WorldWideScience

Sample records for nosema locustae microsporidia

  1. Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae.

    Science.gov (United States)

    Germot, A; Philippe, H; Le Guyader, H

    1997-08-01

    In molecular phylogenies based on ribosomal RNA, three amitochondriate protist lineages, Microsporidia, Metamonada (including diplomonads) and Parabasala (including trichomonads), are the earliest offshoots of the eukaryotic tree. As an explantation for the lack of mitochondria in these organisms, the hypothesis that they have diverged before the mitochondrial endosymbiosis is preferred to the less parsimonious hypothesis of several independent losses of the organelle. Nevertheless, if they had descended from mitochondrion-containing ancestors, it may be possible to find in their nuclear DNA genes that derive from the endosymbiont which gave rise to mitochondria. Based on similar evidence, secondary losses of mitochondria have recently been suggested for Entamoeba histolytica and for Trichomonas vaginalis. In this study, we have isolated a gene encoding a chaperone protein (HSP70, 70 kDa heat shock protein) from the microspordian Nosema locustae. In phylogenetic trees, this HSP70 was located within a group of sequences that in other lineages is targetted to the mitochondrial compartment, itself included in the proteobacterial clade. In addition, the N. locustae protein contained the GDAW(V) motif shared by mitochondrial and proteobacterial sequences, with only one conservative substitution. Moreover, microsporidia, a phylum which was assumed to emerge close to the base of the eukaryotic tree, appears as the sister-group of fungi in the HSP70 phylogeny, in agreement with some ultrastructural characters and phylogenies based on alpha- and beta-tubulins. Loss of mitochondria, now demonstrated for several amitochondriate groups, indicates that the common ancestor of all the extant eukaryotic species could have been a mitochondriate eukaryote.

  2. Horizontal transmission of Paranosema locustae (Microsporidia) in grasshopper populations via predatory natural enemies.

    Science.gov (United States)

    Wang-Peng, Shi; Zheng, Xuan; Jia, Wan-Tong; Li, Ao-Mei; Camara, Ibrahima; Chen, Hong-Xing; Tan, Shu-Qian; Liu, Yi-Qing; Ji, Rong

    2018-04-24

    Paranosema locustae Canning, 1953 (Microsporidia) provides effective control of grasshoppers. While horizontal transmission of P. locustae is known to occur, evidence for the mechanisms of such transmission via predatory natural enemies was found. We conducted a three-year laboratory and field study to assess the potential impact of feces both from grasshoppers Locusta migratoria L. and from their natural enemies on the persistence of P. locustae. We found that P. locustae persisted among grasshopper populations in treated areas and in adjacent untreated areas for up to two years, and the density of grasshoppers decreased in both areas. We showed that healthy grasshoppers could be infected by feeding on food contaminated by feces from their natural enemies. Predators of grasshoppers retained a large number of spores acquired from eating grasshoppers infected with P. locustae. Spores in the feces of the main natural enemy, the beetle Pterostichus gebleri Dejean 1828 in treated area showed clear viability. These results demonstrate that predatory natural enemies are important vectors for this microsporidian disease, and suggest that sustainable transmission and continuing population suppression might be achieved by horizontal transmission through natural enemies, which should be maximized to increase the effectiveness of P. locustae. This article is protected by copyright. All rights reserved.

  3. Regurgitated pellets of Merops apiaster as fomites of infective Nosema ceranae (Microsporidia) spores.

    Science.gov (United States)

    Higes, Mariano; Martín-Hernández, Raquel; Garrido-Bailón, Encarna; Botías, Cristina; García-Palencia, Pilar; Meana, Aránzazu

    2008-05-01

    The importance of transmission factor identification is of great epidemiological significance. The bee-eater (Merops apiaster) is a widely distributed insectivorous bird, locally abundant mainly in arid and semi-arid areas of southern Europe, northern Africa and western Asia but recently has been seen breeding in central Europe and Great Britain. Bee-eaters predominantly eat insects, especially bees, wasps and hornets. On the other hand, Nosema ceranae is a Microsporidia recently described as a parasite in Apis mellifera honeybees in Europe. Due to the short time since its description scarce epidemiological data are available. In this study we investigate the role of the regurgitated pellets of the European bee-eater as fomites of infective spores of N. ceranae. Spore detection in regurgitated pellets of M. apiaster is described [phase-contrast microscopy (PCM) and polymerase chain reaction (PCR) methods]. Eighteen days after collection N. ceranae spores still remain viable and their infectivity is shown after artificial infection of Nosema-free 8-day-old adult bees. The epidemiological consequences of the presence of Nosema spores in this fomites are discussed.

  4. Easy labeling of proliferative phase and sporogonic phase of microsporidia Nosema bombycis in host cells.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available Microsporidia are eukaryotic, unicellular parasites that have been studied for more than 150 years. These organisms are extraordinary in their ability to invade a wide range of hosts including vertebrates and invertebrates, such as human and commercially important animals. A lack of appropriate labeling methods has limited the research of the cell cycle and protein locations in intracellular stages. In this report, an easy fluorescent labeling method has been developed to mark the proliferative and sporogonic phases of microsporidia Nosema bombycis in host cells. Based on the presence of chitin, Calcofluor White M2R was used to label the sporogonic phase, while β-tubulin antibody coupled with fluorescence secondary antibody were used to label the proliferative phase by immunofluorescence. This method is simple, efficient and can be used on both infected cells and tissue slices, providing a great potential application in microsporidia research.

  5. Distribution of the Nosema ceranae (Microspora, Nosematidae in the Apiaries in Ukraine

    Directory of Open Access Journals (Sweden)

    Odnosum H. V.

    2017-04-01

    Full Text Available Investigated the distribution of microsporidia Nosema ceranae — the pathogen of so-called «Asian» Nosema disease in the apiaries of Ukraine. Investigated 784 samples of bee’s podmore in a large extent affected by Nosemosis, that have been sent by beekeepers for research from 11 regions of Ukraine (Kyiv, Poltava, Vinnytsia, Chernihiv, Zhytomyr, Sumy, Zaporizhia, Donetsk, Volyn, Lviv, Khmelnytsky in 2014–2016. Microsporidia Nosema ceranae was found in 74.5 % of the analyzed bee samples, i. e. on prevalence it dominated the microsporidia Nosema apis. Clinical signs and course of Nosema disease in bee families, where been found microsporidia Nosema ceranae, were classic, namely the weak development of families in the spring, in some families — the presence of traces of diarrhea.

  6. Pathogenicity of Nosema sp. (Microsporidia in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae.

    Directory of Open Access Journals (Sweden)

    Nadia Kermani

    Full Text Available Biological control using pathogenic microsporidia could be an alternative to chemical control of the diamondback moth (DBM Plutella xylostella (Lepidoptera: Plutellidae. The microsporidium Nosema bombycis (NB is one of the numerous pathogens that can be used in the Integrated Pest Management (IPM of DBM. However, its pathogenicity or effectiveness can be influenced by various factors, particularly temperature. This study was therefore conducted to investigate the effect of temperature on NB infection of DBM larvae. Second-instar larvae at different doses (spore concentration: 0, 1×10²,1×10³,1×10⁴, and 1×10⁵ at 15°, 20°, 25°, 30° and 35°C and a relative humidity(RH of 65% and light dark cycle (L:D of 12∶12. Larval mortality was recorded at 24 h intervals until the larvae had either died or pupated. The results showed that the spore concentration had a significant negative effect on larval survival at all temperatures, although this effect was more pronounced (92% at 35°C compared with that at 20 and 30°C (≃50% and 25°C (26%. Histological observations showed that Nosema preferentially infected the adipose tissue and epithelial cells of the midgut, resulting in marked vacuolization of the cytoplasm. These findings suggest that Nosema damaged the midgut epithelial cells. Our results suggest that Nosema had a direct adverse effect on DBM, and could be utilized as an important biopesticide alternative to chemical insecticides in IPM.

  7. Nosema ceranae escapes fumagillin control in honey bees.

    Directory of Open Access Journals (Sweden)

    Wei-Fone Huang

    2013-03-01

    Full Text Available Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2 in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.

  8. A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee-pathogenic microsporidia.

    Science.gov (United States)

    Gisder, Sebastian; Möckel, Nadine; Linde, Andreas; Genersch, Elke

    2011-02-01

    The population of managed honey bees has been dramatically declining in the recent past in many regions of the world. Consensus now seems to be that pathogens and parasites (e.g. the ectoparasitic mite Varroa destructor, the microsporidium Nosema ceranae and viruses) play a major role in this demise. However, little is known about host-pathogen interactions for bee pathogens and attempts to develop novel strategies to combat bee diseases have been hampered by this gap in our knowledge. One reason for this dire situation is the complete lack of cell cultures for the propagation and study of bee pathogens. Here we present a cell culture model for two honey bee-pathogenic microsporidian species, Nosema apis and N. ceranae. Our cell culture system is based on a lepidopteran cell line, which proved to be susceptible to infection by both N. ceranae and N. apis and enabled us to illustrate the entire life cycle of these microsporidia. We observed hitherto undescribed spindle-shaped meronts and confirmed our findings in infected bees. Our cell culture model provides a previously unavailable means to explore the nature of interactions between the honey bee and its pathogen complex at a mechanistic level and will allow the development of novel treatment strategies.

  9. Molecular Diagnostic Tests for Microsporidia

    Directory of Open Access Journals (Sweden)

    Kaya Ghosh

    2009-01-01

    Full Text Available The Microsporidia are a ubiquitous group of eukaryotic obligate intracellular parasites which were recognized over 100 years ago with the description of Nosema bombycis, a parasite of silkworms. It is now appreciated that these organisms are related to the Fungi. Microsporidia infect all major animal groups most often as gastrointestinal pathogens; however they have been reported from every tissue and organ, and their spores are common in environmental sources such as ditch water. Several different genera of these organisms infect humans, but the majority of infections are due to either Enterocytozoon bieneusi or Encephalitozoon species. These pathogens can be difficult to diagnose, but significant progress has been made in the last decade in the development of molecular diagnostic reagents for these organisms. This report reviews the molecular diagnostic tests that have been described for the identification of the microsporidia that infect humans.

  10. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China.

    Science.gov (United States)

    Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-02-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees.

  11. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  12. First Identification of Nosema Ceranae (Microsporidia Infecting Apis Mellifera in Venezuela

    Directory of Open Access Journals (Sweden)

    Porrini Leonardo P.

    2017-06-01

    Full Text Available Nosema ceranae is a pathogen of Apis mellifera, which seems to have jumped from its original host Asiatic honey bee Apis ceranae. Nosemosis which affects the honey bee Apis mellifera is caused by two parasitic fungi described as etiologic agents of the disease. Nosema apis was the only microsporidian infection identified in A. mellifera until N. ceranae in Taiwan and Europe. Nosema spp. positive samples of adult worker bees from the Venezuelean state of Lara were determined through light microscopy of spores. Samples were then tested to determine Nosema species (N.apis/N.ceranae using previously reported PCR primers for the 16S rRNA gene. A multiplex PCR assay was used to differentiate both N. apis and N. ceranae species. Only N. ceranae was found in the analyzed samples and the percentage of infected foragers fluctuated between 18% and 60%.

  13. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    Science.gov (United States)

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Molecular Identification of Nosema species in East Azerbaijan province, Iran

    Directory of Open Access Journals (Sweden)

    Razmaraii, N.

    2013-05-01

    Full Text Available Nosema is a genus of microsporidia, which have significant negative impacts on honeybees. The aim of thisstudy is the epidemiological evaluation and molecular characterization of Nosema spices in various countiesof East-Azerbaijan province (Northwest of Iran. 387 samples were collected from colonies maintained invarious counties of East-Azerbaijan province. Samples after preparation were examined by a lightmicroscope for presence of Nosema spores. PCR method (SSUrRNA gene was used to differentiatebetween Nosema apis (N. apis and N. ceranae. Descriptive statistics were used for data analysis. Totalinfection prevalence of the microscopic evaluation and PCR tests were 225 (58.1% and 260 (67.1%respectively, total validity of PCR test against the microscopic test was computed equal to 1.1 in this case.Disease distribution in various counties of study area was variable and N. ceranae was the only Nosema species found to infect honeybees. The one species presence and different distribution of Nosema positive samples in various counties of East-Azerbaijan province may be due to multiple reasons. Furthermore,epidemiological information helps us to improve disease management practices in the studied area, apply new hygiene policy and reduce extra costs of production.

  15. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    Directory of Open Access Journals (Sweden)

    Wincker Patrick

    2009-12-01

    Full Text Available Abstract Background Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp and highly compact (~1 gene/kb genome of the human parasite Encephalitozoon cuniculi has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in E. cuniculi and to show whether these motifs are conserved among the phylum Microsporidia. Results To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (E. cuniculi genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including Antonospora locustae, Enterocytozoon bieneusi, Anncaliia algerae (syn. Brachiola algerae and Nosema ceranae. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs had been badly predicted. Conclusion We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore

  16. Interactions microsporidies-insectes in vivo : dissémination de Nosema bombycis (Microsporidia) dans son hôte Bombyx mori (Lepidoptera) et caractérisation de protéines structurales majeures de N. bombycis impliquées dans l'invasion

    OpenAIRE

    Wang, Jian-Yang

    2007-01-01

    Nosema bombycis is a spore-forming obligate intracellular parasite which belongs to the fungi-related Microsporidia phylum. It is the causative agent of the silkworm Bombyx mori pebrine disease which inflicts severe worldwide economical losses in sericulture. Little is known about N. bombycis in vivo dissemination mechanism and its interactions with its natural host B. mori at the cellular or molecular level, despite the ongoing genome sequencing projects of both organisms. In this study, we ...

  17. Genome-wide transcriptional response of silkworm (Bombyx mori to infection by the microsporidian Nosema bombycis.

    Directory of Open Access Journals (Sweden)

    Zhengang Ma

    Full Text Available Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a

  18. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera).

    Science.gov (United States)

    Milbrath, Meghan O; van Tran, Toan; Huang, Wei-Fong; Solter, Leellen F; Tarpy, David R; Lawrence, Frank; Huang, Zachary Y

    2015-02-01

    Honey bees (Apis mellifera) are infected by two species of microsporidia: Nosema apis and Nosemaceranae. Epidemiological evidence indicates that N. ceranae may be replacing N. apis globally in A. mellifera populations, suggesting a potential competitive advantage of N. ceranae. Mixed infections of the two species occur, and little is known about the interactions among the host and the two pathogens that have allowed N. ceranae to become dominant in most geographical areas. We demonstrated that mixed Nosema species infections negatively affected honey bee survival (median survival=15-17days) more than single species infections (median survival=21days and 20days for N. apis and N. ceranae, respectively), with median survival of control bees of 27days. We found similar rates of infection (percentage of bees with active infections after inoculation) for both species in mixed infections, with N. apis having a slightly higher rate (91% compared to 86% for N. ceranae). We observed slightly higher spore counts in bees infected with N. ceranae than in bees infected with N. apis in single microsporidia infections, especially at the midpoint of infection (day 10). Bees with mixed infections of both species had higher spore counts than bees with single infections, but spore counts in mixed infections were highly variable. We did not see a competitive advantage for N. ceranae in mixed infections; N. apis spore counts were either higher or counts were similar for both species and more N. apis spores were produced in 62% of bees inoculated with equal dosages of the two microsporidian species. N. ceranae does not, therefore, appear to have a strong within-host advantage for either infectivity or spore growth, suggesting that direct competition in these worker bee mid-guts is not responsible for its apparent replacement of N. apis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Infections of Nosema ceranae in four different honeybee species.

    Science.gov (United States)

    Chaimanee, Veeranan; Warrit, Natapot; Chantawannakul, Panuwan

    2010-10-01

    The microsporidium Nosema ceranae is detected in honeybees in Thailand for the first time. This endoparasite has recently been reported to infect most Apis mellifera honeybee colonies in Europe, the US, and parts of Asia, and is suspected to have displaced the endemic endoparasite species, Nosema apis, from the western A. mellifera. We collected and identified species of microsporidia from the European honeybee (A. mellifera), the cavity nesting Asian honeybee (Apis cerana), the dwarf Asian honeybee (Apis florea) and the giant Asian honeybee (Apis dorsata) from colonies in Northern Thailand. We used multiplex PCR technique with two pairs of primers to differentiate N. ceranae from N. apis. From 80 A. mellifera samples, 62 (77.5%) were positively identified for the presence of the N. ceranae. Amongst 46 feral colonies of Asian honeybees (A. cerana, A. florea and A. dorsata) examined for Nosema infections, only N. ceranae could be detected. No N. apis was found in our samples. N. ceranae is found to be the only microsporidium infesting honeybees in Thailand. Moreover, we found the frequencies of N. ceranae infection in native bees to be less than that of A. mellifera. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Immunolocalization of an alternative respiratory chain in Antonospora (Paranosema) locustae spores: mitosomes retain their role in microsporidial energy metabolism.

    Science.gov (United States)

    Dolgikh, Viacheslav V; Senderskiy, Igor V; Pavlova, Olga A; Naumov, Anton M; Beznoussenko, Galina V

    2011-04-01

    Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.

  1. Genome-wide identification and comprehensive analyses of the kinomes in four pathogenic microsporidia species.

    Directory of Open Access Journals (Sweden)

    Zhi Li

    Full Text Available Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia—Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae—was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide

  2. Parasitism performance and fitness of Cotesia vestalis (Hymenoptera: Braconidae infected with Nosema sp. (Microsporidia: Nosematidae: implications in integrated pest management strategy.

    Directory of Open Access Journals (Sweden)

    Nadia Kermani

    Full Text Available The diamondback moth (DBM Plutella xylostella (L. has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday (Hym., Braconidae can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1 and their progeny (F2 had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.

  3. Bombus brasiliensis Lepeletier (Hymenoptera, Apidae infected with Nosema ceranae (Microsporidia

    Directory of Open Access Journals (Sweden)

    Santiago Plischuk

    Full Text Available ABSTRACT Heavy infections caused by a microsporidium were detected in midgut epithelium cells of two adult workers of the bumble bee Bombus brasiliensis Lepeletier collected near Puerto Iguazú, Misiones province, Argentina. Microsporidium rRNA (16S small subunit was amplified by 218MITOC primers and produced amplicons indicating presence of Nosema ceranae Fries et al., a virulent pathogen of more than 20 bee species, possibly involved in Apis mellifera L. Colony Collapse Disorder. Campaigns in search of B. brasiliensis between 2008 and 2015 have revealed a possible narrower range in the southeastern area of its known distribution. Effects of N. ceranae infections could be modulating their populations and should not be overlooked. In addition, the wide host range of this microsporidium makes it a potential threat to several endemic bees such as stingless (Meliponini and orchid bees (Euglossini.

  4. Long-Term Temporal Trends of Nosema spp. Infection Prevalence in Northeast Germany: Continuous Spread of Nosema ceranae, an Emerging Pathogen of Honey Bees (Apis mellifera), but No General Replacement of Nosema apis.

    Science.gov (United States)

    Gisder, Sebastian; Schüler, Vivian; Horchler, Lennart L; Groth, Detlef; Genersch, Elke

    2017-01-01

    The Western honey bee ( Apis mellifera ) is widely used as commercial pollinator in worldwide agriculture and, therefore, plays an important role in global food security. Among the parasites and pathogens threatening health and survival of honey bees are two species of microsporidia, Nosema apis and Nosema ceranae. Nosema ceranae is considered an emerging pathogen of the Western honey bee. Reports on the spread of N. ceranae suggested that this presumably highly virulent species is replacing its more benign congener N. apis in the global A. mellifera population. We here present a 12 year longitudinal cohort study on the prevalence of N. apis and N. ceranae in Northeast Germany. Between 2005 and 2016, a cohort of about 230 honey bee colonies originating from 23 apiaries was sampled twice a year (spring and autumn) resulting in a total of 5,600 bee samples which were subjected to microscopic and molecular analysis for determining the presence of infections with N. apis or/and N. ceranae . Throughout the entire study period, both N. apis - and N. ceranae -infections could be diagnosed within the cohort. Logistic regression analysis of the prevalence data demonstrated a significant increase of N. ceranae -infections over the last 12 years, both in autumn (reflecting the development during the summer) and in spring (reflecting the development over winter) samples. Cell culture experiments confirmed that N. ceranae has a higher proliferative potential than N. apis at 27° and 33°C potentially explaining the increase in N. ceranae prevalence during summer. In autumn, characterized by generally low infection prevalence, this increase was accompanied by a significant decrease in N. apis -infection prevalence. In contrast, in spring, the season with a higher prevalence of infection, no significant decrease of N. apis infections despite a significant increase in N. ceranae infections could be observed. Therefore, our data do not support a general advantage of N. ceranae over

  5. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera.

    Science.gov (United States)

    Klee, Julia; Besana, Andrea M; Genersch, Elke; Gisder, Sebastian; Nanetti, Antonio; Tam, Dinh Quyet; Chinh, Tong Xuan; Puerta, Francisco; Ruz, José Maria; Kryger, Per; Message, Dejair; Hatjina, Fani; Korpela, Seppo; Fries, Ingemar; Paxton, Robert J

    2007-09-01

    The economically most important honey bee species, Apis mellifera, was formerly considered to be parasitized by one microsporidian, Nosema apis. Recently, [Higes, M., Martín, R., Meana, A., 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93-95] and [Huang, W.-F., Jiang, J.-H., Chen, Y.-W., Wang, C.-H., 2007. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38, 30-37] used 16S (SSU) rRNA gene sequences to demonstrate the presence of Nosema ceranae in A. mellifera from Spain and Taiwan, respectively. We developed a rapid method to differentiate between N. apis and N. ceranae based on PCR-RFLPs of partial SSU rRNA. The reliability of the method was confirmed by sequencing 29 isolates from across the world (N =9 isolates gave N. apis RFLPs and sequences, N =20 isolates gave N. ceranae RFLPs and sequences; 100% correct classification). We then employed the method to analyze N =115 isolates from across the world. Our data, combined with N =36 additional published sequences demonstrate that (i) N. ceranae most likely jumped host to A. mellifera, probably within the last decade, (ii) that host colonies and individuals may be co-infected by both microsporidia species, and that (iii) N. ceranae is now a parasite of A. mellifera across most of the world. The rapid, long-distance dispersal of N. ceranae is likely due to transport of infected honey bees by commercial or hobbyist beekeepers. We discuss the implications of this emergent pathogen for worldwide beekeeping.

  6. Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Huang, Qiang; Kryger, Per; Le Conte, Yves

    2014-01-01

    Nosema ceranae has been recently introduced into the honeybee Apis mellifera as a novel microsporidian gut parasite. To locate the genetic region involved in N. ceranae infection tolerance, we fed N. ceranae spores to haploid drones of a F1 hybrid queen produced from a cross between a queen...

  7. Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen.

    Science.gov (United States)

    Higes, Mariano; Meana, Aránzazu; Bartolomé, Carolina; Botías, Cristina; Martín-Hernández, Raquel

    2013-02-01

    The worldwide beekeeping sector has been facing a grave threat, with losses up to 100-1000 times greater than those previously reported. Despite the scale of this honey bee mortality, the causes underlying this phenomenon remain unclear, yet they are thought to be multifactorial processes. Nosema ceranae, a microsporidium recently detected in the European bee all over the world, has been implicated in the global phenomenon of colony loss, although its role remains controversial. A review of the current knowledge about this pathogen is presented focussing on discussion related with divergent results, trying to analyse the differences specially based on different methodologies applied and divisive aspects on pathology while considering a biological or veterinarian point of view. For authors, the disease produced by N. ceranae infection cannot be considered a regional problem but rather a global one, as indicated by the wide prevalence of this parasite in multiple hosts. Not only does this type of nosemosis causes a clear pathology on honeybees at both the individual and colony levels, but it also has significant effects on the production of honeybee products. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees.

    Directory of Open Access Journals (Sweden)

    R Scott Cornman

    2009-06-01

    Full Text Available Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee-Nosema interactions.

  9. Presencia de Malameba locustae (Protozoa: Rhizopoda en acridios (Orthoptera: Acrididae de la provincia de Misiones, Argentina Presence of Malameba locustae (Protozoa: Rhizopoda in grasshoppers (Orthoptera: Acrididae of Misiones province, Argentina

    Directory of Open Access Journals (Sweden)

    Carlos E. Lange

    2004-07-01

    Full Text Available La ameba patógena Malameba locustae King y Taylor fue detectada parasitando ejemplares del acridio Ronderosia bergi (Stal recolectados en las cercanías del Parque Nacional Iguazú, Misiones. El hallazgo constituye el segundo registro de M. locustae para acridios sudamericanos.Individuals of the grasshopper Ronderosia bergi (Stal collected in the surroundings of Iguazú National Park, Misiones, were found to be parasitized by the pathogenic amoeba Malameba locustae King & Taylor. The finding constitutes the second record of M. locustae for southamerican grasshoppers.

  10. Microsporidia

    Science.gov (United States)

    Microsporidia are unicellular obligate intracellular spore forming eukaryotes classified among the protists. As parasites, they have been reported from every major group of animals from other protists to mammals and man. They are economically and medically important and can be found environmentally ...

  11. Loop-mediated isothermal amplification (LAMP) assays for rapid detection and differentiation of Nosema apis and N. ceranae in honeybees.

    Science.gov (United States)

    Ptaszyńska, Aneta A; Borsuk, Grzegorz; Woźniakowski, Grzegorz; Gnat, Sebastian; Małek, Wanda

    2014-08-01

    Nosemosis is a contagious disease of honeybees (Apis mellifera) manifested by increased winter mortality, poor spring build-up and even the total extinction of infected bee colonies. In this paper, loop-mediated isothermal amplifications (LAMP) were used for the first time to identify and differentiate N. apis and N. ceranae, the causative agents of nosemosis. LAMP assays were performed at a constant temperature of 60 °C using two sets of six species-specific primers, recognising eight distinct fragments of 16S rDNA gene and GspSSD polymerase with strand displacement activity. The optimal time for LAMP and its Nosema species sensitivity and specificity were assessed. LAMP only required 30 min for robust identification of the amplicons. Ten-fold serial dilutions of total DNA isolated from bees infected with microsporidia were used to determine the detection limit of N. apis and N. ceranae DNAs by LAMP and standard PCR assays. LAMP appeared to be 10(3) -fold more sensitive than a standard PCR in detecting N. apis and N. ceranae. LAMP methods developed by us are highly Nosema species specific and allow to identify and differentiate N. apis and N. ceranae. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Molecular and biochemical responses in the midgut of the silkworm, Bombyx mori, infected with Nosema bombycis.

    Science.gov (United States)

    Li, Zhi; Wang, Yu; Wang, Linling; Zhou, Zeyang

    2018-03-06

    Microsporidia are a group of eukaryotic intracellular parasites that infect almost all vertebrates and invertebrates. However, there is little information available of how microsporidia obtain nutrients and energy from host cells. The purpose of this study was to investigate the energy and material requirements of Nosema bombycis for the invasion procedure through analyzing the global variation of the gene expression, protein abundance, fatty acids level and ATP flux induced by the microsporidia N. bombycis infection in the midgut of the silkworm Bombyx mori. A suppression subtractive hybridization (SSH) and quantitative real-time PCR (qPCR) analysis were performed to identify the genes upregulated in the midgut of B. mori 48 h following N. bombycis infection. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to annotate and summarize the differentially expressed genes, according to the categories 'molecular function', 'cellular component' and 'biological process'. To evaluate the nutrition material and energy costs in B.mori infected by N. bombycis, biochemical analysis was performed to determine the variation of protein abundance, fatty acid levels and ATP flux with or without the microsporidia N. bombycis infection in the midgut of the silkworm B. mori. A total of 744 clones were obtained, 288 clones were randomly selected for sequencing, and 110 unigenes were generated. Amongst these, 49.21%, 30.16% and 14.29% genes were involved in 19 molecular functions, 19 biological processes and nine cellular components, respectively. A total of 11 oxidative phosphorylation- and eight proton-coupled ATP synthesis-related genes were upregulated. Seven protein degradation-, three fat degradation-related genes were upregulated, and no genes related to the de novo synthesis of amino acids and fatty acids were significantly upregulated. The data from the biochemical analysis showed the contents of total protein and ATP of B. mori

  13. Esca eius erant locustae. The origin and meaning of the imaginary quadruped locusta

    Czech Academy of Sciences Publication Activity Database

    Šedinová, Hana

    2015-01-01

    Roč. 138, 3/4 (2015), s. 231-268 ISSN 0024-4457 Institutional support: RVO:67985955 Keywords : medieval latin lexicography * ancient zoology * medieval zoology * quadrupeds * locust * lobster * locusta * Thomas of Cantimpré * Jacques de Vitry * Bartholomaeus de Solencia * Claretus * Albert the Great * diet of John the Baptist * lepusculus * Aristoteles Latinus Subject RIV: AI - Linguistics

  14. Interactions Among Host–Parasite MicroRNAs During Nosema ceranae Proliferation in Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2018-04-01

    Full Text Available We previously identified microRNA (miRNA from Nosema ceranae and found that knockdowns of transcripts for the parasite protein Dicer greatly reduce parasite reproduction. In order to study parasitic miRNA functions and identify candidate target genes, we fed honey bees infected with N. ceranae with small interfering RNA (siRNA targeting the N. ceranae gene Dicer. We then deep-sequenced honey bee and N. ceranae miRNAs daily across a full 6-day proliferation cycle. We found seven honey bee and five N. ceranae miRNAs that were significantly differently expressed between the infection and siRNA-Dicer groups. N. ceranae miRNA showed potentially strong impacts on the N. ceranae transcriptome, where over 79% of the total protein coding genes were significantly correlated with one or more miRNAs. N. ceranae miRNAs also can regulate honey bee metabolism and immune response, given parasitic miRNAs were secreted into the cytoplasm. Our results suggest that N. ceranae miRNAs regulate both parasite and host gene expression, providing new insights for microsporidia parasitism evolution.

  15. Molecular phylogeny and evolution of mosquito parasitic Microsporidia (Microsporidia: Amblyosporidae)

    Czech Academy of Sciences Publication Activity Database

    Vossbrinck, C. R.; Andreadis, T.; Vávra, Jiří; Becnel, J. J.

    2004-01-01

    Roč. 51, č. 1 (2004), s. 88-95 ISSN 1066-5234 Institutional research plan: CEZ:AV0Z6022909 Keywords : Microsporidia * molecular phylogeny * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.403, year: 2004

  16. The first report of the prevalence of Nosema ceranae in Bulgaria

    Directory of Open Access Journals (Sweden)

    Rositsa Shumkova

    2018-01-01

    Full Text Available Nosema apis and Nosema ceranae are the two main microsporidian parasites causing nosematosis in the honey bee Apis mellifera. The aim of the present study is to investigate the presence of Nosema apis and Nosema ceranae in the area of Bulgaria. The 16S (SSU rDNA gene region was chosen for analysis. A duplex PCR assay was performed on 108 honey bee samples from three different parts of the country (South, North and West Bulgaria. The results showed that the samples from the northern part of the country were with the highest prevalence (77.2% for Nosema ceranae while those from the mountainous parts (the Rodopa Mountains, South Bulgaria were with the lowest rate (13.9%. Infection with Nosema apis alone and co-infection N. apis/N. ceranae were not detected in any samples. These findings suggest that Nosema ceranae is the dominant species in the Bulgarian honey bee. It is not known when the introduction of Nosema ceranae in Bulgaria has occurred, but as in the rest of the world, this species has become the dominant one in Bulgarian Apis mellifera. In conclusion, this is the first report for molecular detection of Nosema infection of honey bee in Bulgaria. The results showed that N. ceranae is the main Nosema species in Bulgaria.

  17. Differential proteomics reveals novel insights into Nosema-honey bee interactions

    DEFF Research Database (Denmark)

    Kurze, Christoph; Dosselli, Ryan; Grassl, Julia

    2016-01-01

    . In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative...... stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate...

  18. Differential proteomics reveals novel insights into Nosema-honey bee interactions.

    Science.gov (United States)

    Kurze, Christoph; Dosselli, Ryan; Grassl, Julia; Le Conte, Yves; Kryger, Per; Baer, Boris; Moritz, Robin F A

    2016-12-01

    Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microsporidia parasites disrupt the responses to cadmium exposure in a gammarid

    International Nuclear Information System (INIS)

    Gismondi, Eric; Rigaud, Thierry; Beisel, Jean-Nicolas; Cossu-Leguille, Carole

    2012-01-01

    Microsporidia parasites are commonly found in amphipods, where they are often asymptomatic, vertically-transmitted and have several effects on host sexuality and behaviour. As amphipods are often used as models in ecotoxicological studies, we investigated the effect of microsporidian infections on energy reserves and defence capacities of Gammarus roeseli under cadmium stress. Only females were infected by two microsporidia parasites: Dictyocoela roeselum or Dictyocoela muelleri. In physiological conditions, microsporidia had no major effect on energy reserves and defence capacities of G. roeseli, while under cadmium exposure, energy reserves and antioxidant defence were weaker in infected females. Moreover, higher malondialdehyde levels detected in infected females revealed that they suffered more cellular damages. Our results suggest that microsporidia may affect gammarid fitness in stressful conditions, when parasitic stress cannot be compensated by the host. Consequently, microsporidia parasites should be a factor necessary to take into account in ecotoxicology studies involving amphipods. - Highlights: ► High prevalence of microsporidian parasites in Gammarus roeseli. ► Microsporidia have no effect on G. roeseli biomarkers in physiological conditions. ► Microsporidia disturb the responses of G. roeseli biomarkers in cadmium stress. ► Microsporidian parasites could be confounding factor in ecotoxicological studies. - The presence of microsporidian parasites increases the toxic effect of cadmium in G. roeseli females.

  20. Unique physiology of host-parasite interactions in microsporidia infections.

    Science.gov (United States)

    Williams, Bryony A P

    2009-11-01

    Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.

  1. Zoonotic microsporidia in dogs and cats in Poland.

    Science.gov (United States)

    Piekarska, Jolanta; Kicia, Marta; Wesołowska, Maria; Kopacz, Żaneta; Gorczykowski, Michał; Szczepankiewicz, Barbara; Kváč, Martin; Sak, Bohumil

    2017-11-15

    This study investigated the prevalence, genetic diversity, and zoonotic concerns of microsporidia in household dogs and cats in Poland. A total of 126 (82 dogs and 44 cats) fecal specimens were analyzed for the presence of specific DNA of Enterocytozoon bieneusi and Encephalitozoon spp. using a nested PCR protocol amplifying the internal transcribed spacer region of the rRNA gene. Microsporidia were found in 10 (7.9%) out of the 126 examined stool samples. Of the 82 dogs, 4 (4.9%) and 2 (2.4%) were positive for E. bieneusi (genotypes D and PtEbIX) and Encephalitozoon cuniculi genotype II, respectively. Of the 44 cats, 4 (9.1%) were positive for E. bieneusi (genotypes PtEbIX and eb52). Additionally, one cat (2.3%) was concurrently infected with E. bieneusi (PtEbIX) and E. cuniculi (genotype II). Considering that all detected microsporidia in dogs and cats have been previously associated with human microsporidiosis, companion animals may be a potential source of microsporidia infections in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microsporidia Infection in a Mexican Kidney Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Oscar Xavier Hernández-Rodríguez

    2012-01-01

    Full Text Available Microorganisms of the microsporidia group are obligated intracellular protozoa that belong to the phylum Microspora; currently they are considered to be related or belong to the fungi reign. It is considered an opportunistic infection in humans, and 14 species belonging to 8 different genera have been described. Immunocompromized patients such as those infected with human immunodeficiency virus (HIV, also HIV serum-negative asymptomatic patients, with poor hygienic conditions, and recipients of bone marrow or solid organ transplantation are susceptible to develop deinfection. Sixty transplanted patients with renal microsporidia infection have been reported worldwide. The aim of this paper is to inform about the 2nd case of kidney transplant and microsporidia infection documented in Mexico.

  3. Iridescent Virus and Nosema ceranae Linked to Honeybee Colony Collapse Disorder

    Science.gov (United States)

    2010-12-01

    protein An08g03390 ( Aspergillus niger ] >Nosema|151302943|gb|AAB54170 2| Hypothetical protein C44E4 2 [Caenortiabditis elegans] >Nosema|134076966|emb...CAK45375 1| unnamed protein product [ Aspergillus niger ] >Nosema|29691978|dbj[BAC754S5.1| putative spore surface protein [Microspondium sp TB-2M-H] A

  4. Brain transcriptomes of honey bees (Apis mellifera experimentally infected by two pathogens: Black queen cell virus and Nosema ceranae

    Directory of Open Access Journals (Sweden)

    Vincent Doublet

    2016-12-01

    Full Text Available Regulation of gene expression in the brain plays an important role in behavioral plasticity and decision making in response to external stimuli. However, both can be severely affected by environmental factors, such as parasites and pathogens. In honey bees, the emergence and re-emergence of pathogens and potential for pathogen co-infection and interaction have been suggested as major components that significantly impaired social behavior and survival. To understand how the honey bee is affected and responds to interacting pathogens, we co-infected workers with two prevalent pathogens of different nature, the positive single strand RNA virus Black queen cell virus (BQCV, and the Microsporidia Nosema ceranae, and explored gene expression changes in brains upon single infections and co-infections. Our data provide an important resource for research on honey bee diseases, and more generally on insect host-pathogen and pathogen-pathogen interactions. Raw and processed data are publicly available in the NCBI/GEO database: (http://www.ncbi.nlm.nih.gov/geo/ under accession number GSE81664.

  5. A selective sweep in a microsporidian parasite Nosema-tolerant honeybee population, Apis mellifera

    DEFF Research Database (Denmark)

    Huang, Q.; Lattorff, H. M. G.; Kryger, P.

    2014-01-01

    Nosema is a microsporidian parasite of the honeybee, which infects the epithelial cells of the gut. In Denmark, honeybee colonies have been selectively bred for the absence of Nosema over decades, resulting in a breeding line that is tolerant toward Nosema infections. As the tolerance toward the ...

  6. Infra-Population and -Community Dynamics of the Parasites Nosema apis and Nosema ceranae, and Consequences for Honey Bee (Apis mellifera) Hosts

    Science.gov (United States)

    Williams, Geoffrey R.; Shutler, Dave; Burgher-MacLellan, Karen L.; Rogers, Richard E. L.

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species. PMID:24987989

  7. Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera) hosts.

    Science.gov (United States)

    Williams, Geoffrey R; Shutler, Dave; Burgher-MacLellan, Karen L; Rogers, Richard E L

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.

  8. Molt disruption and mortality of Locusta migratoria var. manilensis ...

    African Journals Online (AJOL)

    IGRs) on the oriental migratory locust Locusta migratoria var. manilensis were assessed. Under laboratory conditions, at the highest tested dose rate of 300 ppm, the percent mortality and molt inhibition after two weeks for the five tested ...

  9. The Honey Bee Parasite Nosema ceranae: Transmissible via Food Exchange?

    NARCIS (Netherlands)

    Smith, M.L.

    2012-01-01

    Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it

  10. Nosema spp. infections cause no energetic stress in tolerant honeybees

    DEFF Research Database (Denmark)

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank

    2016-01-01

    closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high......-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association...

  11. Control of grasshoppers by combined application of Paranosema locustae and an insect growth regulator (IGR) (cascade) in rangelands in China.

    Science.gov (United States)

    Guo, Yanyan; An, Zhao; Shi, Wangpeng

    2012-12-01

    The relatively low direct mortality caused by Paranosema locustae (Canning) has limited its application for controlling grasshopper when densities are high, and this study sought to determine if the simultaneous use of this pathogen and the IGR, Flufenoxuron (Cascade) could provide effective control. Nine treatments were tested: 45% Malathion EC at 1500 ml/ha, 5% Cascade at 150 ml/ha, 5% Cascade at 75 ml/ha, 5% Cascade at 37.5 ml/ha, P. locustae at 7.5 x 10(9) spores/ha, combinations of 5% Cascade at 75 ml/ha and P. locustae at 7.5 x 10(9) spores/ha, applied in different rations (1:1, 1:2, 1:3) in the same plot, the untreated control. P. locustae was applied on nonoverlapping plots with the IGR. The different in-plot combinations of P. locustae and Cascade in different ratios provided significantly better overall control of grasshoppers (all species) than the treatment of 5% Cascade of 150 ml/ha after 5d, but combinations were not significantly different from the other concentrations of Cascade after 12 and 31 d. When results were examined separately for specific species of grasshoppers, reduction of Dasyhippus harbipes (Fischer-Waldheim), was higher than that of Myrmeleotettix palpalis (Zubovsky). While combinations showed significant differences in the infection of different grasshopper species at 5 and 12 d posttreatment, no significant differences in rate of infection among the primary species (M. palpalis, D. harbipes, and Oedaleus asiaticus Bei-Bienko) were detected 31 d posttreatment. Our study found that P. locustae by itself could control grasshopper populations at medium densities but the combined application of P. locustae and Cascade at a ratio of 1:2 was more effective against high-density grasshopper populations.

  12. First detection of Nosema sp., microsporidian parasites of honeybees (Apis mellifera in Riyadh city, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdel-Azeem S. Abdel-Baki

    2016-10-01

    Full Text Available Nosema sp. is recorded in Saudi Arabia for the first time, in adult Apis mellifera collected from apiaries in Riyadh city. Samples of 100 workers were collected and examined for the infection with Nosema sp. 5% of the bees were found positively infected with Nosema sp. Spores were oval to elliptical shaped and measuring 6.4 (5.0–7.0 μm in length, 3.4 (3.0–4.5 μm in width. The conclusive identification of the present Nosema species will preclude until further ultrastructure and molecular studies. The present study concluded that intensive surveys are prerequisite to identify the species of Nosema and to estimate their distribution and prevalence in different regions of Saudi Arabia.

  13. Expression and characterization of a novel spore wall protein from ...

    African Journals Online (AJOL)

    Microsporidia are obligate intracellular, eukaryotic, spore-forming parasites. The environmentally resistant spores, which harbor a rigid cell wall, are critical for their survival outside their host cells and host-to-host transmission. The spore wall comprises two major layers: the exospore and the endospore. In Nosema ...

  14. A broad distribution of the alternative oxidase in microsporidian parasites.

    Directory of Open Access Journals (Sweden)

    Bryony A P Williams

    2010-02-01

    Full Text Available Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX, a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1 as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.

  15. Identification and characterization of microsporidia from fecal samples of HIV-positive patients from Lagos, Nigeria.

    Directory of Open Access Journals (Sweden)

    Oladele Teslim Ojuromi

    Full Text Available BACKGROUND: Microsporidia are obligate intracellular parasites that infect a broad range of vertebrates and invertebrates. They have been increasingly recognized as human pathogens in AIDS patients, mainly associated with a life-threatening chronic diarrhea and systemic disease. However, to date the global epidemiology of human microsporidiosis is poorly understood, and recent data suggest that the incidence of these pathogens is much higher than previously reported and may represent a neglected etiological agent of more common diseases indeed in immunocompetent individuals. To contribute to the knowledge of microsporidia molecular epidemiology in HIV-positive patients in Nigeria, the authors tested stool samples proceeding from patients with and without diarrhea. METHODOLOGY/PRINCIPAL FINDINGS: Stool samples from 193 HIV-positive patients with and without diarrhea (67 and 126 respectively from Lagos (Nigeria were investigated for the presence of microsporidia and Cryptosporidium using Weber's Chromotrope-based stain, Kinyoun stain, IFAT and PCR. The Weber stain showed 45 fecal samples (23.3% with characteristic microsporidia spores, and a significant association of microsporidia with diarrhea was observed (O.R. = 18.2; CI: 95%. A similar result was obtained using Kinyoun stain, showing 44 (31,8% positive samples with structures morphologically compatible with Cryptosporidium sp, 14 (31.8% of them with infection mixed with microsporidia. The characterization of microsporidia species by IFAT and PCR allowed identification of Enterocytozoon bieneusi, Encephalitozoon intestinalis and E. cuniculi in 5, 2 and 1 samples respectively. The partial sequencing of the ITS region of the rRNA genes showed that the three isolates of E.bieneusi studied are included in Group I, one of which bears the genotype B. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first report of microsporidia characterization in fecal samples from HIV-positive patients from

  16. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Gina Retschnig

    2017-02-01

    Full Text Available Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday. The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts.

  17. Fish microsporidia: fine structural diversity and phylogeny

    Czech Academy of Sciences Publication Activity Database

    Lom, Jiří; Nilsen, F.

    2003-01-01

    Roč. 33, č. 2 (2003), s. 107-127 ISSN 0020-7519 Institutional research plan: CEZ:AV0Z6022909 Keywords : fish-infecting microsporidia * ultrastructure * small subunit rDNA analysis Subject RIV: EG - Zoology Impact factor: 2.881, year: 2003

  18. Testing in Vitro of an Apifitoterapeutic Formula Against Nosema spp.

    OpenAIRE

    Vasilica Savu; Ion Rădoi; Maria Magdici; Silvia Patruica; Nicoleta Ion; Agripina Sapcaliu

    2015-01-01

    Nosema, a parasitic disease that affects adult honey bees, has a directly correlation with the losses of bee colonies, until to depopulation. The target of our study was to determine the antinosema action of an apifitoterapeutic formula that was obtained in an earlier phase of our researches. In the present study, we have had two experiences (F and N) formed by clinically healthy bees. The experimental bees have received, in vitro, naturally infested honey (7 spores by Nosema spp / field). Th...

  19. Nosema ceranae induced mortality in honey bees (Apis mellifera) depends on infection methods.

    Science.gov (United States)

    Milbrath, Meghan O; Xie, Xianbing; Huang, Zachary Y

    2013-09-01

    Nosema ceranae infection can reduce survival of the Western honey bee, Apis mellifera, but experiments examining its virulence have highly variable results. This variation may arise from differences in experimental techniques. We examined survival effects of two techniques: Nosema infection at day 1 without anesthesia and infection at day 5 using CO2 anesthesia. All bees infected with the latter method had poorer survival. Interestingly, these bees also had significantly fewer spores than bees infected without anesthesia. These results indicate that differences in Nosema ceranae-induced mortality in honey bees may be partially due to differences in experimental techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Multiplex PCR detection of waterborne intestinal protozoa: microsporidia, Cyclospora, and Cryptosporidium.

    Science.gov (United States)

    Lee, Seung-Hyun; Joung, Migyo; Yoon, Sejoung; Choi, Kyoungjin; Park, Woo-Yoon; Yu, Jae-Ran

    2010-12-01

    Recently, emerging waterborne protozoa, such as microsporidia, Cyclospora, and Cryptosporidium, have become a challenge to human health worldwide. Rapid, simple, and economical detection methods for these major waterborne protozoa in environmental and clinical samples are necessary to control infection and improve public health. In the present study, we developed a multiplex PCR test that is able to detect all these 3 major waterborne protozoa at the same time. Detection limits of the multiplex PCR method ranged from 10(1) to 10(2) oocysts or spores. The primers for microsporidia or Cryptosporidium used in this study can detect both Enterocytozoon bieneusi and Encephalitozoon intestinalis, or both Cryptosporidium hominis and Cryptosporidium parvum, respectively. Restriction enzyme digestion of PCR products with BsaBI or BsiEI makes it possible to distinguish the 2 species of microsporidia or Cryptosporidium, respectively. This simple, rapid, and cost-effective multiplex PCR method will be useful for detecting outbreaks or sporadic cases of waterborne protozoa infections.

  1. Microsporidia and ‘The Art of Living Together’

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Lukeš, Julius

    2013-01-01

    Roč. 82, č. 2013 (2013), s. 253-319 ISSN 0065-308X Institutional support: RVO:60077344 Keywords : Microsporidia * polar tube protein * ribosomal RNA Subject RIV: EE - Microbiology, Virology Impact factor: 4.360, year: 2013

  2. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    Science.gov (United States)

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  3. Emerging Intestinal Microsporidia Infection in HIV(+/AIDS Patients in Iran: Microscopic and Molecular Detection.

    Directory of Open Access Journals (Sweden)

    Hamed Mirjalali

    2014-06-01

    Full Text Available Species of Microsporidia have been known as opportunistic obligate intracellular parasites particularly in immunocompromised patients. Enterocytozoon bieneusi is one of most prevalent intestinal microsporida parasites in HIV(+/AIDS patients. In this study, intestinal microsporidia infection was determined in HIV(+/AIDS patients using microscopic and molecular methods.Stool samples were collected from HIV(+/AIDS patients during 12 months. All of the stool specimens washed with PBS (pH: 7.5. Slim slides were prepared from each sample and were examined using light microscope with 1000X magnification. DNA extraction carried out in microscopic positive samples. DNA amplification and genus/species identification also performed by Nested-PCR and sequencing techniques.From 81 stool samples, 25 were infected with microsporidia species and E. bieneusi were identified in all of positive samples. No Encephalitozoon spp. was identified in 81 collected samples using specific primers.E. bieneusi is the most prevalent intestinal microsporidia in immunocompromised patients of Iran. On the other hand, Nested-PCR using specific primers for ssu rRNA gene is an appropriate molecular method for identification of E. bieneusi.

  4. Retrospective study of the Nosema ceranae infection of honey bee colonies in Iran (2004-2013

    Directory of Open Access Journals (Sweden)

    Modirrousta, H.

    2014-11-01

    Full Text Available Nosemosis is the most common disease in adult bees. Nosema apis and Nosema ceranae species are agents of important economic losses to beekeepers around the world. The severity of disease at various area is different. Previously, N. apis was observed in areas with a long winter, especially in late winter and early spring. But in recent years, disease has been reported in the warm seasons. The studies indicated that a new species as N. ceranae is involvement in loss and mortality in adult bees. Therefore, diagnosis and differentiation of Nosema species is importance at colony collapse disorders (CCD. The aim of this Research was a retrospective study on Nosema samples isolated from apiaries. Forty- one Nosema Sp. Positive samples were collected from five provinces during 2004 to 2013. The samples were tested by multiplex PCR method using both primers of N. ceranea and N. apis were simultaneously. All of samples were positive for N. ceranea. The products were sent for sequencing. The results show that N. ceranea has spread in Iran, from previous years almost simultaneously with other parts of the world.

  5. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    James C Fleming

    Full Text Available Western honey bee (Apis mellifera L. populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control. The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  6. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-09

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  7. Occurrence of intestinal microsporidia in immunodeficient patients in Poland

    Directory of Open Access Journals (Sweden)

    Małgorzata Bednarska

    2014-06-01

    Full Text Available Microsporidial infections may be asymptomatic in immunocompetent hosts, but can be severe and disseminated in HIV/AIDS patients, children, the elderly, or in immunocompromised individuals, including those with primary or medically-induced immunodeficiencies. 209 faecal samples were collected from 80 clinical patients, with or without abdominal symptoms, and tested for the presence of the parasites. Microsporidia were found in 10 of the 80 patients (12.5% using trichrom staining of faecal smears and/or PCR. [i]Encephalitozoon[/i] intestinalis and 1 unidentified species were identified in 2 of the 32 children with primary immunodeficiencies (6%, presenting with diarrhoea, including one co-infection with [i]Cryptosporidium meleagridis[/i]. In the group of patients with medically-induced immunosuppression (transplant recipients, 8 of the 48 patients (17% were tested positive for microsporidia. Thus, these pathogens should be taken into account when the other etiological agents cannot be found in diarrheic patients with PIDs or undergoing immunosuppressive treatment before or after transplantation. This article presents the results of the first epidemiological study on the ccurrence and prevalence of microsporidia in patients with primary and secondary immunodeficiency in Poland.

  8. Nosema parasitism in honey bees (Apis mellifera) impacts olfactory learning and memory and neurochemistry

    Science.gov (United States)

    Nosema sp. is an internal parasite of the honey bee, Apis mellifera, and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut, and has profound consequences on the host’s physiology. There are reports that Nosema sp. impairs foraging performance ...

  9. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria)

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Poel, van der A.F.B.

    2011-01-01

    An experiment was conducted to determine the effects of diet on the chemical composition of migratory locusts (Locusta migratoria L.). Fresh and dry weight and the contents of dry matter, ash, lipid, protein, Ca, K, Mg, Na, P, Cu, Fe, Zn, retinol, lutein, zeaxanthine, cryptoxanthin, carotenes,

  10. "Microsporidia in bumble bee rearing - significance and control"

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Fries, I.

    2005-01-01

    The project "Biodiversity, impact and control of microsporidia in bumble bee (bombus spp.) pollinators" (acronim "Pollinator parasites") within Key Action 5 of the Fifth framework R&D Programme Quality of LIfe and Management of Living Resources was initiated January 1, 2003 and terminates

  11. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi.

    Directory of Open Access Journals (Sweden)

    Soo Chan Lee

    2010-05-01

    Full Text Available Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes.Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21 present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30 that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates and E. hellem (1 isolate. There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians.The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex

  12. Spore load and immune response of honey bees naturally infected by Nosema ceranae.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Li, Jianghong; Su, Songkun; Hamilton, Michele; Chen, Yanping

    2017-12-01

    Nosema ceranae causes widespread infection in adult workers of European honey bees, Apis mellifera, and has often been linked to honey bee colony losses worldwide. Previous investigations of honey bee immune response to N. ceranae infection were largely based on laboratory experiment, however, little is known about the immune response of honey bees that are naturally infected by N. ceranae. Here, we compared the infection levels of N. ceranae in three different categories of adult bees (emergent bees, nurses, and foragers) and detected the host immune response to the N. ceranae infection under natural conditions. Our studies showed that the Nosema spore load and infection prevalence varied among the different types of adult workers, and both of them increased as honey bees aged: No infection was detected in emergent bees, nurses had a medium spore load and prevalence, while foragers were with the highest Nosema infection level and prevalence. Quantification of the mRNA levels of antimicrobial peptides (abaecin, apidaecin, defensin-1, defensin-2, and hymenoptaecin) and microbial recognition proteins (PGRP-S1, PGRP-S2, PGRP-S3, PGRP-LC, GNBP1-1, and GNBP1-2) confirmed the involvement of the Toll and/or Imd immune pathways in the host response to N. ceranae infection, and revealed an activation of host immune response by N. ceranae infection under natural conditions. Additionally, the levels of immune response were positively correlated with the Nosema spore loads in the infected bees. The information gained from this study will be relevant to the predictive modeling of honey bee disease dynamics for Nosema disease prevention and management.

  13. Opportunistic nature of the mammalian microsporidia: experimental transmission of Trachipleistophora extenrec (Fungi: Microsporidia) between mammalian and insect hosts

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Kamler, M.; Modrý, David; Koudela, Břetislav

    2011-01-01

    Roč. 108, č. 6 (2011), 1565-1573 ISSN 0932-0113 R&D Projects: GA ČR GD524/03/H133; GA ČR GA524/07/1003 Institutional research plan: CEZ:AV0Z60220518 Keywords : NOSEMA-ALGERAE * BRACHIOLA-ALGERAE * AIDS PATIENT * HOMINIS * INFECTION * PATHOGEN * DIPTERA * ULTRASTRUCTURE * CULICIDAE * SEQUENCES Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.149, year: 2011

  14. Fast Technology Analysis (FTA) Enables Identification of Species and Genotypes of Latent Microsporidia Infections in Healthy Native Cameroonians

    Science.gov (United States)

    Ndzi, Edward S.; Asonganyi, Tazoacha; Nkinin, Mary Bello; Xiao, Lihua; Didier, Elizabeth S.; Bowers, Lisa C.; Nkinin, Stephenson W.; Kaneshiro, Edna S.

    2015-01-01

    Several enteric microsporidia species have been detected in humans and other vertebrates and their identifications at the genotype level are currently being elucidated. As advanced methods, reagents, and disposal kits for detecting and identifying pathogens become commercially available, it is important to test them in settings other than in laboratories with “state-of-the-art” equipment and well-trained staff members. In the present study, we sought to detect microsporidia DNA preserved and extracted from FTA (fast technology analysis) cards spotted with human fecal suspensions obtained from Cameroonian volunteers living in the capital city of Yaoundé to preclude the need for employing spore-concentrating protocols. Further, we tested whether amplicon nucleotide sequencing approaches could be used on small aliquots taken from the cards to elucidate the diversity of microsporidia species and strains infecting native residents. Of 196 samples analyzed, 12 (6.1%) were positive for microsporidia DNA; Enterocytozoon bieneusi (Type IV and KIN-1), Encephalitozoon cuniculi, and Encephalitozoon intestinalis were identified. These data demonstrate the utility of the FTA cards in identifying genotypes of microsporidia DNA in human fecal samples that may be applied to field testing for prevalence studies. PMID:26303263

  15. Microsporidia – Emergent Pathogens in the Global Food Chain

    Science.gov (United States)

    Intensi'cation of food production has the potential to drive increased disease prevalence in food plants and animals. Microsporidia are diversely distributed, opportunistic, and density-dependent parasites infecting hosts from almost all known animal taxa. They are frequent in highly managed aqua...

  16. [On the use of FTA technology for collection, archieving, and molecular analysis of microsporidia dna from clinical stool samples].

    Science.gov (United States)

    Sokolova, O I; Dem'ianov, A V; Bovers, L S; Did'e, E S; Sokolova, Iu Ia

    2011-01-01

    The FTA technology was applied for sampling, archiving, and molecular analysis of the DNA isolated from stool samples to diagnose and identify microsporidia, the intracellular opportunistic parasites which induce malabsortion syndrome in immunosuppressed humans, particularly in patients with AIDS. Microsporidia DNA was successfully amplified in 6 of 50 stool samples of HIV-positive patients of the S. P. Botkin Memorial Infectious Disease Hospital (St. Petersburg) applied to FTA cards (FTA-Cars, Whatman Inc. Florham Park, NJ, USA). Amplicons (the fragments of rDNA) were directly sequenced, and microsporidia species--Encephalitozoon intestinalis, E. cuniculi, E. hellem, and Enterocytozoon bieneusi--were identified in Genbank by NCBI BLAST program. The FTA method of DNA immobilization is especially promising for epidemiological and field population studies which involve genotyping of microsporidia species and isolates.

  17. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

    Science.gov (United States)

    Dussaubat, Claudia; Brunet, Jean-Luc; Higes, Mariano; Colbourne, John K; Lopez, Jacqueline; Choi, Jeong-Hyeon; Martín-Hernández, Raquel; Botías, Cristina; Cousin, Marianne; McDonnell, Cynthia; Bonnet, Marc; Belzunces, Luc P; Moritz, Robin F A; Le Conte, Yves; Alaux, Cédric

    2012-01-01

    The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.

  18. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Claudia Dussaubat

    Full Text Available The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera. Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase. At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway, a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.

  19. Lipolytic activity in the flight muscles of Locusta migratoria measured with haemolymph lipoproteins as substrates

    NARCIS (Netherlands)

    Horst, D.J. van der; Wheeler, C.H.; Beenakkers, A.M.Th.

    1984-01-01

    A radiochemical assay is described in which neutral lipids presented as part of authentic haemolymph lipoproteins have been used as substrates to measure the lipolytic activity in the flight muscles of Locusta migratoria. The radiolabel in the substrate was located almost exclusively in the glycerol

  20. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    DEFF Research Database (Denmark)

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia

    2015-01-01

    conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore...

  1. Budding: A new stage in the development of Chytridiopsis typographi (Zygomycetes: Microsporidia)

    Czech Academy of Sciences Publication Activity Database

    Tonka, T.; Weiser, Jaroslav; Weiser, J.

    2010-01-01

    Roč. 104, č. 1 (2010), s. 17-22 ISSN 0022-2011 Institutional research plan: CEZ:AV0Z50200510 Keywords : Microsporidia * Chytridiopsis typographi * Ultrastructure Subject RIV: EE - Microbiology, Virology Impact factor: 2.049, year: 2010

  2. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees (Apis mellifera).

    Science.gov (United States)

    Gage, Stephanie L; Kramer, Catherine; Calle, Samantha; Carroll, Mark; Heien, Michael; DeGrandi-Hoffman, Gloria

    2018-02-19

    Nosema sp. is an internal parasite of the honey bee, Apis mellifera , and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae , as well as the neurochemistry of odor learning and memory under normal and parasitic conditions. © 2018. Published by The Company of Biologists Ltd.

  3. Microsporidia in aquatic microcrustacea: the copepod microsporidium Marssoniella elegans Lemmermann, 1900 revisited

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Oborník, Miroslav; Vossbrinck, C. R.

    2005-01-01

    Roč. 52, 1/2 (2005), s. 163-172 ISSN 0015-5683 Institutional research plan: CEZ:AV0Z60220518 Keywords : Microsporidia * Marssoniella elegans * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.138, year: 2005

  4. Study of the biological impact of Pseudomonas spp.fluoresents on hemolyphatic metabolites and histology of the digestive tract of larvae 15 migratory locust Locusta migratoria

    International Nuclear Information System (INIS)

    Oulebsir- Mohan, H.; Doumandji-Mitiche, B.

    2012-01-01

    This study allows to test the effect of entomopathogenic bacteria of Pseudomonas fluorescens bv III and Pseudomonas fluorescence bv V on the haemolymph of Locusta migratoria metabolites, namely proteins and carbohydrates as well as on the histology of the digestive system of fifth stage larvae of migratory locust Locusta migratoria. The results show an important decrease of haemolymph protein concentration compared to controls with an increase in carbohydrate concentration. Examination of histological sections of various parts of the digestive tract showed some changes in treated. (author)

  5. Transgenerational deleterious effects of ocean acidification on the reproductive success of a keystone crustacean (Gammarus locusta).

    Science.gov (United States)

    Borges, Francisco O; Figueiredo, Cátia; Sampaio, Eduardo; Rosa, Rui; Grilo, Tiago F

    2018-07-01

    Ocean acidification (OA) poses a global threat to marine biodiversity. Notwithstanding, marine organisms may maintain their performance under future OA conditions, either through acclimation or evolutionary adaptation. Surprisingly, the transgenerational effects of high CO 2 exposure in crustaceans are still poorly understood. For the first time, the present study investigated the transgenerational effect of OA, from hatching to maturity, of a key amphipod species (Gammarus locusta). Negative transgenerational effects were observed on survival of the acidified lineage, resulting in significant declines (10-15%) compared to the control groups in each generation. Mate-guarding duration was also significantly reduced under high CO 2 and this effect was not alleviated by transgenerational acclimation, indicating that precopulatory behaviours can be disturbed under a future high CO 2 scenario. Although OA may initially stimulate female investment, transgenerational exposure led to a general decline in egg number and fecundity. Overall, the present findings suggest a potential fitness reduction of natural populations of G. locusta in a future high CO 2 ocean, emphasizing the need of management tools towards species' sustainability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Identification of opportunistic enteric parasites among immunocompetent patients with diarrhoea from Northern India and genetic characterisation of Cryptosporidium and Microsporidia.

    Science.gov (United States)

    Ghoshal, U; Dey, A; Ranjan, P; Khanduja, S; Agarwal, V; Ghoshal, U C

    2016-01-01

    Enteric parasitic infestation is a major public health problem in developing countries. Parasites such as Cryptosporidium spp., Cyclospora spp., Cystoisospora spp. and Microsporidia may cause severe diarrhoea among immunocompromised patients. There is scanty data on their frequency among immunocompetent patients. Accordingly, we studied the frequency of enteric opportunistic parasites among immunocompetent patients with diarrhoea from northern India; we also performed genetic characterisation of Cryptosporidia and Microsporidia among them. Stool samples from 80 immunocompetent patients with diarrhoea, and 110 healthy controls were examined. Parasites were detected by direct microscopy, modified acid-fast (Kinyoun's) and modified trichrome stain. Polymerase chain reaction--restriction fragment length polymorphism was used for genetic characterisation of selected species such as Cryptosporidia and Microsporidia. Enteric parasites were detected in 16/80 (20%) patients (mean age 28.8±20 years, 45, 56% males) and in 2/110 (1.8%) healthy controls (P=0.00007). Parasites detected were Cryptosporidium spp. (8/16, 50.0%), Cystoisospora spp. (4/16, 25%), Microsporidia (1/16, 6.25%), Cyclospora spp. (1/16, 6.25%) and Giardia spp. (1/16, 6.25%). One patient had mixed infection with Cystoisospora spp. and Giardia spp. The species of Cryptosporidia and Microsporidia detected were Cryptosporidium hominis and Enterocytozoon bieneusi, respectively. Parasites were more often detected in younger patients (≤20 years of age) than in older. Most of the parasite infected patients presented with chronic diarrhoea. Opportunistic enteric parasitic infestation was more common among immunocompetent patients with diarrhoea than healthy subjects. Special staining as well as molecular methods are essential for appropriate diagnosis of these parasites.

  7. Immunocytochemical distribution of locustamyoinhibiting peptide (Lom-MIP) in the nervous system of Locusta migratoria.

    Science.gov (United States)

    Schoofs, L; Veelaert, D; Broeck, J V; De Loof, A

    1996-07-05

    Locustamyoinhibiting peptide (Lom-MIP) is one of the 4 identified myoinhibiting neuropeptides, isolated from brain-corpora cardiaca-corpora allata-suboesophageal ganglion complexes of the locust, Locusta migratoria. An antiserum was raised against Lom-MIP for use in immunohistochemistry. Locustamyoinhibiting peptide-like immunoreactivity (Lom-MIP-LI) was visualized in the nervous system and peripheral organs of Locusta migratoria by means of the peroxidase-antiperoxidase method. A total of 12 specific immunoreactive neurons was found in the brain. Processes of these neurons innervate the protocerebral bridge the central body complex and distinct neuropil areas in the proto- and tritocerebrum but not in the deuterocerebrum nor in the optic lobes. The glandular cells of the corpora cardiaca, known to produce adipokinetic hormones, are contacted by Lom-MIP-LI fibers. The corpora allata were innervated by the nervus corporis allati I containing immunoreactive fibers. Lom-MIP-LI cell bodies were also found in the subesophageal ganglion, the metathoracic ganglion and the abdominal ganglia I-IV. In peripheral muscles, Lom-MIP-LI fibers innervate the heart, the oviduct, and the hindgut. In the salivary glands, Lom-MIP-LI was detected in the intracellular ductule of the parietal cells. Possible functions of Lom-MIP are discussed.

  8. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    Science.gov (United States)

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (mellifera worldwide population is a recent event. PMID:26720131

  9. Microsporidiosis (Microsporidia: Culicosporidae) alters blood-feeding responses and DEET repellency in Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Barnard, Donald R; Xue, Rui-De; Rotstein, Margaret A; Becnel, James J

    2007-11-01

    Infection of Aedes aegypti (L.) (Diptera: Culicidae) with Edhazardia aedis (Microsporidia: Culicosporidae) reduced mean human host attraction and landing/probing rates in female mosquitoes by 53 and 62%, respectively, compared with rates in microsporidia-free females. Infection with E. aedis reduced the average weight of unfed female mosquitoes by 4%, caused them to imbibe 23% less blood, and to lay 30% fewer eggs than healthy females. In contrast, E. aedis-infected mosquitoes required 20% more time (>1 h) than healthy females to bite skin treated with 15% DEET. Statistically significant morbidity in E. aedis-infected females was indicated by reductions in host attraction and landing/probing responses, the mass of unfed and blood-engorged females, and fecundity, and by increased DEET repellency.

  10. Interactions between nuclear polyhedrosis virus and Nosema sp. infecting gypsy moth

    Science.gov (United States)

    L. S. Bauer; M. McManus; J. Maddox

    1991-01-01

    Nuclear polyhedrosis virus (NPV) is the only entomopathogen that plays an important role in the natural regulation of North American gypsy moth populations. Recent European studies suggest that populations of gypsy moth in Eurasia are regulated primarily by the interactions between NPV and several species of microsporidia. Researchers have proposed that the...

  11. [Prevalence of intestinal microsporidia and other intestinal parasites in hiv positive patients from Maracaibo, Venezuela].

    Science.gov (United States)

    Rivero-Rodríguez, Zulbey; Hernández, Amparo; Bracho, Ángela; Salazar, Solneumar; Villalobos, Rafael

    2013-01-01

    To detect the presence of microsporidia and other enteric parasites in patients with HIVAIDS of the Autonomous Services University Hospital of Maracaibo (SAHUM), where there are no previous studies in this field. Fecal samples were analyzed by means of direct exam, concetration method with formal-ether, Kinyoun coloration and fast Gram-Chromotrope coloration. Separate PCR were perfomed to differentiate Entamoeba histolytica and Entamoeba dispar , when the E. histolytica/E. dispar complex was observed in the microscope. Information on the patient was obtained trough clinical history. Of 56 individuals that participated, 38 (67.86%) presented some commensal parasite and/ or pathogenic species in their fecal sample. Carriers of pathogenic species were predominat (26/38). Protozoa such as Isospora belli protozoa (17.65%), Blastocystis spp. (17.65%), Cryptosporidium spp. (7.84%), E. histolytica/E. dispar (5.88%), Entamoeba coli (3.92%), Giardia lamblia (3.92%), Endolimax nana (3.92%), Cyclospora cayetanensis (3.92%), and Chilomastix mesnilli (1.96%) were diagnosed. Among the helminths, Ascaris lumbricoides, Trichuris trichiura and Strongyloides stercoralis , had a percentage of 27.27% each, and Hymenolepis nana , 18.18%. Entamoeba histolytica was only detected in one of three cases presenting complex microscopic examination. By Gram-chromotrope, 17 samples showed spores of the Microsporidia phylum, equivalent to 33.33% prevalence. Microsporidia may be first prevalente in HIV positive patients when specific diagnostic techniques are used.

  12. Turnover of body water in relation to the hydric diet studied with tritiated water in Locusta migratoria migratorioides

    International Nuclear Information System (INIS)

    Buscarlet, L.A.; Proux, Jacques

    1975-01-01

    The elimination of triated water injected in a locust Locusta migratoria migratorioides is described by an exponential function of the cumulative water diet and fits a one-compartment model. This result shows that body water occupies a single pool the mass of which is kept constant by an equilibrium between the water diet and the water elimination rate [fr

  13. Silencing honey bee naked cuticle (nkd) reduces Nosema ceranae replication and disease levels

    Science.gov (United States)

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera that has been implicated in alarming colony losses worldwide. RNA interference (RNAi), a post-transcriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling in...

  14. Testing in Vitro of an Apifitoterapeutic Formula Against Nosema spp.

    Directory of Open Access Journals (Sweden)

    Vasilica Savu

    2015-05-01

    Full Text Available Nosema, a parasitic disease that affects adult honey bees, has a directly correlation with the losses of bee colonies, until to depopulation. The target of our study was to determine the antinosema action of an apifitoterapeutic formula that was obtained in an earlier phase of our researches. In the present study, we have had two experiences (F and N formed by clinically healthy bees. The experimental bees have received, in vitro, naturally infested honey (7 spores by Nosema spp / field. The first experience (F, I-IX groups was treated with apifitoterapeutic formula (10 ml/ honey kg, for 10 days (from T1 to T2 moment, while the second experience (N, with X-XVIII groups was infested with naturally infested honey, for 20 days (from T1 to T2 moment. The first experience (F showed 22% positive diagnosed bees, while the second experience (N showed 89% positive diagnosed bees. In the first experience, the infestation degree was very weak (group I and weak (group III, while the other groups were negative. The antiparasitic formula has showed, in laboratory conditions, a positive impact on experimental honey bees, with an efficiency over 78%. In the further, testing prophylactically and therapeutically will be conducted on bee families.

  15. Primary structure of a 14 kDa basic structural protein (Lm-76) from the cuticle of the migratory locust, Locusta migratoria

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Andersen, S O; Højrup, P

    1993-01-01

    The complete amino acid sequence of a 14 kDa structural protein (LM-76) isolated from pharate cuticle of the locust, Locusta migratoria, was determined by Edman degradation of the intact protein and enzymatically derived peptides. Plasma desorption and electrospray mass spectrometry was used as a...

  16. Iridovirus and microsporidian linked to honey bee colony decline.

    Science.gov (United States)

    Bromenshenk, Jerry J; Henderson, Colin B; Wick, Charles H; Stanford, Michael F; Zulich, Alan W; Jabbour, Rabih E; Deshpande, Samir V; McCubbin, Patrick E; Seccomb, Robert A; Welch, Phillip M; Williams, Trevor; Firth, David R; Skowronski, Evan; Lehmann, Margaret M; Bilimoria, Shan L; Gress, Joanna; Wanner, Kevin W; Cramer, Robert A

    2010-10-06

    In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006-2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.

  17. Cross infectivity of Nosema bombi, transmission and impact on bumble bee colonies (Bombus terrestris)

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2005-01-01

    The project "Biodiversity, impact and control of microsporidia in bumble bee (bombus spp.) pollinators" (acronim "Pollinator parasites") within Key Action 5 of the Fifth framework R&D Programme Quality of LIfe and Management of Living Resources was initiated January 1, 2003 and terminates

  18. Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee.

    Science.gov (United States)

    Bourgeois, A Lelania; Rinderer, Thomas E; Beaman, Lorraine D; Danka, Robert G

    2010-01-01

    The incidence of nosemosis has increased in recent years due to an emerging infestation of Nosema ceranae in managed honey bee populations in much of the world. A real-time PCR assay was developed to facilitate detection and quantification of both Nosema apis and N. ceranae in both single bee and pooled samples. The assay is a multiplexed reaction in which both species are detected and quantified in a single reaction. The assay is highly sensitive and can detect single copies of the target sequence. Real-time PCR results were calibrated to spore counts generated by standard microscopy procedures. The assay was used to assess bees from commercial apiaries sampled in November 2008 and March 2009. Bees from each colony were pooled. A large amount of variation among colonies was evident, signifying the need to examine large numbers of colonies. Due to sampling constraints, a subset of colonies (from five apiaries) was sampled in both seasons. In November, N. apis levels were 1212+/-148 spores/bee and N. ceranae levels were 51,073+/-31,155 spores/bee. In March, no N. apis was detected, N. ceranae levels were 11,824+/-6304 spores/bee. Changes in N. ceranae levels were evident among apiaries, some increasing and other decreasing. This demonstrates the need for thorough sampling of apiaries and the need for a rapid test for both detection and quantification of both Nosema spp. This assay provides the opportunity for detailed study of disease resistance, infection kinetics, and improvement of disease management practices for honey bees.

  19. The honey bee parasite Nosema ceranae: transmissible via food exchange?

    Directory of Open Access Journals (Sweden)

    Michael L Smith

    Full Text Available Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it may instead be spread via an oral-oral pathway. Cages that separated older infected bees from young uninfected bees were used to test whether N. ceranae can be spread during food exchange. When cages were separated by one screen, food could be passed between the older bees and the young bees, but when separated by two screens, food could not be passed between the two cages. Young uninfected bees were also kept isolated in cages, as a solitary control. After 4 days of exposure to the older bees, and 10 days to incubate infections, young bees were more likely to be infected in the 1-Screen Test treatment vs. the 2-Screen Test treatment (P=0.0097. Young bees fed by older bees showed a 13-fold increase in mean infection level relative to young bees not fed by older bees (1-Screen Test 40.8%; 2-Screen Test 3.4%; Solo Control 2.8%. Although fecal-oral transmission is still possible in this experimental design, oral-oral infectivity could help explain the rapid spread of N. ceranae worldwide.

  20. Occurrence of microsporidia as emerging pathogens in Slovak Roma children and their impact on public health

    Czech Academy of Sciences Publication Activity Database

    Halanová, M.; Valenčáková, A.; Malčeková, B.; Kváč, Martin; Sak, Bohumil; Květoňová, Dana; Balent, P.; Čisláková, L.

    2013-01-01

    Roč. 20, č. 4 (2013), s. 695-698 ISSN 1232-1966 Institutional support: RVO:60077344 Keywords : microsporidia * Enterocytozoon bieneusi * Encephalitozoon cuniculi * roma children * zoonotic potential Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 3.060, year: 2012

  1. Molecular Detection and Identification of Zoonotic Microspor-idia Spore in Fecal Samples of Some Animals with Close-Con-tact to Human

    Directory of Open Access Journals (Sweden)

    Zeinab ASKARI

    2015-10-01

    Full Text Available Background: Microsporidia species are obligatory intracellular agents that can in­fect all major animal groups including mammals, birds, fishes and insects. Whereas world­wide human infection reports are increasing, the cognition of sources of infec­tion particularly zoonotic transmission could be helpful. We aimed to detect zoono­tic microsporidia spore in fecal samples from some animals with close – contact to human.Methods: Overall, 142 fecal samples were collected from animals with closed-con­tact to human, during 2012-2013. Trichrome – blue staining were performed and DNA was then extracted from samples, identified positive, microscopically. Nested PCR was also carried out with primers targeting SSU rRNA gene and PCR products were sequenced.Results: From 142 stool samples, microsporidia spores have been observed microscopi­cally in 15 (10.56% samples. En. cuniculi was found in the faces of 3 (15% small white mice and 1 (10% laboratory rabbits(totally 2.81%. Moreover, E. bieneusi was detected in 3 (10% samples of sheep, 2 (5.12% cattle, 1 (10% rabbit, 3 (11.53% cats and 2 (11.76% ownership dogs (totally 7.74%. Phylogenetic analysis showed interesting data. This is the first study in Iran, which identified E. bieneusi and En. Cuniculi in fecal samples of laboratory animals with close – contact to human as well as domesticated animal and analyzed them in phylogenetic tree. Conclusion: E. bieneusi is the most prevalent microsporidia species in animals. Our results can also alert us about potentially zoonotic transmission of microsporidiosis.

  2. Spore Loads May Not be Used Alone as a Direct Indicator of the Severity of Nosema ceranae Infection in Honey Bees Apis mellifera (Hymenoptera:Apidae).

    Science.gov (United States)

    Zheng, Huo-Qing; Lin, Zhe-Guang; Huang, Shao-Kang; Sohr, Alex; Wu, Lyman; Chen, Yan Ping

    2014-12-01

    Nosema ceranae Fries et al., 1996, a microsporidian parasite recently transferred from Asian honey bees Apis cerana F., 1793, to European honey bees Apis mellifera L., 1758, has been suspected as one of the major culprits of the worldwide honey bee colony losses. Spore load is a commonly used criterion to describe the intensity of Nosema infection. In this study, by providing Nosema-infected bees with sterilized pollen, we confirmed that pollen feeding increased the spore loads of honey bees by several times either in the presence or absence of a queen. By changing the amount of pollen consumed by bees in cages, we showed that spore loads increased with an increase in pollen consumption. Nosema infections decrease honey bee longevity and transcription of vitellogenin, either with or without pollen feeding. However, the reduction of pollen consumption had a greater impact on honey bee longevity and vitellogenin level than the increase of spore counts caused by pollen feeding. These results indicate that spore loads may not be used alone as a direct indicator of the severity of N. ceranae infection in honey bees. © 2014 Entomological Society of America.

  3. Frequency of Varroa destructor, Nosema spp and Acarapis woodi in commercial colonies of bees (Apis mellifera in Yucatan, Mexico

    Directory of Open Access Journals (Sweden)

    Martínez-Puc Jesús Froylán

    2015-10-01

    Full Text Available Today it has been observed that diseases affecting bees (Apis mellifera have caused significant economic losses in the European continent and in parts of the United States due to high mortality in honey bee colonies without a cause apparent, which is known as the syndrome of depopulation of hives. It is noteworthy that this mortality is not yet presented in Yucatan. In order to determine the frequency and levels of infestation Acarapis woodi and Varroa destructor, and the frequency and levels of infection Nosema spp. commercial colonies of bees (A. mellifera in Yucatan, was collected from June to December 2006, a total of 165 samples distributed in 13 towns of Yucatan. V. destructor frequency was 63.6%, with an average level of infestation of 2.85 ± 0.79 (mites / 100 bees. The frequency of Nosema spp. was 81.8%, with an average infection level = 1'234000 ± 118000 (spores / bee, the presence of A. woodi in the samples analyzed was detected. The existence of an association between V. destructor and Nosema spp was observed. (X2 = 6.53, df = 1, p = 0.01.

  4. Elimination of C-6-hydrogen during the formation of ecdysteroids from cholesterol in Locusta migratoria ovaries

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Hiramoto, M.; Kakinuma, K.; Ikekawa, N.

    1989-01-01

    Being administered to Locusta migratoria adult females, [6- 3 H, 4- 14 C]cholesterol was incorporated into ecdysone and 2-deoxyecdysone. The ratio of 3 H/ 14 C of the two ecdysteroids isolated from newly laid eggs revealed that C-6-hydrogen of cholesterol was eliminated during the conversion to ecdysteroids in the ovaries of the insects. Thus, a hypothetical mechanism involving migration of the C-6-hydrogen to the C-5 position in the formation of A/B cis junction turned out to be less likely

  5. Development and pathology of two undescribed species of microsporidia infecting the predatory mite, Phytoseiulus persimilis Athias-Henriot.

    Science.gov (United States)

    Bjøornson, S; Keddie, B A

    2000-11-01

    Two undescribed species of microsporidia were found in mass-reared Phytoseiulus persimilis Athias-Henriot from two commercial sources during a routine examination of these predators for pathogens. Both microsporidian species were described from specimens that had been prepared for transmission electron microscopy; live specimens were unavailable for examination. One microsporidium, identified as Species A, was described from two specimens obtained from a commercial insectary in North America. All observed stages of this microsporidium were uninucleate. Rounded-to-ovoid schizonts appeared to develop in direct contact with the cytoplasm of lyrate organ cells (ovarian tissue). Mature spores of Species A were elongate-ovoid and measured 2.88 x 1.21 microm. A polar filament coiled 7 to 10 times in the posterior half of the spore. Sporoblasts and spores were observed in the cytoplasm of cells of numerous tissues and in developing eggs within gravid females. A second species, identified as Species B, was described from five specimens obtained from a commercial source in Israel. All observed stages of this microsporidium were uninucleate. Schizonts of Species B were observed within the cytoplasm of cecal wall cells and within the nuclei of lyrate organ cells. Mature spores were ovoid and measured 2.65 x 1.21 microm. A polar filament coiled 3 to 4 times in the posterior half of the spore. Densely packed ribosomes often concealed the polar filament and other internal spore characteristics. Spores were observed in the cytoplasm of cells of numerous tissues and occasionally within the nuclei of lyrate organ cells. Numerous spores and presporal stages were observed within the ovary and developing eggs. The development and pathology of Species A and B were compared to those of Microsporidium phytoseiuli Bjøornson, Steiner and Keddie, a microsporidium previously described from P. persimilis obtained from a commercial source in Europe. The occurrence of three species of

  6. Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae.

    Directory of Open Access Journals (Sweden)

    Uros Glavinic

    Full Text Available Microsporidium Nosema ceranae is well known for exerting a negative impact on honey bee health, including down-regulation of immunoregulatory genes. Protein nutrition has been proven to have beneficial effects on bee immunity and other aspects of bee health. Bearing this in mind, the aim of our study was to evaluate the potential of a dietary amino acid and vitamin complex "BEEWELL AminoPlus" to protect honey bees from immunosuppression induced by N. ceranae. In a laboratory experiment bees were infected with N. ceranae and treated with supplement on first, third, sixth and ninth day after emergence. The expression of genes for immune-related peptides (abaecin, apidaecin, hymenoptaecin, defensin and vitellogenin was compared between groups. The results revealed significantly lower (p<0.01 or p<0.001 numbers of Nosema spores in supplemented groups than in the control especially on day 12 post infection. With the exception of abacein, the expression levels of immune-related peptides were significantly suppressed (p<0.01 or p<0.001 in control group on the 12th day post infection, compared to bees that received the supplement. It was supposed that N. ceranae had a negative impact on bee immunity and that the tested amino acid and vitamin complex modified the expression of immune-related genes in honey bees compromised by infection, suggesting immune-stimulation that reflects in the increase in resistance to diseases and reduced bee mortality. The supplement exerted best efficacy when applied simultaneously with Nosema infection, which can help us to assume the most suitable period for its application in the hive.

  7. Host specificity of microsporidia pathogenic to the gypsy moth, Lymantria dispar (L.): Field studies in Slovakia

    Science.gov (United States)

    Leellen F. Solter; Daniela K. Pilarska; Michael L. McManus; Milan Zubrik; Jan Patocka; Wei-Fone Huang; Julius. Novotny

    2010-01-01

    Several species of microsporidia are important chronic pathogens of Lymantria dispar in Europe but have never been recovered from North American gypsy moth populations. The major issue for their introduction into North American L. dispar populations is concern about their safety to native non-target insects. In this study, we...

  8. A novel TaqMan® assay for Nosema ceranae quantification in honey bee, based on the protein coding gene Hsp70.

    Science.gov (United States)

    Cilia, Giovanni; Cabbri, Riccardo; Maiorana, Giacomo; Cardaio, Ilaria; Dall'Olio, Raffaele; Nanetti, Antonio

    2018-04-01

    Nosema ceranae is now a widespread honey bee pathogen with high incidence in apiculture. Rapid and reliable detection and quantification methods are a matter of concern for research community, nowadays mainly relying on the use of biomolecular techniques such as PCR, RT-PCR or HRMA. The aim of this technical paper is to provide a new qPCR assay, based on the highly-conserved protein coding gene Hsp70, to detect and quantify the microsporidian Nosema ceranae affecting the western honey bee Apis mellifera. The validation steps to assess efficiency, sensitivity, specificity and robustness of the assay are described also. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Microsporidia parásitos de larvas de mosquito de la Costa Pacífica del Chocó

    Directory of Open Access Journals (Sweden)

    Zuluaga Juan S.

    1993-12-01

    Full Text Available Two genera of Microsporidia were found infecting mosquito larvae in three localities on the Pacific coast of Choco. Vavraia sp. (Microsporida: Pleistophoridae was found in larvae of Wyeomyia circumcincta, W. simmsi and Anopheles albimanus collected from plants of the Bromeliacea family in Arusí y Joví. Amblyospora sp. (Microsporida: Amblyosporidae was found parasitizingAedes angustivittatuslarvae COllectedfrom a terrestrial breeding pond in the locality of Nuqur. Morphology of the spores of the two parasites under light microscopy is described, as well as preliminary data on host range when exposed to laboratory rearad Aedes aegypti, Culex quinquefasciatus and Anopheles albimanus. Their rola in mosquito control is discussed.Se reportan dos géneros de microsporidia que parasitan larvas de mosquitos en criaderos naturales de tres localidades en la costa Pacffica Chocoana. Vavraia sp. (Microsporida: Pleistophoridae parásita larvas de Wyeomyia circumcincta, de Wyeomya simmsi y de Anopheles neivai, recolectadas en las rosetas de especies de la familia Bromeliaceae en las localidades de Arusí y Joví. Amblyospora sp. (Microsporida: Amblyosporidae parásita larvas deAedes angustivittatusde criaderos terrestres semipermanentes en la localidad de Nuquí. Se describe la morfología de estos dos microsporidia al microscopio óptico. Estudios preliminares de infección en larvas de Aedes aegypti, Culex quinquefasciatus yAnopheles albimanus, criadas en laboratorio, indican que Vavraia sp. infecta las tres especies, con preferencia a Culex quinquefasciatus. Las larvas expuestas a esporas de Amblyospora sp. no presentaron infección. Se discute el posible papel de estos dos géneros en el control de las poblaciones de mosquitos.

  10. A role for antimicrobial peptides in intestinal microsporidiosis

    Science.gov (United States)

    Leitch, Gordon J.; Ceballos, Carolina

    2009-01-01

    SUMMARY Clinical isolates from three microsporidia species, Encephalitozoon intestinalis and Encephalitozoon hellem, and the insect parasite Anncaliia (Brachiola, Nosema) algerae, were used in spore germination and enterocyte-like (C2Bbe1) cell infection assays to determine the effect of a panel of antimicrobial peptides. Spores were incubated with lactoferrin (Lf), lysozyme (Lz), and human beta defensin 2 (HBD2), human alpha defensin 5 (HD5), and human alpha defensin 1 (HNP1), alone and in combination with Lz, prior to germination. Of the Encephalitozoon species only E. hellem spore germination was inhibited by HNP1, while A. algerae spore germination was inhibited by Lf, HBD2, HD5 and HNP1, although HBD2 and HD5 inhibition required the presence of Lz. The effects of HBD2 and HD5 on microsporidia enterocyte infection paralleled their effects on spore germination. Lysozyme alone only inhibited infection with A. algerae, while Lf inhibited infection by E. intestinalis and A. algerae. HNP1 significantly reduced enterocyte infection by all three parasite species and a combination of Lf, Lz and HNP1 caused a further reduced infection with A. algerae. These data suggest that intestinal antimicrobial peptides contribute to the defense of the intestine against infection by luminal microsporidia spores and may partially determine which parasite species infects the intestine. PMID:19079820

  11. Microsporidial keratoconjunctivitis in an immunocompetent patient with a past history of laser in situ keratomilieusis surgery

    Directory of Open Access Journals (Sweden)

    M L Bommala

    2011-01-01

    Full Text Available Ocular infection with microsporidia has been documented in both immunocompetent and immunocompromised patients. Sources and mode of human infection with microsporidia have been difficult to ascertain although exposure to water may be an important risk factor. Of four genera that have been reported in human disease, only the genera Nosema, Encephalitozoon and Septata are documented to cause ocular infection. Here, in our case a healthy 30-year-old man who had undergone bilateral laser in situ keratomilieusis surgery two and half years back presented with a 10-day history of redness and 4-day history of blurring of vision in the right eye. On presentation, his best-corrected visual acuity was 20/20 partial in both eyes. Slit lamp examination revealed multiple pin head shaped infiltrates in the right cornea. Examination of the left eye was unremarkable. Based on microscopic demonstration of numerous microsporidial spores in the corneal scrapings, a diagnosis of microsporidial keratitoconjunctivitis was made. On treatment with oral albendazole, the cornea became clear with complete resolution of symptoms and signs within two weeks.

  12. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees.

    Science.gov (United States)

    Gregorc, Ales; Silva-Zacarin, Elaine C M; Carvalho, Stephan Malfitano; Kramberger, Doris; Teixeira, Erica W; Malaspina, Osmar

    2016-03-01

    Multiple stressors, such as chemicals and pathogens, are likely to be detrimental for the health and lifespan of Apis mellifera, a bee species frequently exposed to both factors in the field and inside hives. The main objective of the present study was to evaluate comparatively the health of Carniolan and Africanized honey bees (AHB) co-exposed to thiamethoxam and Nosema ceranae (N. ceranae) spores. Newly-emerged worker honey bees were exposed solely with different sublethal doses of thiamethoxam (2% and 0.2% of LD50 for AHB), which could be consumed by bees under field conditions. Toxicity tests for the Carniolan bees were performed, and the LD50 of thiamethoxam for Carniolan honey bees was 7.86 ng bee(-1). Immunohistological analyses were also performed to detect cell death in the midgut of thiamethoxam and/or N. ceranae treated bees. Thiamethoxam exposure had no negative impact on Nosema development in experimental conditions, but it clearly inhibited cell death in the midgut of thiamethoxam and Nosema-exposed bees, as demonstrated by immunohistochemical data. Indeed, thiamethoxam exposure only had a minor synergistic toxic effect on midgut tissue when applied as a low dose simultaneously with N. ceranae to AHB and Carniolan honey bees, in comparison with the effect caused by both stressors separately. Our data provides insights into the effects of the neonicotenoid thiamethoxam on the AHB and Carniolan honey bee life span, as well as the effects of simultaneous application of thiamethoxam and N. ceranae spores to honey bees. Copyright © 2016. Published by Elsevier Ltd.

  13. MOLECULAR CHARACTERIZATION OF MICROSPORIDIA INDICATES THAT FUR-BEARING WILD MAMMALS CAN BE A SOURCE OF HUMAN PATHOGENIC ENTEROCYTOZOON BIENEUSI

    Science.gov (United States)

    Over 13 months, 465 beavers, foxes, muskrats, otters, and raccoons were trapped in four counties in eastern Maryland and examined by molecular methods for microsporidia. A two-step nested PCR protocol was developed to amplify a 392 bp fragment of the internal transcribed spacer (...

  14. Globulispora mitoportans n. g., n. sp., (Opisthosporidia: Microsporidia) a microsporidian parasite of daphnids with unusual spore organization and prominent mitosome-like vesicles

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Fiala, Ivan; Nebesářová, Jana

    2016-01-01

    Roč. 135, MAR (2016), s. 43-52 ISSN 0022-2011 Institutional support: RVO:60077344 Keywords : Microsporidia * Fungi * Daphnia * parasite * mitosome * phylogeny Subject RIV: EG - Zoology Impact factor: 2.379, year: 2016

  15. Infection and transmission of Nosema bombi in Bombus terrestris colonies and its effect on hibernation, mating and colony founding

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2008-01-01

    The impact of the microsporidium Nosema bombi on Bombus terrestris was studied by recording mating, hibernation success, protein titre in haemolymph, weight change during hibernation, and colony founding of queens that were inoculated with N. bombi in the larval phase. Infection with N. bombi was

  16. Microsporidian genus Berwaldia (Opisthosporidia, Microsporidia), infecting daphnids (Crustacea, Branchiopoda): Biology, structure, molecular phylogeny and description of two new species

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Fiala, Ivan; Sacherová, V.; Vossbrinck, C. R.

    2017-01-01

    Roč. 61, October (2017), s. 1-12 ISSN 0932-4739 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Daphnia * fungi * Microsporidia * parasite * SSU rDNA phylogeny * transmission Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.581, year: 2016

  17. Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae.

    Science.gov (United States)

    Glavinic, Uros; Stankovic, Biljana; Draskovic, Vladimir; Stevanovic, Jevrosima; Petrovic, Tamas; Lakic, Nada; Stanimirovic, Zoran

    2017-01-01

    Microsporidium Nosema ceranae is well known for exerting a negative impact on honey bee health, including down-regulation of immunoregulatory genes. Protein nutrition has been proven to have beneficial effects on bee immunity and other aspects of bee health. Bearing this in mind, the aim of our study was to evaluate the potential of a dietary amino acid and vitamin complex "BEEWELL AminoPlus" to protect honey bees from immunosuppression induced by N. ceranae. In a laboratory experiment bees were infected with N. ceranae and treated with supplement on first, third, sixth and ninth day after emergence. The expression of genes for immune-related peptides (abaecin, apidaecin, hymenoptaecin, defensin and vitellogenin) was compared between groups. The results revealed significantly lower (pbees that received the supplement. It was supposed that N. ceranae had a negative impact on bee immunity and that the tested amino acid and vitamin complex modified the expression of immune-related genes in honey bees compromised by infection, suggesting immune-stimulation that reflects in the increase in resistance to diseases and reduced bee mortality. The supplement exerted best efficacy when applied simultaneously with Nosema infection, which can help us to assume the most suitable period for its application in the hive.

  18. Sublethal effects of clothianidin and Nosema spp. on the longevity and foraging activity of free flying honey bees.

    Science.gov (United States)

    Odemer, Richard; Nilles, Lisa; Linder, Nadine; Rosenkranz, Peter

    2018-03-19

    Neonicotinoids alone or in combination with pathogens are considered to be involved in the worldwide weakening of honey bees. We here present a new approach for testing sublethal and/or synergistic effects in free flying colonies. In our experiment individually marked honey bees were kept in free flying mini-hives and chronically exposed to sublethal doses of the neonicotinoid clothianidin. Additional groups of bees were challenged with Nosema infections or with combinations of the pesticide and pathogens. Longevity and flight activity of the differentially treated bees were monitored for a period of 18 days. In contrast to previous laboratory studies, no effect of the neonicotinoid treatment on mortality or flight activity could be observed. Although the lifespan of Nosema infected bees were significantly reduced compared to non-infected bees a combination of pesticide and pathogen did not reveal any synergistic effect. Our results indicate that individual bees are less impaired by neonicotinoids if kept within the social environment of the colony. The effect of such a "social buffering" should be considered in future risk assessments.

  19. Impact of microsporidian infection on growth and development of silkworm Bombyx mori L. (Lepidoptera: Bombycidae

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gupta

    2016-09-01

    Full Text Available Several species and strains of microsporidia have been isolated from infected silkworms among which pebrine caused by Nosema bombycis Nageli is the most important. Infection from this disease causes severe economic loss in sericulture. Reduction of larval and pupal development and reduced weights in silkworms due to infection has been reported. In the present study, five microsporidian (Nosema isolates from mulberry silkworm, Bombyx mori L. collected from different locations in West Bengal, India were sampled to study the impact of their infection on the growth and development of B. mori. The study revealed significant differences among the isolates in their ability to cause a reduction in the larval and pupal development of silkworm. Healthy larvae showed better body and tissue weights which were significantly higher than in infected lots. Among the isolates, M5 registered the maximum reduction in relative growth rate, larval silk gland tissue somatic index, larval male and female gonad tissue somatic index (GTSI and pupal female GTSI compared to the healthy control. Male and female pupa treated with M5 spores died before emergence, suggesting that the M5 isolate was the most virulent.

  20. Effects of pollen dilution on infection of Nosema ceranae in honey bees.

    Science.gov (United States)

    Jack, Cameron J; Uppala, Sai Sree; Lucas, Hannah M; Sagili, Ramesh R

    2016-04-01

    Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory.

    Science.gov (United States)

    Charbonneau, Lise R; Hillier, Neil Kirk; Rogers, Richard E L; Williams, Geoffrey R; Shutler, Dave

    2016-03-10

    Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex.

  2. Uptake of azoles by lamb's lettuce (Valerianella locusta L.) grown in hydroponic conditions.

    Science.gov (United States)

    García-Valcárcel, Ana I; Loureiro, Iñigo; Escorial, Concepción; Molero, Encarnación; Tadeo, José L

    2016-02-01

    An uptake and translocation study of azole compounds was performed in lamb's lettuce (Valerianella locusta L.) grown in nutrient solution fortified with different azoles. Three azoles, (clotrimazole, fluconazole and propiconazole), which have different physico-chemical properties and are ubiquitous in the aquatic environment, were the compounds selected. An analytical method, based on matrix solid phase dispersion (MSPD) followed by LC-MS/MS determination, was developed to quantify these compounds in aqueous solution and in roots and leaves. The physicochemical properties of azoles are the main factors governing the uptake and plant accumulation. These azoles were detected in leaves indicating their transport within lamb's lettuce. Translocation from nutrient solution to the aerial part of lamb's lettuce was found to be highly dependent on the hydrophobicity of the azole. Clotrimazole accumulates in roots causing necrosis in roots and leaves, whereas fluconazole was the azole with the highest concentration in leaves without causing apparent phytotoxicity symptoms. The assessment of the levels of these azoles in leaves indicates that the risk for human health is negligible. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Nosema ceranae is an old resident of honey bee (Apis mellifera) colonies in Mexico, causing infection levels of one million spores per bee or higher during summer and fall.

    Science.gov (United States)

    Guerrero-Molina, Cristina; Correa-Benítez, Adriana; Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto

    2016-11-01

    This study was conducted to identify Nosema spp. and to determine their infection levels in honey bee (Apis mellifera) samples collected in Mexico in 1995-1996. Samples of historical surveys from different countries are of particular interest to support or challenge the hypothesis that the microsporidium Nosema ceranae is a new parasite of A. mellifera that has recently dispersed across the world. We demonstrate that N. ceranae has parasitized honey bees in Mexico since at least 1995 and that the infection levels of this parasite during summer and fall, exceed the threshold at which treatment of honey bee colonies is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Potential of Extracted Locusta Migratoria Protein Fractions as Value-Added Ingredients.

    Science.gov (United States)

    Clarkson, Claudia; Mirosa, Miranda; Birch, John

    2018-02-09

    Although locusts can be sustainably produced and are nutrient rich, the thought of eating them can be hard to swallow for many consumers. This paper aims to investigate the nutritional composition of Locusta migratoria , including the properties of extracted locust protein, contributing to limited literature and product development opportunities for industry. Locusts sourced from Dunedin, New Zealand, contained a high amount of protein (50.79% dry weight) and fat (34.93%), which contained high amounts of omega-3 (15.64%), creating a desirably low omega-3/omega-6 ratio of 0.57. Three protein fractions including; insoluble locust fraction, soluble locust fraction, and a supernatant fraction were recovered following alkali isoelectric precipitation methodology. Initially, proteins were solubilised at pH 10 then precipitated out at the isoelectric point (pH 4). All fractions had significantly higher protein contents compared with the whole locust. The insoluble protein fraction represented 37.76% of the dry weight of protein recovered and was much lighter in colour and greener compared to other fractions. It also had the highest water and oil holding capacity of 5.17 mL/g and 7.31 mL/g, possibly due to larger particle size. The high supernatant yield (56.60%) and low soluble protein yield (9.83%) was unexpected and could be a result of experimental pH conditions chosen.

  5. Potential of Extracted Locusta Migratoria Protein Fractions as Value-Added Ingredients

    Directory of Open Access Journals (Sweden)

    Claudia Clarkson

    2018-02-01

    Full Text Available Although locusts can be sustainably produced and are nutrient rich, the thought of eating them can be hard to swallow for many consumers. This paper aims to investigate the nutritional composition of Locusta migratoria, including the properties of extracted locust protein, contributing to limited literature and product development opportunities for industry. Locusts sourced from Dunedin, New Zealand, contained a high amount of protein (50.79% dry weight and fat (34.93%, which contained high amounts of omega-3 (15.64%, creating a desirably low omega-3/omega-6 ratio of 0.57. Three protein fractions including; insoluble locust fraction, soluble locust fraction, and a supernatant fraction were recovered following alkali isoelectric precipitation methodology. Initially, proteins were solubilised at pH 10 then precipitated out at the isoelectric point (pH 4. All fractions had significantly higher protein contents compared with the whole locust. The insoluble protein fraction represented 37.76% of the dry weight of protein recovered and was much lighter in colour and greener compared to other fractions. It also had the highest water and oil holding capacity of 5.17 mL/g and 7.31 mL/g, possibly due to larger particle size. The high supernatant yield (56.60% and low soluble protein yield (9.83% was unexpected and could be a result of experimental pH conditions chosen.

  6. Microsporidia and Cryptosporidium in horses and donkeys in Algeria: detection of a novel Cryptosporidium hominis subtype family (Ik) in a horse.

    Science.gov (United States)

    Laatamna, Abd Elkarim; Wagnerová, Pavla; Sak, Bohumil; Květoňová, Dana; Xiao, Lihua; Rost, Michael; McEvoy, John; Saadi, Ahmed Rachid; Aissi, Meriem; Kváč, Martin

    2015-03-15

    A total of 219 and 124 individual fecal samples of horses and donkeys, respectively, were screened for the presence of Cryptosporidium spp., Encephalitozoon spp., and Enterocytozoon bieneusi DNA by genus-specific nested PCR. Isolates were genotyped by sequence analysis of SSU rRNA, GP60, TRAP-C1, COWP, and HSP70 loci in Cryptosporidium, and the ITS region in microsporidia. Cryptosporidium spp. was detected on 3/18 horse farms and 1/15 farms where donkeys were kept. Overall, five (2.3%) horse and two (1.6%) donkey specimens were PCR positive for Cryptosporidium. Genotyping at SSU and GP60 loci revealed that three isolates from horses and donkeys were C. parvum subtype family IIaA16G1R1, one isolate from a horse was, C. muris RN66, and one isolate from a donkey was C. muris TS03. An isolate from a horse shared 99.4% and 99.3% similarity with Cryptosporidium hominis and C. cuniculus, respectively, at the SSU locus. This isolate shared 100% identity with C. hominis at the TRAP-C1, COWP, and HSP70 loci, and it was from the novel gp60 subtype family IkA15G1. Microsporidia were found on 6/18 horse and 2/15 donkey farms. E. bieneusi was identified in 6.8% (15/219) and 1.6% (2/124), and Encephalitozoon cuniculi was identified in 1.8% (4/219) and 1.6% (2/124), of horses and donkeys, respectively. Three genotypes of E. cuniculi (I, II and III) were detected in horses, and E. cuniculi genotype II was detected in donkeys. Four genotypes of E. bieneusi (horse1, horse 2, CZ3, D) were described in horses. An additional five horses and two donkeys were positive for E. bieneusi, but the isolated were not genotyped. Neither Cryptosporidium nor microsporidia prevalence were affected by sex, age, type of breeding, or whether the host was a horse or a donkey. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Flight behaviour of honey bee (Apis mellifera) workers is altered by initial infections of the fungal parasite Nosema apis

    Science.gov (United States)

    Dosselli, Ryan; Grassl, Julia; Carson, Andrew; Simmons, Leigh W.; Baer, Boris

    2016-01-01

    Honey bees (Apis mellifera) host a wide range of parasites, some being known contributors towards dramatic colony losses as reported over recent years. To counter parasitic threats, honey bees possess effective immune systems. Because immune responses are predicted to cause substantial physiological costs for infected individuals, they are expected to trade off with other life history traits that ultimately affect the performance and fitness of the entire colony. Here, we tested whether the initial onset of an infection negatively impacts the flight behaviour of honey bee workers, which is an energetically demanding behaviour and a key component of foraging activities. To do this, we infected workers with the widespread fungal pathogen Nosema apis, which is recognised and killed by the honey bee immune system. We compared their survival and flight behaviour with non-infected individuals from the same cohort and colony using radio frequency identification tags (RFID). We found that over a time frame of four days post infection, Nosema did not increase mortality but workers quickly altered their flight behaviour and performed more flights of shorter duration. We conclude that parasitic infections influence foraging activities, which could reduce foraging ranges of colonies and impact their ability to provide pollination services. PMID:27827404

  8. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.)

    OpenAIRE

    Fleming, James C.; Schmehl, Daniel R.; Ellis, James D.

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutrit...

  9. Population genetic structure and long-distance dispersal of a recently expanding migratory bird.

    Science.gov (United States)

    Ramos, Raül; Song, Gang; Navarro, Joan; Zhang, Ruiying; Symes, Craig T; Forero, Manuela G; Lei, Fumin

    2016-06-01

    Long-distance dispersal events and their derivable increases of genetic diversity have been highlighted as important ecological and evolutionary determinants that improve performances of range-expanding species. In the context of global environmental change, specific dispersal strategies have to be understood and foreseen if we like to prevent general biodiversity impoverishment or the spread of allochthonous diseases. We explored the genetic structure and potential population mixing on the recently range-expanding European bee-eater Merops apiaster. In addition, the species is suspected of harbouring and disseminating the most relevant disease for bees and apiculture, Nosema microsporidia. In agreement with complementary ringing recovery data and morphometric measurements, genetic results on two mitochondrial genes and 12 microsatellites showed a reasonably well-structured population partitioning along its breeding distribution. Microsatellite results indicated that not only did a few birds recently disperse long distance during their return migrations and change their natal breeding areas, but also that a group of allochthonous birds together founded a new colony. Although we did not provide evidence on the direct implication of birds in the widespread of Nosema parasites, our finding on the long-distance dispersal of bird flocks between remote breeding colonies adds concern about the role of European bee-eaters in the spread of such disease at a large, inter-continental scale. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    Science.gov (United States)

    Engel, Juan C.; Ruby, J. Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L.

    2011-01-01

    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January. PMID:21687739

  11. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia.

    Directory of Open Access Journals (Sweden)

    Charles Runckel

    Full Text Available Honey bees (Apis mellifera play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD. Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼10(11 viruses per honey bee. Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January.

  12. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D.; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M.; Webster, Thomas C.; Su, Songkun

    2016-01-01

    ABSTRACT Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors

  13. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  14. Functional interaction of nicotinic acetylcholine receptors and Na+/K+ ATPase from Locusta migratoria manilensis (Meyen).

    Science.gov (United States)

    Bao, Haibo; Sun, Huahua; Xiao, Youxin; Zhang, Yixi; Wang, Xin; Xu, Xiaoyong; Liu, Zewen; Fang, Jichao; Li, Zhong

    2015-03-06

    Associated proteins are important for the correct functioning of nicotinic acetylcholine receptors (nAChRs). In the present study, a neonicotinoid-agarose affinity column was used to isolate related proteins from a solubilized membrane preparation from the nervous system of Locusta migratoria manilensis (Meyen). 1530 peptides were identified and most of them were involved in the membranous structure, molecular interaction and cellular communication. Among these peptides, Na(+)/K(+) ATPase had the highest MASCOT score and were involved in the molecular interaction, which suggested that Na(+)/K(+) ATPase and nAChRs might have strong and stable interactions in insect central nervous system. In the present study, functional interactions between nAChRs and Na(+)/K(+) ATPase were examined by heterologous expression in Xenopus oocytes. The results showed that the activated nAChRs increased pump currents of Na(+)/K(+) ATPase, which did not require current flow through open nAChRs. In turn, Na(+)/K(+) ATPase significantly increased agonist sensitivities of nAChRs in a pump activity-independent manner and reduced the maximum current (Imax) of nAChRs. These findings provide novel insights concerning the functional interactions between insect nAChRs and Na(+)/K(+) ATPase.

  15. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae.

    Directory of Open Access Journals (Sweden)

    Jeffery S Pettis

    Full Text Available Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1 what types of pesticides bees are exposed to when rented for pollination of various crops and 2 how field-relevant pesticide blends affect bees' susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers' roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to.

  16. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae

    Science.gov (United States)

    Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L.; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins. PMID:28350872

  17. The subtle effects of sea water acidification on the amphipod Gammarus locusta

    Directory of Open Access Journals (Sweden)

    J. Williams

    2009-08-01

    Full Text Available We report an investigation of the effects of increases in pCO2 on the survival, growth and molecular physiology of the neritic amphipod Gammarus locusta which has a cosmopolitan distribution in estuaries. Amphipods were reared from juvenile to mature adult in laboratory microcosms at three different levels of pH in nominal range 8.1–7.6. Growth rate was estimated from weekly measures of body length. At sexual maturity the amphipods were sacrificed and assayed for changes in the expression of genes coding for a heat shock protein (hsp70 gene and the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (gapdh gene. The data show that the growth and survival of this species is not significantly impacted by a decrease in sea water pH of up to 0.5 units. Quantitative real-time PCR analysis indicated that there was no significant effect of growth in acidified sea water on the sustained expression of the hsp70 gene. There was a consistent and significant increase in the expression of the gapdh gene at a pH of ~7.5 which, when combined with observations from other workers, suggests that metabolic changes may occur in response to acidification. It is concluded that sensitive assays of tissue physiology and molecular biology should be routinely employed in future studies of the impacts of sea water acidification as subtle effects on the physiology and metabolism of coastal marine species may be overlooked in conventional gross "end-point" studies of organism growth or mortality.

  18. Flight-induced inhibition of the cerebral median peptidergic neurosecretory system in Locusta migratoria

    International Nuclear Information System (INIS)

    Diederen, J.H.; van Etten, E.W.; Biegstraaten, A.I.; Terlou, M.; Vullings, H.G.; Jansen, W.F.

    1988-01-01

    This study discusses the effects of a 1-hr period of flight on the peptidergic pars intercerebralis (PI)-corpus cardiacum storage part (CCS) system in male Locusta migratoria, particularly the effect on material in this system stained by a histochemical method for peptidergic neurosecretory material (NSM) or labeled by in vivo incorporation of radioactive amino acid molecules. By use of an automatic image analysis system a number of parameters of the stained or radioactively labeled substances were measured to quantify the flight-induced effects and to get information on the manner in which the neurosecretory cell bodies in the PI and their axonal endings in the CCS accommodate changing amounts of NSM. The CCS of flown locusts contained distinctly more stained and radioactively labeled substances than the CCS of unflown locusts. A tendency to similar differences was observed in the cluster of neurosecretory cell bodies in the PI. The results indicate that 1 hr flight inhibited the release of NSM by the PI-CCS system. After the onset of reduced release activity by flight, some NSM continued to be synthesized and transported from the PI to the CCS, gradually filling up and expanding the entire PI-CCS system, the NSM at the same time becoming more and more densely packed. It is concluded that the peptidergic PI-CCS system is not actively involved in the control of flight metabolism or flight behavior

  19. Acidovorax valerianellae sp. nov., a novel pathogen of lamb's lettuce [Valerianella locusta (L.) Laterr].

    Science.gov (United States)

    Gardan, Louis; Stead, David E; Dauga, Catherine; Gillis, Moniek

    2003-05-01

    Bacterial spot disease of lamb's lettuce [Valerianella locusta (L.) Laterr.] was first observed in fields in 1991. This new bacterial disease is localized in western France in high-technology field production of lamb's lettuce for the preparation of ready-to-use salad. Nineteen strains isolated in 1992 and 1993 from typical black leaf spots of naturally infected lamb's lettuce were characterized and compared with reference strains of Acidovorax and Delftia. The pathogenicity of the 19 strains was confirmed by artificial inoculation. Biochemical and physiological tests, fatty acid profiles, DNA-DNA hybridization and other nucleic acid-based tests were performed. A numerical taxonomic analysis of the 19 lamb's lettuce strains showed a single homogeneous phenon closely related to previously described phytopathogenic taxa of the genus Acidovorax. DNA-DNA hybridization studies showed that the lamb's lettuce strains were 91-100% related to a representative strain, strain CFBP 4730(T), and constituted a discrete DNA hybridization group, indicating that they belong to the same novel species. Results from DNA-rRNA hybridization, 16S rRNA sequence analysis and fatty acid analysis studies confirmed that this novel species belongs to the beta-subclass of the Proteobacteria and, more specifically, to the family Comamonadaceae and the genus Acidovorax. The name Acidovorax valerianellae sp. nov. is proposed for this novel taxon of phytopathogenic bacteria. The type strain is strain CFBP 4730(T) (= NCPPB 4283(T)).

  20. Serological differentiation of microsporidia with special reference to Trachipleistophora hominis

    Directory of Open Access Journals (Sweden)

    Cheney S.A.

    2001-06-01

    Full Text Available Myositis is a common clinical syndrome in advanced stages of AIDS. Trachipleistophora hominis (phylum Microspora has been detected in several cases of painful, immobilising myositis in AIDS patients. Enzyme linked immunosorbent assays (ELISAs and Western blotting of protein profiles separated by SDS PAGE were used to determine whether this species could be detected and differentiated by serology. Sixteen microsporidia, including several species known to infect man and species infecting fish, crustaceans and a mosquito, were used as antigen. Each species had a unique profile of SDS PAGE-separated proteins. In Western blots, mouse antiserum, raised to T. hominis and selected for its high ELISA specificity, bound to antigens ranging from less than 25 kDa to greater than 250 kDa with major bands at 39-44 kDa and 98-150 kDa on T. hominis protein profiles. The serum also recognised some high molecular weight antigens in the profiles of Vavraia culicis, Heterosporis anguillarum, and three species of Pleistophora but none in the remaining genera examined. It was concluded that ELISA and Western blotting could be used to detect and differentiate T. hominis in muscle biopsy tissue from patients with myositis. However, sera from T. hominis infected patients in the terminal stages of AIDS would not be useful for detection of infections because of a sharp decline in antibody level.

  1. Unusual polar filament structure in two microsporidia from water reservoirs with radionuclide and organic pollution

    International Nuclear Information System (INIS)

    Ovcharenko, M.; Molloy, D.; Wita, I.

    1998-01-01

    Two species of microsporidia with the unusual polar filament structure were found in Cricotopus silvestris and Microtendipes pedellus larvae which were collected near the zone of influence of the Chernobyl atomic power station (Ukraine) and from a high polluted pond in the Mazurian region of Poland. The first microsporidium had separate unikaryotic spores and was assigned to the family Unikaryonidae Sprague. The diameter of the middle coil of the triple-coiled polar filament of this microsporidium was larger than its two other coils. The observed polar filament was thus neither of isofilar nor of the classical anisofilar type. The second polysporoblastic microsporidium has unikaryotic spores and an uncoiled polar filament and was placed in the family Thelohaniidae Hazard and Oldacre. The rare single macrospores of this microsporidium have a double set of the polar filament complex. The relationship between ultrastructural features of microsporidian spores and water pollution is discussed. (author)

  2. Short communication: Survival of honey bees (Apis mellifera) infected with Crithidia mellificae (Langridge and McGhee: ATCC® 30254™) in the presence of Nosema ceranae

    Energy Technology Data Exchange (ETDEWEB)

    Higes, M.; Rodríguez-García, C.; Gómez-Moracho, T.; Meana, A.; Bartolomé, C.; Maside, X.; Barrios, L.; Martín-Hernández, R.

    2016-11-01

    Crithidia mellificae, a trypanosomatid parasite of Apis mellifera, has been proposed to be one of the pathogens responsible for the serious honey bee colony losses produced worldwide in the last decade, either alone or in association with Nosema ceranae. Since this pathogenic effect contradicts the results of the experimental infections originally performed by Langridge and McGhee nearly 40 years ago, we investigated the potential linkage of this protozoan with colony decline under laboratory conditions. Nosema-free and trypanosomatid-free honey bees from three different colonies were experimentally infected with fresh C. mellificae spheroid forms (reference strain ATCC30254), with N. ceranae fresh spores and with both parasites at the same time. Replicate cages were kept at 27 °C and used to analyse survival. C. mellificae spheroid forms did not reduce significantly the survival of the worker bees (64.5% at 30 days post-infection vs. 77.8% for the uninfected bees used as controls; differences were non statistically significant) under these experimental conditions. In contrast, the cages infected with N. ceranae exhibited higher rates of mortality from the 20th day post-infection onwards, irrespective of the presence of C. mellificae, suggesting that the spheroid forms of the latter have no pathological effect on A. mellifera. (Author)

  3. Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host Apis mellifera honey bees.

    Science.gov (United States)

    Li, Wenfeng; Chen, Yanping; Cook, Steven C

    2018-05-01

    Nosema ceranae is an intracellular microsporidian parasite of the Asian honey bee Apis cerana and the European honey bee Apis mellifera. Until relatively recently, A. mellifera honey bees were naïve to N. ceranae infection. Symptoms of nosemosis, or Nosema disease, in the infected hosts include immunosuppression, damage to gut epithelium, nutrient and energetic stress, precocious foraging and reduced longevity of infected bees. Links remain unclear between immunosuppression, the symptoms of nutrient and energetic stress, and precocious foraging behavior of hosts. To clarify physiological connections, we inoculated newly emerged A. mellifera adult workers with N. ceranae spores, and over 21 days post inoculation (21 days pi), gauged infection intensity and quantified expression of genes representing two innate immune pathways, Toll and Imd. Additionally, we measured each host's whole-body protein, lipids, carbohydrates and quantified respirometric and activity levels. Results show sustained suppression of genes of both humorally regulated immune response pathways after 6 days pi. At 7 days pi, elevated protein levels of infected bees may reflect synthesis of antimicrobial peptides from an initial immune response, but the lack of protein gain compared with uninfected bees at 14 days pi may represent low de novo protein synthesis. Carbohydrate data do not indicate that hosts experience severe metabolic stress related to this nutrient. At 14 days pi infected honey bees show high respirometric and activity levels, and corresponding lipid loss, suggesting lipids may be used as fuel for increased metabolic demands resulting from infection. Accelerated lipid loss during nurse honey bee behavioral development can have cascading effects on downstream physiology that may lead to precocious foraging, which is a major factor driving colony collapse. Published by Elsevier Ltd.

  4. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations.

    Science.gov (United States)

    Cordes, Nils; Huang, Wei-Fone; Strange, James P; Cameron, Sydney A; Griswold, Terry L; Lozier, Jeffrey D; Solter, Leellen F

    2012-02-01

    Several bumble bee (Bombus) species in North America have undergone range reductions and rapid declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data on pathogen distributions in a large number of bumble bee species have not been available to test this hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the microsporidium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was ≤10% for all host species examined but was recorded from 21% of surveyed sites. Crithidia was isolated from 15 of the 36 Bombus species screened, and were most commonly recovered from Bombus bifarius, Bombus bimaculatus, Bombus impatiens and Bombus mixtus. Nosema bombi was isolated from 22 of the 36 US Bombus species collected. Only one species with more than 50 sampled bees, Bombus appositus, was free of the pathogen; whereas, prevalence was highest in Bombus occidentalis and Bombus pensylvanicus, two species that are reportedly undergoing population declines in North America. A variant of a tetranucleotide repeat in the internal transcribed spacer (ITS) of the N. bombi rRNA gene, thus far not reported from European isolates, was isolated from ten US Bombus hosts, appearing in varying ratios in different host species. Given the genetic similarity of the rRNA gene of N. bombi sampled in Europe and North America to date, the presence of a unique isolate in US bumble could reveal one or more native North American strains and indicate that N. bombi is enzootic across the Holarctic Region, exhibiting some genetic isolation. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria: a regional-scale comparative survey.

    Science.gov (United States)

    Chapuis, Marie-Pierre; Loiseau, Anne; Michalakis, Yannis; Lecoq, Michel; Franc, Alex; Estoup, Arnaud

    2009-03-01

    The potential effect of population outbreaks on within and between genetic variation of populations in pest species has rarely been assessed. In this study, we compare patterns of genetic variation in different sets of historically frequently outbreaking and rarely outbreaking populations of an agricultural pest of major importance, the migratory locust, Locusta migratoria. We analyse genetic variation within and between 24 populations at 14 microsatellites in Western Europe, where only ancient and low-intensity outbreaks have been reported (non-outbreaking populations), and in Madagascar and Northern China, where frequent and intense outbreak events have been recorded over the last century (outbreaking populations). Our comparative survey shows that (i) the long-term effective population size is similar in outbreaking and non-outbreaking populations, as evidenced by similar estimates of genetic diversity, and (ii) gene flow is substantially larger among outbreaking populations than among non-outbreaking populations, as evidenced by a fourfold to 30-fold difference in FST values. We discuss the implications for population dynamics and the consequences for management strategies of the observed patterns of genetic variation in L. migratoria populations with contrasting historical outbreak frequency and extent.

  6. Species-specific diagnostics of Apis mellifera trypanosomatids: A nine-year survey (2007-2015) for trypanosomatids and microsporidians in Serbian honey bees.

    Science.gov (United States)

    Stevanovic, Jevrosima; Schwarz, Ryan S; Vejnovic, Branislav; Evans, Jay D; Irwin, Rebecca E; Glavinic, Uros; Stanimirovic, Zoran

    2016-09-01

    In this study, honey bees collected in Serbia over 9 consecutive years (2007-2015) were retrospectively surveyed to determine the prevalence of eukaryotic gut parasites by molecular screening of archival DNA samples. We developed species-specific primers for PCR to detect the two known honey bee trypanosomatid species, Crithidia mellificae and the recently described Lotmaria passim. These primers were validated for target specificity under single and mixed-species conditions as well as against the bumblebee trypanosomatid Crithidia bombi. Infections by Nosema apis and Nosema ceranae (Microsporidia) were also determined using PCR. Samples from 162 colonies (18 from each year) originating from 57 different localities were surveyed. L. passim was detected in every year with an overall frequency of 62.3% and annual frequencies ranging from 38.9% to 83.3%. This provides the earliest confirmed record to date for L. passim and the first report of this species in Serbia. N. ceranae was ubiquitous, occurring in every year and at 95.7% overall frequency, ranging annually from 83.3% to 100%. The majority of colonies (60.5%) were co-infected with L. passim and N. ceranae, but colony infections by each species were statistically independent of one another over the nine years. Although C. mellificae and N. apis have both been reported recently at low frequency in Europe, neither of these species was detected in Serbia. These results support the hypothesis that L. passim has predominated over C. mellificae in A. mellifera during the past decade. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Analytical methodology for the determination of potentially effective compounds from natural products to control nosema ceranae infection in honey bee (apis mellifera)

    OpenAIRE

    Ares Sacristán, Ana María

    2015-01-01

    En los últimos años se ha venido observando una extraña desaparición de las abejas melíferas (Apis mellifera) que está afectando drásticamente a un elevado número de colmenas por todo el mundo, causando serios problemas no sólo a la apicultura sino a todas las actividades agrícolas relacionadas con la polinización. Una de las hipótesis que puede explicar estos problemas es la propagación de la nosemosis, que es una enfermedad digestiva de las abejas causadas por los microsporidios Nosema apis...

  8. Ultrastructural changes in the glial cells at neuromuscular synapses of Locusta migratoria occurring after nerve stimulation and subsequent rest: a morphometric analysis.

    Science.gov (United States)

    Reinecke, M

    1979-10-01

    The glial processes ensheathing the motor nerve terminals on the retractor unguis muscle of Locusta migratoria are described. Ultrastructural changes observed after electrical nerve stimulation (20 Hz, 7 min) without or with subsequent rest (2 min, 1 h) are analysed morphometrically. Immediately after stimulation both the average terminal circumference (+ 23%) and its proportion covered by glial processes (+ 16%) are significantly increased. The mean number of Schwann cell processes per micron of terminal circumference (without stimulation: 0.86 +/- 0.04) is also affected: Immediately after stimulation it is increased by about 15% and after 2 min of rest even by 36%. The periaxonal cleft (without stimulation: 16.5 nm +/- 0.36) becomes wider immediately after stimulation by about 19%, an effect which is almost reversed after 1 h of rest. It is suggested that these changes are a consequence of the enlargement of the nerve terminal's surface upon massive exocytotic activity and that they are possibly mediated by mechanical attachment between glial and terminal plasma membranes.

  9. Immunolocalization of a tachykinin-receptor-like protein in the central nervous system of Locusta migratoria migratorioides and neobellieria bullata.

    Science.gov (United States)

    Veelaert, D; Oonk, H B; Vanden Eynde, G; Torfs, H; Meloen, R H; Schoofs, L; Parmentier, M; De Loof, A; Vanden Broeck, J

    1999-05-10

    Antisera raised against two distinct peptide regions of the Drosophila neurokinin-like receptor NKD were used to immunolocalize tachykinin-receptor-like proteins in the central nervous system of two insect species: the African migratory locust, Locusta migratoria, and the gray fleshfly, Neobellieria bullata. The resulting immunopositive staining patterns were identical for both antisera. Moreover, a very similar distribution of the immunoreactive material was observed in fleshflies and locusts. Immunoreactivity was found in nerve terminals of the retrocerebral complex, suggesting a presynaptic localization of the receptor in this part of the brain. Cell bodies were stained in the subesophageal ganglion: an anterior group of four larger cells and a posterior group of about 20 cells. These cells have axons projecting into the contralateral nervus corporis allati (NCA) II, bypassing the corpus allatum and projecting through the NCA I into the storage part of the corpus cardiacum. In the glandular part of the corpus cardiacum, the glandular adipokinetic hormone-producing cells did not show any immunopositive staining. In the locust, additional immunopositive staining was observed in internolaterally located neurons of the tritocerebrum and in important integrative parts of the neuropil such as the central body and the mushroom bodies.

  10. Genetic variation for parental effects on the propensity to gregarise in Locusta migratoria

    Directory of Open Access Journals (Sweden)

    Foucart Antoine

    2008-02-01

    Full Text Available Abstract Background Environmental parental effects can have important ecological and evolutionary consequences, yet little is known about genetic variation among populations in the plastic responses of offspring phenotypes to parental environmental conditions. This type of variation may lead to rapid phenotypic divergence among populations and facilitate speciation. With respect to density-dependent phenotypic plasticity, locust species (Orthoptera: family Acrididae, exhibit spectacular developmental and behavioural shifts in response to population density, called phase change. Given the significance of phase change in locust outbreaks and control, its triggering processes have been widely investigated. Whereas crowding within the lifetime of both offspring and parents has emerged as a primary causal factor of phase change, less is known about intraspecific genetic variation in the expression of phase change, and in particular in response to the parental environment. We conducted a laboratory experiment that explicitly controlled for the environmental effects of parental rearing density. This design enabled us to compare the parental effects on offspring expression of phase-related traits between two naturally-occurring, genetically distinct populations of Locusta migratoria that differed in their historical patterns of high population density outbreak events. Results We found that locusts from a historically outbreaking population of L. migratoria expressed parentally-inherited density-dependent phase changes to a greater degree than those from a historically non-outbreaking population. Conclusion Because locusts from both populations were raised in a common environment during our experiment, a genetically-based process must be responsible for the observed variation in the propensity to express phase change. This result emphasizes the importance of genetic factors in the expression of phase traits and calls for further investigations on density

  11. Vairimorpha disparis n. comb. (Microsporidia: Burenellidae): a redescription and taxonomic revision of Thelohania disparis Timofejeva 1956, a microsporidian parasite of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae)

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Vossbrinck, C. R.; Pilarska, D. K.; Linde, A.; Weiser, Jaroslav; McManus, M. L.; Hoch, G.; Solter, L. F.

    2006-01-01

    Roč. 53, č. 4 (2006), s. 292-304 ISSN 1066-5234 Grant - others:Karlova Univerzita v Praze a USDA US Forest Service(CZ) 161/79-982111; USDA FS Cooperative Agreement(US) AG 01CA-11242343-107; Grant US Agricultural Experimental Station(US) ILLU-65-0344; Deutsche ForschungsGemeinschaft(BG) 436 BUL 17/8/04 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50070508 Keywords : microsporidia * parasitology * biological control Subject RIV: EH - Ecology, Behaviour Impact factor: 2.288, year: 2006

  12. A monoclonal antibody that tracks endospore formation in the microsporidium Nosema bombycis.

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    Full Text Available Nosema bombycis, the first identified microsporidium, is a destructive pathogen of the silkworm Bombyx mori and causes severe worldwide economic losses in sericulture. Major microsporidian structural proteins, such as the spore wall protein (SWP, are known to be involved in host invasion. In this study, the reactivity of the monoclonal antibody 2B10 was tested against an endospore protein of N. bombycis with a molecular weight size at 50-kDa, using Western blotting. The antigen was purified after immunoprecipitation and was further identified as EOB13320 according to MALDI-TOF MS assay. We found that EOB13320 locates to the surface of the different developmental stages of the parasite, mostly the sporoblast stage and the mature spore after immunoelectron microscopy examination. EOB13320 was also widely distributed in the developing endospore, especially at the sporoblast stage. This endospore protein also accumulated in the cytoplasm of both the merogony and sporoblast stages. These results imply that EOB13320 detected by monoclonal antibody 2B10 is expressed throughout the life cycle of the parasite, notably during the stage when the endospore is formed, and that this protein is important for spore-coat formation and parasite maintenance. Our study could be instrumental in the understanding of spore wall formation and will help to gain greater insight into the biology of this parasite.

  13. A monoclonal antibody that tracks endospore formation in the microsporidium Nosema bombycis.

    Science.gov (United States)

    Li, Yanhong; Tao, Meiling; Ma, Fuping; Pan, Guoqing; Zhou, Zeyang; Wu, Zhengli

    2015-01-01

    Nosema bombycis, the first identified microsporidium, is a destructive pathogen of the silkworm Bombyx mori and causes severe worldwide economic losses in sericulture. Major microsporidian structural proteins, such as the spore wall protein (SWP), are known to be involved in host invasion. In this study, the reactivity of the monoclonal antibody 2B10 was tested against an endospore protein of N. bombycis with a molecular weight size at 50-kDa, using Western blotting. The antigen was purified after immunoprecipitation and was further identified as EOB13320 according to MALDI-TOF MS assay. We found that EOB13320 locates to the surface of the different developmental stages of the parasite, mostly the sporoblast stage and the mature spore after immunoelectron microscopy examination. EOB13320 was also widely distributed in the developing endospore, especially at the sporoblast stage. This endospore protein also accumulated in the cytoplasm of both the merogony and sporoblast stages. These results imply that EOB13320 detected by monoclonal antibody 2B10 is expressed throughout the life cycle of the parasite, notably during the stage when the endospore is formed, and that this protein is important for spore-coat formation and parasite maintenance. Our study could be instrumental in the understanding of spore wall formation and will help to gain greater insight into the biology of this parasite.

  14. Evidence for weak genetic recombination at the PTP2 locus of Nosema ceranae.

    Science.gov (United States)

    Gómez-Moracho, Tamara; Bartolomé, Carolina; Martín-Hernández, Raquel; Higes, Mariano; Maside, Xulio

    2015-04-01

    The microsporidian Nosema ceranae is an emergent pathogen that threatens the health of honeybees and other pollinators all over the world. Its recent rapid spread across a wide variety of host species and environments demonstrated an enhanced ability of adaptation, which seems to contradict the lack of evidence for genetic recombination and the absence of a sexual stage in its life cycle. Here we retrieved fresh data of the patterns of genetic variation at the PTP2 locus in naturally infected Apis mellifera colonies, by means of single genome amplification. This technique, designed to prevent the formation of chimeric haplotypes during polymerase chain reaction (PCR), provides more reliable estimates of the diversity levels and haplotype structure than standard PCR-cloning methods. Our results are consistent with low but significant rates of recombination in the history of the haplotypes detected: estimates of the population recombination rate are of the order of 30 and support recent evidence for unexpectedly high levels of variation of the parasites within honeybee colonies. These observations suggest the existence of a diploid stage at some point in the life cycle of this parasite and are relevant for our understanding of the dynamics of its expanding population. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Detection of Nosema bombycis by FTA cards and loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Yan, Wei; Shen, Zhongyuan; Tang, Xudong; Xu, Li; Li, Qianlong; Yue, Yajie; Xiao, Shengyan; Fu, Xuliang

    2014-10-01

    We successfully established a detection method which exhibited a markedly higher sensitivity than previously developed detection methods for Nosema bombycis by combining glass beads, FTA card, and LAMP. Spores of N. bombycis were first broken by acid-washed glass beads; the DNA was subsequently extracted and purified with the FTA card, and LAMP was performed using primers (LSU296) designed based on the sequence of the LSU rRNA of N. bombycis. The minimum detection concentration was 10 spores/mL. When this method was used to detect pebrine disease in silkworm egg, the detection rate for 500 silkworm eggs, in which only one egg was infected with N. bombycis, was 100 % under our optimized conditions. If the number of eggs in the sample increased to 800 or 1,000, the sample was divided into two equal portions, and the eggs were smashed with glass beads after the addition of 1 mL of TE buffer. The liquid in two tubes was later mixed and applied to the FTA card, and the detection rates were 100 %. Furthermore, the LAMP method established in our study could detect N. bombycis infection in silkworm 24 h earlier than microscopy.

  16. Physiological and Behavioral Changes in Honey Bees (Apis mellifera) Induced by Nosema ceranae Infection

    Science.gov (United States)

    Goblirsch, Mike; Huang, Zachary Y.; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands. PMID:23483987

  17. Physiological and behavioral changes in honey bees (Apis mellifera induced by Nosema ceranae infection.

    Directory of Open Access Journals (Sweden)

    Mike Goblirsch

    Full Text Available Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg, and endocrine factor, juvenile hormone (JH, functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  18. ECOLOGICAL MODELING OF LOCUSTA MIGRATORIA L. BREEDING CONDITIONS IN SOUTH-EASTERN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    D. V. Malakhov

    2018-03-01

    Full Text Available Background. The method of ecological niche modeling (ENM was applied to reconstruct the nesting conditions of one of the most widely-known pest species, Locusta migratoria asiatica, with a focus of nesting in Balkhash-Alakol basin. The ENM uses a set of input environmental variables to analyze and select the key factors from the entire input set. The key factors are the climatic variables which define the wellbeing of an organism; and the range of these variables may be calculated with statistical and GIS approaches. Materials and methods. The method of ENM used in current paper is referred to as “presence-only” since it utilizes the known localities of the animal (in our study, egg-clutches to develop a model. The model outlines the area where the successful development of locust egg-boxes is most probable, rather than the actual nesting area. Further analysis of the identified key variables allows definition of the most vulnerable stages of the locust life-cycle. Results. The most important factors, influencing the development of the locust over its life-cycle, are: the ambient air temperature; the temperature of the soil during the cold season of the year; and soil moisture. The locust is an ectotherm organism, which has a restricted ability to regulate its body temperature; and the ambient temperature thus serves as a major factor affecting the animal’s behavior. Wintering egg-boxes are immobile and face even more environmental challenges than nymphs or adults do. The soil temperature may not depend upon a single variable, like the air temperature, but is a function of the complex relationship between the thermal properties of the air and soil. The process of the energy flux between soil and atmosphere incudes many factors, particularly related to soil-moisture content and the physical properties of the soil. The analysis of key variables should not be performed without an understanding of the complex relationships between the abiotic

  19. DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria.

    Science.gov (United States)

    Ruiz-Ruano, F J; Ruiz-Estévez, M; Rodríguez-Pérez, J; López-Pino, J L; Cabrero, J; Camacho, J P M

    2011-01-01

    We analyzed the DNA amount in X and B chromosomes of 2 XX/X0 grasshopper species (Eyprepocnemis plorans and Locusta migratoria), by means of Feulgen image analysis densitometry (FIAD), using previous estimates in L. migratoria as standard (5.89 pg). We first analyzed spermatids of 0B males and found a bimodal distribution of integrated optical densities (IODs), suggesting that one peak corresponded to +X and the other to -X spermatids. The difference between the 2 peaks corresponded to the X chromosome DNA amount, which was 1.28 pg in E. plorans and 0.80 pg in L. migratoria. In addition, the +X peak in E. plorans gave an estimate of the C-value in this species (10.39 pg). We next analyzed diplotene cells from 1B males in E. plorans and +B males in L. migratoria (a species where Bs are mitotically unstable and no integer B number can be defined for an individual) and measured B chromosome IOD relative to X chromosome IOD, within the same cell, taking advantage of the similar degree of condensation for both positively heteropycnotic chromosomes at this meiotic stage. From this proportion, we estimated the DNA amount for 3 different B chromosome variants found in individuals from 3 E. plorans Spanish populations (0.54 pg for B1 from Saladares, 0.51 pg for B2 from Salobreña and 0.64 for B24 from Torrox). Likewise, we estimated the DNA amount of the B chromosome in L. migratoria to be 0.15 pg. To automate measurements, we wrote a GPL3 licensed Python program (pyFIA). We discuss the utility of the present approach for estimating X and B chromosome DNA amount in a variety of situations, and the meaning of the DNA amount estimates for X and B chromosomes in these 2 species. Copyright © 2011 S. Karger AG, Basel.

  20. The effects of temperature and body mass on jump performance of the locust Locusta migratoria.

    Directory of Open Access Journals (Sweden)

    Edward P Snelling

    Full Text Available Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m scales with body mass (M; g according to the power equation D = 0.35M (0.17±0.08 (95% CI, jump take-off angle (A; degrees scales as A = 52.5M (0.00±0.06, and jump energy (E; mJ per jump scales as E = 1.91M (1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm of the femur and tibia of the hind leg, L f+t = 34.9M (0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12% legs and a relatively larger (11% femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.

  1. Secretory granule formation and membrane recycling by the trans-Golgi network in adipokinetic cells of Locusta migratoria in relation to flight and rest.

    Science.gov (United States)

    Diederen, J H; Vullings, H G

    1995-03-01

    The influence of flight activity on the formation of secretory granules and the concomitant membrane recycling by the trans-Golgi network in the peptidergic neurosecretory adipokinetic cells of Locusta migratoria was investigated by means of ultrastructural morphometric methods. The patterns of labelling of the trans-Golgi network by the exogenous adsorptive endocytotic tracer wheat-germ agglutinin-conjugated horse-radish peroxidase and by the endogenous marker enzyme acid phosphatase were used as parameters and were measured by an automatic image analysis system. The results show that endocytosed fragments of plasma membrane with bound peroxidase label were transported to the trans-Golgi network and used to build new secretory granules. The amounts of peroxidase and especially of acid phosphatase within the trans-Golgi network showed a strong tendency to be smaller in flight-stimulated cells than in non-stimulated cells. The amounts of acid phosphatase in the immature secretory granules originating from the trans-Golgi network were significantly smaller in stimulated cells. The number of immature secretory granules positive for acid phosphatase tended to be higher in stimulated cells. Thus, flight stimulation of adipokinetic cells for 1 h influences the functioning of the trans-Golgi network; this most probably results in a slight enhancement of the production of secretory granules by the trans-Golgi network.

  2. Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Piano Fiorella G. De

    2017-06-01

    Full Text Available The European honey bee (Apis mellifera L. is known to be affected by such stress factors as pathogen load, poor nutrition and depressed immunity. Nosema ceranae is one of the main parasites that affect colony populations. The relationship between the stress factors and honey bee-bacteria symbiosis appears as an alternative to enhance bee health. The aim of this study was to evaluate the effect of the oral administration of bacterial metabolites produced by Lactobacillus johnsonii AJ5 on nutritional parameters, the N. ceranae development and the performance of A. mellifera colonies. Laboratory assays were performed and demonstrated that the bacterial metabolites did not have a toxic effect on bees. Field trial showed an increase of colonies population over time. Also, a decreasing trend of fat bodies per bee was detected in all colonies but there were no evident changes on abdomen protein content at the end of the assay. Lastly, N. ceranae prevalence showed a tendency to reduce with the organic acids. Future studies should be performed to increase our knowledge of the physiological effects of bacterial metabolites on the health of bee colonies.

  3. [THE MICROSPORIDIUM GLUGEA GASTEROSTEI VORONIN 1974 (MICROSPORIDIA: MARINOSPORIDIA) FROM THE THREE-SPINED STICKLEBACK GASTEROSTEUS ACULEATUS (ACTINOPTERYGII: GASTEROSTEIFORMES) AS AN INDEPENDENT SPECIES].

    Science.gov (United States)

    Tokarev, Y S; Voronin, V N; Senderskiy, I V; Issi, I V

    2015-01-01

    The microsporidium Glugea gasterostei from the three-spined stickleback Gasterosteus aculeatus was described as an independent species basing upon morphological and ecological traits of the parasite (Voronin, 1974), further supported by ultrastructural characters of its spores (Voronin, 1983). During the revision of microsporidia of the genus Glugea (Canning, Lom, 1986; Lom, 2002), the validity of this species was doubted and it was synonymized with G. anomala. Nevertheless, the molecular phylogenetic analysis performed in the present study showed the unique molecular haplotype of small subunit rRNA gene of G. gasterostei (Genbank accession number KM977990) and its close relatedness to G. anomala, G. atherinae and G. hertwigi (sequence similarity of 99.7 %). One of typical characters of G. gasterostei, as opposed to G. anomala, is the formation of xenomas on inner tissues and not on the surface of infected fishes. This feature is retained even after the infection of different host species. Taken together, these data confirm the validity of G. gasterostei as a separate species among closely related taxa that had diverged comparatively recently.

  4. Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis.

    Science.gov (United States)

    Peng, Yan; Grassl, Julia; Millar, A Harvey; Baer, Boris

    2016-01-27

    The societies of ants, bees and wasps are genetically closed systems where queens only mate during a brief mating episode prior to their eusocial life and males therefore provide queens with a lifetime supply of high-quality sperm. These ejaculates also contain a number of defence proteins that have been detected in the seminal fluid but their function and efficiency have never been investigated in great detail. Here, we used the honeybee Apis mellifera and quantified whether seminal fluid is able to combat infections of the fungal pathogen Nosema apis, a widespread honeybee parasite that is also sexually transmitted. We provide the first empirical evidence that seminal fluid has a remarkable antimicrobial activity against N. apis spores and that antimicrobial seminal fluid components kill spores in multiple ways. The protein fraction of seminal fluid induces extracellular spore germination, which disrupts the life cycle of N. apis, whereas the non-protein fraction of seminal fluid induces a direct viability loss of intact spores. We conclude that males provide their ejaculates with efficient antimicrobial molecules that are able to kill N. apis spores and thereby reduce the risk of disease transmission during mating. Our findings could be of broader significance to master honeybee diseases in managed honeybee stock in the future. © 2016 The Author(s).

  5. Nueva especie de Parathelohania (Microsporidia en larvas de Anopheles aquasalis (Diptera: Culicidae en Venezuela

    Directory of Open Access Journals (Sweden)

    Frances Osborn

    2002-12-01

    the dates of change of instar were noted. Infected larvas were processed for transmission electronic microscopy using conventional methods at pH 7.2 and 260 mOsm/l. The infection by the microsporidia was positively correlated with an increase in the mean duration of the fourth instar of 2.88 to 6.33 days in 10 g/l of salt and of 2.47 to 6.14 days in 20 g/l of salt. Larval mortality also increased by approximately 50% during this instar in both salt concentrations. Development time and survival were not affected during the other immature stages. The mature spores found in the intestines of infected larvae were barrel shaped and measured approximately 2.6 x 2.4 mm. The exospore has a collar shaped prolongation at the posterior end of the spore. The spores are uninuclear with a posterior vacuole. The polar filament is anisofilar with nine rings, five with a diameter of 58 nm each and four with a diameter of 23 nm each. The polarplast is lamellate, and more tightly packed in the apical region. The reduction of the survival of A. aquasalis larvae infected with the microsporidia, and the increase in the development time suggest that this parasite might have a potential as a biological control of this pest. The microsporidium describes here has similar characteristics to that of the genus Parathelohania. I suggest that the rnicrosporidium found in A. aquasalis represents a new species and I propose the name Parathelohania aquasalensis. This is the first report of a microsporidium from a dipteran in Venezuela.

  6. Infections with the Sexually Transmitted Pathogen Nosema apis Trigger an Immune Response in the Seminal Fluid of Honey Bees (Apis mellifera).

    Science.gov (United States)

    Grassl, Julia; Peng, Yan; Baer-Imhoof, Barbara; Welch, Mat; Millar, A Harvey; Baer, Boris

    2017-01-06

    Honey bee (Apis mellifera) males are highly susceptible to infections with the sexually transmitted fungal pathogen Nosema apis. However, they are able to suppress this parasite in the ejaculate using immune molecules in the seminal fluid. We predicted that males respond to infections by altering the seminal fluid proteome to minimize the risk to sexually transmit the parasite to the queen and her colony. We used iTRAQ isotopic labeling to compare seminal fluid proteins from infected and noninfected males and found that N. apis infections resulted in significant abundance changes in 111 of the 260 seminal fluid proteins quantitated. The largest group of proteins with significantly changed abundances consisted of 15 proteins with well-known immune-related functions, which included two significantly more abundant chitinases in the seminal fluid of infected males. Chitinases were previously hypothesized to be involved in honey bee antifungal activity against N. apis. Here we show that infection with N. apis triggers a highly specific immune response in the seminal fluid of honey bee males.

  7. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    Science.gov (United States)

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  8. Occurrence and Prevalence of Insect Pathogens in Populations of the Codling Moth, Cydia pomonella L.: A Long-Term Diagnostic Survey

    Directory of Open Access Journals (Sweden)

    Regina G. Kleespies

    2013-08-01

    Full Text Available About 20,550 larvae, pupae and adults of the codling moth, Cydia pomonella L., were diagnosed for pathogens during long-term investigations (1955–2012 at the Institute for Biological Control in Darmstadt, Germany. The prevailing entomopathogens diagnosed in these studies were insect pathogenic fungi, especially Beauveria bassiana and Isaria farinosa, the microsporidium, Nosema carpocapsae, the Cydia pomonella granulovirus (CpGV, as well as mostly undetermined bacteria. While the CpGV was observed exclusively in larvae and pupae from laboratory colonies or from field experiments with this virus, entomopathogenic fungi were most frequently diagnosed in last instars in autumn and in diapausing larvae and pupae in spring. B. bassiana was identified as the major fungal pathogen, causing larval prevalences of 0.9% to 100% (mean, about 32%. During prognostic long-term studies in larvae and adults of C. pomonella, N. carpocapsae was diagnosed in codling moth populations from various locations in Germany. The mean prevalence generally ranged between 20% and 50%. Experiments revealed that the fecundity and fertility of microsporidia-infected female adults were significantly reduced compared to healthy ones. The results underpin the importance of naturally occurring microbial antagonists and represent a base for further ecological studies on developing new or additional biological and integrated control strategies.

  9. Diversity of microsporidia, Cryptosporidium and Giardia in mountain gorillas (Gorilla beringei beringei in Volcanoes National Park, Rwanda.

    Directory of Open Access Journals (Sweden)

    Bohumil Sak

    Full Text Available Infectious diseases represent the greatest threats to endangered species, and transmission from humans to wildlife under increased anthropogenic pressure has been always stated as a major risk of habituation.To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, one hundred mountain gorillas (Gorilla beringei beringei from seven groups habituated either for tourism or for research in Volcanoes National Park, Rwanda were screened for the presence of microsporidia, Cryptosporidium spp. and Giardia spp. using molecular diagnostics.The most frequently detected parasites were Enterocytozoon bieneusi found in 18 samples (including genotype EbpA, D, C, gorilla 2 and five novel genotypes gorilla 4-8 and Encephalitozoon cuniculi with genotype II being more prevalent (10 cases compared to genotype I (1 case. Cryptosporidium muris (2 cases and C. meleagridis (2 cases were documented in great apes for the first time. Cryptosporidium sp. infections were identified only in research groups and occurrence of E. cuniculi in research groups was significantly higher in comparison to tourist groups. No difference in prevalence of E. bieneusi was observed between research and tourist groups.Although our data showed the presence and diversity of important opportunistic protists in Volcanoes gorillas, the source and the routes of the circulation remain unknown. Repeated individual sampling, broad sampling of other hosts sharing the habitat with gorillas and quantification of studied protists would be necessary to acquire more complex data.

  10. Diversity of microsporidia, Cryptosporidium and Giardia in mountain gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda.

    Science.gov (United States)

    Sak, Bohumil; Petrželková, Klára J; Květoňová, Dana; Mynářová, Anna; Pomajbíková, Kateřina; Modrý, David; Cranfield, Michael R; Mudakikwa, Antoine; Kváč, Martin

    2014-01-01

    Infectious diseases represent the greatest threats to endangered species, and transmission from humans to wildlife under increased anthropogenic pressure has been always stated as a major risk of habituation. To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, one hundred mountain gorillas (Gorilla beringei beringei) from seven groups habituated either for tourism or for research in Volcanoes National Park, Rwanda were screened for the presence of microsporidia, Cryptosporidium spp. and Giardia spp. using molecular diagnostics. The most frequently detected parasites were Enterocytozoon bieneusi found in 18 samples (including genotype EbpA, D, C, gorilla 2 and five novel genotypes gorilla 4-8) and Encephalitozoon cuniculi with genotype II being more prevalent (10 cases) compared to genotype I (1 case). Cryptosporidium muris (2 cases) and C. meleagridis (2 cases) were documented in great apes for the first time. Cryptosporidium sp. infections were identified only in research groups and occurrence of E. cuniculi in research groups was significantly higher in comparison to tourist groups. No difference in prevalence of E. bieneusi was observed between research and tourist groups. Although our data showed the presence and diversity of important opportunistic protists in Volcanoes gorillas, the source and the routes of the circulation remain unknown. Repeated individual sampling, broad sampling of other hosts sharing the habitat with gorillas and quantification of studied protists would be necessary to acquire more complex data.

  11. Diversity of Microsporidia, Cryptosporidium and Giardia in Mountain Gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda

    Science.gov (United States)

    Sak, Bohumil; Petrželková, Klára J.; Květoňová, Dana; Mynářová, Anna; Pomajbíková, Kateřina; Modrý, David; Cranfield, Michael R.; Mudakikwa, Antoine; Kváč, Martin

    2014-01-01

    Background Infectious diseases represent the greatest threats to endangered species, and transmission from humans to wildlife under increased anthropogenic pressure has been always stated as a major risk of habituation. Aims To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, one hundred mountain gorillas (Gorilla beringei beringei) from seven groups habituated either for tourism or for research in Volcanoes National Park, Rwanda were screened for the presence of microsporidia, Cryptosporidium spp. and Giardia spp. using molecular diagnostics. Results The most frequently detected parasites were Enterocytozoon bieneusi found in 18 samples (including genotype EbpA, D, C, gorilla 2 and five novel genotypes gorilla 4–8) and Encephalitozoon cuniculi with genotype II being more prevalent (10 cases) compared to genotype I (1 case). Cryptosporidium muris (2 cases) and C. meleagridis (2 cases) were documented in great apes for the first time. Cryptosporidium sp. infections were identified only in research groups and occurrence of E. cuniculi in research groups was significantly higher in comparison to tourist groups. No difference in prevalence of E. bieneusi was observed between research and tourist groups. Conclusion Although our data showed the presence and diversity of important opportunistic protists in Volcanoes gorillas, the source and the routes of the circulation remain unknown. Repeated individual sampling, broad sampling of other hosts sharing the habitat with gorillas and quantification of studied protists would be necessary to acquire more complex data. PMID:25386754

  12. In vitro culture of various species of microsporidia causing keratitis: Evaluation of three immortalized cell lines

    Directory of Open Access Journals (Sweden)

    Joseph J

    2009-01-01

    Full Text Available Being intracellular parasites, microsporidia can only be propagated in cell culture systems. This study evaluated three cell lines to determine the most suitable host-parasite In vitro system. Confluent monolayers of vero, SIRC, and HeLa cell lines, grown in 24-well tissue culture plates, were inoculated with varying concentrations (1 x 10 4 to 1 x 10 8 spores/mL of Vittaforma corneae, Encephalitozoon hellem, Encephalitozoon cuniculi, and Encephalitozoon intestinalis spores. Growth was compared quantitatively at weekly intervals. Encephalitozoon species showed the highest amount of growth when cultured in vero cell line, while there was no significant difference in their growth in SIRC and HeLa cell lines. In comparison, V. corneae showed the highest growth in SIRC cells, followed by vero cells. The analytical sensitivity was found to be 1 x 10 4 spores/mL for vero cell line compared to 1 x 10 5 spores/mL for SIRC cell line and 1 x 10 7 spores/mL for HeLa cell line. HeLa cells also showed rapid disruption of cells, and the spores could not be easily distinguished from cell debris. This is the first report of the comparison of vero, SIRC, and HeLa for the propagation of microsporidial spores. Vero cell line was found to be more sensitive than SIRC and HeLa cells, and we believe that the inclusion of vero cell line in the routine culture protocols of ocular parasitology laboratories would result in a significant increase in the diagnostic yield.

  13. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees.

    Science.gov (United States)

    Plischuk, Santiago; Antúnez, Karina; Haramboure, Marina; Minardi, Graciela M; Lange, Carlos E

    2017-04-01

    An initial survey in 2009 carried out at a site in northwestern Patagonia region, Argentina, revealed for the first time in South America the presence of the flagellate Crithidia bombi and the neogregarine Apicystis bombi, two pathogens associated with the Palaearctic invasive bumble bee Bombus terrestris. In order to determine the long-term persistence and dynamics of this microparasite complex, four additional collections at the same site (San Carlos de Bariloche) were conducted along the following seven years. Both protists were detected in all collections: prevalence was 2%-21.6% for C. bombi and 1.2%-14% for A. bombi. In addition, the microsporidium Nosema bombi was recorded for the first time in the country in the last two collections, at prevalences of 12.4% and 2.4% and unusually high infection intensities (Average = 6.56 × 10 7 spores per individual). Due to the exceptional dispersal ability of the exotic B. terrestris, these three multihost pathogens should be considered as potential threats to South American native bumble bees. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.)

    Science.gov (United States)

    Lucas, Hannah M.; Webster, Thomas C.; Sagili, Ramesh R.

    2016-01-01

    Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and

  15. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    Cameron J Jack

    Full Text Available Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected and intensity (number of spores per bee of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis. Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland

  16. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis.

    Science.gov (United States)

    Bao, Haibo; Liu, Yang; Zhang, Yixi; Liu, Zewen

    2017-08-01

    Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with K d values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [ 3 H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular, physiological and behavioral responses of honey bee (Apis mellifera) drones to infection with microsporidian parasites.

    Science.gov (United States)

    Holt, Holly L; Villar, Gabriel; Cheng, Weiyi; Song, Jun; Grozinger, Christina M

    2018-04-26

    Susceptibility to pathogens and parasites often varies between sexes due to differences in life history traits and selective pressures. Nosema apis and Nosema ceranae are damaging intestinal pathogens of European honey bees (Apis mellifera). Nosema pathology has primarily been characterized in female workers where infection is energetically costly and accelerates worker behavioral maturation. Few studies, however, have examined infection costs in male honey bees (drones) to determine if Nosema similarly affects male energetic status and sexual maturation. We infected newly emerged adult drones with Nosema spores and conducted a series of molecular, physiological, and behavioral assays to characterize Nosema etiology in drones. We found that infected drones starved faster than controls and exhibited altered patterns of flight activity in the field, consistent with energetic distress or altered rates of sexual maturation. Moreover, expression of candidate genes with metabolic and/or hormonal functions, including members of the insulin signaling pathway, differed by infection status. Of note, while drone molecular responses generally tracked predictions based on worker studies, several aspects of infected drone flight behavior contrasted with previous observations of infected workers. While Nosema infection clearly imposed energetic costs in males, infection had no impact on drone sperm numbers and had only limited effects on antennal responsiveness to a major queen sex pheromone component (9-ODA). We compare Nosema pathology in drones with previous studies describing symptoms in workers and discuss ramifications for drone and colony fitness. Copyright © 2018. Published by Elsevier Inc.

  18. Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency.

    Science.gov (United States)

    Maggi, Matías; Negri, Pedro; Plischuk, Santiago; Szawarski, Nicolás; De Piano, Fiorella; De Feudis, Leonardo; Eguaras, Martín; Audisio, Carina

    2013-12-27

    The European honey bee Apis mellifera is known to be affected by many parasites and pathogens that have great impact over the insect development. Among parasites affecting bee health, Nosema ceranae is one of the main biotic factors affecting colony populations. As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. The main goal of the current study was to assess the effect of the oral administration of the metabolites produced by Lactobacillus johnsonii CRL1647 (mainly organic acids) supplemented in syrup, on: (I) N. ceranae sporulation dynamics before and after fumagillin application, and (II) performance of A. mellifera colonies. Different experiments were conducted to evaluate the effects of these bacterial metabolites on bees: in vitro administration revealed no toxic effects against bees. Colonies fed with the lactic acids incremented their beehive population and also the amount of fat bodies per bee. Finally, the organic acids reduced the intensity of the pathogen after the second application of treatment as well as enhanced the fumagillin efficiency. This study provides important information for the development of new control substances against nosemosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Nosema chrysorrhoea n. sp. (Microsporidia), isolated from browntail moth (Euproctis chrysorrhoea L.) (Lepidoptera, Lymantriidae) in Bulgaria: Characterization and phylogenetic relationships

    Czech Academy of Sciences Publication Activity Database

    Hyliš, M.; Pilarska, D.; Oborník, Miroslav; Vávra, Jiří; Solter, L. F.; Weiser, Jaroslav; Linde, A.; McManus, M. L.

    2006-01-01

    Roč. 91, č. 2 (2006), s. 105-114 ISSN 0022-2011 Institutional research plan: CEZ:AV0Z50070508; CEZ:AV0Z60220518 Keywords : Micropsoridia * taxonomy * phylogeny Subject RIV: EG - Zoology Impact factor: 1.235, year: 2006

  20. Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources.

    Science.gov (United States)

    De Loof, A; Schoofs, L

    1990-01-01

    1. The 4K-prothoracicotropic hormone (PTTH) or bombyxin and the melanization-reddish coloration hormone of the silkworm Bombyx mori resemble insulin and insulin-like growth factors. 2. The family of adipokinetic/red pigment concentrating hormones has some similarity with glucagon. 3. Members of the FMRFamide family are found in vertebrates as well as in invertebrates. 4. In Locusta, a molecule immunologically and biologically related to amphibian melanophore stimulating hormone has been partially characterized. 5. Enkephalins and enkephalin-related peptides occur in insects and other invertebrates. 6. Peptides belonging to the tachykinin family have been isolated from molluscan (Octopus) salivary glands and from insect nervous tissue (Locusta migratoria). 7. Invertebrate arginine-vasotocin homologs have been isolated from an insect (Locusta migratoria) and from a mollusc (Conus). 8. In Leucophaea, Locusta and Drosophila, peptides resembling those of the vertebrate gastrin/cholecystokinin family have been identified. 9. As the number of different neuro-/gut peptides with possible function(s) as hormone, neurotransmitter or neuromodulator is now estimated to be of the order of a few hundred, more similarities will probably show up in the near future.

  1. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    Science.gov (United States)

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L; Colwell, Megan J; Levitt, Abby L; Ostiguy, Nancy; Williams, Geoffrey R

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

  2. Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections.

    Science.gov (United States)

    Huang, Qiang; Kryger, Per; Le Conte, Yves; Moritz, Robin F A

    2012-03-01

    Honey bee colonies (Apis mellifera) have been selected for low level of Nosema in Denmark over decades and Nosema is now rarely found in bee colonies from these breeding lines. We compared the immune response of a selected and an unselected honey bee lineage, taking advantage of the haploid males to study its potential impact on the tolerance toward Nosema ceranae, a novel introduced microsporidian pathogen. After artificial infections of the N. ceranae spores, the lineage selected for Nosema tolerance showed a higher N. ceranae spore load, a lower mortality and an up-regulated immune response. The differences in the response of the innate immune system between the selected and unselected lineage were strongest at day six post infection. In particular genes of the Toll pathway were up-regulated in the selected strain, probably is the main immune pathway involved in N. ceranae infection response. After decades of selective breeding for Nosema tolerance in the Danish strain, it appears these bees are tolerant to N. ceranae infections. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Science.gov (United States)

    Vidau, Cyril; Diogon, Marie; Aufauvre, Julie; Fontbonne, Régis; Viguès, Bernard; Brunet, Jean-Luc; Texier, Catherine; Biron, David G.; Blot, Nicolas; El Alaoui, Hicham; Belzunces, Luc P.; Delbac, Frédéric

    2011-01-01

    Background The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. Methodology/Finding Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. Conclusions/Significance After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing

  4. Molecular characterization of Enterocytozoon bieneusi in wild carnivores in Spain

    Science.gov (United States)

    Microsporidia comprises a diverse group of obligate intracellular parasites that infect a broad range of invertebrates and vertebrates. Among Microsporidia, Enterocytozoon bieneusi is the most frequently detected species in humans and animals worldwide bringing into question the possible role of ani...

  5. Myospora metanephrops (n. g., n. sp.) from marine lobsters and a proposal for erection of a new order and family (Crustaceacida; Myosporidae) in the Class Marinosporidia (Phylum Microsporidia).

    Science.gov (United States)

    Stentiford, G D; Bateman, K S; Small, H J; Moss, J; Shields, J D; Reece, K S; Tuck, I

    2010-10-01

    In this study we describe, the first microsporidian parasite from nephropid lobsters. Metanephrops challengeri were captured from an important marine fishery situated off the south coast of New Zealand. Infected lobsters displayed an unusual external appearance and were lethargic. Histology was used to demonstrate replacement of skeletal and other muscles by merogonic and sporogonic stages of the parasite, while transmission electron microscopy revealed the presence of diplokaryotic meronts, sporonts, sporoblasts and spore stages, all in direct contact with the host sarcoplasm. Analysis of the ssrDNA gene sequence from the lobster microsporidian suggested a close affinity with Thelohania butleri, a morphologically dissimilar microsporidian from marine shrimps. Whilst morphological features of the lobster parasite are consistent with members of the family Nosematidae, molecular data place the parasite closer to members of the family Thelohanidae. Due to the contradiction between morphological and molecular taxonomic data, we propose the erection of a new genus in which the lobster parasite is the type species (Myospora metanephrops). Furthermore, we recommend the erection of a new family (Myosporidae) and a new order (Crustaceacida) to contain this genus. The taxonomic framework presented could be further applied to the re-classification of existing members of the Phylum Microsporidia. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  6. A Comparative Study of Environmental Conditions, Bee Management and the Epidemiological Situation in Apiaries Varying in the Level of Colony Losses

    Directory of Open Access Journals (Sweden)

    Pohorecka Krystyna

    2014-12-01

    Full Text Available Explaining the reasons for the increased mortality of the honey bee (Apis mellifera L. in recent years, in Europe and North America, has become a global research priority in apicultural science. Our project was aimed at determining the relationship between environmental conditions, beekeeping techniques, the epidemiological situation of pathogens, and the mortality rate of bee colonies. Dead bee samples were collected by beekeepers from 2421 colonies. The samples were examined for the presence of V. destructor, Nosema spp. (Nosema apis and Nosema ceranae, chronic bee paralysis virus (CBPV, acute bee paralysis virus (ABPV, deformed wing virus (DWV, and Israeli acute paralysis virus (IAPV.

  7. Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections

    DEFF Research Database (Denmark)

    Huanga, Qiang; Kryger, Per; Le Conte, Yves

    2012-01-01

    Honey bee colonies (Apis mellifera) have been selected for low level of Nosema in Denmark over decades and Nosema is now rarely found in bee colonies from these breeding lines. We compared the immune response of a selected and an unselected honey bee lineage, taking advantage of the haploid males...

  8. Nosema ceranae Winter Control: Study of the Effectiveness of Different Fumagillin Treatments and Consequences on the Strength of Honey Bee (Hymenoptera: Apidae) Colonies.

    Science.gov (United States)

    Mendoza, Y; Diaz-Cetti, S; Ramallo, G; Santos, E; Porrini, M; Invernizzi, C

    2017-02-01

    In Uruguay, colonies of honey bees moving to Eucalyptus grandis plantation in autumn habitually become infected with the microsporidian Nosema ceranae , a parasite that attacks the digestive system of bees. Beekeepers attributed to N. ceranae depopulation of the colonies that often occurs at the end of the blooming period, and many use the antibiotic fumagillin to reduce the level of infection. The aim of this study was to compare the effectiveness of four different fumagillin treatments and determine how this antibiotic affects the strength of the colonies during the winter season. The colonies treated with fumagillin in July showed less spore load at the end of applications, being the most effective the following treatments: the four applications sprayed over bees of 30 mg of fumagillin in 100 ml of sugar syrup 1:1, and four applications of 90 mg of fumagillin in 250 ml of sugar syrup 1:1 using a feeder. However, 2 month after the treatment applications, the colonies treated with fumagillin were the same size as the untreated colonies. In September, the colonies treated and not treated with fumagillin did not differ in colony strength (adult bee population and brood area) or spores abundance. Our study demonstrates that fumagillin treatment temporarily decreased the spore load of N. ceranae , but this was not reflected in either the size of the colonies or the probability of surviving the winter regardless of the dose or the administration strategy applied. Given the results obtained, we suggest to not perform the pharmacological treatment under the conditions described in the experiment. En Uruguay las colonias de abejas melíferas que se trasladan a las forestaciones de Eucalyptus grandis en otoño indefectiblemente se infectan con el microsporido Nosema ceranae , parásito que ataca el sistema digestivo de las abejas. Los apicultores atribuyen a N. ceranae el despoblamiento de las colonias que ocurre con frecuencia al terminar el periodo de floraci

  9. Effects of Wintering Environment and Parasite-Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions.

    Directory of Open Access Journals (Sweden)

    Suresh D Desai

    Full Text Available Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV, black queen cell virus (BQCV, and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV, Kashmir bee virus (KBV, and Chronic bee paralysis virus (CBPV increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated

  10. Prevalence of honeybee viruses in the Czech Republic and coinfections with other honeybee disease

    Czech Academy of Sciences Publication Activity Database

    Ryba, Š.; Titěra, D.; Schödelbauerová, Iva; Kindlmann, Pavel

    2012-01-01

    Roč. 67, č. 3 (2012), s. 590-595 ISSN 0006-3088 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Nosema apis * Nosema ceranae * Paenibacillus * DWV * ABPV * BQCV * SBV * KBV * CBPV Subject RIV: EH - Ecology, Behaviour Impact factor: 0.506, year: 2012

  11. New insights of Microsporidial infection among asymptomatic aboriginal population in Malaysia.

    Directory of Open Access Journals (Sweden)

    Tengku Shahrul Anuar

    Full Text Available BACKGROUND: Studies on microsporidial infection mostly focus on immunodeficiency or immunosuppressive individuals. Therefore, this cross-sectional study describes the prevalence and risk factors of microsporidiosis among asymptomatic individuals in Malaysia. METHODS/FINDINGS: Four hundred and forty seven stool samples were collected and examined for microsporidia after staining with Gram-chromotrope Kinyoun. Demographic, socioeconomic, environmental, and behavioral information were collected by using a pre-tested questionnaire. Overall, 67 (15% samples were positive for microsporidia. The prevalence of infection was significantly higher among individuals aged more than 15 years compared to those aged <15 years (OR = 1.97, 95% CI = 1.08, 3.62; P = 0.028. Furthermore, logistic regression analysis confirmed that the presence of other family members infected with microsporidia (OR = 8.45; 95% CI = 4.30, 16.62; P<0.001 and being a consumer of raw vegetables (OR = 2.05; 95% CI = 1.15, 3.66; P = 0.016 were the significant risk factors of this infection. CONCLUSIONS: These findings clearly show that exposure to microsporidia is common among Aboriginal population. Further studies using molecular approach on microsporidia isolates from asymptomatic individuals is needed to determine species-specific. The risk factors associated with microsporidiosis will help in identifying more clearly the sources of the infection in the environment that pose a risk for transmission so that preventive strategies can be implemented.

  12. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  13. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies.

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  14. Histopathological evaluation of ocular microsporidiosis by different stains

    Directory of Open Access Journals (Sweden)

    Sharma Savitri

    2006-06-01

    Full Text Available Abstract Background There is limited data on comparing stains in the detection of microsporidia in corneal biopsies. Hence we wanted to evaluate various stains for their ability to detect microsporidia in corneal tissue sections. Methods Four cases diagnosed with microsporidiosis on Hematoxylin and Eosin and Periodic Acid Schiff's stained sections of the corneal button between January 2002 and December 2004, were included. Further sections were prospectively stained with calcofluor white, Gram, Giemsa, Masson's trichrome, acridine orange, Gomori's methenamine silver, Gram's chromotrope and modified acid fast stain. The stained sections were analyzed for the spore characteristics in terms of size, shape, color contrast, cell wall morphology, waist band in cytoplasm and ease of detection. Results All sections showed microsporidial spores as 3 – 5 μm, oval bodies. 1% acid fast, Gram's chromotrope and GMS stains provided a reliable diagnosis of microsporidia as diagnostic waist band could be identified and good contrast helped distinguish the spores from inflammatory debris. Conclusion Considering the ease of performance, cost effectiveness and rapidity of the technique, 1% acid fast stain and Gram's chromotrope stain are ideal for the detection of microsporidia.

  15. The effect of using an inappropriate protein database for proteomic data analysis.

    Directory of Open Access Journals (Sweden)

    Giselle M Knudsen

    Full Text Available A recent study by Bromenshenk et al., published in PLoS One (2010, used proteomic analysis to identify peptides purportedly of Iridovirus and Nosema origin; however the validity of this finding is controversial. We show here through re-analysis of a subset of this data that many of the spectra identified by Bromenshenk et al. as deriving from Iridovirus and Nosema proteins are actually products from Apis mellifera honey bee proteins. We find no reliable evidence that proteins from Iridovirus and Nosema are present in the samples that were re-analyzed. This article is also intended as a learning exercise for illustrating some of the potential pitfalls of analysis of mass spectrometry proteomic data and to encourage authors to observe MS/MS data reporting guidelines that would facilitate recognition of analysis problems during the review process.

  16. Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis.

    Science.gov (United States)

    Nath, B Surendra; Gupta, S K; Bajpai, A K

    2012-12-01

    The life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect.

  17. Latent Microsporidiosis Caused by Encephalitozoon cuniculi in Immunocompetent Hosts: A Murine Model Demonstrating the Ineffectiveness of the Immune System and Treatment with Albendazole

    Science.gov (United States)

    Kotkova, Michaela; Sak, Bohumil; Kvetonova, Dana; Kvac, Martin

    2013-01-01

    Background Microsporidia are obligate intracellular parasites causing severe infections with lethal outcome in immunocompromised hosts. However, these pathogens are more frequently reported as latent infections in immunocompetent individuals and raises questions about the potential risk of reactivation following induced immunosuppression. Aims To evaluate the possibility latent microsporidiosis, efficacy or albendazole, and reactivation, the authors monitored the course of E. cuniculi infection in immunocompetent BALB/c mice and immunodeficient SCID mice using molecular methods. Methods Mice were per orally infected with 107 spores of E. cuniculi. Selected groups were treated with albendazole, re-infected or chemically immunosuppressed by dexamethasone. The presence of microsporidia in the host’s organs and feces were determined using PCR methods. Changes in numbers of lymphocytes in blood and in spleen after induction of immunosuppression were confirmed using flow cytometry analysis. Results Whereas E. cuniculi caused lethal microsporidiosis in SCID mice, the infection in BABL/c mice remained asymptomatic despite parasite dissemination into many organs during the acute infection phase. Albendazole treatment led to microsporidia elimination from organs in BALB/c mice. In SCID mice, however, only a temporary reduction in number of affected organs was observed and infection re-established post-treatment. Dexamethasone treatment resulted in a chronic microsporidia infection disseminating into most organs in BALB/c mice. Although the presence of E. cuniculi in organs of albendazole- treated mice was undetectable by PCR, it was striking that infection was reactivated by immunosuppression treatment. Conclusion Our results demonstrated that microsporidia can successfully survive in organs of immunocompetent hosts and are able to reactivate from undetectable levels and spread within these hosts after induction of immunosuppression. These findings stress the danger of

  18. Latent microsporidiosis caused by Encephalitozoon cuniculi in immunocompetent hosts: a murine model demonstrating the ineffectiveness of the immune system and treatment with albendazole.

    Directory of Open Access Journals (Sweden)

    Michaela Kotkova

    Full Text Available BACKGROUND: Microsporidia are obligate intracellular parasites causing severe infections with lethal outcome in immunocompromised hosts. However, these pathogens are more frequently reported as latent infections in immunocompetent individuals and raises questions about the potential risk of reactivation following induced immunosuppression. AIMS: To evaluate the possibility latent microsporidiosis, efficacy or albendazole, and reactivation, the authors monitored the course of E. cuniculi infection in immunocompetent BALB/c mice and immunodeficient SCID mice using molecular methods. METHODS: Mice were per orally infected with 10(7 spores of E. cuniculi. Selected groups were treated with albendazole, re-infected or chemically immunosuppressed by dexamethasone. The presence of microsporidia in the host's organs and feces were determined using PCR methods. Changes in numbers of lymphocytes in blood and in spleen after induction of immunosuppression were confirmed using flow cytometry analysis. RESULTS: Whereas E. cuniculi caused lethal microsporidiosis in SCID mice, the infection in BABL/c mice remained asymptomatic despite parasite dissemination into many organs during the acute infection phase. Albendazole treatment led to microsporidia elimination from organs in BALB/c mice. In SCID mice, however, only a temporary reduction in number of affected organs was observed and infection re-established post-treatment. Dexamethasone treatment resulted in a chronic microsporidia infection disseminating into most organs in BALB/c mice. Although the presence of E. cuniculi in organs of albendazole- treated mice was undetectable by PCR, it was striking that infection was reactivated by immunosuppression treatment. CONCLUSION: Our results demonstrated that microsporidia can successfully survive in organs of immunocompetent hosts and are able to reactivate from undetectable levels and spread within these hosts after induction of immunosuppression. These findings

  19. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry

    Directory of Open Access Journals (Sweden)

    De Loof Arnold

    2006-08-01

    Full Text Available Abstract Background For holometabolous insects there has been an explosion of proteomic and peptidomic information thanks to large genome sequencing projects. Heterometabolous insects, although comprising many important species, have been far less studied. The migratory locust Locusta migratoria, a heterometabolous insect, is one of the most infamous agricultural pests. They undergo a well-known and profound phase transition from the relatively harmless solitary form to a ferocious gregarious form. The underlying regulatory mechanisms of this phase transition are not fully understood, but it is undoubtedly that neuropeptides are involved. However, neuropeptide research in locusts is hampered by the absence of genomic information. Results Recently, EST (Expressed Sequence Tag databases from Locusta migratoria were constructed. Using bioinformatical tools, we searched these EST databases specifically for neuropeptide precursors. Based on known locust neuropeptide sequences, we confirmed the sequence of several previously identified neuropeptide precursors (i.e. pacifastin-related peptides, which consolidated our method. In addition, we found two novel neuroparsin precursors and annotated the hitherto unknown tachykinin precursor. Besides one of the known tachykinin peptides, this EST contained an additional tachykinin-like sequence. Using neuropeptide precursors from Drosophila melanogaster as a query, we succeeded in annotating the Locusta neuropeptide F, allatostatin-C and ecdysis-triggering hormone precursor, which until now had not been identified in locusts or in any other heterometabolous insect. For the tachykinin precursor, the ecdysis-triggering hormone precursor and the allatostatin-C precursor, translation of the predicted neuropeptides in neural tissues was confirmed with mass spectrometric techniques. Conclusion In this study we describe the annotation of 6 novel neuropeptide precursors and the neuropeptides they encode from the

  20. Wealth and Its Associations with Enteric Parasitic Infections in a Low-Income Community in Peru: Use of Principal Component Analysis

    Science.gov (United States)

    Nundy, Shantanu; Gilman, Robert H.; Xiao, Lihua; Cabrera, Lilia; Cama, Rosa; Ortega, Ynes R.; Kahn, Geoffrey; Cama, Vitaliano A.

    2011-01-01

    The association of wealth and infections with Giardia, Cryptosporidium, Cyclospora, and microsporidia were examined in a longitudinal cohort conducted in Peru from 2001 to 2006. Data from 492 participants were daily clinical manifestations, weekly copro-parasitological diagnosis, and housing characteristics and assets owned (48 variables), and these data were used to construct a global wealth index using principal component analysis. Data were analyzed using continuous and categorical (wealth tertiles) models. Participant's mean age was 3.43 years (range = 0–12 years), with average follow-up of 993 days. Univariate and multivariate analyses identified significant associations between wealth and infections with Giardia and microsporidia. Participants with greater wealth indexes were associated with protection against Giardia (P 14 days). For microsporidia, greater wealth was protective (P = 0.066 continuous and P = 0.042 by tertiles). Contrarily, infections with Cryptosporidium and Cyclospora were independent of wealth. Thus, subtle differences in wealth may affect the frequency of specific parasitic infections within low-income communities. PMID:21212198

  1. 125 Situation du criquet marocain "Dociostaurus maroccanusThunb ...

    African Journals Online (AJOL)

    AKA BOKO

    grasshoppers. Dociostaurus maroccanus appears able to move important distances, but it cannot be a migratory species as Locusta migratoria. Keywords : Morphometry, capacities of displacements, morphological features,. Moroccan Locust, migratory species. 1. Introduction. Contrairement à des espèces migratrices, ...

  2. Identification of a microsporidian isolate from Cnaphalocrocis Medinalis and its pathogenicity to Bombyx mori.

    Science.gov (United States)

    Huang, Xuhua; Qi, Guangjun; Pan, Zhixin; Zhu, Fangrong; Huang, Yuanjiao; Wu, Yonghu

    2014-11-01

    A microsporidian, CmM2, was isolated from Cnaphalocrocis medinalis. The biological characters, molecular analysis and pathogenicity of CmM2 were studied. The spore of CmM2 is long oval in shape and 3.45 ± 0.25 × 1.68 ± 0.18 µm in size, the life cycle includes meronts, sporonts, sporoblasts, and spores, with typical diplokaryon in each stage, propagated in binary fission. There is positive coagulation reaction between CmM2 and the polyclonal antibody of Nosema bombycis (N.b.). CmM2 spores is binuclear, and has 10-12 polar filament coils. The small subunit ribosomal RNA (SSU rRNA) gene sequence of CmM2 was obtained by PCR amplification and sequencing, the phylogenetic tree based on SSU rRNA sequences had been constructed, and the similarity and genetic distance of SSU rRNA sequences were analyzed, showed that CmM2 was grouped in the Nosema clade. The 50% infectious concentration of CmM2 to Bombyx mori is 4.72 × 10(4)  spores ml(-1) , and the germinative infection rate is 12.33%. The results showed that CmM2 is classified into genus Nosema, as Nosema sp. CmM2, and has a heavy infectivity to B. mori. The result indicated as well that it is valuable taxonomic determination for microsporidian isolates based on both biological characters and molecular evidence. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of Temperature on the Biotic Potential of Honeybee Microsporidia▿

    Science.gov (United States)

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-01-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33°C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37°C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns. PMID:19233948

  4. Department o/Zoology, University 0/ Rhodesia

    African Journals Online (AJOL)

    STUDIES ON THE WATER RELATIONS OF ADULT LOCUSTS - III ... The object of this work was to draw up a balance sheet of water gains and 10IIIaI in DOn- ...... water during the adult life of female Locusta was associated with sexual ...

  5. [Life cycle of Gongylonema mucronatum Seurat, 1916, parasite of the African hedge-hog (author's transl)].

    Science.gov (United States)

    Quentin, J C; Seguignes, M

    1979-01-01

    The Gongylonematid Nematode parasite of the Tunisian hedge-hog has been identified as Gongylonema mucronatum Seurat, 1916. The infective larva has been obtained from Locusta migratoria as intermediate host. The larval characters of this Gongylonema link it to the species G. pulchrum.

  6. Indication of bioactive candidates among body volatiles of ...

    African Journals Online (AJOL)

    Gregarious adult locusts are believed to release many bioactive volatiles from their bodies for the mediation of their biological characteristics. The determination of these bioactive body volatiles can contribute to the development of new, environmentally benign methods of locust control. An important locust, Locusta ...

  7. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees.

    Science.gov (United States)

    Piiroinen, Saija; Goulson, Dave

    2016-04-13

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. © 2016 The Author(s).

  8. Screening alternative therapies to control Nosemosis type C in honey bee (Apis mellifera iberiensis) colonies.

    Science.gov (United States)

    Botías, Cristina; Martín-Hernández, Raquel; Meana, Aránzazu; Higes, Mariano

    2013-12-01

    Nosemosis type C caused by the microsporidium Nosema ceranae is one of the most widespread of the adult honey bee diseases, and due to its detrimental effects on both strength and productivity of honey bee colonies, an appropriate control of this disease is advisable. Fumagillin is the only veterinary medicament recommended by the World Organization for Animal Health (OIE) to suppress infections by Nosema, but the use of this antibiotic is prohibited in the European Union and few alternatives are available at present to control the disease. In the present study three therapeutic agents (Nosestat®, Phenyl salicylate and Vitafeed Gold®) have been tested to control N. ceranae infection in honey bee colonies, and have been compared to the use of fumagillin. None of the products tested was effective against Nosema under our experimental conditions. Low consumption of the different doses of treatments may have had a strong influence on the results obtained, highlighting the importance of this issue and emphasizing that this should be evaluated in studies to test therapeutic treatments of honey bee colonies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees

    Science.gov (United States)

    2016-01-01

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. PMID:27053744

  10. Condensed tannin in Eragrostis chloromelas leaves deters feeding ...

    African Journals Online (AJOL)

    We investigated the feeding responses of a generalist grasshopper, the brown locust(Locusta pardalina), to leaves of the grass Eragrostis chloromelas differing in polyphenol content. For three specimens of E. chloromelas, the presence of condensed tannin in epidermal cells was confirmed by histochemical staining, while ...

  11. Regulation of glycogenolysis in the locust fat body during flight

    NARCIS (Netherlands)

    Marrewijk, W.J.A. van; Broek, A.Th.M. van den; Beenakkers, A.M.Th.

    1980-01-01

    Glycogen reserves in the fat body of Locusta migratoria decrease dramatically during the first two hours of flight. In fat body of rested locusts only 10% of glycogen phosphorylase occurs in the active form. The enzyme is activated significantly during flight, when up to one-third of the total

  12. Microsporidiosis in Vertebrate Companion Exotic Animals

    Directory of Open Access Journals (Sweden)

    Claire Vergneau-Grosset

    2015-12-01

    Full Text Available Veterinarians caring for companion animals may encounter microsporidia in various host species, and diagnosis and treatment of these fungal organisms can be particularly challenging. Fourteen microsporidial species have been reported to infect humans and some of them are zoonotic; however, to date, direct zoonotic transmission is difficult to document versus transit through the digestive tract. In this context, summarizing information available about microsporidiosis of companion exotic animals is relevant due to the proximity of these animals to their owners. Diagnostic modalities and therapeutic challenges are reviewed by taxa. Further studies are needed to better assess risks associated with animal microsporidia for immunosuppressed owners and to improve detection and treatment of infected companion animals.

  13. The Luna stain, an improved selective stain for detection of microsporidian spores in histologic sections

    Science.gov (United States)

    Peterson, Tracy S.; Spitsbergen, Jan M.; Feist, Stephen W.; Kent, Michael L.

    2014-01-01

    Microsporidia in histologic sections are most often diagnosed by observing spores in host tissues. Spores are easy to identify if they occur in large aggregates or xenomas when sections are stained with hematoxylin and eosin (H&E). However, individual spores are not frequently detected in host tissues with conventional H&E staining, particularly if spores are scattered within the tissues, areas of inflammation or small spores in nuclei (i.e., Nucleospora salmonis). Hence, a variety of selective stains that enhance visualization of spores are recommended. We discovered that the Luna stain, used to highlight eosinophils, red blood cells and chitin in arthropods and other invertebrates, also stains spores of Pseudoloma neurophilia. We compared this stain to the Gram, Fite’s acid fast, Giemsa, and H&E stains on eight aquatic microsporidian organisms that were readily available in our two laboratories: Loma salmonae, Glugea anomala, Pseudoloma neurophilia, Pleistophora hyphessobryconis, Pleistophora vermiformis, Glugea sp., Steinhausia mytilovum and an unidentified microsporidian from E. sinensis, UK. Based on tinctorial properties and background staining, the Luna stain performed better for detection of 6 of the 8 microsporidia. Gram stain was superior for the two microsporidia from invertebrates, Steinhausia mytilovum and the unidentified microsporidian from E. sinensis. PMID:21848126

  14. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western Lowland Gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic.

    Science.gov (United States)

    Sak, Bohumil; Petrzelkova, Klara J; Kvetonova, Dana; Mynarova, Anna; Shutt, Kathryn A; Pomajbikova, Katerina; Kalousova, Barbora; Modry, David; Benavides, Julio; Todd, Angelique; Kvac, Martin

    2013-01-01

    Infectious diseases pose one of the greatest threats to endangered species, and a risk of gastrointestinal parasite transmission from humans to wildlife has always been considered as a major concern of tourism. Increased anthropogenic impact on primate populations may result in general changes in communities of their parasites, and also in a direct exchange of parasites between humans and primates. To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, we conducted a long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas at different stages of the habituation process, humans, and other wildlife in Dzanga-Sangha Protected Areas in the Central African Republic. We detected Encephalitozoon cuniculi genotypes I and II (7.5%), Enterocytozoon bieneusi genotype D and three novel genotypes (gorilla 1-3) (4.0%), Giardia intestinalis subgroup A II (2.0%) and Cryptosporidium bovis (0.5%) in gorillas, whereas in humans we found only G. intestinalis subgroup A II (2.1%). In other wild and domestic animals we recorded E. cuniculi genotypes I and II (2.1%), G. intestinalis assemblage E (0.5%) and C. muris TS03 (0.5%). Due to the non-specificity of E. cuniculi genotypes we conclude that detection of the exact source of E. cuniculi infection is problematic. As Giardia intestinalis was recorded primarily in gorilla groups with closer human contact, we suggest that human-gorilla transmission has occurred. We call attention to a potentially negative impact of habituation on selected pathogens which might occur as a result of the more frequent presence of humans in the vicinity of both gorillas under habituation and habituated gorillas, rather than as a consequence of the close contact with humans, which might be a more traditional assumption. We encourage to observe the sections concerning hygiene from the IUCN best practice guidelines for all sites where increased human

  15. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western Lowland Gorillas (Gorilla gorilla gorilla at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic.

    Directory of Open Access Journals (Sweden)

    Bohumil Sak

    Full Text Available BACKGROUND: Infectious diseases pose one of the greatest threats to endangered species, and a risk of gastrointestinal parasite transmission from humans to wildlife has always been considered as a major concern of tourism. Increased anthropogenic impact on primate populations may result in general changes in communities of their parasites, and also in a direct exchange of parasites between humans and primates. AIMS: To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, we conducted a long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas at different stages of the habituation process, humans, and other wildlife in Dzanga-Sangha Protected Areas in the Central African Republic. RESULTS: We detected Encephalitozoon cuniculi genotypes I and II (7.5%, Enterocytozoon bieneusi genotype D and three novel genotypes (gorilla 1-3 (4.0%, Giardia intestinalis subgroup A II (2.0% and Cryptosporidium bovis (0.5% in gorillas, whereas in humans we found only G. intestinalis subgroup A II (2.1%. In other wild and domestic animals we recorded E. cuniculi genotypes I and II (2.1%, G. intestinalis assemblage E (0.5% and C. muris TS03 (0.5%. CONCLUSION: Due to the non-specificity of E. cuniculi genotypes we conclude that detection of the exact source of E. cuniculi infection is problematic. As Giardia intestinalis was recorded primarily in gorilla groups with closer human contact, we suggest that human-gorilla transmission has occurred. We call attention to a potentially negative impact of habituation on selected pathogens which might occur as a result of the more frequent presence of humans in the vicinity of both gorillas under habituation and habituated gorillas, rather than as a consequence of the close contact with humans, which might be a more traditional assumption. We encourage to observe the sections concerning hygiene from the IUCN best

  16. Involvement of cyclic nucleotides in locust flight muscle metabolism

    NARCIS (Netherlands)

    Worm, R.A.A.

    1980-01-01

    1. Flight had no significant effect on the levels of c-AMP of c-GMP in the flight muscles of Locusta migratoria. 2. Injections of 0.01 or 0.1 corpus cardiacum equivalents into the abdominal cavity did not elicit any effect on cyclic nucleotide levels either. 3. Injection of A23187 resulted in

  17. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera).

    Science.gov (United States)

    Retschnig, Gina; Williams, Geoffrey R; Mehmann, Marion M; Yañez, Orlando; de Miranda, Joachim R; Neumann, Peter

    2014-01-01

    Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.

  18. Genetic and immunological characterization of the microsporidian Septata intestinalis Cali, Kotler and Orenstein, 1993: reclassification to Encephalitozoon intestinalis

    NARCIS (Netherlands)

    Hartskeerl, R. A.; van Gool, T.; Schuitema, A. R.; Didier, E. S.; Terpstra, W. J.

    1995-01-01

    The relationships between the Encephalitozoon-like Septata intestinalis and other microsporidia that occur in humans; notably Encephalitozoon cuniculi and Encephalitozoon hellem, is insufficiently documented using morphological descriptions alone. To assess mutual relationships, we have examined

  19. Actions of insecticides on the insect GABA receptor complex

    International Nuclear Information System (INIS)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J.

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using [35S]t-butylbicyclophosphorothionate [( 35S]TBPS) binding and voltage-clamp techniques. Specific binding of [35S]TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 ± 2.9 nM and a Bmax value of 1770 ± 40 fmol/mg protein. [35S]TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of [35S]TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on [35S]TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current

  20. Phylogenetic relationships of three new microsporidian isolates from the silkworm, Bombyx mori.

    Science.gov (United States)

    Nageswara Rao, S; Muthulakshmi, M; Kanginakudru, S; Nagaraju, J

    2004-07-01

    The pathogenicity, mode of transmission, tissue specificity of infection and the small subunit rRNA (SSU-rRNA) gene sequences of the three new microsporidian isolates from the silkworm Bombyx mori were studied. Out of the three, NIK-2r revealed life cycle features and SSU-rRNA gene sequence similar to Nosema bombycis, suggesting that it is N. bombycis. The other two, NIK-4m and NIK-3h, differed from each other as well as from N. bombycis. NIK-4m was highly pathogenic and did not show any vertical transmission, in accordance with the apparent lack of gonadal infection, whereas NIK-3h was less pathogenic and vertical transmission was not detected but could not be excluded. Phylogenetic analysis based on SSU-rRNA gene sequence placed NIK-3h and NIK-4m in a distinct clade that included almost all the Vairimorpha species and Nosema species that infect lepidopteran and non-lepidopteran hosts, while NIK-2r was included in a clade containing almost all the Nosema isolates that infect only lepidopteran hosts. Thus, we have presented molecular evidence that one of the three isolates is in fact the type species N. bombycis, while the other two isolates are Vairimorpha spp. There was distinct separation of microsporidian isolates infecting only lepidopteran hosts and those infecting lepidopteran and non-lepidopteran hosts, reflecting possible co-evolution of hosts and microsporidian isolates.

  1. Are adequate methods available to detect protist parasites on fresh produce?

    Science.gov (United States)

    Human parasitic protists such as Cryptosporidium, Giardia and microsporidia contaminate a variety of fresh produce worldwide. Existing detection methods lack sensitivity and specificity for most foodborne parasites. Furthermore, detection has been problematic because these parasites adhere tenacious...

  2. Causes and Scale of Winter Flights in Honey Bee (Apis Mellifera Carnica Colonies

    Directory of Open Access Journals (Sweden)

    Węgrzynowicz Paweł

    2014-06-01

    Full Text Available Winter honey bee losses were evaluated during the two overwintering periods of 2009/2010 and 2010/2011. The research included dead bee workers that fell on the hive bottom board (debris and the ones that flew out of the hive. Differences were observed in the number of bees fallen as debris between the two periods, whereas the number of bees flying out was similar in both years. No differences were found between the numbers of dead bees in strong and weak colonies. The percentage of bees flying out of the colony increased in the presence of Nosema spores, Varroa infestation, increased average air temperature, and insolation during the day. In addition, both the presence of Nosema and insolation during the day had an impact on the number of bees that died and fell on the hive board.

  3. [Frequency of intestinal microsporidian infections in HIV-positive patients, as diagnosis by quick hot Gram chromotrope staining and PCR].

    Science.gov (United States)

    Botero, Jorge H; Montoya, Martha Nelly; Vanegas, Adriana Lucía; Díaz, Abel; Navarro-i-Martínez, Luis; Bornay, Fernando Jorge; Izquierdo, Fernando; del Aguila, Carmen; Agudelo, Sonia del Pilar

    2004-12-01

    Microsporidia are intracellular obligate parasites, today mainly associated with diarrhea in AIDS patients. Microsporidia prevalence ranges from 8% to 52% in different countries, as evaluated by several diagnostic methods, such as the stain test and PCR. In Medellín, Colombia, its frequency is unknown, and hence, a study was undertaken to determine the frequency of intestinal microsporidiosis in HIV patients, by means of the quick-hot Gram chromotrope test and the PCR. A prospective and descriptive study of an intentional population of all HIV-positive patients was sent to the Grupo Interdisciplinario para el Estudio de las Parasitosis Intestinales laboratory by institutions treating the HIV-positive patients of Medellín between August 2001 and September 2002. The clinical-epidemiological survey included a serial stool test with direct concentration and special stains for coccidiae and intestinal microsporidia. In addition, counts of lymphocytes TCD4+ and viral load were requested. One hundred and three patients with ages ranging from 2-74 years were evaluated. Seventy percent presented with diarrhea--mostly in men (83.5%). The overall frequency of intestinal microsporidiosis was 3.9% and that of other intestinal parasitic infections was 39.8%. Three of the four patients positive for microsporida were infected with Enterocytozoon bieneusi and one with Encephalitozoon intestinalis. The microsporidiosis frequency was relatively low with 3 of the 4 cases associated with protracted diarrhea, counts of LTCD4+ below 100 cel/microl and viral loads up to 100,000 copies.

  4. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms

    Science.gov (United States)

    Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A. P.; Stentiford, Grant D.; Flegel, Timothy W.; Sritunyalucksana, Kallaya

    2016-01-01

    Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers. PMID:27832178

  5. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms.

    Science.gov (United States)

    Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A P; Stentiford, Grant D; Flegel, Timothy W; Sritunyalucksana, Kallaya; Itsathitphaisarn, Ornchuma

    2016-01-01

    Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.

  6. Mechanisms regulating amphipod population density within macroalgal communities with low predator impact

    Directory of Open Access Journals (Sweden)

    Hartvig Christie

    2004-04-01

    Full Text Available In eight mesocosms (land based basins macroalgae communities with associated fauna were transplanted from the sea and established during two years. Then, different doses of nutrients (N and P were added to the basins throughout the following three years. During the period of nutrient addition, macroinvertebrate grazers showed seasonal fluctuations with densities usually between 500,000 and 1 million individuals per mesocosm during summer and to a level of about 100,000 during winter. The macroinvertebrate grazers mainly consisted of about 10 species of amphipods and isopods, among which the amphipod Gammarus locusta dominated strongly by biomass. Although the number of predators was very low, the grazer populations never reached a density where considerable grazing impact could be found on the macroalgae. No increase in grazer density was found in the basins with improved nutrient conditions. Thus food quality may be insufficient for further population growth, or density dependant regulation mechanisms may have prevented the grazers from flourishing and overgrazing the system. In aquarium experiments we showed that G. locusta could grow and reproduce on Fucus serratus, Ulva lactuca, periphyton and detritus, and that cannibalism by adult G. locusta on juveniles may have great impact on the population growth. The basins were run with a water flow through system. Nets were placed in front of the inflow and outflow tubes to measure immigration and emigration. Only few individuals (and no Gammarus sp. were recorded in the inflowing water, while high numbers of both amphipods and isopods were found in the outflowing water. Emigration reached peak values during night-time, and it was then two to three times as high as during day-time. Emigration of mobile grazers from the basins amounted to 1-2% of the standing stock daily. These mechanisms that regulate grazers do contribute to maintenance of the seaweed dominance and thus the stability of the seaweed

  7. Ocorrência de Giardia, Cryptosporidium e microsporídios em animais silvestres em área de desmatamento no Estado de São Paulo, Brasil Occurrence of Giardia, Cryptosporidium and microsporidia in wild animals from a deforestation area in the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Anete Lallo

    2009-08-01

    Full Text Available A ocorrência de Giardia, Cryptosporidium e microsporídios foi investigada por meio da análise de 98 amostras fecais de animais silvestres capturados em uma área de desmatamento para a construção das barragens de Paraitinga e Biritiba, localizadas nos Municípios de Mogi das Cruzes, Salesópolis e Biritiba-Mirim, no Estado de São Paulo. As amostras foram obtidas de 46 roedores, 21 marsupiais, 16 sapos, nove morcegos, três primatas e três lagartos. As técnicas de centrífugo-flutuação com sulfato de zinco, de Kinyoun e a coloração de Gram-Chromotrope foram utilizadas, respectivamente, para a pesquisa de Giardia, de Cryptosporidium e de microsporídios. O total de animais parasitados por um dos protozoários investigados foi de 17,35% (17/98. Cistos de Giardia foram encontrados em amostras fecais de dois pequenos roedores da espécie Coendou villosus (ouriço-cacheiro. Os três animais positivos para Cryptosporidium foram roedores das espécies Akodon montensis, Thaptomys nigrita (ambos conhecidos como ratos do mato e Sciurus aestuans (serelepe ou caxinguelê. Esporos de microsporídios foram encontrados nas fezes de 12 animais, sendo seis roedores das espécies Oligoryzomys sp.(um, Akodon montensis (três e Coendou villosus (dois, três marsupiais pertencentes às espécies Didelphis aurita (dois e Marmosops incanus (um e três morcegos da espécie Diphylla ecaudata. Este é o primeiro relato de microsporidiose em animais silvestres no Brasil. A presente investigação enfatiza a importância de animais silvestres, particularmente pequenos mamíferos, como potenciais fontes de infecção desses protozoários para outras populações animais, incluindo o homem, em áreas de desmatamento.The occurrence of Giardia, Cryptosporidium and microsporidia was investigated in 98 faecal specimens from wildlife animals, captured in an area of deforestation for the construction of two water reservoirs (Paraitinga and Biritiba, located in the

  8. Carbohydrate moieties of microsporidian polar tube proteins are targeted by immunoglobulin G in immunocompetent individuals

    NARCIS (Netherlands)

    Peek, Ron; Delbac, Frédéric; Speijer, Dave; Polonais, Valérie; Greve, Sophie; Wentink-Bonnema, Ellen; Ringrose, Jeffrey; van Gool, Tom

    2005-01-01

    Microsporidia of the Encephalitozoon species are frequently found as opportunistic pathogens of immuno-compromised patients, but very little is known about the prevalence and significance of Encephalitozoon infection in immunocompetent individuals. It was reported previously that 8% of Dutch blood

  9. Microsporidian xenomas in fish seen in wider perspective

    Czech Academy of Sciences Publication Activity Database

    Lom, Jiří; Dyková, Iva

    2005-01-01

    Roč. 52, 1/2 (2005), s. 69-81 ISSN 0015-5683 Institutional research plan: CEZ:AV0Z60220518 Keywords : fish microsporidia * xenoma * life cycles Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.138, year: 2005

  10. Comparing the flight activities of workers from two stocks of honey bees (Apis mellifera) raised in gamma-irradiated combs using radio-frequency identification (RFID) technology

    Science.gov (United States)

    Gamma irradiation has been shown to inactivate pathogens (virus, American foulbrood and Nosema) that are harmful to honey bees. Preliminary data suggest that queens raised in mating nucleus colonies having gamma-irradiated combs outperformed queens from nucleus colonies not having irradiated combs. ...

  11. First record of Microsporeans and Myxosporeans (Protozoa) infecting some Arabian Gulf fishes off the coasts of the Emirates and Qatar with a description of Myxobolus Arabicus n. sp

    International Nuclear Information System (INIS)

    Kardousha, M.; El-Tantawy, S.

    2002-01-01

    During a comprehensive survey carried out on helminth parasites of Arabian Gulf fishes mainly from the coasts of Emirates and Qatar, two microsporeans and three myxosporeans Protozoa were reported and described for the first time. The microsporeans included Nosema sauridae and Glugea stephani. Nosema sauridae was very common among lizard fish Saurida undosquamis which were caught from the Emirati coasts (56%) and also Qatari coasts (28%). Glugea stephani infected Psettodes erumei at the Emirati coasts with a prevalence of 10%. The myxosporideans comprised Myxobolus arabicus n. sp. from the body cavity of Plectorhynchus schotaf (Emirati coasts, 11%), Kudoa sp. from the musculature of Lutjanus fulviflamma (Emirati coasts, 8%) and also the heart wall of Caranx malabricus (Qatari coasts, 11%) and Henneguya sp. from the gills and mouth skin of Epinephelus tauvina (Emirati coasts, 7%). Fresh cysts and spores were described and photographed in situ. (author)

  12. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes

    Directory of Open Access Journals (Sweden)

    Hodson Matthew C

    2006-09-01

    Full Text Available Abstract Background At present, there is not a widely accepted consensus view regarding the phylogenetic structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi may or may not constitute a fifth fungal phylum, and the loss of the flagellum may have occurred either once or multiple times during fungal evolution. All of these issues are capable of being resolved by a molecular phylogenetic analysis which achieves strong statistical support for major branches. To date, no fungal phylogeny based upon molecular characters has satisfied this criterion. Results Using the translated amino acid sequences of the RPB1 and RPB2 genes, we have inferred a fungal phylogeny that consists largely of well-supported monophyletic phyla. Our major results, each with significant statistical support, are: (1 Microsporidia are sister to kingdom Fungi and are not members of Zygomycota; that is, Microsporidia and fungi originated from a common ancestor. (2 Chytridiomycota, the only fungal phylum having a developmental stage with a flagellum, is paraphyletic and is the basal lineage. (3 Zygomycota is monophyletic based upon sampling of Trichomycetes, Zygomycetes, and Glomales. (4 Zygomycota, Basidiomycota, and Ascomycota form a monophyletic group separate from Chytridiomycota. (5 Basidiomycota and Ascomycota are monophyletic sister groups. Conclusion In general, this paper highlights the evolutionary position and significance of the lower fungi (Zygomycota and Chytridiomycota. Our results suggest that loss of the flagellum happened only once during early stages of fungal evolution; consequently, the majority of fungi, unlike plants and animals, are nonflagellated. The phylogeny we infer from gene sequences is the first one that is

  13. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes.

    Science.gov (United States)

    Liu, Yajuan J; Hodson, Matthew C; Hall, Benjamin D

    2006-09-29

    At present, there is not a widely accepted consensus view regarding the phylogenetic structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi) may or may not constitute a fifth fungal phylum, and the loss of the flagellum may have occurred either once or multiple times during fungal evolution. All of these issues are capable of being resolved by a molecular phylogenetic analysis which achieves strong statistical support for major branches. To date, no fungal phylogeny based upon molecular characters has satisfied this criterion. Using the translated amino acid sequences of the RPB1 and RPB2 genes, we have inferred a fungal phylogeny that consists largely of well-supported monophyletic phyla. Our major results, each with significant statistical support, are: (1) Microsporidia are sister to kingdom Fungi and are not members of Zygomycota; that is, Microsporidia and fungi originated from a common ancestor. (2) Chytridiomycota, the only fungal phylum having a developmental stage with a flagellum, is paraphyletic and is the basal lineage. (3) Zygomycota is monophyletic based upon sampling of Trichomycetes, Zygomycetes, and Glomales. (4) Zygomycota, Basidiomycota, and Ascomycota form a monophyletic group separate from Chytridiomycota. (5) Basidiomycota and Ascomycota are monophyletic sister groups. In general, this paper highlights the evolutionary position and significance of the lower fungi (Zygomycota and Chytridiomycota). Our results suggest that loss of the flagellum happened only once during early stages of fungal evolution; consequently, the majority of fungi, unlike plants and animals, are nonflagellated. The phylogeny we infer from gene sequences is the first one that is congruent with the widely accepted morphology

  14. Occurrence of Microsporidium sp. and other pathogens in Ips amitinus (Coleoptera: Curculionidae)

    Czech Academy of Sciences Publication Activity Database

    Holuša, J.; Lukášová, K.; Žižka, Zdeněk; Handel, U.; Haidler, B.; Wegensteiner, R.

    2016-01-01

    Roč. 61, č. 3 (2016), s. 621-628 ISSN 1230-2821 R&D Projects: GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : Small spruce bark beetle * Scolytinae * microsporidia Subject RIV: EE - Microbiology, Virology Impact factor: 1.160, year: 2016

  15. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    Science.gov (United States)

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  16. Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian Life-Span

    Directory of Open Access Journals (Sweden)

    Strachecka Aneta J.

    2015-06-01

    Full Text Available We examined the influence of curcumin-supplemented feeding on worker lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations and percentage of the global DNA methylation. Two worker groups (Apis mellifera were set up: 1 control group; workers were fed ad libitum with sucrose syrup; 2 workers were fed with the syrup with the addition of curcumin. Dead workers were removed every two days and the Nosema spp. infection levels were assessed. Hemolymph was taken from living workers for biochemical analyses. The global DNA methylation level was analysed using DNA from worker heads and thoraces. The bees that consumed curcumin lived longer and were less infested with Nosema spp. The curcumin-treated workers had higher concentrations of proteins, non-enzymatic biomarkers (triglycerides, glucose, cholesterol, Mg2+ and Ca2+, uric acid and creatinine, as well as elevated activities of antioxidant enzymes (SOD , GPx, CAT , GST , neutral proteases, protease inhibitors, enzymatic biomarkers (AST , ALT , ALP . The concentrations of albumin and urea, and the activities of acidic and alkaline proteases were higher in the control group. Curcumin decreased global DNA methylation levels especially in older bees in which the natural, age-related level increase was observed. Most of the parameters increased over the apian youth and adulthood, and decreased in older bees. The decrease was markedly delayed in the bees fed with curcumin. Curcumin appeared to be an unexpectedly effective natural bio-stimulator, improving apian health and vitality. This multifactorial effect is caused by the activation of many biochemical processes involved in the formation of apian resistance.

  17. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    Science.gov (United States)

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  18. Effects of a novel anti-exospore monoclonal antibody on microsporidial development in vitro

    Czech Academy of Sciences Publication Activity Database

    Sak, Bohumil; Saková, Kamila; Ditrich, Oleg

    2004-01-01

    Roč. 92, č. 1 (2004), s. 74-80 ISSN 0932-0113 R&D Projects: GA AV ČR IAA6022101 Institutional research plan: CEZ:AV0Z6022909 Keywords : Microsporidia * Encephalitozoon cuniculi * humoral antibodies Subject RIV: EC - Immunology Impact factor: 1.060, year: 2004

  19. Description and phylogeny of a new microsporidium from the elm leaf beetle, Xanthogaleruca luteola Muller, 1766 (Coleoptera: Chrysomelidae)

    Science.gov (United States)

    This study describes a new genus and species of microsporidia which is a pathogen of the elm leaf beetle, Xanthogaleruca luteola Muller, 1776 (Coleoptera: Chrysomelidae). The beetles were collected from Istanbul in Turkey. All developmental stages are uninucleate and in direct contact with the host ...

  20. Microsporidiosis

    Science.gov (United States)

    2011-06-01

    unicellular protists of the phylum Microsporidia.1 They are considered most closely related to the fungi,2 but customarily are dis- cussed among the...histochemically identifiable Gol- gi organelles indicate that they may be parasitically evolved degenerate protists ,73,74 microtubule gene data75,76

  1. Ultrastructure of a microsporidium Brachiola gambiae n.sp. parasitising a mosquito Anopheles gambiae, a malaria vector

    Czech Academy of Sciences Publication Activity Database

    Weiser, Jaroslav; Žižka, Zdeněk

    2003-01-01

    Roč. 1, - (2003), s. 1-39 ISSN 1214-021X. [Cells /5./. 08.09.2003-10.09.2003, České Budějovice] Institutional research plan: CEZ:AV0Z5020903; CEZ:AV0Z5007907 Keywords : Nosema stegomyiae Subject RIV: EE - Microbiology, Virology

  2. Comparative flight activities and pathogen load of two stocks of honey bees reared in gamma-irradiated combs

    Science.gov (United States)

    Gamma irradiation is known to inactivate various pathogens that negatively affect honey bee health. Bee pathogens such as Deformed wing virus (DWV) and Nosema spp. have deleterious impact on foraging activities and bee survival, and have been detected in combs. In this study, we assessed the effects...

  3. Encephalitozoonosis in two inland bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Richter, B; Csokai, J; Graner, I; Eisenberg, T; Pantchev, N; Eskens, H U; Nedorost, N

    2013-02-01

    Microsporidiosis is reported rarely in reptiles. Sporadic multisystemic granulomatous disease of captive bearded dragons (Pogona vitticeps) has been associated with microsporidia showing Encephalitozoon-like morphology. Two such cases are described herein. Both animals displayed clinical signs suggestive of renal failure. Necropsy examination revealed granulomatous lesions in the liver and adrenal area in both animals, and in several other organs in one animal. The lesions were associated with intracellular protozoa consistent with microsporidia. Ultrastructural examination of the organisms revealed morphology similar to Encephalitozoon spp. Immunohistochemistry and chromogenic in-situ hybridization for Encephalitozoon cuniculi were positive in both animals. Nucleotide sequencing of the partial small subunit ribosomal RNA gene and the complete internal transcribed spacer (ITS) region revealed high similarity with published E. cuniculi sequences in both animals. However, the ITS region showed a GTTT-repeat pattern distinct from mammalian E. cuniculi strains. This may be a novel E. cuniculi strain associated with multisystemic granulomatous disease in bearded dragons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Cryptosporidium parvum and Enterocytozoon bieneusi in American Mustangs and Chincoteague ponies

    Czech Academy of Sciences Publication Activity Database

    Wagnerová, Pavla; Sak, Bohumil; McEvoy, J.; Rost, M.; Sherwood, D.; Holcomb, K.; Kváč, Martin

    2016-01-01

    Roč. 162, MAR (2016), s. 24-27 ISSN 0014-4894 R&D Projects: GA ČR GA15-01090S Institutional support: RVO:60077344 Keywords : feral horses * Cryptosporidium * SSU * gp60 * Microsporidia * ITS Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.724, year: 2016

  5. Comment on "Invasive Harlequin Ladybird Carries Biological Weapons Against Native Competitors"

    NARCIS (Netherlands)

    Jong, de P.W.; Lenteren, van J.C.; Raak-van den Berg, C.L.

    2013-01-01

    We comment on the implications that Vilcinskas et al. (Reports, 17 May 2013, p. 862) attach to the finding that the exotic, invasive ladybird Harmonia axyridis carries microsporidia to which this species is insensitive but that is lethal to species that are native to the invaded areas. The authors

  6. First report of Enterocytozoon bieneusi infection on a pig farm in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Sak, Bohumil; Kváč, Martin; Hanzlíková, D.; Cama, V.

    2008-01-01

    Roč. 153, 3/4 (2008), s. 220-224 ISSN 0304-4017 R&D Projects: GA ČR GP523/07/P117 Institutional research plan: CEZ:AV0Z60220518 Keywords : Enterocytozoon bieneusi * pigs * microsporidia Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.039, year: 2008

  7. Vavraia culicis (Weiser, 1947) Weiser, 1977 revisited: cytological characterisation of a Vavraia culicis-like microsporidium isolated from mosquitoes in Florida and the establishment of Vavraia culicis floridensis subsp. n

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Becnel, J. J.

    2007-01-01

    Roč. 54, č. 4 (2007), s. 259-271 ISSN 0015-5683 R&D Projects: GA ČR GA524/07/1003 Institutional research plan: CEZ:AV0Z60220518 Keywords : Vavraia * Aedes albopictus * mosquito es * parasites * microsporidia * ultrastructure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.000, year: 2007

  8. Effects of interferon gamma and specific polyclonal antibody on the infection of murine peritoneal macrophages and murine macrophage cell line PMJ2-R with Encephalitozoon cuniculi

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Jiří; Salát, Jiří; Sak, Bohumil; Kopecký, Jan

    2007-01-01

    Roč. 54, č. 3 (2007), s. 172-176 ISSN 0015-5683 R&D Projects: GA ČR GP524/03/D167 Institutional research plan: CEZ:AV0Z60220518 Keywords : microsporidia * Encephalitozoon cuniculi * antibody * macrophage s * interferon gamma (IFN-gamma) Subject RIV: EC - Immunology Impact factor: 1.000, year: 2007

  9. Latent Microsporidial Infection in Immunocompetent Individuals – A Longitudinal Study

    Czech Academy of Sciences Publication Activity Database

    Sak, Bohumil; Kváč, Martin; Kučerová, Z.; Květoňová, Dana; Saková, Kamila

    2011-01-01

    Roč. 5, č. 5 (2011), e1162 ISSN 1935-2735 R&D Projects: GA AV ČR KJB500960701; GA ČR GP523/07/P117 Institutional research plan: CEZ:AV0Z60220518 Keywords : Microsporidia * AIDS * indirect immunofluorescence assay * Encephalitozoon * immunosupression Subject RIV: EC - Immunology Impact factor: 4.716, year: 2011

  10. Susceptibility of IFN? or IL-12 knock-out and SCID mice to infection with two microsporidian species, Encephalitozoon cuniculi and E. intestinalis

    Czech Academy of Sciences Publication Activity Database

    Salát, Jiří; Sak, Bohumil; Le, T.; Kopecký, Jan

    2004-01-01

    Roč. 51, č. 4 (2004), s. 275-282 ISSN 0015-5683 R&D Projects: GA AV ČR IAA6022101; GA ČR GP524/03/D167 Grant - others:Bravo! Program(US) MIRT T37TW00036-01 Institutional research plan: CEZ:AV0Z6022909 Keywords : Microsporidia * Encephalitozoon * mice Subject RIV: EC - Immunology Impact factor: 0.837, year: 2004

  11. [Identification of the meiotic events in grasshopper spermatogenesis].

    Science.gov (United States)

    Liu, Meng-Hao; Zhao, Kai-Qiang; Wang, Ya-Dong; Yang, Meng-Ping; Zhao, Ning-Ning; Yang, Da-Xiang

    2012-12-01

    The grasshoppers are ideal materials to study various meiotic stages of spermatogenesis due to their easy availability, fairly large chromosomes, and fewer numbers of chromosomes. It is easy to make temporary squash preparation of grasshopper testes; however, it is usually difficult for the beginners to differentiate between stages of meiosis. In view of this, we demonstrated the method of identification of meiotic stages by chromosome number and chromosome conformation, taking spermatogonial meiosis of Locusta migratoria manilensis as an example. We described briefly the mitosis of spermatogonia and the spermatogenesis of this species as well.

  12. Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential

    DEFF Research Database (Denmark)

    Andersen, Mads; Folkersen, Rasmus; MacMillan, Heath Andrew

    2017-01-01

    potential (Vm). Several studies have therefore suggested a link between preservation of Vm and cellular survival after cold stress, but none has measured Vm in this context. We tested this hypothesis by acclimating locusts (Locusta migratoria) to high (31°C) and low temperature (11°C) for 4 days before...... revealed that cellular injury during cold exposure occurs when Vm becomes severely depolarized. Interestingly, we found that cellular sensitivity to hypothermic hyperkalaemia was lower in cold-acclimated locusts that were better able to defend Vm whilst exposed to high extracellular [K+]. Together...

  13. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    Directory of Open Access Journals (Sweden)

    Matthew Betti

    2017-03-01

    Full Text Available We present a model and associated simulation package (www.beeplusplus.ca to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++ and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers.

  14. Metabolism of carbaryl, chloropyrifos, DDT, and parathion in the European corn borer: effects of microsporidiosis on toxicity and detoxication

    International Nuclear Information System (INIS)

    Tetreault, G.E.

    1985-01-01

    An investigation was conducted to examine the effects of microsporidiosis on an insect's response to insecticide intoxication. Healthy European corn borer, Ostrinia nubilalis, larvae and those heavily infected with the microsporidian pathogen, Nosema pyrausta, were bioassayed with ten insecticides. The compounds used were carbaryl, carbofuran, chlorophrifos, DDT, diazinon, fonofos, methomyl, parathion, permethrin, and terbufos. Third instar larvae were used for topical bioassays. The compounds carbaryl, carbofuran, chlorophrifos, methomyl and terbufos were found to be significantly more toxic to diseased insects than healthy insects at the 0.05 probability level. To examine the effect of Nosema pyrausta infection on the European corn borer's ability to detoxify insecticides, 14 C ring-labeled carbaryl, chlorophrifos, DDT, and parathion were topically applied to fourth instar larvae. Qualitative differences between healthy and diseased insects were found in the metabolic pathways of carbaryl, DDT, and parathion. The degradative fate of chlorophrifos was the same in both groups. Quantitatively, each insecticide penetrated diseased larvae faster. This resulted in larger amounts of the applied dose of parent compound and metabolites being found in the feces from diseased insects. Conversely, healthy insects had more of these materials present in the body and associated with the cuticle

  15. Microsporidiosis in a Brazilian University Hospital: case report Microsporidíase em Hospital Universitário no Brasil: relato de caso

    Directory of Open Access Journals (Sweden)

    Elenice Messias do Nascimento Gonçalves

    2006-12-01

    Full Text Available This is the report on a patient with chronic diarrhea caused by microsporidia. He is married, infected with HIV and has low CD4 cell count. The diagnosis was established through stool parasite search using concentration methods and Gram - chromotrope staining technique. Ileum biopsy was also performed in this case. The etiological diagnosis may be established in a clinical laboratory, by chromotrope staining technique in routine microscopic examination of stool specimens.Este é o relato de caso de doente com diarréia crônica causada por Microsporidia. O doente era homem, casado, infectado com HIV e tinha baixa taxa de linfócitos CD4+. O diagnóstico foi feito em exame de fezes utilizando métodos de concentração e técnica de coloração de Gram-Chromotrope. Biópsia de íleo também foi realizada neste caso. O diagnóstico etiológico pode ser feito em laboratório clínico, por técnicas de coloração baseada em cromotrope na rotina da observação microscópica direta.

  16. Molt disruption and mortality of Locusta migratoria var. manilensis ...

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... use of broad-spectrum chemical pesticides, which can damage human health ... IGRs, including the chitin synthesis inhibitors (flufeno- xuron), plant-derived pesticides (swallowwort alkaloids and azadirachtin) (Xu, 2002; Cui ...

  17. Prevalence of Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon spp. and Giardia intestinalis in Wild, Semi-Wild and Captive Orangutans (Pongo abelii and Pongo pygmaeus) on Sumatra and Borneo, Indonesia.

    Science.gov (United States)

    Mynářová, Anna; Foitová, Ivona; Kváč, Martin; Květoňová, Dana; Rost, Michael; Morrogh-Bernard, Helen; Nurcahyo, Wisnu; Nguyen, Cathleen; Supriyadi, Supriyadi; Sak, Bohumil

    2016-01-01

    Orangutans are critically endangered primarily due to loss and fragmentation of their natural habitat. This could bring them into closer contact with humans and increase the risk of zoonotic pathogen transmission. To describe the prevalence and diversity of Cryptosporidium spp., microsporidia and Giardia intestinalis in orangutans at seven sites on Sumatra and Kalimantan, and to evaluate the impact of orangutans' habituation and location on the occurrence of these zoonotic protists. The overall prevalence of parasites in 298 examined animals was 11.1%. The most prevalent microsporidia was Encephalitozoon cuniculi genotype II, found in 21 animals (7.0%). Enterocytozoon bieneusi genotype D (n = 5) and novel genotype Pongo 2 were detected only in six individuals (2.0%). To the best of our knowledge, this is the first report of these parasites in orangutans. Eight animals were positive for Cryptosporidium spp. (2.7%), including C. parvum (n = 2) and C. muris (n = 6). Giardia intestinalis assemblage B, subtype MB6, was identified in a single individual. While no significant differences between the different human contact level groups (p = 0.479-0.670) or between the different islands (p = 0.992) were reported in case of E. bieneusi or E. cuniculi, Cryptosporidium spp. was significantly less frequently detected in wild individuals (p < 2×10-16) and was significantly more prevalent in orangutans on Kalimantan than on Sumatra (p < 2×10-16). Our results revealed that wild orangutans are significantly less frequently infected by Cryptosporidium spp. than captive and semi-wild animals. In addition, this parasite was more frequently detected at localities on Kalimantan. In contrast, we did not detect any significant difference in the prevalence of microsporidia between the studied groups of animals. The sources and transmission modes of infections were not determined, as this would require repeated sampling of individuals, examination of water sources, and sampling of humans

  18. Prevalence of Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon spp. and Giardia intestinalis in Wild, Semi-Wild and Captive Orangutans (Pongo abelii and Pongo pygmaeus on Sumatra and Borneo, Indonesia.

    Directory of Open Access Journals (Sweden)

    Anna Mynářová

    Full Text Available Orangutans are critically endangered primarily due to loss and fragmentation of their natural habitat. This could bring them into closer contact with humans and increase the risk of zoonotic pathogen transmission.To describe the prevalence and diversity of Cryptosporidium spp., microsporidia and Giardia intestinalis in orangutans at seven sites on Sumatra and Kalimantan, and to evaluate the impact of orangutans' habituation and location on the occurrence of these zoonotic protists.The overall prevalence of parasites in 298 examined animals was 11.1%. The most prevalent microsporidia was Encephalitozoon cuniculi genotype II, found in 21 animals (7.0%. Enterocytozoon bieneusi genotype D (n = 5 and novel genotype Pongo 2 were detected only in six individuals (2.0%. To the best of our knowledge, this is the first report of these parasites in orangutans. Eight animals were positive for Cryptosporidium spp. (2.7%, including C. parvum (n = 2 and C. muris (n = 6. Giardia intestinalis assemblage B, subtype MB6, was identified in a single individual. While no significant differences between the different human contact level groups (p = 0.479-0.670 or between the different islands (p = 0.992 were reported in case of E. bieneusi or E. cuniculi, Cryptosporidium spp. was significantly less frequently detected in wild individuals (p < 2×10-16 and was significantly more prevalent in orangutans on Kalimantan than on Sumatra (p < 2×10-16.Our results revealed that wild orangutans are significantly less frequently infected by Cryptosporidium spp. than captive and semi-wild animals. In addition, this parasite was more frequently detected at localities on Kalimantan. In contrast, we did not detect any significant difference in the prevalence of microsporidia between the studied groups of animals. The sources and transmission modes of infections were not determined, as this would require repeated sampling of individuals, examination of water sources, and sampling of

  19. Intracellular compartimentation of abscisic acid (ABA) in guard cells and mesophyll cells under exposure to SO sub 2. Kompartimentierung von Abscisinsaeure (ABA) in Schliess- und Mesophyllzellen unter SO sub 2 -Belastung

    Energy Technology Data Exchange (ETDEWEB)

    Baier, M.; Daeter, W.; Hartung, W. (Wuerzburg Univ. (Germany, F.R.). Lehrstuhl fuer Botanik 1)

    1989-07-01

    The effect of SO{sub 2} on the intracellular compartimentation of ABA in guard cells and mesophyll cells of Valerianella locusta was investigated, using the efflux compartmental analysis, as described by Behl and Hartung (1986). The cytoplasmic ABA content of the guard cells was reduced drastically by 6 {mu}molxm{sup -3} SO{sub 2} (20% of the controls). The vacuolar content was decreased less dramatically (70% of the controls). The ABA distribution of mesophyll cells remained uneffected by 6 {mu}molxm{sup -3} SO{sub 2}. The SO{sub 2} effects are explained by an acidification of the compartments. (orig.).

  20. Dicty_cDB: Contig-U04172-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available m ... 111 4e-27 2 ( FG298832 ) 1108793322629 New World Screwworm Larvae 9387 EST...... 88 6e-25 4 ( FG298713 ) 1108793319532 New World Screwworm Larvae 9387 EST... 88 6e-25 4 ( CO859112 ) LM_S...M5_000044 Locusta migratoria solitarious phas... 88 6e-25 4 ( FG291974 ) 1108383360238 New World Screwworm L...arvae 9387 EST... 88 6e-25 4 ( FG298200 ) 1108793302934 New World Screwworm Larvae 9387 EST... 88 6e-25 4 ( ...FG293928 ) 1108770691086 New World Screwworm Larvae 9387 EST... 88 7e-25 4 ( FG29

  1. [Life cycle of Maupasina weissi Seurat, 1913, Subuluroidea Nematode, parasite of the elephant shrew (author's transl)].

    Science.gov (United States)

    Quentin, J C; Verdier, J M

    1979-01-01

    The life cycle of Maupasina weissi Seurat, 1913, the parasite of the elephant shrew, has been experimentally obtained from the intermediate host Locusta migratoria. The biology of this Nematoda is considered as being more primitive than the Subuluridae: -- egg maturation in external environment is in fact necessary to the Maupasina larvae to penetrate into the insect, -- The different localizations of the infective larvae, such as mesenteron regeneration crypta, fat body, demonstrate that the parasite is not completely adaptated to its intermediate host, -- the ontogenesis of cephalic structures is characterized by an hypertrophy of the archaic structures mainly from cuticular origin.

  2. Zoonotic microsporidia in dogs and cats in Poland

    Czech Academy of Sciences Publication Activity Database

    Piekarska, J.; Kicia, M.; Wesołowska, M.; Kopacz, Z.; Gorczykowski, M.; Szczepankiewicz, D.; Kváč, Martin; Sak, Bohumil

    2017-01-01

    Roč. 246, 15 November (2017), s. 108-111 ISSN 0304-4017 Institutional support: RVO:60077344 Keywords : cat * dog * Encephalitozoon spp. * Enterocytozoon bieneusi * zoonosis Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine OBOR OECD: Veterinary science Impact factor: 2.356, year: 2016

  3. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites.

    Science.gov (United States)

    Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent

    2015-05-22

    Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  4. A Spore Counting Method and Cell Culture Model for Chlorine Disinfection Studies of Encephalitozoon syn. Septata intestinalis

    OpenAIRE

    Wolk, D. M.; Johnson, C. H.; Rice, E. W.; Marshall, M. M.; Grahn, K. F.; Plummer, C. B.; Sterling, C. R.

    2000-01-01

    The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determine...

  5. Aspectos clínicos e diagnósticos da microsporidiose intestinal em pacientes com infecção pelo HIV e diarréia crônica, no Rio de Janeiro, Brasil

    OpenAIRE

    BRASIL, Patrícia; LIMA, Dirce Bonfim de; PAIVA, Daurita Darci de; LOBO, Maria Stella de Castro; SODRÉ, Fernando Campos; SILVA, Siudomar Pereira da; VILLELA, Erika Veríssimo; SILVA, Edson Jurado da; PERALTA, José Mauro; MORGADO, Marisa; MOURA, Hercules

    2000-01-01

    The objectives of this study were to determine both the prevalence of microsporidial intestinal infection and the clinical outcome of the disease in a cohort of 40 HIV-infected patients presenting with chronic diarrhea in Rio de Janeiro, Brazil. Each patient, after clinical evaluation, had stools and intestinal fragments examined for viral, bacterial and parasitic pathogens. Microsporidia were found in 11 patients (27.5%) either in stools or in duodenal or ileal biopsies. Microsporidial spore...

  6. Transferable Antibiotic Resistances in Marketed Edible Grasshoppers (Locusta migratoria migratorioides).

    Science.gov (United States)

    Osimani, Andrea; Garofalo, Cristiana; Aquilanti, Lucia; Milanović, Vesna; Cardinali, Federica; Taccari, Manuela; Pasquini, Marina; Tavoletti, Stefano; Clementi, Francesca

    2017-05-01

    Grasshoppers are the most commonly eaten insects by humans worldwide, as they are rich in proteins and micronutrients. This study aimed to assess the occurrence of transferable antibiotic resistance genes in commercialized edible grasshoppers. To this end, the prevalence of 12 selected genes [aac(6')-Ie aph(2″)-Ia, blaZ, erm(A), erm(B), erm(C), mecA, tet(M), tet(O), tet(S), tet(K), vanA, vanB] coding for resistance to antibiotics conventionally used in clinical practice was determined. The majority of samples were positive for tet(M) (70.0%), tet(K) (83.3%) and blaZ (83.3%). A low percentage of samples were positive for erm(B) (16.7%), erm(C) (26.7%), and aac(6')-Ie aph(2″)-Ia (13.3%), whereas no samples were positive for erm(A), vanA, vanB, tet(O), and mecA. Cluster analysis identified 4 main clusters, allowing a separation of samples on the basis of their country of origin. © 2017 Institute of Food Technologists®.

  7. Effects of the vertically transmitted microsporidian Facilispora margolisi and the parasiticide emamectin benzoate on salmon lice (Lepeophtheirus salmonis).

    Science.gov (United States)

    Poley, Jordan D; Sutherland, Ben J G; Fast, Mark D; Koop, Ben F; Jones, Simon R M

    2017-08-17

    Microsporidia are highly specialized, parasitic fungi that infect a wide range of eukaryotic hosts from all major taxa. Infections cause a variety of damaging effects on host physiology from increased stress to death. The microsporidian Facilispora margolisi infects the Pacific salmon louse (Lepeophtheirus salmonis oncorhynchi), an economically and ecologically important ectoparasitic copepod that can impact wild and cultured salmonids. Vertical transmission of F. margolisi was demonstrated by using PCR and in situ hybridization to identify and localize microsporidia in female L. salmonis and their offspring. Spores and developmental structures of F. margolisi were identified in 77% of F 1 generation copepods derived from infected females while offspring from uninfected females all tested negative for the microsporidia. The transcriptomic response of the salmon louse to F. margolisi was profiled at both the copepodid larval stage and the pre-adult stage using microarray technology. Infected copepodids differentially expressed 577 transcripts related to stress, ATP generation and structural components of muscle and cuticle. The infection also impacted the response of the copepodid to the parasiticide emamectin benzoate (EMB) at a low dose of 1.0 ppb for 24 h. A set of 48 transcripts putatively involved in feeding and host immunomodulation were up to 8-fold underexpressed in the F. margolisi infected copepodids treated with EMB compared with controls or either stressor alone. Additionally, these infected lice treated with EMB also overexpressed 101 transcripts involved in stress resistance and signalling compared to the other groups. In contrast, infected pre-adult lice did not display a stress response, suggesting a decrease in microsporidian virulence associated with lice maturity. Furthermore, copepodid infectivity and moulting was not affected by the microsporidian infection. This study demonstrated that F. margolisi is transmitted vertically between salmon

  8. Parasites and Pathogens of the Honeybee (Apis mellifera and Their Influence on Inter-Colonial Transmission.

    Directory of Open Access Journals (Sweden)

    Nadège Forfert

    Full Text Available Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony ("drifting". Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites.

  9. The 14th International Workshops on Opportunistic Protists (IWOP 14).

    Science.gov (United States)

    Cushion, Melanie T; Limper, Andrew H; Porollo, Aleksey; Saper, Vivian E; Sinai, Anthony P; Weiss, Louis M

    2018-05-03

    The 14th International Workshops on Opportunistic Protists (IWOP-14) was held August 10-12, 2017 in Cincinnati, OH, USA. The IWOP meetings focus on opportunistic protists (OIs); for example, free-living amoebae, Pneumocystis spp., Cryptosporidium spp., Toxoplasma, the Microsporidia, and kinetoplastid flagellates. The highlights of Pneumocystis spp. research included the reports of primary homothallism for mating; a potential requirement for sexual replication in its life cycle; a new antigen on the surface of small asci; roles for CLRs, Dectin-1, and Mincle in host responses; and identification of MSG families and mechanisms used for surface variation. Studies of Cryptosporidia spp. included comparative genomics, a new cryopreservation method; the role of mucin in attachment and invasion, and epidemiological surveys illustrating species diversity in animals. One of the five identified proteins in the polar tube of Microsporidia, PTP4, was shown to play a role in host infection. Zebrafish were used as a low cost vertebrate animal model for an evaluation of potential anti-toxoplasma drugs. Folk medicine compounds with anti-toxoplasma activity were presented, and reports on the chronic toxoplasma infection provided evidence for increased tractability for the study of this difficult life cycle stage. Escape from the parasitophorus vacuole and cell cycle regulation were the topics of the study in the acute phase. © 2018 International Society of Protistologists.

  10. Molecular identification and genotyping of Microsporidia in selected hosts

    Czech Academy of Sciences Publication Activity Database

    Valenčáková, A.; Balent, P.; Ravaszová, P.; Horák, Aleš; Oborník, Miroslav; Halanová, M.; Malčeková, B.; Novotný, F.; Goldová, M.

    2012-01-01

    Roč. 110, č. 2 (2012), s. 689-693 ISSN 0932-0113 Institutional research plan: CEZ:AV0Z60220518 Keywords : ENCEPHALITOZOON-CUNICULI * RIBOSOMAL-RNA * SPECIES IDENTIFICATION * AIDS PATIENTS * PET RABBITS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.852, year: 2012

  11. An intracellular study on low-frequency acoustic signal processing in locust——Structure and function of the cercus-to-giant interneuron system

    Institute of Scientific and Technical Information of China (English)

    沈钧贤; 徐智敏

    1995-01-01

    The structure and function of the cercus-to-giant interneuron system,relevant to the receptionof low-frequency sound,within the terminal abdominal ganglion of the locust Locusta migratoria were revealedby using intracellular electrophysiological recording and dye labeling technique.This system consists of 4 bilater-al pairs of the giant interneurons(GIs 1—4).Each GI has distinct dendritic branching fields,position of thesoma,and location and orientation of its major axon.The characteristics of the system in responseto low-frequency sound,such as discharge patterns,the relationships between response threshold-frequency,in-tensity curves,and encoding of stimulus frequency,were also studied.The role of the system in low-frequencysound communication was discussed.

  12. Microsporidia in a woodland pool I. Lanatospora costata sp. n. (Opisthosporidia, Microsporidia), parasite of Megacyclops viridis (Crustacea, Copepoda): fine structure and molecular phylogeny

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Fiala, Ivan; Refardt, D.; Larsson, J.I.R.

    2016-01-01

    Roč. 55, č. 4 (2016), s. 269-280 ISSN 0065-1583 Institutional support: RVO:60077344 Keywords : microsporidian parasite * Megacyclops viridis * SSU rRNA Subject RIV: EE - Microbiology, Virology Impact factor: 1.481, year: 2016

  13. FRECUENCIA DE VARROOSIS Y NOSEMOSIS EN COLONIAS DE ABEJAS MELÍFERAS (Apis mellifera EN EL ESTADO DE ZACATECAS, MÉXICO

    Directory of Open Access Journals (Sweden)

    Carlos A. Medina-Flores

    2014-01-01

    Full Text Available El objetivo del trabajo fue determinar la frecuencia y grado de infestación de varroosis ( Var ro a destructor e infección de nosemosis ( Nosema spp. en colonias de abejas ( Apis mellifera del estado de Zacatecas, durante el otoño y la primavera. Se inspeccionaron 299 colonias comer - ciales de abejas distribuidas en 15 municipios pertenecientes a tres zonas ecológicas: 1 zona semiseca templada, 2 zona semiseca semicálida y 3 zona subhúmeda templada. La prevalencia general fue 2.3 % para la nosemosis y 88 % para la varroosis. El nivel de infestación de varroa varió significativa - mente ( P = 0.05 entre el otoño y la primavera, y entre zonas sólo varió en la primavera ( P < 0.001. Du - rante el otoño, 44 % de las colonias presentaron niveles de infestación ≥ 5 %, mientras que en la prima - vera sólo 28 % superó dicho nivel. Nosema spp. se observó solamente en 4.7 % de la población analizada en primavera; la mayoría de los casos (86 % se detectó en la zona semiseca semicálida. Los resultados indican que la varroosis es la parasitosis más común de las abejas melíferas adultas en Zacatecas. La nosemosis no representa un problema serio para la apicultura de la entidad, debido a la baja frecuencia.

  14. Isolation and identification of a cardioactive peptide from Tenebrio molitor and Spodoptera eridania.

    Science.gov (United States)

    Furuya, K; Liao, S; Reynolds, S E; Ota, R B; Hackett, M; Schooley, D A

    1993-12-01

    We isolated several cardioactive peptides from extracts of whole heads of the mealworm, Tenebrio molitor, and the southern armyworm, Spodoptera eridania, using a semi-isolated heart of Manduca sexta for bioassay. We have now isolated from each species the peptide with the strongest effect on rate of contraction of the heart. The peptides were identified using micro Edman sequencing and mass spectrometric methods. This cardioactive peptide has the same primary structure from both species: Pro-Phe-Cys-Asn-Ala-Phe-Thr-Gly-Cys-NH2, a cyclic nonapeptide which is identical to crustacean cardioactive peptide (CCAP) originally isolated from the shore crab, Carcinus maenas, and subsequently isolated from Locusta migratoria and Manduca sexta. This is additional evidence that CCAP has widespread occurrence in arthropoda.

  15. Chpater 11: Research Methods for Entomopathogenic Microsporidia and Other Protists

    Science.gov (United States)

    The focus in this chapter is on those groups of protists that are pathogenic to their insect hosts, although some basic data necessary for the identification of non-pathogenic taxa are provided. Protist-insect symbiotic relationships reflect the full range of possible interactions, from commensalis...

  16. Characteristics of Honey Bee (Apis Mellifera Carnica, Pollman 1879 Queens Reared in Slovenian Commercial Breeding Stations

    Directory of Open Access Journals (Sweden)

    Gregorc Aleš

    2015-12-01

    Full Text Available In this three-year-trial study, we examined the quality of mated queens based on morphological and physiology traits. At each location, sister queen bees were reared each year from one Apis mellifera carnica breeder queen. Queens were also reared and mated in different locations. Altogether, we sampled and analysed 324 queens from 27 apiaries in 2006, 288 queens from 24 apiaries in 2008, and 276 queens from 23 apiaries in 2010. Nine queens from each apiary were sampled and dissected for morphological analyses and Nosema ceranae (N. ceranae spores, if present, were quantified. Three queens from each apiary were prepared and tested for four viruses: acute bee paralysis virus (ABPV, black queen cell virus (BQCV, deformed wing virus (DWV, and sacbrood virus (SBV. The highest average queen weight of 209.49 ± 9.82 mg was detected in 2008. The highest average ovary weight of 78.67 ± 11.86 mg was detected in 2010, and the highest number of ovarioles was 161.59 ± 8.70 in 2006. The average number of spermatozoa in queens ranged from 3.30 x 106 in 2006 to 5.23 x 106 in 2010. Nosema ceranae spores were found in queens sampled in 2008 and 2010. Viruses were discovered sporadically during the queen testing periods from 2006 - 2010. This study importantly demonstrates that queens from rearing stations require regular evaluation for morphological and physiological changes as well as for infection from harmful pathogens. These results could also be used in establishing relevant commercial standards for rearing quality queens.

  17. Selección bidireccional de Apis mellifera (Hymenoptera: Apidae para aumento de la resistencia y la susceptibilidad a la nosemosis

    Directory of Open Access Journals (Sweden)

    Yamandú MENDOZA

    2014-01-01

    Full Text Available La nosemosis es una enfermedad que afecta las funciones digestivas de las abejas melíferas causada por los microsporidios Nosema apis y Nosema ceranae. En Uruguay la única especie detectada es N. ceranae. Para determinar si la incidencia de N. ceranae en las colonias tiene un componente genético se realizó una selección bidireccional para aumento de la resistencia y la susceptibilidad a este parásito sin control de la paternidad. Las colonias fueron evaluadas en una forestación de Eucalyptus grandis en otoño. La infección de las colonias se determinó como 1 el porcentaje de abejas pecoreadoras infectadas y 2 el número promedio de esporas por campo en 10 campos. El trabajo se inició con 138 colonias y se evaluaron dos generaciones de 30 y 63 colonias. La respuesta a la selección fue muy limitada, solo en la primera generación las colonias de la línea resistente presentaron menos esporas por abejas que las colonias de la línea susceptible (19,6 ± 5,8 y 26,8 ± 10,4, respectivamente, W = 41,5; P = 0.03. Esto indicaría que la resistencia a la nosemosis está fuertemente afectada por el ambiente. Futuros esfuerzos para aumentar la resistencia de las abejas a N. ceranae a través de mejora genética deberán incluir el control de la paternidad.

  18. Antiprotozoal activities of benzimidazoles and correlations with beta-tubulin sequence.

    Science.gov (United States)

    Katiyar, S K; Gordon, V R; McLaughlin, G L; Edlind, T D

    1994-01-01

    Benzimidazoles have been widely used since the 1960s as anthelmintic agents in veterinary and human medicine and as antifungal agents in agriculture. More recently, selected benzimidazole derivatives were shown to be active in vitro against two protozoan parasites, Trichomonas vaginalis and Giardia lamblia, and clinical studies with AIDS patients have suggested that microsporidia are susceptible as well. Here, we first present in vitro susceptibility data for T. vaginalis and G. lamblia using an expanded set of benzimidazole derivatives. Both parasites were highly susceptible to four derivatives, including mebendazole, flubendazole, and fenbendazole (50% inhibitory concentrations of 0.005 to 0.16 microgram/ml). These derivatives also had lethal activity that was time dependent: 90% of T. vaginalis cells failed to recover following a 20-h exposure to mebendazole at 0.17 microgram/ml. G. lamblia, but not T. vaginalis, was highly susceptible to five additional derivatives. Next, we examined in vitro activity of benzimidazoles against additional protozoan parasites: little or no activity was observed against Entamoeba histolytica, Leishmania major, and Acanthamoeba polyphaga. Since the microtubule protein beta-tubulin has been identified as the benzimidazole target in helminths and fungi, potential correlations between benzimidazole activity and beta-tubulin sequence were examined. This analysis included partial sequences (residues 108 to 259) from the organisms mentioned above, as well as the microsporidia Encephalitozoon hellem and Encephalitozoon cuniculi and the sporozoan Cryptosporidium parvum. beta-tubulin residues Glu-198 and, in particular, Phe-200 are strong predictors of benzimidazole susceptibility; both are present in Encephalitozoon spp. but absent in C. parvum. PMID:7811023

  19. Parasites of larval black flies (Diptera: Simuliidae in Thailand

    Directory of Open Access Journals (Sweden)

    Sanae Jitklang

    2012-12-01

    Full Text Available Parasites of larval black flies are reported for the first time from Thailand, including mermithid nematodes(Mermithidae, microsporidian fungi (Zygomycota, and the fungus Coelomycidium simulii Debaisieux (Blastocladiomycetes.The following nine species of black flies were infected with one or more parasites: Simulium asakoae, S. chamlongi,S. chiangmaiense, S. fenestratum, S. feuerborni, S. nakhonense, S. nodosum, S. quinquestriatum, and S. tani. The prevalenceof patent infections per host species per season was 0.1–7.1% for mermithids, 0.1–6.0% for microsporidia, and 0.1–3.0% forC. simulii.

  20. Honey Bee Survival and Pathogen Prevalence: From the Perspective of Landscape and Exposure to Pesticides

    Directory of Open Access Journals (Sweden)

    Mohamed Alburaki

    2018-06-01

    Full Text Available In order to study the in situ effects of the agricultural landscape and exposure to pesticides on honey bee health, sixteen honey bee colonies were placed in four different agricultural landscapes. Those landscapes were three agricultural areas with varying levels of agricultural intensity (AG areas and one non-agricultural area (NAG area. Colonies were monitored for different pathogen prevalence and pesticide residues over a period of one year. RT-qPCR was used to study the prevalence of seven different honey bee viruses as well as Nosema sp. in colonies located in different agricultural systems with various intensities of soybean, corn, sorghum, and cotton production. Populations of the parasitic mite Varroa destructor were also extensively monitored. Comprehensive MS-LC pesticide residue analyses were performed on samples of wax, honey, foragers, winter bees, dead bees, and crop flowers for each apiary and location. A significantly higher level of varroa loads were recorded in colonies of the AG areas, but this at least partly correlated with increased colony size and did not necessarily result from exposure to pesticides. Infections of two viruses (deformed wing virus genotype a (DWVa and acute bee paralysis virus (ABPV and Nosema sp. varied among the four studied locations. The urban location significantly elevated colony pathogen loads, while AG locations significantly benefited and increased the colony weight gain. Cotton and sorghum flowers contained high concentrations of insecticide including neonicotinoids, while soybean and corn had less pesticide residues. Several events of pesticide toxicity were recorded in the AG areas, and high concentrations of neonicotinoid insecticides were detected in dead bees.

  1. Widespread occurrence of honey bee pathogens in solitary bees.

    Science.gov (United States)

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Occurrence of Nosema species in honey bee colonies in Kenya ...

    African Journals Online (AJOL)

    While honey bee colonies in North America and Europe are in decline due to parasites and ... Infections levels were higher in the coastal region than in the interior. ... of the impact of this pathogen to the Kenyan honey bee colonies with a view of ... Senegal (6); Sierra Leone (1); South Africa (96); South Sudan (1); Sudan (3) ...

  3. Photooxidation of nimbin and salannin, tetranortriterpenoids from the neem tree (Azadirachta indica)

    International Nuclear Information System (INIS)

    Jarvis, A.P.; Johnson, S.; Morgan, E.D.; Simmonds, M.S.J.; Blaney, W.M.

    1997-01-01

    Nimbin and salannin, major triterpenoids accompanying azadirachtin in extracts of neem (Azadirachta indica) seeds, were photooxidized by UV light in the presence of oxygen to more polar, unstable intermediates that rearranged on silica gel to two final products in which the furan ring had been oxidized to isomeric hydroxybutenolides. The isomeric hydroxybutenolides were also readily formed when a crude extract of triterpenoids from neem seeds was irradiated, and both isomers of salannin have been isolated from seeds. Photooxidation of nimbin and salannin proceeded much faster than that of azadirachtin. All photoproducts showed some biological activity against Spodoptera littoralis, Locusta migratoria, and Schistocerca gregaria. Isonimbinolide was as potent as azadirachtin at inhibiting feeding in all three species, and it also inhibited the growth of S. littoralis. Isosalanninolide showed potent antifeedant and growth inhibitory activity against S. littoralis

  4. Detection of Ancient DNA of Encephalitozoon intestinalis (Microsporidia) in Archaeological Material

    Czech Academy of Sciences Publication Activity Database

    Myšková, E.; Ditrich, O.; Sak, Bohumil; Kváč, Martin; Cymbalak, T.

    2014-01-01

    Roč. 100, č. 3 (2014), s. 356-359 ISSN 0022-3395 Institutional support: RVO:60077344 Keywords : parasites * Cryptosporidium * amplification * coprolites * Ascaris * Giardia * world * eggs Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.227, year: 2014

  5. Improving the degree-day model for forecasting Locusta migratoria manilensis (Meyen (Orthoptera: Acridoidea.

    Directory of Open Access Journals (Sweden)

    Xiongbing Tu

    Full Text Available The degree-day (DD model is an important tool for forecasting pest phenology and voltinism. Unfortunately, the DD model is inaccurate, as is the case for the Oriental migratory locust. To improve the existing DD model for this pest, we first studied locust development in seven growth chambers, each of which simulated the complete growing-season climate of a specific region in China (Baiquan, Chengde, Tumotezuoqi, Wenan, Rongan, Qiongzhong, or Qiongshan. In these seven treatments, locusts completed 0.95, 1, 1.1, 2.2, 2.95, 3.95, and 4.95 generations, respectively. Hence, in the Baiquan (700, Rongan (2400, Qiongzhong (3200, and Qiongshan (2400 treatments, the final generation were unable to lay eggs. In a second experiment, we reared locusts for a full generation in growth chambers, at different constant temperatures. This experiment provided two important findings. First, temperatures between 32 and 42°C did not influence locust development rate. Hence, the additional heat provided by temperatures above 32°C did not add to the total heat units acquired by the insects, according to the traditional DD model. Instead, temperatures above 32°C represent overflow heat, and can not be included when calculating total heat acquired during development. We also noted that females raised at constant 21°C failed to oviposit. Hence, temperatures lower than 21°C should be deducted when calculating total heat acquired during adult development. Using our experimental findings, we next micmiked 24-h temperature curve and constructed a new DD model based on a 24-h temperature integral calculation. We then compared our new model with the traditional DD model, results showed the DD deviation was 166 heat units in Langfang during 2011. At last we recalculated the heat by our new DD model, which better predicted the results from our first growth chamber experiment.

  6. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia.

    Science.gov (United States)

    Tsevegmid, Khaliunaa; Neumann, Peter; Yañez, Orlando

    2016-01-01

    Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.

  7. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.

    Science.gov (United States)

    Simone-Finstrom, Michael; Aronstein, Kate; Goblirsch, Michael; Rinkevich, Frank; de Guzman, Lilia

    2018-03-01

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity

  8. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris in their native and introduced range.

    Directory of Open Access Journals (Sweden)

    Philip J Lester

    Full Text Available When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris, which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England and invaded range (Argentina and New Zealand. We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range. Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.

  9. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range.

    Science.gov (United States)

    Lester, Philip J; Bosch, Peter J; Gruber, Monica A M; Kapp, Eugene A; Peng, Lifeng; Brenton-Rule, Evan C; Buchanan, Joe; Stanislawek, Wlodek L; Archer, Michael; Corley, Juan C; Masciocchi, Maitè; Van Oystaeyen, Annette; Wenseleers, Tom

    2015-01-01

    When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.

  10. Risk factors for the presence of Deformed wing virus and Acute bee paralysis virus under temperate and subtropical climate in Argentinian bee colonies.

    Science.gov (United States)

    Molineri, Ana; Giacobino, Agostina; Pacini, Adriana; Bulacio Cagnolo, Natalia; Fondevila, Norberto; Ferrufino, Cecilia; Merke, Julieta; Orellano, Emanuel; Bertozzi, Ezequiel; Masciángelo, Germán; Pietronave, Hernán; Signorini, Marcelo

    2017-05-01

    Beekeepers all across the world are suffering important losses of their colonies, and the parasitic mites Varroa destructor and Nosema sp, as well as several bee viruses, are being pointed out as the possible causes of these losses, generally associated with environmental and management factors. The objective of the present study was to evaluate the presence of seven virus species (Deformed wing virus -DWV-, Acute bee paralysis virus -ABPV-, Chronic bee paralysis virus -CBPV-, Black queen cell virus -BQCV-, Kashmir bee virus -KBV-, Israeli acute bee paralysis virus -IAPV-, and Sacbrood bee virus -SBV), as well as the prevalence of Nosema sp. and Varroa destructor, and their possible associated factors, under temperate and subtropical climate conditions in Argentinean colonies. A total of 385 colonies distributed in five Argentinean eco-regions were examined after honey harvest. The final multivariable model revealed only one variable associated with the presence of DWV and two with the presence of ABPV. The apiary random effect was significant in both cases (P=0.018; P=0.006, respectively). Colonies with a Varroa infestation rate >3% showed higher presence of DWV than colonies with <3% of Varroa infestation level (OR=1.91; 95% CI: 1.02-3.57; P<0.044). The same pattern was observed for the presence of ABPV (OR=2.23; 95% CI: 1.04-4.77; P<0.039). Also, colonies where replacement of old combs was not a common practice had higher presence of ABPV (OR=6.02; 95% CI: 1.16-31.25; P<0.033). Regardless of the location of the colonies, virus presence was strongly associated with V. destructor level. Therefore, all the factors that directly or indirectly influence the levels of mites will be also influencing the presence of the viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells.

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.

  12. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    Full Text Available Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin or presumed (surfactin or no (paromomycin activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.

  13. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia.

    Directory of Open Access Journals (Sweden)

    Khaliunaa Tsevegmid

    Full Text Available Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies, where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV and Chronic bee paralysis virus were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km. Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.

  14. Pervasiveness of parasites in pollinators.

    Directory of Open Access Journals (Sweden)

    Sophie E F Evison

    Full Text Available Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris and a third of wasps (Vespula vulgaris, as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.

  15. Bee pathogens found in Bombus atratus from Colombia: A case study.

    Science.gov (United States)

    Gamboa, Viviana; Ravoet, Jorgen; Brunain, Marleen; Smagghe, Guy; Meeus, Ivan; Figueroa, Judith; Riaño, Diego; de Graaf, Dirk C

    2015-07-01

    Bombus atratus bumblebees from Colombia that were caught in the wild and from breeding programs were screened for a broad set of bee pathogens. We discovered for the first time Lake Sinai Virus and confirmed the infection by other common viruses. The prevalence of Apicystis bombi, Crithidia bombi and Nosema ceranae was remarkably high. According to other studies the former two could have been co-introduced in South America with exotic bumble bees as Bombus terrestris or Bombus ruderatus. Given the fact that none of these species occur in Colombia, our data puts a new light on the spread of these pathogens over the South American continent. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Sulfakinin is an important regulator of digestive processes in the migratory locust, Locusta migratoria

    Science.gov (United States)

    Sulfakinin (SK) is a sulfated insect neuropeptide that is best known for its function as a satiety factor. It displays structural and functional similarities with the vertebrate peptides gastrin and cholecystokinin. Peptidomic studies in multiple insects, crustaceans and arachnids have revealed th...

  17. Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview

    Directory of Open Access Journals (Sweden)

    Hojun Song

    2011-01-01

    Full Text Available Although the specific mechanisms of locust phase transformation are wellunderstood for model locust species such as the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, the expressions of density-dependent phase polyphenism in other nonmodel locust species are not wellknown. The present paper is an attempt to review and synthesize what we know about these nonmodel locusts. Based on all available data, I find that locust phase polyphenism is expressed in many different ways in different locust species and identify a pattern that locust species often belong to large taxonomic groups which contain mostly nonswarming grasshopper species. Although locust phase polyphenism has evolved multiple times within Acrididae, I argue that its evolution should be studied from a phylogenetic perspective because I find similar density-dependent phenotypic plasticity among closely related species. Finally, I emphasize the importance of comparative analyses in understanding the evolution of locust phase and propose a phylogeny-based research framework.

  18. Encephalitozoon cuniculi in pet rabbits: diagnosis and optimal management

    Directory of Open Access Journals (Sweden)

    Latney LV

    2014-11-01

    Full Text Available La'Toya V Latney,1 Charles W Bradley,2 Nicole R Wyre1 1Departments of Clinical Studies, 2Departments of Pathobiology, Matthew J Ryan Veterinary Hospital of the University of Pennsylvania, Philadelphia, PA, USA Abstract: Encephalitozoonosis is a significant microsporidial disease of captive pet rabbits (Oryctolagus cuniculus. This article overviews the life cycle, pathogenesis, and host immune response to the parasite. Clinical presentation, differential diagnoses, antemortem diagnostics, and postmortem diagnosis will be discussed. International seroprevalence data and histologic prevalence estimates in the US are presented. A review of current treatment and control recommendations are discussed based on extensive review of controlled studies, which have found fenbendazole to be effective for limiting spread of the disease. Keywords: Encephalitozoon cuniculi, Oryctolagus cuniculi, microsporidia, encephalitozoonosis

  19. Detección de Malpighamoeba mellifcae (Protista: Amoebozoa en Apis mellifera (Hymenoptera: Apidaede Argentina Detection of Malpighamoeba mellifcae (Protista: Amoebozoa in Apis mellifera (Hymenoptera: Apidae of Argentina

    Directory of Open Access Journals (Sweden)

    Santiago Plischuk

    2010-12-01

    Full Text Available Debido a su rol como polinizador y productor de miel, la abeja Apis mellifera L. es considerado un insecto beneficioso. Si bien Argentina juega un papel de liderazgo en la producción de miel, existe un considerable vacío en el conocimiento acerca de las enfermedades de etiología protista que afectan las abejas en el país. La ameba Malpighamoeba mellificae Prell es un protista entomopatógeno que invade los túbulos de Malpighi de las abejas e interfiere con el proceso de excreción, debilitando al huésped y posiblemente facilitando la acción de otros patógenos. En esta contribución se presentan los primeros hallazgos de M. mellificae en Argentina y se brindan datos iniciales acerca de su frecuencia, intensidad de las infecciones, y co-ocurrencia con Nosema sp. Malpighamoeba mellificae se halló en dos de 36 localidades prospectadas: San Cayetano, al Sur de la provincia de Buenos Aires y San Carlos de Bariloche, en el Oeste de la provincia de Río Negro.Due to its role as a pollinator and honey producer, the honey bee Apis mellifera L. is considered a beneficial insect. Although Argentina plays a leading role in honey production, there is a considerable gap in knowledge regarding protistan diseases that affect honey bees in the country. The amoeba Malpighamoeba mellificae Prell is an entomopathogenic protist that invades the Malpighian tubules of honey bees and interferes with the excretory process, debilitating the host and possibly facilitating the action of other pathogens. In this contribution, we present the first reports of M. mellificae in Argentina, and provide some initial data about its frecuency, infection intensity, and co-occurrence with Nosema sp. Malpighamoeba mellificae was found in two out of 36 localities surveyed: San Cayetano, in southern Buenos Aires province, and San Carlos de Bariloche, in western Río Negro province.

  20. Stripped-down DNA repair in a highly reduced parasite

    Directory of Open Access Journals (Sweden)

    Fast Naomi M

    2007-03-01

    Full Text Available Abstract Background Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair. DNA repair is essential to any living cell. A loss of these mechanisms invariably results in accumulation of mutations and/or cell death. Six major pathways of DNA repair in eukaryotes include: non-homologous end joining (NHEJ, homologous recombination repair (HRR, mismatch repair (MMR, nucleotide excision repair (NER, base excision repair (BER and methyltransferase repair. DNA polymerases are also critical players in DNA repair processes. Given the close relationship between microsporidia and fungi, the repair mechanisms present in E. cuniculi were compared to those of the yeast Saccharomyces cerevisiae to ascertain how the process of genome reduction has affected the DNA repair pathways. Results E. cuniculi lacks 16 (plus another 6 potential absences of the 56 DNA repair genes sought via BLASTP and PSI-BLAST searches. Six of 14 DNA polymerases or polymerase subunits are also absent in E. cuniculi. All of these genes are relatively well conserved within eukaryotes. The absence of genes is not distributed equally among the different repair pathways; some pathways lack only one protein, while there is a striking absence of many proteins that are components of both double strand break repair pathways. All specialized repair polymerases are also absent. Conclusion Given the large number of DNA repair genes that are absent from the double strand break repair pathways, E. cuniculi is a prime candidate for the study of double strand break repair with minimal machinery. Strikingly, all of the

  1. Intestinal parasitic infections in HIV-infected patients, Lao People's Democratic Republic.

    Directory of Open Access Journals (Sweden)

    Phimpha Paboriboune

    Full Text Available BACKGROUND: HIV infection is an emerging problem in Laos. We conducted the first prospective study on intestinal parasites, including opportunistic protozoa, in newly diagnosed HIV infected patients, with or without diarrhea. The aims were to describe the spectrum of infections, to determine their prevalence and to assess their associations with diarrhea, CD4 cell count, place of residence and living conditions. METHODOLOGY: One to three stool samples over consecutive days were obtained from 137 patients. The Kato thick smear method, formalin-ethyl concentration and specific stains for coccidia and microsporidia diagnosis were performed on 260 stool samples. Baseline characteristics regarding relevant demographics, place of residence and living conditions, clinical features including diarrhea, were collected using a standardized questionnaire. PRINCIPAL FINDINGS: The 137 patients were young (median age: 36 years and severely immunocompromised (83.9% at WHO stage 3 or 4, median CD4 cell count: 41/mm3. Diarrhea was present in 43.0% of patients. Parasite infection was found in 78.8% of patients, infection with at least two species in 49.6%. Prevalence rates of protozoan and helminth infections were similar (54.7% and 58.4% respectively. Blastocystis sp. was the most frequent protozoa (26.3%. Cryptosporidium sp., Cytoisospora belli and microsporidia, found at low prevalence rates (6.6%, 4.4%, 2.9%, respectively, were described for the first time in Laos. Cryptosporidium sp. was associated with persistent diarrhea. Strongyloides stercoralis was the most prevalent helminth following Opisthorchis viverrini (20.4% and 47.5% respectively. The most immunocompromised patients, as assessed by a CD4 count ≤ 50 cells/mm3, were more likely to be infected with intestinal parasites. CONCLUSIONS/SIGNIFICANCE: HIV infection was mainly diagnosed at an advanced stage of immunosuppression in Lao patients. Intestinal parasite infections were highly prevalent

  2. Parasite infection accelerates age polyethism in young honey bees

    DEFF Research Database (Denmark)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per

    2016-01-01

    micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing......Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab...... manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens....

  3. Thermal sensitivity of excitation-contraction-coupling in a chill susceptible insect, Locusta migratoria

    DEFF Research Database (Denmark)

    Findsen, Anders; Pedersen, Thomas Holm; Overgaard, Johannes

    Many insect species enter a state of neuromuscular paralysis when their body temperature is lowered to a critical limit but the physiological and cellular processes underlying this chill coma are largely unknown. Previous studies on locusts show that muscle force production is highly depressed...... at low temperature implicating impairment in cellular mechanism in the muscle per se. Aiming to determine these mechanisms we examined the thermal sensitivity of several events in the excitation-contraction-coupling process including: i) Passive membrane properties and propagation of electrical signals...

  4. A bait for locust (Locusta migratoria migratorioides) suitable for oral application of juvenile hormone analogues

    Czech Academy of Sciences Publication Activity Database

    Němec, Václav

    2003-01-01

    Roč. 58, č. 1 (2003), s. 287-290 ISSN 0006-3088 Institutional research plan: CEZ:AV0Z5007907 Keywords : locust control * bait * oral application Subject RIV: ED - Physiology Impact factor: 0.183, year: 2003

  5. First report of [i]Enterocytozoon[/i] bieneusi and [i]Encephalitozoon intestinalis[/i] infection of wild mice in Slovakia

    Directory of Open Access Journals (Sweden)

    Oľga Danišová

    2015-05-01

    Full Text Available Increased risk of zoonotic transmission of the potential human pathogenic species [i]Enterocytozoon bieneusi[/i], [i]Encephalitozoon intestinalis[/i] and [i]Encephalitozoon cuniculi [/i]was detected in wild immunocompetent mice (Mus musculus musculus; n=280. Analysis was conducted with the use of PMP1/PMP2 primers and SYBR Green RT-PCR. Using Real Time PCR and comparing the sequences with sequences in the GenBank, [i]E. bieneusi[/i] was detected in 3 samples (1.07 %, [i]E. cuniculi [/i]in 1 sample (0.35 % and [i]E. intestinalis[/i] in 1 sample (0.35 %. The results of this report document the low host specificity of detected microsporidia species, and imply the importance of synanthropic rodents as a potential source of human microsporidial infection.

  6. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor.

    Science.gov (United States)

    Blenau, W; Balfanz, S; Baumann, A

    2000-03-01

    Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.

  7. Autoradiographic study of nuclear protein acetylation during Locust spermiogenesis

    International Nuclear Information System (INIS)

    Bouvier, D.; Chevaillier, P.

    1975-01-01

    Autoradiographic studies, at the light and electron microscope level, demonstrate that spermatid nuclei of the Locust Locusta migratoria incorporate 3 H-acetate, especially during the first stages of spermiogenesis. The highest level of acetate incorporation is observed during stage II of spermiogenesis. During this stage and the following, the spermatid nucleus undergoes a number of structural and chemical modifications: chromatin decondenses and somatic histones are progressively replaced by newly synthesized arginine-rich proteins. Therefore, the higher degree of acetylation of nuclear components coincides with chromatin decondensation and precedes the protein transition occurring in later stages. Cytochemical and autoradiographic tests have been realized so as to localize 3 H-acetate in the nuclear components. Trichloracetic acid was used at various concentrations: the action of hydrochloric acid, pronase and DNase was also tested. The results support the idea that proteins, and among them histones, are the only nuclear components to be acetylated during spermiogenesis. Thus, histone acetylation seems to play an important role in modulating histone-DNA interactions and allowing histone replacement [fr

  8. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination.

    Science.gov (United States)

    Cavigli, Ian; Daughenbaugh, Katie F; Martin, Madison; Lerch, Michael; Banner, Katie; Garcia, Emma; Brutscher, Laura M; Flenniken, Michelle L

    Honey bees are important pollinators of agricultural crops. Since 2006, US beekeepers have experienced high annual honey bee colony losses, which may be attributed to multiple abiotic and biotic factors, including pathogens. However, the relative importance of these factors has not been fully elucidated. To identify the most prevalent pathogens and investigate the relationship between colony strength and health, we assessed pathogen occurrence, prevalence, and abundance in Western US honey bee colonies involved in almond pollination. The most prevalent pathogens were Black queen cell virus (BQCV), Lake Sinai virus 2 (LSV2), Sacbrood virus (SBV), Nosema ceranae , and trypanosomatids. Our results indicated that pathogen prevalence and abundance were associated with both sampling date and beekeeping operation, that prevalence was highest in honey bee samples obtained immediately after almond pollination, and that weak colonies had a greater mean pathogen prevalence than strong colonies.

  9. Difficulties and Successes in the Mass Rearing of Insects in the Laboratory, and the Possibility of Autocidal Control of some Harmful Species; Trudnosti i uspekhi massovogo razvedeniya nasekomykh v laboratorii i vozmozhnosti samoistrebleniya nekotorykh vrednykh vidov

    Energy Technology Data Exchange (ETDEWEB)

    Shumakov, E. M. [Rastenij, Vsesojuznyj Nauchno-Issledovatel' skij Institut Zashhity Leningrad, SSSR (Russian Federation)

    1968-06-15

    developing ways of overcoming the diapause in laboratory populations in order to ensure continuous rearing. This can be done either by reactivating the insects by temperature changes or by instituting a period of illumination which prevents die diapause from starting. A further possible method is that of selecting and crossing diapausing and non-diapausing strains of a given species. A number of species of Orthoptera having a fairly wide natural habitat have been used to show the possibility of autocidal control by adding to a natural population which normally has a diapause specimens of a non-diapausing population from other parts of the habitat. This possibility has been demonstrated for the cricket Teleogryllus corn modus Walk, in Australia and for sub-species of Locusta migratoria L. in the Old World. The development of this form of autocidal control of insects merits close attention. The work reported is devoted mainly to developing methods of autocidal control and techniques for mass laborarory breeding of such harmful species as Carpocapsa pomonella L., Eurygaster integriceps Put, and Locusta migratoria L. (author) [Russian] Prakticheskaja razrabotka metoda nypuska sterilizovannyh samcov, kak i voobshhe metodov samoistreblenija vrednyh nasekomyh, limitiruetsja trudnostjami massovogo razvedenija ih n iskusstvennyh uslovijah. Odnako, analiz uspeshnyh sluchaev reshenija jetoj problemy dlja rjada pidov Liplera, Lepidoptera i Orthoptera pozvoljaet nametit' vozmozhnye puti sozdanija tehniki massovogo razvedenija neobhodimyh ob{sup o}ktop. Naibolee trudnyj vopros obespechenija nasekomyh sootvetstvujushhim kormom v ljuboe vremja goda uspeshno razreshaetsja blagodarja progressu, dostignutomu v sozdanii sinteticheskih i polusinteticheskih pishhevyh sred dlja nasekomyh. Takie sredy razrabotany uzhe kak dlja polusaprofitiyh, tak i dlja rastitel'nojadnyh i hishhnyh vidov. Podbor receptov dlja takih sred opredeljaetsja pravil'nym vyborom neobhodimyh komponentov, v pervuju ochered

  10. Guidelines for the naming of genes, gene products, and mutants in the opportunistic protists.

    Science.gov (United States)

    Limper, Andrew H; Weiss, Louis M

    2011-01-01

    The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  11. Prevalence and molecular characteristics of urinary and intestinal microsporidia infections in renal transplant recipients

    Czech Academy of Sciences Publication Activity Database

    Kicia, M.; Wesolowska, M.; Kopacz, Z.; Jakuszko, K.; Sak, Bohumil; Květoňová, Dana; Krajewska, M.; Kváč, Martin

    2016-01-01

    Roč. 22, č. 5 (2016), 462.e5-462.e9 ISSN 1198-743X Institutional support: RVO:60077344 Keywords : Encephalitozoon cuniculi * Enterocytozoon bieneusi * immunosuppression * renal transplant recipients * urinary tract Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.292, year: 2016

  12. Tris stimulated ecdysteroid secretion via Ca2+ messenger system in the prothoracic glands of Locusta migratoria

    Czech Academy of Sciences Publication Activity Database

    Neuwirth, Aleš; Kodrík, Dalibor; Birkenbeil, H.; Sehnal, František

    2005-01-01

    Roč. 30, - (2005), s. 270-277 ISSN 0307-6962 Grant - others: Deutsch Gesellschaft fur Luft-und Raumfahrt(DE) TSR-072-97 Institutional research plan: CEZ:AV0Z50070508 Keywords : Calcium channels * ecdysteroids * inositol triphosphate Subject RIV: ED - Physiology Impact factor: 1.221, year: 2005

  13. Caracterização física, química, microbiológica e sensorial de geléias light de abacaxi Physical, chemical, microbiological and sensory characterization of light jellies of pineapple

    Directory of Open Access Journals (Sweden)

    Graziele Guimaraes Granada

    2005-12-01

    Full Text Available O trabalho objetivou elaborar geléias com reduzido teor calórico, utilizando como agentes de corpo diferentes combinações dos hidrocolóides xantana, carragena e locusta. Como comparativo utilizou-se uma formulação padrão de geléia de abacaxi (controle, elaborada com sacarose e xarope de glicose na proporção de 4:1 (p/p, e com teor final de sólidos solúveis de 65ºBrix. As quatro formulações light foram preparadas pela substituição de 50% da quantidade de açúcar da formulação controle, sendo que para equiparar a doçura, adicionou-se o edulcorante sucralose. Foram avaliadas as características químicas, físicas, microbiológicas e sensoriais, além do valor calórico total das geléias. Os resultados mostraram que as geléias apresentaram características químicas e físicas semelhantes às descritas na literatura e enquadraram-se na categoria de produtos light, segundo a legislação vigente. Quanto às características microbiológicas, todas as formulações enquadraram-se nos padrões microbiológicos estabelecidos pela legislação brasileira. Em termos sensoriais a formulação com a combinação das gomas carragena:xantana:locusta (1:1:1, p/p/p foi a que apresentou melhores características de geléia.The objective of the work was to elaborate jellies with reduced caloric content, by using as body replacers a combination of the hydrocolloids xanthan, carrageenan and locust. The pineapple jelly was used as control formulation, and it was made with sucrose and glucose in the proportion of 4:1 p/p, and soluble solid content of 65ºBrix. The four light formulations were prepared by substitution of 50% of the amount of sugar of the control formulation and, to compensate the sweetness, the low-calorie sweetener sucralose was used. The chemical, physical, microbiological, sensory and the total caloric content of the jellies were evaluated. The results showed that the jellies presented chemical and physical characteristics

  14. A spore counting method and cell culture model for chlorine disinfection studies of Encephalitozoon syn. Septata intestinalis.

    Science.gov (United States)

    Wolk, D M; Johnson, C H; Rice, E W; Marshall, M M; Grahn, K F; Plummer, C B; Sterling, C R

    2000-04-01

    The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determined by using spectrophotometric measurements (percent transmittance at 625 nm) and by traditional hemacytometer counting. To determine quantitative dose-response data for spore infectivity, we optimized a rabbit kidney cell culture system in 24-well plates, which facilitated calculation of a 50% tissue culture infective dose (TCID(50)) and a minimal infective dose (MID) for E. intestinalis. The TCID(50) is a quantitative measure of infectivity and growth and is the number of organisms that must be present to infect 50% of the cell culture wells tested. The MID is as a measure of a system's permissiveness to infection and a measure of spore infectivity. A standardized MID and a standardized TCID(50) have not been reported previously for any microsporidian species. Both types of doses are reported in this paper, and the values were used to evaluate the effects of chlorine disinfection on the in vitro growth of microsporidia. Spores were treated with chlorine at concentrations of 0, 1, 2, 5, and 10 mg/liter. The exposure times ranged from 0 to 80 min at 25 degrees C and pH 7. MID data for E. intestinalis were compared before and after chlorine disinfection. A 3-log reduction (99.9% inhibition) in the E. intestinalis MID was observed at a chlorine concentration of 2 mg/liter after a minimum exposure time of 16 min. The log(10) reduction results based on percent transmittance-derived spore counts were equivalent to the results based on hemacytometer-derived spore counts. Our data

  15. Esporas de microsporidios: nueva apariencia con el microscopio electrónico

    Directory of Open Access Journals (Sweden)

    Orlando Torres Fernández

    2001-12-01

    Full Text Available El phylum Microsporidia comprende un gran número de especies de protozoarios parásitos ubicuos en la naturaleza. Algunas tienen importancia médica como agentes causales de infecciones oportunistas en pacientes con sida. Desde las primeras imágenes de esporas de microsporidios obtenidas con el microscopio electrónico (1, su apariencia ha sido la mismaquese observa en lasfiguras 1-2. La pared de la espora exhibe dos capas: la endospora y la exospora. La endospora es de apariencia transparente y el contenido interno de la espora (esporoplasma no se distingue fácilmente porque es muy oscuro y se rompe con los cortes ultrafinos. Otra imagen característica es la del tubo polar que en corte transversal muestra un centro oscurO rodeado por un anillo claro. Así se ven las esporas de microsporidios de cualquier especie cuando se fijan con el método convencional de fijación con tetróxido de osmio (OsO4 . Estos rasgos ultraestructurales de las esporas son muy útiles para la taxonomiadel phylum Microsporidia (Microspora (2. Un nuevo procedimiento para la microscopia electrónica de los microsporidios, basado en la utilización de tetróxido de rutenio como fijador, revela otros detalles ultraestructurales de la pared de la espora (3. En este artículo se exhiben las primeras imágenes de las esporas completas de microsporidios procesadas con este método. Se revela el contenido de la endospora y se preserva mejor la estructura del esporoplasma. El tubo polar en corte transversal difiere del tubo polar fijado con tetróxido de osmio. El centro es claro y está rodeadopor un anillo oscuro. Esta diferencia también se observa en las esporas de Polydispyrenia sirnulii (3. El contraste en la densidad electrónica de las capas del tubo polar podría explicarse por diferencias en la composición de lípidos de acuerdo con las propiedades de los dos fijadores (OsO4 y Ruo4 (3. Estas imágenes completan la descripción de las esporas de microsporidios

  16. Short communication: First data on the prevalence and distribution of pathogens in bumblebees (Bombus terrestris and Bombus pascuorum from Spain

    Directory of Open Access Journals (Sweden)

    Clara Jabal-Uriel

    2017-04-01

    Full Text Available Bumblebees provide pollination services not only to wildflowers but also to economically important crops. In the context of the global decline of pollinators, there is an increasing interest in determining the pathogen diversity of bumblebee species. In this work, wild bumblebees of the species Bombus terrestris and Bombus pascuorum from northern and southern Spain were molecularly screened to detect and estimate prevalence of pathogens. One third of bumblebees were infected: while viruses only infected B. pascuorum, B. terrestris was infected by Apicystis bombi, Crithidia bombi and Nosema bombi. Ecological differences between host species might affect the success of the pathogens biological cycle and consequently infection prevalence. Furthermore, sex of the bumblebees (workers or males, sampling area (north or south and altitude were important predictors of pathogen prevalence. Understanding how these factors affect pathogens distribution is essential for future conservation of bumblebee wild populations.

  17. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine.

    Science.gov (United States)

    du Rand, Esther E; Smit, Salome; Beukes, Mervyn; Apostolides, Zeno; Pirk, Christian W W; Nicolson, Susan W

    2015-07-02

    Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality.

  18. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    Science.gov (United States)

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection.

  19. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    Science.gov (United States)

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  20. Novel odorant-binding proteins and their expression patterns in grasshopper, Oedaleus asiaticus.

    Science.gov (United States)

    Zhang, Shuo; Pang, Baoping; Zhang, Long

    2015-05-01

    Insects use olfaction to detect exogenous odors and adapt to environments. In their olfaction systems, odorant-binding proteins (OBPs) are believed to be a key component. The unique OBP system of each species reflects the evolution of chemosensation of insects with habits. Here, we for the first time identified 15 OBPs, OasiOBP1-15, of a grasshopper, Oedaleus asiaticus, that lives in the grasslands of Northern China and is closely related to the locust, Locusta migratoria. OasiOBP9 and OasiOBP10 are specifically expressed in the antennae. Other OBPs are expressed in the antennae as well as other chemosensory organs, such as the mouthparts and wings. Significantly more OasiOBP7 was detected in male than female antennae, but there are 9 OBPs that were more expressed in female than male antennae by quantitative real-time PCR. Phylogenetic analysis indicated that most of the O. asiaticus OBPs are similar to those of L. migratoria, but some are substantially different. This indicates that the OBPs originally evolved in a common ancestor, but their unique chemosensory systems are adapted to different ecosystems. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The PM1 neurons, movement sensitive centrifugal visual brain neurons in the locust: anatomy, physiology, and modulation by identified octopaminergic neurons.

    Science.gov (United States)

    Stern, Michael

    2009-02-01

    The locust's optic lobe contains a system of wide-field, multimodal, centrifugal neurons. Two of these cells, the protocerebrum-medulla-neurons PM4a and b, are octopaminergic. This paper describes a second pair of large centrifugal neurons (the protocerebrum-medulla-neurons PM1a and PM1b) from the brain of Locusta migratoria based on intracellular cobalt fills, electrophysiology, and immunocytochemistry. They originate and arborise in the central brain and send processes into the medulla of the optic lobe. Double intracellular recording from the same cell suggests input in the central brain and output in the optic lobe. The neurons show immunoreactivity to gamma-amino-butyric acid and its synthesising enzyme, glutamate decarboxylase. The PM1 cells are movement sensitive and show habituation to repeated visual stimulation. Bath application of octopamine causes the response to dishabituate. A very similar effect is produced by electrical stimulation of one of an octopaminergic PM4 neuron. This effect can be blocked by application of the octopamine antagonists, mianserin and phentolamine. This readily accessible system of four wide-field neurons provides a system suitable for the investigation of octopaminergic effects on the visual system at the cellular level.

  2. Regionalization of surface lipids in insects.

    Science.gov (United States)

    Wang, Yiwen; Yu, Zhitao; Zhang, Jianzhen; Moussian, Bernard

    2016-05-11

    Cuticular hydrocarbons (CHCs) play a critical role in the establishment of the waterproof barrier that prevents dehydration and wetting in insects. While rich data are available on CHC composition in different species, we know little about their distribution and organization. Here, we report on our studies of the surface barrier of the fruit fly Drosophila melanogaster applying a newly developed Eosin Y staining method. The inert Eosin Y penetrates different regions of the adult body at distinct temperatures. By contrast, the larval body takes up the dye rather uniformly and gradually with increasing temperature. Cooling down specimens to 25°C after incubation at higher temperatures restores impermeability. Eosin Y penetration is also sensitive to lipid solvents such as chloroform indicating that permeability depends on CHCs. As in D. melanogaster adult flies, Eosin Y penetration is regionalized in Tenebrio molitor larvae, whereas it is not in Locusta migratoria nymphs. Regionalization of the fly surface implies tissue-specific variation of the genetic or biochemical programmes of CHC production and deposition. The Eosin Y-based map of CHC distribution may serve to identify the respective factors that are activated to accommodate ecological needs. © 2016 The Author(s).

  3. Transport and concentration of abscisic acid (ABA) and auxin (IAA) in deciduous and coniferous trees. Transport und Gehalt von Abscisinsaeure (ABA) und Auxin (IAA) in Laub- und Nadelblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.

    1988-09-01

    Abscisic acid and indoleacetic acid were chosen to examine whether intact deciduous and coniferous tissues from spruce, hemlock fir, spinage, barley and sorrel or isolated mesophyll protoplasts from barley and closing cell preparations from Valerianella locusta are affected by sulphur dioxide in terms of changes in the concentration, transportation and distribution of such plant hormones. The distribution of phytohormones like ABA and IAA over the individual cell compartments is determined by the different pH gradients of the latter. Owing to their acidity these hormones are accumulated in alkaline cell inclusion bodies like chloroplasts and cytosol. Potentially acid air pollutants like SO{sub 2} and NO{sub x} lead to acidification of previously alkaline cell compartments, due to which fact the cellular pH gradients are reduced. This, in turn, gives rise to a redistribution of phytohormones to the effect that certain target cells such as closing cells of leaves or meristem cells come under the influence of altered hormone concentrations and compositions. This is bound to affect the processes controlling the development, growth and stress behaviour of plants. (orig.) With 55 refs., 2 tabs., 16 figs.

  4. Uptake of [N-Me-3H]-choline by synaptosomes from the central nervous system of Locusta migratoria

    International Nuclear Information System (INIS)

    Breer, H.

    1982-01-01

    The accumulation of 3H-choline by isolated synaptosomes from the central nervous system of locust was studied at concentrations varying from 0.05 to 40 microM. Kinetic analysis of the saturable process revealed a high-affinity and a low-affinity system. The high-affinity uptake was competitively inhibited by hemicholinium-3 and was absolutely dependent on external sodium. Elevated potassium concentrations inhibited choline uptake. The choline uptake by insect synaptosomes was found to be remarkably resistant to a variety of metabolic inhibitors. The reduced choline uptake under depolarizing conditions (high potassium concentration or veratridine) in the absence of calcium implies that electrochemical gradients are important for high-affinity choline uptake. Depolarization of preloaded synaptosomes under appropriate conditions resulted in a significant release of newly accumulated choline radioactivity

  5. Thin layer chromatographic analysis of pteridine-like pigments in the migratory locust, Locusta migratoria migratorioides (Orthoptera: Oedipodidae)

    Czech Academy of Sciences Publication Activity Database

    Němec, Václav; Breuer, M.; De Loof, A.

    2003-01-01

    Roč. 19, - (2003), s. 19-23 ISSN 1210-5759 Institutional research plan: CEZ:AV0Z5007907 Keywords : Pterines * phase-transition * juvenile hormone Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.741, year: 2003

  6. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption.

    Science.gov (United States)

    Stoops, J; Crauwels, S; Waud, M; Claes, J; Lievens, B; Van Campenhout, L

    2016-02-01

    In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    Full Text Available To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection.

  8. Mortality in captive wild-caught horned puffin chicks (Fratercula corniculata).

    Science.gov (United States)

    Tocidlowski, M E; Cornish, T E; Loomis, M R; Stoskopf, M K

    1997-09-01

    Sixteen horned puffin (Fratercula corniculata) and six parakeet auklet (Cyclorrhynchus psittacula) chicks of various prefledging ages were caught in Alaska and transported to the North Carolina Zoological Park (USA) in August 1995. Six of the 16 puffin chicks died within a 5-day period beginning 2 days after their arrival into quarantine at the zoo. The birds that died were collected at a young age, weighed 45.4-65.7 g, and had been fed a diet of thawed frozen ocean silversides (Atherinidae) that was not supplemented with vitamins. Clinical signs were nonspecific, and gross necropsies, insecticide toxicology screens, and bacterial cultures were unremarkable. Microscopic examination of tissues from five of the six birds showed myocardial necrosis and degeneration suggestive of vitamin E deficiency and intestinal protozoa resembling Microsporidia. The mortality pattern and histopathologic lesions observed in this case support the use of selective age capture and vitamin supplementation for wild alcid chick collection.

  9. Currency as a potential environmental vehicle for transmitting parasites among food-related workers in Alexandria, Egypt.

    Science.gov (United States)

    Hassan, Azza; Farouk, Hanan; Hassanein, Faika; Abdul-Ghani, Rashad

    2011-09-01

    Transmission of parasites may occur indirectly via inanimate objects in the surrounding environment. One of the objects most handled and exchanged by people are currency coins and banknotes, which could be one of the most potential vehicles to transmit parasites, even between countries. However, study of the potential contamination of currency in circulation with intestinal parasites has not been given the interest it deserves and the present study is the first pilot study in Alexandria, Egypt. It was revealed that 60.2% of 103 banknotes and 56.6% of 99 coins obtained from food-related workers had been contaminated with one or more parasitic species. Protozoa were the predominant parasites, with microsporidia and Cryptosporidium spp. being the most prevalent. There was no statistically significant difference between currency types regarding parasitological contamination, but there was a significant (Pbanknotes was with the lower denominations being more contaminated. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  10. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    Science.gov (United States)

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  11. Stray cats are more frequently infected with zoonotic protists than pet cats.

    Science.gov (United States)

    Kvac, Martin; Hofmannova, Lada; Ortega, Ynes; Holubova, Nikola; Horcickova, Michaela; Kicia, Marta; Hlaskova, Lenka; Kvetonova, Dana; Sak, Bohumil; McEvoy, John

    2017-12-06

    Faecal samples were collected from cats kept as pets (n = 120) and stray cats (n = 135) in Central Europe (Czech Republic, Poland and Slovakia) and screened for the presence of Cryptosporidium spp., Giardia intestinalis (Kunstler, 1882), Encephalitozoon spp. and Enterocytozoon bieneusi Desportes, Le Charpentier, Galian, Bernard, Cochand-Priollet, Lavergne, Ravisse et Modigliani, 1985 by PCR analysis of the small-subunit of rRNA (Cryptosporidium spp. and G. intestinalis) and ITS (microsporidia) genes. Sequence analysis of targeted genes revealed the presence of C. felis Iseki, 1979, G. intestinalis assemblage F, E. cuniculi Levaditi, Nicolau et Schoen, 1923 genotype II, and E. bieneusi genotype D. There was no correlation between the occurrence of detected parasites and sex, presence of diarrhoea or drug treatment (drug containing pyrantel and praziquantel). Compared to pet cats (7%), stray cats (30%) were statistically more frequently infected with protist parasites and overall may present a greater risk to human health.

  12. Clinical and diagnostic aspects of intestinal microsporidiosis in HIV-infected patients with chronic diarrhea in Rio de Janeiro, Brazil Aspectos clínicos e diagnósticos da microsporidiose intestinal em pacientes com infecção pelo HIV e diarréia crônica, no Rio de Janeiro, Brasil

    Directory of Open Access Journals (Sweden)

    Patrícia BRASIL

    2000-12-01

    Full Text Available The objectives of this study were to determine both the prevalence of microsporidial intestinal infection and the clinical outcome of the disease in a cohort of 40 HIV-infected patients presenting with chronic diarrhea in Rio de Janeiro, Brazil. Each patient, after clinical evaluation, had stools and intestinal fragments examined for viral, bacterial and parasitic pathogens. Microsporidia were found in 11 patients (27.5% either in stools or in duodenal or ileal biopsies. Microsporidial spores were found more frequently in stools than in biopsy fragments. Samples examined using transmission electron microscopy (n=3 or polymerase chain reaction (n=6 confirmed Enterocytozoon bieneusi as the causative agent. Microsporidia were the only potential enteric pathogens found in 5 of the 11 patients. Other pathogens were also detected in the intestinal tract of 21 patients, but diarrhea remained unexplained in 8. We concluded that microsporidial infection is frequently found in HIV infected persons in Rio de Janeiro, and it seems to be a marker of advanced stage of AIDS.Os objetivos deste estudo foram determinar a prevalência e o prognóstico clínico da infecção por microsporídios em uma coorte de 40 pacientes com infecção pelo HIV e diarréia crônica na cidade do Rio de Janeiro, Brasil. Cada paciente teve suas fezes e fragmentos de intestino examinados para a pesquisa de CMV, bactérias e parasitos. A prevalência de microsporidiose foi de 27,5% (n=11. Esporos de microsporídios foram encontrados com maior frequência no exame direto das fezes do que em biópsias de intestino delgado. A microscopia eletrônica de transmissão e a reação de polimerase em cadeia (PCR identificaram Enterocytozoon bieneusi, respectivamente, em 3 e 6 amostras examinadas, confirmando a espécie como único agente causal. Nenhum outro microrganismo patogênico, além dos microsporídios, foi detectada em 5 dos pacientes com diarréia. Outros parasitos foram encontrados

  13. Why do insects enter chill coma? Low temperature and high extracellular potassium compromises muscle function in Locusta migratoria

    DEFF Research Database (Denmark)

    Findsen, Anders; Pedersen, Thomas Holm; Nielsen, Ole Bækgaard

    and a frequency of 60 Hz. To explore to what extent loss of force during cold exposure reflects loss of muscle function, all experiments were performed both in the presence and absence of TTX, which selectively inhibits motor nerve function in insects. Maximum tetanic force decreased approximately 75% when...

  14. Spraguea lophii (Microsporidia) parasitizing blackbellied angler (Lophius budegassa) and angler (L. piscatorius) in European Atlantic waters

    Science.gov (United States)

    Landa, Jorge; Cañás, Lucía

    2017-12-01

    Blackbellied angler (Lophius budegassa) and angler (L. piscatorius) are two important commercial species in the Bay of Biscay and the European fisheries infected by the microsporidian parasite Spraguea lophii. Samplings of both anglerfish were performed from a nine year time-series (2006-2014) from commercial fleet and bottom research surveys operating in southern Bay of Biscay and Galician waters (ICES Div. VIIIc and IXa2), Celtic Sea (Div. VIIh), south-western Ireland (Div. VIIj and VIIk), western Ireland and Porcupine Bank (Div. VIIb and VIIc). Length and sex of fish and presence or absence of the parasite were recorded. The prevalence by Spraguea was used to analyse the infection level. The role of each variable (fish length, fish sex, geographical area and year) and the interactions among them on the Spraguea prevalence were analyzed by using a binomial GLM. Area and fish length had a more relevant effect on the infestation of both anglerfish, while the impact of the year and fish sex was less evident. The Spraguea prevalence by area ranged between 11% and 52% in L. budegassa and between 39% and 66% in L. piscatorius. This is the first study in which the prevalence of this parasite in L. budegassa is analyzed in several areas and inter-annually compared. A non-linear relationship with a sharp increment of the prevalence with fish length was obtained in both anglerfish. The results were compared with those from the scarce previous studies and discussed.

  15. Phylogenetic Characterization of Encephalitozoon Romaleae (Microsporidia) from a Grasshopper Host: Relationship to Encephalitozoon spp. Infecting Humans

    Science.gov (United States)

    Encephalitozoon species are the most common microsporidian pathogens of humans and domesticated animals. We recently discovered a new microsporidium, Encephalitozoon romaleae, infecting the eastern lubber grasshopper Romalea microptera. To understand its evolutionary relationships, we compared par...

  16. Tubulinosema pampeana sp. n. (Microsporidia, Tubulinosematidae), a pathogen of the South American bumble bee Bombus atratus.

    Science.gov (United States)

    Plischuk, Santiago; Sanscrainte, Neil D; Becnel, James J; Estep, Alden S; Lange, Carlos E

    2015-03-01

    An undescribed microsporidium was detected and isolated from the South American bumble bee Bombus atratus collected in the Pampas region of Argentina. Infection intensity in workers averaged 8.2 × 10(7)spores/bee. The main site of infection was adipose tissue where hypertrophy of adipocytes resulted in cyst-like body formation. Mature spores were ovoid and monomorphic. They measured 4.00 μm × 2.37 μm (fresh) or 3.98 μm × 1.88 μm (fixed). All stages were diplokariotic and developed in direct contact with host cytoplasm. Isofilar polar filament was arranged in 16 coils in one or, posteriorly, two layers. Coiling angle was variable, between perpendicular and almost parallel to major spore axis. Late meronts and sporogonial stages were surrounded by vesicles of approximately 60 nm in diameter. Based on both new and already designed primers, a 1827 bp (SSUrRNA, ITS, LSUrRNA) sequence was obtained. Data analyses suggest that this microsporidium is a new species of the genus Tubulinosema. The name Tubulinosema pampeana sp. n. is proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Desmozoon lepeophtherii n. gen., n. sp., (Microsporidia: Enterocytozoonidae infecting the salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae

    Directory of Open Access Journals (Sweden)

    Freeman Mark A

    2009-11-01

    Full Text Available Abstract Background A microsporidian was previously reported to infect the crustacean parasite, Lepeophtheirus salmonis (Krøyer, 1837 (Copepoda, Caligidae, on farmed Atlantic salmon (Salmo salar L. in Scotland. The microsporidian was shown to be a novel species with a molecular phylogenetic relationship to Nucleospora (Enterocytozoonidae, but the original report did not assign it to a genus or species. Further studies examined the development of the microsporidian in L. salmonis using electron microscopy and re-evaluated the molecular findings using new sequence data available for the group. Here we report a full description for the microsporidian and assign it to a new genus and species. Results The microsporidian infects subcuticular cells that lie on the innermost region of the epidermal tissue layer beneath the cuticle and along the internal haemocoelic divisions. The mature spores are sub-spherical with a single nucleus and an isofilar polar filament with 5-8 turns in a double coil. The entire development is in direct contact with the host cell cytoplasm and is polysporous. During early merogony, a diplokaryotic nuclear arrangement exists which is absent throughout the rest of the developmental cycle. Large merogonial plasmodia form which divide to form single uninucleate sporonts. Sporogonial plasmodia were not observed; instead, binucleate sporonts divide to form two sporoblasts. Prior to final division, there is a precocious development of the polar filament extrusion apparatus which is associated with large electron lucent inclusions (ELIs. Analyses of DNA sequences reveal that the microsporidian is robustly supported in a clade with other members of the Enterocytozoonidae and confirms a close phylogenetic relationship with Nucleospora. Conclusion The ultrastructural findings of the precocious development of the polar filament and the presence of ELIs are consistent with those of the Enterocytozoonidae. However, the confirmed presence of an early diplokaryotic stage and a merogonial plasmodium that divides to yield uninucleate sporonts instead of transforming into a sporogonial syncitium, are features not currently associated with the family. Yet, analyses of DNA sequence data clearly place the microsporidian within the Enterocytozoonidae. Therefore, due to the novelty of the copepod host, the ultrastructural findings and the robust nature of the phylogenetic analyses, a new genus should be created within the Enterocytozoonide; Desmozoon lepeophtherii n. gen. n. sp. is proposed.

  18. Microsporidia in exotic birds: Intermittent spore excretion of Encephalitozoon spp. in naturally infected budgerigars (Melopsittacus undulatus)

    Czech Academy of Sciences Publication Activity Database

    Sak, Bohumil; Kašičková, D.; Kváč, Martin; Květoňová, D.; Ditrich, Oleg

    2010-01-01

    Roč. 168, 3/4 (2010), s. 196-200 ISSN 0304-4017 R&D Projects: GA AV ČR KJB500960701; GA ČR GP523/07/P117 Institutional research plan: CEZ:AV0Z60220518 Keywords : budgerigars * Melopsittacus undulatus * Encephalitozoon spp. * PCR Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.331, year: 2010

  19. An experimental evolution study confirms that discontinuous gas exchange does not contribute to body water conservation in locusts.

    Science.gov (United States)

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2016-12-01

    The adaptive nature of discontinuous gas exchange (DGE) in insects is contentious. The classic 'hygric hypothesis', which posits that DGE serves to reduce respiratory water loss (RWL), is still the best supported. We thus focused on the hygric hypothesis in this first-ever experimental evolution study of any of the competing adaptive hypotheses. We compared populations of the migratory locust (Locusta migratoria) that underwent 10 consecutive generations of selection for desiccation resistance with control populations. Selected locusts survived 36% longer under desiccation stress but DGE prevalence did not differ between these and control populations (approx. 75%). Evolved changes in DGE properties in the selected locusts included longer cycle and interburst durations. However, in contrast with predictions of the hygric hypothesis, these changes were not associated with reduced RWL rates. Other responses observed in the selected locusts were higher body water content when hydrated and lower total evaporative water loss rates. Hence, our data suggest that DGE cycle properties in selected locusts are a consequence of an evolved increased ability to store water, and thus an improved capacity to buffer accumulated CO 2 , rather than an adaptive response to desiccation. We conclude that DGE is unlikely to be an evolutionary response to dehydration challenge in locusts. © 2016 The Author(s).

  20. Detección de Malpighamoeba mellificae (Protista: Amoebozoa en Apis mellifera (Hymenoptera: Apidae de Argentina

    Directory of Open Access Journals (Sweden)

    Santiago PLISCHUK

    2010-01-01

    Full Text Available Debido a su rol como polinizador y productor de miel, la abeja Apis mellifera L. es considerado un insecto beneficioso. Si bien Argentina juega un papel de liderazgo en la producción de miel, existe un considerable vacío en el conocimiento acerca de las enfermedades de etiología protista que afectan las abejas en el país. La ameba Malpighamoeba mellificae Prell es un protista entomopatógeno que invade los túbulos de Malpighi de las abejas e interfiere con el proceso de excreción, debilitando al huésped y posiblemente facilitando la acción de otros patógenos. En esta contribución se presentan los primeros hallazgos de M. mellificae en Argentina y se brindan datos iniciales acerca de su frecuencia, intensidad de las infecciones, y co-ocurrencia con Nosema sp. Malpighamoeba mellificae se halló en dos de 36 localidades prospectadas: San Cayetano, al Sur de la provincia de Buenos Aires y San Carlos de Bariloche, en el Oeste de la provincia de Río Negro.

  1. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.

    Science.gov (United States)

    Budge, Giles E; Pietravalle, Stéphane; Brown, Mike; Laurenson, Lynn; Jones, Ben; Tomkies, Victoria; Delaplane, Keith S

    2015-01-01

    Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi). In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus) to complete absence (Israeli acute paralysis virus). When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.

  2. Parasite infection accelerates age polyethism in young honey bees

    Science.gov (United States)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  3. Parasite infection accelerates age polyethism in young honey bees.

    Science.gov (United States)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  4. The parasites of the invasive Chinese sleeper Perccottus glenii (Fam. Odontobutidae, with the first report of Nippotaenia mogurndae in Ukraine

    Directory of Open Access Journals (Sweden)

    Kvach Y.

    2013-06-01

    Full Text Available The parasites of the Asian invasive fish, Chinese sleeper Perccottus glenii, were studied in 6 localities in different parts of Ukraine. In total, 15 taxa of parasites were registered; among them were 1 species of Microsporidia, 5 species of ciliates, 2 species of cestodes, 2 species of trematodes, 2 species of nematodes, 1 species of acanthocephalan, 1 species of parasitic crustacean and 1 mollusk (glochidia. The invasive Chinese sleeper is included as a paratenic host in the life cycle of the parasites of indigenous reptiles in Europe. The non-indigenous cestode Nippotaenia mogurndae occurred in the intestine of the Chinese sleeper from the Ivachiv Reservoir (Dniester River basin. This cestode is recorded for Ukrainian fauna for the first time. In addition, 3 species of parasites were recorded in the Chinese sleeper for the first time: Nicolla skrjabini, Cosmocephalus obvelatus and Pomphorhynchus laevis. We note the low similarity among the different localities and the low parasite richness, that suggest that the parasite fauna of the Chinese sleeper in Ukraine is in transition.

  5. Fire Ants (Solenopsis spp. and Their Natural Enemies in Southern South America

    Directory of Open Access Journals (Sweden)

    Juan Briano

    2012-01-01

    Full Text Available We review the fire ant research conducted by the ARS-South American Biological Control Laboratory (SABCL since 1987 to find a complex of natural enemies in southern South America and evaluate their specificity and suitability for field release as self-sustaining biological control agents. We also include those studies conducted by the ARS-Center for Medical, Agriculture, and Veterinary Entomology in the United States with the SABCL collaboration. Ecological and biological information is reported on local fire ants and their microsporidia, nematodes, viruses, phorid flies, eucharitid wasps, strepsiptera, and parasitic ants. Their biology, abundance, distribution, detrimental effect, field persistence, specificity, and phenology are discussed. We conclude that the objectives of the ARS program in South America are being achieved and that the pioneering studies have served to encourage further investigations in the United States and other countries and advanced the implementation of biological control programs to decrease imported fire ant densities and damage. Still, several promising organisms should be further investigated for eventual field release in the near future.

  6. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    Science.gov (United States)

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  8. Diversity of Microsporidia, Cryptosporidium and Giardia in Mountain Gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda

    Czech Academy of Sciences Publication Activity Database

    Sak, Bohumil; Petrželková, Klára Judita; Květoňová, Dana; Mynářová, A.; Pomajbíková, K.; Modrý, David; Cranfield, M. R.; Mudakikwa, A.; Kváč, Martin

    2014-01-01

    Roč. 9, č. 11 (2014), e109751 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:60077344 Keywords : infection diseases * gorilla * genotypes Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.234, year: 2014

  9. Diversity of Microsporidia, Cryptosporidium and Giardia in Mountain Gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda

    Czech Academy of Sciences Publication Activity Database

    Sak, B.; Petrželková, Klára Judita; Květoňová, D.; Mynářová, A.; Pomajbíková, K.; Modrý, D.; Cranfield, M. R.; Mudakikwa, A.; Kváč, M.

    2014-01-01

    Roč. 9, č. 11 (2014), e109751 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:68081766 Keywords : Infectious diseases * gorilla * genotypes Subject RIV: EG - Zoology Impact factor: 3.234, year: 2014

  10. Pathogens as Predictors of Honey Bee Colony Strength in England and Wales.

    Directory of Open Access Journals (Sweden)

    Giles E Budge

    Full Text Available Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi. In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus to complete absence (Israeli acute paralysis virus. When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.

  11. Histological analysis of thelohaniasis in white-clawed crayfish Austropotamobius pallipes complex

    Directory of Open Access Journals (Sweden)

    Quaglio F.

    2011-09-01

    Full Text Available From 2004 to 2006, a parasitological survey aimed at the detection of the microsporidian parasite Thelohania contejeani Henneguy was carried out on 177 wild white-clawed crayfish (Austropotamobius pallipes complex captured in six streams and rivers of the province of Belluno in north-eastern Italy. Microscopical examination of the skeletal muscles, and histological analysis applying different histochemical stains to full transverse and sagittal sections of the cephalothorax and abdomen were carried out. Transmission electron microscopy (TEM was also conducted on the parasites recovered during the survey. Out of 177 crayfish examined, Thelohania contejeani (Microsporidia, Thelohaniidae was present in only one crayfish from the Vena d’oro creek. The parasite was detected in the skeletal muscles in several developmental stages, including mature spores, which represented the most common stage recovered. Sporophorous vesicles were also present. Histological examination revealed that the fibres of the skeletal, cardiac and intestinal muscles were filled with spores. Melanin infiltrations were focally present in the infected striated muscles. The gill phagocytic nephrocytes were engulfed by small masses of spores. Among the staining techniques applied, Crossman’s trichrome stain represented the most effective method of detecting T. contejeani.

  12. Directory of Open Access Journals (Sweden)

    María Barranco

    2015-10-01

    The decline in the number of hives of Apis mellifera in many countries of the European Union and the United States has worried beekeepers, farmers, environmentalists, governments and corporations. Among the factors considered are: poor nutrition of bees, artificial supplements and to a lesser extent to a decrease in the abundance and diversity of flowers in the wild plant species all of which makes bees susceptible to diseases caused by viruses, bacteria and microsporidia which, in turn, are considered cofactors for the Colony Collapse Disorder (CCD. It also noted that the mites as Acarapis woodi and Varroa destructor may be causing the CCD by feeding on the hemolymph of larvae and adults thus lowering their defenses and favoring the spread of infectious diseases. Another hypothesis points to a general weakening in bee populations due to low genetic diversity by producing large amounts of colonies from a restricted set of queen bees and artificial insemination of the same. But of all the above factors, pesticides, primarily the so-called neonicotinoids, are considered as one of the main causes of the disappearance of bees worldwide in recent years. In this article we examine the evidence about

  13. First report of fatal disseminated microsporidiosis in two inland bearded dragons Pogona vitticeps in Japan.

    Science.gov (United States)

    Shibasaki, Kojiro; Tokiwa, Toshihiro; Sukegawa, Akihiro; Kondo, Hirotaka; Tamukai, Kenichi; Haga, Yumiko; Ike, Kazunori

    2017-04-01

    Introduction. Encephalitozoon pogonae is a newly described pathogen belonging to the phylum Microsporidia. In Austria and the USA, this species has been isolated from fatal and disseminated cases of captive-bred inland bearded dragons. Here, we report the case of fatal disseminated microsporidiosis caused by E. pogonae in two bearded dragons in Japan. Case Presentation. The two lizards from different private households in Tokyo, Japan, had been brought to an animal hospital for examination. In both cases, the animal presented with a history of weight loss for several weeks. There were no improvements in clinical symptoms and the lizards deteriorated and finally died. Histopathological examination demonstrated necrotizing granulomatous inflammation attributed to disseminated microsporidian infection. Nucleotide sequencing of the nuclear ribosomal internal transcribed spacer region identified the microsporidian as E. pogonae with sequence identity of 100 %. Conclusion. We report the first case, to our knowledge, of disseminated microsporidiosis caused by E. pogonae in inland bearded dragons in Japan. Although it is difficult to diagnose prenatally since the signs are nonspecific, the disease should be considered in the differential diagnosis of chronic infections that do not respond to antibiotics.

  14. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromises muscle function in Locusta migratoria

    DEFF Research Database (Denmark)

    Findsen, Anders; Pedersen, Thomas Holm; Petersen, Asbjørn G

    2014-01-01

    When exposed to low temperatures, many insect species enter a reversible comatose state (chill coma), which is driven by a failure of neuromuscular function. Chill coma and chill coma recovery have been associated with a loss and recovery of ion-homeostasis (particularly extracellular [K......+]) and accordingly onset of chill coma has been hypothesised to result from depolarization of membrane potential caused by loss of ion-homeostasis. Here we examined whether onset of chill coma is associated with a disturbance in ion balance by examining the correlation between disruption of ion homeostasis and onset...... of chill coma in locusts exposed to cold at varying rates of cooling. Chill coma onset temperature changed maximally 1°C under different cooling rates and marked disturbances of ion homeostasis were not observed at any of the cooling rates. In a second set of experiments we used isolated tibial muscle...

  15. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (Valerianella locusta L. Laterr).

    Science.gov (United States)

    Manzocco, Lara; Foschia, Martina; Tomasi, Nicola; Maifreni, Michela; Dalla Costa, Luisa; Marino, Marilena; Cortella, Giovanni; Cesco, Stefano

    2011-06-01

    Nowadays, there is an increasing interest in the hydroponic floating system to cultivate leafy vegetables for ready-to-eat salads. It is reasonable that different growing systems could affect the quality and shelf life of these salads. The quality and shelf life of ready-to-eat lamb's lettuce grown in protected environment in soil plot or in soil-less system over hydroponic solution with or without the addition of 30 µmol L⁻¹ silicon were evaluated. Minimum effects were observed on colour, firmness and microbial counts. Hydroponic cultivation largely affected plant tissue hydration, leading to weight loss and structural modifications during refrigerated storage. The shelf life of lamb's lettuce was limited by the development of visually detectable unpleasant sensory properties. Shelf life, calculated by survival analysis of consumer acceptability data, resulted about 7 days for soil-cultivated salad and 2 days for the hydroponically grown ones. The addition of silicon to the hydroponic solution resulted in an interesting strategy to increase plant tissue yield and reduce nitrate accumulation. Although hydroponic cultivation may have critical consequences on product quality and shelf life, these disadvantages could be largely counterbalance by increased yield and a reduction of nitrate accumulation when cultivation is performed on nutritive solutions with supplemental addition of silicon. Copyright © 2011 Society of Chemical Industry.

  16. An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain.

    Science.gov (United States)

    Bernal, José; Martin-Hernandez, Raquel; Diego, Juan C; Nozal, María J; Gozalez-Porto, Amelia V; Bernal, José L; Higes, Mariano

    2011-10-01

    There is great concern about the high losses and strong depopulation of honey bee colonies in some areas of Spain. Some beekeepers have suggested that sunflower seeds treated with the insecticide fipronil could be an important factor in causing those losses. Therefore, an in-depth field study has been carried out in two regions of Spain where sunflower production is intense (Cuenca and Andalucía) and where, for some crops and varieties, fipronil has been used as seed insecticide. Samples of adult bees and pollen were analysed for bee pathogens and pesticide residues respectively. Neither fipronil residues nor its metabolites were detected in any of the samples analysed, indicating that short-term or chronic exposure of bees to fipronil and/or its metabolites can be ruled out in the apiaries surveyed. Varroa destructor and Nosema ceranae were found to be very prevalent. The combination of the two pathogens could augment the risk of colony death in infected colonies, without fipronil residues exerting a significant effect in the given field conditions. Indeed, in this study the losses observed in apiaries located close to sunflower crops were similar to those in apiaries situated in forested areas with wild vegetation. Copyright © 2011 Society of Chemical Industry.

  17. Honey Bee Infecting Lake Sinai Viruses.

    Science.gov (United States)

    Daughenbaugh, Katie F; Martin, Madison; Brutscher, Laura M; Cavigli, Ian; Garcia, Emma; Lavin, Matt; Flenniken, Michelle L

    2015-06-23

    Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  18. Protein nutrition governs within-host race of honey bee pathogens.

    Science.gov (United States)

    Tritschler, Manuel; Vollmann, Jutta J; Yañez, Orlando; Chejanovsky, Nor; Crailsheim, Karl; Neumann, Peter

    2017-11-08

    Multiple infections are common in honey bees, Apis mellifera, but the possible role of nutrition in this regard is poorly understood. Microsporidian infections, which are promoted by protein-fed, can negatively correlate with virus infections, but the role of protein nutrition for the microsporidian-virus interface is unknown. Here, we challenged naturally deformed wing virus - B (DWV-B) infected adult honey bee workers fed with or without pollen ( = protein) in hoarding cages, with the microsporidian Nosema ceranae. Bee mortality was recorded for 14 days and N. ceranae spore loads and DWV-B titers were quantified. Amongst the groups inoculated with N. ceranae, more spores were counted in protein-fed bees. However, N. ceranae infected bees without protein-diet had reduced longevity compared to all other groups. N. ceranae infection had no effect on protein-fed bee's longevity, whereas bees supplied only with sugar-water showed reduced survival. Our data also support that protein-feeding can have a significant negative impact on virus infections in insects. The negative correlation between N. ceranae spore loads and DWV-B titers was stronger expressed in protein-fed hosts. Proteins not only enhance survival of infected hosts, but also significantly shape the microsporidian-virus interface, probably due to increased spore production and enhanced host immunity.

  19. Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain

    Directory of Open Access Journals (Sweden)

    Aranzazu Meana

    2017-04-01

    Full Text Available A cross-sectional study was carried out in Galicia, NW Spain, in order to estimate the magnitude of honey bee colony losses and to identify potential risk factors involved. A total of 99 samples from 99 apiaries were collected in spring using simple random sampling. According to international guidelines, the apiaries were classified as affected by colony loss or asymptomatic. Each sample consisted of worker bees, brood and comb-stored pollen. All worker bees and brood samples were analysed individually in order to detect the main honey bee pathogens. Moreover, the presence of residues of the most prevalent agrotoxic insecticides and acaricides was assessed in comb-stored pollen. The general characteristics of the apiaries and sanitary information regarding previous years was evaluated through questionnaires, while the vegetation surrounding the apiaries sampled was assessed by palynological analysis of comb-stored pollen. The colony loss prevalence was 53.5% (CI95%=43.2-63.9 and Nosema ceranae was found to be the only risk factor strongly associated with colony loss. The decision tree also pointed out the impact of the Varroa mite presence while variables such as apiary size, the incorrect application of Varroa mite treatments, and the presence of Acarapis woodi and Kashmir bee virus (KBV were identified as possible co-factors.

  20. Coevolving parasites and population size shape the evolution of mating behaviour

    Directory of Open Access Journals (Sweden)

    Kerstes Niels AG

    2013-02-01

    Full Text Available Abstract Background Coevolution with parasites and population size are both expected to influence the evolution of mating rates. To gain insights into the interaction between these dual selective factors, we used populations from a coevolution experiment with the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. We maintained each experimental population at two different population sizes. We assayed the mating behaviour of both males and females from coevolved and paired non-coevolved control populations after 24 generations of coevolution with parasites. Results Males from large, coevolved populations (i.e. ancestors were exposed to parasites showed a reduced eagerness to mate compared to males from large, non-coevolved populations. But in small populations, coevolution did not lead to decreased male mating rates. Coevolved females from both large and small populations appeared to be more willing to accept mating than non-coevolved females. Conclusions This study provides unique, experimental insights into the combined roles of coevolving parasites and population size on the evolution of mating rate. Furthermore, we find that males and females respond differently to the same environmental conditions. Our results show that parasites can be key determinants of the sexual behaviour of their hosts.

  1. Honey Bee Infecting Lake Sinai Viruses

    Directory of Open Access Journals (Sweden)

    Katie F. Daughenbaugh

    2015-06-01

    Full Text Available Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV, and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  2. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity.

    Science.gov (United States)

    Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J

    2014-02-01

    A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.

  3. Encephalitozoon cuniculi causes focal anterior cataract and uveitis in dogs.

    Science.gov (United States)

    Nell, B; Csokai, J; Fuchs-Baumgartinger, A; Maaß, G

    2015-01-01

    Three mongrel dogs, aged 10 months (case 1), 14 months (case 2) and 7.5 years (case 3), were presented because of ophthalmologic disorders of 4 months, 6 months and 7 years duration, respectively. All three dogs were offspring of stray dogs from Hungary and Serbia and had positive serum antibody titres against Encephalitozoon (E.) cuniculi. The two young dogs showed unilateral, the older dog bilateral chronic anterior uveitis with posterior synechia and focal anterior cortical cataract. The fundi that could be evaluated developed focal tapetal hyporeflective lesions in the course of the disease. Dogs 1 and 2 underwent removal of the lens via phacoemulsification. PCR of the lens material was positive for E. cuniculi strains IV and II, respectively. In dog 2 findings suggestive of microsporidia were detected underneath the anterior lens capsule by immunohistochemical staining. In all cases medical treatment consisted of systemic fenbendazole, prednisolone, and topical anti-inflammatory drugs, and additional brinzolamid/timolol for dog 3. For the time being all cases (follow up 23 months, 6 months and 3 months, respectively) are still on topical anti-inflammatory therapy. It is concluded that E. cuniculi infections can cause cataract and chorioretinal lesions in dogs.

  4. HIV enteropathy: HAART reduces HIV-induced stem cell hyperproliferation and crypt hypertrophy to normal in jejunal mucosa.

    Science.gov (United States)

    Batman, Philip A; Kapembwa, Moses S; Belmonte, Liliana; Tudor, Gregory; Kotler, Donald P; Potten, Christopher S; Booth, Catherine; Cahn, Pedro; Griffin, George E

    2014-01-01

    To analyse the structural and kinetic response of small intestinal crypt epithelial cells including stem cells to highly active antiretroviral therapy (HAART). Crypt size and proliferative activity of transit and stem cells in jejunal mucosa were quantified using morphometric techniques. Crypt length was measured by counting the number of enterocytes along one side of a number of crypts in each biopsy specimen and the mean crypt length was calculated. Proliferating crypt cells were identified with MIB-1 monoclonal antibody, and the percentage of crypt cells in proliferation was calculated at each cell position along the length of the crypt (proliferation index). Data were obtained from 9 HIV-positive test patients co-infected with microsporidia, 34 HIV-positive patients receiving HAART and 13 control cases. Crypt length was significantly greater in test patients than in controls, but crypt length in patients receiving HAART was normal. The proliferation index was greater in test subjects than in controls in stem and transit cell compartments, and was decreased in patients treated with HAART only in the stem cell region of the crypt. Villous atrophy in HIV enteropathy is attributed to crypt hypertrophy and encroachment of crypt cells onto villi. HAART restores normal crypt structure by inhibition of HIV-driven stem cell hyperproliferation at the crypt bases.

  5. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory.

    Science.gov (United States)

    Barton, Carrie L; Johnson, Eric W; Tanguay, Robert L

    2016-07-01

    The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility.

  6. Book review of Insect Symbiosis. Volume 2. Bourtzis, K.A. and Miller, T.A. editros. 2006 CRC Press, Taylor and Francis Group, Boca Raton, FL, 276 pp. ISBN 0-8493-1286-8

    International Nuclear Information System (INIS)

    Hoy, M.A.

    2007-01-01

    There are several definitions of symbiosis, but in this book it involves an association where one organism (the symbiont) lives within or on the body of another organism (the host), regardless of the actual effect on the host. Some symbioses are mutualistic, some parasitic, and some involve commensalism, in which one partner derives some benefit without either harming or benefiting the other. This is the second volume in this exciting and rapidly advancing topic by these editors. The first volume was published in 2003 and during the intervening three years additional data have been produced that make this book a useful addition to your library. The first book provided chapters that provided an overview of insect symbiosis, discussions of the primary aphid symbiont Buchnera and other aphid symbionts, symbiosis in tsetse, symbionts in the weevil Sitophilus , the possible use of paratransgenic symbionts of Rhodnius prolixis to prevent disease transmission, bark beetle and fungal symbiosis, symbionts of tephritid fruit flies, symbionts affecting termite behavior, an overview of microsporidia as symbionts (parasites?) of insects, an overview of a newly discovered bacterium that causes sex-ratio distortion in insects and mites (from the Bacteroides group), symbionts that selectively kill male insects, and several chapters on the ubiquitous endosymbiont Wolbachia

  7. [Circumstances for diagnosis and treatment of intestinal parasitosis in France].

    Science.gov (United States)

    Bouchaud, Olivier

    2013-01-01

    In a compatible context, hypereosinophilia is suggestive of helminthosis. When the count is higher than 1000/mm(3), a primo-invasion syndroma may be considered, especially if allergic signs are present. Below that level, the helminthosis is probably at the adult stage (chronic phase). In a chronic diarrhoea occurring after a journey abroad, "emerging" protozoa (crypto-microsporidia, Isospora, Cyclospora…) are possibly in cause. A presumptive treatment may be considered. A systematic screening for schistosomiasis (serology and stool examination) is recommended in travellers exposed to the risk (contacts with fresh water) and in immigrant from endemic areas (mainly sub-Saharan Africa) since the disease may be asymptomatic. In young children living communally, two courses at 15 days interval against giardiosis or enterobiasis are recommended for both infected and contact persons. In order to avoid disseminated strongyloidiasis, severe and possibly lethal, a systematic course of ivermectine is strongly recommended before any immunosuppressive treatment in patients having stayed in tropical areas even for a short period and even decades ago. Albendazole became the reference drug for intestinal helminthiasis with in addition a good efficacy on giardiasis. Since some intestinal parasites are not pathogenic, a treatment is not necessarily required when a parasite is found in a stool examination. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Edible insects - species suitable for entomophagy under condition of Czech Republic

    Directory of Open Access Journals (Sweden)

    Martina Bednářová

    2013-01-01

    Full Text Available Since 2002, when the first lecture on entomophagy took place at Mendel University in Brno, till today, participants of these educational lectures were asked to fill questionnaires in order to evaluate interest in entomophagy in Czech Republic and pick suitable species. Analyses of nutritional value of selected species were also performed during this time. The questionnaire was divided into several parts - suitable species, sensory properties, difficulty of breeding and processing and respondents own attitude to the consumption of insect species. For the purpose of this study the questionnaire was evaluated using the semantic differential, so to create a comprehensive picture of each insect species. Based on evaluation of more than 5,000 questionnaires, certain developmental stages of seven species of insect were selected for further evaluation: Tenebrio molitor (TM larvae, Zophobas morio (ZM larvae, Gryllus assimillis (GA nymphs, Locusta migratoria (LM nymphs, Galleria mellonella (GM larvae, Bombyx mori (BM Pupa, Apis mellifera (AM bee brood, while cockroaches were completely excluded for use in entomophagy. Although they are easy to breed and are available all year-round, consumers showed relatively great disgust. For all of these species, basic nutritional values were analysed, as well as content of amino acids and fattty acids. All parameters were statistically evaluated using ANOVA-1. Each species appears to be suitable for entomophagy for a different reason. Generally speaking, AM, TM and GA were best accepted considering the sensory aspect, nutritional values are interesting especially in BM and GM and TM wins with simplicity of its breeding.

  9. Microbiology of processed edible insect products - Results of a preliminary survey.

    Science.gov (United States)

    Grabowski, Nils Th; Klein, Günter

    2017-02-21

    Little is known of the microbiology of processed insect products. The present survey analysed a total of n=38 samples of deep-fried and spiced (Acheta domesticus, Locusta migratoria, and Omphisa fuscidentalis), cooked in soy sauce ("tsukudani"; Oxya yezoensis, Vespula flaviceps, and Bombyx mori), dried (A. domesticus, L. migatoria, Alphitobius diaperinus, Tenebrio molitor, B. mori, Hermetia illucens, and Musca domestica), powdered (H. illucens, T. molitor) and other (incl. deep-frozen B. mori and honeybee pollen) insect products microbiologically (total bacterial count [TBC], Enterobacteriaceae, staphylococci, bacilli, and yeasts and moulds counts, salmonellae, Listeria monocytogenes, and Escherichia coli). Although each product type revealed a microbiological profile of its own, dried and powdered insects ("class I") displayed markedly higher counts than the deep-fried and cooked ones ("class II"). Thresholds between class I and II products were estimated at 4.0 (TBC), 1.0 (Enterobacteriaceae, yeasts and moulds), 2.5 (staphylococci), and 3.0lgcfu/g (bacilli). All samples were negative for salmonellae, L. monocytogenes, E. coli and Stapyhlococcus aureus, but dried and powdered insects, as well as pollen, contained B. cereus, coliforms, Serratia liquefaciens, Listeria ivanovii, Mucor spp., Aspergillus spp., Penicillium spp., and Cryptococcus neoformans. Comparing the results with the hygiene criteria for edible insects proposed by Belgium and the Netherlands, class I products failed to comply with many bacterial count limits despite the absence of classical food pathogens. Therefore, class I products should always be consumed after another heating step as indicated by the manufacturer, until drying techniques are able to ensure lower bacterial counts. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Cardinali, Federica; Aquilanti, Lucia; Riolo, Paola; Ruschioni, Sara; Isidoro, Nunzio; Clementi, Francesca

    2017-04-01

    Entomophagy has been linked to nutritional, economic, social and ecological benefits. However, scientific studies on the potential safety risks in eating edible insects need to be carried out for legislators, markets and consumers. In this context, the microbiota of edible insects deserves to be deeply investigated. The aim of this study was to elucidate the microbial species occurring in some processed marketed edible insects, namely powdered small crickets, whole dried small crickets (Acheta domesticus), whole dried locusts (Locusta migratoria), and whole dried mealworm larvae (Tenebrio molitor), through culture-dependent (classical microbiological analyses) and -independent methods (pyrosequencing). A great bacterial diversity and variation among insects was seen. Relatively low counts of total mesophilic aerobes, Enterobacteriaceae, lactic acid bacteria, Clostridium perfringens spores, yeasts and moulds in all of the studied insect batches were found. Furthermore, the presence of several gut-associated bacteria, some of which may act as opportunistic pathogens in humans, were found through pyrosequencing. Food spoilage bacteria were also identified, as well as Spiroplasma spp. in mealworm larvae, which has been found to be related to neurodegenerative diseases in animals and humans. Although viable pathogens such as Salmonella spp. and Listeria monocytogenes were not detected, the presence of Listeria spp., Staphylococcus spp., Clostridium spp. and Bacillus spp. (with low abundance) was also found through pyrosequencing. The results of this study contribute to the elucidation of the microbiota associated with edible insects and encourage further studies aimed to evaluate the influence of rearing and processing conditions on that microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.

    Science.gov (United States)

    Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd

    2016-05-01

    Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Paternal epigenetic effects of population density on locust phase-related characteristics associated with heat-shock protein expression.

    Science.gov (United States)

    Chen, Bing; Li, Shaoqin; Ren, Qiang; Tong, Xiwen; Zhang, Xia; Kang, Le

    2015-02-01

    Many species exhibit transgenerational plasticity by which environmental cues experienced by either parent can be transmitted to their offspring, resulting in phenotypic variants in offspring to match ancestral environments. However, the manner by which paternal experiences affect offspring plasticity through epigenetic inheritance in animals generally remains unclear. In this study, we examined the transgenerational effects of population density on phase-related traits in the migratory locust Locusta migratoria. Using an experimental design that explicitly controls genetic background, we found that the effects of crowd or isolation rearing on phase plasticity could be inherited to the offspring. The isolation of gregarious locusts resulted in reduced weight in offspring eggs and altered morphometric traits in hatchlings, whereas crowding of solitarious locusts exhibited opposite effects. The consequences of density changes were transmitted by both maternal and paternal inheritance, although the expression of paternal effects was not as pronounced as that of maternal effects. Prominent expression of heat-shock proteins (Hsps), such as Hsp90, Hsp70 and Hsp20.6, could be triggered by density changes. Hsps were significantly upregulated upon crowding but downregulated upon isolation. The variation in parental Hsp expression was also transmitted to the offspring, in which the pattern of inheritance was consistent with that of phase characteristics. These results revealed a paternal effect on phase polyphenism and Hsp expression induced by population density, and defined a model system that could be used to study the paternal epigenetic inheritance of environmental changes. © 2015 John Wiley & Sons Ltd.

  13. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L.

    Science.gov (United States)

    de Mattos, Igor Medici; Soares, Ademilson E E; Tarpy, David R

    2018-01-01

    Honey bee (Apis mellifera L.) populations have been experiencing notable mortality in Europe and North America. No single cause has been identified for these dramatic losses, but rather multiple interacting factors are likely responsible (such as pesticides, malnutrition, habitat loss, and pathogens). Paraquat is one of the most widely used non-selective herbicides, especially in developing countries. This herbicide is considered slightly toxic to honey bees, despite being reported as a highly effective inducer of oxidative stress in a wide range of living systems. Here, we test the effects of paraquat on the expression of detoxification and antioxidant-related genes, as well as on the dynamics of pathogen titers. Moreover, we tested the effects of pollen as mitigating factor to paraquat exposure. Our results show significant changes in the expression of several antioxidant-related and detoxification-related genes in the presence of paraquat, as well as an increase of pathogens titers. Finally, we demonstrate a mitigating effect of pollen through the up-regulation of specific genes and improvement of survival of bees exposed to paraquat. The presence of pollen in the diet was also correlated with a reduced prevalence of Nosema and viral pathogens. We discuss the importance of honey bees' nutrition, especially the availability of pollen, on colony losses chronically reported in the USA and Europe.

  14. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  15. A new threat to honey bees, the parasitic phorid fly Apocephalus borealis.

    Directory of Open Access Journals (Sweden)

    Andrew Core

    Full Text Available Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD, a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD.

  16. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  17. Comparative Flight Activities and Pathogen Load of Two Stocks of Honey Bees Reared in Gamma-Irradiated Combs

    Directory of Open Access Journals (Sweden)

    Lilia I. de Guzman

    2017-11-01

    Full Text Available Gamma irradiation is known to inactivate various pathogens that negatively affect honey bee health. Bee pathogens, such as Deformed wing virus (DWV and Nosema spp., have a deleterious impact on foraging activities and bee survival, and have been detected in combs. In this study, we assessed the effects of gamma irradiation on the flight activities, pathogen load, and survival of two honey bee stocks that were reared in irradiated and non-irradiated combs. Overall, bee genotype influenced the average number of daily flights, the total number of foraging flights, and total flight duration, in which the Russian honey bees outperformed the Italian honey bees. Exposing combs to gamma irradiation only affected the age at first flight, with worker bees that were reared in non-irradiated combs foraging prematurely compared to those reared in irradiated combs. Precocious foraging may be associated with the higher levels of DWV in bees reared in non-irradiated combs and also with the lower amount of pollen stores in colonies that used non-irradiated combs. These data suggest that gamma irradiation of combs can help minimize the negative impact of DWV in honey bees. Since colonies with irradiated combs stored more pollen than those with non-irradiated combs, crop pollination efficiency may be further improved when mite-resistant stocks are used, since they performed more flights and had longer flight durations.

  18. A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    Science.gov (United States)

    Core, Andrew; Runckel, Charles; Ivers, Jonathan; Quock, Christopher; Siapno, Travis; DeNault, Seraphina; Brown, Brian; DeRisi, Joseph; Smith, Christopher D.; Hafernik, John

    2012-01-01

    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD. PMID:22235317

  19. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  20. Enterocytozoon bieneusi Identification Using Real-Time Polymerase Chain Reaction and Restriction Fragment Length Polymorphism in HIV-Infected Humans from Kinshasa Province of the Democratic Republic of Congo

    Science.gov (United States)

    Wumba, Roger; Jean, Menotti; Benjamin, Longo-Mbenza; Madone, Mandina; Fabien, Kintoki; Josué, Zanga; Jean, Sala; Eric, Kendjo; AC, Guillo-Olczyk; Marc, Thellier

    2012-01-01

    Objective. To determine the prevalence and the genotypes of Enterocytozoon bieneusi in stool specimens from HIV patients. Methods. This cross-sectional study was carried out in Kinshasa hospitals between 2009 and 2012. Detection of microsporidia including E. bieneusi and E. intestinalis was performed in 242 HIV-infected patients. Typing was based on DNA polymorphism of the ribosomal DNA ITS region of E. bieneusi. PCRRFLP generated with two restriction enzymes (Nla III and Fnu 4HI) in PCR-amplified ITS products for classifying strains into different lineages. The diagnosis performance of the indirect immune-fluorescence-monoclonal antibody (IFI-AcM) was defined in comparison with real-time PCR as the gold standard. Results. Out of 242 HIV-infected patients, using the real-time PCR, the prevalence of E. bieneusi was 7.9% (n = 19) among the 19 E. bieneusi, one was coinfected with E. intestinalis. In 19 E. bieneusi persons using PCR-RFLP method, 5 type I strains of E. bieneusi (26.3%) and 5 type IV strains of E. bieneusi (26.3%) were identified. The sensitivity of IFI-AcM was poor as estimated 42.1%. Conclusion. Despite different PCR methods, there is possible association between HIVinfection, geographic location (France, Cameroun, Democratic Republic of Congo), and the concurrence of type I and type IV strains. PMID:22811884

  1. Confirmed detection of Cyclospora cayetanesis, Encephalitozoon intestinalis and Cryptosporidium parvum in water used for drinking.

    Science.gov (United States)

    Dowd, Scot E; John, David; Eliopolus, James; Gerba, Charles P; Naranjo, Jaime; Klein, Robert; López, Beatriz; de Mejía, Maricruz; Mendoza, Carlos E; Pepper, Ian L

    2003-09-01

    Human enteropathogenic microsporidia (HEM), Cryptosporidium parvum, Cyclospora cayetanesis, and Giardia lamblia are associated with gastrointestinal disease in humans. To date, the mode of transmission and environmental occurrence of HEM (Encephalitozoon intestinalis and Enterocytozoon bieneusi) and Cyclospora cayetanesis have not been fully elucidated due to lack of sensitive and specific environmental screening methods. The present study was undertaken with recently developed methods, to screen various water sources used for public consumption in rural areas around the city of Guatemala. Water concentrates collected in these areas were subjected to community DNA extraction followed by PCR amplification, PCR sequencing and computer database homology comparison (CDHC). All water samples screened in this study had been previously confirmed positive for Giardia spp. by immunofluorescent assay (IFA). Of the 12 water concentrates screened, 6 showed amplification of microsporidial SSU-rDNA and were subsequently confirmed to be Encephalitozoon intestinalis. Five of the samples allowed for amplification of Cyclospora 18S-rDNA; three of these were confirmed to be Cyclospora cayetanesis while two could not be identified because of inadequate sequence information. Thus, this study represents the first confirmed identification of Cyclospora cayetanesis and Encephalitozoon intestinalis in source water used for consumption. The fact that the waters tested may be used for human consumption indicates that these emerging protozoa may be transmitted by ingestion of contaminated water.

  2. Comparative effectiveness of light-microscopic techniques and PCR in detecting Thelohania solenopsae (Microsporidia) infections in red imported fire ants (Solenopsis invicta).

    Science.gov (United States)

    Milks, Maynard L; Sokolova, Yuliya Y; Isakova, Irina A; Fuxa, James R; Mitchell, Forrest; Snowden, Karen F; Vinson, S Bradleigh

    2004-01-01

    The main goal of this study was to compare the effectiveness of three staining techniques (calcofluor white M2R, Giemsa and modified trichrome), and the polymerase chain reaction (PCR) in detecting the microsporidium Thelohania solenopsae in red imported fire ants (Solenopsis invicta). The effect of the number of ants in a sample on the sensitivity of the staining techniques and the PCR, and the effect of three DNA extraction protocols on the sensitivity of PCR were also examined. In the first protocol, the ants were macerated and the crude homogenate was used immediately in the PCR. In the second protocol, the homogenate was placed on a special membrane (FTA card) that traps DNA, which is subsequently used in the PCR. In the third protocol, the DNA was purified from the homogenate by traditional phenol-chloroform extraction. Except for PCR using FTA cards, the sensitivity (number of samples positive for T. solenopsae) of all detection techniques increased with the number of ants in the sample. Overall, Giemsa was the least sensitive of all detection techniques. Calcofluor was more sensitive than modified trichrome with ants from one site and was equally as sensitive as PCR with crude DNA or a FTA card with ants from both sites. Trichrome staining was equally as sensitive as PCR with a FTA card at both sites, but it was less sensitive than PCR with crude DNA at one site. PCR on FTA cards was less sensitive than PCR with crude DNA for ants from one site but not the other. There was no difference whether crude or phenol-chloroform purified DNA was used as template. In summary, the results of this study show that PCR based on a crude DNA solution is equal to or more sensitive in detecting T. solenopsae than the other detection techniques investigated, and that it can be used as a reliable diagnostic tool for screening field samples of S. invicta for T. solenopsae. Nevertheless, ant smear stained with calcofluor or modified trichrome should be used to buttress findings from PCR.

  3. Microsporidia and Cryptosporidium in horses and donkeys in Algeria: Detection of a novel Cryptosporidium hominis subtype family (Ik) in a horse

    Czech Academy of Sciences Publication Activity Database

    Laatamna, A.E.; Wagnerová, Pavla; Sak, Bohumil; Květoňová, Dana; Xiao, L.; Rost, M.; McEvoy, J.; Saadi, A.R.; Aissi, M.; Kváč, Martin

    2015-01-01

    Roč. 208, 3-4 (2015), s. 135-142 ISSN 0304-4017 R&D Projects: GA ČR GA15-01090S Institutional support: RVO:60077344 Keywords : Horses * Donkeys * Cryptosporidium spp. * Encephalitozoon spp. * Enterocytozoon bieneusi * Molecular prevalence Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.242, year: 2015

  4. In Vitro Susceptibilities of the Microsporidia Encephalitozoon cuniculi, Encephalitozoon hellem, and Encephalitozoon intestinalis to Albendazole and Its Sulfoxide and Sulfone Metabolites

    Science.gov (United States)

    Ridoux, Olivier; Drancourt, Michel

    1998-01-01

    In vitro comparisons demonstrated that the efficacy of albendazole, albendazole-sulfoxide, and albendazole-sulfone against pathogenic Encephalitozoon species was proportional to the degree of oxidation at a concentration of >10−3 μg/ml. Furthermore, at a concentration of <10−2 μg/ml, benzimidazoles were more effective against Encephalitozoon cuniculi and Encephalitozoon hellem than against Encephalitozoon intestinalis. PMID:9835533

  5. U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization

    Science.gov (United States)

    Anjos, A; Ruiz-Ruano, F J; Camacho, J P M; Loreto, V; Cabrero, J; de Souza, M J; Cabral-de-Mello, D C

    2015-01-01

    The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements. PMID:25248465

  6. Calcium in edible insects and its use in human nutrition

    Directory of Open Access Journals (Sweden)

    Anna Adámková

    2014-11-01

    Full Text Available Calcium is one of the most problematic substances in human nutrition. Nutrition in the present population is not optimal, because of insufficient consumption of milk and dairy products. Due to the expanding interest of specialists and the general public about entomophagy, as well as increase of the EU interest in this type of food, there is a need to consider the use of edible insects as an alternative source of nutrition. From the perspective of edible insects as a source of calcium, edible insects could be considered as a possible source of calcium for enriching the diet and also as a substitute for people with lactose intolerance and allergies to other categories of foods rich in calcium. Of the six analysed species of edible insect, Bombyx mori had the highest calcium content, almost comparable to semi-skimmed cow's milk. Gryllus assimillis can also be a rich source of calcium as well as other analysed species. The lowest content of calcium was detected in Zophobas morio. Common meat (chicken, beef, pork has lower calcium content comparing with all analysed species of edible insect (Apis mellifera, Bombyx mori, Gryllus assimillis, Locusta migratoria, Tenebrio molitor, Zophobas morio. Therefore, the selected species of edible insect could serve as an alternative source of calcium for people with lactose intolerance and allergies to soy. Phosphorus level in human body is closely related to calcium in the calcium-phosphate metabolism, therefore phosphorus level was detected in these samples too. Bombyx mori had the highest phosphorus content and the lowest content of phosphorus was measured in Zophobas morio samples.

  7. Purification and characterization of a trypsin inhibitor from the seeds of Artocarpus heterophyllus Lam.

    Science.gov (United States)

    Lyu, Junchen; Liu, Yuan; An, Tianchen; Liu, Yujun; Wang, Manchuriga; Song, Yanting; Zheng, Feifei; Wu, Dan; Zhang, Yingxia; Deng, Shiming

    2015-05-01

    A proteinaceous inhibitor against trypsin was isolated from the seeds of Artocarpus heterophyllus Lam. by successive ammonium sulfate precipitation, ion-exchange, and gel-filtration chromatography. The trypsin inhibitor, named as AHLTI (A. heterophyllus Lam. trypsin inhibitor), consisted of a single polypeptide chain with a molecular weight of 28.5 kDa, which was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel-filtration chromatography. The N-terminal sequence of AHLTI was DEPPSELDAS, which showed no similarity to other known trypsin inhibitor sequence. AHLTI completely inhibited bovine trypsin at a molar ratio of 1:2 (AHLTI:trypsin) analyzed by native polyacrylamide gel electrophoresis, inhibition activity assay, and gel-filtration chromatography. Moreover, kinetic enzymatic studies were carried out to understand the inhibition mechanism of AHLTI against trypsin. Results showed that AHLTI was a competitive inhibitor with an equilibrium dissociation constant (Ki) of 3.7 × 10(-8) M. However, AHLTI showed weak inhibitory activity toward chymotrypsin and elastase. AHLTI was stable over a broad range of pH 4-8 and temperature 20-80°C. The reduction agent, dithiothreitol, had no obvious effect on AHLTI. The trypsin inhibition assays of AHLTI toward digestive enzymes from insect pest guts in vitro demonstrated that AHLTI was effective against enzymes from Locusta migratoria manilensis (Meyen). These results suggested that AHLTI might be a novel trypsin inhibitor from A. heterophyllus Lam. belonging to Kunitz family, and play an important role in protecting from insect pest. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  8. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

    Science.gov (United States)

    Oonincx, Dennis G A B; van Itterbeeck, Joost; Heetkamp, Marcel J W; van den Brand, Henry; van Loon, Joop J A; van Huis, Arnold

    2010-12-29

    Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH(3)), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. An experiment was conducted to quantify production of carbon dioxide (CO₂) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH₄) and nitrous oxide (N₂O) as well as NH₃ by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO₂ and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO₂ production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH₃ by insects was lower than for conventional livestock. This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH₃ emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.

  9. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

    Directory of Open Access Journals (Sweden)

    Dennis G A B Oonincx

    Full Text Available BACKGROUND: Greenhouse gas (GHG production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH(3, leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. METHODOLOGY/PRINCIPAL FINDINGS: An experiment was conducted to quantify production of carbon dioxide (CO₂ and average daily gain (ADG as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH₄ and nitrous oxide (N₂O as well as NH₃ by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO₂ and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO₂ production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH₃ by insects was lower than for conventional livestock. CONCLUSIONS/SIGNIFICANCE: This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH₃ emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.

  10. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont.

    Directory of Open Access Journals (Sweden)

    Sébastien Halary

    Full Text Available The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.

  11. Molecular identification of protozoa causing AIDS-associated cholangiopathy in Buenos Aires, Argentina.

    Science.gov (United States)

    Nétor Velásquez, Jorge; Marta, Edgardo; Alicia di Risio, Cecilia; Etchart, Cristina; Gancedo, Elisa; Victor Chertcoff, Agustín; Bruno Malandrini, Jorge; Germán Astudillo, Osvaldo; Carnevale, Silvana

    2012-12-01

    Several species of microsporidia and coccidia are protozoa parasites responsible for cholan-giopathy disease in patients infected with human immunodeficiency virus (HIV). The goals of this work were to identift opportunistic protozoa by molecular methods and describe the clinical manifestations at the gastrointestinal tract and the biliary system in patients with AIDS-associated cholangiopathy from Buenos Aires, Argentina. This study included 11 adult HIV-infected individuals with diagnosis ofAIDS- associated cholangiopathy. An upper gastrointestinal endoscopy with biopsy specimen collection and a stool analysis for parasites were performed on each patient. The ultrasound analysis revealed bile ducts compromise. An endoscopic retrograde cholangiopancreatography and a magnetic resonance cholangiography were carried out. The identification to the species level was performed on biopsy specimens by molecular methods. Microorganisms were identified in 10 cases. The diagnosis in patients with sclerosing cholangitis was cryptosporidiosis in 3 cases, cystoisosporosis in 1 and microsporidiosis in 1. In patients with sclerosing cholangitis and papillary stenosis the diagnosis was microsporidiosis in 2 cases, cryptosporidiosis in 2 and cryptosporidiosis associated with microsporidiosis in 1. In 3 cases with cryptosporidiosis the species was Cryptosporidium hominis, 1 of them was associated with Enterocytozoon bieneusi, and the other 2 were coinfected with Cryptosporidium parvum. In the 4 cases with microsporidiosis the species was Enterocytozoon bieneusi. These results suggest that molecular methods may be useful tools to identify emerging protozoa in patients with AIDS-associated cholangiopathy.

  12. The 13th International Workshops on Opportunistic Protists (IWOP13).

    Science.gov (United States)

    Calderon, Enrique J; Cushion, Melanie T; Xiao, Lihua; Lorenzo-Morales, Jacob; Matos, Olga; Kaneshiro, Edna S; Weiss, Louis M

    2015-01-01

    The 13th International Workshops on Opportunistic Protists (IWOP-13) was held November 13-15, 2014 in Seville, Spain. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and; (2) to foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists; e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference which brings together research groups working on these opportunistic pathogens. Progress has been achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune deficient and immune competent hosts and is providing important insights into these emerging and reemerging pathogens. A continuing concern of the participants is the ongoing loss of scientific expertise and diversity in this research community. This decline is due to the small size of these research communities and an ongoing lack of understanding by the broader scientific community of the challenges and limitations faced by researchers working on these organisms, which makes these research communities very sensitive to declines in research funding. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  13. CRF-like diuretic hormone negatively affects both feeding and reproduction in the desert locust, Schistocerca gregaria.

    Directory of Open Access Journals (Sweden)

    Pieter Van Wielendaele

    Full Text Available Diuretic hormones (DH related to the vertebrate Corticotropin Releasing Factor (CRF have been identified in diverse insect species. In the migratory locust, Locusta migratoria, the CRF-like DH (CRF/DH is localized in the same neurosecretory cells as the Ovary Maturating Parsin (OMP, a neurohormone that stimulates oocyte growth, vitellogenesis and hemolymph ecdysteroid levels in adult female locusts. In this study, we investigated whether CRF-like DH can influence feeding and reproduction in the desert locust, Schistocerca gregaria. We identified two highly similar S. gregaria CRF-like DH precursor cDNAs, each of which also encodes an OMP isoform. Alignment with other insect CRF-like DH precursors shows relatively high conservation of the CRF/DH sequence while the precursor region corresponding to OMP is not well conserved. Quantitative real-time RT-PCR revealed that the precursor transcripts mainly occur in the central nervous system and their highest expression level was observed in the brain. Injection of locust CRF/DH caused a significantly reduced food intake, while RNAi knockdown stimulated food intake. Therefore, our data indicate that CRF-like DH induces satiety. Furthermore, injection of CRF/DH in adult females retarded oocyte growth and caused lower ecdysteroid titers in hemolymph and ovaries, while RNAi knockdown resulted in opposite effects. The observed effects of CRF/DH may be part of a wider repertoire of neurohormonal activities, constituting an integrating control system that affects food intake and excretion, as well as anabolic processes like oocyte growth and ecdysteroidogenesis, following a meal. Our discussion about the functional relationship between CRF/DH and OMP led to the hypothesis that OMP may possibly act as a monitoring peptide that can elicit negative feedback effects.

  14. Synthesis and binding affinity of an iodinated juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  15. Grip and detachment of locusts on inverted sandpaper substrates

    International Nuclear Information System (INIS)

    Han Longbao; Wang Zhouyi; Ji Aihong; Dai Zhendong

    2011-01-01

    Locusts (Locusta migratoria manilensis) are characterized by their strong flying and grasping ability. Research on the grasping mechanism and behaviour of locusts on sloping substrates plays an important role in elucidating the mechanics of hexapod locomotion. Data on the maximum angles of slope at which locusts can grasp stably (critical angles of detachment) were obtained from high-speed video recordings at 215 fps. The grasping forces were collected by using two sensors, in situations where all left legs were standing on one and the right legs on the other sensor plate. These data were used to illustrate the grasping ability of locusts on slopes with varying levels of roughness. The grasping morphologies of locusts' bodies and tarsi were observed, and the surface roughness as well as diameters of their claw tips was measured under a microscope to account for the grasping mechanism of these insects on the sloping substrate. The results showed that the claw tips and part of the pads were in contact with the inverted substrate when the mean particle diameter was in the range of 15.3-40.5 μm. The interaction between pads and substrates may improve the stability of contact, and claw tips may play a key role in keeping the attachment reliable. A model was developed to explain the significant effects of the relative size of claw tips and mean particle diameter on grasping ability as well as the observed increase in lateral force (2.09-4.05 times greater than the normal force during detachment) with increasing slope angle, which indicates that the lateral force may be extremely important in keeping the contact reliable. This research lays the groundwork for the probable design and development of biomimetic robotics.

  16. The relationship between managed bees and the prevalence of parasites in bumblebees.

    Science.gov (United States)

    Graystock, Peter; Goulson, Dave; Hughes, William O H

    2014-01-01

    Honey bees and, more recently, bumblebees have been domesticated and are now managed commercially primarily for crop pollination, mixing with wild pollinators during foraging on shared flower resources. There is mounting evidence that managed honey bees or commercially produced bumblebees may affect the health of wild pollinators such as bumblebees by increasing competition for resources and the prevalence of parasites in wild bees. Here we screened 764 bumblebees from around five greenhouses that either used commercially produced bumblebees or did not, as well as bumblebees from 10 colonies placed at two sites either close to or far from a honey bee apiary, for the parasites Apicystis bombi, Crithidia bombi, Nosema bombi, N. ceranae, N. apis and deformed wing virus. We found that A. bombi and C. bombi were more prevalent around greenhouses using commercially produced bumblebees, while C. bombi was 18% more prevalent in bumblebees at the site near to the honey bee apiary than those at the site far from the apiary. Whilst these results are from only a limited number of sites, they support previous reports of parasite spillover from commercially produced bumblebees to wild bumblebees, and suggest that the impact of stress from competing with managed bees or the vectoring of parasites by them on parasite prevalence in wild bees needs further investigation. It appears increasingly likely that the use of managed bees comes at a cost of increased parasites in wild bumblebees, which is not only a concern for bumblebee conservation, but which may impact other pollinators as well.

  17. The relationship between managed bees and the prevalence of parasites in bumblebees

    Directory of Open Access Journals (Sweden)

    Peter Graystock

    2014-08-01

    Full Text Available Honey bees and, more recently, bumblebees have been domesticated and are now managed commercially primarily for crop pollination, mixing with wild pollinators during foraging on shared flower resources. There is mounting evidence that managed honey bees or commercially produced bumblebees may affect the health of wild pollinators such as bumblebees by increasing competition for resources and the prevalence of parasites in wild bees. Here we screened 764 bumblebees from around five greenhouses that either used commercially produced bumblebees or did not, as well as bumblebees from 10 colonies placed at two sites either close to or far from a honey bee apiary, for the parasites Apicystis bombi, Crithidia bombi, Nosema bombi, N. ceranae, N. apis and deformed wing virus. We found that A. bombi and C. bombi were more prevalent around greenhouses using commercially produced bumblebees, while C. bombi was 18% more prevalent in bumblebees at the site near to the honey bee apiary than those at the site far from the apiary. Whilst these results are from only a limited number of sites, they support previous reports of parasite spillover from commercially produced bumblebees to wild bumblebees, and suggest that the impact of stress from competing with managed bees or the vectoring of parasites by them on parasite prevalence in wild bees needs further investigation. It appears increasingly likely that the use of managed bees comes at a cost of increased parasites in wild bumblebees, which is not only a concern for bumblebee conservation, but which may impact other pollinators as well.

  18. No effect of low-level chronic neonicotinoid exposure on bumblebee learning and fecundity

    Directory of Open Access Journals (Sweden)

    Saija Piiroinen

    2016-03-01

    Full Text Available In recent years, many pollinators have declined in abundance and diversity worldwide, presenting a potential threat to agricultural productivity, biodiversity and the functioning of natural ecosystems. One of the most debated factors proposed to be contributing to pollinator declines is exposure to pesticides, particularly neonicotinoids, a widely used class of systemic insecticide. Also, newly emerging parasites and diseases, thought to be spread via contact with managed honeybees, may pose threats to other pollinators such as bumblebees. Compared to honeybees, bumblebees could be particularly vulnerable to the effects of stressors due to their smaller and more short-lived colonies. Here, we studied the effect of field-realistic, chronic clothianidin exposure and inoculation with the parasite Nosema ceranae on survival, fecundity, sugar water collection and learning using queenless Bombus terrestris audax microcolonies in the laboratory. Chronic exposure to 1 ppb clothianidin had no significant effects on the traits studied. Interestingly, pesticide exposure in combination with additional stress caused by harnessing bees for Proboscis Extension Response (PER learning assays, led to an increase in mortality. In contrast to previous findings, the bees did not become infected by N. ceranae after experimental inoculation with the parasite spores, suggesting variability in host resistance or parasite virulence. However, this treatment induced a slight, short-term reduction in sugar water collection, potentially through stimulation of the immune system of the bees. Our results suggest that chronic exposure to 1 ppb clothianidin does not have adverse effects on bumblebee fecundity or learning ability.

  19. Parasitized honey bees are less likely to forage and carry less pollen.

    Science.gov (United States)

    Lach, Lori; Kratz, Madlen; Baer, Boris

    2015-09-01

    Research into loss of pollination capacity has focused primarily on documenting pollinator declines and their causes with comparatively little attention paid to how stressors may affect pollinating behavior of surviving pollinators. The European honey bee, Apis mellifera is one of the world's most important generalist pollinators, and Nosema apis is a widespread microsporidian gut parasite of adult A. mellifera. We individually fed 960 newly eclosed A. mellifera workers either a sucrose solution or 400 N. apis spores in a sucrose solution and tagged them with a unique radio frequency identification (RFID) tag to monitor their foraging behavior. We found spore-fed bees were less likely to forage than those fed sugar only. Those that did forage started foraging when they were older and stopped foraging when they were younger than bees fed sugar only. However, inoculated and non-inoculated bees did not significantly differ in the number of foraging trips taken per day, the total hours foraged over their lifetime, or homing ability. Inoculated returning foragers were 4.3 times less likely to be carrying available pollen than non-inoculated returning foragers and the number of pollen grains carried was negatively correlated with the number of N. apis spores. In an arena of artificial flowers, inoculated bees had a tendency (p=0.061) to choose sugar flowers over pollen flowers, compared to non-inoculated bees which visited pollen and sugar flowers equally. These results demonstrate that even a relatively low dose of a widespread disease of A. mellifera may adversely affect bees' ability to pollinate. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Establishing a New Species Encephalitozoon pogonae for the Microsporidian Parasite of Inland Bearded Dragon Pogona vitticeps Ahl 1927 (Reptilia, Squamata, Agamidae).

    Science.gov (United States)

    Sokolova, Yuliya Y; Sakaguchi, Kanako; Paulsen, Daniel B

    2016-07-01

    The microsporidium parasitizing Inland Bearded Dragons Pogona vitticeps, and developing primarily in macrophages within foci of granulomatous inflammation of different organs, is described as a new species Encephalitozoon pogonae. Establishing the new species was based on sequencing the ITS-SSUrDNA region of the ribosomal gene and consequent SSUrDNA-inferred phylogenetic analyses, as well as on comparison of pathogenesis, host specificity, and ultrastructure among Encephalitozoon species and isolates. The new species is closely related to E. lacertae and E. cuniculi. Analysis of the literature suggests that this microsporidium has been reported previously as an unidentified microsporidian species or isolate of E. cuniculi and may represent a common infection in bearded dragons. All stages of E. pogonae develop in parasitophorous vacuoles. Uninucleate spores on methanol-fixed smears measured 2.1 × 1.1 μm, range 1.7-2.6 × 0.9-1.7 μm; on ultrathin sections spores measured 0.8-1.1 × 1.8-2.2 μm. Ultrastructural study revealed 3-6 polar filament coils, a mushroom-shaped polar disk, and a polar sac embracing half of the volume occupied by the lamellar polaroplast. In activated spores, polar filament everted eccentrically. The overall morphology and intracellular development of E. pogonae were similar to other Encepahalitozoon spp. We also review the existing data on microsporidia infecting reptiles. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  1. Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee-Associated Fungi.

    Directory of Open Access Journals (Sweden)

    Shannon M Hedtke

    Full Text Available Bees are essential pollinators for many flowering plants, including agriculturally important crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly sympatric species to evaluate and anticipate their effects on bee communities. We used PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons. We did not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and apathogenic (saprophytic fungal species in the genus Ascosphaera (chalkbrood, an unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacillus that is probably apathogenic. We detected pathogenic fungal strains in asymptomatic adult bees that therefore may be carriers of disease. We demonstrate that fungi from the genus Ascosphaera have been transported to North America along with the bee from its native range in Japan, and that O. cornifrons is exposed to fungi previously only identified from nests of other related bee species. Further study will be required to quantify pathogenicity and health effects of these different microbial species on O. cornifrons and on closely-related native North American mason bees that may now be exposed to novel pathogens. A global perspective is required for pathogen research as geographic ranges of insects and microorganisms shift due to intentional or accidental introductions.

  2. Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee-Associated Fungi.

    Science.gov (United States)

    Hedtke, Shannon M; Blitzer, Eleanor J; Montgomery, Graham A; Danforth, Bryan N

    2015-01-01

    Bees are essential pollinators for many flowering plants, including agriculturally important crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly sympatric species to evaluate and anticipate their effects on bee communities. We used PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons). We did not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and apathogenic (saprophytic) fungal species in the genus Ascosphaera (chalkbrood), an unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacillus that is probably apathogenic. We detected pathogenic fungal strains in asymptomatic adult bees that therefore may be carriers of disease. We demonstrate that fungi from the genus Ascosphaera have been transported to North America along with the bee from its native range in Japan, and that O. cornifrons is exposed to fungi previously only identified from nests of other related bee species. Further study will be required to quantify pathogenicity and health effects of these different microbial species on O. cornifrons and on closely-related native North American mason bees that may now be exposed to novel pathogens. A global perspective is required for pathogen research as geographic ranges of insects and microorganisms shift due to intentional or accidental introductions.

  3. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.

    Science.gov (United States)

    Germot, A; Philippe, H

    1999-01-01

    Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.

  4. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation.

    Science.gov (United States)

    Campeão, Mariana E; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L; Thompson, Cristiane C

    2017-01-01

    One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae , and Alcanivoracaceae ), archaea (e.g., Halobacteriaceae, Desulfurococcaceae , and Methanobacteriaceae ), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  5. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network.

    Directory of Open Access Journals (Sweden)

    Claudio Porrini

    Full Text Available In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health.

  6. Sudden deaths and colony population decline in Greek honey bee colonies.

    Science.gov (United States)

    Bacandritsos, N; Granato, A; Budge, G; Papanastasiou, I; Roinioti, E; Caldon, M; Falcaro, C; Gallina, A; Mutinelli, F

    2010-11-01

    During June and July of 2009, sudden deaths, tremulous movements and population declines of adult honey bees were reported by the beekeepers in the region of Peloponnesus (Mt. Mainalo), Greece. A preliminary study was carried out to investigate these unexplained phenomena in this region. In total, 37 bee samples, two brood frames containing honey bee brood of various ages, eight sugar samples and four sugar patties were collected from the affected colonies. The samples were tested for a range of pests, pathogens and pesticides. Symptomatic adult honey bees tested positive for Varroa destructor, Nosema ceranae, Chronic bee paralysis virus (CBPV), Acute paralysis virus (ABPV), Deformed wing virus (DWV), Sacbrood virus (SBV) and Black queen cell virus (BQCV), but negative for Acarapis woodi. American Foulbrood was absent from the brood samples. Chemical analysis revealed that amitraz, thiametoxan, clothianidin and acetamiprid were all absent from symptomatic adult bees, sugar and sugar patty samples. However, some bee samples, were contaminated with imidacloprid in concentrations between 14 ng/g and 39 ng/g tissue. We present: the infection of Greek honey bees by multiple viruses; the presence of N. ceranae in Greek honey bees and the first record of imidacloprid (neonicotonoid) residues in Greek honey bee tissues. The presence of multiple pathogens and pesticides made it difficult to associate a single specific cause to the depopulation phenomena observed in Greece, although we believe that viruses and N. ceranae synergistically played the most important role. A follow-up in-depth survey across all Greek regions is required to provide context to these preliminary findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Molecular detection and species identification of Enterocytozoon bieneusi isolated from immunocompetent Orang Asli in Malaysia.

    Science.gov (United States)

    Ashikin, Azah; Al-Mekhlafi, Hesham M; Moktar, Norhayati; Anuar, Tengku Shahrul

    2017-04-01

    Most studies of opportunistic infections focus on immunocompromised patients. However, there is a lack of information on microsporidiosis in healthy people (immunocompetent) worldwide. This study aimed to detect and identify microsporidia species in immunocompetent Orang Asli living in Pahang, Malaysia. Orang Asli is a collective term for a group of indigenous people that usually reside in the interior regions of Peninsular Malaysia. They comprise about 0.7% of the total population in Malaysia and 76% of them lived below the poverty line i.e., poor housing conditions with the lack of access to safe drinking water and adequate sanitation, contaminated environment, high illiteracy rate and unhygienic practices by these people. Stool samples were collected from 209 Orang Asli and analyzed for detecting the presence of Enterocytozoon bieneusi and Encephalitozoon intestinalis by polymerase chain reaction assay targeting small subunit ribosomal RNA gene. E. bieneusi was detected in 8 individuals (3.83%). This infection was commonly found in males than females (5.2% vs. 2.7%). All infected Orang Asli were adults, with a mean age of 44years. Diarrhea and other gastrointestinal symptoms were reported in one case (12.5%) among individuals infected with this species. These findings clearly show that exposure to E. bieneusi may actually be common than reported. The accurate detection and identification of microsporidian species by molecular technique will improve therapy, clinical manifestations and prognosis of this infection, as no antiparasitic therapy has been approved for E. bieneusi. It is hoped that these findings will allow the formulation of better health management and disease prevention advisories, and improvement in the standards of health in similar communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom

    Directory of Open Access Journals (Sweden)

    Heitman Joseph

    2010-09-01

    Full Text Available Abstract Background The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. Results Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. Conclusions The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural

  9. Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae.

    Directory of Open Access Journals (Sweden)

    Johan Panek

    Full Text Available Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi and 8 days post-infection (dpi. A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras and reduction of the translation activity (EIF3 confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.

  10. The 12th International Workshops on Opportunistic Protists (IWOP-12).

    Science.gov (United States)

    Weiss, Louis M; Cushion, Melanie T; Didier, Elizabeth; Xiao, Lihua; Marciano-Cabral, Francine; Sinai, Anthony P; Matos, Olga; Calderon, Enrique J; Kaneshiro, Edna S

    2013-01-01

    The 12th International Workshops on Opportunistic Protists (IWOP-12) was held in August 2012 in Tarrytown, New York. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and (2) foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists, e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference that brings together research groups working on these opportunistic pathogens. Slow but steady progress is being achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune-deficient and immune-competent hosts, and is providing critical insights into these emerging and reemerging pathogens. This IWOP meeting demonstrated the importance of newly developed genomic level information for many of these pathogens and how analysis of such large data sets is providing key insights into the basic biology of these organisms. A great concern is the loss of scientific expertise and diversity in the research community due to the ongoing decline in research funding. This loss of researchers is due to the small size of many of these research communities and a lack of appreciation by the larger scientific community concerning the state of art and challenges faced by researchers working on these organisms. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  11. Specialized microbial databases for inductive exploration of microbial genome sequences

    Directory of Open Access Journals (Sweden)

    Cabau Cédric

    2005-02-01

    Full Text Available Abstract Background The enormous amount of genome sequence data asks for user-oriented databases to manage sequences and annotations. Queries must include search tools permitting function identification through exploration of related objects. Methods The GenoList package for collecting and mining microbial genome databases has been rewritten using MySQL as the database management system. Functions that were not available in MySQL, such as nested subquery, have been implemented. Results Inductive reasoning in the study of genomes starts from "islands of knowledge", centered around genes with some known background. With this concept of "neighborhood" in mind, a modified version of the GenoList structure has been used for organizing sequence data from prokaryotic genomes of particular interest in China. GenoChore http://bioinfo.hku.hk/genochore.html, a set of 17 specialized end-user-oriented microbial databases (including one instance of Microsporidia, Encephalitozoon cuniculi, a member of Eukarya has been made publicly available. These databases allow the user to browse genome sequence and annotation data using standard queries. In addition they provide a weekly update of searches against the world-wide protein sequences data libraries, allowing one to monitor annotation updates on genes of interest. Finally, they allow users to search for patterns in DNA or protein sequences, taking into account a clustering of genes into formal operons, as well as providing extra facilities to query sequences using predefined sequence patterns. Conclusion This growing set of specialized microbial databases organize data created by the first Chinese bacterial genome programs (ThermaList, Thermoanaerobacter tencongensis, LeptoList, with two different genomes of Leptospira interrogans and SepiList, Staphylococcus epidermidis associated to related organisms for comparison.

  12. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation

    Directory of Open Access Journals (Sweden)

    Mariana E. Campeão

    2017-06-01

    Full Text Available One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C. We collected deep-sea samples in the field (about 2570 m below the sea surface, transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae, archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae, and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  13. Microsporidiosis and Cryptosporidiosis in HIV/AIDS Patients in St. Petersburg, Russia: Serological Identification of Microsporidia and Cryptosporidium parvum in Sera Samples from HIV/AIDS Patients

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Z.; Sokolova, O.I.; Demyanov, A.; Kváč, Martin; Sak, Bohumil; Květoňová, Dana; Secor, W. E.

    2011-01-01

    Roč. 27, č. 1 (2011), s. 13-15 ISSN 0889-2229 R&D Projects: GA AV ČR KJB500960701 Institutional research plan: CEZ:AV0Z60220518 Keywords : Cryptosporidium * HIV * AIDS Subject RIV: EC - Immunology Impact factor: 2.246, year: 2011

  14. Interactions between the solitary endoparasitoid, Meteorus gyrator (Hymenoptera: Braconidae) and its host, Lacanobia oleracea (Lepidoptera: Noctuidae), infected with the entomopathogenic microsporidium, Vairimorpha necatrix (Microspora: Microsporidia).

    Science.gov (United States)

    Down, R E; Smethurst, F; Bell, H A; Edwards, J P

    2005-04-01

    Infection of Lacanobia oleracea (Linnaeus) larvae with the microsporidium Vairimorpha necatrix (Kramer) resulted in significant effects on the survival and development of the braconid parasitoid, Meteorus gyrator (Thunberg). Female M. gyrator did not show any avoidance of V. necatrix-infected hosts when they were selecting hosts for oviposition. When parasitism occurred at the same time as infection by the pathogen, or up to four days later, no significant detrimental effects on the parasitoid were observed. However, when parasitism occurred six to eight days after infection, a greater proportion (12.5-14%) of hosts died before parasitoid larvae egressed. Successful eclosion of adult wasps was also reduced. When parasitism and infection were concurrent, parasitoid larval development was significantly faster in infected hosts, and cocoons were significantly heavier. However, as the time interval between infection and parasitism increased, parasitoid larval development was significantly extended by up to two days, and the cocoons formed were significantly (c. 20%) smaller. Vairimorpha necatrix spores were ingested by the developing parasitoid larvae, accumulated in the occluded midgut, and were excreted in the meconium upon pupation.

  15. Cholelithiasis in adult bearded dragons: retrospective study of nine adult bearded dragons (Pogona vitticeps) with cholelithiasis between 2013 and 2015 in southern Germany.

    Science.gov (United States)

    Gimmel, A; Kempf, H; Öfner, S; Müller, D; Liesegang, A

    2017-06-01

    With an increased number of pet reptiles, many diseases occur due to nutritional disorders. Between 2013 and 2015, irregular gallbladder contents (sludge/choleliths) in adult bearded dragons (Pogona vitticeps) were recorded in many of the routinely conducted necropsies at the reptile rescue station in Munich (Auffangstation für Reptilien, München e.V., Munich, Germany). Nine animals, six from the rescue station and three from an associated veterinary practice (Tierärztliche Praxis für Exoten, Augsburg, Germany), were studied. Gallbladder contents from all animals were analysed at the Institute for Clinical Chemistry in Zurich, Switzerland. In three of nine animals, one cholelith composed of 100% calcium carbonate (CaCO 3 ) was detected and it precipitated either as pure calcite or as a calcite:vaterite combination. In the remaining six animals, analyses suggested a protein-based material. The detection of choleliths/sludge was not anticipated at necropsy or surgery in eight of nine animals. The diet of the six animals from the rescue station was retrospectively described as mainly insects, whereas the diet of the three animals from the veterinary practice also contained little plant matter. Fed insect species were mealworm larva (Tenebrio molitor), house cricket (Acheta domestica), migratory locust (Locusta migratoria) and zophobas larva (Zophobas morio), all high in protein and fat. In other species, a nidus must be present for CaCO 3 to precipitate. As a protein-based sludge was detected in six gallbladders, it is possible that a high-protein diet could lead to such a nidus and subsequently to cholelith formation. Cholelithiasis seems to be a rising problem in adult bearded dragons and is likely underdiagnosed, as many choleliths were found at necropsy. This rise in cholelithiasis may correlate with an unnatural high-protein, high-fat insect-based diet instead of a balanced plant-based diet. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell

  16. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    Science.gov (United States)

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  17. Limitações ao uso de Apis mellifera (Hymenoptera: Apidae para a polinização dirigida de cultivares: um estudo de caso com a pereira-portuguesa (Pyrus communis L. cv. Rocha

    Directory of Open Access Journals (Sweden)

    André Amarildo Sezerino

    2015-03-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n2p73 A existência de polinizadores capazes de promover a xenogamia é um fator decisivo na produtividade dos pomares. Por ser alógama, devido à autoincompatibilidade gametofítica, a maioria das cultivares europeias de pereiras não produzem frutos com sementes sem a presença de insetos polinizadores. Portanto, o correto manejo e a qualidade das colmeias de Apis mellifera instaladas nos pomares são imprescindíveis para assegurar produções economicamente viáveis. Nesse contexto, objetivou-se avaliar alguns aspectos do sistema de polinização dirigida com A. mellifera que podem interferir decisivamente na eficiência da polinização em um pomar comercial de pereira portuguesa nas condições ecológicas do planalto serrano catarinense, no Sul do Brasil. Foi observada uma baixa visitação de abelhas nas flores de pereira, possivelmente devido a dois fatores: competição floral e densidade insuficiente de colmeias instaladas no pomar. Não foi observada a deposição de pólen nos estigmas, o que confirma a deficiência de polinização na área. A qualidade das colmeias alugadas apresentou diferenças entre os anos, com presença do ácaro Varroa destructor e do microsporídeo Nosema ceranae, os quais podem ter contribuído para o despovoamento das colmeias durante o período de floração e, consequentemente, redução da deposição de pólen no estigma das flores da cultivar produtora de frutos.

  18. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Jennifer A Berry

    Full Text Available In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate and Check Mite+ (coumaphos and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  19. Antimicrobial therapy for the treatment of opportunistic infections in HIV/AIDS patients: a critical appraisal

    Directory of Open Access Journals (Sweden)

    Seddon J

    2011-04-01

    Full Text Available Jo Seddon1, Sanjay Bhagani21Department of Infectious Diseases, Imperial College Healthcare NHS Trust, London, UK; 2Department of Infection and Immunity, Royal Free Hospital NHS Trust, London, UKAbstract: The widespread use of antiretroviral therapy (ART has entirely changed the management of human immunodeficiency virus (HIV infection and dramatically reduced the rates of opportunistic infections (OI. However, OI continue to cause significant morbidity and mortality in both developed countries, where presentation with advanced HIV infection is common, and also in developing countries where ART is less widely available. Evidence to direct OI guidelines is partly limited by the fact that many large-scale studies date from the pre-ART era and more recent studies are sometimes poorly powered due to the falling rates of OI. Treatment of OI is now known to be as much about antimicrobials as about immune reconstitution with ART, and recent studies help guide the timing of initiation of ART in different infections. OI have also become complicated by the immune reconstitution inflammatory syndrome phenomenon which may occur once successful immune recovery begins. Trimethoprim-sulfamethoxazole has long been one of the most important antibiotics in the treatment and prevention of OI and remains paramount. It has a broad spectrum of activity against Pneumocystis jiroveci, toxoplasmosis, and bacterial infections and has an important role to play in preventing life-threatening OI. New advances in treating OI are coming from a variety of quarters: in cytomegalovirus eye disease, the use of oral rather than intravenous drugs is changing the face of therapy; in cryptococcal meningitis, improved drug formulations and combination therapy is improving clearance rates and reducing drug toxicities; and in gut disease, the possibility of rapid immune restitution with ART is replacing the need for antimicrobials against cryptosporidia and microsporidia.Keywords: HIV

  20. Potential disease transmission from wild geese and swans to livestock, poultry and humans: a review of the scientific literature from a One Health perspective.

    Science.gov (United States)

    Elmberg, Johan; Berg, Charlotte; Lerner, Henrik; Waldenström, Jonas; Hessel, Rebecca

    2017-01-01

    There are more herbivorous waterfowl (swans and geese) close to humans, livestock and poultry than ever before. This creates widespread conflict with agriculture and other human interests, but also debate about the role of swans and geese as potential vectors of disease of relevance for human and animal health. Using a One Health perspective, we provide the first comprehensive review of the scientific literature about the most relevant viral, bacterial, and unicellular pathogens occurring in wild geese and swans. Research thus far suggests that these birds may play a role in transmission of avian influenza virus, Salmonella, Campylobacter , and antibiotic resistance. On the other hand, at present there is no evidence that geese and swans play a role in transmission of Newcastle disease, duck plague, West Nile virus, Vibrio, Yersinia, Clostridium, Chlamydophila , and Borrelia . Finally, based on present knowledge it is not possible to say if geese and swans play a role in transmission of Escherichia coli, Pasteurella, Helicobacter, Brachyspira, Cryptosporidium, Giardia , and Microsporidia. This is largely due to changes in classification and taxonomy, rapid development of identification methods and lack of knowledge about host specificity. Previous research tends to overrate the role of geese and swans as disease vectors; we do not find any evidence that they are significant transmitters to humans or livestock of any of the pathogens considered in this review. Nevertheless, it is wise to keep poultry and livestock separated from small volume waters used by many wild waterfowl, but there is no need to discourage livestock grazing in nature reserves or pastures where geese and swans are present. Under some circumstances it is warranted to discourage swans and geese from using wastewater ponds, drinking water reservoirs, and public beaches. Intensified screening of swans and geese for AIV, West Nile virus and anatid herpesvirus is warranted.

  1. Phylogenetic diversity of stress signalling pathways in fungi

    Directory of Open Access Journals (Sweden)

    Stansfield Ian

    2009-02-01

    Full Text Available Abstract Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol, oxidative (H2O2 and menadione and cell wall stresses (Calcofluor White and Congo Red. There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our

  2. Birefringent Crystals and Abdominal Discoloration in the Predatory Mite Phytoseiulus persimilis (Acari: Phytoseiidae)

    Science.gov (United States)

    Bjørnson; Steiner; Keddie

    1997-03-01

    In response to grower complaints of poor performance of Phytoseiulus persimilis, mites from 14 commercial insectaries and research colonies were examined for pathogens. Some were found to have abdominal discolorations, manifested initially as two white stripes along the dorsal sides of the body within the Malpighian tubules. Advanced signs appeared as a large, centrally located, white spot or U-shaped discoloration in the distal opisthosoma within the rectum/anal atrium. White material often accumulated and hardened within the anus and formed a rectal plug that inhibited further excretion. Most affected mites were lethargic. Adults and immatures with abdominal discoloration contained numerous densely packed, birefringent, dumbbell-shaped entities. Though occasionally observed in the colon, they occurred most frequently within the Malpighian tubules and/or rectum and anal atrium. Dumbbells measured 2-4 &mgr;m long and contained prominent concentric rings. When observed by transmission electron microscopy, the entities lacked cellular organelles. Asymptomatic mites contained few or no such entities. Dumbbell-shaped inclusions were observed in P. persimilis from all sources examined. High levels of potassium, low levels of phosphorous and sulfur, and traces of chlorine were detected by energy-dispersive X-ray analysis. Guanine and uric acid, known nitrogenous wastes of arachnids, do not contain these elements. The chemical composition and structure indicate that the dumbbells are crystals. Both asymptomatic mites and those specimens exhibiting abdominal discoloration were examined for pathogens using light and transmission electron microscopy. Microsporidia, virus-like particles, and a rickettsia (genus Wolbachia) were observed in some mites but showed no correlation with white abdominal discoloration or associated crystal formation. Neither were pathogens always detected in symptomatic mites. Although birefringent crystals may be naturally occurring excretory

  3. Plasma Membrane-Located Purine Nucleotide Transport Proteins Are Key Components for Host Exploitation by Microsporidian Intracellular Parasites

    Science.gov (United States)

    Heinz, Eva; Hacker, Christian; Dean, Paul; Mifsud, John; Goldberg, Alina V.; Williams, Tom A.; Nakjang, Sirintra; Gregory, Alison; Hirt, Robert P.; Lucocq, John M.; Kunji, Edmund R. S.; Embley, T. Martin

    2014-01-01

    Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT) proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis. PMID:25474405

  4. Evolution of the protists and protistan parasites from the perspective of molecular systematics.

    Science.gov (United States)

    Sogin, M L; Silberman, J D

    1998-01-01

    Unlike prokaryotes, the Protista are rich in morphological and ultrastructure information. Their amazing phenotypic diversity permits assignment of many protists to cohesive phyletic assemblages but sometimes blurs relationships between major lineages. With the advent of molecular techniques, it became possible to test evolutionary hypotheses that were originally formulated according to shared phenotypic traits. More than any other gene family, studies of rRNAs changed our understanding of protist evolution. Stramenopiles (oomycetes, chrysophytes, phaeophytes, synurophytes, diatoms, xanthophytes, bicosoecids, slime nets) and alveolates (dinoflagellates, apicomplexans, ciliates) are two novel, complex evolutionary assemblages which diverged nearly simultaneously with animals, fungi, plants, rhodophytes, haptophytes and a myriad of independent amoeboid lineages. Their separation may have occurred one billion years ago and collectively these lineages make up the "crown" of the eukaryotic tree. Deeper branches in the eukaryotic tree show 16S-like rRNA sequence variation that is much greater than that observed within the Archaea and the Bacteria. A progression of independent protist branches, some as ancient as the divergence between the two prokaryotic domains, preceded the sudden radiation of "crown" groups. Trichomonads, diplomonads and Microsporidia are basal to all other eukaryotes included in rRNA studies. Together with pelobionts, oxymonads, retortamonads and hypermastigids, these amitochondriate taxa comprise the Archaezoa. This skeletal phylogeny suggested that early branching eukaryotes lacked mitochondria, peroxisomes and typical stacked Golgi dictyosomes. However, recent studies of heat shock proteins indicate that the first eukaryotes may have had mitochondria. When evaluated in terms of evolution of ultrastructure, lifestyles and other phenotypic traits, the rRNA phylogenies provide the most consistent of molecular trees. They permit identification of the

  5. Plasma membrane-located purine nucleotide transport proteins are key components for host exploitation by microsporidian intracellular parasites.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    2014-12-01

    Full Text Available Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes, consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis.

  6. Immune responsiveness associated with experimental Encephalitozoon intestinalis infection in immunocompetent rats

    Directory of Open Access Journals (Sweden)

    Omalu ICJ

    2007-01-01

    Full Text Available Purpose: Microsporidial infections have been recognized as an increasingly important infection in immuncompromised patients, particularly those infected with HIV/AIDS. This study was designed to study immune responses associated with experimental Encephalitozoon intestinalis infection in immunocompetent rats. Materials and Methods: Thirty-four Rats in 3 groups, A (Control, B (Intraperitoneal and C (Oral were given injections of 0.5 ml of 2 x 10 6 of purified spores of Encephalitotozoon intestinalis spores and were observed for serum specific IgG for 21 days using both direct and indirect ELISA. Results: In indirect ELISA, specific lgG were detected on days 7, 14 and 21 for the group B rats and on day 21 for group C and in direct ELISA method, specific lgG were detected in-group B rats on days 7 and 21, for group C rats on day 21 only, while in the control rats, specific lgG were not detected. There was no significant difference between the direct and indirect methods (df=1, X 2 , P>0.05. E. intestinalis was observed in stool samples of rats in 1/12 (08.33% on days 14 and 21 in group B, and in 4/10 (33.33%, 3/10 (25.00% and 2/10 (16.67% on days 7, 14 and 21 respectively in group C. In group A, which is the control rats, no microsporidia were observed on days 0, 7, 14 and 21. Conclusions: There were no changes in the T-lymphocyte counts of rats prior to and after inoculation with spores. Extensive lesions were observed along the intestinal walls especially on the middle and lower sections of group C rats only.

  7. Characterization of Amoeboaphelidium protococcarum, an Algal Parasite New to the Cryptomycota Isolated from an Outdoor Algal Pond Used for the Production of Biofuel

    Science.gov (United States)

    Letcher, Peter M.; Lopez, Salvador; Schmieder, Robert; Lee, Philip A.; Behnke, Craig; Powell, Martha J.; McBride, Robert C.

    2013-01-01

    diverse than previously understood and include some of the Aphelidea as well as Rozella species and potentially Microsporidia. PMID:23437098

  8. Ultrastructural and Molecular Characterisation of an Heterosporis-Like Microsporidian in Australian Sea Snakes (Hydrophiinae.

    Directory of Open Access Journals (Sweden)

    Amber K Gillett

    Full Text Available Four sea snakes (two Hydrophis major, one Hydrophis platurus, one Hydrophis elegans were found washed ashore on different beaches in the Sunshine Coast region and Fraser Island in Queensland, Australia between 2007-2013. Each snake had multiple granulomas and locally extensive regions of pallor evident in the hypaxial and intercostal musculature along the body. Lesions in two individuals were also associated with vertebral and rib fractures. Histological examination revealed granulomas scattered throughout skeletal muscle, subcutaneous adipose tissue and fractured bone. These were composed of dense aggregates of microsporidian spores surrounded by a mantle of macrophages. Sequences (ssrRNA were obtained from lesions in three sea snakes and all revealed 99% similarity with Heterosporis anguillarum from the Japanese eel (Anguillarum japonica. However, ultrastructural characteristics of the organism were not consistent with those of previous descriptions. Electron microscopic examination of skeletal muscle revealed large cysts (not xenomas bound by walls of fibrillar material (Heterosporis-like sporophorocyst walls were not detected. The cysts contained numerous mature microsporidian spores arranged in small clusters, sometimes apparently within sporophorous vesicles. The microspores were monomorphic, oval and measured 2.5-3.0 μm by 1.6-1.8 μm. They contained isofilar polar filaments with 11 (infrequently 9-12 coils arranged in two ranks. This is the first published report of a microsporidian infection in hydrophiid sea snakes. This discovery shows microsporidia with molecular affinities to Heterosporis anguillarum but ultrastructural characters most consistent with the genus Pleistophora (but no hitherto described species. Further studies are required to determine whether the microsporidian presented here belongs to the genus Heterosporis, or to a polymorphic species group as suggested by the recognition of a robust Pleistophora

  9. A preliminary study of the prevalence of intestinal parasites in immunocompromised patients with and without gastrointestinal manifestations Frequência de parasitas intestinais em pacientes imunocomprometidos com e sem manifestações gastrointestinais: estudo preliminar

    Directory of Open Access Journals (Sweden)

    Jorge Humberto Botero

    2003-08-01

    Full Text Available The objective of the present study was to determine the prevalence of the intestinal parasites most commonly found in immunocompromised patients. A group of 111 individuals with acute lymphoid leukaemia (ALL, chronic myeloid leukaemia (CML, human immunodeficiency virus (HIV and other immunocompromised conditions (principally haematological disorders was selected. A battery of tests was performed on each individual to identify the presence of parasites (three stool specimens with saline solution and Lugol both directly and by concentration, culture and special staining. No significant differences were found among the frequencies of the different parasites with the several types of immunocompromised conditions. The overall frequencies of potentially pathogenic and opportunistic parasites were 32.4% (36/111 and 9% (10/111 respectively, the most frequently encountered among the latter being Cryptosporidium sp., Microsporidia spp. and Strongyloides stercoralis.O objetivo do presente estudo é avaliar a frequência de parasitas intestinais em pacientes com alterações imunológicas. Foram analisadas 111 pessoas com leucemia linfóide aguda (LLA, leucemia mieloide crônica, virus da imunodeficiência humana (VIH e outras doenças, principalmente alterações sanguíneas. Para cada indivíduo foram realizados exames seriados de fezes tanto com solução salina quanto com lugol #3, direto e por concentração, culturas de fezes e colorações específicas. Não houve diferenças significativas na frequência de parasitoses nos distintos grupos avaliados. A frequência de parasitas potencialmente patogênicos foi de 32.4% (36/111 enquanto a de parasitas oportunistas foi de 9.0% (10/111. As espécies mais observadas foram C. parvum, microsporídios spp. e S. stercoralis.

  10. Intestinal microsporidiosis in renal transplant recipients: Prevalence, predictors of occurrence and genetic characterization

    Directory of Open Access Journals (Sweden)

    U Ghoshal

    2015-01-01

    Full Text Available Purpose: Intestinal microsporidiosis, which occurs in immunocompromised states such as acquired immunodeficiency syndrome, has rarely been studied in patients with renal transplantation (RT on immunosuppressive therapy. Materials and Methods: Three hundred and twenty-four consecutive RT recipients on immunosuppressive treatment and 170 healthy subjects were evaluated for intestinal microsporidiosis and other parasites by modified trichrome staining, wet mount using normal saline, iodine and polymerase chain reaction (PCR. Clinical, demographic and laboratory parameters associated with occurrence of intestinal microsporidiosis were studied using univariate and multivariate analysis. The species of microsporidia were studied using PCR-restriction fragment length polymorphism (RFLP. Patients were treated with albendazole (400 mg twice daily for 2 weeks. Results: Of 324 RT recipients initially screened, 52 were excluded from final analysis due to incomplete data. Patients with RT [n = 272, age 42 ± 12.54 years, 222 (81.6% male] more often had microsporidiosis than healthy subjects by modified trichrome stain and PCR [n = 170, age 33.8 ± 6.7 years, 123 (72.3% male] [16/272 (5.8% vs. 0/170 (0%, P < 0.001]. Patients with intestinal microsporidiosis were younger (33.9 ± 8.3 years vs. 42.3 ± 12.6 years; P = 0.009, had diarrhoea more often (13/16, 81% vs. 123/256, 48%; P = 0.02, which was longer in duration (60, 32.5-105 days vs. 12, 6.2-18 days; P < 0.001 and had associated giardiasis (2/16, 12.5% vs. 2/256, 0.8%; P = 0.018. Younger age, presence of diarrhoea and associated giardiasis were significant on multivariate analysis. Enterocytozoon bieneusi was detected in 15/16 (93% patients with intestinal microsporidiosis. Conclusion: Intestinal microsporidiosis occurs frequently in patients with RT on immunosuppressive treatment, particularly among younger patients with longer diarrhoea duration and associated giardiasis. E. bieneusi is the major

  11. The mitochondrial genome of the entomoparasitic green alga helicosporidium.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available BACKGROUND: Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi. METHODOLOGY/PRINCIPAL FINDINGS: The circular mapping 49343 bp mitochondrial genome of Helicosporidium closely resembles that of the vertebrate parasite Prototheca wickerhamii. The two genomes share an almost identical gene complement and display a level of synteny that is higher than any other sequenced chlorophyte mitochondrial DNAs. Interestingly, the Helicosporidium mtDNA feature a trans-spliced group I intron, and a second group I intron that contains two open reading frames that appear to be degenerate maturase/endonuclease genes, both rare characteristics for this type of intron. CONCLUSIONS/SIGNIFICANCE: The architecture, genome content, and phylogeny of the Helicosporidium mitochondrial genome are all congruent with its close

  12. Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper, Oedaleus asiaticus?

    Science.gov (United States)

    Cease, Arianne J; Hao, Shuguang; Kang, Le; Elser, James J; Harrison, Jon F

    2010-08-01

    Locusts represent an impressive example of migratory polyphenism, with high densities triggering a switch from a solitarious, shorter dispersal range, and sometimes greenish phenotype to a gregarious and sometimes darker form exhibiting behavioral, morphological and physiological traits associated with long-distance migratory swarms. While such polyphenism has been well documented in Locusta migratoria and Schistocerca gregaria, the extent to which other grasshoppers exhibit this type of migratory polyphenism is unclear. Anecdotally, the Chinese grasshopper, Oedaleus asiaticus, forms migratory swarms comprised mostly of a darker, brown-colored morph, but also exhibits a non-migratory green-colored morph that predominates at low densities. In a population in Inner Mongolia not currently exhibiting migratory swarms, we found that while green and brown O. asiaticus are found concurrently across our sampled range, only brown grasshoppers were found in high densities. Differences between field-collected brown and green forms matched some but not key predictions associated with the hypothesis that the brown form is morphologically and physiologically specialized for gregarious migration. Controlling for body mass, brown forms had more massive thoraxes, abdomens and legs, and higher metabolic rates, but not more flight muscle or lipid stores. Further, the brown and green grasshoppers did not differ in gregarious behavior, and neither would fly in multiple lab and field trials. Lab or field-rearing at high densities for one-to-multiple juvenile instars caused grasshoppers to exhibit some morphological traits predicted to benefit migration (larger wings and a shift in relative mass from abdomen to thorax), but did not change color or induce flight behavior. One hypothesis to explain these data is that a migratory form of O. asiaticus is partially triggered by high field densities, but that existing ecological conditions blocked full expression of such traits (and outbreak

  13. Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction.

    Science.gov (United States)

    Wu, Chen; Twort, Victoria G; Crowhurst, Ross N; Newcomb, Richard D; Buckley, Thomas R

    2017-11-16

    Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the

  14. Epidemiology, clinical, immune, and molecular profiles of microsporidiosis and cryptosporidiosis among HIV/AIDS patients

    Directory of Open Access Journals (Sweden)

    Wumba R

    2012-07-01

    Full Text Available Roger Wumba,1 Benjamin Longo-Mbenza,2 Jean Menotti,3,4 Madone Mandina,5 Fabien Kintoki,5 Nani Hippolyte Situakibanza,1,5 Marie Kapepela Kakicha,6 Josue Zanga,1 Kennedy Mbanzulu-Makola,1 Tommy Nseka,1 Jean Pierre Mukendi,1 Eric Kendjo,7 Jean Sala,1 Marc Thellier7,81Department of Tropical Medicine, Infectious and Parasitic Diseases, Department of Parasitology, University Clinic of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa, Congo; 2Faculty of Health Sciences, Walter Sisulu University, Eastern Cape, South Africa; 3Laboratory of Parasitology and Mycology, Saint-Louis Hospital, Public Assistance-Hospitals of Paris, Paris, France; 4Faculty of Medicine, Lariboisière-Saint-Louis, University of Paris VII, Paris, France; 5Department of Internal Medicine, University Clinic of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa, Congo; 6Department of Pediatrics, University Clinic of Kinshasa, Faculty of Medicine, University of Kinshasa, Kinshasa, Congo; 7National Center for Malaria Research, AP-HP, CHU Pitie Salpêtrière, Paris, France; 8Laboratory of Parasitology and Mycology, Pitié Salpêtrière Hospital, Public Assistance-Hospitals of Paris, Pierre and Marie Curie University, Paris, FranceBackground: The objective of this study was to determine the prevalence of intestinal parasites, with special emphasis on microsporidia and Cryptosporidium, as well as their association with human immunodeficiency virus (HIV symptoms, risk factors, and other digestive parasites. We also wish to determine the molecular biology definitions of the species and genotypes of microsporidia and Cryptosporidium in HIV patients.Methods: In this cross-sectional study, carried out in Kinshasa, Democratic Republic of the Congo, stool samples were collected from 242 HIV patients (87 men and 155 women with referred symptoms and risk factors for opportunistic intestinal parasites. The analysis of feces specimen were performed using Ziehl

  15. Frecuencia de Varroa destructor, Nosema apis y Acarapis woodi en colonias manejadas y enjambres silvestres de abejas (Apis mellifera en Mérida, Yucatán, México

    Directory of Open Access Journals (Sweden)

    Jesús Froylán Martínez Puc

    2011-01-01

    Full Text Available Las enfermedades y parasitosis que afectan a las abejas melíferas causan importantes pérdidas económicas a la actividad apícola. Sin embargo, los daños provocados por dichas parasitosis se presentan de manera heterogénea en colonias manejadas y en enjambres silvestres. Con la finalidad de determinar la frecuencia y niveles de infestación de V. destructor, N. apis y A. woodi en abejas melíferas en Yucatán, se colectaron un total de 76 muestras de abejas melíferas, durante junio a septiembre de 2006, siendo 27 de colonias manejadas y 49 de enjambres silvestres. La frecuencia de V. destructor en colonias manejadas fue de 62.9 %, con un nivel de infestación de 1.70 ± 0.26 (ácaros/100 abejas, y en los enjambres silvestres fue de 55.1 %, con un nivel de infestación de 1.96 ± 0.44. No se observaron diferencias en la frecuencia (X2 = 0.44, gl = 1, P =0.51, y niveles de infestación (t=0.14, P=0.89. La frecuencia de N. apis en las colonias manejadas fue de 74.0 %, con una media de infestación de 1´480 x 103 ± 232 x 103 (esporas/ abeja, y en los enjambres silvestres de 53.0 %, con una media de infestación de 1´416 x 103 ± 264 x 103, no se observaron diferencias en la frecuencia (X2 = 3.22, gl = 1, P= 0.07 y niveles de infestación (t=0.18, P=0.86. No se detectó la presencia de A. woodi en las muestras analizadas. Los resultados demuestran un aumento en la frecuencia de N. apis en Yucatán.

  16. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic

    Czech Academy of Sciences Publication Activity Database

    Sak, Bohumil; Petrželková, Klára Judita; Květoňová, Dana; Mynářová, A.; Shutt, K. A.; Pomajbíková, K.; Kalousová, B.; Modrý, David; Benavides, J.; Todd, A.; Kváč, Martin

    2013-01-01

    Roč. 8, č. 8 (2013), e71840 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:60077344 ; RVO:68081766 Keywords : impenetrable national-park * free-ranging gorillas * Enterocytozoon bieneusi * zoonotic transmission * disease risks * Uganda Subject RIV: EG - Zoology Impact factor: 3.534, year: 2013

  17. Prevalencia de microsporidios intestinales y otros enteroparásitos en pacientes con VIH positivo de Maracaibo, Venezuela

    Directory of Open Access Journals (Sweden)

    Zulbey Rivero-Rodríguez

    2013-12-01

    Full Text Available Introducción. Desde 1985, los microsporidios se consideran parásitos causantes de infecciones emergentes y oportunistas en individuos inmunocomprometidos en todo el mundo. Objetivo. Detectar la presencia de microsporidios y otros enteroparásitos en pacientes con VIH/sida del Servicio Autónomo Hospital Universitario de Maracaibo (SAHUM, donde no existían estudios previos en este campo. Materiales y métodos. Las muestras fecales se analizaron mediante examen directo, método de concentración con formol-éter, coloración de Kinyoun y coloración Gram-cromotropo rápida. Se realizaron PCR separadas para diferenciar Entamoeba histolytica o Entamoeba dispar, cuando se observó el complejo E. histolytica/dispar al microscopio. Mediante historia clínica se obtuvo información del paciente. Resultados. De los 56 individuos participantes, 38 (67,86 % presentaron alguna especie parasitaria comensal o patógena en su muestra fecal. Predominaron los individuos portadores de especies parásitas patógenas (26/38. Fueron diagnosticados protozoos como Isospora belli (17,65 %, Blastocystis spp. (17,65 %, Cryptosporidium spp. (7,84 %, complejo Entamoeba histolytica/dispar (5,88 %, Entamoeba coli (3,92 %, Giardia lamblia (3,92 %, Endolimax nana (3,92 %, Cyclospora cayetanensis (3,92 % y Chilomastix mesnili (1,96 %. Entre los helmintos, Ascaris lumbricoides, Trichuris trichiura y Strongyloides stercoralis, presentaron un porcentaje de 27,27 % cada uno, e Hymenolepis nana, de 18,18 %. Solo se detectó E. histolytica en uno de los tres casos que presentaron el complejo al examen microscópico. Mediante Gram-cromotropo, 17 muestras evidenciaron esporas del filo Microsporidia, lo que equivale a un 33,33 % de prevalencia. Conclusión. Los microsporidios pueden ocupar el primer lugar de prevalencia en pacientes con VIH positivo, cuando se utilizan técnicas diagnósticas específicas.   doi: http://dx.doi.org/10.7705/biomedica.v33i4.1468

  18. Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel.

    Directory of Open Access Journals (Sweden)

    Peter M Letcher

    phylum is more diverse than previously understood and include some of the Aphelidea as well as Rozella species and potentially Microsporidia.

  19. DIFFERENCES BETWEEN BRACHIOLA (NOSEMA) ALGARAE ISOLATES OF HUMAN AND INSECT ORIGIN WHEN TESTED USING AN IN VITRO SPORE GERMINATION ASSAY AND A CULTURED CELL INFECTION ASSAY. (R828042)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Diseases of amphibian eggs and embryos

    Science.gov (United States)

    Green, D.E.; Converse, K.A.; Majumdar, S.K.; Huffman, J.E.; Brenner, F.J.; Panah, A.I.

    2005-01-01

    female oviduct, either due to infectious disease, nutritional status, hormonal imbalances, or sublethal intoxications, could affect the quality of secreted gelatinous capsules on eggs, thus rendering an egg mass susceptible to other stressors. Diseases of amphibian eggs and embryos presented in this chapter are Lucke frog herpesvirus Ranavirus (iridovirus) infection Bacteria Watermold infection (saprolegniasis) Algae Microsporidia

  1. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1 and 2 (ITS2 amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index and alpha diversity (Shannon diversity differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis

  2. Molecular appraisal of intestinal parasitic infection in transplant recipients

    Directory of Open Access Journals (Sweden)

    Pooja Yadav

    2016-01-01

    Full Text Available Background & objectives: Diarrhoea is the main clinical manifestation caused by intestinal parasitic infections in patients, with special reference to transplant recipients who require careful consideration to reduce morbidity and mortality. Further, molecular characterization of some important parasites is necessary to delineate the different modes of transmission to consider appropriate management strategies. We undertook this study to investigate the intestinal parasitic infections in transplant recipients with or without diarrhoea, and the genotypes of the isolated parasites were also determined. Methods: Stool samples from 38 transplant recipients comprising 29 post-renal, two liver and seven bone marrow transplant (BMT recipients presenting with diarrhoea and 50 transplant recipients (42 post-renal transplant, eight BMT without diarrhoea were examined for the presence of intestinal parasites by light microscopy using wet mount, modified Ziehl-Neelsen staining for intestinal coccidia and modified trichrome staining for microsporidia. Genotypes of Cryptosporidium species were determined by multilocus genotyping using small subunit ribosomal (SSUrRNA, Cryptosporidium oocyst wall protein (COWP and dihydrofolate reductase (DHFR as the target genes. Assemblage study for Giardia lamblia was performed using triose phosphate isomerase (TPI as the target gene. Samples were also screened for bacterial, fungal and viral pathogens. Results: The parasites that were detected included Cryptosporidium species (21%, 8/38, Cystoisospora (Isospora belli (8%, 3, Cyclospora cayetanensis (5%, 2, G. lamblia (11%, 4, Hymenolepis nana (11%, 4, Strongyloides stercoralis (3%, 1 and Blastocystis hominis (3%, 1. Multilocus genotyping of Cryptosporidium species at SSUrRNA, COWP and DHFR loci could detect four isolates of C. hominis; two of C. parvum, one of mixed genotype and one could not be genotyped. All the C. hominis isolates were detected in adult post

  3. A 3-YEAR FOLLOW-UP OF A BRAZILIAN AIDS PATIENT WITH PROTRACTED DIARRHEA CAUSED BY Enterocytozoon bieneusi

    Directory of Open Access Journals (Sweden)

    Patrícia BRASIL

    1998-07-01

    Full Text Available Enterocytozoon bieneusi is the most prevalent microsporidian parasite that causes gastrointestinal infection in persons with AIDS. Microsporidia are increasingly recognized as important opportunistic pathogens all over the world but in Brazil only few cases have been reported due either to the non awareness of the clinical presentation of the disease or to difficulties in the laboratory diagnosis. We report a 3-year follow-up of a Brazilian HIV-positive patient in whom microsporidial spores were detected in stools and were identified as E. bieneusi using electron microscopy and PCR. The patient presented with chronic diarrhea, CD4 T-lymphocytes count below 100/mm3 and microsporidial spores were consistently detected in stools. Albendazole was given to the patient in several occasions with transient relief of the diarrhea, which reappeared as soon as the drug was discontinued. Nevertheless, a diarrhea-free period with weight gain up to 18 Kg occurred when a combination of nucleoside and protease inhibitors was initiated as part of the antiviral treatment.Enterocytozoon bieneusi é o mais comum microsporídio agente de infecções gastrointestinais que ocorre predominantemente em pessoas com AIDS. Em todo o mundo os microsporídios são reconhecidos como importantes patógenos oportunistas, entretanto poucos casos já foram diagnosticados no Brasil, provavelmente devido ao pouco conhecimento do quadro clínico que os agentes produzem ou a dificuldades no diagnóstico laboratorial. No presente trabalho relatamos o caso de um paciente brasileiro HIV-positivo acompanhado durante 3 anos, em que foram detectados esporos de microsporídios nas fezes, identificados como Enterocytozoon bieneusi por microscopia eletrônica e PCR. O paciente apresentava diarréia crônica, contagem de linfócitos CD4 abaixo de 100/mm3 e fez uso de albendazol em diferentes ocasiões com melhora transitória da diarréia, que reaparecia logo que a droga era suspensa

  4. Prevalence of intestinal microsporidiosis in Human Immunodeficiency Virus-infected patients with diarrhea in major United States cities Prevalência de microsporidiose intestinal em pacientes infectados pelo HIV com diarréia nas principais cidades dos Estados Unidos da América do Norte

    Directory of Open Access Journals (Sweden)

    Mark S. Dworkin

    2007-12-01

    Full Text Available To determine the prevalence of intestinal microsporidiosis in HIV-infected patients, we performed a prospective study of HIV-infected patients with diarrheal illnesses in three US hospitals and examined an observational database of HIV-infected patients in 10 US cities. Among 737 specimens from the three hospitals, results were positive for 11 (prevalence 1.5%; seven (64% acquired HIV through male-to-male sexual contact, two (18% through male-to-male sexual contact and injection drug use, and one (9% through heterosexual contact; one (9% had an undetermined mode of transmission. Median CD4 count within six months of diagnosis of microsporidiosis was 33 cells/µL (range 3 to 319 cells/µL. For the national observational database (n = 24,098, the overall prevalence of microsporidiosis was 0.16%. Prevalence of microsporidiosis among HIV-infected patients with diarrheal disease is low, and microsporidiosis is most often diagnosed in patients with very low CD4+ cell counts. Testing for microsporidia appears to be indicated, especially for patients with very low CD4+ cell counts.Para determinar a prevalência de microsporidiose intestinal em pacientes infectados pelo HIV foi realizado um estudo prospectivo em três hospitais dos Estados Unidos da América do Norte (EUA e analizada uma base de dados nacional composta de dados coletados de pacientes infectados pelo HIV em 10 cidades dos EUA. De um total de 737 amostras de fezes de pacientes infectados pelo HIV que apresentavam diarréia, amostras de 11 pacientes (prevalência de 1,5% foram positivas para microsporídios. Todos os positivos eram do sexo masculino e, entre eles, sete (64% pacientes adquiriram a infecção pelo HIV através de relação homossexual, dois (18% através de relação sexual e drogas injetáveis e um (9% através de contato heterosexual, enquanto que em um paciente o modo de transmissão do HIV não foi determinado. A contagem média de linfócitos CD4 realizada até seis