pusillima, tota alba, solitaria ad nuces dejectas Coryli avellanae; pileo usque ad 2 mm lato, conico-elevato vel hemisphaerico, pulverulento; lamellis subventricosis; stipite 12—22 X 0,15—2 mm, subfarinoso, disco basali minuto, pulverulento; sporis 7—9 X 4

  10. Evolution au cours du temps d'un grain de catalyseur d'hydrodémétallisation : module et simulation numérique de résultats expérimentaux Evolution in Time of a Hydrodemetallization Catalyst Pellet: Modeling and Numerical Simulation of Experimental Results

    Directory of Open Access Journals (Sweden)

    Bourseau P.

    2006-11-01

    Full Text Available On propose un modèle de désactivation lente d'un catalyseur de répartition poreuse bimodale par dépôt solide d'un des produits de réaction dans les pores. Le dépôt solide catalyse également la réaction, la désactivation s'effectuant par diminution de la surface spécifique et bouchage progressif des pores. Le modèle prend en compte les limitations diffusionnelles existant à l'intérieur du grain de catalyseur. Ce modèle utilise une représentation géométrique particulière des pores, et une loi de diffusion tenant compte de la variation des paramètres texturaux au cours du temps. Il suppose la connaissance expérimentale de la surface spécifique totale et de la distribution du volume poreux en fonction du diamètre des pores. Ce modèle a permis de retrouver avec un très bon accord quantitatif la courbe de captation des métaux (Ni + V en fonction du temps de fonctionnement obtenue expérimentalement pour un catalyseur d'hydrodémétallisation (HDM sur un pétrole brut de Boscan désasphalté. Il permet en outre de prédire la durée de vie et le taux d'occupation final du volume poreux d'un catalyseur d'HDM modèle. A model is proposed for the slow deactivation of a catalyst with a bimodal pore distribution by a solid deposit of one of the reaction products inside the pores. The solid deposit is by itself a catalyst for the reaction, with deactivation resulting from the progressive decrease of specific area and blockage of the pores. The model takes Intragranular diffusional limitations into account. This model uses an original geometric representation of the pores together with a diffusion law incorporating the variation of textural parameters in time. It requires the experimental determination of the total specific area and of pore volume distribution as a function of pore diameter. Numerical simulations with this model provided a very good quantitative fit with the capture curve for metals (Ni + V as a function of

  11. Les nouveaux défis pour l’anthropologie de la santé New challenges for anthropology of health

    Directory of Open Access Journals (Sweden)

    Raymond Massé

    2010-11-01

    Full Text Available L’anthropologie de la santé a connu une évolution spectaculaire au cours des dernières décennies. Elle doit toutefois composer aujourd’hui avec les contributions de plusieurs autres disciplines des sciences sociales et humaines dans le champ d’étude des dimensions sociales, politiques et culturelles de la santé et de la maladie. Pour conserver sa crédibilité comme “science sociale” et pour faire face à l’émergence de nouveaux objets de recherche, elle devra relever plusieurs défis, tant au plan de ses outils conceptuels, mais aussi et surtout au plan de sa maîtrise des méthodologies qualitatives et quantitatives. Mais cela, sans mettre de côté son profond souci pour une réflexion critique sur les politiques de santé et pour une phénoménologie de la souffrance.Medical anthropology has become one of the major subdiscipline in anthropology in the past decades. However, it has today to deal with the interest of other social sciences disciplines for the social, cultural and political dimensions of disease, health and care. In order to strengthen its leadership and to increase its credibility in dealing with new emerging research objects, medical anthropologists will have to accept many challenges, conceptual, theoretical, but especially methodological. This paper discusses some of these challenges.

  12. Using High Throughput Experimentation Approach for the Evaluation of Dehydrogenation Catalysts: Potential Interests and Drawbacks Utilisation d’une approche d’expérimentation à haut débit pour l’évaluation de catalyseurs de déshydrogénation : intérêt et limitations

    Directory of Open Access Journals (Sweden)

    Bouchy C.

    2013-04-01

    carbone sont des intermédiaires pour la fabrication de produits détergents biodégradables. Industriellement ces oléfines peuvent être obtenues par déshydrogénation de paraffines longues sur des catalyseurs spécifiques de déshydrogénation dans des conditions opératoires appropriées. La phase active de ces catalyseurs est typiquement multimétallique, à base de platine modifié par un ou plusieurs promoteurs. L’utilisation d’une approche par expérimentation à haut débit peut être d’un intérêt certain pour optimiser des formulations multimétalliques en raison, d’une part, du nombre croissant de formulations possibles avec la quantité d’éléments considérés et, d’autre part, de l’existence potentielle d’interactions non linéaires entre les éléments. Cet article est ainsi consacré à la description des outils d’expérimentation à haut débit utilisés pour la préparation et l’évaluation catalytique en déshydrogénation du n-décane de catalyseurs modèle “Pt-Sn-X” supportés sur alumine ainsi qu’à la stratégie employée pour l’optimisation de formulation et les résultats expérimentaux obtenus au sein d’un espace d’étude prédéfini. Une approche basée sur l’utilisation de plans d’expériences pour construire un modèle mathématique de prédiction a été mise en oeuvre pour tenter d’optimiser la formulation de catalyseurs trimétalliques “Pt-Sn-X” au sein d’un espace d’étude défini. Cette approche n’a pas pu être menée à son terme car la variation des propriétés catalytiques en fonction des formulations catalytiques du plan d’expériences n’est pas assez importante par rapport à la variance expérimentale. Les résultats obtenus ont cependant permis de vérifier un concept clé pour la maximisation de la sélectivité d’un catalyseur de déshydrogénation des paraffines longues. A iso-acidité résiduelle et dans l’hypothèse où la formation des coproduits met

  13. Persistent Memory Effects and the Mid- and Post-Brick Dynamic Behaviour of Three-Way Automotive Catalysts Effets mémoires persistants et comportement dynamique des briques médiane et postérieure de catalyseurs automobiles à trois voies

    Directory of Open Access Journals (Sweden)

    Peyton Jones J.C.

    2011-09-01

    Full Text Available This paper presents the results of an experimental study into the dynamic behaviour of a three-way automotive catalyst and its associated exhaust gas oxygen sensors. Motivated by issues of feedback sensor location, the study seeks to overlay the results of repeat experiments, with sensors and fast-response gas analyzers positioned at different locations, in order to obtain a detailed picture of system dynamics at different points within the catalyst. Initial results demonstrated that the dynamic response of the catalyst can be significantly affected by a persistent memory effect in addition to reversible deactivation dynamics and the familiar oxygen storage/release dynamics of the system. In particular, the effects of prior rich or stoichiometric operation are shown to persist even after extended periods of lean operation. This memory effect is important, not only because of its potential impact on conversion efficiency, but also because of its impact on the repeatability of experiments carried out under what would appear to be near-identical operating conditions. By pre-conditioning under rich conditions highly repeatable experiments were achieved. The results were combined to give a detailed picture of catalyst dynamics at pre-, mid- and post-catalyst locations, and provide insight into catalyst and (non-ideal exhaust gas oxygen sensor behavior. Cet article présente les résultats d’une étude expérimentale en matière de comportement dynamique d’un catalyseur automobile à trois voies et de ses capteurs d’oxygène de gaz d’échappement associés. Motivée par les problèmes de localisation des capteurs de retour d’information, l’étude cherche à corréler les résultats d’expériences répétées, capteurs et analyseurs de gaz à réponse rapide étant disposés en des emplacements différents afin d’obtenir une image détaillée des dynamiques de système en différents points à l’intérieur du catalyseur. Les r

  14. Etat actuel des recherches fondamentales sur les catalyseurs bimétalliques à base de platine, sur support alumine, comparables à ceux utilisés dans l'industrie pétrolière. Current State of Fundamental Research on Platinum-Base Bimetallic Catalysts on an Alumina Support, Comparable to the Ones Used in the Petroleum Industry

    Directory of Open Access Journals (Sweden)

    Charcosset H.

    2006-11-01

    Full Text Available L'article concerne essentiellement les couples (Pt, Re, (Pt, Ir, (Pt, Ru traités dans l'ordre - préparation des catalyseurs (imprégnation du support, réduction par l'hy-drogène; -- caractérisation des catalyseurs réduits ; - activités catalytiques ; - essais d'extrapolation aux catalyseurs industriels , - conclusions. On met l'accent en particulier sur I la difficulté d'obtenir des informations sur le degré de réduction qui soient significafives de l'état du catalyseur dans des conditions normales de travail, d'où la nécessité d'associer plusieurs techniques parmi : l'analyse thermique différentielle (ATD, l'analyse thermogravimétrique (ATG, la volumétrie, la catharométrie, la spectroscopie électronique (ESCA, la spectroscopie infrarouge, la thermodésorption de H2, les mesures des activités catalytiques ; 2 la différence entre diagrammes de phase des systèmes divisés et massiques ; 3 l'application des titrages par H2 de l'oxygène adsorbé, pour mettre en évi-dence la présence de petites particules de Mell pur dans un catalyseur (Pt, Mell/ AI203 , 4 la dépendance de l'état final du catalyseur du mode d'activation. Le couple (Pt, Re peut être stabilisé à l'état de particules d'alliage de compositions superfi-cielle et moyenne voisines ou à l'état de mélange de particules de (Pt, Re de teneur en Re inférieure à la composition nominale et de Re pur très bien dispersé. Les couples (Pt, Ir et surtout (Pt, Ru se caractérisent par la difficulté d'obtenir l'état alliage avec une composition constante d'une particule métallique à l'autre 5 les variations d'activité catalytique, dues à l'addition de Mell à Pt, reflétant un ou plusieurs des effets a augmentation de dispersion du Pt sans (ou avec modification de ses pro-priétés intrinsèques, par les ions de faible valence de W, Mo, Cr... b formation de Mell à l'état métallique donnant éventuellement un alliage avec Pt; c rôle des dépôts carbon

  15. Nouveaux territoires et nouvelles identités culturelles : revue des études sur la diaspora chinoise a l’ère d’Internet

    Directory of Open Access Journals (Sweden)

    Joy Raynaud

    2013-05-01

    Full Text Available Depuis plus de mille ans, la diaspora chinoise repose essentiellement sur des réseaux structurés d’entraide permettant la réussite individuelle et collective sur le plan social (intégration, économique (réussite financière et culturel (conservation d’une identité culturelle chinoise. Mais que deviennent ces réseaux sociaux à l’heure de la mondialisation, avec l’usage massif des réseaux techniques et technologiques ? A partir d’une analyse de l’état de l’art, ce travail propose une synthèse des similitudes observées dans les communautés de la diaspora chinoise avec l’usage d’Internet. Plusieurs études démontrent qu’Internet fournit aux nouveaux immigrants chinois la possibilité de redéfinir leurs identités culturelles hybrides et fragmentées, entre rupture et continuité de la tradition. Ce réseau technologique bouleverse les concepts de distance et de territoire et constitue un outil essentiel pour l’adaptation des immigrants dans le pays d’accueil. La proximité spatiale n’est plus une nécessité. Internet génère, chez les immigrants de la diaspora, le sentiment « d’être présent » dans le pays d’origine, pourtant situé à plusieurs milliers de kilomètres.

  16. Optimisation d'une nanotechnologie liée à la post combustion automobile : étude par EXAFS, RMN & DRX de catalyseurs industriels Zn/Al2O3

    Science.gov (United States)

    Bazin, D.; Revel, R.; Klur, I.; Pourpoint, A.

    2002-07-01

    In this paper, we report a structural characterisation of an industrial catalyst conducted through the combined use of different characterisation techniques i.e. ^{27}Al Nuclear Magnetic Resonance (NMR), X-Ray Diffraction (XRD) and High Resolution Transmission Electronic Microscopy (HRTEM). The usual characterisation techniques help to restrict the problem but do not precisely show the structure of the supported system "Zn"/Al2O3. For example, ^{27}Al NMR shows the occupation of tetrahedral site by zinc through a modification of the occupation of tetrahedral and octahedral site by aluminium atoms. Unfortunately this technique is not able to determine the size of the zinc based metal oxide cluster. A more appropriate technique, such as X-ray absorption spectroscopy is thus necessary. In fact, we show that only the complete set of data leads to major information regarding the cation distribution as well as the electronic state of the metal atoms. Nous présentons une étude de matériaux nanodivisés industriels initiée à l'aide de techniques de caractérisation classiques (Microscopie électronique haute résolution, Résonance Magnétique Nucléaire, Diffraction des rayons X) et affinée par une technique spécifique au rayonnement synchrotron, la spectroscopie d'absorption X. Le catalyseur industriel est obtenu par dispersion à l'échelle atomique d'atomes de zinc à la surface d'une yc alumine de grande surface spécifique (> 200m^2/g). Le fait qu'une similarité structurale existe entre le support et le composé défini obtenu par insertion du cation dans la matrice rend quasi-inopérante la DRX classique. La RMN de l'aluminium par contre constitue une technique de choix puisque l'occupation par le zinc de sites tétraédriques se traduit par l'occupation plus conséquente de sites octaédriques par l'aluminium. Néanmoins, la taille des cristallites de "ZnAl2O4", les possibilités d'inversion (limitées ici car le zinc occupe préférentiellement les sites t

  17. Bases scientifiques de la préparation des catalyseurs constitués d'oxydes mixtes massiques Scientific Bases for the Preparation of Bulk Mixed Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Courty P.

    2006-11-01

    Full Text Available Cette étude de la préparation des oxydes mixtes massiques et de leur mise en régime dans le milieu réactionnel concerne les différentes méthodes de synthèse utilisées et précise quelles sont les lois générales qui régissent chaque étape unitaire de la préparation (séparation d'un précurseur hydraté, lavage, transformations hydrothermiques, séchage, activation thermique, addition d'autres éléments, mise en forme. De nombreux exemples révèlent la diversité des transformations observées. L'oxyde mixte activé thermiquement est lui-même le précurseur d'autres oxydes mixtes, de métaux ou d'alliages divisés, de sulfures, de nitrures ou de carbures simples ou mixtes. Ces composés se forment lors de la stabilisation du catalyseur dans le milieu réactionnel, au cours d'une transformation complexe et spécifique du type de réaction envisagé. Divers exemples (oxydation ménagée, déshydrogénation, synthèse d'alcools sont donnés. Une caractérisation systématique et rigoureuse de chaque intermédiaire réactionnel est finalement nécessaire pour préciser les lois plus ou moins empiriques qui régissent l'évolution des propriétés superficielles et massiques de texture, de structure et de composition, au cours des transformations successives du solide ; le procédé de préparation et de mise en régime optimisé qui en résulte doit enfin satisfaire aux impératifs techniques et économiques du procédé catalytique correspondant. This study of the preparation of bulk mixed oxides and of their stabilization into the reaction medium deals with the different synthesis methods used and gives some general laws governing each specific type of preparation (separation of a hydrated precursor, washing, hydrothermal transformations, drying, thermal activation, addition of other elements, shaping. Numerous examples reveal the diversity of the transformations observed. The thermally activated mixed oxide becomes itself the

  18. Design of a bio-inspired controller for dynamic soaring in a simulated unmanned aerial vehicle.

    Science.gov (United States)

    Barate, Renaud; Doncieux, Stéphane; Meyer, Jean-Arcady

    2006-09-01

    This paper is inspired by the way birds such as albatrosses are able to exploit wind gradients at the surface of the ocean for staying aloft for very long periods while minimizing their energy expenditure. The corresponding behaviour has been partially reproduced here via a set of Takagi-Sugeno-Kang fuzzy rules controlling a simulated glider. First, the rules were hand-designed. Then, they were optimized with an evolutionary algorithm that improved their efficiency at coping with challenging conditions. Finally, the robustness properties of the controller generated were assessed with a view to its applicability to a real platform.

  19. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.

    Science.gov (United States)

    Yang, Xinzheng

    2015-08-25

    Inspired by the active site structure of monoiron hydrogenase, a series of iron complexes are built using experimentally ready-made acylmethylpyridinol and aliphatic PNP pincer ligands. Density functional theory calculations indicate that the newly designed iron complexes are very promising to catalyze the formation of formic acid from H2 and CO2.

  20. Autonomous self-healing structural composites with bio-inspired design

    Science.gov (United States)

    D’Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-01-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli. PMID:27146382

  1. Closer to nature – bio-inspired patterns by transforming latent lithographic images

    NARCIS (Netherlands)

    Giselbrecht, Stefan; Reinhardt, Martina; Mappes, Timo; Börner, Martin; Gottwald, Eric; Blitterswijk, van Clemens; Saile, Volker; Truckenmüller, Roman

    2011-01-01

    Inspired by nature, a new strategy to create three-dimensional organic structures spanning orders of magnitude by using a combination of deep UV or X-ray direct lithography with a solid-state forming process. The stored latent lithographic image is transferred to three-dimensional curvilinear surfac

  2. VLSI Implementation of a Bio-inspired Olfactory Spiking Neural Network

    Science.gov (United States)

    Hsieh, Hung-Yi; Tang, Kea-Tiong

    2011-11-01

    This paper proposes a VLSI circuit implementing a low power, high-resolution spiking neural network (SNN) with STDP synapses, inspired by mammalian olfactory systems. By representing mitral cell action potential by a step function, the power consumption and the chip area can be reduced. By cooperating sub-threshold oscillation and inhibition, the network outputs can be distinct. This circuit was fabricated using the TSMC 0.18 μm 1P6M CMOS process. Post-layout simulation results are reported.

  3. Enhanced Locomotion Efficiency of a Bio-inspired Walking Robot using Contact Surfaces with Frictional Anisotropy

    Science.gov (United States)

    Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars

    2016-12-01

    Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications.

  4. Bio-inspired Artificial Intelligence: А Generalized Net Model of the Regularization Process in MLP

    Directory of Open Access Journals (Sweden)

    Stanimir Surchev

    2013-10-01

    Full Text Available Many objects and processes inspired by the nature have been recreated by the scientists. The inspiration to create a Multilayer Neural Network came from human brain as member of the group. It possesses complicated structure and it is difficult to recreate, because of the existence of too many processes that require different solving methods. The aim of the following paper is to describe one of the methods that improve learning process of Artificial Neural Network. The proposed generalized net method presents Regularization process in Multilayer Neural Network. The purpose of verification is to protect the neural network from overfitting. The regularization is commonly used in neural network training process. Many methods of verification are present, the subject of interest is the one known as Regularization. It contains function in order to set weights and biases with smaller values to protect from overfitting.

  5. Bio-inspired structural bistability employing elastomeric origami for morphing applications

    Science.gov (United States)

    Daynes, Stephen; Trask, Richard S.; Weaver, Paul M.

    2014-12-01

    A structural concept based upon the principles of adaptive morphing cells is presented whereby controlled bistability from a flat configuration into a textured arrangement is shown. The material consists of multiple cells made from silicone rubber with locally reinforced regions based upon kirigami principles. On pneumatic actuation these cells fold or unfold based on the fold lines created by the interaction of the geometry with the reinforced regions. Each cell is able to maintain its shape in either a retracted or deployed state, without the aid of mechanisms or sustained actuation, due to the existence of structural bistability. Mathematical quantification of the surface texture is introduced, based on out-of-plane deviations of a deployed structure compared to a reference plane. Additionally, finite element analysis is employed to characterize the geometry and stability of an individual cell during actuation and retraction. This investigation highlights the critical role that angular rotation, at the center of each cell, plays on the deployment angle as it transitions through the elastically deployed configuration. The analysis of this novel concept is presented and a pneumatically actuated proof-of-concept demonstrator is fabricated.

  6. Lessons from Nature: A Bio-Inspired Approach to Molecular Design.

    Science.gov (United States)

    Cook, Sarah A; Hill, Ethan A; Borovik, A S

    2015-07-14

    Metalloproteins contain actives sites with intricate structures that perform specific functions with high selectivity and efficiency. The complexity of these systems complicates the study of their function and the understanding of the properties that give rise to their reactivity. One approach that has contributed to the current level of understanding of their biological function is the study of synthetic constructs that mimic one or more aspects of the native metalloproteins. These systems allow individual contributions to the structure and function to be analyzed and also permit spectroscopic characterization of the metal cofactors without complications from the protein environment. This Current Topic is a review of synthetic constructs as probes for understanding the biological activation of small molecules. These topics are developed from the perspective of seminal molecular design breakthroughs from the past that provide the foundation for the systems used today.

  7. The Tubercles on Humpback Whales’ Flippers: Application of Bio-Inspired Technology

    Science.gov (United States)

    2011-05-01

    Reynolds regime that coincides with a large array of engineered applications. Conventional airfoils and hydrofoils with straight leading edges generate...the use of tubercles under condi- tions in which the ends of a hydrofoil are bounded by walls or the hydrofoil is considered to be of an infinite span...Henoch C, Johari H. 2010. The performance of finite-span hydrofoils with humpback whale-like lead- ing edge protuberances. 63rd Ann Mtg APS Div Fluid

  8. Porous Network Concrete: a bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new infrastruct

  9. Parametric amplification and stochastic resonance in bio-inspired hair flow sensors

    NARCIS (Netherlands)

    Droogendijk, H.; Krijnen, G.J.M.

    2010-01-01

    Inspired by crickets and its perception for flow phenomena, artificial hair flow sensors have been developed successfully in our group. The realization of array structures and improvement of fabrication methodologies have led to better performance, making it possible to detect and measure flow veloc

  10. Spatio-temporal flow pattern observations using bio-inspired hair flow sensors

    NARCIS (Netherlands)

    Dagamseh, Ahmad; Hmeidi, Sarah; Krijnen, Gijs

    2015-01-01

    In nature, sensing is a fundamental property of virtually all living creatures. For many insects airflow patterns, as observed by means of their hair-sensors, carry highly valuable information exposing the sources of these flows. Flow-sensor arrays can be used to extract spatio-temporal flow fields

  11. PhysarumSpreader: A New Bio-Inspired Methodology for Identifying Influential Spreaders in Complex Networks.

    Directory of Open Access Journals (Sweden)

    Hongping Wang

    Full Text Available Identifying influential spreaders in networks, which contributes to optimizing the use of available resources and efficient spreading of information, is of great theoretical significance and practical value. A random-walk-based algorithm LeaderRank has been shown as an effective and efficient method in recognizing leaders in social network, which even outperforms the well-known PageRank method. As LeaderRank is initially developed for binary directed networks, further extensions should be studied in weighted networks. In this paper, a generalized algorithm PhysarumSpreader is proposed by combining LeaderRank with a positive feedback mechanism inspired from an amoeboid organism called Physarum Polycephalum. By taking edge weights into consideration and adding the positive feedback mechanism, PhysarumSpreader is applicable in both directed and undirected networks with weights. By taking two real networks for examples, the effectiveness of the proposed method is demonstrated by comparing with other standard centrality measures.

  12. Bio-Inspired Sensing and Imaging of Polarization Information in Nature

    Science.gov (United States)

    2008-05-04

    1, 536-543 (2004). 5. T. W. Cronin and J. Marshall, "Parallel Processing and Image Analysis in the Eyes of Mantis Shrimps ," The Biological... mantis shrimp [5], desert ants and various other species of insects [6], rely on contrast enhancement using polarized vision, which is a vital

  13. Hyper-Morphology: Experimentations with bio-inspired design processes for adaptive spatial re-use

    NARCIS (Netherlands)

    Biloria, N.; Chang, J.R.

    2013-01-01

    Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces critical operational traits of the natural world (Evolutionary Development Biology, Embryology and Cellular Differentiation) with

  14. Multilayer impedance pump: a bio-inspired valveless pump with medical applications

    Science.gov (United States)

    Loumes, Laurence

    This thesis introduces the concept of multilayer impedance pump, a novel pumping mechanism inspired from the embryonic heart structure.The multilayer impedance pump is a composite two-layer fluid-filled elastic tube featuring a thick, gelatin-like internal layer similar in nature to the embryonic cardiac jelly, and that is used to amplify longitudinal elastic waves. Pumping is based on the impedance pumping mechanism. Elastic waves are generated upon small external periodic compressions of the elastic tube. They propagate along the tube's walls, reflect at the tube's extremities and drive the flow in a preferential direction. This fully coupled fluid-structure interaction problem is solved for the flow and the structure using the finite element method over a relevant range of frequencies of excitation. Results show that the two-layer configuration can be an efficient wave propagation combination, and that it allows the pump to produce significant flow for small excitations. The multilayer impedance pump is a complex system in which flow and structure exhibit a resonant behavior. At resonance, a constructive elastic wave interaction coupled with a most efficient energy transmission between the elastic walls and the fluid is responsible for the maximum exit flow. The pump efficiency reaches its highest at resonance, highlighting furthermore the concept of resonance pumping.Using the proposed multilayer impedance pump model, we are able to bring an additional proof on the impedance nature of the embryonic heart by comparing a peristaltic and an impedance multilayer pump both excited in similar fashion to the one observed in the embryonic heart.The gelatin layer that models the embryonic cardiac jelly occupies most of the tube walls and is essential to the propagation of elastic waves. A comparison between the exact same impedance pump with and without the additional gelatin layer sheds light on the dynamic role of the cardiac jelly in the embryonic heart and on nature's optimized design.Finally, several biomedical applications of multilayer impedance pumping are presented. A physiologically correct model of aorta is proposed to test the pump as an implantable cardiovascular assist device.

  15. Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2013-04-01

    Full Text Available This paper presents a bio‐inspired wire‐driven multi‐section flexible robot. It is inspired by the snake skeleton and octopus arm muscle arrangements. The robot consists of three sections and each section is made up of several identical vertebras, which are articulated by both spherical joints and a flexible backbone. Each section is driven by two groups of wires, controlling the bending motion in X and Y directions. This design integrates the serpentine robots’ structure and the continuum robots’ actuation. As a result, it is more compact than traditional serpentine robots and has a higher positioning accuracy than typical continuum soft robots, such as OctArm V. A Kinematics model and a workspace model of the robot are developed based on the piece wise constant curvature assumption. To evaluate the design, a prototype is built and experiments are carried out. The average distal end positioning error is less than 4%. Characteristics of the wire‐driven robot are also discussed, including the leverage effect and the manipulability under constraint. These features makes the proposed robot well suited to confined spaces, especially for working in minimally invasive surgery, nuclear reactor pipelines, disaster debris, etc.

  16. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    Directory of Open Access Journals (Sweden)

    Frank A. Müller

    2016-06-01

    Full Text Available Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS. In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  17. A bio-inspired auditory perception model for amplitude-frequency clustering (keynote Paper)

    Science.gov (United States)

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia; Ganci, Gaetana; Patane, Luca

    2005-06-01

    In this paper a model for auditory perception is introduced. This model is based on a network of integrate-and-fire and resonate-and-fire neurons and is aimed to control the phonotaxis behavior of a roving robot. The starting point is the model of phonotaxis in Gryllus Bimaculatus: the model consists of four integrate-and-fire neurons and is able of discriminating the calling song of male cricket and orienting the robot towards the sound source. This paper aims to extend the model to include an amplitude-frequency clustering. The proposed spiking network shows different behaviors associated with different characteristics of the input signals (amplitude and frequency). The behavior implemented on the robot is similar to the cricket behavior, where some frequencies are associated with the calling song of male crickets, while other ones indicate the presence of predators. Therefore, the whole model for auditory perception is devoted to control different responses (attractive or repulsive) depending on the input characteristics. The performance of the control system has been evaluated with several experiments carried out on a roving robot.

  18. Towards a bio-inspired leg design for high-speed running.

    Science.gov (United States)

    Ananthanarayanan, Arvind; Azadi, Mojtaba; Kim, Sangbae

    2012-12-01

    High-speed terrestrial locomotion inevitably involves high acceleration and extensive loadings on the legs. This imposes a challenging trade-off between weight and strength in leg design. This paper introduces a new design paradigm for a robotic leg inspired by musculoskeletal structures. The central hypothesis is that employing a tendon-bone co-location architecture not only provides compliance in the leg, but can also reduce bone stresses caused by bending on structures. This hypothesis is applied to a leg design, and verified by simulations and the experiments on a prototype. In addition, we also present an optimization scheme to maximize the strength to weight ratio. Using the tendon-bone co-location architecture, the stress on the bone during a stride is reduced by up to 59%. A new foam-core prototyping technique enables creating structural characteristics similar to mammalian bones in the robotic leg. This method allows us to use lighter polymeric structures that are cheaper and quicker to fabricate than conventional fabrication methods, and can eventually greatly shorten the design iteration cycle time.

  19. Hyper-morphology: Experimentations with bio-inspired design processes for adaptive spatial re-use

    NARCIS (Netherlands)

    Chang, J.R.

    2014-01-01

    This article is a newer version of a paper originally published in the eCAADe 2013 Conference Proceedings Computation & Performance. Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces c

  20. Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry

    Science.gov (United States)

    Djumas, Lee; Molotnikov, Andrey; Simon, George P.; Estrin, Yuri

    2016-05-01

    Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking.

  1. Bio-inspired design of geometrically interlocked 3D printed joints

    Science.gov (United States)

    Kumar, S.; Oliva, Noel; Kumar's Lab Team

    The morphology of the adhesive-adherend interface significantly affects the mechanical behavior of adhesive joints. As seen in some biocomposites like human skull, or the nacre of some bivalve molluscs' shells, a geometrically interlocking architecture of interfaces creates toughening and strengthening mechanisms enhancing the mechanical properties of the joint. In an attempt to characterize this mechanical interlocking mechanism, this study is focused on computational and experimental investigation of a single-lap joint with a very simple geometrically interlocked interface design in which both adherends have a square waveform configuration of the joining surfaces. This square waveform configuration contains a positive and a negative rectangular teeth per cycle in such a way that the joint is symmetric about the mid-bondlength. Both physical tests performed on 3D printed prototypes of joints and computational results indicate that the joints with square waveform design have higher strength and damage tolerance than those of joints with flat interface. In order to identify an optimal design configuration of this interface, a systematic parametric study is conducted by varying the geometric and material properties of the non-flat interface. This work was supported by Lockheed Martin (Award No: 12NZZ1).

  2. Theoretical Research Program on Bio-inspired Inorganic Hydrogen Generating Catalysts and Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Selloni, Annabella; Car, Roberto; Cohen, Morrel H.

    2014-04-17

    In this project, we have successfully designed and characterized a promising biomimetic catalyst/electrode complex, [FeFe]P/FeS2 for producing hydrogen from water. It is comprised of earth-abundant materials and, with a diffusion-limited rate in acidified water, is efficient as well as oxygen tolerant. The theoretical techniques we have developed and the experience we have gained are broadly applicable for the design and analysis of biomimetic electrochemically active catalysts.

  3. Bio-Inspired Dynamically Tunable Polymer-Based Filters for Multi-Spectral Infrared Imaging

    Science.gov (United States)

    2010-05-01

    Morse. Plastic Transmissive Infrared Electrochromic Devices , Macromolecular Chemistry and Physics, (07 2010): 0. doi: 10.1002/macp.201000096 2011/10/10...Publication: Holt, A.L., J. G. A. Wehner, A. Hammp and D. E. Morse. 2010. Plastic transmissive infrared electrochromic devices ...Level Device Design ( Electrochromic -Based IR Shutter): The first initiative in the device design work consisted of determining a standard device

  4. Bio-inspired pulmonary surfactant-modified nanogels : A promising siRNA delivery system

    NARCIS (Netherlands)

    De Backer, Lynn; Braeckmans, Kevin; Stuart, Marc C. A.; Demeester, Jo; De Smedt, Stefaan C.; Raemdonck, Koen

    2015-01-01

    Inhalation therapy with small interfering RNA (siRNA) is a promising approach in the treatment of pulmonary disorders. However, clinical translation is severely limited by the lack of suitable delivery platforms. In this study, we aim to address this limitation by designing a novel bioinspired hybri

  5. Reverse engineering the euglenoid movement: from unicellular swimmers to bio-inspired robots

    Science.gov (United States)

    Desimone, Antonio; Noselli, Giovanni; Arroyo, Marino

    Euglenids are unicelluar organisms living in freshwater, which are capable of moving either by beating a flagellum, or by executing dramatic shape changes. These are accomplished thanks to a complex structure made of interlocking pellicle strips, microtubules, and motor proteins. Relative sliding of the pellicle strips, suitably orchestrated, can cause the propagation of a bulge along the body, hence generating a propulsive force. We study the mechanisms by which the sliding of pellicle strips leads to shape control and locomotion, by means of both theory (through the mechanics of active surfaces and its coupling to computational fluid dynamics for the surrounding fluid) and experimental observations. Moreover, we implement them into a new concept of a surface with programmable shape, obtained by asssembling 3d-printed strips in a construct mimicking the biological template. We explore the range of possible geometries achievable by actuating these surfaces, to assess their potential in soft robotics applications. The subtle balance between constraints and flexibility leads to a wide variety of shapes that can be obtained with relatively simple controls, similar to the notion of morphological computation in biological systems. ERC Advanced Grant 340685 (MicroMotility).

  6. Bio-inspired pulmonary surfactant-modified nanogels: A promising siRNA delivery system.

    Science.gov (United States)

    De Backer, Lynn; Braeckmans, Kevin; Stuart, Marc C A; Demeester, Jo; De Smedt, Stefaan C; Raemdonck, Koen

    2015-05-28

    Inhalation therapy with small interfering RNA (siRNA) is a promising approach in the treatment of pulmonary disorders. However, clinical translation is severely limited by the lack of suitable delivery platforms. In this study, we aim to address this limitation by designing a novel bioinspired hybrid nanoparticle with a core-shell nanoarchitecture, consisting of a siRNA-loaded dextran nanogel (siNG) core and a pulmonary surfactant (Curosurf®) outer shell. The decoration of siNGs with a surfactant shell enhances the colloidal stability and prevents siRNA release in the presence of competing polyanions, which are abundantly present in biofluids. Additionally, the impact of the surfactant shell on the biological efficacy of the siNGs is determined in lung cancer cells. The presence of the surfactants substantially reduces the cellular uptake of siNGs. Remarkably, the lowered intracellular dose does not impede the gene silencing effect, suggesting a crucial role of the pulmonary surfactant in the intracellular processing of the nanoparticles. In order to surmount the observed reduction in cellular dose, folate is incorporated as a targeting ligand in the pulmonary surfactant shell to incite receptor-mediated endocytosis. The latter substantially enhances both cellular uptake and gene silencing potential, achieving efficient knockdown at siRNA concentrations in the low nanomolar range.

  7. Bio-Inspired Computing, Information Swarms, and the Problem of Data Fusion

    Science.gov (United States)

    Nordmann, Brian

    The problem of information overload becomes a huge challenge, particularly when attempting to understanding how to introduce more and more disparate data streams into a data system. Little has been done on how to make those data streams understandable and usable by an analyst. A new paradigm is constructed here, unconstrained by the limits of the current desktop computer, to develop new ways of processing and analyzing data based on the behavior of cellular scale organisms. The additional issue of analytic "groupthink" or "information swarms" is also addressed, with potential solutions to the problem of "paralysis by analysis."

  8. Bio-Inspired Micro-Fluidic Angular-Rate Sensor for Vestibular Prostheses

    Directory of Open Access Journals (Sweden)

    Charalambos M. Andreou

    2014-07-01

    Full Text Available This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today’s state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation.

  9. A bio-inspired method and system for visual object-based attention and segmentation

    Science.gov (United States)

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  10. Macromodeling for analog design and robustness boosting in bio-inspired computing models

    Science.gov (United States)

    Cuadri, J.; Linan, G.; Roca, E.; Rodriguez-Vazquez, A.

    2005-06-01

    Setting specifications for the electronic implementation of biological neural-network-like vision systems on-chip is not straightforward, neither it is to simulate the resulting circuit. The structure of these systems leads to a netlist of more than 100.000 nodes for a small array of 100x150 pixels. Moreover, introducing an optical input in the low level simulation is nowadays not feasible with standard electrical simulation environments. Given that, to accomplish the task of integrating those systems in silicon to build compact, low power consuming, and reliable systems, a previous step in the standard analog electronic design flux should be introduced. Here a methodology to make the translation from the biological model to circuit-level specifications for electronic design is proposed. The purpose is to include non ideal effects as mismatching, noise, leakages, supply degradation, feedthrough, and temperature of operation in a high level description of the implementation, in order to accomplish behavioural simulations that require less computational effort and resources. A particular case study is presented, the analog electronic implementation of the locust"s Lobula Giant Movement Detector (LGMD), a neural structure that fires a collision alarm based on visual information. The final goal is a collision threat detection vision system on-chip for automotive applications.

  11. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and development of long- and short-lived coatings.

  12. Hyper-Morphology: Experimentations with bio-inspired design processes for adaptive spatial re-use

    NARCIS (Netherlands)

    Biloria, N.; Chang, J.R.

    2013-01-01

    Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces critical operational traits of the natural world (Evolutionary Development Biology, Embryology and Cellular Differentiation) with Evolu

  13. Hyper-morphology: Experimentations with bio-inspired design processes for adaptive spatial re-use

    NARCIS (Netherlands)

    Chang, J.R.

    2014-01-01

    This article is a newer version of a paper originally published in the eCAADe 2013 Conference Proceedings Computation & Performance. Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces c

  14. Hypercell: A bio-inspired information design framework for real-time adaptive spatial components

    NARCIS (Netherlands)

    Biloria, N.M.; Chang, J.R.

    2012-01-01

    Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally e

  15. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane.

    Science.gov (United States)

    Guo, Wei; Cheng, Chi; Wu, Yanzhe; Jiang, Yanan; Gao, Jun; Li, Dan; Jiang, Lei

    2013-11-13

    An electrogenetic layered graphene hydrogel membrane (GHM) possesses ultra-large interlayer spacing of about 10 nm, forming charged 2D nanocapillaries between graphene sheets that selectively permeate counter-ions and exclude co-ions. When an electrolyte flow goes through the GHM, it functions as an integrated 2D nanofluidic generator converting hydraulic motion into electricity. The maximum streaming conductance density approaches 16.8 μA cm(-2) bar(-1) .

  16. Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wei Wei; Zhang Yaopeng, E-mail: zyp@dhu.edu.cn; Zhao Yingmei; Luo Jie; Shao Huili; Hu Xuechao

    2011-10-10

    To biomimic the spinning process of silkworm or spider, a capillary spinning equipment was applied to spin regenerated silk fibroin (RSF) fibers from RSF aqueous solutions in air. This equipment exhibits a wide processing window for various RSF aqueous solutions. The effects of pH, metal ions, RSF concentration and spinning parameters on the spinnability of the spinning dope and the mechanical properties of the obtained fibers were investigated. As a result, spinning dopes with a pH from 5.2 to 6.9 have good spinnability, especially for the dope with a pH of 6.0 and a Ca{sup 2+} concentration of 0.3 M. The RSF concentration of this dope ranges from 44% to 48%. Under optimized conditions of our dry spinning experiments (L/D, 133; take-up speed, 30 mm/s), the obtained as-spun fiber has a breaking strength of 46 MPa, which can be improved up to 359 MPa after a preliminary post-drawing in 80 vol.% ethanol aqueous solution. Highlights: {yields} Regenerated silk fibroin fibers were prepared by using a dry spinning method. {yields} Dope compositions affect dope spinnability. {yields} Spinning parameters affect dope spinnability and fiber properties. {yields} The breaking stress of the post-treated fiber was up to 359 MPa.

  17. BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight

    Science.gov (United States)

    Bunget, Gheorghe

    The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight. Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic models can be used to optimize the lengths and the attachment locations of the actuator muscle-wires such that enough lift, thrust and wing stroke are obtained. Bat skeleton measurements were taken from real bats and modeled in SolidWorks to accurately reproduce bones and body via rapid prototyping methods. Much attention was paid specifically to achieving the comparable strength, elasticity, and range of motion of a naturally occurring bat. The wing joints of the BATMAV platform were fabricated using superelastic Shape Memory Alloys (SMA), a key technology for the development of an engineering skeleton structure. This has enabled a simple and straightforward connection between different bones while at the same time has preserved the full range of functionality of the natural role model. Therefore, several desktop models were designed, fabricated and assembled in order to study various materials used in design phase. As a whole, the BATMAV project consists of four major stages of development: the current phase -- design and fabrication of the skeletal structure of the flight platform, selection and testing different materials for the design of a compliant bat-like membrane, analysis of the kinematics and kinetics of bat flight in order to design a biomechanical muscle system for actuation, and design of the electrical control architecture to coordinate the platform flight.

  18. Bio-inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles

    Science.gov (United States)

    Kim, Shi Hyeong; Kwon, Cheong Hoon; Park, Karam; Mun, Tae Jin; Lepró, Xavier; Baughman, Ray H.; Spinks, Geoffrey M.; Kim, Seon Jeong

    2016-03-01

    Hygromorph artificial muscles are attractive as self-powered actuators driven by moisture from the ambient environment. Previously reported hygromorph muscles have been largely limited to bending or torsional motions or as tensile actuators with low work and energy densities. Herein, we developed a hybrid yarn artificial muscle with a unique coiled and wrinkled structure, which can be actuated by either changing relative humidity or contact with water. The muscle provides a large tensile stroke (up to 78%) and a high maximum gravimetric work capacity during contraction (2.17 kJ kg-1), which is over 50 times that of the same weight human muscle and 5.5 times higher than for the same weight spider silk, which is the previous record holder for a moisture driven muscle. We demonstrate an automatic ventilation system that is operated by the tensile actuation of the hybrid muscles caused by dew condensing on the hybrid yarn. This self-powered humidity-controlled ventilation system could be adapted to automatically control the desired relative humidity of an enclosed space.

  19. Osteogenic cells on bio-inspired materials for bone tissue engineering.

    Science.gov (United States)

    Vagaská, B; Bacáková, L; Filová, E; Balík, K

    2010-01-01

    This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cellular responses, leading to integration of the material into the natural tissue and stimulating self-healing processes. Therefore, the first part of the review explains the common principles of the cell-material interaction and summarizes the strategies how to improve the biocompatibility and bioactivity of the materials by modifying the physico-chemical properties of the material surface, such as surface chemistry, wettability, electrical charge, rigidity, microroughness and especially nanoroughness. The latter has been shown to stimulate preferentially the growth of osteoblasts in comparison with other competitive cell types, such as fibroblasts, which could prevent fibrous tissue formation upon implantation. The second more specialized part of the review deals with materials suitable for bone contact and substitution, particularly novel polymer-based composites reinforced with fibres or inorganic particles and containing bioactive components, such as crystals of hydroxyapatite or other calcium phosphates, synthetic ligands for cell adhesion receptors or growth factors. Moreover, if they are degradable, they can be gradually replaced with a regenerating tissue.

  20. Autonomous self-healing structural composites with bio-inspired design

    Science.gov (United States)

    D’Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-05-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

  1. Bio-inspired Self-healing Composite Hydrogel with Iron Oxide Nanoparticle as Coordination Crosslinker

    Science.gov (United States)

    Li, Qiaochu; Barret, Devin G.; Messersmith, Phillip B.; Holten-Andersen, Niels

    2014-03-01

    Polymer-nanoparticle (NP) composites have attracted renewed attention due to enhanced mechanical strength combined with various functionalities, but controlling the interfacial chemistry between NPs and polymer matrix, which is crucial for the composite's mechanical behavior, remains a major challenge. Inspired by the adhesion chemistry of mussel fibers, we investigated a novel approach to incorporate Fe3O4 NPs into hydrogel matrix. A polyethylene glycol polymer is designed with both ends conjugated by catechol groups, which have strong coordination affinity to Fe. The polymer network is crosslinked via coordination bonding at the surface of Fe3O4 NPs, yielding a stiff nanocomposite hydrogel. Due to the reversible nature of coordination bonding, the hydrogel presents self-healing behavior. Oscillatory rheology allows comparative kinetic studies of self-healing driven by catechol bonding at Fe3O4 NP interfaces and by catechol-Fe3+ coordination complexes. Furthermore, the superparamagnetic property of Fe3O4 NP is preserved after gelation, allowing for response to external stimuli. This gelation motif can serve as a versatile platform for tuning functional and mechanical properties for future polymer nanocomposite materials.

  2. Bio-Inspired Composite Interfaces: Controlling Hydrogel Mechanics via Polymer-Nanoparticle Coordination Bond Dynamics

    Science.gov (United States)

    Holten-Andersen, Niels

    2015-03-01

    In soft nanocomposite materials, the effective interaction between polymer molecules and inorganic nanoparticle surfaces plays a critical role in bulk mechanical properties. However, controlling these interfacial interactions remains a challenge. Inspired by the adhesive chemistry in mussel threads, we present a novel approach to control composite mechanics via polymer-particle interfacial dynamics; by incorporating iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network the resulting hydrogels are crosslinked via reversible coordination bonds at Fe3O4 NP surfaces thereby providing a dynamic gel network with robust self-healing properties. By studying the thermally activated composite network relaxation processes we have found that the polymer-NP binding energy can be controlled by engineering both the organic and inorganic side of the interface.

  3. Composite hydrogels of bio-inspired protein polymers : mechanical and structural characterization

    NARCIS (Netherlands)

    Rombouts, W.H.

    2015-01-01

    In this thesis we presented various combinations of custom-designed protein polymers that formed composite hydrogels. In chapter 2, composite hydrogels were prepared by mixing silk-like block copolymers (CP2SE48CP2) with collagen-like block copolymers (T9CR4T9). We found that by add

  4. Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection.

    Science.gov (United States)

    Hou, Jue; Zhang, Huacheng; Yang, Qiang; Li, Mingzhu; Song, Yanlin; Jiang, Lei

    2014-06-02

    Ultratrace detection attracts great interest because it is still a challenge to the early diagnosis and drug testing. Enriching the targets from highly diluted solutions to the sensitive area is a promising method. Inspired by the fog-collecting structure on Stenocara beetle's back, a photonic-crystal (PC) microchip with hydrophilic-hydrophobic micropattern was fabricated by inkjet printing. This device was used to realize high-sensitive ultratrace detection of fluorescence analytes and fluorophore-based assays. Coupled with the fluorescence enhancement effect of a PC, detection down to 10(-16) mol L(-1) was achieved. This design can be combined with biophotonic devices for the detection of drugs, diseases, and pollutions of the ecosystem.

  5. Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity

    KAUST Repository

    Savagatrup, Suchol

    2017-09-27

    Carbon monoxide (CO) outcompetes oxygen when binding to the iron center of hemeproteins, leading to a reduction in blood oxygen level and acute poisoning. Harvesting the strong specific interaction between CO and the iron porphyrin provides a highly selective and customizable sensor. We report the development of chemiresistive sensors with voltage-activated sensitivity for the detection of CO comprising iron porphyrin and functionalized single-walled carbon nanotubes (F-SWCNTs). Modulation of the gate voltage offers a predicted extra dimension for sensing. Specifically, the sensors show a significant increase in sensitivity toward CO when negative gate voltage is applied. The dosimetric sensors are selective to ppm levels of CO and functional in air. UV/Vis spectroscopy, differential pulse voltammetry, and density functional theory reveal that the in situ reduction of FeIII to FeII enhances the interaction between the F-SWCNTs and CO. Our results illustrate a new mode of sensors wherein redox active recognition units are voltage-activated to give enhanced and highly specific responses.

  6. Bio-inspired seismic metamaterials: Time domain simulations in transformed crystals

    CERN Document Server

    Aznavourian, Ronald; Brule, Stephane; Enoch, Stefan; Guenneau, Sebastien

    2016-01-01

    We introduce the concept of transformation crystallography which consists of the application of geometric transforms to periodic structures. We consider motifs with three-fold, four-fold and six-fold symmetries according to the crystallographic restriction theorem. Furthermore, we define motifs with five-fold symmetry such as quasi-crystals generated by a cut-and-projection method. We analyze elastic wave propagation in the transformed crystals and (Penrose-type) quasi-crystals with the finite difference time domain freeware SimSonic. We consider geometric transforms underpinning the design of seismic cloaks with square, circular, elliptical and peanut shapes in the context of triangular, square and honeycomb crystals. Interestingly, the use of morphing techniques leads to the design of cloaks with interpolated geometries reminiscent of Victor Vasarely's artwork. Employing the case of transformed graphene-like (honeycomb) structures allows one to draw useful analogies between large-scale seismic metamaterials...

  7. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    Science.gov (United States)

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  8. Tensegrity and its role in guiding engineering sciences in the development of bio-inspired materials.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, David M.; Chen, Er-Ping; Klein, Patrick A.

    2004-01-01

    Tensegrity is the word coined by Buckminster Fuller as a contraction of tensional integrity. A tensegrity system is established when a set of discontinuous compressive components interacts with a set of continuous tensile components to define a stable volume in space. Tensegrity structures are mechanically stable not because of the strength of individual members but because of the way the entire structure distributes and balances mechanical loads. Tensile forces naturally transmit themselves over the shortest distance between two points, so the members of a tensegrity system are precisely positioned to best withstand stress. Thus, tensegrity systems offer a maximum amount of strength for a given amount of material. Man-made structures have traditionally been designed to avoid developing large tensile stresses. In contrast, nature always uses a balance of tension and compression. Tensegrity principles apply at essentially every size-scale in the human body. Macroscopically, the bones that constitute our skeleton are pulled up against the force of gravity and stabilized in a vertical form by the pull of tensile muscles, tendons and ligaments. Microscopically, a tensegrity structure has been proposed for the skeleton of cells. This report contains the results of a feasibility study and literature survey to explore the potential of applying tensegrity principles in designing materials with desired functionalities. The goal is to assess if further study of the principles of tensegrity may be exploited as an avenue for producing new materials that have intrinsic capabilities for adapting to changing loads (self-healing), as with the ongoing reconstruction of living bone under loading. This study contains a collection of literature that has been categorized into the areas of structures, mathematics, mechanics, and, biology. The topics addressed in each area are discussed. Ultimately, we conclude that because tensegrity is fundamentally a description of structure, it may prove useful for describing existing materials, but does not provide guidance in the development of new materials because it does not address the issue of how such structures form.

  9. Bio-inspired multifunctional catecholic assembly for photo-programmable biointerface.

    Science.gov (United States)

    Huang, Chun-Jen; Wang, Lin-Chuan

    2015-10-01

    This article reports a novel multifunctional mussel-inspired zwitterionic catecholic assembly to form a photoresponsive biointerface. The assembly is the combination of the antifouling sulfobetaine and photocleavable o-nitrophenyl moieties into a molecule, becoming sulfobetaine nitrodopamine (SB-nDA). We demonstrated the formation of a compact thin SB-nDA film on TiO₂ by using the pH transition approach. The film thickness, surface wettability and elemental composition were characterized using ellipsometry, contact angle goniometer, atomic force microscopy and X-ray photoelectron spectroscopy, respectively. The SB-nDA thin films can effectively resist adhesion of both Gram-positive Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa by more than 95% relative to bare TiO₂. Quartz crystal microbalance with dissipation (QCM-D) sensor was employed for protein fouling tests, showing the comparable antifouling property of SB-nDA with thiol- or silane-based surface ligands. More importantly, the spatiotemporal control over the bioinertness by UV irradiation has been studied with bacterial and protein adsorption. Therefore, the catecholic chemistry can be used for programmable tailoring of interfacial properties, permitting potential application in light-guided targeting for nanomedicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    Directory of Open Access Journals (Sweden)

    Agostino Romeo

    2015-01-01

    Full Text Available The development of devices able to detect and record ion fluxes is a crucial point in order to understand the mechanisms that regulate communication and life of organisms. Here, we take advantage of the combined electronic and ionic conduction properties of a conducting polymer to develop a hybrid organic/living device with a three-terminal configuration, using the Physarum polycephalum Cell (PPC slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface. This behaviour endows a current-depending memory effect to the device.

  11. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    National Research Council Canada - National Science Library

    Romeo, Agostino; Dimonte, Alice; Tarabella, Giuseppe; D’Angelo, Pasquale; Erokhin, Victor; Iannotta, Salvatore

    2015-01-01

    ... the Physarum polycephalum Cell (PPC) slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface...

  12. Bio-inspired piezoelectric artificial hair cell sensor fabricated by powder injection molding

    Science.gov (United States)

    Han, Jun Sae; Oh, Keun Ha; Moon, Won Kyu; Kim, Kyungseop; Joh, Cheeyoung; Seo, Hee Seon; Bollina, Ravi; Park, Seong Jin

    2015-12-01

    A piezoelectric artificial hair cell sensor was fabricated by the powder injection molding process in order to make an acoustic vector hydrophone. The entire process of powder injection molding was developed and optimized for PMN-PZT ceramic powder. The artificial hair cell sensor, which consists of high aspect ratio hair cell and three rectangular mechanoreceptors, was precisely fabricated through the developed powder injection molding process. The density and the dielectric property of the fabricated sensor shows 98% of the theoretical density and 85% of reference dielectric property of PMN-PZT ceramic powder. With regard to homogeneity, three rectangular mechanoreceptors have the same dimensions, with 3 μm of tolerance with 8% of deviation of dielectric property. Packaged vector hydrophones measure the underwater acoustic signals from 500 to 800 Hz with -212 dB of sensitivity. Directivity of vector hydrophone was acquired at 600 Hz as analyzing phase differences of electric signals.

  13. Responses of Artificial Flow-Sensitive Hair for Raider Detection via Bio-Inspiration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Kyu; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2010-04-15

    Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. In these creatures, the filiform hairs function as a sensory system for raider detection. Parametric analyses of the motion response of filiform hairs are conducted by using a mathematical model of an artificial flow sensor to understand the possible operating ranges of a microfabricated device. It is found that the length and diameter of the sensory hair are the major parameters that determine the mechanical sensitivities and responses in a mean flow with an oscillating component. By changing the hair length, the angular displacement, velocity, and acceleration could be detected in a wide range of frequencies. Although the torques due to drag and virtual mass are very small, they are also very influential factors on the hair motion. The resonance frequency of the hair decreases as the length and diameter of the hair increase.

  14. Bio-inspired device: a novel smart MR spring featuring tendril structure

    Science.gov (United States)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  15. Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors

    NARCIS (Netherlands)

    Dumanli, Ahu Gumrah; Kamita, Gen; Landman, Jasper; van der Kooij, Hanne; Glover, Beverley J.; Baumberg, Jeremy J.; Steiner, Ullrich; Vignolini, Silvia

    2014-01-01

    The self-assembly process of photonic structures made of cellulose nanocrystals is studied in detail by locally monitoring and controlling water evaporation. Three different stages during the evaporation process are identified. Spectroscopy quantifies the amount of disorder in the fabricated samples

  16. Bio-Inspired Materials and Devices for Chemical and Biological Defense

    Science.gov (United States)

    2010-09-01

    effectively used in the encapsulation of living cells. Mooney and Augst47 have demonstrated alginate hydrogels as effective scaffolds for osteoblast...spaces that can house functions and be decorated with functional elements hung on the supporting walls and scaffolds . Along with the common silicas and...working with chitosan, pectic acid and alginic acid. Their purpose has been to subsequently react the biopolymers to form new materials which can

  17. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Directory of Open Access Journals (Sweden)

    Chen Peijian

    2014-06-01

    Full Text Available Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  18. Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie; Vesborg, Peter Christian Kjærgaard;

    2011-01-01

    part of the spectrum is utilized for hydrogen evolution while the blue part is reserved for the more difficult oxygen evolution. The samples have been illuminated with a simulated red part of the solar spectrum i.e. long wavelength (" > 620 nm) part of simulated AM 1.5G radiation. The current densities...... deposited on various supports. It will be demonstrated how this overpotential can be eliminated by depositing the same type of hydrogen evolution catalyst on p-type Si which can harvest the red part of the solar spectrum. Such a system could constitute the cathode part of a tandem dream device where the red...... at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by DFT calculations of the Mo3S4 cluster adsorbed on the hydrogen-terminated silicon surface providing insights...

  19. MURI: Surface-Templated Bio-Inspired Synthesis and Fabrication of Functional Materials

    Science.gov (United States)

    2006-06-21

    Jwa-Min Nam (Mirkin) 100 % (2001-2003) Aaron Brown (Mirkin) 100 % (2002-2003) Khalid Salaita (Mirkin) 60 % (2002-2005) Raymond ...Nanoscale Materials Interfaced with Biology and Medicine.” 2004 Stein- Bayer Seminar Lecturer, University of Massachusetts, Amherst, MA: “Crafting...Hall of Fame 58 2003 Raymond and Beverly Sackler Prize in the Physical Sciences 2003 Dickinson College Metzger-Conway Fellowship Award 2003 ACS

  20. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials

    Science.gov (United States)

    Liu, Kesong; Du, Jiexing; Wu, Juntao; Jiang, Lei

    2012-01-01

    Functional integration is an inherent characteristic for multiscale structures of biological materials. In this contribution, we first investigate the liquid-solid adhesive forces between water droplets and superhydrophobic gecko feet using a high-sensitivity micro-electromechanical balance system. It was found, in addition to the well-known solid-solid adhesion, the gecko foot, with a multiscale structure, possesses both superhydrophobic functionality and a high adhesive force towards water. The origin of the high adhesive forces of gecko feet to water could be attributed to the high density nanopillars that contact the water. Inspired by this, polyimide films with gecko-like multiscale structures were constructed by using anodic aluminum oxide templates, exhibiting superhydrophobicity and a strong adhesive force towards water. The static water contact angle is larger than 150° and the adhesive force to water is about 66 μN. The resultant gecko-inspired polyimide film can be used as a ``mechanical hand'' to snatch micro-liter liquids. We expect this work will provide the inspiration to reveal the mechanism of the high-adhesive superhydrophobic of geckos and extend the practical applications of polyimide materials.

  1. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    Science.gov (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  2. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip

    Science.gov (United States)

    Peng, Qingfa; Zhang, Yaopeng; Lu, Li; Shao, Huili; Qin, Kankan; Hu, Xuechao; Xia, Xiaoxia

    2016-11-01

    Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artificial spider silks were spun via microfluidic wet-spinning, using a continuous post-spin drawing process (WS-PSD). By mimicking the natural spinning apparatus, shearing and elongational sections were integrated in the microfluidic spinning chip to induce assembly, orientation of spidroins, and fibril structure formation. The additional post-spin drawing process following the wet-spinning section partially mimics the spinning process of natural spider silk and substantially contributes to the compact aggregation of microfibrils. Subsequent post-stretching further improves the hierarchical structure of the fibres, including the crystalline structure, orientation, and fibril melting. The tensile strength and elongation of post-treated fibres reached up to 510 MPa and 15%, respectively.

  3. The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive

    NARCIS (Netherlands)

    Yang, J.; Keijsers, J.; Heek, van M.; Stuiver, A.; Cohen Stuart, M.A.; Kamperman, M.M.G.

    2015-01-01

    In this article, catechol-functionalized polymers are synthesized by free radical polymerization of dopamine methacrylamide (DMA) and 2-methoxyethyl methacrylate (MEA) at 60 °C in DMF. By varying the DMA content in the polymer, it is found that during free radical polymerization, the catechol groups

  4. Porous Network Concrete: a bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new

  5. Enhanced Locomotion Efficiency of a Bio-inspired Walking Robot using Contact Surfaces with Frictional Anisotropy

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander

    2016-01-01

    stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged...

  6. Improved Bio-inspired Artificial Gecko Adhesive by Using Hierarchical Fibrillar Structures

    OpenAIRE

    Li, Yasong

    2014-01-01

    Geckos are well known for being rapid climbers that have long existed in nature. The reversible and reusable adhesive on their feet intrigues scientists to explore a bio-mimetic adhesive, which inherits the adhesion properties of the gecko’s adhesives. Recent advances in electron microscopy reveal the secret of gecko’s climbing ability: there are hierarchical fibrillar structures branching from the skin of their climbing feet. Sizes of these hierarchical fibrils range from micrometer to nanom...

  7. UMD Workshop on Distributed Sensing, Actuation, and Control for Bio-Inspired Soft Robotics

    Science.gov (United States)

    2014-10-01

    issue of the Bioinspiration & Biomimetics journal on the topic of Bioinspired Soft Robotics. It was evident from the workshop that MURI­worthy...subset of the workshop participants plan to                                submit articles to a special issue of the Bioinspiration & Biomimetics journal

  8. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings.

    Science.gov (United States)

    Bixler, Gregory D; Theiss, Andrew; Bhushan, Bharat; Lee, Stephen C

    2014-04-01

    Material scientists often look to biology for new engineering solutions to materials science problems. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (antifouling) and lotus leaf (self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study antifouling properties of four microstructured surfaces inspired by rice leaves and fabricated with photolithography and hot embossing techniques. Anti-biofouling effectiveness is determined with bioassays using Escherichia coli whilst inorganic fouling with simulated dirt particles. Antifouling data are presented to understand the role of surface geometrical features resistance to fouling. Conceptual modeling provides design guidance when developing novel antifouling surfaces for applications in the medical, marine, and industrial fields.

  9. Mechanics ofadhesion and contact self-cleaning of bio-inspired microfiberadhesives

    Science.gov (United States)

    Abusomwan, Uyiosa Anthony

    The remarkable attachment system of geckos has inspired the development of dry microfiber adhesives through the last two decades. Some of the notable characteristics of gecko-inspired fibrillar adhesives include: strong, directional, and controllable adhesion to smooth and rough surfaces in air, vacuum, and under water; ability to maintain strong adhesion during repeated use; anti-fouling and self-cleaning after contamination. Given these outstanding qualities, fibrillar adhesives promise an extensive range of use in industrial, robotic, manufacturing, medical, and consumer products. Significant advancements have been made in the design of geckoinspired microfiber adhesives with the characteristic properties listed above, with the exception of the anti-fouling and self-cleaning features. The self-cleaning mechanism of the gecko's adhesion system plays an important role to its ability to remain sticky in various environments. Similarly, enabling self-cleaning capability for synthetic microfiber adhesives will lead to robust performance in various areas of application. Presently, the practical use of fibrillar adhesives is restricted mainly to clean environments, where they are free from contaminants. The goal of this thesis is to conduct a detailed study of the mechanisms and mechanics of contact-based self-cleaning of gecko-inspired microfiber adhesives. This work focuses on contact self-cleaning mechanisms, as a more practical approach to cleaning. Previous studies on the cleaning of microfiber adhesives have mostly focused on mechanisms that involve complete removal of the contaminants from the adhesive. In this thesis, a second cleaning process is proposed whereby particles are removed from the tip of the microfibers and embedded between adjacent microfibers or in grooves patterned onto the adhesive, where they are no longer detrimental to the performance of the adhesive. In this work, a model of adhesion for microfiber adhesives that take the deformation of the backing layer under individual microfiber is developed. The dependence of adhesion of microfiber adhesives on the rate of unloading is also modeled and verified using experiments. The models of adhesion presented are later used to study the mechanics of contact self-cleaning of microfiber adhesives. Three major categories of self-cleaning are identified as wet self-cleaning, dynamic self-cleaning, and contact self-cleaning. A total of seven self-cleaning mechanisms that are associated with these categories are also presented and discussed. Results from the self-cleaning model and experiments show that shear loading plays an important role in self-cleaning. The underlying mechanism of contact self-cleaning due to normal and shear loading for spherical contaminants is found to be the particle rolling between the adhesive and a contacted substrate. Results from the model and experiments also show that small microfiber tips (much less than the size of the contaminants) are favorable for self-cleaning. On the other hand, large microfiber tips (much larger than the size of the contaminants) are favorable for anti-fouling of the microfiber adhesive. Results from this work suggests that the sub-micrometer size of the gecko's adhesive fibers and the lamellae under the gecko toes contribute to its outstanding self-cleaning performance. The results presented in this thesis can be implemented in the design of microfiber adhesives with robust adhesion, self-cleaning and anti-fouling characteristic, for use in numerous applications and in various environments.

  10. Performance Analysis of the Enhanced Bio-Inspired Planning Algorithm for Rapid Situation Awareness Response

    Science.gov (United States)

    2013-10-18

    direction of the virtual prey “position” at node k , , , , 1, 2, 0,...,p j kx j k N  , can be represented by a nonlinear rational B-spline ( NURBS ) [12...Piegl, L., and Tiller, W., The NURBS Book: Second Edition, Springer-Verlag, New York, 1997. [13] Batavia, P. H., and Nourbakhsh, I., “Path Planning...MATLAB Matrix Laboratory MC Motion Camouflage NURBS Non-uniform Rational B-Spline PI Performance Index PMP Pontryagin’s Minimum Principle PCP Path

  11. A Local Pursuit Strategy for Bio-Inspired Optimal Control with Partially-Constrained Final State

    Science.gov (United States)

    2005-01-01

    Roumeliotis and G.A. Bekey. Distributed multi- robot localization. IEEE Transactions on Robotics and Automation, 18(5):781–795, 2002. [14] C. Shao and D...robots using evaporating traces. IEEE Transactions on Robotics and Automation, 15(5):918– 933, 1999. [17] H. Yamaguchi and J.W. Burdick. Asymptotic

  12. Local Pursuit as a Bio-Inspired Computational Optimal Control Tool

    Science.gov (United States)

    2005-01-01

    15] S.I. Roumeliotis and G.A. Bekey. Distributed multi- robot localization. IEEE Transactions on Robotics and Automation, 18(5):781–795, 2002. [16...Wagner, M. Lindenbaum, and A.M. Bruckstein. Distributed covering by ant-robots using evaporating traces. IEEE Transactions on Robotics and Automation, 15(5):918– 933, 1999. 10

  13. Four-Fin Bio-Inspired UUV: Modeling and Control Solutions

    Science.gov (United States)

    2011-01-01

    trailing fin interactions as outlined in the Fin Force Characterization section. 7 Copyright © 2011 by ASME Vehicle Control Architecture Adjustments...were made to the MBAB controller gains designed for the two-fin vehicle [13], but the architecture remains the same. Vehicle errors in surge motion...Sandberg, and B. Ratna, “Robotic Pectoral Fin Thrust Vectoring Using Weighted Gait Combinations”, submitted for publication in Applied Bionics and

  14. On the Fracture Toughness and Crack Growth Resistance of Bio-Inspired Thermal Spray Hybrid Composites

    Science.gov (United States)

    Resnick, Michael Murray

    Nature has presented a remarkable bill of materials which show excellent mechanical properties. Among those which have been extensively studied are wood, bone, rocks, spider silk, nacre etc. Interestingly all of these materials are primarily known to have great fracture resistance and present excellent example of natural and layer-by-layer evolution of materials. These materials have inspired the current research society to synthesize new generation materials with mechanical properties beyond the conventional materials such as metal, ceramic and polymers. Nacre, one of the most researched natural materials, is present in particular sea-shells and shows a layered brick-and-mortar structure. Designing nacre-like structures has been a goal of many researchers due to the combination of its high strength and toughness. Thermal spray, a melt deposition process, has the ability to produce similar structures which can exhibit mechanical behavior similar to nacre. With an appropriate selection of process conditions, a nacreous brick-&-mortar structure can be synthesized. The structure is consisting of 95 vol% of CaCO 3 tablets with a brick wall arrangement with 5vol% of bio-polymer serving as a mortar between tables. Although, there have been several attempts by other researchers in the past, many other attempts have been made to synthesize such a material, they remain limited to a laboratory scale dimensions and are challenging to be scalable. While thermal spray, a readily scalable and industrially adapted process, shows no limitations with the development of nacre-like structures over a large surface area. Previous work down by the group has produced such a nacre-like structure using a flame spray process, one of the variant of thermal spray which uses rod as a feed, resulted in similar mechanical behavior to that of nacre. The work demonstrated that these templates along with the introduction of a polymeric epoxy, the fracture toughness and strength can be raised up to the values of a real nacre. Although, the fracture toughness was primary property of this study and the values were well matched, the fracture behavior found to be somewhat different between the hybrid composite and nacre. In particular, the hybrid composite was unable to exhibit any significant toughness under slow crack growth conditions, which is the most attractive feature of nacre. This thesis focuses on first investigating the toughness in the sprayed hybrid composites by using standard resistance curve (R-curve) measurements. The study then focused on developing thermal spray modified hybrid composites with improved toughness, as well as with higher application temperatures, beyond the limitation of epoxy.

  15. Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics

    Science.gov (United States)

    2014-08-01

    Introduction A common and essential behavior for survival in a variety of intelligent systems ranging from insects to human beings is deception. Many...role in providing an evolutionary advantage (Bond & Robinson, 1988). It appears in higher-level primates to involve a theory of mind mechanism...different animals ranging from insects to primates. The spider genus Portia, which preys primarily on other spiders, deceives their prey by vibrating

  16. Hypercell: A bio-inspired information design framework for real-time adaptive spatial components

    NARCIS (Netherlands)

    Biloria, N.M.; Chang, J.R.

    2012-01-01

    Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally

  17. Recent developments in bio-inspired sensors fabricated by additive manufacturing technologies

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Sanders, Remco G.P.

    2017-01-01

    In our work on micro-fabricated hair-sensors, inspired by the flow-sensitive sensors found on crickets, we have made great progress. Initially delivering mediocre performance compared to their natural counter parts they have evolved into capable sensors with thresholds roughly a factor of 30 larger

  18. Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles.

    Science.gov (United States)

    Xiao, Ming; Li, Yiwen; Allen, Michael C; Deheyn, Dimitri D; Yue, Xiujun; Zhao, Jiuzhou; Gianneschi, Nathan C; Shawkey, Matthew D; Dhinojwala, Ali

    2015-05-26

    Structural colors arising from interactions of light with submicron scale periodic structures have been found in many species across all taxa, serving multiple biological functions including sexual signaling, camouflage, and aposematism. Directly inspired by the extensive use of self-assembled melanosomes to produce colors in avian feathers, we set out to synthesize and assemble polydopamine-based synthetic melanin nanoparticles in an effort to fabricate colored films. We have quantitatively demonstrated that synthetic melanin nanoparticles have a high refractive index and broad absorption spanning across the UV-visible range, similar to natural melanins. Utilizing a thin-film interference model, we demonstrated the coloration mechanism of deposited films and showed that the unique optical properties of synthetic melanin nanoparticles provide advantages for structural colors over other polymeric nanoparticles (i.e., polystyrene colloidal particles).

  19. A bio-inspired, active morphing skin for camber morphing structures

    Science.gov (United States)

    Feng, Ning; Liu, Liwu; Liu, Yanju; Leng, Jinson

    2015-03-01

    In this study, one kind of developed morphing skin embedded with pneumatic muscle fibers (PMFs) was manufactured and was employed for camber morphing structures. The output force and contraction of PMF as well as the morphing skin were experimentally characterized at a series of discrete actuator pressures varying from 0.15 to 0.35 MPa. The active morphing skin test results show that the output force is 73.59 N and the contraction is 0.097 (9.7%) at 0.35 MPa. Due to these properties, this active morphing skin could be easily used for the morphing structures. Then the proper airfoil profile was chosen to manufacture the adaptive airfoil in this study. The chord-wise bending airfoil structure was achieved by employing this kind of active morphing skin. Finally the deformed shapes of this chord-wise bending airfoil structure were obtained by 3-dimensions scanning measurement. Meanwhile the camber morphing structures were analyzed through the finite element method (FEM) and the deformed shapes of the upper surface skins were obtained. The experimental result and FEM analysis result of deformed shapes of the upper surface skins were compared in this paper.

  20. Towards an Automatic Parking System using Bio-Inspired 1-D Optical Flow Sensors

    OpenAIRE

    2015-01-01

    International audience; Although several (semi-) automatic parking systems have been presented throughout the years [1]–[12], car manufacturers are still looking for low-cost sensors providing redundant information about the obstacles around the vehicle, as well as efficient methods of processing this information, in the hope of achieving a very high level of robustness. We therefore investigated how Local Motion Sensors (LMSs) [13], [14], comprising only of a few pixels giving 1-D optical fl...