WorldWideScience

Sample records for north pacific surface

  1. Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America

    Science.gov (United States)

    Park, Jae-Heung; An, Soon-Il; Kug, Jong-Seong

    2017-12-01

    In this study, the interannual variability of sea surface temperature (SST) and its atmospheric teleconnection over the western North Pacific (WNP) toward the North Pacific/North America during boreal winter are investigated. First, we defined the WNP mode as the first empirical orthogonal function (EOF) mode of SST anomalies over the WNP region (100-165°E, 0-35°N), of which the principle component time-series are significantly correlated with several well-known climate modes such as the warm pool mode which is the second EOF mode of the tropical to North Pacific SST anomalies, North Pacific oscillation (NPO), North Pacific gyre oscillation (NPGO), and central Pacific (CP)-El Niño at 95% confidence level, but not correlated with the eastern Pacific (EP)-El Niño. The warm phase of the WNP mode (sea surface warming) is initiated by anomalous southerly winds through reduction of wind speed with the background of northerly mean winds over the WNP during boreal winter, i.e., reduced evaporative cooling. Meanwhile, the atmospheric response to the SST warming pattern and its diabatic heating further enhance the southerly wind anomaly, referred to the wind-evaporation-SST (WES) feedback. Thus, the WNP mode is developed and maintained through winter until spring, when the northerly mean wind disappears. Furthermore, it is also known that anomalous upper-level divergence associated with WNP mode leads to the NPO-like structure over the North Pacific and the east-west pressure contrast pattern over the North America through Rossby wave propagation, impacting the climate over the North Pacific and North America.

  2. Insight into the Pacific Sea Surface Temperature- North American Hydroclimate Connection from an Eastern Tropical North Pacific Coral Record

    Science.gov (United States)

    Sanchez, S. C.; Charles, C. D.; Carriquiry, J. D.

    2015-12-01

    The last few years of record-breaking climate anomalies across North America--a resilient atmospheric ridge and extreme drought over the West Coast, and severe winters across the Midwest and East Coast regions--have been linked to anomalous Pacific sea surface temperatures (Seager et al. 2014, Wang et al. 2014, Hartmann 2015). The synoptic associations prompt important questions on the relation between these unusual phenomena and extreme expressions of known Pacific decadal modes, such as the North Pacific Gyre Oscillation (NPGO). These questions motivate our pursuit to document multiple realizations of decadal variability in the Pacific-North American region through periods of varied radiative forcing. Here we introduce a 178 year, seasonally resolved Porites coral record from Clarion Island (18N, 115W), the westernmost island of the Revillagigedo Archipelago, a region both highly influenced by NPGO SST and SSS variability and critical for NPGO tropical-extratropical communication via the Seasonal Footprinting Mechanism (Vimont et al. 2003). When coupled with tree ring records from the western United States (Griffin and Anchukaitis 2014, MacDonald and Case 2005) and coral records from the central tropical Pacific (Cobb et al. 2001), the δ18O signal from the Clarion coral offers an extended framework of coherent continental hydroclimate and oceanic variability across the Pacific basin beyond the instrumental record. Over the last 200 years, we find clear commonality in the timing, magnitude and spatial expression of variability (illustrated through the NADA Atlas, Cook et al. 2004) amongst the proxy records. The strong relationship between Northeastern Pacific Clarion and the Central Pacific Palmyra record with the North American hydroclimate records can be viewed within the mechanistic framework of the NPGO; this framework is then explored over the last millennium across intervals of varied radiative forcing.

  3. Quantifying dust input to the Subarctic North Pacific - Results from surface sediments and sea water thorium isotope measurements

    Science.gov (United States)

    Winckler, G.; Serno, S.; Hayes, C.; Anderson, R. F.; Gersonde, R.; Haug, G. H.

    2012-12-01

    The Subarctic North Pacific is one of the three primary high-nutrient-low chlorophyll regions of the modern ocean, where the biological pump is relatively inefficient at transferring carbon from the atmosphere to the deep sea. The system is thought to be iron-limited. Aeolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high-nutrient-low chlorophyll status of the Subarctic North Pacific. However, constraining the size of the dust flux to the surface ocean remains difficult. Here we apply two different approaches, based on surface sediment and water column samples, respectively, obtained during the SO202/INOPEX research cruise to the Subarctic North Pacific in 2009. We map the spatial patterns of Th/U isotopes, helium isotopes and rare earth elements across surface sediments from 37 multi-core core-top sediments across the Subarctic North Pacific. In order to deconvolve the detrital endmembers in regions of the North Pacific affected by volcanic material, IRD and hemipelagic input, we use a combination of trace elements with distinct characteristics in the different endmembers. This approach allows us to calculate the relative aeolian fraction, and in combination with Thorium230-normalized mass flux data, to quantify the dust supply. Secondly, we present an innovative approach to use paired Thorium-232 and Thorium-230 concentrations of upper-ocean seawater at 7 stations along the INOPEX track. Thorium-232 in the upper water column is dominantly derived from dissolution of aeolian dust, whereas Thorium-230 data provide a measure of the thorium removal from the surface waters and, thus, allow us to derive Thorium-232 fluxes. Combined with a mean Thorium-232 concentration in dust and estimate of the thorium solubility, the Thorium-232 flux can be translated in a dust flux to the surface ocean. Dust flux estimates for the Subarctic North Pacific will be

  4. Impact of the Winter North Pacific Oscillation on the Surface Air Temperature over Eurasia and North America: Sensitivity to the Index Definition

    Science.gov (United States)

    Chen, Shangfeng; Song, Linye

    2018-06-01

    This study analyzes the impact of the winter North Pacific Oscillation (NPO) on the surface air temperature (SAT) variations over Eurasia and North America based on six different NPO indices. Results show that the influences of the winter NPO on the SAT over Eurasia and North America are sensitive to the definition of the NPO index. The impact of the winter NPO on the SAT variations over Eurasia (North America) is significant (insignificant) when the anticyclonic anomaly associated with the NPO index over the North Pacific midlatitudes shifts westward and pronounced northerly wind anomalies appear around Lake Baikal. By contrast, the impact of the winter NPO on the SAT variations over Eurasia (North America) is insignificant (significant) when the anticyclonic anomaly over the North Pacific related to the NPO index shifts eastward and the associated northerly wind anomalies to its eastern flank extend to North America. The present study suggests that the NPO definition should be taken into account when analyzing the impact of the winter NPO on Eurasian and North American SAT variations.

  5. CO2 and circulation in the deglacial North Pacific

    Science.gov (United States)

    Taylor, B.; Rae, J. W. B.; Gray, W. R.; Rees-Owen, R. L.; Burke, A.

    2017-12-01

    The North Pacific is the largest carbon reservoir in the global ocean, but has not typically been thought to play an active role in deglacial CO2 rise based on its modern stratified state. Recent studies (Okazaki et al., 2010; Rae et al., 2014; Max et al., 2017), however, have suggested that a more dynamic circulation regime operated in the glacial and deglacial North Pacific and, as such, the role of the North Pacific in deglacial CO2 rise may have been underestimated. We present two new high-resolution boron isotope records of surface water pCO2 from the North West and North East Pacific spanning the last 22 kyrs. The two records show remarkable coherence over key intervals during the last deglaciation and highlight major changes over a number of abrupt climate events. At both sites, following the LGM, pCO2(sw) rises, coincident with a younging of North Pacific intermediate and deep waters. This suggests that increased local overturning mixed CO2-rich deep waters throughout the water column, likely contributing to CO2 outgassing during Heinrich Stadial 1 (HS1). Both records exhibit decreases in pCO2(sw) during the latter stages of HS1, which are immediately followed by a rapid increase in pCO2(sw) at the onset of the Bølling-Allerød (B/A). Radiocarbon and δ13C data indicate a collapse in North Pacific Intermediate Water formation at the onset of the B/A, which, combined with enhanced wind stress curl, would have allowed CO2-rich waters to mix into the surface ocean from intermediate-depths. The combination of high nutrient availability and a seasonally well-stratified mixed layer likely led to the abrupt increase in export productivity across the region; the excess surface water CO2 shows that alleviation of iron or light limitation could not have been its primary cause. Our new records highlight the importance of overturning circulation in the North Pacific in controlling productivity and CO2 release on glacial/interglacial timescales.

  6. The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Otteraa, Odd Helge [Uni Bjerknes Centre, Uni Research, Bergen (Norway); Bjerknes Center for Climate Research, Bergen (Norway); Gao, Yongqi [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Bjerknes Center for Climate Research, Bergen (Norway); Nansen Environmental and Remote Sensing Center, Bergen (Norway); Wang, Huijun [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Chinese Academy of Sciences, Climate Change Research Center, Institute of Atmospheric Physics, Beijing (China)

    2012-12-15

    In this study, the effects of volcanic forcing on North Pacific climate variability, on interannual to decadal time scales, are examined using climate model simulations covering the last 600 years. The model used is the Bergen Climate Model, a fully coupled atmosphere-ocean general circulation model. It is found that natural external forcings, such as tropical strong volcanic eruptions (SVEs) and variations in total solar irradiance, play an important role in regulating North Pacific Decadal Variability (NPDV). In response to tropical SVEs the lower stratospheric pole-to-equator temperature gradient is enhanced. The North polar vortex is strengthened, which forces a significant positive Arctic Oscillation. At the same time, dipole zonal wind anomalies associated with strong polar vortex propagate downward from the lower stratosphere. Through positive feedbacks in the troposphere, the surface westerly winds across the central North Pacific are significantly weakened, and positive sea level pressure anomalies are formed in the North Pacific. This anomalous surface circulation results in changes in the net heat fluxes and the oceanic advection across the North Pacific. As a result of this, warm water converges in the subtropical western North Pacific, where the surface waters in addition are heated by significantly reduced latent and sensible heat fluxes from the ocean. In the eastern and high-latitude North Pacific the ocean loses more heat, and large-scale decreases in sea surface temperatures are found. The overall response of this chain of events is that the North Pacific enters a negative phase of the Pacific decadal oscillation (PDO), and this negative phase of the PDO is maintained for several years. It is thus concluded that the volcanic forcing plays a key role in the phasing of the PDO. The model results furthermore highlight the important role of troposphere-stratosphere coupling, tropical-extratropical teleconnections and extratropical ocean

  7. Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols.

    Science.gov (United States)

    Gallon, Céline; Ranville, Mara A; Conaway, Christopher H; Landing, William M; Buck, Clifton S; Morton, Peter L; Flegal, A Russell

    2011-12-01

    Recent trends of atmospheric lead deposition to the North Pacific were investigated with analyses of lead in aerosols and surface waters collected on the fourth Intergovernmental Oceanographic Commission Contaminant Baseline Survey from May to June, 2002. Lead concentrations of the aerosols varied by 2 orders of magnitude (0.1-26.4 pmol/m(3)) due in part to variations in dust deposition during the cruise. The ranges in lead aerosol enrichment factors relative to iron (1-119) and aluminum (3-168) were similar, evidencing the transport of Asian industrial lead aerosols across the North Pacific. The oceanic deposition of some of those aerosols was substantiated by the gradient of lead concentrations of North Pacific waters, which varied 3-fold (32.7-103.5 pmol/kg), were highest along with the Asian margin of the basin, and decreased eastward. The hypothesized predominance of Asian industrial lead inputs to the North Pacific was further corroborated by the lead isotopic composition of ocean surface waters ((206)Pb/(207)Pb = 1.157-1.169; (208)Pb/(206)Pb = 2.093-2.118), which fell within the range of isotopic ratios reported in Asian aerosols that are primarily attributed to Chinese industrial lead emissions.

  8. Overview of surface ozone variability in East Asia-North Pacific region during IGAC/APARE (1994--1996).

    Science.gov (United States)

    Lam, K S; Wang, T J; Wang, T; Tang, J; Kajii, Y; Liu, C M; Shim, S G

    2004-01-01

    Surface ozone (O3) was measured at Oki Island (Japan), Cheju Island (South Korea), Lanyu Island (Taiwan Province, China), Cape D'Aguilar (Hong Kong SAR) and Lin'an, Longfenshan, Waliguan (China mainland) during January 1994--December 1996 as a component of IGAC/APARE (International Global Atmospheric Chemistry/East Asia-North Pacific Regional Experiment). This paper gave a joint discussion on the observational results at these stations over the study region. Investigations showed that the average of surface O3 mixing ratios at the seven sites are 47.9+/-15.8, 48.1+/-17.9, 30.2+/-16.4, 31.6+/-17.5, 36.3+/-17.5, 34.8+/-11.5 and 48.2+/-9.5 ppbv, respectively. Significant diurnal variations of surface O3 have been observed at Oki, Cheju, D'Aguilar, Lin'an and Longfenshan. Their annual averaged diurnal differences range from 8 to 23 ppbv and differ in each season. Surface O3 at Lanyu and Waliguan do not show strong diurnal variability. Seasonal cycles of surface O3 showed difference at the temperate and the subtropical remote sites. Oki has a summer minimum-spring maximum, while Lanyu has a summer minimum-autumn maximum. The suburban sites at D'Aguilar and Lin'an report high-level O3 in autumn and low level O3 in summer. Surface O3 remains-high in autumn and low in winter at the rural site Longfenshan. For the global background station Waliguan, surface O3 exhibits a broad spring-summer maximum and autumn-winter minimum. The backward air trajectories to these sites have shown different pathways of long-range transport of air pollution from East Asia Continent to North Pacific Ocean. Surface O3 was found to be strongly and positively correlated with CO at Oki and Lanyu, especially in spring and autumn, reflecting the substantial photochemical buildup of O3 on a regional scale. It is believed that the regional sources of pollution in East Asia have enhanced the average surface O3 concentrations in the background atmosphere of North Pacific.

  9. Marine proxy evidence linking decadal North Pacific and Atlantic climate

    Energy Technology Data Exchange (ETDEWEB)

    Hetzinger, S. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); Halfar, J. [University of Toronto Mississauga, CPS-Department, Mississauga, ON (Canada); Mecking, J.V.; Keenlyside, N.S. [Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel (Germany); University of Bergen, Geophysical Institute and Bjerknes Centre for Climate Research, Bergen (Norway); Kronz, A. [University of Goettingen, Geowissenschaftliches Zentrum, Goettingen (Germany); Steneck, R.S. [University of Maine, Darling Marine Center, Walpole, ME (United States); Adey, W.H. [Smithsonian Institution, Department of Botany, Washington, DC (United States); Lebednik, P.A. [ARCADIS U.S. Inc., Walnut Creek, CA (United States)

    2012-09-15

    Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818-1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data. (orig.)

  10. Pacific-North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models

    Science.gov (United States)

    Chen, Zheng; Gan, Bolan; Wu, Lixin; Jia, Fan

    2017-09-01

    Based on reanalysis datasets and as many as 35 CMIP5 models, this study evaluates the capability of climate models to simulate the spatiotemporal features of Pacific-North American teleconnection (PNA) and North Pacific Oscillation (NPO) in the twentieth century wintertime, and further investigates their responses to greenhouse warming in the twenty-first century. Analysis reveals that while the majority (80%) of models reasonably simulate either the geographical distribution or the amplitude of PNA/NPO pattern, only half of models can well capture both features in space. As for the temporal features, variabilities of PNA and NPO in most models are biased toward higher amplitude. Additionally, most models simulate the interannual variabilities of PNA and NPO, qualitatively consistent with the observation, whereas models generally lack the capability to reproduce the decadal (20-25 years) variability of PNA. As the climate warms under the strongest future warming scenario, the PNA intensity is found to be strengthened, whereas there is no consensus on the direction of change in the NPO intensity among models. The intensification of positive PNA is primarily manifested in the large deepening of the North Pacific trough, which is robust as it is 2.3 times the unforced internal variability. By focusing on the tropical Pacific Ocean, we find that the multidecadal evolution of the North Pacific trough intensity (dominating the PNA intensity evolution) is closely related to that of the analogous trough in the PNA-like teleconnection forced by sea surface temperature anomalies (SSTa) in the tropical central Pacific (CP) rather than the tropical eastern Pacific (EP). Such association is also found to act under greenhouse warming: that is, the strengthening of the PNA-like teleconnection induced by the CP SSTa rather than the EP SSTa is a driving force for the intensification of PNA. This is in part owing to the robust enhancement of the tropical precipitation response to

  11. Pacific-North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models

    Science.gov (United States)

    Chen, Zheng; Gan, Bolan; Wu, Lixin; Jia, Fan

    2018-06-01

    Based on reanalysis datasets and as many as 35 CMIP5 models, this study evaluates the capability of climate models to simulate the spatiotemporal features of Pacific-North American teleconnection (PNA) and North Pacific Oscillation (NPO) in the twentieth century wintertime, and further investigates their responses to greenhouse warming in the twenty-first century. Analysis reveals that while the majority (80%) of models reasonably simulate either the geographical distribution or the amplitude of PNA/NPO pattern, only half of models can well capture both features in space. As for the temporal features, variabilities of PNA and NPO in most models are biased toward higher amplitude. Additionally, most models simulate the interannual variabilities of PNA and NPO, qualitatively consistent with the observation, whereas models generally lack the capability to reproduce the decadal (20-25 years) variability of PNA. As the climate warms under the strongest future warming scenario, the PNA intensity is found to be strengthened, whereas there is no consensus on the direction of change in the NPO intensity among models. The intensification of positive PNA is primarily manifested in the large deepening of the North Pacific trough, which is robust as it is 2.3 times the unforced internal variability. By focusing on the tropical Pacific Ocean, we find that the multidecadal evolution of the North Pacific trough intensity (dominating the PNA intensity evolution) is closely related to that of the analogous trough in the PNA-like teleconnection forced by sea surface temperature anomalies (SSTa) in the tropical central Pacific (CP) rather than the tropical eastern Pacific (EP). Such association is also found to act under greenhouse warming: that is, the strengthening of the PNA-like teleconnection induced by the CP SSTa rather than the EP SSTa is a driving force for the intensification of PNA. This is in part owing to the robust enhancement of the tropical precipitation response to

  12. Decadal Variability of Total Alkalinity in the North Pacific Ocean

    Science.gov (United States)

    Cross, J. N.; Carter, B. R.; Siedlecki, S. A.; Alin, S. R.; Dickson, A. G.; Feely, R. A.; Mathis, J. T.; Wanninkhof, R. H.; Macdonald, A. M.; Mecking, S.; Talley, L. D.

    2016-02-01

    Recent observations of acidification-driven shoaling of the calcium carbonate saturation horizon in the North Pacific have prompted new interest in carbonate cycling in this region, particularly related to impacts on biogenic calcification at the surface layer. Some estimates project that the impacts of OA on alkalinity cycling are beginning to emerge. Here, we present total alkalinity concentrations along a meridional transect of the North Pacific (WOCE, CLIVAR, and US GO-SHIP line P16N; 152 °W) over a period of three decades. The largest source of variability in alkalinity concentrations is related to North Pacific circulation, particularly in the surface mixed layer. Precise normalization of these data reveal some small spatial and temporal variability in the background. We explore these decadal trends in the context of decadal oscillations, ocean biogeochemical cycles, and global change processes such as ocean acidification.

  13. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    Science.gov (United States)

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  14. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean

    Science.gov (United States)

    Nakane, Motohiro; Ajioka, Taku; Yamashita, Youhei

    2017-05-01

    Pyrogenic carbon, also called black carbon (BC), is an important component in the global carbon cycle. BC produced by biomass burning or fossil fuel combustion is transported to oceans by the atmosphere or rivers. However, environmental dynamics (i.e., major sources and sinks) of BC in marine environments have not been well documented. In this study, dissolved BC (DBC) collected from surface waters of the Chukchi Sea, the Bering Sea, and the subarctic and subtropical North Pacific were analyzed using the benzene polycarboxylic acid (BPCA) method. The DBC concentration and the ratio of B5CA and B6CA to all BPCAs (an index of the DBC condensation degree) ranged from 4.8 to 15.5 µg-C L-1 and from 0.20 to 0.43, respectively, in surface waters of the Chukchi/Bering Seas and the North Pacific Ocean. The concentration and condensation degree of DBC in the Chukchi/Bering Seas were higher and more variable than those in the subarctic and subtropical North Pacific, which implies that the major factors controlling DBC distribution were different in these marine provinces. In the Chukchi/Bering Seas, the DBC concentration was negatively correlated to salinity but positively correlated to chromophoric dissolved organic matter (CDOM) quantity and total dissolved lignin phenol concentration estimated by CDOM parameters. These correlations indicated that the possible major source of DBC in the Chukchi/Bering Seas was Arctic rivers. However, in the North Pacific, where riverine inputs are negligible for most sampling sites, DBC was possibly derived from the atmosphere. Although spectral slopes of CDOM at 275-295 nm (an index of the photodegradation degree of CDOM) differed widely between the subarctic and subtropical North Pacific, the concentration and condensation degrees of DBC were similar between the subarctic and subtropical North Pacific, which suggests that photodegradation was not the only major factor controlling DBC distribution. Therefore, DBC distributions of the

  15. Denali Ice Core Record of North Pacific Sea Surface Temperatures and Marine Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Kreutz, K. J.; Winski, D.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2016-12-01

    Chemical analyses of precipitation preserved in glacial ice cores provide a unique opportunity to study changes in atmospheric circulation patterns and ocean surface conditions through time. In this study, we aim to investigate changes in both the physical and biological parameters of the north-central Pacific Ocean and Bering Sea over the twentieth century using the deuterium excess (d-excess) and methanesulfonic acid (MSA) records from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 m-long ice cores were drilled to bedrock during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 3,900 m above sea level) by a collaborative research team consisting of members from Dartmouth College and the Universities of Maine and New Hampshire. The cores were sampled on a continuous melter system at Dartmouth College and analyzed for the concentrations major ions (Dionex IC) and trace metals (Element2 ICPMS), and for stable water isotope ratios (Picarro). The depth-age scale has been accurately dated to 400 AD using annual layer counting of several chemical species and further validated using known historical volcanic eruptions and the Cesium-137 spike associated with nuclear weapons testing in 1963. We use HYSPLIT back trajectory modeling to identify likely source areas of moisture and aerosol MSA being transported to the core site. Satellite imagery allows for a direct comparison between chlorophyll a concentrations in these source areas and MSA concentrations in the core record. Preliminary analysis of chlorophyll a and MSA concentrations, both derived almost exclusively from marine biota, suggest that the Mt. Hunter ice cores reflect changes in North Pacific and Bering Sea marine primary productivity. Analysis of the water isotope and MSA data in conjunction with climate reanalysis products shows significant correlations (psea surface temperatures in the Bering Sea and North Central Pacific. These findings, coupled with

  16. Carbon dioxide, temperature, salinity, and atmospheric pressure from surface underway survey in the North Pacific from January 1998 to January 2004 (NODC Accession 0045502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface pCO2, sea surface temperature, sea surface salinity, and atmospheric pressure measurements collected in the North Pacific as part of the NOAA Office of...

  17. CCSM3 simulation of pacific multi-decadal climate variability: the role of subpolar North Pacific Ocean

    International Nuclear Information System (INIS)

    Zhong, Y; Liu, Z

    2008-01-01

    Previous analyses of the CCSM3 standard integration have revealed pronounced multidecadal variability in the Pacific climate system. The purpose of the present work is to investigate the physical mechanism underlying the Pacific multidecadal variability (PMV) using specifically designed sensitivity experiments. A novel mechanism is advanced, characterized by a crucial role of the subpolar North Pacific Ocean. The multidecadal signal in ocean temperature and salinity fields is found to originate from the subsurface of the subpolar North Pacific, as result of the wave adjustment to the preceding basin-scale wind curl forcing. The multidecadal signal then ascends to the surface and is amplified through local temperature/salinity convective feedback. Along the southward Oyashio current, the anomaly travels to the Kuroshio Extension (KOE) region and is further intensified through a similar convective feedback in addition to the wind-evaporation-sea surface temperature feedback. The temperature anomaly in the KOE is able to feed back to the large-scale atmospheric circulation, inducing wind curl anomaly over the subpolar region, which in turn generates anomalous oceanic circulation and causes temperature/salinty variability in the subpolar subsurface. Thereby, a closed loop of PMV is established, in the form of a subpolar delayed oscillator

  18. Analysis of longitudinal variations in North Pacific alkalinity

    Science.gov (United States)

    Fry, C.; Tyrrell, T.; Achterberg, E. P.

    2016-02-01

    Carbon measurements in the ocean lack the coverage of physical measurements, so approximate alkalinity is predicted where data is unavailable. Surface alkalinity in the North Pacific is poorly characterised by predictive algorithms. Understanding the processes affecting alkalinity in this area can improve the equations. We investigated the causes of regional variations in alkalinity using GLODAPv2. We tested different hypotheses for the causes of three longitudinal phenomena in surface ocean values of Alk*, a tracer of calcium carbonate cycling. These phenomena are: (a) an increase in Alk* from east to west at 50°N, (b) an increase in Alk* from west to east at 30°N, and (c) a lack of a strong increase in Alk* from west to east in the equatorial upwelling area. We found that the most likely cause of higher Alk* on the western side of the subpolar North Pacific (at 50°N) is that denser isopycnals with higher Alk* lie at shallower depths on the western side than the eastern side. At 30°N, the main cause of higher Alk* on the eastern side of the basin is upwelling along the continental shelf of southwestern North America. Along the equator, our analyses suggest that the absence of a strong east-west trend is because the more intense upwelling on the eastern side of the basin does not, under normal conditions, lead to strong elevation of Alk*. However, surface Alk* is more strongly elevated in the eastern Equatorial Pacific during negative phases of the El-Nino-Southern Oscillation, probably because the upwelled water comes from greater depth at these times.

  19. Estimate of radiocaesium derived FNPP1 accident in the North Pacific Ocean

    Science.gov (United States)

    Inomata, Yayoi; Aoyama, Michio; Tsubono, Takaki; Tsumune, Daisuke; Yamada, Masatoshi

    2017-04-01

    134Cs and 137Cs (radiocaesium) were released to the North Pacific Ocean by direct discharge and atmospheric deposition released from the TEPCO Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident in 2011. After the FNPP1 accident, measurements of 134Cs and 137Cs were conducted by many researches. However, those results are only snapshots in order to interpret the distribution and transport of the released radiocaesium on a basin scale. It is recognized that estimation of the total amount of released 134Cs and 137Cs is necessary to assess the radioecological impacts of their release on the environment. It was reported that the inventory of 134Cs or 137Cs on the North Pacific Ocean after the FNPP1 accident was 15.2-18.3 PBq based on the observations (Aoyama et al., 2016a), 15.3±1.6 PBq by OI analysis (Inomata et al., 2016), 16.1±1.64 PBq by global ocean model (Tsubono et al., 2016). These suggest that more than 75 % of the atmospheric-released radiocaesium (15.2-20.4 PBq; Aoyama et al., 2016a) were deposited on the North Pacific Ocean. The radiocaesium from the atmospheric fallout and direct discharge were expected to mixing as well as diluting near the coastal region and transported eastward across the North Pacific Ocean in the surface layer. Furthermore, radicaesium were rapidly mixed and penetrated into the subsurface water in the North Pacific Ocean in winter. It was revealed that these radiocaesium existed in the Subtropical Mode Water (STMW, Aoyama et al., 2016b; Kaeriyama et al., 2016) and Central Mode Water (CMW, Aoyama et al., 2016b), suggesting that mode water formation and subduction are efficient pathway for the transport of FNPP1 derived radiocaesium into the ocean interior within 1-year timescale. Kaeriyama et al. (2016) estimated the total amount of FNPP1 derived radiocaesium in the STMW was 4.2 ± 1.1 PBq in October-November 2012. However, there is no estimation of the amount of radiocaesium in the CMW. Therefore, it is impossible to discuss

  20. Atmospheric teleconnection influence on North American land surface phenology

    Science.gov (United States)

    Dannenberg, Matthew P.; Wise, Erika K.; Janko, Mark; Hwang, Taehee; Kolby Smith, W.

    2018-03-01

    Short-term forecasts of vegetation activity are currently not well constrained due largely to our lack of understanding of coupled climate-vegetation dynamics mediated by complex interactions between atmospheric teleconnection patterns. Using ecoregion-scale estimates of North American vegetation activity inferred from remote sensing (1982-2015), we examined seasonal and spatial relationships between land surface phenology and the atmospheric components of five teleconnection patterns over the tropical Pacific, north Pacific, and north Atlantic. Using a set of regression experiments, we also tested for interactions among these teleconnection patterns and assessed predictability of vegetation activity solely based on knowledge of atmospheric teleconnection indices. Autumn-to-winter composites of the Southern Oscillation Index (SOI) were strongly correlated with start of growing season timing, especially in the Pacific Northwest. The two leading modes of north Pacific variability (the Pacific-North American, PNA, and West Pacific patterns) were significantly correlated with start of growing season timing across much of southern Canada and the upper Great Lakes. Regression models based on these Pacific teleconnections were skillful predictors of spring phenology across an east-west swath of temperate and boreal North America, between 40°N-60°N. While the North Atlantic Oscillation (NAO) was not strongly correlated with start of growing season timing on its own, we found compelling evidence of widespread NAO-SOI and NAO-PNA interaction effects. These results suggest that knowledge of atmospheric conditions over the Pacific and Atlantic Oceans increases the predictability of North American spring phenology. A more robust consideration of the complexity of the atmospheric circulation system, including interactions across multiple ocean basins, is an important step towards accurate forecasts of vegetation activity.

  1. Observation-based estimate of the Fukushima radionuclide in the North Pacific

    Science.gov (United States)

    Yoshida, Sachiko; Jayne, Steven; Macdonald, Alison; Buesseler, Ken; Rypina, Irina

    2014-05-01

    Contaminated waters from Fukushima nuclear power plant (FNPP) were discharged directly into the North Pacific Ocean in March 2011. Coastal current system in this region and time scale of the water exchange with the open ocean is not well understood, however both observational evidence and numerical model simulation results indicate relatively rapid advection of contaminants eastward into the highly energetic mixed water region in the confluence of the Kuroshio and Oyashio. Surface drifters deployed near the FNPP in early summer 2011 show trajectories crossing the North Pacific generally following the large scale ocean circulation after one year. Previously obtained cesium (Cs) samples from multiple cruises near FNPP and off shore region between 2011 and 2013 are collected and evaluated to diagnose the propagating Cs signal crossing North Pacific Ocean. In this presentation, we use radionuclides of Fukushima origin as a tracer to understand the North Pacific circulation and mixing process after two years of release. Large numbers of the observation are repeatedly took place near shore where Cs shows still relatively higher about 10-30 Bq/m3 in 2013. Temperature-salinity (T-S) properties for the available hydrographic data indicate that the majority of the samples were obtained in the region where the water is highly influenced by the warm-salty Kuroshio origin water. Depth profiles of 35N section in March-May 2013 cruise of the U.S. Climate Variability and Predictability and Carbon (CLIVAR) repeat Hydrography sections are examined to track the radionuclide penetration into the subsurface ocean and the subduction pathways along isopycnal surfaces. Available large drifter datasets that accumulated over decades of field work can guide us in estimating the spread of these radionuclides. By applying an innovative statistical analysis to the drifter data, we investigate the spreading of radionuclides in the Pacific Ocean over 5-year time scales.

  2. Tritium and radiocarbon in the western North Pacific waters: post-Fukushima situation.

    Science.gov (United States)

    Kaizer, Jakub; Aoyama, Michio; Kumamoto, Yuichiro; Molnár, Mihály; Palcsu, László; Povinec, Pavel P

    2018-04-01

    Impact of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident on tritium ( 3 H) and radiocarbon ( 14 C) levels in the water column of the western North Pacific Ocean in winter 2012 is evaluated and compared with radiocesium ( 134,137 Cs) data collected for the same region. Tritium concentrations in surface seawater, varying between 0.4 and 2.0 TU (47.2-236 Bq m -3 ), follow the Fukushima radiocesium trend, however, some differences in the vertical profiles were observed, namely in depths of 50-400 m. No correlation was visible in the case of 14 C, whose surface Δ 14 C levels raised from negative values (about -40‰) in the northern part of transect, to positive values (∼68‰) near the equator. Homogenously mixed 14 C levels in the subsurface layers were observed at all stations. Sixteen surface (from 30 in total) and 6 water profile (from 7) stations were affected by the Fukushima tritium. Surface and vertical profile data together with the calculated water column inventories indicate that the total amount of the FNPP1-derived tritium deposited to the western North Pacific Ocean was 0.7 ± 0.3 PBq. No clear impact of the Fukushima accident on 14 C levels in the western North Pacific was observed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2017-09-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  4. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2018-06-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  5. Deglacial Millennial-scale Calcium Carbonate Spikes in the North Pacific Ocean

    Science.gov (United States)

    Chikamoto, M. O.; Timmermann, A.; Harada, N.; Okazaki, Y.

    2015-12-01

    Numerous paleoproxy records from the subarctic Pacific Ocean show two very pronounced deglacial peaks in calcium carbonate content for the Heinrich 1/ Bolling-Allerod (H1-BA) transition (at 14 ka) and for the Younger Dryas/Preboreal transition (at 11 ka). Focusing on the H1-BA transition, some model simulations capture the North Pacific shift from ventilated to stratified conditions and from cooling to warming conditions via oceanic and atmospheric connections between Atlantic and Pacific Oceans. To test the impact of these physical scenarios (variations in ocean stratification and temperature during the H1-BA transition) on calcite production or preservation, we conduct a series of idealized experiments using the Earth System Model Intermediate Complexity LOVECLIM. The variations in North Pacific Ocean stratification by anomalous freshwater forcing show low calcite productivity in associated with the subsurface nutrient decline. On the other hand, the rapid H1-BA warming of the North Pacific Ocean induced by anomalous heat forcing in turn increases calcite productivity due to the temperature-dependent growth rate of phytoplankton. These results suggest the possibility that the millennial-scale calcium carbonate peaks are the result of surface biogeochemical responses to the climate transition, not by the deep circulation response.

  6. The isotopic signature of fallout plutonium in the North Pacific

    International Nuclear Information System (INIS)

    Buesseler, K.O.

    1997-01-01

    Plutonium analyses of a dated coral record from the French Frigate Shoals in the central North Pacific indicate that there are two major sources of Pu in this basin: close-in (tropospheric) fallout from nuclear weapons testing at the Pacific Proving Grounds in the Marshall Islands in the 1950s and global (stratospheric) fallout which peaked in 1962. Furthermore, the 240 Pu/ 239 Pu atom ratio of fallout from the Pacific Proving Grounds is characteristically higher (0.24) than that of global fallout Pu (0.18-0.19). Seawater and sediment samples from the North Pacific exhibit a wide range of 240 Pu/ 239 Pu values (0.19-0.34), with a trend towards higher ratios in the subsurface waters and sediment. Deep water 240 Pu/ 239 Pu ratios are higher in the vicinity of the Marshall Islands relative to stations further from this close-in fallout source. These preliminary data suggest that fallout Pu from the Pacific Proving Grounds is more rapidly removed from the surface waters than is global fallout Pu. Plutonium geochemistry appears to be related to the physical/chemical form of Pu-bearing particles generated by different fallout sources. (author)

  7. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean

    Science.gov (United States)

    Gray, William R.; Rae, James W. B.; Wills, Robert C. J.; Shevenell, Amelia E.; Taylor, Ben; Burke, Andrea; Foster, Gavin L.; Lear, Caroline H.

    2018-05-01

    The interplay between ocean circulation and biological productivity affects atmospheric CO2 levels and marine oxygen concentrations. During the warming of the last deglaciation, the North Pacific experienced a peak in productivity and widespread hypoxia, with changes in circulation, iron supply and light limitation all proposed as potential drivers. Here we use the boron-isotope composition of planktic foraminifera from a sediment core in the western North Pacific to reconstruct pH and dissolved CO2 concentrations from 24,000 to 8,000 years ago. We find that the productivity peak during the Bølling-Allerød warm interval, 14,700 to 12,900 years ago, was associated with a decrease in near-surface pH and an increase in pCO2, and must therefore have been driven by increased supply of nutrient- and CO2-rich waters. In a climate model ensemble (PMIP3), the presence of large ice sheets over North America results in high rates of wind-driven upwelling within the subpolar North Pacific. We suggest that this process, combined with collapse of North Pacific Intermediate Water formation at the onset of the Bølling-Allerød, led to high rates of upwelling of water rich in nutrients and CO2, and supported the peak in productivity. The respiration of this organic matter, along with poor ventilation, probably caused the regional hypoxia. We suggest that CO2 outgassing from the North Pacific helped to maintain high atmospheric CO2 concentrations during the Bølling-Allerød and contributed to the deglacial CO2 rise.

  8. Anthropogenic {sup 129}I in the North Pacific, Bering and Chukchi Seas, and Arctic Ocean in 2012–2013

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H., E-mail: hnagai@chs.nihon-u.ac.jp [Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Hasegawa, A. [Graduate School of Integrated Basic Sciences, Nihon University, Tokyo 156-8550 (Japan); Yamagata, T. [Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Kumamoto, Y.; Nishino, S. [Japan Agency for Marine-Earth Science and Technology, Kanagawa 237-0061 (Japan); Matsuzaki, H. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo 113-0032 (Japan)

    2015-10-15

    Most of anthropogenic {sup 129}I in marine environment are due to discharge from the nuclear fuel reprocessing facilities at Sellafield (U.K.) and La Hague (France) for past few decades. The discharge raised {sup 129}I concentration in seawaters in the North Atlantic and Arctic Oceans to more than 10{sup 9} atoms L{sup −1}, which is two orders of magnitude higher than that in other region. Recently, in March 2011, a large quantity of {sup 129}I was released into the western North Pacific due to the Fukushima Daiichi Nuclear Power Plant (F1NPP) accident. To evaluate the influence of these events, we have measured {sup 129}I concentration in seawaters in the northern North Pacific Ocean, Bering and Chukchi Seas, and Arctic Ocean in 2012–2013. The {sup 129}I concentrations were 1.0–1.8 × 10{sup 7} atoms L{sup −1} in the surface waters in the vicinity of 47°N 150°E–130°W North Pacific Ocean, Bering Sea, and Chukchi Sea (<74°N), which are equal to or lower than the {sup 129}I concentration level in surface water in the North Pacific Ocean before the F1NPP accident. The vertical profiles in the North Pacific were almost same as that observed in the western North Pacific before the F1NPP accident. The {sup 129}I distribution in seawater in the North Pacific to the Chukchi Sea revealed no significant increase of {sup 129}I concentration caused by the F1NPP accident. The {sup 129}I concentrations were 13–14 × 10{sup 7} atoms L{sup −1} in surface waters and 80 × 10{sup 7} atoms L{sup −1} at depths of 300 and 800 m in the Arctic Ocean.

  9. Climate Prediction Center (CPC) East Pacific/ North Pacific Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the East Pacific/ North Pacific teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  10. 137Cs, 239+24Pu and 24Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Zheng Jian; Wang Zhongliang

    2006-01-01

    Surface seawater samples were collected along the track of the R/V Hakuho-Maru cruise (KH-96-5) from Tokyo to the Southern Ocean. The 137 Cs activities were determined for the surface waters in the western North Pacific Ocean, the Sulu and Indonesian Seas, the eastern Indian Ocean, the Bay of Bengal, the Andaman Sea, and the South China Sea. The 137 Cs activities showed a wide variation with values ranging from 1.1 Bq m -3 in the Antarctic Circumpolar Region of the Southern Ocean to 3 Bq m -3 in the western North Pacific Ocean and the South China Sea. The latitudinal distributions of 137 Cs activity were not reflective of that of the integrated deposition density of atmospheric global fallout. The removal rates of 137 Cs from the surface waters were roughly estimated from the two data sets of Miyake et al. [Miyake Y, Saruhashi K, Sugimura Y, Kanazawa T, Hirose K. Contents of 137 Cs, plutonium and americium isotopes in the Southern Ocean waters. Pap Meteorol Geophys 1988;39:95-113] and this study to be 0.016 yr -1 in the Sulu and Indonesian Seas, 0.033 yr -1 in the Bay of Bengal and Andaman Sea, and 0.029 yr -1 in the South China Sea. These values were much lower than that in the coastal surface water of the western Northwest Pacific Ocean. This was likely due to less horizontal and vertical mixing of water masses and less scavenging. 239+24 Pu activities and 24 Pu/ 239 Pu atom ratios were also determined for the surface waters in the western North Pacific Ocean, the Sulu and Indonesian Seas and the South China Sea. The 24 Pu / 239 Pu atom ratios ranged from 0.199 ± 0.026 to 0.248 ± 0.027 on average, and were significantly higher than the global stratospheric fallout ratio of 0.18. The contributions of the North Pacific Proving Grounds close-in fallout Pu were estimated to be 20% for the western North Pacific Ocean, 39% for the Sulu and Indonesian Seas and 42% for the South China Sea by using the two end-member mixing model. The higher 24 Pu / 239 Pu atom ratios

  11. The isotopic signature of fallout plutonium in the North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Buesseler, K.O. [Woods Hole Oceanographic Institution, MA (United States)

    1997-07-01

    Plutonium analyses of a dated coral record from the French Frigate Shoals in the central North Pacific indicate that there are two major sources of Pu in this basin: close-in (tropospheric) fallout from nuclear weapons testing at the Pacific Proving Grounds in the Marshall Islands in the 1950s and global (stratospheric) fallout which peaked in 1962. Furthermore, the {sup 240}Pu/{sup 239}Pu atom ratio of fallout from the Pacific Proving Grounds is characteristically higher (0.24) than that of global fallout Pu (0.18-0.19). Seawater and sediment samples from the North Pacific exhibit a wide range of {sup 240}Pu/{sup 239}Pu values (0.19-0.34), with a trend towards higher ratios in the subsurface waters and sediment. Deep water {sup 240}Pu/{sup 239}Pu ratios are higher in the vicinity of the Marshall Islands relative to stations further from this close-in fallout source. These preliminary data suggest that fallout Pu from the Pacific Proving Grounds is more rapidly removed from the surface waters than is global fallout Pu. Plutonium geochemistry appears to be related to the physical/chemical form of Pu-bearing particles generated by different fallout sources. (author).

  12. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific.

    Science.gov (United States)

    Wu, J; Boyle, E; Sunda, W; Wen, L S

    2001-08-03

    In the oligotrophic North Atlantic and North Pacific, ultrafiltration studies show that concentrations of soluble iron and soluble iron-binding organic ligands are much lower than previously presumed "dissolved" concentrations, which were operationally defined as that passing through a 0.4-micrometer pore filter. Our studies indicate that substantial portions of the previously presumed "dissolved" iron (and probably also iron-binding ligands) are present in colloidal size range. The soluble iron and iron-binding organic ligands are depleted at the surface and enriched at depth, similar to distributions of major nutrients. By contrast, colloidal iron shows a maximum at the surface and a minimum in the upper nutricline. Our results suggest that "dissolved" iron may be less bioavailable to phytoplankton than previously thought and that iron removal through colloid aggregation and settling should be considered in models of the oceanic iron cycle.

  13. Analysis of longitudinal variations in North Pacific alkalinity to improve predictive algorithms

    Science.gov (United States)

    Fry, Claudia H.; Tyrrell, Toby; Achterberg, Eric P.

    2016-10-01

    The causes of natural variation in alkalinity in the North Pacific surface ocean need to be investigated to understand the carbon cycle and to improve predictive algorithms. We used GLODAPv2 to test hypotheses on the causes of three longitudinal phenomena in Alk*, a tracer of calcium carbonate cycling. These phenomena are (a) an increase from east to west between 45°N and 55°N, (b) an increase from west to east between 25°N and 40°N, and (c) a minor increase from west to east in the equatorial upwelling region. Between 45°N and 55°N, Alk* is higher on the western than on the eastern side, and this is associated with denser isopycnals with higher Alk* lying at shallower depths. Between 25°N and 40°N, upwelling along the North American continental shelf causes higher Alk* in the east. Along the equator, a strong east-west trend was not observed, even though the upwelling on the eastern side of the basin is more intense, because the water brought to the surface is not high in Alk*. We created two algorithms to predict alkalinity, one for the entire Pacific Ocean north of 30°S and one for the eastern margin. The Pacific Ocean algorithm is more accurate than the commonly used algorithm published by Lee et al. (2006), of similar accuracy to the best previously published algorithm by Sasse et al. (2013), and is less biased with longitude than other algorithms in the subpolar North Pacific. Our eastern margin algorithm is more accurate than previously published algorithms.

  14. Relationship of boreal summer 10-20-day and 30-60-day intraseasonal oscillation intensity over the tropical western North Pacific to tropical Indo-Pacific SST

    Science.gov (United States)

    Wu, Renguang; Cao, Xi

    2017-06-01

    The present study contrasts interannual variations in the intensity of boreal summer 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10-20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30-60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10-20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10-20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30-60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10-20-day than the 30-60-day ISO intensity change.

  15. The plastic-associated microorganisms of the North Pacific Gyre

    International Nuclear Information System (INIS)

    Carson, Henry S.; Nerheim, Magnus S.; Carroll, Katherine A.; Eriksen, Marcus

    2013-01-01

    Highlights: • Microorganisms mediate processes affecting the fate and impacts of marine plastic. • North Pacific Gyre (NPG) plastics were examined with scanning-electron microscopy. • Bacillus bacteria and pennate diatoms dominated the NPG plastic fouling community. • Bacterial abundance was patchily distributed but increased on foamed polystyrene. • Diatom abundance increased on rough surfaces and at sites with high plastic density. -- Abstract: Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm −2 ) and pennate diatoms (1097 ± 154 mm −2 ) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution

  16. 77 FR 53179 - North Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2012-08-31

    .... SUMMARY: The North Pacific Fishery Management Council's (NPFMC) Crab Plan Team (CPT) will meet in Seattle... Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS..., WA. Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306...

  17. 75 FR 20985 - North Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2010-04-22

    .... SUMMARY: The North Pacific Fishery Management Council's Crab Plan Team (CPT) will meet in Alaska on May 10... Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS... Room - May 14. Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306...

  18. Anthropogenic CO2 distribution in the North Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C [National Sun Yat-Sen University, Kaohsiung (Taiwan, Province of China)

    1993-06-01

    This paper discusses the penetration depth of anthropogenic CO2 in the North Pacific Ocean based on carbonate data in the literature. The carbonate data in the literature were used to supplement the tracer data showing oceanic mixing features for waters formed in the last 140 years. The deepest penetration over 2,000m was found in the northwest North Pacific. On the other hand, the shallowest penetration to less than 400m was found in the eastern equatorial Pacific. Consequently, it was suggested that penetration depth of anthropogenic CO2 has been controlled by such factors as deep water formation in the Northwest Pacific, upwelling in the equatorial Pacific, and vertical mixing in the western boundary areas. It was revealed that these results are in harmony well with results implied from tritium, C-14, and freons distributions. The total inventory of excess carbon in the North Pacific was 14.7[plus minus]4[times]10[sup 15]g around 1980. 48 refs., 10 figs.

  19. Regional difference of the vertical structure of seasonal thermocline and its impact on sea surface temperature in the North Pacific

    Science.gov (United States)

    Yamaguchi, R.; Suga, T.

    2016-12-01

    Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.

  20. 75 FR 68756 - Eastern North Pacific Gray Whale; Notice of Petition Availability

    Science.gov (United States)

    2010-11-09

    ... North Pacific Gray Whale; Notice of Petition Availability AGENCY: National Marine Fisheries Service... petition to designate the Eastern North Pacific population of gray whales (Eschrichtius robustus) as a... Eastern North Pacific gray whales is available on the Internet at the following address: http://www.nmfs...

  1. Causes of decadal climate variability over the North Pacific and North America

    International Nuclear Information System (INIS)

    Latif, M.; Barnett, T.P.

    1994-01-01

    The cause of decadal climate variability over the North Pacific and North America is investigated by analyzing data from a multi-decadal integration with a state of the art coupled ocean-atmosphere model and observations. About one third of the low-frequency climate variability in the region of interest can be attributed to a cycle involving unstable air-sea interactions between the subtropical gyre circulation in the North Pacific and the Aleutian low pressure system. The existence of this cycle provides a basis for long-range climate forecasting over the western United States at decadal time scales. (orig.)

  2. Trans-Pacific and trans-Arctic pathways of the intertidal macroalga Fucus distichus L. reveal multiple glacial refugia and colonizations from the North Pacific to the North Atlantic

    NARCIS (Netherlands)

    Coyer, James A.; Hoarau, Galice; Van Schaik, Jaap; Luijckx, Pepijn; Olsen, Jeanine L.

    Aim We examined the phylogeography of the cold-temperate macroalgal species Fucus distichus L., a key foundation species in rocky intertidal shores and the only Fucus species to occur naturally in both the North Pacific and the North Atlantic. Location North Pacific and North Atlantic oceans (42

  3. Temporal variation of 137Cs water column inventory in the North Pacific since the 1960s

    International Nuclear Information System (INIS)

    Aoyama, M.; Hirose, K.

    2003-01-01

    The temporal variation of water column inventories of 137 Cs in the North Pacific since the 1960s was examined based on the analysis of the 137 Cs profiles in HAM database. 137 Cs in seawater in the North Pacific have originated mainly from global fallout from atmospheric nuclear weapons tests, which occurred in the early 1960s. In the 1960s, both the meridional distribution of 137 Cs inventory in the North Pacific and that of fallout on land stations showed mid-latitude maximum. The region with higher deposition at land stations, however, was more northern than the latitudes where the 137 Cs inventory in the North Pacific showed a maximum. The difference of the latitude where maximum 137 Cs deposition/inventory was observed reflects the difference of the geographical distribution of the precipitation amount in the Pacific and Atlantic Oceans followed by the different warm current systems in each ocean. A good positive relation between 137 Cs inventory and annual precipitation amount was discovered in the ocean stations at the middle latitude in the North Pacific. The horizontal distribution of 137 Cs inventories at the middle latitudes in the North Pacific is characterized as west-high and east-low in the early 1960s, which was basically controlled by the distribution of annual precipitation amount. Eastward advection, then, modified it to be less difference in 1966-1967 after the highest deposition periods in 1963-1965. In the 1970s and 1980s, increases of the 137 Cs inventory at the lower latitude of 10-20 deg. N are found. Surface and subsurface southward transports are considered as the source of this increasing 137 Cs inventory

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from L'ATALANTE in the North Pacific Ocean and South Pacific Ocean from 1994-09-23 to 1994-10-30 (NCEI Accession 0157463)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157463 includes Surface underway, chemical, meteorological and physical data collected from L'ATALANTE in the North Pacific Ocean and South Pacific...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from L'ATALANTE in the North Pacific Ocean and South Pacific Ocean from 1994-11-05 to 1994-11-29 (NCEI Accession 0157470)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157470 includes Surface underway, chemical, meteorological and physical data collected from L'ATALANTE in the North Pacific Ocean and South Pacific...

  6. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    Science.gov (United States)

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  7. Upper ocean heat budget of western-north Pacific using satellite and ship observations

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.; Akiyama, M.

    Surface layer (0-17~'C isotherm depth) heat balance of a closed rectangular system (the Kuroshio system) in the North-West Pacific has been examined for a period of 10 days (from 16th to 25th, October, 1991), by considering the residual of net...

  8. Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Dao-Yi; Yang, Jing; Hu, Miao [Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing (China); Kim, Seong-Joong [Korea Polar Research Institute, Incheon (Korea, Republic of); Gao, Yongqi [Nansen-Zhu International Research Center, IAP/CAS, Beijing (China); Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate Research, Bergen (Norway); Guo, Dong [Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing (China); Nansen-Zhu International Research Center, IAP/CAS, Beijing (China); Zhou, Tianjun [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), IAP/CAS, Beijing (China)

    2011-12-15

    In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Nino/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850 hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25 N-30 N and the westerly anomalies south of 15 N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30 N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150 E-180 near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 2007-10-08 to 2007-12-26 (NODC Accession 0108123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108123 includes Surface underway, discrete sample and profile data collected from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific...

  10. Observations of carbon dioxide in the surface waters of the Eastern North Pacific Ocean and the Bering Sea from 21 July 1968 to 03 September 1968 (NODC Accession 7100114)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements of the equilibrium concentration of carbon dioxide in the air and surface waters of the North Pacific Ocean and the Bering Sea are presented....

  11. Transport and Thermohaline Structure in the Western Tropical North Pacific

    Science.gov (United States)

    Schonau, Martha Coakley

    Transport and thermohaline structure of water masses and their respective variability are observed and modeled in the western tropical North Pacific using autonomous underwater gliders, Argo climatology and a numerical ocean state estimate. The North Equatorial Current (NEC) advects subtropical and subpolar water masses into the region that are transported equatorward by the Mindanao Current (MC). Continuous glider observations of these two currents from June 2009 to December 2013 provide absolute geostrophic velocity, water mass structure, and transport. The observations are compared to Argo climatology (Roemmich and Gilson, 2009), wind and precipitation to assess forcing, and annual and interannual variability. Observations are assimilated into a regional ocean state estimate (1/6°) to examine regional transport variability and its relationship to the El Nino-Southern Oscillation phenomena (ENSO). The NEC, described in Chapter 1, is observed along 134.3°E, from 8.5°N to 16.5°N. NEC thermocline transport is relatively constant, with a variable subthermocline transport that is distinguished by countercurrents centered at 9.6°N and 13.1°N. Correlation between thermocline and subthermocline transport is strong. Isopycnals with subducted water masses, the North Pacific Tropical Water and North Pacific Intermediate Water, have the greatest fine-scale thermohaline variance. The NEC advects water masses into the MC, described in Chapter 2, that flows equatorward along the coast of Mindanao. Gliders observed the MC at a mean latitude of 8.5°N. The Mindanao Undercurrent (MUC) persists in the subthermocline offshore of the MC, with a net poleward transport of intermediate water typical of South Pacific origin. The variable subthermocline transport in the MC/MUC has an inverse linear relationship with the Nino 3.4 index and strongly impacts total transport variability. For each the MC and NEC, surface salinity and thermocline depth have a strong relationship with ENSO

  12. Shifting Pacific storm tracks as stressors to ecosystems of western North America.

    Science.gov (United States)

    Dannenberg, Matthew P; Wise, Erika K

    2017-11-01

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool-season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool-season standardized precipitation-evapotranspiration index, April snow water equivalent, and water year streamflow from a network of USGS stream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree-ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool-season storm tracks entered western North America between approximately 41°N and 53°N. Cool-season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south-shifted storm tracks, while Canadian ecosystems were greener in years when the cool-season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north-shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool-season storm tracks.

  13. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique

    Directory of Open Access Journals (Sweden)

    S. Nakaoka

    2013-09-01

    Full Text Available This study uses a neural network technique to produce maps of the partial pressure of oceanic carbon dioxide (pCO2sea in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea distribution was computed using a self-organizing map (SOM originally utilized to map the pCO2sea in the North Atlantic. Four proxy parameters – sea surface temperature (SST, mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS – are used during the training phase to enable the network to resolve the nonlinear relationships between the pCO2sea distribution and biogeochemistry of the basin. The observed pCO2sea data were obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies (NIES. The reconstructed pCO2sea values agreed well with the pCO2sea measurements, with the root-mean-square error ranging from 17.6 μatm (for the NIES dataset used in the SOM to 20.2 μatm (for independent dataset. We confirmed that the pCO2sea estimates could be improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several time series locations in the North Pacific. The distributions of pCO2sea revealed by 7 yr averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology, allowing, however, for a more detailed analysis of biogeochemical conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.

  14. Pu isotopes in the western North Pacific Ocean before the accident at Fukushima Dai-ichi Nuclear Power Station

    Science.gov (United States)

    Yamada, M.; Zheng, J.; Aono, T.

    2011-12-01

    Anthropogenic radionuclides such as Pu-239 (half-life: 24100 yr), Pu-240 (half-life: 6560 yr) and Pu-241 (half-life: 14.325 yr) mainly have been released into the environment as the result of atmospheric nuclear weapons testing. In the North Pacific Ocean, two distinct sources of Pu isotopes can be identified; i.e., the global stratospheric fallout and close-in tropospheric fallout from nuclear weapons testing at the Pacific Proving Grounds in the Marshall Islands. The atom ratio of Pu-240/Pu-239 is a powerful fingerprint to identify the sources of Pu in the ocean. The Pu-240/Pu-239 atom ratios in seawater and marine sediment samples collected in the western North Pacific before the accident at Fukushima Dai-ichi Nuclear Power Station will provide useful background data for understanding the process controlling Pu transport and for distinguishing future Pu sources. The atom ratios of Pu-240/Pu-239 in water columns from the Yamato and Tsushima Basins in the Japan Sea were significantly higher than the mean global fallout ratio of 0.18; however, there were no temporal variation of atom ratios during the period from 1984 to 1993 in the Japan Sea. The total Pu-239+240 inventories in the whole water columns were approximately doubled during the period from 1984 to 1993 in the two basins. The atom ratio of Pu-240/Pu-239 in surface water from Sagami Bay, western North Pacific Ocean, was 0.224 and showed no notable variation from the surface to the bottom with the mean atom ratio being 0.234. The atom ratios for the Pacific coast, near the Rokkasho nuclear fuel reprocessing plant, were approximately the same as the 0.224 ratio obtained from Sagami Bay, western North Pacific margin. The atom ratios in the surficial sediments from Sagami Bay ranged from 0.229 to 0.247. The mean atom ratio in the sediment columns in the East China Sea ranged from 0.248 for the Changjiang estuary to 0.268 for the shelf edge. The observed atom ratios were significantly higher than the mean

  15. 76 FR 58472 - North Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2011-09-21

    ... North Pacific Fishery Management Council's (Council) Pacific Northwest Crab Industry Advisory Committee. SUMMARY: The Pacific Northwest Crab Industry Advisory Committee will meet October 13, 2011 at the Leif...: (907) 271-2809. SUPPLEMENTARY INFORMATION: Agenda--Alaska Department of Fish & Game/ NMFS scientists...

  16. Distribution of Iodine-129 in off the coast of Fukushima and North Pacific

    International Nuclear Information System (INIS)

    Hasegawa, A.; Yamagata, T.; Nagai, H.; Aoyama, M.; Matsuzaki, H.

    2013-01-01

    We measured "1"2"9I concentration in seawater samples which were collected in off Fukushima and North Pacific. High "1"2"9I concentrations were observed in samples from stations off Fukushima (BD02, 03) located 30 km away from Fukushima Dai-ichi Nuclear Power Plant (F1NPP). In these stations, "1"2"9I inventory down to 100 m water depth was not decrease since three month after the F1NPP accident. In adjacent stations off Fukushima (BD01, 04), "1"2"9I concentrations were almost identical to those observed in seawater collected in the Kuroshio region before the F1NPP accident. In the North Pacific (BD05∼17), "1"2"9I concentrations in surface seawater were 2 times higher than those in the Kuroshio region. (author)

  17. Estimating historical eastern North Pacific blue whale catches using spatial calling patterns.

    Directory of Open Access Journals (Sweden)

    Cole C Monnahan

    Full Text Available Blue whales (Balaenoptera musculus were exploited extensively around the world and remain endangered. In the North Pacific their population structure is unclear and current status unknown, with the exception of a well-studied eastern North Pacific (ENP population. Despite existing abundance estimates for the ENP population, it is difficult to estimate pre-exploitation abundance levels and gauge their recovery because historical catches of the ENP population are difficult to separate from catches of other populations in the North Pacific. We collated previously unreported Soviet catches and combined these with known catches to form the most current estimates of North Pacific blue whale catches. We split these conflated catches using recorded acoustic calls from throughout the North Pacific, the knowledge that the ENP population produces a different call than blue whales in the western North Pacific (WNP. The catches were split by estimating spatiotemporal occurrence of blue whales with generalized additive models fitted to acoustic call patterns, which predict the probability a catch belonged to the ENP population based on the proportion of calls of each population recorded by latitude, longitude, and month. When applied to the conflated historical catches, which totaled 9,773, we estimate that ENP blue whale catches totaled 3,411 (95% range 2,593 to 4,114 from 1905-1971, and amounted to 35% (95% range 27% to 42% of all catches in the North Pacific. Thus most catches in the North Pacific were for WNP blue whales, totaling 6,362 (95% range 5,659 to 7,180. The uncertainty in the acoustic data influence the results substantially more than uncertainty in catch locations and dates, but the results are fairly insensitive to the ecological assumptions made in the analysis. The results of this study provide information for future studies investigating the recovery of these populations and the impact of continuing and future sources of anthropogenic

  18. Phanerozoic tectonic evolution of the Circum-North Pacific

    Science.gov (United States)

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along

  19. Trends and Variability of North Pacific Polar Lows

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available The 6-hourly 1948–2010 NCEP 1 reanalyses have been dynamically downscaled for the region of the North Pacific. With a detecting-and-tracking algorithm, the climatology of North Pacific Polar Lows has been constructed. This derived climatology is consistent with the limited observational evidence in terms of frequency and spatial distribution. The climatology exhibits strong year-to-year variability but weak decadal variability and a small positive trend. A canonical correlation analysis describes the conditioning of the formation of Polar Lows by characteristic seasonal mean flow regimes, which favor, or limit, cold air outbreaks and upper air troughs.

  20. The impact of summertime north Indian Ocean SST on tropical cyclone genesis over the western North Pacific

    Science.gov (United States)

    Zheng, Jiayu; Wu, Qiaoyan; Guo, Yipeng; Zhao, Sen

    2017-04-01

    In this study, we investigate the impact of interannual variability of boreal summertime (June-September) north Indian Ocean (NIO) sea surface temperature (SST) on the distribution of tropical cyclone (TC) genesis over the western North Pacific (WNP) using observational datasets. In the boreal summers with warm (cold) SST in the NIO, fewer (more) than normal TCs form over the entire WNP, with fewer (more) TCs forming north of 10°N and more (fewer) TCs forming south of 10°N. The warm (cold) SST in the NIO induces anomalous anticyclonic (cyclonic) vorticity north of 10°N and cyclonic (anticyclonic) vorticity south of 10°N, which contributes to the meridional seesaw-like distribution of WNP TC genesis. This study provides a new perspective to understand TC activities over the WNP and may help seasonal TC prediction.

  1. SeaWiFS: North Pacific Storm

    Science.gov (United States)

    2002-01-01

    An extratropical storm can be seen swirling over the North Pacific just south of Alaska. This SeaWiFS image was collected yesterday at 23:20 GMT. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  2. The aluminosilicate fraction of North Pacific manganese nodules

    Science.gov (United States)

    Bischoff, J.L.; Piper, D.Z.; Leong, K.

    1981-01-01

    Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

  3. Eddy-induced salinity pattern in the North Pacific

    Science.gov (United States)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  4. Conservation of native Pacific trout diversity in western North America

    Science.gov (United States)

    Penaluna, Brooke E.; Abadía-Cardoso, Alicia; Dunham, Jason B.; García de León, Francisco J; Gresswell, Robert E.; Luna, Arturo Ruiz; Taylor, Eric B.; Shepard, Bradley B.; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Bestgen, Kevin R.; Rogers, Kevin H.; Escalante, Marco A; Keeley, Ernest R; Temple, Gabriel; Williams, Jack E.; Matthews, Kathleen; Pierce, Ron; Mayden, Richard L.; Kovach, Ryan; Garza, John Carlos; Fausch, Kurt D.

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review the state of knowledge on these important issues, focusing on Pacific trout in the genus Oncorhynchus. Although most research on salmonid fishes emphasizes Pacific salmon, we focus on Pacific trout because they share a common evolutionary history, and many taxa in western North America have not been formally described, particularly in the southern extent of their ranges. Research in recent decades has led to the revision of many hypotheses concerning the origin and diversification of Pacific trout throughout their range. Although there has been significant success at addressing past threats to Pacific trout, contemporary and future threats represented by nonnative species, land and water use activities, and climate change pose challenges and uncertainties. Ultimately, conservation of Pacific trout depends on how well these issues are understood and addressed, and on solutions that allow these species to coexist with a growing scope of human influences.

  5. The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in the PMIP2 coupled model simulations

    Directory of Open Access Journals (Sweden)

    W. Yanase

    2007-07-01

    Full Text Available The surface conditions and atmospheric circulation over East Asia and the North Pacific during the last glacial maximum have been investigated using outputs from several coupled atmosphere-ocean general circulation model in the PMIP2 database. During the boreal summer, the weakening of the high pressure system over the North Pacific and less precipitation over East Asia are found in most models. The latter can be attributed to reduced moisture transport. During the boreal winter, an intensification of the Aleutian low and southward shift of the westerly jet stream in the upper troposphere are found in most models.

    Some of the results in the present study seem to be consistent with the paleoclimatic reconstructions in the previous studies: pollen and lake-status records suggest dry climate over East Asia during the last glacial maximum, and part of the dust record has a signal that the East Asian winter monsoon was more strong and the westerly jet stream in the upper troposphere was further south during the last glacial maximum than at the present day. This result confirms that a coupled atmosphere-ocean general circulation model is a promising tool to understand not only the global climate but also the regional climate in the past.

  6. Development of the North Pacific Ocean model for the assessment of the distribution of the radioactive materials. Improvement for formation of the North Pacific intermediate water

    International Nuclear Information System (INIS)

    Tsubono, Takaki; Misumi, Kazuhiro; Tsumune, Daisuke; Bryan, Frank

    2014-01-01

    The radioactive materials such as 137 Cs were released to the North Pacific Ocean (NP) through the major pathway; direct release from the accident site and atmospheric deposition, after the accidents at the Fukushima Dai-ichi Nuclear Power Plant following the earthquake and tsunami. The behavior of the materials in the NP has been paid great attention after the accident. The North Pacific Model for the calculation of the distribution of radionuclides has been developed using Regional Ocean Modeling System (ROMS). The model domain is NP with an eddy-resolving grid. A series of numerical experiments conducted by models suggests that the computational diffusivity caused by the advection scheme and the topography roughness are critical in representing the separation of Kuroshio, the Kuroshio Extension, the mixed-water region between Kuroshio Extension and Oyashio front and the formation of the North Pacific Intermediate Water (NPIW). The model requires the forth order scheme in the tracer advection and the smoothing of topography for these problems. Moreover the tidal mixing process around the straits in the North Pacific Ocean and the sea ice play important roles to reproduce the formation of lon salinity around the NPIW as well as the isopycnal mixing process represented by an eddy-resolving model. (author)

  7. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    Science.gov (United States)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  8. Elevational and Spatial Gradients of Atmospheric Metal Pollution in the North Pacific

    Science.gov (United States)

    Jongebloed, U. A.; Osterberg, E. C.; Kreutz, K. J.; Ferris, D. G.; Campbell, S.; Saylor, P. L.; Winski, D.; Handley, M.

    2017-12-01

    The industrial revolution has led to a several-fold increase in the atmospheric concentrations of heavy metals and metalloids including Pb, Cd, Cu, Zn, Hg and As. Modern emissions inventories identify Asia as the largest emitter of many of these toxic pollutants, which are subsequently transported eastwards across the North Pacific Ocean by prevailing westerly winds in the mid-upper troposphere. Previous ice cores collected from the Yukon Territory in the eastern North Pacific reveal evolution-dependent metal pollution histories; the highest (5300 m elevation) core from Mt. Logan records a nearly pure trans-Pacific Asian pollution record, whereas cores from lower sites like the Eclipse Icefield (3017 m) record a complex combination of Asian and more local North American emission. However, it is unclear if this elevation gradient of pollution sources is found in other regions of the North Pacific. Furthermore, the previous ice core records end in the late 1990's, before efforts by some Asian nations to reduce metal pollution, and it is unknown if North Pacific atmospheric metal concentrations have declined in response to these efforts. Here we investigate metal and metalloid concentrations and sources recorded in ice core and snow pit samples recovered from a vertical transect spanning 2200 - 5242 m within Denali National Park in the Central Alaska Range. We compare these metal concentrations and crustal enrichment factors to data from the Yukon Territory to investigate North Pacific regional metal gradients. We also present preliminary results from a new 60 m ice core from the Eclipse Icefield to evaluate recent trends in metal concentrations since the end of the Mt. Logan and original Eclipse records in 1998, and compare this to the recent metal pollution history recorded in the 2013 Denali Ice Core collected from the summit plateau (3900 m) of Mt. Hunter.

  9. Long-term variabilities of meridional geostrophic volumn transport in North Pacific Ocean

    Science.gov (United States)

    Zhou, H.; Yuan, D.; Dewar, W. K.

    2016-02-01

    The meridional geostrophic volumn transport (MGVT) by the ocean plays a very important role in the climatic water mass and heat balance because of its large heat capacity which enables the oceans to store the large amount of radiation received in the summer and to release it in winter. Better understanding of the role of the oceans in climate variability is essential to assess the likely range of future climate fluctuations. In the last century the North Pacific Ocean experienced considerable climate variability, especially on decadal time scale. Some studies have shown that the North Pacific Ocean is the origin of North Pacific multidecadal variability (Latif and Barnett, 1994; Barnett et al., 1999). These fluctuations were associated with large anomalies in sea level, temperature, storminess and rainfall, the heat transport and other extremes are changing as well. If the MGVT of the ocean is well-determined, it can be used as a test of the validity of numerical, global climate models. In this paper, we investigate the long-term variability of the MGVT in North Pacific ocean based on 55 years long global ocean heat and salt content data (Levitus et al., 2012). Very clear inter-decadal variations can be seen in tropical , subtropical and subpolar regions of North Pacific Ocean. There are very consistent variations between the MGVT anomalies and the inter-decadal pacific oscillation (IPO) index in the tropical gyre with cold phase of IPO corresponding to negative MGVT anomalies and warm phase corresponding to positive MGVT anomalies. The subtropical gyre shows more complex variations, and the subpolar gyre shows a negative MGVT anomaly before late 1970's and a positive anomaly after that time. The geostrophic velocities of North Pacific Ocean show significantly different anomalies during the two IPO cold phases of 1955-1976 and 1999 to present, which suggests a different mechanism of the two cold phases. The long term variations of Sverdrup transport compares well

  10. Interdecadal Change in the Relationship Between the North Pacific Oscillation and the Pacific Meridional Mode and Its Impact on ENSO

    Science.gov (United States)

    Shin, So-Jung; An, Soon-Il

    2018-02-01

    Two leading but independent modes of Northern Pacific atmospheric circulation: the North Pacific Oscillation (NPO) and the Pacific Meridional Mode (PMM), are known external triggers of the El Niño-Southern Oscillation (ENSO) by the sequential migration of sea surface temperature (SST) anomalies into the tropics possibly by means of wind-evaporation-SST (WES) feedbacks. Because of the similar roles of NPO and PMM, most previous studies have explored them with no separation. Here, we investigate their independent and combined effects in triggering ENSO, and find that when the NPO and PMM occur simultaneously during spring, ENSO or ENSO-like SST anomalies are generated during the following winter; whereas when either the NPO or PMM occur alone, ENSO events rarely occur. Furthermore, the relationship between NPO and PMM shows noticeable interdecadal variability, which is related to decadal changes in the mean upper-level jet stream over the North Pacific. Changes in the upper-level jet stream modify the location of the center of the Aleutian Low, which plays a role in bridging the NPO and PMM processes, especially when it migrates to the southwest. The period when NPO and PMM are well correlated coincides somewhat with the active ENSO period, and vice versa, indicating that a more efficient trigger due to combined NPO-PMM processes results in a higher variation of ENSO. Finally, analysis of the coupled model control simulations strongly supports our observational analysis results.

  11. Indicators of Marine Pollution in the North Pacific Ocean.

    Science.gov (United States)

    Brown, Tanya M; Takada, Hideshige

    2017-08-01

    The complex nature of ocean pollution underscores the utility in identifying and characterizing a limited number of "indicators" that enables scientists and managers to track trends over space and time. This paper introduces a special issue on indicators of marine pollution in the North Pacific Ocean and builds on a scientific session that was held at the North Pacific Marine Science Organization. The special issue highlights studies using a variety of indicators to provide insight into the identification of legacy and emerging contaminants, the ranking of priority pollutants from various sources, and the effects of contaminants on ecosystem health in the North Pacific Ocean. Examples include the use of mussels to illustrate spatial and temporal trends of a number of contaminants following the 2011 tsunami in Japan, the use of molecular marker (linear alkylbenzenes, hopanes, and polycyclic aromatic hydrocarbons) profiles to identify pollution sources, and the use of plastic resin pellets to illustrate spatial trends of petroleum pollution around the world. Stable isotopes were used to strengthen the utility of the Glaucous-winged gull (Larus glaucescens) as an indicator of marine pollution. Examples also demonstrate the development and application of biomarker approaches, including gene transcripts, oxidative stress, estradiol, hatchability, and respiration and swimming behavior abnormalities, as a function of exposure to polychlorinated biphenyls, sulfur-diesel, Pinghu crude oil, galaxolide and antifouling biocides. We provide a brief review of indicators of marine pollution, identify research gaps, and summarize key findings from the articles published within the issue. This special issue represents the first compilation of research pertaining to marine pollution indicators in the North Pacific Ocean and provides guidance to inform mitigation and monitoring efforts of contaminants in the region.

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from WAKATAKA MARU in the North Atlantic Ocean, North Pacific Ocean and South Atlantic Ocean from 2011-06-10 to 2011-12-06 (NCEI Accession 0157428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157428 includes Surface underway, chemical, meteorological and physical data collected from WAKATAKA MARU in the North Atlantic Ocean, North Pacific...

  13. Multifaceted intra-seasonal modes over the East Asia-western North Pacific summer monsoon region

    Science.gov (United States)

    Ha, K. J.; Oh, H.

    2017-12-01

    Intra-seasonal monsoon prediction is the most imperative task due to high impact on 2/3 of world populations' daily life, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intra-seasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): preMeiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. The preMeiyu-Baiu mode is strongly linked to both the anomalous low-level convergence and vertical wind shear through baroclinic instability, and the Changma&Meiyu mode has a strengthened tropic-subtropics connection along the western north Pacific subtropical high, which induces vertical destabilization and strong convective instability. The WNPSM and monsoon gyre modes are characterized by anomalous southeasterly flow of warm and moist air from western north Pacific monsoon, and low-level easterly flow, respectively. Prominent difference in response to the ENSO leads to different effects of the Indian Ocean and western Pacific thermal state, and consequently, the distinct moisture supply and instability variations for the EASM intra-seasonal modes. We attempt to determine the predictability sources for the four modes in the EA-WNPSM using physical-empirical model. The selected predictors are based on the persistent and tendency signals of the SST/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the ENSO and the ocean and land surface anomalous conditions. For the preMeiyu&Baiu mode, the SST cooling tendency over the WNP, which persists into summer, is the distinguishing contributor which is causative of north-south thermal contrast. Since the Changma&Meiyu mode is strongly related to the WNP subtropical high, a major precursor is the persistent SST difference between the Indian Ocean and the western Pacific. The WNPSM mode is mostly affected by the

  14. 78 FR 34347 - Endangered and Threatened Species; Recovery Plan for the North Pacific Right Whale

    Science.gov (United States)

    2013-06-07

    ... and Threatened Species; Recovery Plan for the North Pacific Right Whale AGENCY: National Marine... Recovery Plan (Plan) for the North Pacific right whale (Eubalaena japonica). ADDRESSES: Electronic copies...

  15. Decadal atmosphere-ocean variations in the Pacific

    Science.gov (United States)

    Trenberth, Kevin E.; Hurrell, James W.

    1994-03-01

    Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup transport in the north Pacific Ocean. Changes in the monthly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activity and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes, along with the altered ocean currents and temperatures, changed the migration patterns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the decadal variations, and the temporal variability of the index is explored on daily, annual, interannual and decadal time scales. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the

  16. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  17. Rising climate variability and synchrony in North Pacific ecosystems

    Science.gov (United States)

    Black, Bryan

    2017-04-01

    Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.

  18. The plastic-associated microorganisms of the North Pacific Gyre.

    Science.gov (United States)

    Carson, Henry S; Nerheim, Magnus S; Carroll, Katherine A; Eriksen, Marcus

    2013-10-15

    Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm(-2)) and pennate diatoms (1097 ± 154 mm(-2)) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Numbers of Calling Whales in the North Pacific

    National Research Council Canada - National Science Library

    Watkins, William

    2001-01-01

    Since November 1995, the U.S. Navy's Sound Surveillance System (SOSUS) and other hydrophone arrays were used to regularly sample the occurrence of whale sounds in four regions bordering the continental margins across the North Pacific...

  20. Northern North Pacific Regional Climatology (NCEI Accession 0156768)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northern North Pacific (NNP) plays a significant role in long-term earth and ocean climate change. It is also a region of high importance for regional marine...

  1. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Science.gov (United States)

    2010-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  2. North Pacific Process Study (JGOFS) (NODC Accession 0001873)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NPPS Data Set is comprised of JGOFS data set obtained during the JGOFS NPPS as well as the JGOFS related data sets in the North Pacific. All of these data were...

  3. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  4. Extreme winds in the Western North Pacific

    DEFF Research Database (Denmark)

    Ott, Søren

    2006-01-01

    satellite images is discussed with emphasis on the empirical basis, which, unfortunately, is not very strong. This is stressed by the fact that Japanese and US agencies arrive at markedly different estimates. Onthe other hand, best track data records cover a long period of time and if not perfect......A statistical model for extreme winds in the western North Pacific is developed, the region on the Planet where tropical cyclones are most common. The model is based on best track data derived mostly from satellite images of tropical cyclones. The methodsused to estimate surface wind speeds from...... they are at least coherent over time in their imperfections. Applying the the Holland model to the best track data, wind profiles can be assigned along the tracks. Fromthis annual wind speed maxima at any particular point in the region can be derived. The annual maxima, in turn, are fitted to a Gumbel distribution...

  5. Collective behaviour of climate indices in the North Pacific air—sea system and its potential relationships with decadal climate changes

    International Nuclear Information System (INIS)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air—sea system is constructed during the period of 1948–2009. In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift, the synchronization behaviour and the coupling behaviour of these indices are investigated. Results indicate that climate network synchronization happened around the beginning of the 1960s, in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately. These synchronization states were always followed by the decrease of the coupling coefficient. Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal values of North Pacific sea-surface temperature and 500-hPa height, among which the one that happened in the middle of the 1970s is the most noticeable climate shift. We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices. That is to say, abrupt climate shift in North Pacific air—sea system is not only shown by the phase or trend changes of climate indices, but also might be indicated by the synchronizing and the coupling of climate indices. Furthermore, at the turning point of 1975, there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific, which further proves the probability of climate index synchronization and coupling shift in air—sea systems. (geophysics, astronomy, and astrophysics)

  6. Collective behaviour of climate indices in the North Pacific air-sea system and its potential relationships with decadal climate changes

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air-sea system is constructed during the period of 1948-2009.In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift,the synchronization behaviour and the coupling behaviour of these indices are investigated.Results indicate that climate network synchronization happened around the beginning of the 1960s,in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately.These synchronization states were always followed by the decrease of the coupling coefficient.Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal vaiues of North Pacific sea-surface temperature and 500-hPa height,among which the one that happened in the middle of the 1970s is the most noticeable climate shift.We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices.That is to say,abrupt climate shift in North Pacific air-sea system is not only shown by the phase or trend changes of climate indices,but also night be indicated by the synchronizing and the coupling of climate indices.Furthermore,at the turning point of 1975,there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific,which further proves the probability of climate index synchronization and coupling shift in air-sea systems.

  7. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre.

    Science.gov (United States)

    Bryant, Jessica A; Aylward, Frank O; Eppley, John M; Karl, David M; Church, Matthew J; DeLong, Edward F

    2016-06-01

    Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces.

  8. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    Energy Technology Data Exchange (ETDEWEB)

    Cerovecki, Ivana [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; McClean, Julie [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Koracin, Darko [Desert Research Inst. (DRI), Reno, NV (United States). Division of Atmospheric Sciences

    2014-11-14

    The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employed in e.g. the Community Climate System Model (CCSM).

  9. Evolutionary of history of North Pacific Humpback Whales

    NARCIS (Netherlands)

    Verkuil, Yvonne; Bérubé, Martine; Urban-R, Jorge; Darling, J; Mattila, David; Yamaguchi, M; Pastene, Luis A.; Palsboll, Per

    North Pacific Humpback Whales breed on winter grounds at Hawaii, Mexico and Okinawa, and summer on feeding grounds in northern Temperate and sub-Arctic waters. Re-sighting records of photographically identified individual humpback whales suggest that breeding grounds are not isolated. Later genetic

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Bismarck Sea, North Pacific Ocean and South Pacific Ocean from 2005-05-25 to 2005-07-02 (NODC Accession 0108081)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108081 includes chemical, discrete sample, physical, profile and underway - surface data collected from MIRAI in the Bismarck Sea, North Pacific...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from CONTSHIP WASHINGTON in the North Pacific Ocean and South Pacific Ocean from 2007-09-22 to 2007-11-10 (NODC Accession 0080968)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080968 includes Surface underway, chemical, meteorological and physical data collected from CONTSHIP WASHINGTON in the North Pacific Ocean and South...

  12. Transport process of Pu isotope in marginal seas of the western North Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masatoshi [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Aomori (Japan); Zheng, Jian [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, 263-8555, Chiba (Japan)

    2014-07-01

    Significant quantities of Pu isotopes have been released into the marine environment as the result of atmospheric nuclear weapons testing. Most radionuclides globally dispersed in atmospheric nuclear weapons testing were released into the environment during the 1950's and 1960's. In the western North Pacific Ocean, the principal source can be further distinguished as two distinct sources of Pu: close-in tropospheric fallout from nuclear weapons testing at the Pacific Proving Grounds (PPG) in the Marshall Islands and global stratospheric fallout. Since the {sup 240}Pu/{sup 239}Pu atom ratio is characteristic for the Pu emission source, information on Pu isotopic signature is very useful to better understand the transport process in the oceans and to identify the sources of Pu. The mean atom ratio of {sup 240}Pu/{sup 239}Pu from the global stratospheric fallout is 0.180 ±0.014 based on soil sample data, whereas that from close-in tropospheric fallout from the PPG is 0.33 - 0.36. The {sup 240}Pu/{sup 239}Pu atom ratios in seawater samples collected in marginal seas of the western North Pacific Ocean will provide important and useful data for understanding the process controlling Pu transport and for distinguishing future Pu sources. The objectives of this study were to measure the {sup 239+240}Pu concentrations and {sup 240}Pu/{sup 239}Pu atom ratios in seawater from the Sea of Okhotsk, Japan Sea, South China Sea and Sulu Sea and to discuss the transport process of Pu. Large-volume seawater samples (250 L each) were collected from the surface to the bottom in marginal seas of the western North Pacific Ocean with acoustically triggered quadruple PVC sampling bottles during the R/V Hakuho-Maru cruise. The {sup 239}Pu and {sup 240}Pu concentrations and {sup 240}Pu/{sup 239}Pu atom ratios were measured with a double-focusing SF-ICP-MS, which was equipped with a guard electrode to eliminate secondary discharge in the plasma and to enhance overall sensitivity. In

  13. A model of loggerhead sea turtle (Caretta caretta habitat and movement in the oceanic North Pacific.

    Directory of Open Access Journals (Sweden)

    Melanie Abecassis

    Full Text Available Habitat preferences for juvenile loggerhead turtles in the North Pacific were investigated with data from two several-year long tagging programs, using 224 satellite transmitters deployed on wild and captive-reared turtles. Animals ranged between 23 and 81 cm in straight carapace length. Tracks were used to investigate changes in temperature preferences and speed of the animals with size. Average sea surface temperatures along the tracks ranged from 18 to 23 °C. Bigger turtles generally experienced larger temperature ranges and were encountered in warmer surface waters. Seasonal differences between small and big turtles suggest that the larger ones dive deeper than the mixed layer and subsequently target warmer surface waters to rewarm. Average swimming speeds were under 1 km/h and increased with size for turtles bigger than 30 cm. However, when expressed in body lengths per second (bl s(-1, smaller turtles showed much higher swimming speeds (>1 bl s (-1 than bigger ones (0.5 bl s(-1. Temperature and speed values at size estimated from the tracks were used to parameterize a habitat-based Eulerian model to predict areas of highest probability of presence in the North Pacific. The model-generated habitat index generally matched the tracks closely, capturing the north-south movements of tracked animals, but the model failed to replicate observed east-west movements, suggesting temperature and foraging preferences are not the only factors driving large-scale loggerhead movements. Model outputs could inform potential bycatch reduction strategies.

  14. Climate Prediction Center (CPC) Daily Pacific North American Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pacific-North American pattern (PNA) is one of the leading teleconnection patterns in the Northern Hemisphere circulation. It is calculated as a Rotated...

  15. AFSC/NMML: North Pacific Right Whale Photo-ID Catalog

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The eastern population of the North Pacific right whale (Eubalaena japonica) is the most endangered stock of whales in the world, with recent abundance estimates...

  16. Weak Thermocline Mixing in the North Pacific Low-Latitude Western Boundary Current System

    Science.gov (United States)

    Liu, Zhiyu; Lian, Qiang; Zhang, Fangtao; Wang, Lei; Li, Mingming; Bai, Xiaolin; Wang, Jianing; Wang, Fan

    2017-10-01

    Despite its potential importance in the global climate system, mixing properties of the North Pacific low-latitude western boundary current system (LLWBC) remained unsampled until very recently. We report here on the first measurements of turbulence microstructure associated with these currents, made in the western boundary region of the tropical North Pacific east of the Philippines. The results suggest that thermocline mixing in the North Pacific LLWBC is generally weak with the diapycnal diffusivity κρ˜O(10-6) m2 s-1. This is consistent with predictions from internal wave-wave interaction theory that mixing due to internal wave breaking is significantly reduced at low latitudes. Enhanced mixing is found to be associated with a permanent cyclonic eddy, the Mindanao Eddy, but mainly at its south and north flanks. There, κρ is elevated by an order of magnitude due to eddy-induced geostrophic shear. Mixing in the eddy core is at the background level with no indication of enhancement.

  17. Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s

    Science.gov (United States)

    Hu, Feng; Li, Tim; Liu, Jia; Bi, Mingyu; Peng, Melinda

    2018-03-01

    Tropical cyclone (TC) genesis frequency in the western North Pacific (WNP) during 1960-2014 shows a step-by-step decrease on interdecadal timescale, in accordance to the phase of the Interdecadal Pacific Oscillation (IPO). The environmental parameters responsible for the interdecadal change of TC genesis frequency were investigated. It was found that vertical wind shear especially the zonal wind shear plays a critical role, while other parameters such as sea surface temperature (SST), vertical velocity, divergence, humidity and maximum potential intensity cannot explain the step-by-step decrease of TC genesis frequency. A further diagnosis shows that the interdecadal change of vertical wind shear is caused by SST and associated rainfall pattern changes across the Indo-Pacific Ocean. A stronger warming in the Indian Ocean/western Pacific from 1960-1976 to 1977-1998 led to enhanced convection over the Maritime Continent and thus strengthened vertical shear over the key TC genesis region in the WNP. A La Nina-like SST pattern change from 1977-1998 to 1999-2014 led to a strengthened Walker circulation in the tropical Pacific, which further enhanced the vertical shear and decreased TC genesis frequency in the WNP.

  18. Decadal oscillation of autumn precipitation in Central Vietnam modulated by the East Pacific–North Pacific (EP–NP) teleconnection

    International Nuclear Information System (INIS)

    Li, R; Wang, S-Y; Gillies, R R; Cho, C; Buckley, B M; Truong, L H

    2015-01-01

    Autumn precipitation over Central Vietnam is associated with an increase in the occurrence of tropical cyclones that lead to frequent flooding and pose a significant threat to lives and property. The present analyses reveal a pronounced decadal oscillation of autumn precipitation in Central Vietnam within the 8–11 year frequency band that is modulated by the East Pacific–North Pacific (EP–NP) teleconnection. The negative phase of the EP–NP pattern is associated with a positive sea surface temperature (SST) anomaly in the South China Sea (SCS) that induces low-level convergence, enhances convection, and increases precipitation over Central Vietnam and adjacent islands including Hainan (China) and the Philippines. This circulation feature around the SCS is embedded in a large-scale circulation associated with SST anomalies across the Pacific Ocean—i.e., cooling in the Eastern and Central tropical Pacific sandwiched by warming in the North and South Pacific as well as the Western Pacific Ocean. The positive phase of the EP–NP features opposite SST and circulation anomalies, with the result being reduced rainfall in Central Vietnam. This out-of-phase relationship and shared decadal spectral coherence between the EP–NP index and autumn precipitation in Central Vietnam might be useful for future climate predictions and flood management. (letter)

  19. Enhanced Influence of the Tropical Atlantic SST on the Western North Pacific Subtropical High after late 1970s

    Science.gov (United States)

    Hong, C. C.

    2015-12-01

    The western North Pacific subtropical high (WNPSH) in boreal summer shows a remarkable enhancement after the late 1970s. Whereas the sea surface temperature (SST) in the North Indian Ocean (NIO) and the equatorial eastern Pacific (EEP) had been noted to have remarkable local or remote effects on enhancing the WNPSH, the influence of the Atlantic SST, so far, is hardly explored. This article reports a new finding: enhanced relationship between the tropical Atlantic (TA)-SST and the WNPSH after the late 1970s. Regression study suggests that the warm TA-SST produced a zonally overturning circulation anomaly, with descending over the central equatorial Pacific and ascending over the tropical Atlantic/eastern Pacific. The anomalous descending over the central equatorial Pacific likely induced low-level anticyclonic anomaly to the west and therefore enhanced the WNPSH. One implication of this new finding is for predictability. The well-known "spring predictability barrier" (i.e., the influence of El Niño and Southern Oscillation (ENSO) falls dramatically during boreal spring) does not apply to the TA-SST/WNPSH relationship. Conversely, the TA-SST shows consistently high correlation starting from boreal spring when the ENSO influence continues declining. The TA-SST pushes the predictability of the WNPSH in boreal summer approximately one season earlier to boreal spring.

  20. Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift

    Science.gov (United States)

    Kim, Yong Sun; Jang, Chan Joo; Yeh, Sang-Wook

    2018-03-01

    The Yellow and East China Seas (YECS) are widely believed to have experienced robust, basin-scale warming over the last few decades. However, the warming reached a peak in the late 1990s, followed by a significant cooling trend. In this study, we investigated the characteristics of this low-frequency sea surface temperature (SST) variance and its dynamic relationship with large-scale climate variability through cyclostationary orthogonal function analysis for the 1982-2014 period. Both regressed surface winds on the primary mode of the YECS SST and trends in air-sea heat fluxes demonstrate that the intensification of the northerly winds in winter contribute largely to the recent cooling trend by increasing heat loss to the atmosphere. As a localized oceanic response to these winds, the upwind flow seems to bring warm waters and partially counteracts the basin-scale cooling, thus contributing to a weakening of the cooling trend along the central trough of the Yellow Sea. In the context of the large-scale climate variabilities, a strong relationship between the YECS SST variability and Pacific Decadal Oscillation (PDO) became weak considerably during the recent cooling period after the late 1990s as the PDO signals appeared to be confined within the eastern basin of the North Pacific in association with the regime shift. In addition to this decoupling of the YECS SST from the PDO, the intensifying Siberian High pressure system likely caused the enhanced northerly winds, leading to the recent cooling trend. These findings highlight relative roles of the PDO and the Siberian High in shaping the YECS SST variance through the changes in the large-scale atmospheric circulation and attendant oceanic advection.

  1. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific.

    Science.gov (United States)

    Avery-Gomm, Stephanie; O'Hara, Patrick D; Kleine, Lydia; Bowes, Victoria; Wilson, Laurie K; Barry, Karen L

    2012-09-01

    Marine plastic debris is a global issue, which highlights the need for internationally standardized methods of monitoring plastic pollution. The stomach contents of beached northern fulmar (Fulmarus glacialis) have proven a cost-effective biomonitor in Europe. However, recent information on northern fulmar plastic ingestion is lacking in the North Pacific. We quantified the stomach contents of 67 fulmars from beaches in the eastern North Pacific in 2009-2010 and found that 92.5% of fulmars had ingested an average of 36.8 pieces, or 0.385 g of plastic. Plastic ingestion in these fulmars is among the highest recorded globally. Compared to earlier studies in the North Pacific, our findings indicate an increase in plastic ingestion over the past 40 years. This study substantiates the use of northern fulmar as biomonitors of plastic pollution in the North Pacific and suggests that the high levels of plastic pollution in this region warrant further monitoring. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Patterns of change in climate and Pacific salmon production

    Science.gov (United States)

    Nathan J. Mantua

    2009-01-01

    For much of the 20th century a clear north-south inverse production pattern for Pacific salmon had a time dynamic that closely followed that of the Pacific Decadal Oscillation (PDO), which is the dominant pattern of North Pacific sea surface temperature variability. Total Alaska salmon production was high during warm regimes of the PDO, and total Alaska salmon...

  3. AFSC/RACE/GAP/Conrath: Delayed discard mortality of the North Pacific giant octopus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The majority of octopus bycatch occurs in Pacific cod pot fisheries and recent data collected by North Pacific Groundfish Observers indicate that immediate mortality...

  4. Rapid shift and millennial-scale variations in Holocene North Pacific Intermediate Water ventilation.

    Science.gov (United States)

    Lembke-Jene, Lester; Tiedemann, Ralf; Nürnberg, Dirk; Gong, Xun; Lohmann, Gerrit

    2018-05-22

    The Pacific hosts the largest oxygen minimum zones (OMZs) in the world ocean, which are thought to intensify and expand under future climate change, with significant consequences for marine ecosystems, biogeochemical cycles, and fisheries. At present, no deep ventilation occurs in the North Pacific due to a persistent halocline, but relatively better-oxygenated subsurface North Pacific Intermediate Water (NPIW) mitigates OMZ development in lower latitudes. Over the past decades, instrumental data show decreasing oxygenation in NPIW; however, long-term variations in middepth ventilation are potentially large, obscuring anthropogenic influences against millennial-scale natural background shifts. Here, we use paleoceanographic proxy evidence from the Okhotsk Sea, the foremost North Pacific ventilation region, to show that its modern oxygenated pattern is a relatively recent feature, with little to no ventilation before six thousand years ago, constituting an apparent Early-Middle Holocene (EMH) threshold or "tipping point." Complementary paleomodeling results likewise indicate a warmer, saltier EMH NPIW, different from its modern conditions. During the EMH, the Okhotsk Sea switched from a modern oxygenation source to a sink, through a combination of sea ice loss, higher water temperatures, and remineralization rates, inhibiting ventilation. We estimate a strongly decreased EMH NPIW oxygenation of ∼30 to 50%, and increased middepth Pacific nutrient concentrations and carbon storage. Our results ( i ) imply that under past or future warmer-than-present conditions, oceanic biogeochemical feedback mechanisms may change or even switch direction, and ( ii ) provide constraints on the high-latitude North Pacific's influence on mesopelagic ventilation dynamics, with consequences for large oceanic regions. Copyright © 2018 the Author(s). Published by PNAS.

  5. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from MOORINGS in the North Pacific Ocean from 1998-06-22 to 2004-11-23 (NODC Accession 0100079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100079 includes chemical, time series and underway - surface data collected from MOORINGS in the North Pacific Ocean and South Pacific Ocean from...

  6. North America and Asia Pacific LNG markets

    International Nuclear Information System (INIS)

    Pirie, J.D.

    1997-01-01

    The liquefied natural gas (LNG) export opportunities in the Asia Pacific market were reviewed. Some of the differences that affect a North American LNG projects compared to more typical LNG projects were also outlined. The two main aspects of the LNG market in North America include the establishment of LNG import terminals on the east and southern coasts of the United States and the development of export oriented LNG projects. The Pac-Rim LNG project calls for initial delivery to South Korea of 4.0 MTPA by the end of 2000. A large LNG project has also been proposed for the year 2005 which would use Prudhoe Bay gas. Generally, in North America, there is little use for large scale LNG import projects because of the vast pipeline network that delivers gas reliably and at low cost anywhere in North America. However, LNG remains a good alternative for the Asia Pacific region because of the lack of a pipeline network. Also, Japan, Korea and Taiwan, the three main centers for LNG demand, have no domestic energy supplies and rely on imported energy sources. China is another major market opportunity for LNG. The Pac-Rim LNG project differs from others of its kind in that usually, an LNG project is based on the availability of large reservoirs of natural gas owned by state governments and involves production agreements with multi-national oil and gas companies. This scenario is simply not possible in Canada's deregulated environment. In contrast, the existence of upstream facilities, technical expertise, and low capital costs, hence reduced risks and time to develop an LNG project, gives Canada significant advantages. 3 tabs., 3 figs

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and South Pacific Ocean from 2010-01-06 to 2010-09-17 (NODC Accession 0115170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115170 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and...

  8. 77 FR 47356 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Science.gov (United States)

    2012-08-08

    ...-XA500 North Pacific Fishery Management Council; Essential Fish Habitat Amendments AGENCY: National... Pacific Fishery Management Council submitted the following essential fish habitat (EFH) amendments to NMFS... Scallop Fishery off Alaska; and Amendment 1 to the FMP for Fish Resources of the Arctic Management Area...

  9. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  10. A database of paleoceanographic sediment cores from the North Pacific, 1951-2016

    Science.gov (United States)

    Borreggine, Marisa; Myhre, Sarah E.; Mislan, K. Allison S.; Deutsch, Curtis; Davis, Catherine V.

    2017-09-01

    We assessed sediment coring, data acquisition, and publications from the North Pacific (north of 30° N) from 1951 to 2016. There are 2134 sediment cores collected by American, French, Japanese, Russian, and international research vessels across the North Pacific (including the Pacific subarctic gyre, Alaskan gyre, Japan margin, and California margin; 1391 cores), the Sea of Okhotsk (271 cores), the Bering Sea (123 cores), and the Sea of Japan (349 cores) reported here. All existing metadata associated with these sediment cores are documented here, including coring date, location, core number, cruise number, water depth, vessel metadata, and coring technology. North Pacific sediment core age models are built with isotope stratigraphy, radiocarbon dating, magnetostratigraphy, biostratigraphy, tephrochronology, % opal, color, and lithological proxies. Here, we evaluate the iterative generation of each published age model and provide comprehensive documentation of the dating techniques used, along with sedimentation rates and age ranges. We categorized cores according to the availability of a variety of proxy evidence, including biological (e.g., benthic and planktonic foraminifera assemblages), geochemical (e.g., major trace element concentrations), isotopic (e.g., bulk sediment nitrogen, oxygen, and carbon isotopes), and stratigraphic (e.g., preserved laminations) proxies. This database is a unique resource to the paleoceanographic and paleoclimate communities and provides cohesive accessibility to sedimentary sequences, age model development, and proxies. The data set is publicly available through PANGAEA at PANGAEA.875998" target="_blank">https://doi.org/10.1594/PANGAEA.875998.

  11. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    Science.gov (United States)

    Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.

    2017-12-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

  12. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.

    Science.gov (United States)

    Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H

    2017-09-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.

  13. Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes

    Science.gov (United States)

    Gross, B. H.; Kreutz, K. J.; Osterberg, E. C.; McConnell, J. R.; Handley, M.; Wake, C. P.; Yalcin, K.

    2012-08-01

    Trends and sources of lead (Pb) aerosol pollution in the North Pacific rim of North America from 1850 to 2001 are investigated using a high-resolution (subannual to annual) ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Beginning in the early 1940s, increasing Pb concentration at Eclipse Icefield occurs coevally with anthropogenic Pb deposition in central Greenland, suggesting that North American Pb pollution may have been in part or wholly responsible in both regions. Isotopic ratios (208Pb/207Pb and 206Pb/207Pb) from 1970 to 2001 confirm that a portion of the Pb deposited at Eclipse Icefield is anthropogenic, and that it represents a variable mixture of East Asian (Chinese and Japanese) emissions transported eastward across the Pacific Ocean and a North American component resulting from transient meridional atmospheric flow. Based on comparison with source material Pb isotope ratios, Chinese and North American coal combustion have likely been the primary sources of Eclipse Icefield Pb over the 1970-2001 time period. The Eclipse Icefield Pb isotope composition also implies that the North Pacific mid-troposphere is not directly impacted by transpolar atmospheric flow from Europe. Annually averaged Pb concentrations in the Eclipse Icefield ice core record show no long-term trend during 1970-2001; however, increasing208Pb/207Pb and decreasing 206Pb/207Pb ratios reflect the progressive East Asian industrialization and increase in Asian pollutant outflow. The post-1970 decrease in North American Pb emissions is likely necessary to explain the Eclipse Icefield Pb concentration time series. When compared with low (lichen) and high (Mt. Logan ice core) elevation Pb data, the Eclipse ice core record suggests a gradual increase in pollutant deposition and stronger trans-Pacific Asian contribution with rising elevation in the mountains of the North Pacific rim.

  14. 78 FR 78824 - North Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-12-27

    ...-17 at the Hilton Hotel, 500 West Third Avenue, Katmai/King Salmon, Anchorage, AK. DATES: The workshop... Anchorage Hilton Hotel, 500 West Third Avenue, Anchorage, AK. Council address: North Pacific Fishery...

  15. Manganese in the North Pacific

    International Nuclear Information System (INIS)

    Bruland, K.W.; Landing, W.M.

    1980-01-01

    A quantitative and precise method for determination of dissolved M (nmol)/kg level in seawater has been developed and used to study the distribution of Mn in the northeast Pacific. Mn concentrations in the surface mixed layer decrease from 1.0 to 0.6 nmol/kg between the central gyre and the western boundary of the California Current, then increase to values from 2 to 6 nmol/kg near the coastal boundary (in contrast to the distribution of 210 Pb). Particulate Mn in the surface waters accounts for only about 1% of the total. Vertical distributions of Mn are characterized by surface maxima, minima near 300 m, maxima at mid-depth coinciding with the oxygen minimum and the labile nutrient maxima, and concentrations in Pacific bottom waters of approximately 0.2 nmol/kg. The oceanic distribution of Mn appears to be dominated by external inputs superimposed upon ovberall scavenging which can lead to Mn maxima in (1) the surface waters due to riverine and atmospheric sources; (2) the deep ocean as a result of hydrothermal injection and/or sediment resuspension; and (3) the oxygen minimum region resulting from in-situ breakdown of organic matter, in-situ MnO 2 reduction, and/or advective-diffusive transport of dissolved Mn from anoxic slope sediments. (orig.)

  16. Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific

    Science.gov (United States)

    Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro

    2018-06-01

    Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.

  17. Bathymetric Atlas of the North Pacific Ocean.

    Science.gov (United States)

    1978-01-01

    U.S. Coast and Geodetic Survey provided nearshore from Novel Oceenoglphic Office neutical chert of various detils around islands and reefs. Nautical...Easter Islands , 1961. Middle America Trench: Topography and struc- Bernice P. Bishop Mus. Bull. 110, p. 1-44. ture, Geol. Sec. Amer. Bull., v. 72, p...of volcanic ash layers and turbidito% ini 1956. Clipperton fracture zone in the northeastern equa- the north Pacific, Gal. Soc. Amer. Bull., v. 80, p

  18. A database of paleoceanographic sediment cores from the North Pacific, 1951–2016

    Directory of Open Access Journals (Sweden)

    M. Borreggine

    2017-09-01

    Full Text Available We assessed sediment coring, data acquisition, and publications from the North Pacific (north of 30° N from 1951 to 2016. There are 2134 sediment cores collected by American, French, Japanese, Russian, and international research vessels across the North Pacific (including the Pacific subarctic gyre, Alaskan gyre, Japan margin, and California margin; 1391 cores, the Sea of Okhotsk (271 cores, the Bering Sea (123 cores, and the Sea of Japan (349 cores reported here. All existing metadata associated with these sediment cores are documented here, including coring date, location, core number, cruise number, water depth, vessel metadata, and coring technology. North Pacific sediment core age models are built with isotope stratigraphy, radiocarbon dating, magnetostratigraphy, biostratigraphy, tephrochronology, % opal, color, and lithological proxies. Here, we evaluate the iterative generation of each published age model and provide comprehensive documentation of the dating techniques used, along with sedimentation rates and age ranges. We categorized cores according to the availability of a variety of proxy evidence, including biological (e.g., benthic and planktonic foraminifera assemblages, geochemical (e.g., major trace element concentrations, isotopic (e.g., bulk sediment nitrogen, oxygen, and carbon isotopes, and stratigraphic (e.g., preserved laminations proxies. This database is a unique resource to the paleoceanographic and paleoclimate communities and provides cohesive accessibility to sedimentary sequences, age model development, and proxies. The data set is publicly available through PANGAEA at https://doi.org/10.1594/PANGAEA.875998.

  19. Statistical Characteristics of Mesoscale Eddies in the North Pacific Derived from Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Yu-Hsin Cheng

    2014-06-01

    Full Text Available The sea level anomaly data derived from satellite altimetry are analyzed to investigate statistical characteristics of mesoscale eddies in the North Pacific. Eddies are detected by a free-threshold eddy identification algorithm. The results show that the distributions of size, amplitude, propagation speed, and eddy kinetic energy of eddy follow the Rayleigh distribution. The most active regions of eddies are the Kuroshio Extension region, the Subtropical Counter Current zone, and the Northeastern Tropical Pacific region. By contrast, eddies are seldom observed around the center of the eastern part of the North Pacific Subarctic Gyre. The propagation speed and kinetic energy of cyclonic and anticyclonic eddies are almost the same, but anticyclonic eddies possess greater lifespans, sizes, and amplitudes than those of cyclonic eddies. Most eddies in the North Pacific propagate westward except in the Oyashio region. Around the northeastern tropical Pacific and the California currents, cyclonic and anticyclonic eddies propagate westward with slightly equatorward (197° average azimuth relative to east and poleward (165° deflection, respectively. This implies that the background current may play an important role in formation of the eddy pathway patterns.

  20. The highest global concentrations and increased abundance of oceanic plastic debris in the North Pacific: Evidence from seabirds

    Science.gov (United States)

    Robards, Martin D.; Gould, Patrick J.; Coe, James M.; Rogers, Donald B.

    1997-01-01

    Plastic pollution has risen dramatically with an increase in production of plastic resin during the past few decades. Plastic production in the United States increased from 2.9 million tons in I960 to 47.9 million tons in 1985 (Society of the Plastics Industry 1986). This has been paralleled by a significant increase in the concentration of plastic particles in oceanic surface waters of the North Pacific from the 1970s to the late 1980s (Day and Shaw 1987; Day et al. 1990a). Research during the past few decades has indicated two major interactions between marine life and oceanic plastic: entanglement and ingestion (Laist 1987). Studies in the last decade have documented the prevalence of plastic in the diets of many seabird species in the North Pacific and the need for further monitoring of those species and groups that ingest the most plastic (Day et al. 1985).

  1. Inter-Relationship Between Subtropical Pacific Sea Surface Temperature, Arctic Sea Ice Concentration, and the North Atlantic Oscillation in Recent Summers and Winters

    Science.gov (United States)

    Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong

    2017-01-01

    The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).

  2. 78 FR 13867 - North Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-03-01

    .... SUMMARY: The North Pacific Fishery Management Council (Council) Ecosystem Committee will meet by... Essential Fish Habitat (EFH) consultation regarding gold dredging in crab habitat in Nome; (2) Report on NOAA progress with implementing Ecosystem Based Management (EBM) science throughout the regions; and (3...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 2007-10-08 to 2007-12-26 (NCEI Accession 0157449)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157449 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the Bering Sea, North Pacific Ocean and South...

  4. Projected sea level rise, gyre circulation and water mass formation in the western North Pacific: CMIP5 inter-model analysis

    Science.gov (United States)

    Terada, Mio; Minobe, Shoshiro

    2018-06-01

    Future changes in the dynamic sea level (DSL), which is defined as sea-level deviation from the global mean sea level, is investigated over the North Pacific, by analyzing data from the Coupled Model Intercomparison Project Phase 5. The analysis provides more comprehensive descriptions of DSL responses to the global warming in this region than available from previous studies, by using surface and subsurface data until the year 2300 under middle and high greenhouse-gas emission scenarios. The DSL changes in the North Pacific are characterized by a DSL rise in the western North Pacific around the Kuroshio Extension (KE), as also reported by previous studies. Subsurface density analysis indicates that DSL rise around the KE is associated with decrease in density of subtropical mode water (STMW) and with northward KE migration, the former (latter) of which is relatively strong between 2000 and 2100 for both RCP4.5 and RCP8.5 (between 2100 and 2300 for RCP8.5). The STMW density decrease is related to large heat uptake to the south and southeast of Japan, while the northward KE migration is associated with the poleward shift of the wind stress field. These features are commonly found in multi-model ensemble means and the relations among representative quantities produced by different climate models.

  5. Climate Prediction Center (CPC) Monthly Pacific North American Teleconnection Pattern Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the Pacific/ North American teleconnection pattern. The data spans the period 1950 to present. The index is derived from a rotated...

  6. Moisture transport from the Atlantic to the Pacific basin and its response to North Atlantic cooling and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ingo [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States)

    2010-08-15

    Atmospheric moisture transport from the Atlantic to the Pacific basin plays an important role in regulating North Atlantic salinity and thus the strength of the thermohaline circulation. Potential changes in the strength of this moisture transport are investigated for two different climate-change scenarios: North Atlantic cooling representative of Heinrich events, and increased greenhouse gas (GHG) forcing. The effect of North Atlantic cooling is studied using a coupled regional model with comparatively high resolution that successfully simulates Central American gap winds and other important aspects of the region. Cooler North Atlantic sea surface temperature (SST) in this model leads to a regional decrease of atmospheric moisture but also to an increase in wind speed across Central America via an anomalous pressure gradient. The latter effect dominates, resulting in a 0.13 Sv (1 Sv = 10{sup 6} m{sup 3} s{sup -1}) increase in overall moisture transport to the Pacific basin. In fresh water forcing simulations with four different general circulation models, the wind speed effect is also present but not strong enough to completely offset the effect of moisture decrease except in one model. The influence of GHG forcing is studied using simulations from the Intergovernmental Panel on Climate Change archive. In these simulations atmospheric moisture increases globally, resulting in an increase of moisture transport by 0.25 Sv from the Atlantic to Pacific. Thus, in both scenarios, moisture transport changes act to stabilize the thermohaline circulation. The notion that the Andes effectively block moisture transport from the Atlantic to the Pacific basin is not supported by the simulations and atmospheric reanalyses examined here. This indicates that such a blocking effect does not exist or else that higher resolution is needed to adequately represent the steep orography of the Andes. (orig.)

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Coral Sea, North Pacific Ocean and others from 2009-04-10 to 2009-07-03 (NCEI Accession 0144249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144249 includes Surface underway data collected from MIRAI in the Coral Sea, North Pacific Ocean, Philippine Sea, Solomon Sea and South Pacific Ocean...

  8. Puffins reveal contrasting relationships between forage fish and ocean climate in the North Pacific

    Science.gov (United States)

    Sydeman, William J.; Piatt, John F.; Thompson, Sarah Ann; Garcia-Reyes, Marisol; Hatch, Scott A.; Arimitsu, Mayumi L.; Slater, Leslie; Williams, Jeffrey C.; Rojek, Nora A.; Zador, Stephani G.; Renner, Heather M.

    2017-01-01

    Long-term studies of predator food habits (i.e., ‘predator-based sampling’) are useful for identifying patterns of spatial and temporal variability of forage nekton in marine ecosystems. We investigated temporal changes in forage fish availability and relationships to ocean climate by analyzing diet composition of three puffin species (horned puffin Fratercula corniculata, tufted puffin Fratercula cirrhata, and rhinoceros auklet Cerorhinca monocerata) from five sites in the North Pacific from 1978–2012. Dominant forage species included squids and hexagrammids in the western Aleutians, gadids and Pacific sand lance (Ammodytes personatus) in the eastern Aleutians and western Gulf of Alaska (GoA), and sand lance and capelin (Mallotus villosus) in the northern and eastern GoA. Interannual fluctuations in forage availability dominated variability in the western Aleutians, whereas lower-frequency shifts in forage fish availability dominated elsewhere. We produced regional multivariate indicators of sand lance, capelin, and age-0 gadid availability by combining data across species and sites using Principal Component Analysis, and related these indices to environmental factors including sea level pressure (SPL), winds, and sea surface temperature (SST). There was coherence in the availability of sand lance and capelin across the study area. Sand lance availability increased linearly with environmental conditions leading to warmer ocean temperatures, whereas capelin availability increased in a non-linear manner when environmental changes led to lower ocean temperatures. Long-term studies of puffin diet composition appear to be a promising tool for understanding the availability of these difficult-to-survey forage nekton in remote regions of the North Pacific.

  9. Conservation of native Pacific trout diversity in Western North America

    Science.gov (United States)

    Brooke E. Penaluna; Alicia Abadía-Cardoso; Jason B. Dunham; Francisco J. García-Dé León; Robert E. Gresswell; Arturo Ruiz Luna; Eric B. Taylor; Bradley B. Shepard; Robert Al-Chokhachy; Clint C. Muhlfeld; Kevin R. Bestgen; Kevin Rogers; Marco A. Escalante; Ernest R. Keeley; Gabriel M. Temple; Jack E. Williams; Kathleen R. Matthews; Ron Pierce; Richard L. Mayden; Ryan P. Kovach; John Carlos Garza; Kurt D. Fausch

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review...

  10. Circum-North Pacific tectonostratigraphic terrane map

    Science.gov (United States)

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Baranov, Boris B.; Byalobzhesky, Stanislav G.; Bundtzen, Thomas K.; Feeney, Tracey D.; Fujita, Kazuya; Gordey, Steven P.; Grantz, Arthur; Khanchuk, Alexander I.; Natal'in, Boris A.; Natapov, Lev M.; Norton, Ian O.; Patton, William W.; Plafker, George; Scholl, David W.; Sokolov, Sergei D.; Sosunov, Gleb M.; Stone, David B.; Tabor, Rowland W.; Tsukanov, Nickolai V.; Vallier, Tracy L.; Wakita, Koji

    1994-01-01

    The companion tectonostratigraphic terrane and overlap assemblage of map the Circum-North Pacific presents a modern description of the major geologic and tectonic units of the region. The map illustrates both the onshore terranes and overlap volcanic assemblages of the region, and the major offshore geologic features. The map is the first collaborative compilation of the geology of the region at a scale of 1:5,000,000 by geologists of the Russian Far East, Japanese, Alaskan, Canadian, and U.S.A. Pacific Northwest. The map is designed to be a source of geologic information for all scientists interested in the region, and is designed to be used for several purposes, including regional tectonic analyses, mineral resource and metallogenic analyses (Nokleberg and others, 1993, 1994a), petroleum analyses, neotectonic analyses, and analyses of seismic hazards and volcanic hazards. This text contains an introduction, tectonic definitions, acknowledgments, descriptions of postaccretion stratified rock units, descriptions and stratigraphic columns for tectonostratigraphic terranes in onshore areas, and references for the companion map (Sheets 1 to 5). This map is the result of extensive geologic mapping and associated tectonic studies in the Russian Far East, Hokkaido Island of Japan, Alaska, the Canadian Cordillera, and the U.S.A. Pacific Northwest in the last few decades. Geologic mapping suggests that most of this region can be interpreted as a collage of fault-bounded tectonostratigraphic terranes that were accreted onto continental margins around the Circum-

  11. 75 FR 70903 - Eastern North Pacific Gray Whale; Notice of Extension of Public Comment Period on Marine Mammal...

    Science.gov (United States)

    2010-11-19

    ... North Pacific Gray Whale; Notice of Extension of Public Comment Period on Marine Mammal Protection Act... whales (Eschrichtius robustus) as a depleted stock under the Marine Mammal Protection Act (MMPA) and... report for Eastern North Pacific gray whales is available on the Internet at the following address: http...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, temperature, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using automated Multi-parameter Inorganic Carbon Analyzer (MICA) for autonomous measurement of pH, carbon dioxide (CO2) and dissolved inorganic carbon (DIC) and other instruments from THOMAS G. THOMPSON in the Gulf of Alaska, North Pacific Ocean and South Pacific Ocean from 2006-02-13 to 2006-03-30 (NCEI Accession 0157411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157411 includes Surface underway, chemical and physical data collected from THOMAS G. THOMPSON in the Gulf of Alaska, North Pacific Ocean and South...

  13. Changes in size and trends of North American sea duck populations associated with North Pacific oceanic regime shifts

    Science.gov (United States)

    Flint, Paul L.

    2013-01-01

    Broad-scale multi-species declines in populations of North American sea ducks for unknown reasons is cause for management concern. Oceanic regime shifts have been associated with rapid changes in ecosystem structure of the North Pacific and Bering Sea. However, relatively little is known about potential effects of these changes in oceanic conditions on marine bird populations at broad scales. I examined changes in North American breeding populations of sea ducks from 1957 to 2011 in relation to potential oceanic regime shifts in the North Pacific in 1977, 1989, and 1998. There was strong support for population-level effects of regime shifts in 1977 and 1989, but little support for an effect of the 1998 shift. The continental-level effects of these regime shifts differed across species groups and time. Based on patterns of sea duck population dynamics associated with regime shifts, it is unclear if the mechanism of change relates to survival or reproduction. Results of this analysis support the hypothesis that population size and trends of North American sea ducks are strongly influenced by oceanic conditions. The perceived population declines appear to have halted >20 years ago, and populations have been relatively stable or increasing since that time. Given these results, we should reasonably expect dramatic changes in sea duck population status and trends with future oceanic regime shifts.

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-30 to 2005-11-20 (NCEI Accession 0148772)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148772 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-22 (NCEI Accession 0144533)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144533 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean and others from 2004-01-01 to 2004-12-21 (NCEI Accession 0144538)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144538 includes Surface underway data collected from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean, South Atlantic Ocean, South Pacific...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-31 to 2005-12-26 (NCEI Accession 0144531)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144531 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-21 (NCEI Accession 0148771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148771 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean and others from 2004-01-02 to 2004-12-21 (NCEI Accession 0148768)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148768 includes Surface underway data collected from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean, South Atlantic Ocean, South Pacific...

  20. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    Science.gov (United States)

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean and others from 2002-03-07 to 2012-11-24 (NODC Accession 0083196)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0083196 includes chemical, physical and underway - surface data collected from LAURENCE M. GOULD in the Caribbean Sea, North Pacific Ocean, South...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from RYOFU MARU in the Bismarck Sea, North Pacific Ocean and others from 1983-01-19 to 1989-02-06 (NCEI Accession 0157286)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157286 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, North Pacific Ocean,...

  3. Age determination of marine sediments in the western North Pacific by aspartic acid chronology

    International Nuclear Information System (INIS)

    Harada, Naomi; Kusakabe, Masashi; Handa, Nobuhiko; Oba, Tadamichi; Matsuoka, Hiromi; Kimoto, Katsunori.

    1997-01-01

    The ages of fossil planktonic foraminifera, Pulleniatina obliquiloculata, in sediments (core 3bPC) from the western North Pacific were determined by aspartic acid chronology, which uses the racemization reaction rate constant of aspartic acid (k Asp ). Aspartic acid racemization-based ages (Asp ages) ranged from 7,600 yrBP at the surface, to 307,000 yrBP at a depth of 352.9 cm in the sediments. This sediment core was also dated by the glacial-interglacial fluctuation of σ 18 O chronology, and the ages determined by both chronologies were compared. The ages derived from aspartic acid chronology and σ 18 O stratigraphy were more or less consistent, but there appeared to be some differences in age estimates between these two dating methods at some depths within the core. In the core top sediments, the likely cause for the age discrepancy could be the loss of the surface sediment during sampling of the core. At depths of 66.3 and 139 cm within the core, Asp ages indicated reduced sedimentation rates during ca. 60,000-80,000 yrBP and ca. 140,000-190,000 yrBP. The maximum age differences in both chronologies are 33,000 yr and 46,600 yr during each of these periods. These anomalous reductions in sedimentation rates occurring during these periods could possibly be related to some geological events, such as an increased dissolution effect of the calcium carbonate in the western North Pacific. Another possible reason for these age differences could be the unreliability in σ 18 O ages of core 3bPC as they were estimated by σ 18 O ages of another core, 3aPC. (author)

  4. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    Energy Technology Data Exchange (ETDEWEB)

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes

  5. Evaluation of the effectiveness of light streamer tori-lines and characteristics of bait attacks by seabirds in the western North Pacific.

    Directory of Open Access Journals (Sweden)

    Noriyosi Sato

    Full Text Available To improve the effectiveness of tori-lines it is necessary to evaluate the ability of tori-lines to mitigate seabird bycatch and determine what kind of seabird species gather during line settings, attack the bait and are incidentally caught. We conducted two experiments in the western North Pacific and examined the effectiveness for seabird mitigation of light streamer tori-lines which have no long streamers but many light (short streamers and are mainly used in the North Pacific area. Firstly, the effectiveness of two different types of tori-line (light streamer (1 m and long streamer (up to 7 m tori-line and of two different colors (yellow and red of light streamers for seabird bycatch avoidance was evaluated using 567 sets based on data from 20 offshore surface commercial longliners. No significant difference in the bycatch number between the different tori-line types and streamer colors was found. Secondly, we investigated the characteristics of the seabird bycatch in the North Pacific and the effectiveness of three different types of streamers (light, hybrid and modified light types by detailed observations of seabird attacks using a chartered longline vessel. Although the appearance rate of albatrosses and shearwaters were 40.9% and 27.7%, Laysan albatross was the main seabird species that followed the vessel but shearwaters seldom followed the vessel and did not aggregate during line setting. In all attacks on bait observed during line settings, 81% and 7% were by albatrosses and shearwaters, respectively. In the number of primary attacks by Laysan albatrosses which attacked most aggressively of all seabirds, there were no significant differences among the tori-line types. No individuals of shearwater were caught. The results of both experiments indicated that light streamer tori-lines were as effective as tori-lines with long streamers for mitigating seabird bycatch in the North Pacific.

  6. Abundance and ecological implications of microplastic debris in the North Pacific Subtropical Gyre

    OpenAIRE

    Goldstein, Miriam Chanita

    2012-01-01

    Plastic pollution in the North Pacific Subtropical Gyre (NPSG), dubbed the "Great Pacific Garbage Patch," has been the subject of substantial public concern. However, there is relatively limited scientific understanding of how microplastic affects pelagic ecosystems. The motivation for this dissertation is to provide scientific information on the extent and impact of microplastic in the NPSG. The dissertation is organized around two central questions : 1) What are the abundance, distribution,...

  7. Attribution of the variability of typhoon landfalls in China coasts to the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-western Pacific

    Science.gov (United States)

    Yang, L.; Chen, S.; Wang, C.; Wang, D.; Wang, X.

    2017-12-01

    The typhoon (TY) landfall activity along China coasts during July-August-September (JAS) shows significant interdecadal variations during 1965-2010. Three typical episodes for TY landfall activities in JAS along the China coasts during 1965-2010 can be identified, with more TY landfall during 1965-1978 (period I) and 1998-2010 (period III), and less during 1982-1995 (period II). We found that the interdcadal variations might be related to the combined effects of the Pacific Decadal Oscillation (PDO) phase change and the sea surface temperature (SST) variation in the tropical Indian Ocean and western Pacific (IO-WP). During negative PDO phase of periods I and III, a cyclonic anomaly is located in the western North Pacific (WNP) inducing easterly flow at its north, favoring TY landfall along eastern China coast. Due to Gill-pattern responses, warm SST anomalies over tropical IO-WP induce an anomalous anticyclonic circulation in the WNP, with southeasterly wind dominating in the northern SCS and WNP (10o-20o N), which favors TY reaching along southern China coast. With both landfalling-favorable conditions satisfied, there are significantly more TY landfall during period III than that of period I, which shows SST cooling in tropical IO-WP.

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from WAKATAKA MARU in the North Pacific Ocean from 2012-06-25 to 2012-10-21 (NCEI Accession 0157435)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157435 includes Surface underway, chemical, meteorological and physical data collected from WAKATAKA MARU in the North Pacific Ocean from 2012-06-25...

  9. Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; DeFlorio, Michael J.

    2018-02-01

    Climate modes of variability over the Atlantic and Pacific may be amplified by a positive feedback between sea-surface temperature (SST) and marine boundary layer clouds. However, it is well known that climate models poorly simulate this feedback. Does this deficiency contribute to model-to-model differences in the representation of climate modes of variability? Over both the North Atlantic and Pacific, typical summertime interannual to interdecadal SST variability exhibits horseshoe-like patterns of co-located anomalies of shortwave cloud radiative effect (CRE), low-level cloud fraction, SST, and estimated inversion strength over the subtropics and midlatitudes that are consistent with a positive cloud feedback. During winter over the midlatitudes, this feedback appears to be diminished. Models participating in the Coupled Model Intercomparison Project phase 5 that simulate a weak feedback between subtropical SST and shortwave CRE produce smaller and less realistic amplitudes of summertime SST and CRE variability over the northern oceans compared to models with a stronger feedback. The change in SST amplitude per unit change in CRE amplitude among the models and observations may be understood as the temperature response of the ocean mixed layer to a unit change in radiative flux over the course of a season. These results highlight the importance of boundary layer clouds in interannual to interdecadal atmosphere-ocean variability over the northern oceans during summer. The results also suggest that deficiencies in the simulation of these clouds in coupled climate models contribute to underestimation in their simulation of summer-to-summer SST variability.

  10. Long term behavior of radioactive plume of TEPCO FNPP1 released 134Cs and 137Cs in the North Pacific Ocean through the end of 2014

    Science.gov (United States)

    Aoyama, Michio; Tsumune, Daisuke; Tsubono, Takaki; Hamajima, Yasunori; Kumamoto, Yuichiro

    2015-04-01

    134Cs and 137Cs, hereafter radiocaesium, were released to the North Pacific Ocean by two major likely pathways, direct discharge from the Fukushima NPP1 accident site and atmospheric deposition off Honshu Islands of Japan, east and northeast of the site. High density observations of 134Cs and 137Cs in the surface water were carried out by 17 cruises of cargo ships and several research vessel cruises since March 2011 till March 2012. Thereafter we and our collaborators continue to collect seawater samples in 2013 and 2014 in the North Pacific Ocean. We also conduct to measure radiocaesium in coastal waters at Tomioka and Hasaki, Japan through the end of 2014. TEPCO and Japanese government also continue to monitor radiocaesium in seawaters close to the site. In this presentation, we present long term behavior of TEPCO FNPP1 released radiocaesium in the coastal region and the North Pacific Ocean based on the observations and model simulations during the period from just after the accident to summer in 2014. In the coastal region very close to TEPCO FNPP1 site, the data show peak ocean discharges in early April 2011, one month after the earthquake and a factor of 1000 decrease in the month following. The 137Cs activity through the end of September 2014 remain higher than expected, ca. 1000 Bq m-3, implying continued releases from the reactors. Since directly discharged radiocaesium were transported dominantly southward along the coastline of northeastern Honshu, the 137Cs activities in coastal seawater collected at Tomioka and Hasaki were still one or two order of magnitude higher, several to 100 Bq m-3, rather than pre-Fukushima level in summer 2014. In the North Pacific Ocean main body of radiocaesium surface plume of which activity exceed 10 Bq m-3 had been travelling along 40 °N, and reached International Date Line on March 2012 one year after the accident. A feature was that the radiocaesium plume was confined along 40 °N when the plume reached International

  11. How well do climate models simulate atmospheric teleconnctions over the North Pacific and East Asia associated with ENSO?

    Science.gov (United States)

    Kim, Sunyong; Son, Hye-Young; Kug, Jong-Seong

    2017-02-01

    During the El Niño and La Niña mature phase, atmospheric teleconnections over the North Pacific and East Asia vary considerably on sub-seasonal time scales, and are strongly phase-locked to the sub-seasonal evolution. In this study, we investigate how well climate models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate the sub-seasonal evolution of teleconnections over the North Pacific and East Asia associated with El Niño-Southern Oscillation (ENSO). In the observations, there is a prominent anticyclone anomaly over the Kuroshio extension region (i.e. Kuroshio anticyclone), which significantly affects East Asian climate in the early winter (November-December) of El Niño years. However, in January, the Kuroshio anticyclone suddenly disappears, and a cyclonic flow dominates over the North Pacific. It is found here that the CMIP5 models simulate the overall extratropical teleconnection patterns, but they fail to reproduce some of these sub-seasonally-varying features in atmospheric circulation. For example, the models tend to simulate a weaker Kuroshio anticyclone in the early winter during El Niño phases, and fail to capture the abrupt decay of the Kuroshio anticyclone in the late winter. We demonstrate here that these systematic errors in ENSO teleconnection can be explained by systematic errors in tropical precipitation associated with ENSO. That is, negative precipitation anomalies over the western North Pacific (WNP) are too weak in the models compared to that in the observations, and their amplitude tends to be strengthened from December to the following January, while they are weakened in the observations. In addition, analyses on the inter-model diversity strongly support that relative magnitudes of WNP and central Pacific precipitation anomalies are critical for determining sub-seasonal evolution of ENSO teleconnections over the North Pacific and East Asia.

  12. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the North to Equatorial Pacific.

    Directory of Open Access Journals (Sweden)

    Sai-Chun Tan

    Full Text Available A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997-2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the 50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32-0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36. These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.

  13. Centennial changes in North Pacific anoxia linked to tropical trade winds

    Science.gov (United States)

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-01-01

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ15N) from multiple sediment cores. Increasing δ15N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ15N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean’s largest anoxic zone will contract despite a global O2 decline.

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from SOYO-MARU in the Japan Sea, North Pacific Ocean and Philippine Sea from 2010-11-12 to 2011-07-17 (NODC Accession 0117672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117672 includes Surface underway, chemical, meteorological and physical data collected from SOYO-MARU in the Japan Sea, North Pacific Ocean and...

  15. Synchronous seasonal change in fin whale song in the North Pacific.

    Directory of Open Access Journals (Sweden)

    Erin M Oleson

    Full Text Available Fin whale (Balaenoptera physalus song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus and humpback whales (Megaptera novaeangliae, these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here.

  16. Interannual tropical Pacific sea surface temperature anomalies teleconnection to Northern Hemisphere atmosphere in November

    Science.gov (United States)

    King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel

    2018-03-01

    We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.

  17. The Asian-Bering-North American teleconnection: seasonality, maintenance, and climate impact on North America

    Science.gov (United States)

    Yu, Bin; Lin, H.; Wu, Z. W.; Merryfield, W. J.

    2018-03-01

    The Asian-Bering-North American (ABNA) teleconnection index is constructed from the normalized 500-hPa geopotential field by excluding the Pacific-North American pattern contribution. The ABNA pattern features a zonally elongated wavetrain originating from North Asia and flowing downstream across Bering Sea and Strait towards North America. The large-scale teleconnection is a year-round phenomenon that displays strong seasonality with the peak variability in winter. North American surface temperature and temperature extremes, including warm days and nights as well as cold days and nights, are significantly controlled by this teleconnection. The ABNA pattern has an equivalent barotropic structure in the troposphere and is supported by synoptic-scale eddy forcing in the upper troposphere. Its associated sea surface temperature anomalies exhibit a horseshoe-shaped structure in the North Pacific, most prominent in winter, which is driven by atmospheric circulation anomalies. The snow cover anomalies over the West Siberian plain and Central Siberian Plateau in autumn and spring and over southern Siberia in winter may act as a forcing influence on the ABNA pattern. The snow forcing influence in winter and spring can be traced back to the preceding season, which provides a predictability source for this teleconnection and for North American temperature variability. The ABNA associated energy budget is dominated by surface longwave radiation anomalies year-round, with the temperature anomalies supported by anomalous downward longwave radiation and damped by upward longwave radiation at the surface.

  18. Mercury in tunas and blue marlin in the North Pacific Ocean.

    Science.gov (United States)

    Drevnick, Paul E; Brooks, Barbara A

    2017-05-01

    Models and data from the North Pacific Ocean indicate that mercury concentrations in water and biota are increasing in response to (global or hemispheric) anthropogenic mercury releases. In the present study, we provide an updated record of mercury in yellowfin tuna (Thunnus albacares) caught near Hawaii that confirms an earlier conclusion that mercury concentrations in these fish are increasing at a rate similar to that observed in waters shallower than 1000 m. We also compiled and reanalyzed data from bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans) caught near Hawaii in the 1970s and 2000s. Increases in mercury concentrations in bigeye tuna are consistent with the trend found in yellowfin tuna, in both timing and magnitude. The data available for blue marlin do not allow for a fair comparison among years, because mercury concentrations differ between sexes for this species, and sex was identified (or reported) in only 3 of 7 studies. Also, mercury concentrations in blue marlin may be insensitive to modest changes in mercury exposure, because this species appears to have the ability to detoxify mercury. The North Pacific Ocean is a region of both relatively high rates of atmospheric mercury deposition and capture fisheries production. Other data sets that allow temporal comparisons in mercury concentrations, such as pacific cod (Gadus macrocephalus) in Alaskan waters and albacore tuna (Thunnus alalunga) off the US Pacific coast, should be explored further, to aid in understanding human health and ecological risks and to develop additional baseline knowledge for assessing changes in a region expected to respond strongly to reductions in anthropogenic mercury emissions. Environ Toxicol Chem 2017;36:1365-1374. © 2017 SETAC. © 2017 SETAC.

  19. Interannual variability of the North Pacific winter storm track and its relationship with extratropical atmospheric circulation

    Science.gov (United States)

    Ma, Xiaojiao; Zhang, Yaocun

    2018-01-01

    Interannual variability of the North Pacific storm track and the three-dimensional atmosphere circulation during winter are investigated using NCEP/NCAR reanalysis data during 1950-2015. Results show that year-to-year variations of the storm track exhibit two principal modes, i.e. the monopole intensity change and the meridional shift of the storm track, respectively. The intensity change mode is linked to weakening of the Siberian high, northward shift of the western Pacific jet stream and Aleutian Low, and well corresponding to the Western Pacific teleconnection. The meridional shift mode is related to intensification and south-eastward extension of western Pacific jet stream and Aleutian Low, and linked to the Pacific-North America teleconnection. The internal atmospheric dynamics responsible for the storm track variability is further investigated from the perspective of wave-flow energy conversion. For the intensity change mode, accompanied by the enhanced baroclinity over the entrance region of the storm track, more energy is converted from mean available potential energy to eddy available potential energy and then transferred to eddy kinetic energy, which is favorable for the overall enhancement of the storm track intensity. For the meridional shift mode, more energy is transformed from mean available potential energy to eddy available potential energy and further transferred to eddy kinetic energy over the southern (northern) areas of the storm track, contributing to the southward (northward) shift of the storm track. Additionally, the increased (decreased) conversion from mean-flow kinetic energy to eddy kinetic energy over the north-eastern Pacific region is also in favor of the southward (northward) shift of the storm track.

  20. Source function for tritium transport models in the Pacific

    International Nuclear Information System (INIS)

    Fine, R.A.; Ostlund, H.G.

    1977-01-01

    An empirically fitted function describes surface Pacific Ocean tritium concentrations as varying exponentially with latitude, the r.m.s. fit to observations is 18%. The oceanic tritium concentration maximum in the North Pacific, which resulted from nuclear weapons testing, lagged the rain data by two to three years occurring in 1965--66. Tritium-salinity correlations are consistent with climatology. Tritium-longitude correlations are consistent with surface water circulation

  1. Air-sea interaction in the tropical Pacific Ocean

    Science.gov (United States)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from COLUMBUS WAIKATO in the Bass Strait, North Pacific Ocean and others from 2004-03-03 to 2006-01-15 (NODC Accession 0080979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080979 includes Surface underway, chemical, meteorological and physical data collected from COLUMBUS WAIKATO in the Bass Strait, North Pacific Ocean,...

  3. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  4. 77 FR 66564 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Science.gov (United States)

    2012-11-06

    ...-XA500 North Pacific Fishery Management Council; Essential Fish Habitat Amendments AGENCY: National... Scallop Fishery off Alaska (Scallop FMP); and Amendment 1 to the FMP for Fish Resources of the Arctic Management Area (Arctic FMP). These amendments update the existing essential fish habitat (EFH) provisions in...

  5. Magnitudes and sources of precipitation and dry deposition fluxes of industrial and natural leads to the North Pacific at Enewetak

    International Nuclear Information System (INIS)

    Settle, D.M.; Patterson, C.C.

    1982-01-01

    A total atmospheric PB input flux of 7 ng Pb cm - 2 yr - 1 was measured in the North Pacific Easterlies at Enewetak. Parameters used to measure this flux were ratio of dry deposition flux to precipitation flux; Pb/ 210 Pb in precipitation and seawater; 210 Pb flux; washout factor; and Pb concentrations in air, rain, and dry deposition deposits. Relations among these parameters estabilished at Enewetak were used to recompute and comfirm previous estimates of lead fluxes to the oceans (ng Pb cm - 2 yr - 1 ) at the following locations: North Altantic Westerlies, 170; North Pacific Westerlies, 50; and South Pacific Easterlies, 3. Prehistoric lead output fluxes to sediments (ng Pb cm - 2 yr - 1 ) at these locations have been previously measured and were 4 (Enewetak); 30 North Atlantic Westerlies; 3 North Pacific Westerlies; 4 South Pacific Easterlies. These data show that the rates of atmospheric imputs of lead to the oceans vary directly with variations in rates of upwind emission of industrial lead from urban complexes on land. In the North Pacific and North Atlantic, present rates of atmospheric lead inputs are 10-fold greater than prehistoric outputs. In equatorial regions, present inputs and past outputs are more nearly equal. These observations disclose the effects of intense industrial atmospheric emissions of lead in the northern hemisphere westerlies which have overwhelmed prehistoric natural fluxes of lead to the oceans. The average concentration of lead in marine air at Enewetak is 170n pg m - 3 and varies less than a factor of 2 from that mean. One to 15% of this lead comes from seaspray, while the remainder comes from sources on land. About 90% of the seaspray lead is industrial, while 80 to 99% of that originating from land sources is industrial. Concentrations of lead in rain at Enewetak range from 6 to 63 pg/g with a mean value of 28

  6. Export production in the subarctic North Pacific over the last 800 kyrs: No evidence for iron fertilization?

    Science.gov (United States)

    Kienast, S.S.; Hendy, I.L.; Crusius, J.; Pedersen, Thomas F.; Calvert, S.E.

    2004-01-01

    The subarctic North Pacific is a high nitrate-low chlorophyll (HNLC) region, where phytoplankton growth rates, especially those of diatoms, are enhanced when micro-nutrient Fe is added. Accordingly, it has been suggested that glacial Fe-laden dust might have increased primary production in this region. This paper reviews published palaeoceanographic records of export production over the last 800 kyrs from the open North Pacific (north of ???35??N). We find different patterns of export production change over time in the various domains of the North Pacific (NW and NE subarctic gyres, the marginal seas and the transition zone). However, there is no compelling evidence for an overall increase in productivity during glacials in the subarctic region, challenging the paradigm that dust-born Fe fertilization of this region has contributed to the glacial draw down of atmospheric CO2. Potential reasons for the lack of increased glacial export production include the possibility that Fe-fertilization rapidly drives the ecosystem towards limitation by another nutrient. This effect would have been exacerbated by an even more stable mixed layer compared to today. ?? The Oceanographic Society of Japan.

  7. Air Refueling Operations in the North Pacific: Is There a More Efficient Method?

    National Research Council Canada - National Science Library

    Rauenhorst, Michael

    1998-01-01

    ... in new mission areas and optimizing the reverse associate unit. The best location to attempt either a KC-135 reverse associate unit or a non-traditional Air National Guard KC-135 squadron might be in the North Pacific Theater...

  8. Taxonomy Icon Data: North Pacific right whale [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available North Pacific right whale Eubalaena japonica Chordata/Vertebrata/Mammalia/Theria/Eu...theria/Cetacea Eubalaena_japonica_L.png Eubalaena_japonica_NL.png Eubalaena_japonica_S.png Eubalaena_japonic...a_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eubalaena+japonica&t=L http://biosciencedbc.jp/tax...onomy_icon/icon.cgi?i=Eubalaena+japonica&t=NL http://biosciencedbc.jp/taxonomy_ic...on/icon.cgi?i=Eubalaena+japonica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Eubalaena+japonica&t=NS ...

  9. Hazardous chemicals in marine mammals from the western North Pacific

    International Nuclear Information System (INIS)

    Miyazaki, N.; Tanabe, S.

    1999-01-01

    Marine mammals have long-term life and occupy the highest ecological niche in the marine ecosystem. Thus, higher concentration of hazardous chemicals are expected in marine mammals. In the present study, we review contamination of organochlorine compounds (DDTs, PCBs, HCHs, etc.), heavy metals (Hg, Cd, Pb, etc.) and butyltin (TBT, DBT and MBT) in marine mammals collected from the western North Pacific, and discuss the worldwide contamination of these chemicals

  10. Spatio-temporal distributions of dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid, α-dicarbonyls and fatty acids in the marine aerosols from the North and South Pacific

    Science.gov (United States)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka; Uematsu, Mitsuo

    2017-03-01

    Aerosol samples (TSP) were collected during a cruise in the North (3°05‧N-34°02‧N) and South (6°59‧S-25°46‧S) Pacific to investigate the spatio-temporal distributions of water-soluble dicarboxylic acids and related compounds. The molecular distributions of diacids were characterized by the predominance of oxalic (C2) acid followed by malonic (C3) and then succinic (C4) acid. However, we found a predominance of C4 over C3 in the aerosol sample that was collected in the western North Pacific Rim with a heavy influence from continental air masses. Atmospheric abundances of short chain diacids (C2-C4) are 2-3 times higher in the North Pacific than in the South Pacific. During the cruise, abundances of C2 in the western North Pacific are 5 times higher than those in the rest of the samples collected. Moreover, the aerosol samples collected in the western North Pacific demonstrated that glyoxylic (ωC2) acid and methylglyoxal (MeGly) were dominant together with C2. We found a strong correlation between C2 and ωC2 (r = 0.87) and C2 and MeGly (r = 0.97) in the western North Pacific aerosols but the correlations are significantly weak in the samples from the central North Pacific and Southern Ocean. Diacids were found to account for 1.6 to 14% of organic carbon with higher values in the western North Pacific. These results, together with 7-day backward air mass trajectories, indicate that ωC2 and MeGly are both originated from the photochemical oxidation of continent-derived organic precursors including isoprene, which can serve as precursors for the production of C2 during long-range atmospheric transport.

  11. Upper temperature tolerance of North Atlantic and North Pacific geographical isolates of Chondrus species (Rhodophyta)

    Science.gov (United States)

    Lüning, K.; Guiry, M. D.; Masuda, M.

    1987-09-01

    The upper survival temperature for most isolates of Chondrus crispus from localities ranging from northern Norway and Iceland to Spain, and for an isolate from Nova Scotia, was 28 °C after 2 weeks of exposure to temperatures of 20 31 °C at intervals of 1 °C. An upper survival limit of 29 °C was exhibited by a few European isolates from the English Channel, the North Sea, and one Irish isolate from the upper intertidal. The warm-temperate Japanese species C. nipponicus and C. giganteus forma flabellatus survived 30 °C, whereas 29 °C was the upper survival limit for the coldtemperature C. pinnulatus forma pinnulatus from northern Japan. A possible origin of C. crispus in the north Pacific is discussed.

  12. Cesium-134 and 137 activities in the central North Pacific Ocean after the Fukushima Dai-ichi Nuclear Power Plant accident

    Directory of Open Access Journals (Sweden)

    J. Kameník

    2013-09-01

    Full Text Available Surface seawater 134Cs and 137Cs samples were collected in the central and western North Pacific Ocean during the 2 yr after the Fukushima Dai-ichi Nuclear Power Plant accident to monitor dispersion patterns of these radioisotopes towards the Hawaiian Islands. In the absence of other recent sources and due to its short half-life, only those parts of the Pacific Ocean would have detectable 134Cs values that were impacted by Fukushima releases. Between March and May 2011, 134Cs was not detected around the Hawaiian Islands and Guam. Here, most 137Cs activities (1.2–1.5 Bq m–3 were in the range of expected preexisting levels. Some samples north of the Hawaiian Islands (1.6–1.8 Bq m–3 were elevated above the 23-month baseline established in surface seawater in Hawaii indicating that those might carry atmospheric fallout. The 23-month time-series analysis of surface seawater from Hawaii did not reveal any seasonal variability or trends, with an average activity of 1.46 ± 0.06 Bq m–3 (Station Aloha, 18 values. In contrast, samples collected between Japan and Hawaii contained 134Cs activities in the range of 1–4 Bq m–3, and 137Cs levels were about 2–3 times above the preexisting activities. We found that the southern boundary of the Kuroshio and Kuroshio extension currents represented a boundary for radiation dispersion with higher activities detected within and north of the major currents. The radiation plume has not been detected over the past 2 yr at the main Hawaiian Islands due to the transport patterns across the Kuroshio and Kuroshio extension currents.

  13. Cesium-134 and 137 activities in the central North Pacific Ocean after the Fukushima Dai-ichi Nuclear Power Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Kamenik, J.; Dulaiova, H. [Hawaii Univ., Manoa, Honolulu, HI (United States). Dept. of Geology and Geophysics; Buesseler, K.O.; Pike, S.M. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States). Dept. of Marine Chemistry and Geochemistry; St' astna, K. [Czech Technical Univ., Prague (Czech Republic). Dept. of Nuclear Chemistry

    2013-07-01

    Surface seawater {sup 134}Cs and {sup 137}Cs samples were collected in the central and western North Pacific Ocean during the 2 yr after the Fukushima Dai-ichi Nuclear Power Plant accident to monitor dispersion patterns of these radioisotopes towards the Hawaiian Islands. In the absence of other recent sources and due to its short half-life, only those parts of the Pacific Ocean would have detectable {sup 134}Cs values that were impacted by Fukushima releases. Between March and May 2011, {sup 134}Cs was not detected around the Hawaiian Islands and Guam. Here, most {sup 137}Cs activities (1.2-1.5 Bq m{sup -3}) were in the range of expected preexisting levels. Some samples north of the Hawaiian Islands (1.6-1.8 Bq m{sup -3}) were elevated above the 23-month baseline established in surface seawater in Hawaii indicating that those might carry atmospheric fallout. The 23-month time-series analysis of surface seawater from Hawaii did not reveal any seasonal variability or trends, with an average activity of 1.46 ± 0.06 Bq m{sup -3} (Station Aloha, 18 values). In contrast, samples collected between Japan and Hawaii contained {sup 134}Cs activities in the range of 1-4 Bq m{sup -3}, and {sup 137}Cs levels were about 2-3 times above the preexisting activities. We found that the southern boundary of the Kuroshio and Kuroshio extension currents represented a boundary for radiation dispersion with higher activities detected within and north of the major currents. The radiation plume has not been detected over the past 2 yr at the main Hawaiian Islands due to the transport patterns across the Kuroshio and Kuroshio extension currents.

  14. Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals

    Directory of Open Access Journals (Sweden)

    T. P. Guilderson

    2013-09-01

    Full Text Available δ15N and δ13C data obtained from samples of proteinaceous deep-sea corals collected from the North Pacific Subtropical Gyre (Hawaiian Archipelago and the central equatorial Pacific (Line Islands document multidecadal to century-scale variability in the isotopic composition of surface-produced particulate organic matter exported to the deep sea. Comparison of the δ13C data, where Line Islands samples are 0.6‰ more positive than the Hawaiian samples, supports the contention that the North Pacific Subtropical Gyre is more efficient than the tropical upwelling system at trapping and/or recycling nutrients within the mixed layer. δ15N values from the Line Islands samples are also more positive than those from the central gyre, and within the Hawaiian samples there is a gradient with more positive δ15N values in samples from the main Hawaiian Islands versus the French Frigate Shoals in the Northwestern Hawaiian Islands. The gradient in the Hawaiian samples likely reflects the relative importance of algal acquisition of metabolic N via dissolved seawater nitrate uptake versus nitrogen fixation. The Hawaiian sample set also exhibits a strong decrease in δ15N values from the mid-Holocene to present. We hypothesize that this decrease is most likely the result of decreasing trade winds, and possibly a commensurate decrease in entrainment of more positive δ15N-NO3 subthermocline water masses.

  15. Perfluoroalkyl acids in surface seawater from the North Pacific to the Arctic Ocean: Contamination, distribution and transportation.

    Science.gov (United States)

    Li, Lei; Zheng, Hongyuan; Wang, Tieyu; Cai, Minghong; Wang, Pei

    2018-03-16

    The bioaccumulative, persistent and toxic properties of long-chain perfluoroalkyl acids (PFAAs) resulted in strict regulations on PFAAs, especially in developed countries. Consequently, the industry manufacturing of PFAAs shifts from long-chain to short-chain. In order to better understand the pollution situation of PFAAs in marine environment under this new circumstance, the occurrence of 17 linear PFAAs was investigated in 30 surface seawater samples from the North Pacific to Arctic Ocean (123°E to 24°W, 32 to 82°N) during the sixth Chinese Arctic Expedition in 2014. Total concentrations of PFAAs (∑PFAAs) were between 346.9 pg per liter (pg/L) to 3045.3 pg/L. The average concentrations of ∑PFAAs decreased in the order of East China Sea (2791.4 pg/L, n = 2), Sea of Japan (East Sea) (832.8 pg/L, n = 6), Arctic Ocean (516.9 pg/L, n = 7), Chukchi Sea (505.2 pg/L, n = 4), Bering Sea (501.2 pg/L, n = 8) and Sea of Okhotsk (417.7 pg/L, n = 3). C4 to C9 perfluoroalkyl carboxylic acids (PFCAs) were detected in more than 80% of the surface water samples. Perfluorobutanoic acid (PFBA) was the most prevalent compound and perfluorooctanoic acid (PFOA) was the second abundant homolog. The concentration of individual PFAAs in the surface seawater of East China Sea was much higher than other sampling seas. As the spatial distribution of PFAAs in the marine environment was mainly influenced by the river inflow from the basin countries, which proved the large input from China. Furthermore, the marginal seas of China were found with the greatest burden of PFOA comparing the pollution level in surface seawater worldwide. PFBA concentration in the surrounding seas of China was also high, but distributed more evenly with an obvious increase in recent years. This large-scale monitoring survey will help the improvement and development of PFAAs regulations and management, where production shift should be taken into consideration. Copyright

  16. Evaluation of performance of CMIP5 models in simulating the North Pacific Oscillation and El Niño Modoki

    Science.gov (United States)

    Wang, Xin; Chen, Mengyan; Wang, Chunzai; Yeh, Sang-Wook; Tan, Wei

    2018-04-01

    Previous observational studies have documented that the occurrence frequency of El Niño Modoki is closely linked to the North Pacific Oscillation (NPO). The present paper evaluates the relationships between the frequency of El Niño Modoki and the NPO in the historical runs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and examines the related physical processes. It is found that six of 25 CMIP5 models can reproduce both the spatial patterns of the NPO and El Niño Modoki. Four of these six models exhibit good performance in simulating the positive correlation between the NPO index and the frequency of El Niño Modoki. The analyses further show that the key physical processes determining the relationships between the NPO and the frequency of El Niño Modoki are the intensity of wind-evaporation-SST (WES) feedback in the subtropical northeastern North Pacific. This study enhances the understanding of the connections between the North Pacific mid-latitude climate system and El Niño Modoki, and has an important implication for the change of El Niño Modoki under global warming. If global warming favors to produce an oceanic and atmospheric pattern similar to the positive phase of the NPO in the North Pacific, more El Niño Modoki events will occur in the tropical Pacific with the assistance of the WES feedback processes.

  17. Radiocarbon in dissolved organic matter in the central North Pacific Ocean

    International Nuclear Information System (INIS)

    Williams, P.M.; Druffel, E.R.M.

    1987-01-01

    The authors present the first detailed profile of radiocarbon measured in dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the oligotrophic gyre of the central North Pacific. Δ 14 C of DOC ranged from -150 per mille (1,310 yr BP) in surface waters to -540 per mille (6,240 yr BP) at 5,710 m, 40 m off the bottom. The surprising similarity in the shapes of the profiles of Δ 14 C in the DOC and DIC pools suggest that similar processes are controlling the radiocarbon distribution in each of the two reservoirs and that bomb-produced radiocarbon has penetrated the DOC + DIC pools to a depth of ∼ 900 m. The depletion of the Δ 14 Csub(DOC) values by 300 per mille with respect to the Δ 14 Csub(DIC) values suggests that a certain fraction of the DOC is recycled within the ocean on longer time-scales than DIC. (author)

  18. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections.

    Science.gov (United States)

    Park, Doo-Sun R; Ho, Chang-Hoi; Chan, Johnny C L; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-30

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate.

  19. ENSO surface longwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2007-01-01

    Full Text Available We have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net over a 21-year period in the tropical and subtropical Pacific Ocean (40 S–40 N, 90 E–75 W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text, for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15–0 S, 105–130 E. There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3–4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm−2 during El Niño episodes to −20 Wm−2 during La Niña events, while over the western Pacific (15–0 S, 105–130 E these values range from −15 Wm−2 to +10 Wm−2, respectively. The long- term average (1984–2004 distribution of the net downwelling longwave radiation at the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm−2 south of the equator in the central Pacific (7–0 S, 160–120 W for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the

  20. Pre-bomb marine reservoir ages in the western north Pacific: Preliminary result on Kyoto University collection

    International Nuclear Information System (INIS)

    Yoneda, Minoru; Kitagawa, Hiroyuki; Plicht, Johannes van der; Uchida, Masao; Tanaka, Atsushi; Uehiro, Takashi; Shibata, Yasuyuki; Morita, Masatoshi; Ohno, Terufumi

    2000-01-01

    The calibration of radiocarbon dates on marine materials involves a global marine calibration with regional corrections. The marine reservoir ages in the Western North Pacific have not been discussed, while it is quite important to determine the timing of palaeo-environmental changes as well as archaeological interpretation around this region. The lack of adequate collection of the pre-bomb shell from western north Pacific was the biggest problem. Recently we had a chance to examine specimens from an old shell collection stored in Kyoto University, including shell specimens from Japan, Korea, Taiwan and the Micronesia of 1920s and 1930s. We explored the possibility for usage of specimen without clear evidence of live collection by measuring 30 apparent radiocarbon ages of pre-bomb mollusk shells from 18 sites in Western North Pacific. The preliminary results showed several discrepancies with previously reported results and with each other. We have to carefully select the shell specimen that has biological signs such as articulating fulcrum. In order to exploit this big resource of pre-bomb shell collection, the new technique to distinguish fossils from live collected samples should be developed by using chemical and physical methods

  1. Impact of the Fukushima accident on tritium, radiocarbon and radiocesium levels in seawater of the western North Pacific Ocean: A comparison with pre-Fukushima situation.

    Science.gov (United States)

    Povinec, P P; Liong Wee Kwong, L; Kaizer, J; Molnár, M; Nies, H; Palcsu, L; Papp, L; Pham, M K; Jean-Baptiste, P

    2017-01-01

    Tritium, radiocarbon and radiocesium concentrations in water column samples in coastal waters offshore Fukushima and in the western North Pacific Ocean collected in 2011-2012 during the Ka'imikai-o-Kanaloa (KoK) cruise are compared with other published results. The highest levels in surface seawater were observed for 134 Cs and 137 Cs in seawater samples collected offshore Fukushima (up to 1.1 Bq L -1 ), which represent an increase by about three orders of magnitude when compared with the pre-Fukushima concentration. Tritium levels were much lower (up to 0.15 Bq L -1 ), representing an increase by about a factor of 6. The impact on the radiocarbon distribution was measurable, but the observed levels were only by about 9% above the global fallout background. The 137 Cs (and similarly 134 Cs) inventory in the water column of the investigated western North Pacific region was (2.7 ± 0.4) PBq, while for 3 H it was only (0.3 ± 0.2) PBq. Direct releases of highly contaminated water from the damaged Fukushima NPP, as well as dry and wet depositions of these radionuclides over the western North Pacific considerably changed their distribution patterns in seawater. Presently we can distinguish Fukushima labeled waters from global fallout background thanks to short-lived 134 Cs. However, in the long-term perspective when 134 Cs will decay, new distribution patterns of 3 H, 14 C and 137 Cs in the Pacific Ocean should be established for future oceanographic and climate change studies in the Pacific Ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dynamic computer model for the metallogenesis and tectonics of the Circum-North Pacific

    Science.gov (United States)

    Scotese, Christopher R.; Nokleberg, Warren J.; Monger, James W.H.; Norton, Ian O.; Parfenov, Leonid M.; Khanchuk, Alexander I.; Bundtzen, Thomas K.; Dawson, Kenneth M.; Eremin, Roman A.; Frolov, Yuri F.; Fujita, Kazuya; Goryachev, Nikolai A.; Pozdeev, Anany I.; Ratkin, Vladimir V.; Rodinov, Sergey M.; Rozenblum, Ilya S.; Scholl, David W.; Shpikerman, Vladimir I.; Sidorov, Anatoly A.; Stone, David B.

    2001-01-01

    The digital files on this report consist of a dynamic computer model of the metallogenesis and tectonics of the Circum-North Pacific, and background articles, figures, and maps. The tectonic part of the dynamic computer model is derived from a major analysis of the tectonic evolution of the Circum-North Pacific which is also contained in directory tectevol. The dynamic computer model and associated materials on this CD-ROM are part of a project on the major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. The project provides critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the project are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first, extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and Eastern Asia.

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from SOYO-MARU in the North Pacific Ocean, Philippine Sea and South Atlantic Ocean from 2012-04-10 to 2012-11-30 (NCEI Accession 0157371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157371 includes Surface underway, chemical, meteorological and physical data collected from SOYO-MARU in the North Pacific Ocean, Philippine Sea and...

  4. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    Science.gov (United States)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  5. Changes in atmospheric rivers and moisture transport over the Northeast Pacific and western North America in response to ENSO diversity

    Science.gov (United States)

    Kim, Hye-Mi; Zhou, Yang; Alexander, Michael A.

    2017-03-01

    The year-to-year changes in atmospheric rivers (ARs) and moisture transport over the northeast Pacific and western North America are investigated during December to February (DJF) from 1979/80 to 2015/16. Changes in AR frequency, intensity, and landfall characteristics are compared between three ENSO phases: central Pacific El Niño (CPEN), eastern Pacific El Niño (EPEN), and La Niña (NINA). During EPEN events, the subtropical jet extends to the south and east with an anomalous cyclonic flow around a deeper Aleutian Low. More moisture is transported towards North America and AR frequency is increased over western North America. In CPEN events, the Aleutian low shifts further southward relative to its position in EPEN, resulting in an increase in the frequency and intensity of landfalling ARs over the southwestern US. In NINA events, the landfalling AR frequency is reduced associated with anomalous anticyclonic circulation over the eastern North Pacific. We diagnose the contribution of multiple factors to the seasonal mean moisture transport using moisture budgets. During the three ENSO phases, the change in low-frequency circulation (dynamical process) is the leading contributor to the seasonal mean moisture flux divergence, while the contributions of the synoptic anomalies and the change in moisture anomaly (thermodynamic process) are not significant along the west coast of North America.

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the North Pacific Ocean from 2007-07-24 to 2007-09-03 (NCEI Accession 0157457)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157457 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the North Pacific Ocean from 2007-07-24 to...

  7. Vertical distributions of particulate plutonium in the western North Pacific Ocean

    International Nuclear Information System (INIS)

    Okubo, Ayako; Zheng, Jian; Aono, Tatsuo; Kaeriyama, Hideki; Nakanishi, Takahiro; Yamada, Masatoshi; Kusakabe, Masashi

    2007-01-01

    We examined the vertical distributions of 239+240 Pu activity and 240 Pu / 239 Pu atom ratio in particles collected by large volume water in-situ pump in the western North Pacific Ocean (off Rokkasho, Japan). This is the first information of vertical distribution of plutonium activity and Plutonium atom ratio in small particle (1-70 μm) and large particle (>70 μm). (author)

  8. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATSUSHIMA in the Inland Sea, North Pacific Ocean and others from 1987-01-24 to 1991-03-10 (NODC Accession 0080987)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080987 includes Surface underway, chemical, meteorological and physical data collected from NATSUSHIMA in the Inland Sea (Seto Naikai), North Pacific...

  10. Oceanography. Centennial changes in North Pacific anoxia linked to tropical trade winds.

    Science.gov (United States)

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-08-08

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ(15)N) from multiple sediment cores. Increasing δ(15)N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ(15)N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean's largest anoxic zone will contract despite a global O2 decline. Copyright © 2014, American Association for the Advancement of Science.

  11. Particle and solution phase depth distributions of transuranics and 55Fe in the North Pacific

    International Nuclear Information System (INIS)

    Livingston, H.D.; Mann, D.R.; Casso, S.A.; Schneider, D.L.; Surprenant, L.D.; Bowen, V.T.

    1987-01-01

    In situ large volume filtration and chemisorption techniques were used to collect samples from the North Pacific for radiochemical analyses of fallout transuranics and 55 Fe in filterable and filtered phases. The data cover several locations for surface collections and a detailed depth profile north of Hawaii at 30 0 N. The observed partition of these nuclides between suspended particulate and filtered phases is directly linked to the rates at which they are moved downward through the water column in association with sinking particles. Particulate phases in open ocean surface waters contain higher Pu than subsurface particulates. 241 Am was found to exhibit much stronger particle association in accord with its known greater particle reactivity. In the high Pu deep water layer, particle associated Pu dropped to close to 1% of total Pu concentration. Together with a correlated increase in the proportion of oxidized Pu in this layer close to the sediment-water interface, this is clear evidence of remobilization of Pu from particles at, or near to, the interface. 55 Fe distributions on filtered particulates indicate a much deeper depth distribution relative to the transuranics. This may reflect both a higher particle association reactivity in respect to scavenging and a longer exposure history to scavenging. (author)

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from SOGEN MARU in the North Pacific Ocean and Philippine Sea from 1991-10-08 to 1991-12-31 (NODC Accession 0080991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080991 includes Surface underway, chemical, meteorological and physical data collected from SOGEN MARU in the North Pacific Ocean and Philippine Sea...

  13. Integrated Bird Conservation along the Pacific Coast of North America: An Action Agenda

    Science.gov (United States)

    Gregg Elliott; Bob Altman; Wendy Easton; Ricardo Estrella; Geoffrey Geupel; Mary Chase; Ellie Cohen; Ann Chrisney

    2005-01-01

    Scientists and managers representing the continental bird conservation plans explored the status of conservation planning and implementation for birds along the Pacific coast of North America. The theme of the session, "using common currencies to advance bird conservation," emphasized the components of bird conservation shared among the major initiatives,...

  14.  Climate change may trigger broad shifts in North America's Pacific Coastal rainforests

    Science.gov (United States)

    Dominick A. DellaSala; Patric Brandt; Marni   Koopman; Jessica Leonard; Claude Meisch; Patrick Herzog; Paul Alaback; Michael I. Goldstein; Sarah Jovan; Andy MacKinnon; Henrik von Wehrden

    2015-01-01

    Climate change poses significant threats to Pacific coastal rainforests of North America. Land managers currently lack a coordinated climate change adaptation approach with which to prepare the region's globally outstanding biodiversity for accelerating change. We provided analyses intended to inform coordinated adaptation for eight focal rainforest tree species...

  15. On the unstable ENSO-Western North Pacific Monsoon relation during the 20th Century

    Science.gov (United States)

    Vega Martín, Inmaculada; Gallego Puyol, David; Ribera Rodriguez, Pedro; Gómez Delgado, Francisco de Paula; Peña-Ortiz, Cristina

    2017-04-01

    The concept of the Western North Pacific Summer Monsoon (WNPSM) appeared for the first time in 1987. Unlike the Indian Summer Monsoon and the East Asian summer monsoon, the WNPSM is an oceanic monsoon driven essentially by the meridional gradient of sea surface temperature. Its circulation is characterized by a northwest-southeast oriented monsoon trough with intense precipitation and low-level southwesterlies and upper-tropospheric easterlies in the region [100°-130° E, 5°-15°N]. Although this monsoon is mainly oceanic, it modulates the precipitation of densely populated areas such as the Philippines. To date, the WNPSM has been quantified by the so-called Western North Pacific Monsoon Index (WNPMI), an index based on wind anomalies over large domains of the Western Pacific. The requirement of continuous observed wind over remote oceanic areas to compute the WNPMI has limited its availability to the 1949-2014 period. In this work we have extended the index by almost 100 years by using historical observations of wind direction taken aboard ships. Our Western North Pacific Directional Index (WNPDI), is defined as the sum of the persistence of the low-level westerly winds in [5°-15°N, 100°-130°E] and easterly winds in [20°-30°N, 110°-140°E]. The new WNPDI index is highly correlated to the existent WNPMI for the concurrent period (1948-2014). (r=+0.88, p<0.01), indicating that the new approach based in the use of wind direction alone (a variable that can be considered instrumental even before the 20th Century), captures most of the monsoonal signal. Previous studies found that, during the second part of the 20th Century the WNPSM exhibited two basic characteristics: first a large interannual variability and second, a significant relation between the WNPSM and the El Niño/Southern Oscillation (ENSO) in a way in which a strong (weak) WNPSM tends to occur during the El Niño (La Niña) developing year or/and La Niña (El Niño) decaying year. The analysis of

  16. Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan

    Science.gov (United States)

    Huang, Wan-Ru; Wang, S.-Y. Simon; Guan, Biing T.

    2018-03-01

    A 110-year precipitation record in Taiwan, located at the western edge of the subtropical North Pacific, depicts a pronounced quasi-decadal oscillation (QDO). The QDO in Taiwan exhibits a fluctuating relationship with the similar decadal variations of sea surface temperature (SST) anomalies in the central equatorial Pacific, known as the Pacific QDO. A regime change was observed around 1960, such that the decadal variation of Taiwan's precipitation became more synchronized with the Pacific QDO's coupled evolutions of SST and atmospheric circulation than before, while the underlying pattern of the Pacific QOD did not change. Using long-term reanalysis data and CMIP5 single-forcing experiments, the presented analysis suggests that increased SST in the subtropical western Pacific and the strengthened western extension of the North Pacific subtropical anticyclone may have collectively enhanced the relationship between the Taiwan precipitation and the Pacific QDO. This finding provides possible clues to similar regime changes in quasi-decadal variability observed around the western Pacific rim.

  17. CHARACTERISTICS OF MEI-YU PRECIPITATION AND SVD ANALYSIS OF PRECIPITATION OVER THE YANGTZE-HUAIHE RIVERS VALLEYS AND THE SEA SURFACE TEMPERATURE IN THE NORTHERN PACIFIC OCEAN

    Institute of Scientific and Technical Information of China (English)

    MAO Wen-shu; WANG Qian-qian; PENG Jun; LI Yong-hua

    2008-01-01

    Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal function (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.

  18. Millennial-scale precipitation variability over Easter Island (South Pacific) during MIS 3: inter-hemispheric teleconnections with North Atlantic abrupt cold events

    Science.gov (United States)

    Margalef, O.; Cacho, I.; Pla-Rabes, S.; Cañellas-Boltà, N.; Pueyo, J. J.; Sáez, A.; Pena, L. D.; Valero-Garcés, B. L.; Rull, V.; Giralt, S.

    2015-04-01

    Marine Isotope Stage 3 (MIS 3, 59.4-27.8 kyr BP) is characterized by the occurrence of rapid millennial-scale climate oscillations known as Dansgaard-Oeschger cycles (DO) and by abrupt cooling events in the North Atlantic known as Heinrich events. Although both the timing and dynamics of these events have been broadly explored in North Atlantic records, the response of the tropical and subtropical latitudes to these rapid climatic excursions, particularly in the Southern Hemisphere, still remains unclear. The Rano Aroi peat record (Easter Island, 27° S) provides a unique opportunity to understand atmospheric and oceanic changes in the South Pacific during these DO cycles because of its singular location, which is influenced by the South Pacific Anticyclone (SPA), the Southern Westerlies (SW), and the Intertropical Convergence Zone (ITCZ) linked to the South Pacific Convergence Zone (SPCZ). The Rano Aroi sequence records 6 major events of enhanced precipitation between 38 and 65 kyr BP. These events are compared with other hydrological records from the tropical and subtropical band supporting a coherent regional picture, with the dominance of humid conditions in Southern Hemisphere tropical band during Heinrich Stadials (HS) 5, 5a and 6 and other Stadials while dry conditions prevailed in the Northern tropics. This antiphased hydrological pattern between hemispheres has been attributed to ITCZ migration, which in turn might be associated with an eastward expansion of the SPCZ storm track, leading to an increased intensity of cyclogenic storms reaching Easter Island. Low Pacific Sea Surface Temperature (SST) gradients across the Equator were coincident with the here-defined Rano Aroi humid events and consistent with a reorganization of Southern Pacific atmospheric and oceanic circulation also at higher latitudes during Heinrich and Dansgaard-Oeschger stadials.

  19. Seasonal Climate Associated with Major Shipping Routes in the North Pacific and North Atlantic

    Directory of Open Access Journals (Sweden)

    Jau-Ming Chen

    2014-01-01

    Full Text Available The major shipping routes in the North Pacific (NP and North Atlantic (NA are analyzed via ship-reported records compiled by the International Comprehensive Ocean-Atmosphere Data Set (ICOADS. The shipping route seasonal characteristics and associated climatic features are also examined. In the NP, the dominant cross-basin route takes a great-circle path between East Asia and North America along 54°N north of the Aleutian Islands throughout the year. This route penetrates the Aleutian low center where ocean waves and winds are relatively weaker than those in the low¡¦s southern section south of 50°N. Moreover, the Earth¡¦s spherical shape makes a higher-latitude route shorter in navigational distance across the NP than a lower-latitude route. Two additional mid-latitude routes through the 40° - 50°N region appear in summer when the Aleutian low vanishes. In the NA, the major shipping routes form an X-shaped pattern in the oceans south of 40°N to connect North America/the Panama Canal and the Mediterranean Sea/the British Isles and Europe. These major shipping routes are far from the influence of the Icelandic low and thus are used throughout the year due to the stability in marine conditions and their general efficiency. A third and more zonal route appears to the north of the X-shaped routes in the 40° - 50°N region. Weak influence from the Icelandic low on marine conditions during summer and spring means that more ships take this route in summer and spring than in winter and fall.

  20. Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle

    Science.gov (United States)

    DeMets, Charles; Traylen, Stephen

    2000-03-01

    To better understand the influence of Rivera plate kinematics on the geodynamic evolution of western Mexico, we use more than 1400 crossings of seafloor spreading magnetic lineations along the Pacific-Rivera rise and northern Mathematician ridge to solve for rotations of the Rivera plate relative to the underlying mantle and the Pacific and North American plates at 14 times since 9.9 Ma. Our comparison of magnetic anomaly crossings from the undeformed Pacific plate to their counterparts on the Rivera plate indicates that significant areas of the Rivera plate have deformed since 9.9 Ma. Dextral shear along the southern edge of the plate from 3.3-2.2 Ma during a regional plate boundary reorganization deformed the Rivera plate farther into its interior than previously recognized. In addition, seafloor located north of two rupture zones within the Rivera plate sutured to North America after 1.5 Ma. Anomaly crossings from these two deformed regions thus cannot be used to reconstruct motion of the Rivera plate. Finite rotations that best reconstruct Pacific plate anomaly crossings onto their undeformed counterparts on the Rivera plate yield stage spreading rates that decrease gradually by 10% between 10 and 3.6 Ma, decrease rapidly by 20% after ˜3.6 Ma, and recover after 1 Ma. The slowdown in Pacific-Rivera seafloor spreading at 3.6 Ma coincided with the onset of dextral shear across the then-incipient southern boundary of the Rivera plate with the Pacific plate. The available evidence indicates that the Rivera plate has been an independent microplate since at least 10 Ma, contrary to published assertions that it fragmented from the Cocos plate at ˜5 Ma. Motion of the Rivera plate relative to North America has changed significantly since 10 Ma, in concert with significant changes in Pacific-Rivera motion. A significant and robust feature of Rivera-North America motion not previously recognized is the cessation of margin-normal convergence and thus subduction from 2

  1. Importance of Ekman transport and gyre circulation change on seasonal variation of surface dissolved iron in the western subarctic North Pacific

    Science.gov (United States)

    Nakanowatari, Takuya; Nakamura, Tomohiro; Uchimoto, Keisuke; Nishioka, Jun; Mitsudera, Humio; Wakatsuchi, Masaaki

    2017-05-01

    Iron (Fe) is an essential nutrient for marine phytoplankton and it constitutes an important element in the marine carbon cycle in the ocean. This study examined the mechanisms controlling seasonal variation of dissolved Fe (dFe) in the western subarctic North Pacific (WSNP), using an ocean general circulation model coupled with a simple biogeochemical model incorporating a dFe cycle fed by two major sources (atmospheric dust and continental shelf sediment). The model reproduced the seasonal cycle of observed concentrations of dFe and macronutrients at the surface in the Oyashio region with maxima in winter (February-March) and minima in summer (July-September), although the simulated seasonal amplitudes are a half of the observed values. Analysis of the mixed-layer dFe budget indicated that both local vertical entrainment and lateral advection are primary contributors to the wintertime increase in dFe concentration. In early winter, strengthened northwesterly winds excite southward Ekman transport and Ekman upwelling over the western subarctic gyre, transporting dFe-rich water southward. In mid to late winter, the southward western boundary current of the subarctic gyre and the outflow from the Sea of Okhotsk also bring dFe-rich water to the Oyashio region. The contribution of atmospheric dust to the dFe budget is several times smaller than these ocean transport processes in winter. These results suggest that the westerly wind-induced Ekman transport and gyre circulation systematically influence the seasonal cycle of WSNP surface dFe concentration.

  2. AFSC/NMML: North Pacific Right Whale Vessel Surveys in the Southeastern Bering Sea, 2007 - 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The North Pacific right whale (NPRW) was heavily hunted between the 17th and the 20th centuries. Protection was supposedly afforded by international treaties in the...

  3. Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific

    Science.gov (United States)

    Vay, S. A.; Woo, J.-H.; Anderson, B. E.; Thornhill, K. L.; Blake, D. R.; Westberg, D. J.; Kiley, C. M.; Avery, M. A.; Sachse, G. W.; Streets, D. G.; Tsutsumi, Y.; Nolf, S. R.

    2003-10-01

    We report here airborne measurements of atmospheric CO2 over the western North Pacific during the March-April 2001 Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The CO2 spatial distributions were notably influenced by cyclogenesis-triggered transport of regionally polluted continental air masses. Examination of the CO2 to C2H2/CO ratio indicated rapid outflow of combustion-related emissions in the free troposphere below 8 km. Although the highest CO2 mixing ratios were measured within the Pacific Rim region, enhancements were also observed further east over the open ocean at locations far removed from surface sources. Near the Asian continent, discrete plumes encountered within the planetary boundary layer contained up to 393 ppmv of CO2. Coincident enhancements in the mixing ratios of C2Cl4, C2H2, and C2H4 measured concurrently revealed combustion and industrial sources. To elucidate the source distributions of CO2, an emissions database for Asia was examined in conjunction with the chemistry and 5-day backward trajectories that revealed the WNW/W sector of northeast Asia was a major contributor to these pollution events. Comparisons of NOAA/CMDL and JMA surface data with measurements obtained aloft showed a strong latitudinal gradient that peaked between 35° and 40°N. We estimated a net CO2 flux from the Asian continent of approximately 13.93 Tg C day-1 for late winter/early spring with the majority of the export (79%) occurring in the lower free troposphere (2-8 km). The apportionment of the flux between anthropogenic and biospheric sources was estimated at 6.37 Tg C day-1 and 7.56 Tg C day-1, respectively.

  4. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.

    Science.gov (United States)

    Dore, John E; Lukas, Roger; Sadler, Daniel W; Karl, David M

    2003-08-14

    The oceans represent a significant sink for atmospheric carbon dioxide. Variability in the strength of this sink occurs on interannual timescales, as a result of regional and basin-scale changes in the physical and biological parameters that control the flux of this greenhouse gas into and out of the surface mixed layer. Here we analyse a 13-year time series of oceanic carbon dioxide measurements from station ALOHA in the subtropical North Pacific Ocean near Hawaii, and find a significant decrease in the strength of the carbon dioxide sink over the period 1989-2001. We show that much of this reduction in sink strength can be attributed to an increase in the partial pressure of surface ocean carbon dioxide caused by excess evaporation and the accompanying concentration of solutes in the water mass. Our results suggest that carbon dioxide uptake by ocean waters can be strongly influenced by changes in regional precipitation and evaporation patterns brought on by climate variability.

  5. WAVE DIRECTION and Other Data from FIXED PLATFORM From North Pacific Ocean and Others from 19810817 to 19940323 (NODC Accession 9400105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains Wave Energy (wave height and wave period) Data from Hawaiian coast collected over 13 years in North Pacific Ocean, NE Pacific (limit-180)....

  6. North Pacific deglacial hypoxic events linked to abrupt ocean warming

    Science.gov (United States)

    Praetorius, Summer K; Mix, Alan C.; Davies, Maureen H.; Wolhowe, Matthew D; Addison, Jason A.; Prahl, Frederick G

    2015-01-01

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition1, 2, 3, 4. The mechanisms driving this hypoxia remain under debate1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4–5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals12, 13, and enhanced 15N/14N ratio of organic matter13, collectively suggest association with high export production. A decrease in 18O/16O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming.

  7. Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective

    Science.gov (United States)

    Xu, Zhiqing; Fan, Ke; Wang, HuiJun

    2017-09-01

    The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Natalie Schulte in the Bass Strait, North Pacific Ocean and others from 2010-10-01 to 2012-06-21 (NODC Accession 0108233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108233 includes Surface underway, chemical, meteorological and physical data collected from Natalie Schulte in the Bass Strait, North Pacific Ocean,...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from RYOFU MARU in the Bismarck Sea, North Pacific Ocean and others from 1983-01-19 to 1989-02-06 (NODC Accession 0080988)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080988 includes Surface underway, chemical, meteorological and physical data collected from RYOFU MARU in the Bismarck Sea, North Pacific Ocean,...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, North Pacific Ocean and others from 2000-02-15 to 2001-01-25 (NCEI Accession 0157250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157250 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, North Pacific...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the North Pacific Ocean, South Atlantic Ocean and others from 2002-01-18 to 2003-01-01 (NCEI Accession 0157376)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157376 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the North Pacific Ocean, South...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the North Pacific Ocean from 2010-05-07 to 2010-09-30 (NCEI Accession 0144353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144353 includes Surface underway data collected from Marcus G. Langseth in the North Pacific Ocean from 2010-05-07 to 2010-09-30. These data include...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03 to 2014-08-13 (NCEI Accession 0144980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144980 includes Surface underway data collected from NOAA Ship OSCAR DYSON in the Bering Sea, Gulf of Alaska and North Pacific Ocean from 2014-03-03...

  14. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  15. PCDDs, PCDFs, and coplanar PCBs in albatross from the North Pacific and Southern Oceans: levels, patterns, and toxicological implications.

    Science.gov (United States)

    Tanabe, Shinsuke; Watanabe, Mafumi; Minh, Tu Binh; Kunisue, Tatsuya; Nakanishi, Shigeyuki; Ono, Hitoshi; Tanaka, Hiroyuki

    2004-01-15

    Concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and coplanar polychlorinated biphenyls (coplanar PCBs) were determined in five albatross species collected from the North Pacific and Southern Oceans to assess the north-south differences in residue levels, accumulation patterns, and toxic potential. Black-footed and Laysan albatrosses from the North Pacific Ocean contained higher levels of PCDD/Fs and coplanar PCBs than albatrosses from the Southern Ocean, indicating that emission sources of these contaminants were predominant in the northern hemisphere. Residue levels in albatrosses from the remote North Pacific Ocean far from the point source of pollution were comparable to or higher than those in terrestrial and coastal birds from contaminated areas in developed nations, suggesting the specific exposure and accumulation of PCDD/Fs and coplanar PCBs in albatross. The long life span and ingestion of plastic resin pellets by albatrosses could be the plausible explanations for the elevated accumulation of persistent and lipophilic contaminants including PCDD/Fs and coplanar PCBs in these birds. Relative proportions of PCDFs and coplanar PCBs in albatross were higher than those observed in birds inhabiting terrestrial and coastal areas, suggesting that these toxic chemicals may have higher transportability by air and water than PCDDs. Congener patterns of PCDD/Fs in albatross showed less variability as compared to those in terrestrial species, indicating that contamination patterns of PCDD/Fs were similar within the open ocean environment. Contributions of PCDD/Fs to total TEQs in albatrosses from the open ocean were generally lower than those in terrestrial birds, suggesting different toxic potency of PCDD/Fs and coplanar PCBs on animals inhabiting open ocean and terrestrial environment. Whereas albatrosses from southern oceans retained lower TEQ concentrations, possible adverse effects of PCDD/Fs and coplanar PCBs

  16. Extreme winds in the Western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Ott, S.

    2006-11-15

    A statistical model for extreme winds in the western North Pacific is developed, the region on the Planet where tropical cyclones are most common. The model is based on best track data derived mostly from satellite images of tropical cyclones. The methods used to estimate surface wind speeds from satellite images is discussed with emphasis on the empirical basis, which, unfortunately, is not very strong. This is stressed by the fact that Japanese and US agencies arrive at markedly different estimates. On the other hand, best track data records cover a long period of time and if not perfect they are at least coherent over time in their imperfections. Applying the the Holland model to the best track data, wind profiles can be assigned along the tracks. From this annual wind speed maxima at any particular point in the region can be derived. The annual maxima, in turn, are fitted to a Gumbel distribution using a generalization Abild's method that allows for data wind collected from multiple positions. The choice of this method is justified by a Monte Carlo simulation comparing it to two other methods. The principle output is a map showing fifty year winds in the region. The method is tested against observed winds from Philippine synoptic stations and fair agreement is found for observed and predicted 48 year maxima. However, the almost biasfree performance of the model could be fortuitous, since precise definitions of 'windspeed' in terms averaging time, height above ground and assumed surface roughness are not available, neither for best tracks nor for the synoptic data. The work has been carried out under Danish Research Agency grant 2104-04-0005 'Offshore wind power' and it also covers the findings and analysis carried out in connection with task 1.6 of the project 'Feasibility Assessment and Capacity Building for Wind Energy Development in Cambodia, The Philippines and Vietnam' during 2005-06 under contract 125-2004 with EU

  17. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    Science.gov (United States)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  18. Impacts of Pacific SSTs on California Winter Precipitation

    Science.gov (United States)

    Myoung, B.; Kafatos, M.

    2017-12-01

    Consecutive below-normal precipitation years and resulted multi-year droughts are critical issues as the recent 2012-2015 drought of California caused tremendous socio-economic damages. However, studies on the causes of the multi-year droughts lack. In this study, focusing on the three multi-year droughts (1999-2002, 2007-2009, and 2012-2015) in California during the last two decades, we investigated the atmospheric and oceanic characteristics of the three drought events for winter (December-February, DJF) in order to understand large-scale circulations that are responsible for initiation, maintenance, and termination of the droughts. It was found that abnormally developed upper-tropospheric ridges over the North Pacific are primarily responsible for precipitation deficits and then droughts. These ridges developed when negative sea surface temperature anomalies (SSTs) including La Niña events are pervasive in the tropical Pacific. After 3 or 4 years, the droughts ended under the opposite conditions; upper-tropospheric troughs in the North Pacific with El Niño events in the tropics. Results of Empirical Orthogonal Function (EOF) analysis for the 41-year (1974/75-2014/15) 500 hPa geopotential height in DJF revealed that, during the drought periods, the positive phases of the first and second EOF mode (EOF1+ and EOF2+, respectively) were active one by one, positioning upper-tropospheric ridges over the North Pacific. While EOF1+ is associated with cold tropical central Pacific and negative Pacific Decadal Oscillation (PDO), EOF2+ is associated with the tropical east-west SST dipole pattern (i.e., warm western tropical Pacific and cool eastern tropical Pacific near the southern Peru). Based on these results, we developed a regression model for winter precipitation. While dominant SST factors differ by decades, for the recent two decades (1994/1995-2014/2015), 56% variability of DJF precipitation is explained by the tropical east-west SST dipole pattern and PDO (NINO3

  19. Nutrients and other data from bottle, MBT, XBT, and CTD casts in the North Atlantic and North Pacific Ocean from 08 May 1956 to 14 December 1999 (NODC Accession 0000717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients and other data were collected using bottle, MBT, XBT, and CTD casts in the North Atlantic and North Pacific Ocean from 08 May 1956 to 14 December 1999....

  20. Nutrients and other data from bottle, MBT, XBT, and CTD casts in the North Atlantic and North Pacific Ocean from 03 January 1972 to 16 June 1996 (NODC Accession 0000751)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients and other data were collected using bottle, MBT, XBT, and CTD casts in the North Atlantic and North Pacific Ocean from 03 January 1972 to 12 June 1996....

  1. Inter-decadal change of the lagged inter-annual relationship between local sea surface temperature and tropical cyclone activity over the western North Pacific

    Science.gov (United States)

    Zhao, Haikun; Wu, Liguang; Raga, G. B.

    2018-02-01

    This study documents the inter-decadal change of the lagged inter-annual relationship between the TC frequency (TCF) and the local sea surface temperature (SST) in the western North Pacific (WNP) during 1979-2014. An abrupt shift of the lagged relationship between them is observed to occur in 1998. Before the shift (1979-1997), a moderately positive correlation (0.35) between previous-year local SST and TCF is found, while a significantly negative correlation (- 0.71) is found since the shift (1998-2014). The inter-decadal change of the lagged relationship between TCF and local SST over the WNP is also accompanied by an inter-decadal change in the lagged inter-annual relationship between large-scale factors affecting TCs and local SST over the WNP. During 1998-2014, the previous-year local SST shows a significant negative correlation with the mid-level moisture and a significant positive correlation with the vertical wind shear over the main development region of WNP TC genesis. Almost opposite relationships are seen during 1979-1997, with a smaller magnitude of the correlation coefficients. These changes are consistent with the changes of the lagged inter-annual relationship between upper- and lower-level winds and local SST over the WNP. Analyses further suggests that the inter-decadal shift of the lagged inter-annual relationship between WNP TCF and local SST may be closely linked to the inter-decadal change of inter-annual SST transition over the tropical central-eastern Pacific associated with the climate regime shift in the late 1990s. Details on the underlying physical process need further investigation using observations and simulations.

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Ryofu Maru in the East China Sea, North Pacific Ocean and others from 2010-04-15 to 2013-09-13 (NODC Accession 0117056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117056 includes Surface underway data collected from Ryofu Maru in the East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea and South...

  3. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    OpenAIRE

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-01-01

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to wea...

  4. A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: local energetics and moisture effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Seon; Ha, Kyung-Ja [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of); Lee, June-Yi; Wang, Bin; Jin, Fei-Fei [University of Hawaii, School of Ocean and Earth Science and Technology, Honolulu, HI (United States); Lee, Woo-Jin [Korea Meteorological Administration, Seoul (Korea, Republic of)

    2011-12-15

    Distinct differences of the storm track-jet relationship over the North Pacific and North Atlantic are investigated in terms of barotropic and baroclinic energetics using NCEP-2 reanalysis data for the period of 1979-2008. From fall to midwinter the Pacific storm track (PST) activity weakens following the southward shift of the Pacific jet, whereas the Atlantic storm track (AST) activity remains steady in position and intensifies regardless of the slight southward shift of the Atlantic jet. This study is devoted to seeking for the factors that can contribute to this conspicuous difference between the two storm tracks on climatological subseasonal variation by analyzing eddy properties and local energetics. Different eddy properties over the two oceans lead to different contribution of barotropic energy conversion to the initiation of storm tracks. In the North Atlantic, meridionally elongated eddies gain kinetic energy efficiently from stretching deformation of the mean flow in the jet entrance. On the other hand, the term associated with shearing deformation is important for the initiation of PST. Analysis of baroclinic energetics reveals that the intensification of the AST activity in midwinter is mainly attributed to coincidence between location of maximum poleward and upward eddy heat fluxes and that of the largest meridional temperature gradient over slight upstream of the AST. The relatively large amount of precipitable water and meridional eddy moisture flux along baroclinic energy conversion axis likely provides a more favorable environment for baroclinic eddy growth over the North Atlantic than over the North Pacific. In the meantime, the midwinter minimum of the PST activity is attributable to the southward shift of the Pacific jet stream that leads to discrepancy between core region of poleward and upward heat fluxes and that of meridional thermal gradient. Weakening of eddy-mean flow interaction due to eddy shape and reduction of moist effect are also

  5. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO

  6. Coherent changes of wintertime surface air temperatures over North Asia and North America.

    Science.gov (United States)

    Yu, Bin; Lin, Hai

    2018-03-29

    The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.

  7. Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?

    Science.gov (United States)

    Newman, Matthew; Sardeshmukh, Prashant D.

    2017-08-01

    The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from KEIFU MARU in the East China Sea, North Pacific Ocean and others from 2001-01-20 to 2012-06-12 (NODC Accession 0116978)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116978 includes Surface underway data collected from KEIFU MARU in the East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea, Sea of Japan...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Ryofu Maru in the East China Sea, North Pacific Ocean and others from 1995-07-16 to 1999-11-05 (NODC Accession 0116981)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116981 includes Surface underway data collected from Ryofu Maru in the East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea, Sea of Japan...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Ryofu Maru in the East China Sea, North Pacific Ocean and others from 2000-01-22 to 2009-07-06 (NODC Accession 0116980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116980 includes Surface underway data collected from Ryofu Maru in the East China Sea (Tung Hai), North Pacific Ocean, Philippine Sea, Sea of Japan...

  11. Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation

    Science.gov (United States)

    Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.

    1996-08-01

    The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.

  12. Whales, Dolphins, and Porpoises of the Eastern North Pacific and Adjacent Arctic Waters: A Guide to Their Identification.

    Science.gov (United States)

    Leatherwood, Stephen; And Others

    This field guide is designed to permit observers to identify the cetaceans (whales, dolphins, and porpoises) they see in the waters of the eastern North Pacific, including the Gulf of California, Hawaii, and the western Arctic of North America. The animals described are grouped not by scientific relationships but by similarities in appearance in…

  13. The Teleconnection of the Tropical Atlantic to Indo-Pacific Sea Surface Temperatures on Inter-Annual to Centennial Time Scales: A Review of Recent Findings

    Directory of Open Access Journals (Sweden)

    Fred Kucharski

    2016-02-01

    Full Text Available In this paper, the teleconnections from the tropical Atlantic to the Indo-Pacific region from inter-annual to centennial time scales will be reviewed. Identified teleconnections and hypotheses on mechanisms at work are reviewed and further explored in a century-long pacemaker coupled ocean-atmosphere simulation ensemble. There is a substantial impact of the tropical Atlantic on the Pacific region at inter-annual time scales. An Atlantic Niño (Niña event leads to rising (sinking motion in the Atlantic region, which is compensated by sinking (rising motion in the central-western Pacific. The sinking (rising motion in the central-western Pacific induces easterly (westerly surface wind anomalies just to the west, which alter the thermocline. These perturbations propagate eastward as upwelling (downwelling Kelvin-waves, where they increase the probability for a La Niña (El Niño event. Moreover, tropical North Atlantic sea surface temperature anomalies are also able to lead La Niña/El Niño development. At multidecadal time scales, a positive (negative Atlantic Multidecadal Oscillation leads to a cooling (warming of the eastern Pacific and a warming (cooling of the western Pacific and Indian Ocean regions. The physical mechanism for this impact is similar to that at inter-annual time scales. At centennial time scales, the Atlantic warming induces a substantial reduction of the eastern Pacific warming even under CO2 increase and to a strong subsurface cooling.

  14. Interdecadal Change of Tropical Cyclone Genesis Controlling Parameter in Western North Pacific

    Science.gov (United States)

    Li, T.

    2017-12-01

    The main environmental parameter controlling tropical cyclone (TC) genesis in the western North Pacific (WNP) changed in different interdecadal periods. The interannual variability of TC genesis frequency was primarily control by specific humidity in 1950-1976, sea surface temperature (SST) in 1977-1998, and vorticity in 1999-2014. A further diagnosis shows that the change of environmental specific humidity during 1950-1976 was attributed to anomalous advection of mean moisture during ENSO developing summer. The SST change during 1977-1998 was associated with circulation change during ENSO decaying summer. The change of environment vorticity was primarily related to CP-type El Niño during 1999-2014. The ultimate cause of the controlling parameter change is attributed to the change of ENSO behavior. Compared to the first period, a stronger EP-type ENSO variability in the second period leads to a stronger circulation/SST response during ENSO decaying phase. The occurrence of more frequent CP type El Niño in the third period was responsible for greater vorticity controlling in the WNP.

  15. Seasonal resource conditions favor a summertime increase in North Pacific diatom-diazotroph associations.

    Science.gov (United States)

    Follett, Christopher L; Dutkiewicz, Stephanie; Karl, David M; Inomura, Keisuke; Follows, Michael J

    2018-02-15

    In the North Pacific Subtropical Gyre (NPSG), an annual pulse of sinking organic carbon is observed at 4000 m between July and August, driven by large diatoms found in association with nitrogen fixing, heterocystous, cyanobacteria: Diatom-Diazotroph Associations (DDAs). Here we ask what drives the bloom of DDAs and present a simplified trait-based model of subtropical phototroph populations driven by observed, monthly averaged, environmental characteristics. The ratio of resource supply rates favors nitrogen fixation year round. The relative fitness of DDA traits is most competitive in early summer when the mixed layer is shallow, solar irradiance is high, and phosphorus and iron are relatively abundant. Later in the season, as light intensity drops and phosphorus is depleted, the traits of small unicellular diazotrophs become more competitive. The competitive transition happens in August, at the time when the DDA export event occurs. This seasonal dynamic is maintained when embedded in a more complex, global-scale, ecological model, and provides predictions for the extent of the North Pacific DDA bloom. The model provides a parsimonious and testable hypothesis for the stimulation of DDA blooms.

  16. Gooseneck barnacles (Lepas spp. ingest microplastic debris in the North Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    Miriam C. Goldstein

    2013-10-01

    Full Text Available Substantial quantities of small plastic particles, termed “microplastic,” have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the “rafting assemblage,” are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp., which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem.

  17. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean.

    Science.gov (United States)

    Jayakumar, Amal; Chang, Bonnie X; Widner, Brittany; Bernhardt, Peter; Mulholland, Margaret R; Ward, Bess B

    2017-10-01

    Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day -1 ) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day -1 ) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N 2 -fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.

  18. North Pacific Acoustic Laboratory: Analysis of Shadow Zone Arrivals and Acoustic Propagation in Numerical Ocean Models

    National Research Council Canada - National Science Library

    Dushaw, Brian

    2009-01-01

    ... depth of the receiver lies well below the depths of the predicted cusps. Several models for the temperature and salinity in the North Pacific Ocean were obtained and processed to enable simulations of acoustic propagation for comparison to the observations...

  19. Does Sustainability Affect Corporate Performance and Economic Development? Evidence from the Asia-Pacific region and North America

    Directory of Open Access Journals (Sweden)

    Kyungbok Kim

    2018-03-01

    Full Text Available This paper explores how sustainability influences financial returns and economic development in the Asia-Pacific region and North America, utilizing real data empirically. It is controversial that sustainable activities are related to financial performance. For clarification, we tested hypotheses analyzing sustainability index, seven stock markets, financial data such as ROI, ROIC, and ROA from eleven companies, and GDP/GNI per capita, based on the Asia-Pacific region and North America. The results indicate that both financial return for companies and economic development in the two regions are positively germane to sustainable investment. Besides, we found evidence that sustainable investment impacts economic development based on variance decomposition analysis, depending on GDP per capita between the two regions. This implication will be interesting for both practitioners and researchers regarding the measurement of sustainable performance.

  20. Development of a Seasonal Extratropical Cyclone Activity Outlook for the North Pacific, Bering Sea, and Alaskan Regions

    Science.gov (United States)

    Shippee, N. J.; Atkinson, D. E.; Walsh, J. E.; Partain, J.; Gottschalck, J.; Marra, J. J.

    2013-12-01

    Storm activity (i.e. 'storminess') and associated forecasting skill in the North Pacific, Bering Sea, and Alaska is relatively well understood on a daily to weekly scale, however, two important elements are missing from current capacity. First, there is no way to predict storm activity at the monthly to seasonal time frame. Second, storm activity is characterized in terms that best serve weather specialists, and which are often not very informative for different sectors of the public. Increasing the utility of forecasts for end users requires consultation with these groups, and can include expressing storm activity in terms of, for example, strong-wind return intervals or ship hull strength. These types of forecasts can provide valuable information for use in community planning, resource allocation, or potential risk assessment. A preliminary study of seasonal storminess predictability in the North Pacific and Alaska regions has shown that a key factor related to the annual variation of seasonal storminess is the strength of the Aleutian Low as measured using indices such as the North Pacific Index (NPI) or Aleutian Low Pressure Index (ALPI). Use of Empirical Orthogonal Function (EOF) analysis to identify patterns in storminess variability indicates that the primary mode of annual variation is found to be best explained by the variation in the strength of the Aleutian Low. NPI and the first component of storm activity for the entire region are found to be are highly correlated (R = 0.83). This result is supported by the works of others such as Rodionov et al. (2007), who note the impact of the strength of the Aleutian Low on storm track and speed. Additionally, the phase of the Pacific Decadal Oscillation (PDO), along with NPI, have been shown to be highly correlated with annual variance in the seasonal storminess for the North Pacific and Alaska. Additional skill has been identified when the phase of the Pacific Decadal Oscillation (PDO) is explicitly considered

  1. The radon-222 transfer coefficients across air-sea interface determined in the Bering Sea, the Okhotsk Sea and the North Pacific Ocean

    International Nuclear Information System (INIS)

    Kholujskij, S.N.; Anikiev, V.V.; Popov, N.I.

    1995-01-01

    Determination of velocity coefficient for gas flow transfer across the natural sea surface into the atmosphere (K v ) was attempted by means of radon method on board the SRS Academician Alexander Nesmeyanov (July-August 1992). The measurements were conducted in the Bering Sea, the Okhotsk Sea and in the North Pacific Ocean. It is shown that the total range of the K v observed values equaled from 1.8 up to 5.4 m.day, which is within the known limits for other regions of the world ocean. 9 refs., 1 fig

  2. Rare earth element and neodymium isotope tracing of element input and past ocean circulation. Study from north and south pacific seawater and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Froellje, Henning

    2016-08-09

    Hawaiian Islands on coastal waters and the open ocean at Station ALOHA (chapter 2). These results indicate that contributions from volcanic islands (e.g., Hawaii) cannot be disregarded when investigating element budgets in the North Pacific. It is further shown that seasonal variability of Asian dust input most likely has significant influence on the Nd isotope signature of central North Pacific surface waters. New results from measurements of colloidal and truly dissolved REE concentrations indicate for the first time the absence of colloidal-bound REEs in open ocean waters at different depths. Further, a complete water column profile from Station ALOHA allows tracing of North Pacific water masses based on Nd isotopes. This study presents an adjustment of the Nd isotope signature and Nd concentration of North Pacific Deep Water (NPDW), which is considered the radiogenic endmember in the global overturning circulation, and therefore of particular importance for paleoceanographic studies. Moreover, REE patterns demonstrate that vertical processes overprint the REE concentrations in deep and bottom waters, precluding their use to trace water masses in the deep Pacific. Sedimentary Nd isotopes from the last 30,000 years demonstrate the variability in water mass structure in the South Pacific and the evolution of water mass mixing in Circumpolar Deep Water (CDW) during the last glacial-interglacial transition (chapter 3). Combined results from five sediment cores show an expansion of glacial bottom water and its isolation from CDW during the Last Glacial Maximum (LGM) based on differences in the Nd isotope signatures in cores below and above ∝4000 m. Admixture of bottom water into CDW during the early deglaciation is suggested based on the early deglacial decrease of Nd isotope signatures in CDW-bathed cores before the re-strengthening of North Atlantic Deep Water (NADW) advection. This is related to Southern Hemisphere climate and only later during the deglaciation did the

  3. Rare earth element and neodymium isotope tracing of element input and past ocean circulation. Study from north and south pacific seawater and sediments

    International Nuclear Information System (INIS)

    Froellje, Henning

    2016-01-01

    Hawaiian Islands on coastal waters and the open ocean at Station ALOHA (chapter 2). These results indicate that contributions from volcanic islands (e.g., Hawaii) cannot be disregarded when investigating element budgets in the North Pacific. It is further shown that seasonal variability of Asian dust input most likely has significant influence on the Nd isotope signature of central North Pacific surface waters. New results from measurements of colloidal and truly dissolved REE concentrations indicate for the first time the absence of colloidal-bound REEs in open ocean waters at different depths. Further, a complete water column profile from Station ALOHA allows tracing of North Pacific water masses based on Nd isotopes. This study presents an adjustment of the Nd isotope signature and Nd concentration of North Pacific Deep Water (NPDW), which is considered the radiogenic endmember in the global overturning circulation, and therefore of particular importance for paleoceanographic studies. Moreover, REE patterns demonstrate that vertical processes overprint the REE concentrations in deep and bottom waters, precluding their use to trace water masses in the deep Pacific. Sedimentary Nd isotopes from the last 30,000 years demonstrate the variability in water mass structure in the South Pacific and the evolution of water mass mixing in Circumpolar Deep Water (CDW) during the last glacial-interglacial transition (chapter 3). Combined results from five sediment cores show an expansion of glacial bottom water and its isolation from CDW during the Last Glacial Maximum (LGM) based on differences in the Nd isotope signatures in cores below and above ∝4000 m. Admixture of bottom water into CDW during the early deglaciation is suggested based on the early deglacial decrease of Nd isotope signatures in CDW-bathed cores before the re-strengthening of North Atlantic Deep Water (NADW) advection. This is related to Southern Hemisphere climate and only later during the deglaciation did the

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the North Pacific Ocean, Olympic Coast National Marine Sanctuary and South China Sea from 2012-05-13 to 2012-08-26 (NCEI Accession 0144304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144304 includes Surface underway data collected from Marcus G. Langseth in the North Pacific Ocean, Olympic Coast National Marine Sanctuary and South...

  5. Satellite tagging, remote sensing, and autonomous vehicles reveal interactions between physiology and environment in a North Pacific top marine predator species

    Science.gov (United States)

    Pelland, N.; Sterling, J.; Springer, A.; Iverson, S.; Johnson, D.; Lea, M. A.; Bond, N. A.; Ream, R.; Lee, C.; Eriksen, C.

    2016-02-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. This work describes recent publications and ongoing studies of northern fur seal (NFS) foraging ecology during their 8-month migration. Satellite-tracked movement and dive behavior in the North Pacific ocean was compared to remotely sensed data, atmospheric reanalysis, autonomous in situ ocean sampling, and animal borne temperature and salinity data. Integration of these data demonstrates how reproductive fitness, physiology, and environment shape NFS migratory patterns. Seal mass correlates with dive ability and thus larger males exploit prey aggregating at the base of the winter mixed-layer depth in the Bering Sea and interior northern North Pacific Ocean. Smaller adult females migrate to the Gulf of Alaska and California Current ecosystems - where surface wind speeds decline, mixed-layer depths shoal, and coastal production is fueled by upwelling, coastal capes, and eddies - and less commonly to the Transitional Zone Chlorophyll Front, where fronts and eddies may concentrate prey. Surface wind speed and direction influence movement behavior of all age and size classes, though to a greater degree in the smaller pups and adult females than adult males. For naïve and physiologically less-capable pups, the timing and strength of autumn winds during migratory dispersal may play a role in shaping migratory routes and the environmental conditions faced by pups along these routes. In combination with other factors such as pup condition, this may play a role in interannual variations in overwinter survivorship.

  6. Pre-bomb marine reservoir ages in the western north Pacific : Preliminary result on Kyoto University collection

    NARCIS (Netherlands)

    Yoneda, M; Kitagawa, H; van der Plicht, J; Uchida, M; Tanaka, A; Uehiro, T; Shibata, Y; Morita, M; Ohno, T

    2000-01-01

    The calibration of radiocarbon dates on marine materials involves a global marine calibration with regional corrections. The marine reservoir ages in the Western North Pacific have not been discussed, while it is quite important to determine the timing of palaeo-environmental changes as well as

  7. Long-term trends of typhoon-induced rainfall over Taiwan: in situ evidence of poleward shift of typhoons in western North Pacific in recent decades

    Science.gov (United States)

    Liang, Ting-Yu; Oey, Leo; Huang, Shiming; Chou, Simon

    2017-04-01

    Tracks of tropical cyclones or typhoons in the western North Pacific have recently been shown to shift northward in the past several decades; the poleward shift has been attributed to the expansion of the tropics due to climate warming. Here we use 64-year, hourly rainfall observations around Taiwan, and take advantage of the unique terrain and geographic location of the island with respect to typhoon tracks, to show that since 1950 the typhoon-related rainfalls have been rising on the western side of the island, but decreasing on the eastern side. We show that these extraordinary rainfall patterns, despite the smallness of Taiwan, are indicative of a northward shift of typhoons related to the changes in the wind fields and surface warming over the Indian and Pacific tropical/subtropical regions.

  8. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review

    Science.gov (United States)

    Li, Tim; Wang, Bin; Wu, Bo; Zhou, Tianjun; Chang, Chih-Pei; Zhang, Renhe

    2017-12-01

    The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere-ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere-ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere-ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.

  9. Bomb-test 90Sr in Pacific and Indian Ocean surface water as recorded by banded corals

    International Nuclear Information System (INIS)

    Toggweiler, J.R.; Trumbore, S.

    1985-01-01

    We report here measurements of bomb-test 90 Sr activity in the CaCO 3 skeletons of banded head forming corals collected from nine locations in the tropical Pacific and Indian Oceans. Density variations in skeletal carbonate demarcate annual growth bands and allow one to section individual years. Measurements of 90 Sr activity in the annual bands reconstruct the activity of the water in which the coral grew. Our oldest records date to the early years of the nuclear era and record not only fallout deposition from the major U.S. and Soviet tests of 1958-1962, but also the huge, and largely unappreciated, localized inputs from the U.S. tests at Eniwetok and Bikini atolls during 1952-1958. In the 1960's the 90 Sr activity in Indian Ocean surface water was twice as high as activity levels in the South Pacific at comparable latitudes. We suggest that substantial amounts of northern hemisphere fallout moved west and south into the Indian Ocean via passages through the Indonesian archipelago. Equatorial Pacific 90 Sr levels have remained relatively constant from the mid 1960's through the end of 1970's in spite of 90 Sr decay, reflecting a large-scale transfer of water between the temperate and tropical North Pacific. Activity levels at Fanning Is. (4 0 N, 160 0 W) appear to vary in conjunction with the 3-4 year El Nino cycle. (orig.)

  10. Temperature, salinity, and nutrients data from CTD and bottle casts in the Arctic, North Atlantic and North Pacific Oceans from multiple platforms from 1963-04-30 to 1999-02-15 (NODC Accession 0000418)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, bottle, and other data were collected from the Arctic Ocean, North Atlantic Ocean, and North Pacific from multiple platforms from 30 April 1963 to 15 February...

  11. Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea

    Science.gov (United States)

    Shiozaki, Takuhei; Bombar, Deniz; Riemann, Lasse; Hashihama, Fuminori; Takeda, Shigenobu; Yamaguchi, Tamaha; Ehama, Makoto; Hamasaki, Koji; Furuya, Ken

    2017-06-01

    Nitrogen-fixing microorganisms (diazotrophs) provide biologically available nitrogen to plankton communities and thereby greatly influence the productivity in many marine regions. Various cyanobacterial groups have traditionally been considered the major oceanic diazotrophs, but later noncyanobacterial and presumably heterotrophic diazotrophs were also found to be widespread and potentially important in nitrogen fixation. However, the distribution and activity of different diazotroph groups is still poorly constrained for most oceanic ecosystems. Here we examined diazotroph community structure and activity along a 7500 km south-north transect between the central equatorial Pacific and the Bering Sea. Nitrogen fixation contributed up to 84% of new production in the upper waters of the subtropical gyre, where the diazotroph community included the gammaproteobacterium γ-24774A11 and highly active cyanobacterial phylotypes (>50% of total nifH transcript abundance). Nitrogen fixation was sometimes detectable down to 150 m depth and extended horizontally to the edge of the gyre at around 35°N. Nitrogen fixation was even detected far north on the Bering Sea shelf. In the Alaskan Coastal Waters on the Bering Sea shelf, low nitrate together with high dissolved iron concentrations seemed to foster diazotroph growth, including a prominent role of UCYN-A2, which was abundant near the surface (1.2×105 nifH gene copies L-1). Our study provides evidence for nitrogen fixation in the Bering Sea and suggests a clear contrast in the composition of diazotrophs between the tropical/subtropical gyre and the separate waters in the cold northern regions of the North Pacific.

  12. Tracing the Ventilation Pathways of the Deep North Pacific Ocean Using Lagrangian Particles and Eulerian Tracers

    NARCIS (Netherlands)

    Syed, H.A.M.S.; Primeau, F.W.; Deleersnijder, E.L.C.; Heemink, A.W.

    2017-01-01

    Lagrangian forward and backward models are introduced into a coarse-grid ocean global circulation model to trace the ventilation routes of the deep North Pacific Ocean. The random walk aspect in the Lagrangian model is dictated by a rotated isopycnal diffusivity tensor in the circulation model,

  13. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the western North Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Masahiro eSuzumura

    2012-03-01

    Full Text Available We measured pools of dissolved phosphorus (P, including dissolved inorganic P (DIP, dissolved organic P (DOP and alkaline phosphatase (AP-hydrolyzable labile DOP (L-DOP, and kinetic parameters of AP activity (APA in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific Subtropical Gyre (NPSG and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L−1, chlorophyll a (Chl a concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62–92% of total dissolved P at and above the Chl a maximum layer (CML. L-DOP represented 22–39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85% in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 d at the coastal station to 84.4 d in the NPSG. The ratio of the APA half saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate end efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean.

  14. AFSC/NMML: Shore-based counts of the Eastern North Pacific gray whale stock from central California, 1967 - 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Fisheries Service (NMFS) has conducted shore-based counts of the Eastern North Pacific stock of gray whales (Eschrichtius robustus) 26 years from...

  15. El Niño indices based on subareas of SST in Pacific

    Science.gov (United States)

    Song, Wanjiao; Dong, Qing; Xue, Cunjin; Hou, Xueyan; Qin, Lijuan

    2014-11-01

    El Niño continues the most important coupled ocean-atmosphere phenomenon to cause global climate variability on seasonal to inter annual time scales. The first independent spatial mode which carried out by EOF analysis of tropical and north Pacific sea surface temperature (SST) for the period of 1985-2009 in AVHRR dataset is found to be associated with well-known regional climate phenomena: the El Niño. This paper addresses the need for a reliable El Niño index that allows for the historical definition of El Niño events in the instrumental record back to 1985-2009 with a new perspective. For quantitative purposes, possible definitions are explored that match the El Niño identified historically in 1985-2009, and it is suggested that an El Niño can be said to occur if difference of sea surface temperature (SST) anomalies between the tropical and north Pacific exceeds 0.6 times standard deviation for 5 months or more. An advantage of such a definition is that it combines the characteristics between tropical and north Pacific. Through seasonal analysis of SST in El Niño event, we found that the El Niño events are almost beginning in boreal spring or perhaps boreal summer and peak from November to February. It provides a more complete and flexible description of the El Niño phenomenon than single area in tropical Pacific.

  16. Do Changes in Dust Flux to the North Pacific Correspond to Major Climate Shifts in the Pliocene?

    Science.gov (United States)

    Abell, J.; Winckler, G.; Anderson, R. F.

    2017-12-01

    In addition to its impacts on radiative forcing, eolian mineral dust plays a critical role in the climate system by supplying iron-limited high-nutrient/low-chlorophyll (HNLC) regions of the ocean with vital micronutrients, potentially lowering atmospheric CO2. There is evidence for iron fertilization in the late Pleistocene, but this relationship has been poorly studied for the Plio-Pleistocene and during the onset/intensification of Northern Hemisphere Glaciation (NHG). The North Pacific possesses potential for studying the effects of rising dust flux on climate during this time, as increasing aridification of Asia's interior has been suggested for this interval. Here we present a record of two extraterrestrial 3He-derived terrigenous dust flux proxies (4He and 232Th) for ODP core 1208A (36°N, 158°E) for the period spanning 2.5-4.5 Ma, along with opal and excess barium (BaXS) flux data to estimate relative paleoproductivity. Our results show lower and relatively constant dust fluxes of about 0.3 g/cm2 ka from 4.5Ma to 2.7Ma, with minor variability correlating to changes in benthic δ18O. At 2.7Ma there is a two-fold increase in dust deposition to ODP 1208A, coinciding with the intensification of Northern Hemisphere Glaciation (NHG) and suggested changes in subarctic North Pacific stratification. Dust flux subsequently tracks the 41ky benthic δ18O cycles for the remainder of the record to 2.5Ma. An increase in 4He/232Th ratios during glacial periods after 2.7Ma is observed, which we hypothesize is either from a shift in source region(s) in Asia or an increase in mean grain size of windblown material delivered to the ocean. Previous studies have shown an increase in North Pacific dust flux at 3.6Ma, and steady rise until present (Rea et al. 1998). Our record does not show a substantial increase in dust at 3.6Ma, but instead provides evidence for relatively little change in dust flux to the North Pacific until 2.7Ma, a time of major global climate transitions and

  17. Interannual Variations in the Synoptic-Scale Disturbances over the western North Pacific

    Science.gov (United States)

    Zhou, Xingyan; Lu, Riyu

    2017-04-01

    The present study investigates the interannual variation of synoptic disturbance activities over the western North Pacific (WNP) and its relationship with the large-scale circulation and tropical SST during June-November for the period 1958-2014. It is shown that the interannual variability of 850-hPa eddy kinetic energy (EKE) anomalies over the WNP could be well described by its two leading modes of EOF, i.e., northeast pattern and southwest pattern. The high value zone of former is located over the WNP, while latter around the Philippines, which just overlap a broad area of the WNP. Background flows play an important role in the formation of these two patterns, it could induce the cyclonic ( anticyclonic ) anomalies over the variation centers which favors ( disfavors) synoptic eddies to get kinetic energy from the mean flows through barotropic energy conversion. The SST anomalies of the equatorial central and eastern Pacific also contribute to these two patterns. When the SST of equatorial central and eastern Pacific above (below) the normal, a cyclonic (anticyclonic) anomaly appears in the Philippine Sea while an anticyclonic (cyclonic) anomaly happens in the South China Sea, which will induce positive (negative) EKE anomalies over the WNP but negative (positive) anomalies over the South China Sea and the Philippines.

  18. Out of the Pacific and back again

    DEFF Research Database (Denmark)

    Foote, Andrew David; Morin, Phillip A.; Durban, John W.

    2011-01-01

    or have been consolidated upon secondary contact due to resource competition. The estimated timing of bidirectional migration between the North Pacific and North Atlantic coincided with the previous inter-glacial when the leakage of fauna from the Indo-Pacific into the Atlantic via the Agulhas current......Killer whales (Orcinus orca) are the most widely distributed marine mammals and have radiated to occupy a range of ecological niches. Disparate sympatric types are found in the North Atlantic, Antarctic and North Pacific oceans, however, little is known about the underlying mechanisms driving...... divergence. Previous phylogeographic analysis using complete mitogenomes yielded a bifurcating tree of clades corresponding to described ecotypes. However, there was low support at two nodes at which two Pacific and two Atlantic clades diverged. Here we apply further phylogenetic and coalescent analyses...

  19. AIR PRESSURE and Other Data from MULTIPLE SHIPS From North Pacific Ocean from 19920701 to 19921231 (NODC Accession 9300026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains bathythermograph physical profile data in the TESAC format collected in North Pacific Ocean. TESAC format parameters include country code,...

  20. Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America.

    Science.gov (United States)

    Gottscho, Andrew D

    2016-02-01

    The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here. © 2014 Cambridge Philosophical Society.

  1. Reconstructing Hydrologic Variability in Southwestern North America Using Speleothem Proxies and Precipitation Isotopes from California

    Science.gov (United States)

    McCabe-Glynn, Staryl

    Precipitation in southwestern North America has exhibited significant natural variability over the past few thousand years. This variability has been attributed to sea surface temperature regimes in the Pacific and Atlantic oceans, and to the attendant shifts in atmospheric circulation patterns. In particular, decadal variability in the North Pacific has influenced precipitation in this region during the twentieth century, but links to earlier droughts and pluvials are unclear. Here I assess these links using delta18 O measurements from a speleothem from southern California that spans AD 854-- 2007. I show that variations in the oxygen isotopes of the speleothem correlate to sea surface temperatures in the Kuroshio Extension region of the North Pacific, which affect the atmospheric trajectory and isotopic composition of moisture reaching the study site. Interpreting our speleothem data as a record of sea surface temperatures in the Kuroshio Extension, I find a strong 22-year periodicity, suggesting a persistent solar influence on North Pacific decadal variability. A comparison with tree-ring records of precipitation during the past millennium shows that some droughts occurred during periods of warmth in the Kuroshio Extension, similar to the instrumental record. However, other droughts did not and instead were likely influenced by other factors. The carbon isotope record indicates drier conditions are associated with higher delta13C values and may be a suitable proxy for reconstructing past drought variability. More research is needed to determine the controls on trace element concentrations. Finally, I find a significant increase in sea surface temperature variability over the past 150 years, which may reflect an influence of greenhouse gas concentrations on variability in the North Pacific. While drought is a common feature of climate in this region, most climate models also project extreme precipitation events to increase in frequency and severity because the

  2. The influence of sea surface temperature anomalies on low-frequency variability of the North Atlantic Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Manganello, Julia V. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2008-05-15

    The influence of sea surface temperature anomalies (SSTA) on multi-year persistence of the North Atlantic Oscillation (NAO) during the second half of the twentieth century is investigated using the Center for Ocean-Land-Atmosphere Studies (COLA) Atmospheric GCM (AGCM) with an emphasis on isolating the geographic location of the SSTA that produce this influence. The present study focuses on calculating the atmospheric response to the SSTA averaged over 1988-1995 (1961-1968) corresponding to the observed period of strong persistence of the positive (negative) phase of the decadal NAO. The model response to the global 1988-1995 average SSTA shows a statistically significant large-scale pattern characteristic of the positive phase of the NAO. Forcing with the global 1961-1968 average SSTA generates a NAO of the opposite polarity compared to observations. However, all large-scale features both in the model and observations during this period are weaker in magnitude and less significant compared to 1988-1995. Additional idealized experiments show that over the northern center of the NAO the non-linear component of the forced response appears to be quite important and acts to enhance the positive NAO signal. On the other hand, over the southern center where the model response is the strongest, it is also essentially linear. The 1988-1995 average SSTA restricted to the western tropical Pacific region produce a positive NAO remarkably similar in structure but stronger in magnitude than the model response to the global and tropical Indo-Pacific 1988-1995 forcing. A 200-hPa geopotential height response in these experiments shows a positive anomaly over the southern center of the NAO embedded in the Rossby wave trains propagating from the western tropical Pacific. Indian Ocean SSTA lead to much weaker positive NAO primarily through the effect on its northern center. SST forcing confined to the North Atlantic north of equator does not produce a response statistically different

  3. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes

    Science.gov (United States)

    Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.

    2010-05-01

    Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.

  4. Rare earth element distributions in the West Pacific: Trace element sources and conservative vs. non-conservative behavior

    Science.gov (United States)

    Behrens, Melanie K.; Pahnke, Katharina; Paffrath, Ronja; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2018-03-01

    Recent studies suggest that transport and water mass mixing may play a dominant role in controlling the distribution of dissolved rare earth element concentrations ([REE]) at least in parts of the North and South Atlantic and the Pacific Southern Ocean. Here we report vertically and spatially high-resolution profiles of dissolved REE concentrations ([REE]) along a NW-SE transect in the West Pacific and examine the processes affecting the [REE] distributions in this area. Surface water REE patterns reveal sources of trace element (TE) input near South Korea and in the tropical equatorial West Pacific. Positive europium anomalies and middle REE enrichments in surface and subsurface waters are indicative of TE input from volcanic islands and fingerprint in detail small-scale equatorial zonal eastward transport of TEs to the iron-limited tropical East Pacific. The low [REE] of North and South Pacific Tropical Waters and Antarctic Intermediate Water are a long-range (i.e., preformed) laterally advected signal, whereas increasing [REE] with depth within North Pacific Intermediate Water result from release from particles. Optimum multiparameter analysis of deep to bottom waters indicates a dominant control of lateral transport and mixing on [REE] at the depth of Lower Circumpolar Deep Water (≥3000 m water depth; ∼75-100% explained by water mass mixing), allowing the northward tracing of LCDW to ∼28°N in the Northwest Pacific. In contrast, scavenging in the hydrothermal plumes of the Lau Basin and Tonga-Fiji area at 1500-2000 m water depth leads to [REE] deficits (∼40-60% removal) and marked REE fractionation in the tropical West Pacific. Overall, our data provide evidence for active trace element input both near South Korea and Papua New Guinea, and for a strong lateral transport component in the distribution of dissolved REEs in large parts of the West Pacific.

  5. Interdecadal variability of the tropospheric biennial oscillation in the western North Pacific

    International Nuclear Information System (INIS)

    Zheng Bin; Lin Ailan; Gu Dejun; Li Chunhui

    2008-01-01

    The observed tropospheric biennial oscillation (TBO) in the western North Pacific (WNP) monsoon region has an interdecadal variability with a period of 40–50 yr. That suggests a weaker effect of the TBO on the East Asia followed by a stronger one. A simple analytic model was designed to investigate the mechanism of the interdecadal variability of the TBO. The results indicated that a local TBO air-sea system not only supports the TBO variability in the WNP monsoon region but also produces an interdecadal variability of the TBO

  6. AFSC/RACE/GAP/Conrath: Notes on the Reproductive Biology of Female Salmon Sharks in the Eastern North Pacific Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Little information has previously been published on the reproductive biology of the salmon shark in the Eastern North Pacific ocean. This data set incorporates basic...

  7. Possible influence of long-term sea surface temperature anomalies in the tropical Pacific on global zone

    Energy Technology Data Exchange (ETDEWEB)

    Komhyr, W D; Oltmans, S J; Grass, R D [Atmospheric Administration Climate Monitoring and Diagnostics Lab., Boulder, CO (USA); Leonard, R K [Colorado Univ., Boulder, CO (USA)

    1991-01-01

    A significant negative correlation exists between summer sea surface temperatures (SSTs) in the east equatorial Pacific and late-October south pole total ozone values. SSTs in the eastern equatorial Pacific were anomalously warmer during 1976-1987 compared with 1962-1975. QBO (quasi-biennial oscillation) easterly winds in the equatorial Pacific stratosphere were generally stronger after 1975. Before the early-to-mid 1970s the trend in global ozone was generally upward, but then turned downward. Total ozone at Hawaii and Samoa, which had been decreasing during 1976-1987, showed recovery to mid-1970s values in 1988-1989 following a drop in SSTs in the eastern equatorial Pacific to low values last observed there prior to 1976. During late October 1988, total south pole ozone, which had decreased from ca 280 Dobson units (DU) before 1980 to 140 DU in 1987, suddenly recovered to 250 DU, though substantial ozone depletion by heterogeneous photochemical processes involving polar stratospheric clouds was still evident in the south pole ozone vertical profiles. These observations suggest that the downward trend in ozone observed over the globe in recent years may have been at least partly meteorologically induced, possibly via modulation by the warmer tropical Pacific ocean waters of QBO easterly winds at the equator, of Hadley Cell circulation, or other factors. A cursory analysis of geostrophic wind flow around the Baffin Island low suggests a meteorological influence on the observed downward trend in ozone over North America during the past decade. Because ozone has a lifetime that varies from years to minutes, changes in atmospheric dynamics have a potential to not only redistribute ozone over the globe but also to change global ozone abundance. 47 refs., 5 figs., 1 tab.

  8. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific

    Science.gov (United States)

    Kondo, Yoshiko; Takeda, Shigenobu; Nishioka, Jun; Obata, Hajime; Furuya, Ken; Johnson, William Keith; Wong, C. S.

    2008-06-01

    Complexation of iron (III) with natural organic ligands was investigated during a mesoscale iron enrichment experiment in the western subarctic North Pacific (SEEDS II). After the iron infusions, ligand concentrations increased rapidly with subsequent decreases. While the increases of ligands might have been partly influenced by amorphous iron colloids formation (12-29%), most in-situ increases were attributable to the Dilution of the fertilized patch may have contributed to the rapid decreases of the ligands. During the bloom decline, ligand concentration increased again, and the high concentrations persisted for 10 days. The conditional stability constant was not different between inside and outside of the fertilized patch. These results suggest that the chemical speciation of the released iron was strongly affected by formation of the ligands; the production of ligands observed during the bloom decline will strongly impact the iron cycle and bioavailability in the surface water.

  9. Modulation of the intraseasonal Indo-western Pacific convection oscillation to tropical cyclogenesis location and frequency over the Indo-western North Pacific during boreal extended summer

    Science.gov (United States)

    Wang, Qiuyun; Li, Jianping; Li, Yanjie; Zhang, Jingwen

    2017-04-01

    The influence of the intraseasonal Indo-western Pacific convection oscillation (IPCO) on the tropical cyclone (TC) genesis location and frequency over the Indo-western North Pacific during the boreal extended summer (May-October) is explored in this paper. Observational analysis shows that the impacts of the intraseasonal IPCO on TCs over the Indo-western North Pacific features in evident "locational phase lock of TC genesis" and distinct differences in TC frequency. In term of the WNP, when the intraseasonal IPCO is positive phase, there tends to be much more TCs, especially in the South China Sea (SCS), and more TCs generate in the west of the WNP and lower latitude (around 5°-20°N); vice versa. At the positive intraseasonal IPCO phase, the atmosphere gains heat through both sea-air interaction and the latent heat release of cumulus convective condensation, and the anomalous cyclonic circulation weakens the western Pacific subtropical high (WPSH), these conditions do favor the TC genesis. Moreover, the shrinking WPSH, the enhanced heat transfer from sea to air at the lower latitude as well as the westward shifts of heating center and anomalous cyclonic circulation lock TC genesis locations in the west of the WNP and lower latitude. The opposite situation occurs at negative phase. As for the North Indian Ocean (NIO), the TC genesis locations at the positive intraseasonal IPCO phase mainly situate in 13°-20°N and distribute closer to Indian Peninsula, particularly in the Arabian Sea (ARB), in contrast, the spatial distribution is more dispersed at the negative intraseasonal IPCO phase. However, the total TC frequencies at two intraseasonal IPCO phases are similar. These features come largely from the differences in the area featuring conditions between the northern and southern regions of 13°N in the NIO: at the positive intraseasonal IPCO phase, to the northern region of 13°N, the environmental conditions are similar to the case of the WNP except without the

  10. Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    OpenAIRE

    Fiedler, Paul C.

    1992-01-01

    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and...

  11. Study of Colombia North Wiwa El Encanto Amerindians HLA- genes: Pacific Islanders relatedness.

    Science.gov (United States)

    Arnaiz-Villena, Antonio; Palacio-Grüber, Jose; Juarez, Ignacio; Muñiz, Ester; Hernández, Ennio; Bayona, Brayan; Campos, Cristina; Nuñez, Jorge; Lopez-Nares, Adrian; Martin-Villa, Manuel; Silvera, Carlos

    2018-07-01

    We have studied Wiwa/Sanja Amerindians HLA-A, -B, -C, -DRB1 and DQB1 allele frequencies and extended haplotypes in 52 unrelated individuals from "El Encanto" town at Guanachaca riverside. High frequency alleles were in general present in other Amerindian populations. Also, three extended haplotypes and eight ones were respectively both "new found" and already described in Amerindians from North, Central and South America, including Lakota-Sioux, Mayas, Teeneks, Quechua and Aymaras. Analyses of HLA-A*24:02 and -C*01:02 Wiwa high frequency alleles suggested a specific relatedness with another Amerindian and Pacific Islander ethnic groups (these two particular alleles bearing in high frequencies); they include New Zealand Maoris, Taiwanese, Japanese, Papua New Guinea, and Samoans among others. This may indicate that selective forces are maintaining these two alleles high frequency within this wide American/Pacific area. Copyright © 2018. Published by Elsevier Inc.

  12. A dipole pattern in the Indian and Pacific oceans and its relationship with the East Asian summer monsoon

    International Nuclear Information System (INIS)

    Zheng, Jiayu; Feng, Juan; Li, Jianping

    2014-01-01

    This study demonstrates a robust relationship between the Indo-Pacific warm pool (IPWP) and North Pacific Ocean dipole (IPOD) and the East Asian summer monsoon (EASM) using observational datasets and sensitivity tests from the Community Atmosphere Model version 3.1 of the National Center for Atmospheric Research. The IPOD, which is a significant pattern of boreal summer SSTA in the Indian and Pacific oceans characterized by positive (negative) sea-surface temperature anomalies (SSTA) in the North Pacific and negative (positive) SSTA in the IPWP, appears around May, intensifies in the following months, and weakens in September. In summers with a positive IPOD phase, the western Pacific subtropical high (WPSH) weakens and shrinks with the axis of the WPSH ridge moving northwards, which favours an intensified EASM and a decrease in summer rainfall in the Yangtze River valley, and vice versa. (letter)

  13. How ocean color can steer Pacific tropical cyclones

    Science.gov (United States)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  14. Mesoscale cyclogenesis over the western north Pacific Ocean during TPARC

    Directory of Open Access Journals (Sweden)

    Christopher A. Davis

    2013-01-01

    Full Text Available Three cases of mesoscale marine cyclogenesis over the subtropics of the Western Pacific Ocean are investigated. Each case occurred during the THORPEX Pacific Asia Regional Campaign and Tropical Cyclone Structure (TCS-08 field phases in 2008. Each cyclone developed from remnants of disturbances that earlier showed potential for tropical cyclogenesis within the tropics. Two of the cyclones produced gale-force surface winds, and one, designated as a tropical cyclone, resulted in a significant coastal storm over eastern Japan. Development was initiated by a burst of organized mesoscale convection that consolidated and intensified the surface cyclonic circulation over a period of 12–24 h. Upper-tropospheric potential vorticity anomalies modulated the vertical wind shear that, in turn, influenced the periods of cyclone intensification and weakening. Weak baroclinicity associated with vertical shear was also deemed important in organizing mesoscale ascent and the convection outbreaks. The remnant tropical disturbances contributed exceptional water vapour content to higher latitudes that led to strong diabatic heating, and the tropical remnants contributed vorticity that was the seed of the development in the subtropics. Predictability of these events more than three days in advance appears to be minimal.

  15. Nutrient Concentrations collected from OSCAR ELTON SETTE in North Pacific Ocean from 2008-03-01 to 2011-04-30

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laboratory analysis of water samples collected aboard the NOAA Ship Oscar Elton Sette along a 158W transect from 26-36N in the central North Pacific. Laboratory...

  16. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America.

    Science.gov (United States)

    Kitzberger, Thomas; Brown, Peter M; Heyerdahl, Emily K; Swetnam, Thomas W; Veblen, Thomas T

    2007-01-09

    Widespread synchronous wildfires driven by climatic variation, such as those that swept western North America during 1996, 2000, and 2002, can result in major environmental and societal impacts. Understanding relationships between continental-scale patterns of drought and modes of sea surface temperatures (SSTs) such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) may explain how interannual to multidecadal variability in SSTs drives fire at continental scales. We used local wildfire chronologies reconstructed from fire scars on tree rings across western North America and independent reconstructions of SST developed from tree-ring widths at other sites to examine the relationships of multicentury patterns of climate and fire synchrony. From 33,039 annually resolved fire-scar dates at 238 sites (the largest paleofire record yet assembled), we examined forest fires at regional and subcontinental scales. Since 1550 CE, drought and forest fires covaried across the West, but in a manner contingent on SST modes. During certain phases of ENSO and PDO, fire was synchronous within broad subregions and sometimes asynchronous among those regions. In contrast, fires were most commonly synchronous across the West during warm phases of the AMO. ENSO and PDO were the main drivers of high-frequency variation in fire (interannual to decadal), whereas the AMO conditionally changed the strength and spatial influence of ENSO and PDO on wildfire occurrence at multidecadal scales. A current warming trend in AMO suggests that we may expect an increase in widespread, synchronous fires across the western U.S. in coming decades.

  17. The phase differences of the interdecadal variabilities of tropical cyclone activity in the peak and late seasons over the western North Pacific

    Science.gov (United States)

    Fan, Tingting; Xu, Shibin; Huang, Fei; Zhao, Jinping

    2018-04-01

    This study compares the interdecadal variations in tropical cyclone (TC) activities over the western North Pacific (WNP) basin during the peak season (July-September) and late season (October-December) of 1955-2014 and explores the possible physical mechanisms behind the variations. Both the peak- and late-season tropical storm (TS) days show distinct interdecadal variations, while the late-season TS days lead the peak-season TS days by approximately 4 years on an interdecadal time scale. The late-season TC activity is related to the east-west sea surface temperature (SST) gradient across the equatorial Pacific. The westerly winds induced by the SST gradient can reduce the vertical wind shear and increase the low-level vorticity, which favors TC genesis over the TC genesis region. The peak-season TC activity appears to relate to the SST gradient between the Indian Ocean and the Central Pacific. The westerly wind induced by the SST gradient can reduce the vertical wind shear and increase the mid-level relative humidity, thereby enhancing the TC activity. The full picture of the interdecadal variation in the WNP TC activity during the peak and late seasons revealed in this study provides a new perspective on the seasonal TC forecasts and future projections.

  18. Temperature profile data from XBT and BT casts in the North/South Pacific Ocean and North/South Atlantic Ocean from NOAA Ship RESEARCHER and other platforms from 1987-04-02 to 1987-11-24 (NODC Accession 8800007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the North/South Pacific Ocean and North/South...

  19. Communicating Volcanic Hazards in the North Pacific

    Science.gov (United States)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  20. Ventilation changes in the western North Pacific since the last glacial period

    Directory of Open Access Journals (Sweden)

    Y. Okazaki

    2012-01-01

    Full Text Available We reconstructed the ventilation record of deep water at 2100 m depth in the mid-latitude western North Pacific over the past 25 kyr from radiocarbon measurements of coexisting planktic and benthic foraminiferal shells in sediment with a high sedimentation rate. The 14C data on fragile and robust planktic foraminiferal shells were concordant with each other, ensuring high quality of the reconstructed ventilation record. The radiocarbon activity changes were consistent with the atmospheric record, suggesting that no massive mixing of old carbon from the abyssal reservoir occurred throughout the glacial to deglacial periods.

  1. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the North Pacific Ocean and South Pacific Ocean from 1991-08-13 to 1991-09-01 (NODC Accession 0115591)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115591 includes chemical, discrete sample, physical and profile data collected from Hakuho Maru in the North Pacific Ocean and South Pacific Ocean...

  2. Penetration of tritium into the Tropical Pacific

    International Nuclear Information System (INIS)

    Fine, R.A.; Peterson, W.H.; Ostlund, H.G.

    1987-01-01

    The persistence of subsurface tritium maxima coincident with the Equatorial Currents is used to show that advection along isopycnals by the mean wind-driven circulation is the dominant process in the at most 14-year time scale for the penetration of high northern latitude water to the equator (above 26.2 sigma-theta). Ventilation of the equatorial Pacific thermocline from the north contrasts sharply with the equatorial Atlantic thermocline which is ventilated from the south. The most striking manifestation of the North Pacific circulation is evidenced by a tritium maximum and salinity minimum at the equator between 145 0 and 125 0 W located above 25.6 sigma-theta. It shows that regardless of time of sampling the easter/central equator has received the highest latitude water, probably as a consequence of recirculation by the Equatorial Currents. Between the same meridians there is a tritium maximum on and north of the equator at the surface, which is interpreted as an expression of upwelling. Its coincidence with the cool tongue (Wyrtki) provides direct evidence that the upwelling process plays a dominant role in its maintenance on a decadal time scale

  3. Condensed and Updated Version of the Systematic Approach Meteorological Knowledge Base Western North Pacific

    OpenAIRE

    Carr, Lester E., III; Elsberry, Russell L.; Boothe, Mark A.

    1997-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense. The meteorological knowledge base for the Systematic and Integrated Approach to Tropical Cydone Track Forecasting proposed by Carr and Elsberry has evolved as additional research has been completed. This Systematic Approach has been applied in the eastern and central North Pacific, and in the Southern Hemisphere, a number of conceptual models have bee...

  4. Seasonal pH and aragonite saturation horizons in the Gulf of Alaska during the North Pacific Survey, 1956–1957

    OpenAIRE

    McKinnell, S.; Christian, J. R.

    2009-01-01

    The extent of global change in carbon system parameters can only be evaluated by comparing present with past measurements. In the northern North Pacific, where aragonite saturation horizons are among the shallowest in the world, historical measurements of carbonate parameters vary from rare to nonexistent. However, during the summer of 1956 and winter of 1957, an extensive survey of the oceanography of the Northeast Pacific, under the auspices of the Canadian Committee on Oceanography, was co...

  5. Geotechnical properties of sediments from North Pacific and Northern Bermuda Rise

    International Nuclear Information System (INIS)

    Silva, A.J.; Laine, E.P.; Lipkin, J.; Heath, G.R.; Akers, S.A.

    1980-01-01

    Studies of geotechnical properties for the Sub-seabed Disposal Program have been oriented toward sediment characterization related to effectiveness as a containment media and determination of detailed engineering behavior. Consolidation tests of the deeper samples in the North Pacific clays indicate that the sediment column is normally consolidated. The in-situ coefficient of permeability (k) within the cored depth of 25 meters is relatively constant at 10 -7 cm/sec. Consolidated undrained (CIU) triaxial tests indicate stress-strain properties characteristic of saturated clays with effective angles of friction of 35 0 for smectite and 31 0 for illite. These results are being used in computer modeling efforts. Some general geotechnical property data from the Bermuda Rise are also discussed

  6. Temperature, salinity, and nutrients data from CTD, MBT, and bottle casts in the Arctic, North Atlantic and North Pacific Oceans from the SACKVILLE and other platforms from 1928-05-12 to 1998-11-03 (NODC Accession 0000448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, MBT, bottle and other data were collected in the Arctic, North Atlantic, and North Pacific Oceans from the SACKVILLE and other platforms from 12 May 1928 to 03...

  7. Relationship between the North Pacific Gyre Oscillation and the onset of stratospheric final warming in the northern Hemisphere

    Science.gov (United States)

    Hu, Jinggao; Li, Tim; Xu, Haiming

    2018-01-01

    The seasonal timing or onset date of the stratospheric final warming (SFWOD) events has a considerable interannual variability. This paper reports a statistically significant relationship between the North Pacific Gyre Oscillation (NPGO) and SFWOD in the Northern Hemisphere in two sub-periods (1951-1978 and 1979-2015). Specifically, in the first (second) sub-period, the NPGO is negatively (positively) linked with SFWOD. Composite analyses associated with anomalous NPGO years are conducted to diagnose the dynamic processes of the NPGO-SFWOD link. During 1951-1978, positive NPGO years tend to strengthen the Pacific-North America (PNA) pattern in the mid-troposphere in boreal winter. The strengthened PNA pattern in February leads to strong planetary wave activity in the extratropical stratosphere from late February to March and causes the early onset of SFW in early April. By contrast, a strengthened Western Pacific pattern from January to early February in negative NPGO years causes a burst of planetary waves in both the troposphere and extratropical stratosphere from late January to mid-February and results in more winter stratospheric sudden warming events, which, in turn, leads to a dormant spring and a late onset of SFW in late April. During 1979-2015, positive (negative) NPGO years strongly strengthen (weaken) the mid-tropospheric Aleutian low and the Western Pacific pattern from January to mid-March, leading to increased (decreased) planetary wavenumber-1 activity in the stratosphere from mid- to late winter and thus more (less) winter stratospheric sudden warming events and late (early) onsets of SFW in early May (mid-April).

  8. The Pacific Exploratory Mission-West Phase B: February-March, 1994

    Science.gov (United States)

    Hoell, J. M.; Davis, D. D.; Liu, S. C.; Newell, R. E.; Akimoto, H.; McNeal, R. J.; Bendura, R. J.

    1997-12-01

    The NASA Pacific Exploratory Mission in the Western Pacific Ocean (PEM-West) is a major component of the East Asia/North Pacific Regional Study (APARE), a project within the International Global Atmospheric Chemistry (IGAC) Program. The broad objectives of the PEM-West/APARE initiative are to study chemical processes and long-range transport of atmospheric trace species over the north-west Pacific Ocean and to estimate the magnitude of the human impact on these species over this region. The first phase of PEM-West (PEM-West A) was conducted in September-October 1991, a period characterized by minimum outflow from the Asian continent. The second phase of this mission, PEM-West B, was conducted during February-March 1994, a period characterized by enhanced outflow from the Asian continent. Both field campaigns of PEM-West included intensive airborne measurements of trace gases and aerosols from the NASA DC-8 aircraft coordinated with measurements at surface sites. This paper reports the experimental design for PEM-West B and provides a brief summary of the salient results of the PEM-West B campaign with particular emphases on the difference/similarities between phases A and B. Results from the two campaigns clearly quantify, from a trace gas perspective, the seasonal differences in the continental outflow that were qualitatively anticipated based upon meteorological considerations, and show the impact of major meteorological features within the region on the quality of tropospheric air over the North Pacific Ocean regions. The PEM-West database provides a "baseline" tool by which future assessments of a continuing impact of Asian emissions on remote Pacific regions can be judged. [These data are currently available through the Global Troposhperic Experiment Data Archive at NASA's Langley Research Center (http://www-gte.larc.nasa.gov) and the Langley Distributed Archive Center (http://eosdis.larc.nasa.gov)].

  9. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

  10. Marine Animal Sound Database. Twelve Years of Tracking 52-Hz Whale Calls from a Unique Source in the North Pacific

    National Research Council Canada - National Science Library

    Watkins, William

    2004-01-01

    Long-term monitoring of underwater sounds using U.S. Navy SOSUS and other hydrophone arrays allowed us to follow the seasonal distribution of underwater calls produced by blue, fin and humpback whales across the North Pacific...

  11. Tropical cyclone-related socio-economic losses in the western North Pacific region

    Science.gov (United States)

    Welker, C.; Faust, E.

    2013-01-01

    The western North Pacific (WNP) is the area of the world most frequently affected by tropical cyclones (TCs). However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr - driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower) by 14% (9%) in the positive (negative) phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980-2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.

  12. Tropical cyclone-related socio-economic losses in the western North Pacific region

    Directory of Open Access Journals (Sweden)

    C. Welker

    2013-01-01

    Full Text Available The western North Pacific (WNP is the area of the world most frequently affected by tropical cyclones (TCs. However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr – driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower by 14% (9% in the positive (negative phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980–2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.

  13. Nutrients, temperature, and salinity from bottle cats in the North Pacific Ocean by the Pacific Research Institute of Fisheries and Oceanography from 27 August 1950 to 17 November 1997 (NODC Accession 0000843)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients, temperature, and salinity data were collected using bottle casts in the North Pacific Ocean from 27 August 1950 to 17 November 1997. Data were submitted...

  14. Boreal Summer Intraseasonal Oscillation Impact on Western North Pacific Typhoons and Rainfall in Taiwan

    OpenAIRE

    Chih-wen Hung; Ho-Jiunn Lin; Pei-ken Kao; Ming-fu Shih; Wei-yi Fong

    2016-01-01

    This study discusses the boreal summer intraseasonal oscillation (BSISO) impact on the western North Pacific (WNP) typhoons and the summer rainfall in Taiwan. The real time BSISO1 and BISISO2 indices are created using the first two and the third and fourth principal components of the multivariate empirical orthogonal function analysis, based on outgoing long-wave radiation and zonal wind at 850 hPa from Lee et al. (2013). The results show that heavy rainfall in Taiwan and the associated WNP t...

  15. The Impacts of Daily Surface Forcing in the Upper Ocean over Tropical Pacific: A Numerical Study

    Science.gov (United States)

    Sui, C.-H.; Rienecker, Michele M.; Li, Xiaofan; Lau, William K.-M.; Laszlo, Istvan; Pinker, Rachel T.

    2001-01-01

    Tropical Pacific Ocean is an important region that affects global climate. How the ocean responds to the atmospheric surface forcing (surface radiative, heat and momentum fluxes) is a major topic in oceanographic research community. The ocean becomes warm when more heat flux puts into the ocean. The monthly mean forcing has been used in the past years since daily forcing was unavailable due to the lack of observations. The daily forcing is now available from the satellite measurements. This study investigates the response of the upper ocean over tropical Pacific to the daily atmospheric surface forcing. The ocean surface heat budgets are calculated to determine the important processes for the oceanic response. The differences of oceanic responses between the eastern and western Pacific are intensively discussed.

  16. Temperature, salinity, and nutrients data from bottle, CTD, and XBT casts in the Arctic, North Atlantic, and North Pacific Oceans from the ANTON DOHRN and other platforms from 02 July 1916 to 28 January 1999 (NODC Accession 0000677)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle, CTD, and XBT data were collected in the Arctic, North Atlantic, and North Pacific Oceans from the ANTON DOHRN and other vessels from 02 July 1916 to 28...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, salinity and other variables collected from Surface underway observations using Autonomous sensor to measure dissolved inorganic carbon (DIC), Carbon dioxide (CO2) gas analyzer and other instruments from MIRAI in the North Pacific Ocean, Papahānaumokuākea Marine National Monument and others from 1998-01-31 to 2003-02-12 (NODC Accession 0080986)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080986 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the North Pacific Ocean, Papahānaumokuākea...

  18. A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990

    International Nuclear Information System (INIS)

    Yu, Jin-Yi; Kim, Seon Tae; Lu, Mong-Ming

    2012-01-01

    A newly released reanalysis dataset covering the period 1979–2009 is analyzed to show that the sea surface temperature (SST) variability in the tropical central Pacific is more closely related to the SST variability in the tropical eastern Pacific before 1990 but more closely related to sea level pressure (SLP) variations associated with the North Pacific Oscillation (NPO) after 1990. Only during the period after 1990 can the NPO excite large SST variability in the tropical central Pacific. Related to this change, El Niño Southern Oscillation (ENSO) SST anomalies tend to spread from the eastern to central tropical Pacific before 1990 in a pattern resembling that associated with the Eastern Pacific (EP) type of ENSO, but are more closely connected to SST variability in the subtropical north Pacific after 1990 with a pattern resembling that of the Central Pacific (CP) type of ENSO. This study concludes that the increased influence of the NPO on the tropical Pacific is a likely reason for the increasing occurrence of the CP type of ENSO since 1990. An analysis of the mean atmospheric circulation during these two periods suggests that the increased NPO influence is associated with a strengthening Hadley circulation after 1990. (letter)

  19. Temperature profile data collected using BT and XBT casts in the North/South Pacific Ocean and North/South Atlantic Ocean from NOAA Ship MALCOLM BALDRIGE and other platforms from 1988-05-04 to 1990-12-18 (NODC Accession 9100058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship MALCOLM BALDRIGE and other platforms in the North/South Pacific Ocean and North/South...

  20. Sources and processes affecting the distribution of dissolved Nd isotopes and concentrations in the West Pacific

    Science.gov (United States)

    Behrens, Melanie K.; Pahnke, Katharina; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2018-02-01

    In the Atlantic, where deep circulation is vigorous, the dissolved neodymium (Nd) isotopic composition (expressed as ɛNd) is largely controlled by water mass mixing. In contrast, the factors influencing the ɛNd distribution in the Pacific, marked by sluggish circulation, is not clear yet. Indication for regional overprints in the Pacific is given based on its bordering volcanic islands. Our study aims to clarify the impact and relative importance of different Nd sources (rivers, volcanic islands), vertical (bio)geochemical processes and lateral water mass transport in controlling dissolved ɛNd and Nd concentration ([Nd]) distributions in the West Pacific between South Korea and Fiji. We find indication for unradiogenic continental input from South Korean and Chinese rivers to the East China Sea. In the tropical West Pacific, volcanic islands supply Nd to surface and subsurface waters and modify their ɛNd to radiogenic values of up to +0.7. These radiogenic signatures allow detailed tracing of currents flowing to the east and differentiation from westward currents with open ocean Pacific ɛNd composition in the complex tropical Pacific zonal current system. Modified radiogenic ɛNd of West Pacific intermediate to bottom waters upstream or within our section also indicates non-conservative behavior of ɛNd due to boundary exchange at volcanic island margins, submarine ridges, and with hydrothermal particles. Only subsurface to deep waters (3000 m) in the open Northwest Pacific show conservative behavior of ɛNd. In contrast, we find a striking correlation of extremely low (down to 2.77 pmol/kg Nd) and laterally constant [Nd] with the high-salinity North and South Pacific Tropical Water, indicating lateral transport of preformed [Nd] from the North and South Pacific subtropical gyres into the study area. This observation also explains the previously observed low subsurface [Nd] in the tropical West Pacific. Similarly, Western South Pacific Central Water, Antarctic

  1. Impact of the intraseasonal variability of large-scale circulation over the Western North Pacific on the characteristics of tropical cyclone track

    OpenAIRE

    Chen, T. C.; Wang, Shih-Yu (Simon); Yen, M. C.; Clark, A. J.

    2009-01-01

    The life cycle of the Southeast Asian–western North Pacific monsoon circulation is established by the northward migrations of the monsoon trough and the western Pacific subtropical anticyclone, and is reflected by the intraseasonal variations of mo nsoon westerlies and trad e easterlies in the form of an east–west seesaw oscillation. In this paper, an effort is made to disclose the influence of this monsoon circulation on tropical cyclone tracks during its different ph ases using composite ch...

  2. Population differentiation and hybridisation of Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins in North-Western Australia

    NARCIS (Netherlands)

    Brown, Alexander M.; Kopps, Anna M.; Allen, Simon J.; Bejder, Lars; Littleford-Colquhoun, Bethan; Parra, Guido J.; Cagnazzi, Daniele; Thiele, Deborah; Palmer, Carol; Frere, Celine H.

    2014-01-01

    Little is known about the Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins ('snubfin' and 'humpback dolphins', hereafter) of north-western Australia. While both species are listed as 'near threatened' by the IUCN, data deficiencies are impeding rigorous

  3. Temperature, salinity, and nutrients data from bottle, CTD, and XBT casts from the JOHN P. TULLY and other vessels in the North Atlantic and North Pacific Oceans from 03 August 1959 to 01 July 2001 (NODC Accession 0000664)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle, CTD, and XBT data were collected in the North Atlantic and North Pacific Oceans from the John P. Tully and other vessels from 03 August 1959 to 01 July 2001....

  4. BAROMETRIC PRESSURE and Other Data from ALPHA HELIX From North Pacific Ocean and Others from 19931016 to 19931103 (NODC Accession 9400051)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Bering Sea and North Pacific Ocean. Data was collected from Ship ALPHA HELIX cruise...

  5. Microbiome of Trichodesmium Colonies from the North Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    Mary R. Gradoville

    2017-07-01

    Full Text Available Filamentous diazotrophic Cyanobacteria of the genus Trichodesmium, often found in colonial form, provide an important source of new nitrogen to tropical and subtropical marine ecosystems. Colonies are composed of several clades of Trichodesmium in association with a diverse community of bacterial and eukaryotic epibionts. We used high-throughput 16S rRNA and nifH gene sequencing, carbon (C and dinitrogen (N2 fixation assays, and metagenomics to describe the diversity and functional potential of the microbiome associated with Trichodesmium colonies collected from the North Pacific Subtropical Gyre (NPSG. The 16S rRNA and nifH gene sequences from hand-picked colonies were predominantly (>99% from Trichodesmium Clade I (i.e., T. thiebautii, which is phylogenetically and ecologically distinct from the Clade III IMS101 isolate used in most laboratory studies. The bacterial epibiont communities were dominated by Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria, including several taxa with a known preference for surface attachment, and were relatively depleted in the unicellular Cyanobacteria and small photoheterotrophic bacteria that dominate NPSG surface waters. Sequencing the nifH gene (encoding a subcomponent of the nitrogenase enzyme identified non-Trichodesmium diazotrophs that clustered predominantly among the Cluster III nifH sequence-types that includes putative anaerobic diazotrophs. Trichodesmium colonies may represent an important habitat for these Cluster III diazotrophs, which were relatively rare in the surrounding seawater. Sequence analyses of nifH gene transcripts revealed several cyanobacterial groups, including heterocystous Richelia, associated with the colonies. Both the 16S rRNA and nifH datasets indicated strong differences between Trichodesmium epibionts and picoplankton in the surrounding seawater, and also between the epibionts inhabiting Trichodesmium puff and tuft colony morphologies. Metagenomic and 16S r

  6. Organohalogen compounds in deep-sea fishes from the western North Pacific, off-Tohoku, Japan: Contamination status and bioaccumulation profiles

    International Nuclear Information System (INIS)

    Takahashi, Shin; Oshihoi, Tomoko; Ramu, Karri; Isobe, Tomohiko; Ohmori, Koji; Kubodera, Tsunemi; Tanabe, Shinsuke

    2010-01-01

    Twelve species of deep-sea fishes collected in 2005 from the western North Pacific, off-Tohoku, Japan were analyzed for organohalogen compounds. Among the compounds analyzed, concentrations of DDTs and PCBs (up to 23,000 and 12,400 ng/g lipid wt, respectively) were the highest. The present study is the foremost to report the occurrence of brominated flame retardants such as PBDEs and HBCDs in deep-sea organisms from the North Pacific region. Significant positive correlations found between δ 15 N ( per mille ) and PCBs, DDTs and PBDEs suggest the high biomagnification potential of these contaminants in food web. The large variation in δ 13 C ( per mille ) values observed between the species indicate multiple sources of carbon in the food web and specific accumulation of hydrophobic organohalogen compounds in benthic dwelling carnivore species like snubnosed eel. The results obtained in this study highlight the usefulness of deep-sea fishes as sentinel species to monitor the deep-sea environment.

  7. 137Cs concentration in zooplankton and its relation to taxonomic composition in the western North Pacific Ocean

    International Nuclear Information System (INIS)

    Kaeriyama, Hideki; Watabe, Teruhisa; Kusakabe, Masashi

    2008-01-01

    To study the role of zooplankton in the transport of 137 Cs in the ocean, zooplankton samples were collected in October 2005 and June 2006 in the western North Pacific Ocean. The peak zooplankton biomass was observed in the surface layer, and gelatinous plankton was more abundant in October 2005 than in June 2006 reflecting exchange of water masses. The concentrations of 137 Cs in zooplankton varied from 11 to 24 mBq kg wet -1 and were higher in October 2005 than in June 2006. The elevated abundance of gelatinous zooplankton probably led to higher concentration of 137 Cs in zooplankton in October 2005. Annual export fluxes of 137 Cs by ontogenetic vertical migrant copepods were estimated to be 0.8 and 0.6 mBq m -2 year -1 at 200 and 1000 m depths, respectively; this suggested that transport of 137 Cs by zooplankton may be no trivial pathway

  8. Multi-century variability in the Pacific North American circulation pattern reconstructed from tree rings

    Science.gov (United States)

    Trouet, Valerie; Taylor, Alan H.

    2010-11-01

    We here present a reconstruction (1725-1999) of the winter Pacific North American (PNA) pattern based on three winter climate sensitive tree ring records from the western USA. Positive PNA phases in our record are associated with warm phases of ENSO and PDO and the reorganization of the PNA pattern towards a positive mode is strongest when ENSO and PDO are in phase. Regime shifts in our PNA record correspond to climatic shifts in other proxies of Pacific climate variability, including two well-documented shifts in the instrumental period (1976 and 1923). The correspondence breaks down in the early 19th century, when our record shows a prolonged period of positive PNA, with a peak in 1800-1820. This period corresponds to a period of low solar activity (Dalton Minimum), suggesting a `positive PNA like' response to decreased solar irradiance. The distinct 30-year periodicity that dominates the PNA reconstruction in the 18th century and again from 1875 onwards is disrupted during this period.

  9. Seasonal variations in the aragonite saturation state in the upper open-ocean waters of the North Pacific Ocean

    Science.gov (United States)

    Kim, Tae-Wook; Park, Geun-Ha; Kim, Dongseon; Lee, Kitack; Feely, Richard A.; Millero, Frank J.

    2015-06-01

    Seasonal variability of the aragonite saturation state (ΩAR) in the upper (50 m and 100 m depths) North Pacific Ocean (NPO) was investigated using multiple linear regression (MLR). The MLR algorithm derived from a high-quality carbon data set accurately predicted the ΩAR of evaluation data sets (three time series stations and P02 section) with acceptable uncertainty (<0.1 ΩAR). The algorithm was combined with seasonal climatology data, and the estimated ΩAR varied in the range of 0.4-0.6 in the midlatitude western NPO, with the largest variation found for the tropical eastern NPO. These marked variations were largely controlled by seasonal changes in vertical mixing and thermocline depth, both of which determine the degree of entrainment of CO2-rich corrosive waters from deeper depths. Our MLR-based subsurface ΩAR climatology is complementary to surface climatology based on pCO2 measurements.

  10. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the THOMAS WASHINGTON in the North Pacific Ocean and South Pacific Ocean from 1991-08-31 to 1991-10-01 (NODC Accession 0115174)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115174 includes chemical, discrete sample, physical and profile data collected from THOMAS WASHINGTON in the North Pacific Ocean and South Pacific...

  11. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from SOUTHERN SURVEYOR in the North Pacific Ocean and South Pacific Ocean from 2009-02-03 to 2009-03-24 (NODC Accession 0108082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108082 includes chemical, discrete sample, physical and profile data collected from SOUTHERN SURVEYOR in the North Pacific Ocean and South Pacific...

  12. Changes in upwelling and surface productivity in the Eastern Pacific during Terminations I and II

    Science.gov (United States)

    Erdem, Z.; De Bar, M.; Stolwijk, D.; Schneider, R. R.; S Sinninghe Damsté, J.; Schouten, S.

    2017-12-01

    The Eastern Pacific coastal system is characterized by intense upwelling and consequently by an enhanced surface primary productivity. Combination of this high organic matter flux with sluggish bottom water ventilation results in one of the most pronounced oxygen minimum zones reaching from offshore California in the North to offshore Chile in the South. As a result of this process, the region is particularly interesting in view of nutrient and carbon cycling as well as ecosystem dynamics. The dynamics of the upwelling and oxygen concentrations are closely related to climatic conditions. Therefore, paleo-reconstructions of different settings are crucial in order to improve our understanding of the response of these nutrient-rich, oxygen-deficient, environments in relation to the recent global ocean warming, acidification and deoxygenation. In this study, we present downcore results from three different sites in the Eastern Pacific: offshore California (IODP site 1012), Peru (M77/2-52-2) and Chile (IODP site 1234). We applied different biomarkers as proxies to decipher changes in phytoplankton community composition, including the upwelling index based on long chain diols, and other common productivity indicators such as bulk organic carbon, carbonate and biogenic opal. In addition, application of carbon and nitrogen isotope ratios of total organic carbon and benthic foraminifera complement our multiproxy approach. Herewith we aim to compare at least two glacial-interglacial transitions with different magnitudes of deglacial warming along the Eastern Pacific upwelling systems at different latitudes. The data presented will cover the last 160 ka BP offshore California and Chile, and 30 ka BP offshore Peru enabling comparison between glacial Terminations I and II.

  13. Basking Shark (Cetorhinus maximus Movements in the Eastern North Pacific Determined Using Satellite Telemetry

    Directory of Open Access Journals (Sweden)

    Heidi Dewar

    2018-05-01

    Full Text Available To fill data gaps on movements, behaviors and habitat use, both near- and offshore, two programs were initiated to deploy satellite tags on basking sharks off the coast of California. Basking sharks are large filter-feeding sharks that are second in size only to whale sharks. Similar to many megafauna populations, available data suggest that populations are below historic levels. In the eastern North Pacific (ENP Ocean, the limited information on basking sharks comes from nearshore habitats where they forage. From 2010 to 2011, four sharks were tagged with pop-off satellite archival tags with deployments ranging from 9 to 240 days. The tags provided both transmitted and archived data on habitat use and geographic movement patterns. Nearshore, sharks tended to move north in the summer and prefer shelf and slope habitat around San Diego, Point Conception and Monterey Bay. The two sharks with 180 and 240 days deployments left the coast in the summer and fall. Offshore their paths diverged and by January one shark had moved to near the tip of the Baja Peninsula, Mexico and the other to the waters near Hawaii, USA. Vertical habitat use was variable both within and among individuals and changed as sharks moved offshore. Nearshore, most time was spent in the mixed layer but sharks did spend hours in cold waters below the mixed layer. Offshore vertical movements depended on location. The shark that went to Hawaii had a distinct diel pattern, with days spent at ~450–470 m and nights at ~250–300 m and almost no time in surface waters, corresponding with the diel migration of a specific portion of the deep scattering layer. The shark that moved south along the Baja Peninsula spent progressively more time in deep water but came to the surface daily. Movement patterns and shifts in vertical habitat and use are likely linked to shifts in prey availability and oceanography. Data collected indicate the potential for large-scale movements and the need for

  14. Long-Term Changes in the Extreme Significant Wave Heights on the Western North Pacific: Impacts of Tropical Cyclone Activity and ENSO

    Science.gov (United States)

    Yang, Sinil; Oh, Jaiho

    2018-02-01

    Seasonal extreme wave statistics were reproduced by using the 25-km-grid global wave model of WAVEWATCH-III. The results showed that the simulated wave dataset for the present climate (1979-2009) was similar to Climate Forecast System Reanalysis (CFSR) wave data. Statistics such as the root mean squared error (RMSE) and correlation coefficient (CC) over the western North Pacific (WNP) basin were 0.5 m and 0.69 over the analysis domain. The largest trends and standard deviation were around the southern coast of Japan and western edge of the WNP. Linear regression analysis was employed to identify the relationship between the leading principal components (PCs) of significant wave heights (SWHs) in the peak season of July to September and sea surface temperature (SST) anomalies in the equatorial Pacific. The results indicated that the inter-annual variability of SWH can be associated with the El Niño-Southern Oscillation in the peak season. The CC between the first PC of the SWH and anomalies in the Nino 3.4 SST index was also significant at a 99% confidence level. Significant variations in the SWH are affected by tropical cyclones (TCs) caused by increased SST anomalies. The genesis and development of simulated TCs can be important to the variation in SWHs for the WNP in the peak season. Therefore, we can project the variability of SWHs through TC activity based on changes in SST conditions for the equatorial Pacific in the future.

  15. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Kaiyo in the North Pacific Ocean and South Pacific Ocean from 1997-11-29 to 1997-12-25 (NODC Accession 0112363)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112363 includes chemical, discrete sample, physical and profile data collected from Kaiyo in the North Pacific Ocean and South Pacific Ocean from...

  16. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship DISCOVERER in the North Pacific Ocean and South Pacific Ocean from 1992-09-06 to 1992-12-08 (NODC Accession 0000193)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0000193 includes chemical, discrete sample, physical and profile data collected from NOAA Ship DISCOVERER in the North Pacific Ocean and South Pacific...

  17. BAROMETRIC PRESSURE and Other Data from MOANA WAVE and Other Platforms From North Pacific Ocean from 19900103 to 19901220 (NODC Accession 9300148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Depth, Salinity, dissolved Oxygen (CTD); and Ocean chemistry data collected in North Pacific Ocean between January 3, 1990 and December 20, 1990 during...

  18. The developmental biogeography of hawksbill sea turtles in the North Pacific.

    Science.gov (United States)

    Van Houtan, Kyle S; Francke, Devon L; Alessi, Sarah; Jones, T Todd; Martin, Summer L; Kurpita, Lauren; King, Cheryl S; Baird, Robin W

    2016-04-01

    High seas oceanic ecosystems are considered important habitat for juvenile sea turtles, yet much remains cryptic about this important life-history period. Recent progress on climate and fishery impacts in these so-called lost years is promising, but the developmental biogeography of hawksbill sea turtles (Eretmochelys imbricata) has not been widely described in the Pacific Ocean. This knowledge gap limits the effectiveness of conservation management for this globally endangered species. We address this with 30 years of stranding observations, 20 years of bycatch records, and recent simulations of natal dispersal trajectories in the Hawaiian Archipelago. We synthesize the analyses of these data in the context of direct empirical observations, anecdotal sightings, and historical commercial harvests from the insular Pacific. We find hawksbills 0-4 years of age, measuring 8-34 cm straight carapace length, are found predominantly in the coastal pelagic waters of Hawaii. Unlike other species, we find no direct evidence of a prolonged presence in oceanic habitats, yet satellite tracks of passive drifters (simulating natal dispersal) and our small sample sizes suggest that an oceanic phase for hawksbills cannot be dismissed. Importantly, despite over 600 million hooks deployed and nearly 6000 turtle interactions, longline fisheries have never recorded a single hawksbill take. We address whether the patterns we observe are due to population size and gear selectivity. Although most sea turtle species demonstrate clear patterns of oceanic development, hawksbills in the North Pacific may by contrast occupy a variety of ecosystems including coastal pelagic waters and shallow reefs in remote atolls. This focuses attention on hazards in these ecosystems - entanglement and ingestion of marine debris - and perhaps away from longline bycatch and decadal climate regimes that affect sea turtle development in oceanic regions.

  19. Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the North Pacific coastal rainforest

    Science.gov (United States)

    Paul E. Hennon; David V. D' Amore; Paul G. Schaberg; Dustin T. Wittwer; Colin S. Shanley

    2012-01-01

    The extensive mortality of yellow-cedar along more than 1000 kilometers of the northern Pacific coast of North America serves as a leading example of climate effects on a forest tree species. In this article, we document our approaches to resolving the causes of tree death, which we explain as a cascade of interacting topographic, forest-structure, and microclimate...

  20. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    Science.gov (United States)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  1. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  2. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  3. Surface temperature of the equatorial Pacific Ocean and the Indian rainfall

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The time variation of the monthly mean surface temperature of the equatorial Pacific Ocean during 1982-1987 has been studied in relation to summer monsoon rainfall over India The ENSO events of 1982 and 1987 were related to a significant reduction...

  4. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2000-12-27 to 2001-02-08 (NODC Accession 0112353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112353 includes biological, chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific...

  5. Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO

    Science.gov (United States)

    Hu, Chundi; Zhang, Chengyang; Yang, Song; Chen, Dake; He, Shengping

    2017-11-01

    During the recent decades of satellite era, more tropical cyclogenesis locations (TCLs) were observed over the northwestern part of the western North Pacific (WNP), relative to the southeastern part, during the boreal autumn. This increase in TCLs over the northwestern WNP is largely attributed to the synergy of shifting El Niño-Southern Oscillation (ENSO) and the 1998 Pacific climate regime shift. Both central Pacific (CP) La Niña and CP El Niño have occurred more frequently since 1998, with only one eastern Pacific El Niño observed in autumn 2015. The change in the mean longitude of TCLs is closely linked to the ENSO diversity, whereas the change in the mean latitude is dominated by the warming of the WNP induced by an interdecadal tendency of CP La Niña-like events. The physical mechanisms responsible for this shifting ENSO-TCL linkage can be potentially explained by the tacit-and-mutual configurations between tropical upper-tropospheric trough and monsoon trough, on both interannual and interdecadal timescales, which is mainly due to the ENSO-related large-scale environment changes in ocean and atmosphere that modulate the WNP TCL.

  6. The Pacific Islands Climate Science Center five-year science agenda, 2014-2018

    Science.gov (United States)

    Helweg, David; Nash, Sarah A.B.; Polhemus, Dan A.

    2014-01-01

    From the heights of Mauna Kea on Hawaiʻi Island to the depths of the Mariana Trench, from densely populated cities to sparse rural indigenous communities and uninhabited sandy atolls, the Pacific region encompasses diverse associations of peoples and places that are directly affected by changes to the atmosphere, ocean, and land. The peoples of the Pacific are among the first to observe and experience the effects of global climatic changes. Because the Pacific region is predominantly composed of vast ocean expanses punctuated only by small, isolated emergent islands and atolls, marine processes are critical factors in the region’s climate systems, and their impacts occur here to a greater degree than in continental regions. Rates of sea-level rise in the region during the modern altimetry period exceed the global rate, with the highest increases occurring in the western North Pacific (Cazenave and Llovel, 2010; Nerem and others, 2010; Timmermann and others, 2010). The ocean has also warmed during this period. Since the 1970s, sea-surface temperature has increased at a rate of 0.13 to 0.41 °F (0.07 to 0.23 °C) per decade, depending on the location (Keener and others, 2012a). Ocean chemistry has changed during this period as well, with surface pH having dropped by 0.1 pH units (Feely and others, 2009; Doney and others, 2012). Over the past century, air temperature has increased throughout the Pacific region. In Hawaiʻi, average temperatures increased by 0.08 °F per decade during the period 1919 to 2006, and in recent years, the rate of increase has been accelerating, particularly at high elevations (Giambelluca and others, 2008). In the western North Pacific, temperatures also increased over the past 60 years (Lander and Guard, 2003; Lander, 2004; Lander and Khosrowpanah, 2004; Kruk and others, 2013), with a concurrent warming trend in the central South Pacific since the 1950s (Australian Bureau of Meteorology and CSIRO, 2011).

  7. Prediction of North Pacific Height Anomalies During Strong Madden-Julian Oscillation Events

    Science.gov (United States)

    Kai-Chih, T.; Barnes, E. A.; Maloney, E. D.

    2017-12-01

    The Madden Julian Oscillation (MJO) creates strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data (MERRA and ERA-Interim) and ECMWF ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anoma- lies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits. Furthermore, we also examine the phase dependency of teleconnection robustness by using Linear Baroclinic Model (LBM) and the result is consistent with the ensemble hindcasts : the anomalous heating of MJO phase 2 (phase 6) can consistently generate positive (negative) geopotential height anomalies around the extratropical Pacific with a lead of 15-20 days, while other phases are more sensitive to the variaion of the mean state.

  8. Tree growth and climate in the Pacific Northwest, North America: a broad-scale analysis of changing growth environments

    Science.gov (United States)

    Whitney L. Albright; David L. Peterson

    2013-01-01

    Climate change in the 21st century will affect tree growth in the Pacific Northwest region of North America, although complex climate–growth relationships make it difficult to identify how radial growth will respond across different species distributions. We used a novel method to examine potential growth responses to climate change at a broad geographical scale with a...

  9. Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-Western Pacific on the variability of typhoon landfall on the China coast

    Science.gov (United States)

    Yang, Lei; Chen, Sheng; Wang, Chunzai; Wang, Dongxiao; Wang, Xin

    2017-12-01

    The landfall activity of typhoons (TYs) along the coast of China during July-August-September (JAS) shows significant interdecadal variation during 1965-2010. We identify three sub-periods of TY landfall activity in JAS along the China coast in this period, with more TY landfall during 1965-1978 (Period I) and 1998-2010 (Period III), and less during 1982-1995 (Period II). We find that the interdecadal variation might be related to the combined effects of Pacific Decadal Oscillation (PDO) phase changes and sea surface temperature (SST) variation in the tropical Indian Ocean and Western Pacific (IO-WP). During the negative PDO phase in Periods I and III, a cyclonic anomaly is located in the western North Pacific (WNP), inducing easterly flow in its northern part, which favors TY landfall along the eastern China coast. Warm SST anomalies over the tropical IO-WP during Period III induce an anomalous anticyclonic circulation in the WNP through both the Gill-pattern response to the warm SST in the tropical IO and the anomalous meridional circulation induced by the warm SST in the tropical WNP. As a result, the northern South China Sea and WNP (10°-20° N) are dominated by southeasterly flow, which favors TYs making landfall on both the southern and eastern China coast. With both landfalling-favorable conditions satisfied, there are significantly more TYs making landfall along the China coast during Period III than during Period I, which shows cool SST anomalies in the tropical IO-WP.

  10. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2002-12-17 to 2003-02-14 (NODC Accession 0113608)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113608 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  11. Temperature profile and water depth data collected from BROOKE using BT and XBT casts in the North Pacific Ocean from 03 October 1975 to 18 November 1977 (NODC Accession 8900225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the BROOKE in the North Pacific Ocean and TOGA Area - Pacific Ocean. Data were...

  12. Meridional Modes and Increasing Pacific Decadal Variability Under Anthropogenic Forcing

    Science.gov (United States)

    Liguori, Giovanni; Di Lorenzo, Emanuele

    2018-01-01

    Pacific decadal variability has strong impacts on the statistics of weather, atmosphere extremes, droughts, hurricanes, marine heatwaves, and marine ecosystems. Sea surface temperature (SST) observations show that the variance of the El Niño-like decadal variability has increased by 30% (1920-2015) with a stronger coupling between the major Pacific climate modes. Although we cannot attribute these trends to global climate change, the examination of 30 members of the Community Earth System Model Large Ensemble (LENS) forced with the RCP8.5 radiative forcing scenario (1920-2100) suggests that significant anthropogenic trends in Pacific decadal variance will emerge by 2020 in response to a more energetic North Pacific Meridional Mode (PMM)—a well-known El Niño precursor. The PMM is a key mechanism for energizing and coupling tropical and extratropical decadal variability. In the LENS, the increase in PMM variance is consistent with an intensification of the winds-evaporation-SST thermodynamic feedback that results from a warmer mean climate.

  13. SEDIMENT PROPERTIES and Other Data from FIXED PLATFORM and Other Platforms From North Pacific Ocean from 19881030 to 19911024 (NODC Accession 9300040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains data collected in North Pacific Ocean from Hawaiian Ocean Time Series (HOTS) project for years 1, 2 and 3 as part of Joint Global Ocean Flux...

  14. PHYTOPLANKTON - WET WEIGHT and Other Data from ALE ANDRO DE HUMBOLDT From North Pacific Ocean from 19780108 to 19780407 (NODC Accession 9700071)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton data were collected from net tows from the Ale Andro De Humboldt in the North Pacific Ocean from 08 January 1978 to 07 April 1978. Chlorophyll A and...

  15. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    Science.gov (United States)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content

  16. Indo-Pacific sea level variability during recent decades

    Science.gov (United States)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  17. Anthropogenic 236U recorded in annually banded coral skeleton at Majuro atoll, the equatorial Pacific

    International Nuclear Information System (INIS)

    Sakaguchi, Aya; Eto, Asuka; Takahashi, Yoshio; Steier, Peter; Yamazaki, Atsuko; Watanabe, Tsuyoshi; Sasaki, Keiichi; Yamano, Hiroya

    2013-01-01

    Historical 236 U/ 238 U atom ratio and concentration of 236 U were determined by Accelerator Mass Spectrometry (AMS) in skeletons of dated modern coral core sample collected from Majuro atoll, equatorial Pacific, to reconstruct anthropogenic 236 U inputs to the Equatorial Pacific. The maximum hydrogen bomb-pulses of 236 U/ 238 U and 236 U concentration, 2.83x10 -9 and 1.85x10 7 atom/g, in an annually resolved coral core were captured in 1954 (Operation Castle at Bikini and Enewetok atolls). The values were abruptly decreased in a few years, and they have been gradually decreased over time. Our results allow studies of not only the present distribution pattern, but gives access to the temporal evolution of 236 U in surface seawater of North Equatorial Current which is introduced to the Japan Sea and the North West Pacific Ocean as Kuroshio and Tsushima currents over the past decades. (author)

  18. The Response of a Branch of Puget Sound, Washington to the 2014 North Pacific Warm Anomaly

    Science.gov (United States)

    Mickett, J.; Newton, J.; Devol, A.; Krembs, C.; Ruef, W.

    2016-02-01

    The flow of the unprecedentedly-warm upper-ocean North Pacific "Blob" water into Puget Sound, Washington, caused local extreme water property anomalies that extended from the arrival of the water inshore in the fall of 2014 through 2015. Here we report on moored and seaplane observations from Hood Canal, a branch of Puget Sound, where temperature was more than 2σ above climatology for much of the year with maximum temperature anomalies at depth and at the surface +2.5 °C and +7 °C respectively. The low density of the oceanic warm "Blob" water resulted in weak deep water flushing in Hood Canal in the fall of 2014, which combined with a lack of wintertime flushing to result in anomalously-low dissolved oxygen (DO) concentrations at depth. Late-summer 2015 DO values were the lowest in a decade of mooring observations and more than 2σ below climatology. The anomalously low density of the deep basin water allowed a very early onset of the annually-occurring, late-summer intrusion, which first entered Hood Canal at the end of July compared to the usual arrival in early to mid-September. In late August this intrusion conspired with an early fall storm to lift the very low DO deep water to surface at the south end of Hood Canal, causing a significant fish kill event.

  19. Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)

    Science.gov (United States)

    Rousselet, Louise; de Verneil, Alain; Doglioli, Andrea M.; Petrenko, Anne A.; Duhamel, Solange; Maes, Christophe; Blanke, Bruno

    2018-04-01

    The patterns of the large-scale, meso- and submesoscale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE cruise (February-April 2015). Multi-disciplinary original in situ observations were achieved along a zonal transect through the WTSP and their analysis was coupled with satellite data. The use of Lagrangian diagnostics allows for the identification of water mass pathways, mesoscale structures, and submesoscale features such as fronts. In particular, we confirmed the existence of a global wind-driven southward circulation of surface waters in the entire WTSP, using a new high-resolution altimetry-derived product, validated by in situ drifters, that includes cyclogeostrophy and Ekman components with geostrophy. The mesoscale activity is shown to be responsible for counter-intuitive water mass trajectories in two subregions: (i) the Coral Sea, with surface exchanges between the North Vanuatu Jet and the North Caledonian Jet, and (ii) around 170° W, with an eastward pathway, whereas a westward general direction dominates. Fronts and small-scale features, detected with finite-size Lyapunov exponents (FSLEs), are correlated with 25 % of surface tracer gradients, which reveals the significance of such structures in the generation of submesoscale surface gradients. Additionally, two high-frequency sampling transects of biogeochemical parameters and microorganism abundances demonstrate the influence of fronts in controlling the spatial distribution of bacteria and phytoplankton, and as a consequence the microbial community structure. All circulation scales play an important role that has to be taken into account not only when analysing the data from OUTPACE but also, more generally, for understanding the global distribution of biogeochemical components.

  20. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    Science.gov (United States)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  1. 78 FR 25955 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-05-03

    ... Pacific Fishery Management Council's (Pacific Council) Highly Migratory Species Management Team (HMSMT... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... be implemented pursuant to the precautionary management framework for North Pacific albacore...

  2. 78 FR 27367 - Pacific Fishery Management Council; Public Meeting

    Science.gov (United States)

    2013-05-10

    ... Pacific Fishery Management Council's (Pacific Council) Highly Migratory Species Management Team (HMSMT... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... be implemented pursuant to the precautionary management framework for North Pacific albacore...

  3. Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Midorikawa, Takashi; Ishii, Masao; Sasano, Daisuke; Kosugi, Naohiro (Geochemical Research Dept., Meteorological Research Institute Tsukuba (Japan)), e-mail: midorika@mri-jma.go.jp; Saito, Shu (Geochemical Research Dept., Meteorological Research Institute, Tsukuba (Japan); Institute of Observational Research for Global Change (IORGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka (Japan)); Motoi, Tatsuo (Oceanographic Research Dept., Meteorological Research Institute, Tsukuba (Japan)); Kamiya, Hitomi; Nakadate, Akira; Nemoto, Kazuhiro (Global Environment and Marine Dept., Japan Meteorological Agency, Tokyo (Japan)); Inoue, Hisayuki Y. (Graduate School of Environmental Earth Science, Hokkaido Univ., Sapporo (Japan))

    2010-11-15

    We estimated long-term trends of ocean acidification in surface waters in latitudinal zones from 3 deg N to 33 deg N along the repeat hydrographic line at 137 deg E in the western North Pacific Ocean. Estimates were based on the observational records of oceanic CO{sub 2} partial pressure and related surface properties over the last two decades. The computed pH time series both for 25 yr in winter (late January to early February) and for 21 yr in summer (June-July) exhibited significant decreasing trends in the extensive subtropical to equatorial zones, with interannual variations that were larger in summer. The calculated rates of pH decrease ranged from 0.0015 to 0.0021 yr-1 (average, 0.0018 +- 0.0002 yr-1) in winter and from 0.0008 to 0.0019 yr-1 (average, 0.0013 +- 0.0005 yr-1 ) in summer. The thermodynamic effects of rising sea surface temperature (SST) accounted for up to 44% (average, 15%) of the trend of pH decrease in the subtropical region in winter, whereas a trend of decreasing SST slowed the pH decrease in the northern subtropical region (around 25 deg N) in summer. We used the results from recent trends to evaluate future possible thermodynamic changes in the upper ocean carbonate system

  4. Conductivity data from moored current meter casts in the North Pacific Ocean from 1979-04-23 to 1981-10-01 (NODC Accession 8200163)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity data were collected using moored current meter casts in the North Pacific Ocean from April 23, 1979 to October 1, 1981. Data were submitted by...

  5. Conductivity data from moored current meter casts in the North Pacific Ocean from 1980-08-05 to 1981-08-01 (NODC Accession 8300053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity data were collected using moored current meter casts in the North Pacific Ocean from August 5, 1980 to August 1, 1981. Data were submitted by University...

  6. Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends

    Directory of Open Access Journals (Sweden)

    L. Pei

    2018-03-01

    Full Text Available Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHE. While the increased pollutant emissions are considered as the most important reason, changes in regional atmospheric circulations associated with large-scale climate warming also play a role. In this study, we find a significant positive trend of PHE in Beijing for the winters from 1980 to 2016 based on updated daily observations. This trend is closely related to an increasing frequency of extreme anomalous southerly episodes in North China, a weakened East Asian trough in the mid-troposphere and a northward shift of the East Asian jet stream in the upper troposphere. These conditions together depict a weakened East Asian winter monsoon (EAWM system, which is then found to be associated with an anomalous warm, high-pressure system in the middle–lower troposphere over the northwestern Pacific. A practical EAWM index is defined as the seasonal meridional wind anomaly at 850 hPa in winter over North China. Over the period 1900–2016, this EAWM index is positively correlated with the sea surface temperature anomalies over the northwestern Pacific, which indicates a wavy positive trend, with an enhanced positive phase since the mid-1980s. Our results suggest an observation-based mechanism linking the increase in PHE in Beijing with large-scale climatic warming through changes in the typical regional atmospheric circulation.

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2004-11-17 to 2004-12-09 (NODC Accession 0112263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112263 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2007-02-16 to 2007-03-26 (NODC Accession 0112269)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112269 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the North Pacific Ocean and South Pacific Ocean from 1992-10-06 to 1993-04-13 (NODC Accession 0115156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115156 includes chemical, discrete sample, physical and profile data collected from KNORR in the North Pacific Ocean and South Pacific Ocean from...

  10. Chemical and temperature profile data from CTD casts in the East China Sea, Sea of Japan, and North Pacific Ocean (NODC Accession 9700022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and temperature profile data were collected from CTD casts in the East China Sea, Sea of Japan, and North Pacific Ocean. Data were submitted by the Japan...

  11. A Geodetic Strain Rate Model for the Pacific-North American Plate Boundary, western United States

    Science.gov (United States)

    Kreemer, C.; Hammond, W. C.; Blewitt, G.; Holland, A. A.; Bennett, R. A.

    2012-04-01

    We present a model of crustal strain rates derived from GPS measurements of horizontal station velocities in the Pacific-North American plate boundary in the western United States. The model reflects a best estimate of present-day deformation from the San Andreas fault system in the west to the Basin and Range province in the east. Of the total 2,846 GPS velocities used in the model, 1,197 are derived by ourselves, and 1,649 are taken from (mostly) published results. The velocities derived by ourselves (the "UNR solution") are estimated from GPS position time-series of continuous and semi-continuous stations for which data are publicly available. We estimated ITRF2005 positions from 2002-2011.5 using JPL's GIPSY-OASIS II software with ambiguity resolution applied using our custom Ambizap software. Only stations with time-series that span at least 2.25 years are considered. We removed from the time-series continental-scale common-mode errors using a spatially-varying filtering technique. Velocity uncertainties (typically 0.1-0.3 mm/yr) assume that the time-series contain flicker plus white noise. We used a subset of stations on the stable parts of the Pacific and North American plates to estimate the Pacific-North American pole of rotation. This pole is applied as a boundary condition to the model and the North American - ITRF2005 pole is used to rotate our velocities into a North America fixed reference frame. We do not include parts of the time-series that show curvature due to post-seismic deformation after major earthquakes and we also exclude stations whose time-series display a significant unexplained non-linearity or that are near volcanic centers. Transient effects longer than the observation period (i.e., slow viscoelastic relaxation) are left in the data. We added to the UNR solution velocities from 12 other studies. The velocities are transformed onto the UNR solution's reference frame by estimating and applying a translation and rotation that minimizes

  12. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect.

    Science.gov (United States)

    Wang, Lei; Yu, Jin-Yi; Paek, Houk

    2017-03-20

    The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The 'charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and 'discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events.

  13. Redescription of Paragaleus tengi (Chen, 1963) (Carcharhiniformes: Hemigaleidae) and first record of Paragaleus randalli Compagno, Krupp & Carpenter, 1996 from the western North Pacific.

    Science.gov (United States)

    White, William T; Harris, Mark

    2013-01-01

    Paragaleus tengi was previously considered to be the only member of this genus occurring in the Western Pacific, with Paragaleus randalli occurring in the Indian Ocean and allopatric in distribution. Recent molecular and morphological studies showed that P. randalli also occurs in the Western Pacific with records from Thailand, Malaysia and Indonesia previously mostly incorrectly attributed to P. tengi. This paper provides a redescription of P. tengi and confirms the presence of P. randalli from off Taiwan in the western North Pacific. These two species are morphologically very similar in appearance but differ in meristics, dentition, some coloration attributes and minor morphological characters. The conservation status of these two species needs to be reassessed based on this new information.

  14. Principal sources and dispersal patterns of suspended particulate matter in nearshore surface waters of the northeast Pacific Ocean and the Hawaiian Islands

    Science.gov (United States)

    Carlson, P. R. (Principal Investigator); Conomos, T. J.; Janda, R. J.; Peterson, D. H.

    1973-01-01

    The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current).

  15. Temperature, salinity, and nutrients data from CTD and bottle casts in the Arctic, North Atlantic, North Pacific Oceans from the TELEOST and other platforms from 01 August 1960 to 22 April 2000 (NODC Accession 0000496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, bottle, and other data were collected in the Arctic, North Atlantic, and Pacific Oceans from the TELEOST and other platforms from 01 August 1960 to 22 April...

  16. Identifying Pelagic Habitat Hotspots of Neon Flying Squid in the Temperate Waters of the Central North Pacific.

    Science.gov (United States)

    Alabia, Irene D; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki

    2015-01-01

    We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999-2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid's putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37-40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40-44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ.

  17. Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean

    Science.gov (United States)

    Liu, Na; Liu, Yu; Bao, Guang; Bao, Ming; Wang, Yanchao; Zhang, Lizhi; Ge, Yuxiang; Bao, Wurigen; Tian, Heng

    2016-01-01

    A tree-ring width chronology covering the period 1780-2013 AD was developed from Pinus sylvestris var. mongolica for the eastern Hulun Buir steppe, a region located on the edge of the eastern Mongolian Plateau, China. Climate-growth response analysis revealed drought stress to be the primary limiting factor for tree growth. Therefore, the mean February-July standardized precipitation evapotranspiration index (SPEI) was reconstructed over the period 1819-2013, where the reconstruction could account for 32.8% of the variance in the instrumental record over the calibration period 1953-2011. Comparison with other tree-ring-based moisture sequences from nearby areas confirmed a high degree of confidence in our reconstruction. Severe drought intervals since the late 1970s in our study area consisted with the weakening East Asian summer monsoon, which modulating regional moisture conditions in semi-arid zone over northern China. Drought variations in the study area significantly correlated with sea surface temperatures (SSTs) in North Pacific Ocean, suggesting a possible connection of regional hydroclimatic variations to the Pacific Decadal Oscillation (PDO). The potential influence associated with El Niño-Southern Oscillation (ENSO) was primarily analyzed.

  18. Defying Dissolution: Discovery of Deep-Sea Scleractinian Coral Reefs in the North Pacific.

    Science.gov (United States)

    Baco, Amy R; Morgan, Nicole; Roark, E Brendan; Silva, Mauricio; Shamberger, Kathryn E F; Miller, Kelci

    2017-07-14

    Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535-732 m and aragonite saturation state (Ω arag ) values of 0.71-1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

  19. Distribution of Δ14C in western North Pacific and tracing carbons of human origin

    International Nuclear Information System (INIS)

    Aramaki, Takafumi; Mizushima, Toshihiko; Togawa, Orihiko; Kuji, Tomoyuki

    2001-01-01

    Seawater were collected at six points, 0deg to 48degN around 165degE. Dissolved inorganic carbonates was reduced into graphite. The ratio C-11/C-12 was measured by the accelerator mass analyzer. 14 C concentration was calculated from δ 13 C value calculated from the 13 C/ 12 C ratio. 14 C resulting from the nuclear weapon test was calculated by comparing estimated 14 C and real 14 C concentration. It was compared with that in 1970s. 14 Cbomb has dissolved into North Pacific Intermediate Water in Arctic latitude, which has moved to Mid-latitude. (A. Yamamoto)

  20. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

    Science.gov (United States)

    Erikson, Li H.; Hegermiller, Christie; Barnard, Patrick; Ruggiero, Peter; van Ormondt, Martin

    2015-01-01

    Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs were used to generate an ensemble of wave conditions for a recent historical time-period (1976–2005) and projections for the mid and latter parts of the 21st century under two radiative forcing scenarios (RCP 4.5 and RCP 8.5), as defined by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) experiments. Comparisons of results from historical simulations with wave buoy and ERA-Interim wave reanalysis data indicate acceptable model performance of wave heights, periods, and directions, giving credence to generating projections. Mean and extreme wave heights are projected to decrease along much of the North American west coast. Extreme wave heights are projected to decrease south of ∼50°N and increase to the north, whereas extreme wave periods are projected to mostly increase. Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. Local spatial patterns of the changing wave climate are similar under the RCP 4.5 and RCP 8.5 scenarios, but stronger magnitudes of change are projected under RCP 8.5. Findings of this study are similar to previous work using CMIP3 GCMs that indicates decreasing mean and extreme wave conditions in the Eastern North Pacific, but differ from other studies with respect to magnitude and local patterns of change. This study contributes toward a larger ensemble of global and regional climate projections needed to better assess uncertainty of potential future wave climate change, and provides model boundary conditions for assessing the impacts of

  1. Sea-to-air flux of dimethyl sulfide in the South and North Pacific Ocean as measured by proton transfer reaction-mass spectrometry coupled with the gradient flux technique

    Science.gov (United States)

    Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Ikeda, Kohei; Iwata, Toru; Kameyama, Sohiko; Uematsu, Mitsuo; Gamo, Toshitaka; Ogawa, Hiroshi; Furuya, Ken

    2017-07-01

    Exchange of dimethyl sulfide (DMS) between the surface ocean and the lower atmosphere was examined by using proton transfer reaction-mass spectrometry coupled with the gradient flux (PTR-MS/GF) system. We deployed the PTR-MS/GF system and observed vertical gradients of atmospheric DMS just above the sea surface in the subtropical and transitional South Pacific Ocean and the subarctic North Pacific Ocean. In total, we obtained 370 in situ profiles, and of these we used 46 data sets to calculate the sea-to-air flux of DMS. The DMS flux determined was in the range from 1.9 to 31 μmol m-2 d-1 and increased with wind speed and biological activity, in reasonable accordance with previous observations in the open ocean. The gas transfer velocity of DMS derived from the PTR-MS/GF measurements was similar to either that of DMS determined by the eddy covariance technique or that of insoluble gases derived from the dual tracer experiments, depending on the observation sites located in different geographic regions. When atmospheric conditions were strongly stable during the daytime in the subtropical ocean, the PTR-MS/GF observations captured a daytime versus nighttime difference in DMS mixing ratios in the surface air overlying the ocean surface. The difference was mainly due to the sea-to-air DMS emissions and stable atmospheric conditions, thus affecting the gradient of DMS. This indicates that the DMS gradient is strongly controlled by diurnal variations in the vertical structure of the lower atmosphere above the ocean surface.

  2. Seasonal variation of marine organic aerosols in the North Pacific Ocean

    Science.gov (United States)

    Fu, P.; Kawamura, K.

    2017-12-01

    Atmospheric aerosols were collected in the marine boundary layer during five marine cruises in the northern Pacific Ocean from October 1996 to July 1997. Organic molecular compositions of the marine aerosols were measured using gas chromatography/mass spectrometry (GC/MS). Higher concentrations of levoglucosan and its isomers, the biomass-burning tracers, were observed in the coastal regions than those in the central north Pacific. Seasonal trends of biomass burning tracers were found to be higher in fall-winter-spring than in summer, suggesting an enhanced influence of continental aerosols to the marine atmosphere during cold seasons when the westerlies prevail. However, the atmospheric levels of secondary organic aerosol (SOA) tracers from the photooxidation of isoprene and monoterpenes were higher in warm seasons than cold seasons, which are in accordance with the enhanced emissions of biogenic volatile organic compounds (BVOCs) in summer. Stable C isotope ratios of total carbon (δ13CTC) in the marine aerosols ranged from -28.5‰ to -23.6‰ (mean -26.4‰), suggesting an important input of terrestrial/continental aerosol particles. Stable N isotope ratios (2.6‰ to 12.9‰, mean 7.1‰) were found to be higher in the coastal regions than those in the open oceans, suggesting an enhanced emission of marine aerosols in the open oceans. The fluorescence properties of the water-soluble organic carbon (WSOC) in the marine aerosols conform the importance of marine emitted organics in the open ocean, especially during the high biological activity periods.

  3. Pacific Albacore Troll and Pole-and-line Fisheries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The North Pacific and South Pacific Albacore Troll and Pole-and-line Fisheries project contains landings, logbooks, and size composition data from U.S.A. troll and...

  4. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean.

    Science.gov (United States)

    McMahon, Kelton W; McCarthy, Matthew D; Sherwood, Owen A; Larsen, Thomas; Guilderson, Thomas P

    2015-12-18

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ(13)C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations. Copyright © 2015, American Association for the Advancement of Science.

  5. Interannual variability of north Atlantic Sea surface temperatures

    International Nuclear Information System (INIS)

    Bhatt, U.S.; Battisiti, D.S.; Alexander, M.A.

    1994-01-01

    In the midlatitude north Atlantic Ocean the pattern of sea surface temperature anomalies (ssta) is characterized by a north-south dipole. Bjerknes was the first to propose that the banded structure was associated with the interannual variability. Recently, these patterns have been studied more extensively. In this study the quantitative aspects of these patterns are examined through the use of a mixed-layer model (MLM)

  6. ENSO surface shortwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2008-09-01

    Full Text Available We have studied the spatial and temporal variation of the downward shortwave radiation (DSR at the surface of the Earth during ENSO events for a 21-year period over the tropical and subtropical Pacific Ocean (40° S–40° N, 90° E–75° W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database, reanalysis data from NCEP/NCAR for the key atmospheric and surface input parameters, and aerosol parameters from GADS (acronyms explained in main text. A clear anti-correlation was found between the downward shortwave radiation anomaly (DSR-A time-series, in the region 7° S–5° N 160° E–160° W located west of the Niño-3.4 region, and the Niño-3.4 index time-series. In this region where the highest in absolute value DSR anomalies are observed, the mean DSR anomaly values range from −45 Wm−2 during El Niño episodes to +40 Wm−2 during La Niña events. Within the Niño-3.4 region no significant DSR anomalies are observed during the cold ENSO phase in contrast to the warm ENSO phase. A high correlation was also found over the western Pacific (10° S–5° N, 120–140° E, where the mean DSR anomaly values range from +20 Wm−2 to −20 Wm−2 during El Niño and La Niña episodes, respectively. There is also convincing evidence that the time series of the mean downward shortwave radiation anomaly in the off-equatorial western Pacific region 7–15° N 150–170° E, precedes the Niño-3.4 index time-series by about 7 months and the pattern of this anomaly is indicative of ENSO operating through the mechanism of the western Pacific oscillator. Thus, the downward shortwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to assess whether or not El Niño or La Niña conditions prevail.

  7. Recent Transport History of Fukushima Radioactivity in the Northeast Pacific Ocean.

    Science.gov (United States)

    Smith, John N; Rossi, Vincent; Buesseler, Ken O; Cullen, Jay T; Cornett, Jack; Nelson, Richard; Macdonald, Alison M; Robert, Marie; Kellogg, Jonathan

    2017-09-19

    The large inventory of radioactivity released during the March, 2011 Fukushima Dai-ichi nuclear reactor accident in Japan spread rapidly across the North Pacific Ocean and was first observed at the westernmost station on Line P, an oceanographic sampling line extending 1500 km westward of British Columbia (BC), Canada in June 2012. Here, time series measurements of 134 Cs and 137 Cs in seawater on Line P and on the CLIVAR-P16N 152°W line reveal the recent transport history of the Fukushima radioactivity tracer plume through the northeast Pacific Ocean. During 2013 and 2014 the Fukushima plume spread onto the Canadian continental shelf and by 2015 and early 2016 it reached 137 Cs values of 6-8 Bq/m 3 in surface water along Line P. Ocean circulation model simulations that are consistent with the time series measurements of Fukushima 137 Cs indicate that the 2015-2016 results represent maximum tracer levels on Line P and that they will begin to decline in 2017-2018. The current elevated Fukushima 137 Cs levels in seawater in the eastern North Pacific are equivalent to fallout background levels of 137 Cs that prevailed during the 1970s and do not represent a radiological threat to human health or the environment.

  8. Monitoring the deep western boundary current in the western North Pacific by echo intensity measured with lowered acoustic Doppler current profiler

    Science.gov (United States)

    Komaki, Kanae; Nagano, Akira

    2018-05-01

    Oxidation of iron and manganese ions is predominant in the oxygen-rich deep western boundary current (DWBC) within the Pacific Ocean. By the faster removal of particulate iron hydroxide and manganese oxide, densities of the particulate matters are considered to be lower in the DWBC than the interior region. To detect the density variation of suspended particles between the DWBC and interior regions, we analyzed echo intensity (EI) measured in the western North Pacific by hydrographic casts with a 300 kHz lowered acoustic Doppler current profiler (LADCP) in a whole water column. At depths greater than 3000 m ( 3000 dbar), EI is almost uniformly low between 12°N and 30°N but peaks sharply from 30°N to 35°N to a maximum north of 35°N. EI is found to be anomalously low in the DWBC compared to the background distribution. The DWBC pathways are identifiable by the low EI and high dissolved oxygen concentration. EI data by LADCPs and other acoustic instruments may be used to observe the temporal variations of the DWBC pathways.

  9. Temperature and conductivity data from moored current meter casts in the North Pacific Ocean from 1978-10-18 to 1980-08-01 (NODC Accession 8200188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and conductivity data were collected using moored current meter casts in the North Pacific Ocean from October 18, 1978 to August 1, 1980. Data were...

  10. THE FUTURE OF PACIFIC NORTHWEST SALMON: ANATOMY OF A CRISIS

    Science.gov (United States)

    Salmon are categorized biologically into two groups: Pacific salmon or Atlantic salmon. All seven species of Pacific salmon on both sides of the North Pacific Ocean have declined substantially from historic levels, but large runs still occur in northern British Columbia, Yukon,...

  11. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from TUXPAN in the North Pacific Ocean from 1966-10-15 to 1967-08-27 (NODC Accession 9700073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton, hydrochemical, and other data were collected from net and bottle casts from the Tuxpan in the North Pacific Ocean from 15 October 1966 to 27 August...

  12. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    Science.gov (United States)

    Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Blade, Ileana; Liebmann, Brant; Roberts, Jason B.; Robertson, Franklin R.

    2014-01-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface temperatures, and a simple index-based monitoring-prediction system suitable for drought early warning.

  13. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    Science.gov (United States)

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  14. Late Pliocene Depositional History and Paleoclimate Reconstructions of the Southwest Pacific

    Science.gov (United States)

    Royce, B.; Patterson, M. O.; Pietras, J.

    2017-12-01

    Drift deposits off the eastern margin of New Zealand are important archives for the paleoclimate and paleoceanographic history of the southwest Pacific. Ocean Drilling Program (ODP) Site 1123 is located on the North Chatham rise drift just North of the westerly wind driven Subtropical Front (STF) and provides a record of near continuous sediment deposition since the Miocene along the southwest Pacific deep western boundary current (DWBC). While the Miocene and Late Pleistocene portion of this record have been well studied, the Late Pliocene record is less well developed. Southern Ocean geological records demonstrate that Late Pliocene cooling is the transient time bracketing the warmer than present Early Pliocene and bipolar glaciation at 2.7 Ma. A newly developed, robust, and astronomically tuned long-term record of benthic δ13C from ODP Site 1123 spanning the Early to Late Pliocene implies a reduction in Southern Ocean ventilation and lowering of preformed values from waters sourced along the Antarctic margin during the Late Pliocene. Thus, Late Pliocene Southern Hemisphere cooling and sea ice expansion may have drastically reduced outgassing and increased the burial of heat into the deep ocean. South Atlantic records off the west coast of Africa demonstrate an increase in the flux of iron to the open ocean during this time potentially enhancing surface ocean productivity and providing an additional cooling mechanism. Currently, atmospheric transport of dust to the Southern Ocean is dominated by persistent mid-latitude circumpolar westerly winds; this is particularly relevant for dust sourced from New Zealand. The Late Pliocene to Early Pleistocene uplift of the North Island axial ranges and South Island southern alps potentially provided a greater amount of not only sediment to the deep ocean, but also wind blow dust to the Pacific sector of the Southern Ocean. We will present a detailed high-resolution sedimentological study on the development of the Chatham

  15. The bomb 14C transient in the Pacific Ocean

    Science.gov (United States)

    Rodgers, Keith B.; Schrag, Daniel P.; Cane, Mark A.; Naik, Naomi H.

    2000-04-01

    A modeling study of the bomb 14C transient is presented for the Pacific Ocean. A primitive equation ocean circulation model has been configured for a high-resolution domain that accounts for the Indonesian Throughflow (ITF). Four separate runs were performed: (1) seasonal forcing with 20 Sv of ITF transport, (2) seasonal forcing with 10 Sv of ITF transport, (3) seasonal forcing with no ITF transport, and (4) interannual forcing with 15 Sv of ITF transport. This study has two main objectives. First, it is intended to describe the time evolution of the bomb 14C transient. This serves as a tool with which one can identify the physical processes controlling the evolving bomb 14C distribution in the Pacific thermocline and thus provides an interpretive framework for the database of Δ14C measurements in the Pacific. Second, transient tracers are applied to the physical oceanographic problem of intergyre exchange. This is of importance in furthering our understanding of the potential role of the upper Pacific Ocean in climate variability. We use bomb 14C as a dye tracer of intergyre exchange between the subtropical gyres and the equatorial upwelling regions of the equatorial Pacific. Observations show that while the atmospheric Δ14C signal peaked in the early to mid-1960s, the Δ14C levels in the surface water waters of the subtropical gyres peaked near 1970, and the Δ14C of surface waters in the equatorial Pacific continued to rise through the 1980s. It is shown that the model exhibits skill in representing the large-scale observed features observed for the bomb 14C transient in the Pacific Ocean. The model successfully captures the basin-scale inventories of bomb 14C in the tropics as well as in the extratropics of the North Pacific. For the equatorial Pacific this is attributed to the model's high meridional resolution. The discrepancies in the three-dimensional distribution of bomb 14C between the model and data are discussed within the context of the dynamical

  16. Shore-based counts of the Eastern North Pacific gray whale stock from central California conducted from 1967-12-18 to 2007-02-22 (NCEI Accession 0138007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Fisheries Service (NMFS) has conducted shore-based counts of the Eastern North Pacific stock of gray whales (Eschrichtius robustus) 26 years from...

  17. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    Science.gov (United States)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  18. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship DISCOVERER in the North Pacific Ocean, South Pacific Ocean and Southern Oceans from 1994-01-26 to 1994-04-27 (NODC Accession 0115152)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115152 includes chemical, discrete sample, physical and profile data collected from NOAA Ship DISCOVERER in the North Pacific Ocean, South Pacific...

  19. Biological, chemical, and physical data from CTD/XCTD from five Japanese R/Vs in the North Pacific Ocean from January to December 2002 (NODC Accession 0001334)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and other data were collected using XCTD and CTD casts from KOFU MARU and other platforms in the North Pacific Ocean from 01 January...

  20. Ocean Acidification in the Surface Waters of the Pacific-Arctic Boundary Regions

    Science.gov (United States)

    Mathis, J. T.; Cross, J. N.; Evans, W.; Doney, S. C.

    2016-02-01

    The continental shelves of the Pacific-Arctic Region (PAR) are especially vulnerable to the effects of ocean acidification (OA) because the intrusion of anthropogenic CO2 is not the only process that can reduce pH and carbonate mineral saturation states for aragonite (ΩArag). Enhanced sea-ice melt, respiration of organic matter, upwelling and riverine inputs have been shown to exacerbate CO2-driven ocean acidification in high-latitude regions. Additionally, the indirect effect of changing sea-ice coverage is providing a positive feedback to OA as more open water will allow for greater uptake of atmospheric CO2. Here, we compare model-based outputs from the Community Earth System Model with a subset of recent ship-based observations, and take an initial look at future model projections of surface water ΩArag in the Bering, Chukchi and Beaufort Seas. We then use the model outputs to define benchmark years when biological impacts are likely to result from reduced ΩArag. Each of the three continental shelf seas in the PAR will become undersaturated with respect to aragonite at approximately 30-year intervals, indicating that aragonite undersaturations gradually progress upstream along the flow path of the waters as they move north from the Pacific Ocean. However, naturally high variability in ΩArag may indicate higher resilience of the Bering Sea ecosystem to these low-ΩArag conditions than the Chukchi and the Beaufort Seas. Based on our initial results, we have determined that the annual mean for ΩArag will pass below the current range of natural variability in 2025 for the Beaufort Sea and 2027 for the Chukchi Sea. Because of the higher range of natural variability, the annual mean for ΩArag for the Bering Sea does not pass out of the natural variability range until 2044. As ΩArag in these shelf seas slips below the present-day range of large seasonal variability by midcentury, it could put tremendous pressure on the diverse ecosystems that support some of

  1. Geographical Distribution and Sources of Nutrients in Atmospheric Aerosol Over the Pacific Ocean

    Science.gov (United States)

    Uematsu, M.

    2016-12-01

    The Pacific Ocean, the world's largest (occupying about 30% of the Earth's total surface area) has several distinguishing biogeochemical features. In the western Pacific, dust particles originating from arid and semi-arid regions in Asia and Australia are transported to the north and south, respectively. Biomass burning emissions from Southeast Asia are exported to the tropical Pacific, and anthropogenic substances flowing out of Asia and Eurasia spread both regionally and globally. Over high primary productive areas such as the subarctic North Pacific, the equatorial Pacific and the Southern Ocean, biogenic gasses are released to the atmosphere and transported to other areas. These processes may affect cloud and rainfall patterns, air quality, and the radiative balance of downwind regions. The deposition of atmospheric aerosols containing iron and other essential nutrients is important for biogeochemical cycles in the oceans because this source of nutrients helps sustain primary production and affects food-web structure; these effects in turn influence the chemical properties of marine atmosphere. From an atmospheric chemistry standpoint, sea-salt aerosols produced by strong winds and marine biogenic gases emitted from highly productive waters affect the physicochemical characteristics of marine aerosols. As phytoplankton populations are patchy and atmospheric processes sporadic, the interactions between atmospheric chemical constituents and marine biota vary for different regions as well as seasonally and over longer timescales. To address these and other emerging issues, and more generally to better understand the important biogeochemical processes and interactions occurring over the open oceans, more long-term recurrent research cruises with standardized atmospheric shipboard measurements will be needed in the future.

  2. Seasonal and annual variation in planktonic foraminiferal fluxes including warm period related El Niño in the northwestern North Pacific

    Science.gov (United States)

    Kuroyanagi, A.; Kawahata, H.; Nishi, H.; Honda, M. C.

    2007-12-01

    Planktonic foraminifera provide a record of the upper ocean environment through their species assemblage and individual tests. To investigate the relationship between foraminifera and oceanographic conditions and the impact of El Niño on foraminifera, we analyzed foraminiferal fluxes and relative abundances by using sediment trap samples collected biweekly at three sites in the northwestern North Pacific: Site 40N (39 °60'N, 165 °00'E), Site KNOT (43 °58'N, 155 °03'E), and Site 50N (50 °01'N, 165 °02'E) from 1998- 2001, a period that included an El Niño effect. Based on foraminiferal production and assemblage composition, we divided the sampling duration into several periods during which certain characteristic oceanographic properties were observed. These sampling periods were classified into five types (I-V) based upon four factors: 1) the predominant foraminiferal group, 2) total foraminiferal fluxes (TFFs), 3) organic matter (OM) fluxes, and 4) hydrographic conditions, which included sea surface temperature (SST) and thermal structure. Our results suggest that seasonal changes in foraminifera were closely related to water mass properties in addition to SST. If species compositions were the same, then water mass properties were the most important factors affecting the seasonal variation of foraminiferal abundance in the northwestern North Pacific. Although one of the major controlling factors for foraminiferal fluxes is food availability, the controlling factors for each type (types I-V) are different because of specific oceanographic situations, such as phytoplankton blooms, which result in an excess food supply for foraminifera. At Site KNOT in 1998, SST was remarkably high because of El Niño, and high surface temperatures and weak winds would have lowered nutrient supply and intensified water column stratification, resulting in the relatively low fluxes of total foraminifera, N. pachyderma, and G. bulloides, and the high fluxes of N. dutertrei that

  3. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow

    Science.gov (United States)

    Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie

    2000-09-01

    The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.

  4. North and South Pacific Ocean Temperature Profile Data collected by the SCRIPPS Institute of Oceanography from 17 February 2000 to 11 August 2002 (NODC Accession 0000925)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from XBT casts from the North and South Pacific Oceans. Data were collected from 17 February 2000 to 11 August 2002. Data were collected...

  5. Remote and Local Influences in Forecasting Pacific SST: a Linear Inverse Model and a Multimodel Ensemble Study

    Science.gov (United States)

    Faggiani Dias, D.; Subramanian, A. C.; Zanna, L.; Miller, A. J.

    2017-12-01

    Sea surface temperature (SST) in the Pacific sector is well known to vary on time scales from seasonal to decadal, and the ability to predict these SST fluctuations has many societal and economical benefits. Therefore, we use a suite of statistical linear inverse models (LIMs) to understand the remote and local SST variability that influences SST predictions over the North Pacific region and further improve our understanding on how the long-observed SST record can help better guide multi-model ensemble forecasts. Observed monthly SST anomalies in the Pacific sector (between 15oS and 60oN) are used to construct different regional LIMs for seasonal to decadal prediction. The forecast skills of the LIMs are compared to that from two operational forecast systems in the North American Multi-Model Ensemble (NMME) revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The forecast skill with LIM is also influenced by the verification period utilized to make the predictions, likely due to the changing character of El Niño in the 20th century. The North Pacific seems to be a source of predictability for the Tropics on seasonal to interannual time scales, while the Tropics act to worsen the skill for the forecast in the North Pacific. The data were also bandpassed into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. For the decadal component, this coupling occurs the other way around: Tropics seem to be a source of predictability for the Extratropics, but the Extratropics don't improve the predictability for the Tropics. These results indicate the importance of temporal

  6. Multi-sensor Oceanographic Correlations for Pacific Hake Acoustic Survey Improvement

    Science.gov (United States)

    Brozen, M.; Hillyer, N.; Holt, B.; Armstrong, E. M.

    2010-12-01

    North Pacific hake (Merluccius productus), the most abundant groundfish along the Pacific coast of northwestern America, are an essential source of income for the coastal region from southern California to British Columbia, Canada. However, hake abundance and distribution are highly variable among years, exhibiting variance in both the north-south and east-west distribution as seen in the results from biannual acoustic surveys. This project is part of a larger undertaking, ultimately focused on the prediction of hake distribution to improve the distribution of survey effort and precision of stock assessments in the future. Four remotely sensed oceanographic variables are examined as a first step in improving our understanding the relationship between the intensity of coastal upwelling and other ocean dynamics, and the north-south summer hake distribution. Sea surface height, wind vectors, chlorophyll - a concentrations, and sea surface temperature were acquired from several satellites, including AVHRR, SeaWifs, TOPEX/Poseidon, Jason-1, Jason-2, SSM/I, ASMR-E, and QuikScat. Data were aligned to the same spatial and temporal resolution, and these re-gridded data were then analyzed using empirical orthogonal functions (EOFs). EOFs were used as a spatio-temporally compact representation of the data and to reduce the co-variability of the multiple time series in the dataset. The EOF results were plotted and acoustic survey results were overlaid to understand differences between regions. Although this pilot project used data from only a single year (2007), it demonstrated a methodology for reducing dimensionality of linearly related satellite variables that can used in future applications, and provided insight into multi-dimensional ocean characteristics important for hake distribution.

  7. Push from the Pacific

    Science.gov (United States)

    Jaccard, Samuel L.; Galbraith, Eric D.

    2018-05-01

    Enhanced upwelling and CO2 degassing from the subpolar North Pacific during a warm event 14,000 years ago may have helped keep atmospheric CO2 levels high enough to propel the Earth out of the last ice age.

  8. The parasite Ichthyophonus sp. in Pacific herring from the coastal NE Pacific.

    Science.gov (United States)

    Hershberger, P K; Gregg, J L; Hart, L M; Moffitt, S; Brenner, R; Stick, K; Coonradt, E; Otis, E O; Vollenweider, J J; Garver, K A; Lovy, J; Meyers, T R

    2016-04-01

    The protistan parasite Ichthyophonus occurred in populations of Pacific herring Clupea pallasii Valenciennes throughout coastal areas of the NE Pacific, ranging from Puget Sound, WA north to the Gulf of Alaska, AK. Infection prevalence in local Pacific herring stocks varied seasonally and annually, and a general pattern of increasing prevalence with host size and/or age persisted throughout the NE Pacific. An exception to this zoographic pattern occurred among a group of juvenile, age 1+ year Pacific herring from Cordova Harbor, AK in June 2010, which demonstrated an unusually high infection prevalence of 35%. Reasons for this anomaly were hypothesized to involve anthropogenic influences that resulted in locally elevated infection pressures. Interannual declines in infection prevalence from some populations (e.g. Lower Cook Inlet, AK; from 20-32% in 2007 to 0-3% during 2009-13) or from the largest size cohorts of other populations (e.g. Sitka Sound, AK; from 62.5% in 2007 to 19.6% in 2013) were likely a reflection of selective mortality among the infected cohorts. All available information for Ichthyophonus in the NE Pacific, including broad geographic range, low host specificity and presence in archived Pacific herring tissue samples dating to the 1980s, indicate a long-standing host-pathogen relationship. © 2015 John Wiley & Sons Ltd.

  9. Plastic ingestion in marine-associated bird species from the eastern North Pacific.

    Science.gov (United States)

    Avery-Gomm, S; Provencher, J F; Morgan, K H; Bertram, D F

    2013-07-15

    In addition to monitoring trends in plastic pollution, multi-species surveys are needed to fully understand the pervasiveness of plastic ingestion. We examined the stomach contents of 20 bird species collected from the coastal waters of the eastern North Pacific, a region known to have high levels of plastic pollution. We observed no evidence of plastic ingestion in Rhinoceros Auklet, Marbled Murrelet, Ancient Murrelet or Pigeon Guillemot, and low levels in Common Murre (2.7% incidence rate). Small sample sizes limit our ability to draw conclusions about population level trends for the remaining fifteen species, though evidence of plastic ingestion was found in Glaucous-Winged Gull and Sooty Shearwater. Documenting levels of plastic ingestion in a wide array of species is necessary to gain a comprehensive understanding about the impacts of plastic pollution. We propose that those working with bird carcasses follow standard protocols to assess the levels of plastic ingestion whenever possible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Current direction, temperature, and salinity data from moored current meter casts in the North Pacific Ocean from 1983-06-01 to 1983-08-01 (NODC Accession 8500147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and salinity data were collected using moored current meter casts in the North Pacific Ocean from June 1, 1983 to August 1, 1983....

  11. Temperature profile and other data collected using CTD, BT, and XBT casts from NOAA Ship RESEARCHER and other platforms in the North/South Pacific Ocean and North/South Atlantic Ocean from 1973-01-13 to 1983-03-14 (NODC Accession 8300091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD, BT, and XBT casts from NOAA Ship RESEARCHER and other platforms in the North/South Pacific Ocean and...

  12. Surface concrete decontamination equipment developed by Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Halter, J.M.; Sullivan, R.G.; Bevan, J.L.

    1982-08-01

    This report documents a project that the Pacific Northwest Laboratory conducted to identify and develop techniques for removing contaminated concrete surfaces. A major problem associated with nuclear facility decontamination and decommissioning is how to economically demolish and dispose of contaminated concrete. Removing only the contaminated portion of the concrete can substantially reduce costs. Evaluation of various methods for removing concrete surfaces shows that several techniques presently used require excessive manpower, time, and energy. Many times more material is removed than necessary, increasing the quantity of waste that must be handled under controlled conditions. These evaluations generated the basic criteria for developing a suitable concrete removal technique: provide a convenient method for cleaning surfaces (such as those contaminated by a small spill); reduce the contaminated waste volume that has to be placed into controlled storage; remove surfaces quickly; and minimize personal exposure to potentially harmful radiation or toxic materials. Removal to 1/4 to 1/2 in. of contaminated surface layer is sufficient for cleanup of most facilities. Two unique decontamination methods have been developed: the concrete spaller and the water cannon. The concrete spaller is the most efficient technique: it removes the concrete surface faster than the water cannons and at a lower cost (as little as $3.00/ft 2 of concrete surface). However, the .458 magnum water cannon may be well suited for small or hard-to-reach locations

  13. NW Pacific mid-depth ventilation changes during the Holocene

    Science.gov (United States)

    Rella, S.; Uchida, M.

    2010-12-01

    During the last 50 years the oxygen content of North Pacific Intermediate Water primarily originating in the Okhotsk Sea has declined suggesting decreased mid-depth water circulation, likely leading to changes in biological productivity in the NW Pacific realm and a decrease in CO2 drawdown. It is therefore of high interest to elucidate the climate-oceanic interconnections of the present interglacial period (Holocene) in the NW Pacific, in order to predict possible future climate and surface productivity changes associated with a decrease in mid-depth ventilation in this ecologically sensitive region. However, such efforts have been hampered so far by the lack of appropriate sediment cores with fast sedimentation rates during the Holocene. Core CK05-04 that was recovered in 2005 from off Shimokita peninsula, Japan, at ~1000 m depth shows sedimentation rates of ~80 cm/kyr during the Holocene and therefore presents an ideal opportunity to reconstruct for the first time the Holocene ventilation history of the NW Pacific Ocean. We employ Accelerator Mass Spectroscopy (NIES-TERRA, Tsukuba) radiocarbon analysis of co-existing benthic and planktonic foraminifera to conclude on the ventilation age of the mid-depth water using benthic-planktonic radiocarbon age differences. At the conference we would like to present the results.

  14. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    Science.gov (United States)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  15. Resource manager information needs regarding hydrologic regime shifts for the North Pacific Landscape Conservation

    Science.gov (United States)

    Woodward, Andrea; Jenni, Karen

    2014-01-01

    Landscape Conservation Cooperatives (LCCs) are a network of 22 public-private partnerships, defined by ecoregion, that share and provide science to ensure the sustainability of land, water, wildlife, and cultural resources in North America. LCCs were established by the U.S. Department of the Interior (DOI) in recognition of the fact that response to climate change must be coordinated on a landscape-level basis because important resources, ecosystem processes, and resource management challenges extend beyond most of the boundaries considered in current natural resource management. The North Pacific LCC (NPLCC) covers the range of the Pacific coastal temperate rainforest, including an area of 528,360 km2 spanning 22 degrees of latitude from the Kenai Peninsula, Alaska, to Bodega Bay, California. The coverage area includes parts of four States, two Canadian provinces, and more than 100 Tribes and First Nation language groups. It extends from alpine areas at the crest of coastal mountains across subalpine, montane, and lowland forests to the nearshore marine environment. This wide range of latitudes and elevation zones; terrestrial, freshwater, and marine habitats; and complex jurisdictional boundaries hosts a diversity of natural resources and their corresponding management issues are equally diverse. As evidenced by the Science and Traditional Ecological Knowledge (S-TEK) Strategy guiding principles, identifying and responding to the needs of resource managers is key to the success of the NPLCC. To help achieve this goal of the NPLCC, the U.S. Geological Survey (USGS) has organized several workshops with resource managers and resource scientists to identify management information needs relevant to the priority topics identified in the S-TEK Strategy. Here, we detail the results from a first workshop to address the effects of changes in hydrologic regime on rivers, streams, and riparian corridors. The workshop focused on a subset of the full NPLCC geography and was

  16. Recent metalliferous sediment in the North Pacific manganese nodule area

    Science.gov (United States)

    Bischoff, J.L.; Rosenbauer, R.J.

    1977-01-01

    Quaternary sediments cored in the northeast Pacific nodule area (DOMES site C, 14??N, 126??W) contain a significant amount of hydrothermal metalliferous mud. Water content, color, mineralogy, and chemical composition are analogous to metalliferous sediments of the subequatorial East Pacific Rise. Correction for contribution of pelagic clay indicates the metalliferous fraction to be about 40% of the sediment. SiO2 and Mg are major components in the corrected composition, as they are for other metalliferous sediments similarly corrected from a variety of East Pacific Rise and DSDP metalliferous sediments. A correlation between Mg and SiO2 for these corrected sediments could indicate a hydrothermal origin for a significant portion of the SiO2. Results from DSDP in the nodule area suggest that metalliferous globules are a ubiquitous minor component of the Clipperton Oceanic Formation, which underlies much of the Pacific ferromanganese nodule belt. This indicates that deposition of hydrothermal precipitates is not confined to spreading centers. ?? 1977.

  17. Zooplankton data collected using net casts from the FRANCISCO DE ULLOA in the North Pacific Ocean from 01 January 1999 to 31 January 1999 (NODC Accession 0000912)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton data were collected using net casts in the North Pacific Ocean from FRANCISCO DE ULLOA. Data were collected from 01 January 1999 to 31 January 1999. Data...

  18. The Emergence of the Pacific Meridional Overturning Circulation (PMOC) Paced by Obliquity Cycles during the Pliocene

    Science.gov (United States)

    Burls, N.; Fedorov, A. V.; Sigman, D. M.; Jaccard, S.; Tiedemann, R.; Haug, G. H.

    2016-12-01

    Deep water formation in northern high latitudes, as part of the Atlantic meridional overturning circulation (AMOC), is a critical element of modern ocean circulation and climate. For the warm Pliocene, roughly 4 to 2.8 million years ago, we present measurements and modeling evidence that deep water formation also occurred in the North Pacific, supporting another overturning cell - the Pacific meridional overturning circulation (PMOC). The evidence includes calcium carbonate accumulation in Pliocene subarctic Pacific sediments rivaling that of the modern North Atlantic, with pigment, total organic carbon, and redox-sensitive trace metal measurements supporting deep ocean ventilation as the driver of the enhanced calcium carbonate preservation. Together with high accumulation rates of biogenic opal, this implies a bi-directional communication between surface waters and the waters overlying the deep seafloor, and hence deep convection. A Pliocene-like climate simulation reproduces this deep water formation, with co-occurring Atlantic and Pacific overturning cells. The PMOC emerges as a result of the less intense hydrological cycle under Pliocene conditions characterized by a reduced meridional SST gradient. This weaker hydrological cycle leads to the erosion of the North Pacific halocline, allowing deep convection. Examining the data in more detail shows that, while the opal accumulation rate was continuously high, maxima in calcium carbonate accumulation rate were sharp and intermittent. Most likely, these maxima occurred during Northern Hemisphere summer insolation maxima when, as supported by the modeling results, mid-latitude SSTs in the Northern Hemisphere were at a maximum and the meridional SST gradient was particularly weak. These findings suggest that the climate system fluctuated between periods of strong and weak PMOC during the Pliocene. Such fluctuations appear to be a crucial part of Pliocene climate variability on orbital timescales.

  19. Spatial segregation in eastern North Pacific skate assemblages.

    Directory of Open Access Journals (Sweden)

    Joseph J Bizzarro

    Full Text Available Skates (Rajiformes: Rajoidei are common mesopredators in marine benthic communities. The spatial associations of individual species and the structure of assemblages are of considerable importance for effective monitoring and management of exploited skate populations. This study investigated the spatial associations of eastern North Pacific (ENP skates in continental shelf and upper continental slope waters of two regions: central California and the western Gulf of Alaska. Long-term survey data were analyzed using GIS/spatial analysis techniques and regression models to determine distribution (by depth, temperature, and latitude/longitude and relative abundance of the dominant species in each region. Submersible video data were incorporated for California to facilitate habitat association analysis. We addressed three main questions: 1 Are there regions of differential importance to skates?, 2 Are ENP skate assemblages spatially segregated?, and 3 When skates co-occur, do they differ in size? Skate populations were highly clustered in both regions, on scales of 10s of kilometers; however, high-density regions (i.e., hot spots were segregated among species. Skate densities and frequencies of occurrence were substantially lower in Alaska as compared to California. Although skates are generally found on soft sediment habitats, Raja rhina exhibited the strongest association with mixed substrates, and R. stellulata catches were greatest on rocky reefs. Size segregation was evident in regions where species overlapped substantially in geographic and depth distribution (e.g., R. rhina and Bathyraja kincaidii off California; B. aleutica and B. interrupta in the Gulf of Alaska. Spatial niche differentiation in skates appears to be more pronounced than previously reported.

  20. Spatial segregation in eastern North Pacific skate assemblages.

    Science.gov (United States)

    Bizzarro, Joseph J; Broms, Kristin M; Logsdon, Miles G; Ebert, David A; Yoklavich, Mary M; Kuhnz, Linda A; Summers, Adam P

    2014-01-01

    Skates (Rajiformes: Rajoidei) are common mesopredators in marine benthic communities. The spatial associations of individual species and the structure of assemblages are of considerable importance for effective monitoring and management of exploited skate populations. This study investigated the spatial associations of eastern North Pacific (ENP) skates in continental shelf and upper continental slope waters of two regions: central California and the western Gulf of Alaska. Long-term survey data were analyzed using GIS/spatial analysis techniques and regression models to determine distribution (by depth, temperature, and latitude/longitude) and relative abundance of the dominant species in each region. Submersible video data were incorporated for California to facilitate habitat association analysis. We addressed three main questions: 1) Are there regions of differential importance to skates?, 2) Are ENP skate assemblages spatially segregated?, and 3) When skates co-occur, do they differ in size? Skate populations were highly clustered in both regions, on scales of 10s of kilometers; however, high-density regions (i.e., hot spots) were segregated among species. Skate densities and frequencies of occurrence were substantially lower in Alaska as compared to California. Although skates are generally found on soft sediment habitats, Raja rhina exhibited the strongest association with mixed substrates, and R. stellulata catches were greatest on rocky reefs. Size segregation was evident in regions where species overlapped substantially in geographic and depth distribution (e.g., R. rhina and Bathyraja kincaidii off California; B. aleutica and B. interrupta in the Gulf of Alaska). Spatial niche differentiation in skates appears to be more pronounced than previously reported.

  1. Physical and chemical effects of ingested plastic debris on short-tailed shearwaters, Puffinus tenuirostris, in the North Pacific Ocean

    OpenAIRE

    Yamashita, Rei; Takada, Hideshige; Fukuwaka, Masa-aki; Watanuki, Yutaka

    2011-01-01

    We investigated the plastics ingested by short-tailed shearwaters, Puffinus tenuirostris, that were accidentally caught during experimental fishing in the North Pacific Ocean in 2003 and 2005. The mean mass of plastics found in the stomach was 0.23 g per bird (n = 99). Plastic mass did not correlate with body weight. Total PCB (sum of 24 congeners) concentrations in the abdominal adipose tissue of 12 birds ranged from 45 to 529 ng/g-lipid. Although total PCBs or higher-chlorinated congeners, ...

  2. Zooplankton, physical, and other data collected from net and bottle casts in North Pacific Ocean from HAKUHO-MARU; 22 November 1982 to 14 February 1983 (NODC Accession 9600145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton species identities, physical, and other data were collected using net and bottle casts in the North Pacific Ocean from HAKUHO-MARU. Data were collected...

  3. Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-based Hydrographic Investigations Program sections P16 and P02

    Science.gov (United States)

    Carter, B. R.; Feely, R. A.; Mecking, S.; Cross, J. N.; Macdonald, A. M.; Siedlecki, S. A.; Talley, L. D.; Sabine, C. L.; Millero, F. J.; Swift, J. H.; Dickson, A. G.; Rodgers, K. B.

    2017-02-01

    A modified version of the extended multiple linear regression (eMLR) method is used to estimate anthropogenic carbon concentration (Canth) changes along the Pacific P02 and P16 hydrographic sections over the past two decades. P02 is a zonal section crossing the North Pacific at 30°N, and P16 is a meridional section crossing the North and South Pacific at 150°W. The eMLR modifications allow the uncertainties associated with choices of regression parameters to be both resolved and reduced. Canth is found to have increased throughout the water column from the surface to 1000 m depth along both lines in both decades. Mean column Canth inventory increased consistently during the earlier (1990s-2000s) and recent (2000s-2010s) decades along P02, at rates of 0.53 ± 0.11 and 0.46 ± 0.11 mol C m-2 a-1, respectively. By contrast, Canth storage accelerated from 0.29 ± 0.10 to 0.45 ± 0.11 mol C m-2 a-1 along P16. Shifts in water mass distributions are ruled out as a potential cause of this increase, which is instead attributed to recent increases in the ventilation of the South Pacific Subtropical Cell. Decadal changes along P16 are extrapolated across the gyre to estimate a Pacific Basin average storage between 60°S and 60°N of 6.1 ± 1.5 PgC decade-1 in the earlier decade and 8.8 ± 2.2 PgC decade-1 in the recent decade. This storage estimate is large despite the shallow Pacific Canth penetration due to the large volume of the Pacific Ocean. By 2014, Canth storage had changed Pacific surface seawater pH by -0.08 to -0.14 and aragonite saturation state by -0.57 to -0.82.

  4. Plankton data collected using net casts from the FRANCISCO DE ULLOA in the North Pacific Ocean from 15 July 1998 to 30 July 1998 (NODC Accession 0000911)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Plankton data were collected using net casts in the North Pacific Ocean from FRANCISCO DE ULLOA. Data were collected from 15 July 1998 to 30 July 1998. Data were...

  5. Deep water ventilation in the northwestern North Pacific during the last deglaciation and the early Holocene (15-5 cal. kyr B.P.) based on AMS 14C dating

    International Nuclear Information System (INIS)

    Minoshima, Kayo; Kawahata, Hodaka; Irino, Tomohisa; Ikehara, Ken; Aoki, Kaori; Uchida, Masao; Yoneda, Minoru; Shibata, Yasuyuki

    2007-01-01

    The difference between benthic and planktonic foraminifera radiocarbon (B-P 14 C) age differences in core PC6 (40 o 23.89' N, 143 o 29.87' E) retrieved from the northwestern North Pacific provide a clue to the reconstruction of deep water circulation during the last deglaciation and the early Holocene (15-5 cal. kyr B.P.). The observed B-P 14 C age differences ranged from 1030 to 1630 years, which are comparable to the present-day apparent ventilation age. It suggested that the ventilation generally remained similar during 15-5 cal. kyr B.P. However, B-P 14 C age difference slightly reduced at 14.6 cal. kyr B.P., indicating that the higher ventilation temporality could have occurred in the northwestern North Pacific (∼2200 m water depth)

  6. Role of the ocean mixed layer processes in the response of the North Pacific winter SST and MLD to global warming in CGCMs

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Bo Young; Noh, Yign [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)

    2012-03-15

    It is investigated how the changes of winter sea surface temperature (SST) and mixed layer depth (MLD) under climate change projections are predicted differently in the North Pacific depending on the coupled general circulation models (CGCMs), and how they are related to the dynamical property of the simulated ocean mixed layer. For this purpose the dataset from eleven CGCMs reported to IPCC's AR4 are used, while detailed analysis is given to the MRI and MIROC models. Analysis of the CGCM data reveals that the increase of SST and the decrease of MLD in response to global warming tend to be smaller for the CGCM in which the ratio of ocean heat transport (OHT) to surface heat flux (SHF), R (=OHT/SHF), is larger in the heat budget of the mixed layer. The negative correlation is found between the changes of OHT and SHF under global warming, which may weaken the response to global warming in the CGCM with larger R. It is also found that the models with low horizontal resolution tend to give broader western boundary currents, larger R, and the smaller changes of SST and MLD under global warming. (orig.)

  7. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Pacific Ocean, South Pacific Ocean and Southern Oceans from 2007-12-15 to 2008-02-23 (NODC Accession 0109903)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109903 includes discrete sample and profile data collected from NOAA Ship RONALD H. BROWN in the North Pacific Ocean, South Pacific Ocean and...

  8. The parasite Ichthyophonus sp. in Pacific herring from the coastal NE Pacific

    Science.gov (United States)

    Hershberger, Paul K.; Gregg, Jacob L.; Hart, Lucas M.; Moffitt, Steve; Brenner, Richard L.; Stick, K.; Coonradt, Eric; Otis, E. O.; Vollenweider, Johanna J.; Garver, Kyle A.; Lovy, Jan; Meyers, T.R.

    2016-01-01

    The protistan parasite Ichthyophonus occurred in populations of Pacific herring Clupea pallasii Valenciennes throughout coastal areas of the NE Pacific, ranging from Puget Sound, WA north to the Gulf of Alaska, AK. Infection prevalence in local Pacific herring stocks varied seasonally and annually, and a general pattern of increasing prevalence with host size and/or age persisted throughout the NE Pacific. An exception to this zoographic pattern occurred among a group of juvenile, age 1+ year Pacific herring from Cordova Harbor, AK in June 2010, which demonstrated an unusually high infection prevalence of 35%. Reasons for this anomaly were hypothesized to involve anthropogenic influences that resulted in locally elevated infection pressures. Interannual declines in infection prevalence from some populations (e.g. Lower Cook Inlet, AK; from 20–32% in 2007 to 0–3% during 2009–13) or from the largest size cohorts of other populations (e.g. Sitka Sound, AK; from 62.5% in 2007 to 19.6% in 2013) were likely a reflection of selective mortality among the infected cohorts. All available information for Ichthyophonus in the NE Pacific, including broad geographic range, low host specificity and presence in archived Pacific herring tissue samples dating to the 1980s, indicate a long-standing host–pathogen relationship.

  9. Report of Working Group 22 on Iron Supply and its Impact on Biogeochemistry and Ecosystems in the North Pacific Ocean

    OpenAIRE

    2013-01-01

    The Working Group on Iron Supply and its Impact on Biogeochemistry and Ecosystems in the North Pacific Ocean (WG 22) was established October 2007 under the direction of the Biological Oceanography Committee (BIO) and consisted of 20 members from all PICES member countries, including Co-Chairmen, Drs. Shigenobu Takeda (Japan) and Fei Chai (USA). The purpose of the Working Group was to examine the role of iron biogeochemistry and its impact on biological productivity and marine ecosystems. WG 2...

  10. USGS research on geohazards of the North Pacific: past, present, and future

    Science.gov (United States)

    McNutt, M. K.; Eichelberger, J. C.

    2012-12-01

    The disastrous earthquakes and tsunamis of Sumatra in 2004 and Tohoku in 2011 have driven re-examination of where and how such events occur. Particular focus is on the North Pacific. Of the top 30 earthquakes recorded instrumentally worldwide, 50% occurred along the line of subduction from the Kuril Islands to the southern Alaska mainland. This region has seen monstrous volcanic eruptions (Katmai-Novarupta, 1912), destructive tsunamis (Severo-Kurilsk, 1952), and one of Earth's largest instrumentally-recorded earthquakes (M9.2 Alaska, 1964). Only the modest populations in these frontier towns half a century ago kept losses to a minimum. Impact of any natural disaster to population, vital infrastructure, and sea and air transportation would be magnified today. While USGS had a presence in Alaska for more than a century, the great Alaska earthquake of 1964 ushered in the first understanding of the area's risks. This was the first mega-thrust earthquake properly interpreted as such, and led to re-examination of the 1960 Chilean event. All modern conceptions of mega-thrust earthquakes and tsunamis derive some heritage from USGS research following the 1964 event. The discovery of oil in the Alaska Arctic prompted building a pipeline from the north slope of Alaska to the ice-free port of Valdez. The USGS identified risks from crossing permafrost and active faults. Accurate characterization of these hazards informed innovative designs that kept the pipeline from rupturing due to ground instability or during the M7.9 Denali earthquake of 2002. As a large state with few roads, air travel is common in Alaska. The frequent ash eruptions of volcanoes in the populous Cook Inlet basin became a serious issue, highlighted by the near-crash of a large passenger jet in 1989. In response, the USGS and its partners developed and deployed efficient seismic networks on remote volcanoes and initiated regular satellite surveillance for early warning of ash eruptions. Close collaboration

  11. Predictability of the recent slowdown and subsequent recovery of large-scale surface warming using statistical methods

    Science.gov (United States)

    Mann, Michael E.; Steinman, Byron A.; Miller, Sonya K.; Frankcombe, Leela M.; England, Matthew H.; Cheung, Anson H.

    2016-04-01

    The temporary slowdown in large-scale surface warming during the early 2000s has been attributed to both external and internal sources of climate variability. Using semiempirical estimates of the internal low-frequency variability component in Northern Hemisphere, Atlantic, and Pacific surface temperatures in concert with statistical hindcast experiments, we investigate whether the slowdown and its recent recovery were predictable. We conclude that the internal variability of the North Pacific, which played a critical role in the slowdown, does not appear to have been predictable using statistical forecast methods. An additional minor contribution from the North Atlantic, by contrast, appears to exhibit some predictability. While our analyses focus on combining semiempirical estimates of internal climatic variability with statistical hindcast experiments, possible implications for initialized model predictions are also discussed.

  12. United States Pacific Command, Asia-Pacific Economic Update.

    Science.gov (United States)

    1998-04-01

    export process more efficient and effective by reducing export barriers and expanding markets abroad. The strategy coordinates the U.S. Government’s...investment from Western companies, such as Boeing and Mercedes - Benz , since China opened to the outside world the late 1970s.12 North Korea’s arms... markets for American trade and investment. Expanding wealth and opportunity in many Asia-Pacific countries have facilitated a transition to greater

  13. Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa

    Science.gov (United States)

    Hoell, Andrew; Funk, Christopher C.

    2014-01-01

    Rainfall over eastern Africa (10°S–10°N; 35°E–50°E) is bimodal, with seasonal maxima during the "long rains" of March–April–May (MAM) and the "short rains" of October–November–December (OND). Below average precipitation during consecutive long and short rains seasons over eastern Africa can have devastating long-term impacts on water availability and agriculture. Here, we examine the forcing of drought during consecutive long and short rains seasons over eastern Africa by Indo-Pacific sea surface temperatures (SSTs). The forcing of eastern Africa precipitation and circulation by SSTs is tested using ten ensemble simulations of a global weather forecast model forced by 1950–2010 observed global SSTs. Since the 1980s, Indo-Pacific SSTs have forced more frequent droughts spanning consecutive long and short rains seasons over eastern Africa. The increased frequency of dry conditions is linked to warming SSTs over the Indo-west Pacific and to a lesser degree to Pacific Decadal Variability. During MAM, long-term warming of tropical west Pacific SSTs from 1950–2010 has forced statistically significant precipitation reductions over eastern Africa. The warming west Pacific SSTs have forced changes in the regional lower tropospheric circulation by weakening the Somali Jet, which has reduced moisture and rainfall over the Horn of Africa. During OND, reductions in precipitation over recent decades are oftentimes overshadowed by strong year-to-year precipitation variability forced by the Indian Ocean Dipole and the El Niño–Southern Oscillation.

  14. Anomalous winter climate conditions in the Pacific rim during recent El Nino Modoki and El Nino events

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Hengyi; Behera, Swadhin K. [Climate Variations Research Program, Frontier Research Center for Global Change/JAMSTEC, Yokohama (Japan); Yamagata, Toshio [Climate Variations Research Program, Frontier Research Center for Global Change/JAMSTEC, Yokohama (Japan)]|[University of Tokyo, Department of Earth and Planetary Science, Graduate School of Sciences, Tokyo (Japan)

    2009-04-15

    Present work compares impacts of El Nino Modoki and El Nino on anomalous climate in the Pacific rim during boreal winters of 1979-2005. El Nino Modoki (El Nino) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple 'boomerangs' of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those 'boomerangs' reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Nino Modoki owing to displacement of the wet 'boomerang' arms more poleward toward east. Discontinuities at outer 'boomerang' arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Nino Modoki, while much of the western USA is wet during El Nino. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Nino Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Nino. The East Asian winter monsoon related anticyclone is over the South China Sea during El Nino Modoki as compared to its position over the Philippine Sea during El Nino, causing opposite precipitation anomalies in the southern East Asia between the two phenomena. (orig.)

  15. A Pacific hydrographic section at 88°W: Water-property distribution

    Science.gov (United States)

    Tsuchiya, Mizuki; Talley, Lynne D.

    1998-06-01

    Full-depth conductivity-temperature-depth (CTD)/hydrographic measurements with high horizontal and vertical resolution were made in February-April 1993 along a line lying at a nominal longitude of 88°W and extending from southern Chile (54°S) to Guatemala (14°N). It crossed five major deep basins (Southeast Pacific, Chile, Peru, Panama, and Guatemala basins) east of the East Pacific Rise. Vertical sections of potential temperature, salinity, potential density, oxygen, silica, phosphate, nitrate, and nitrite are presented to illustrate the structure of the entire water column. Some features of interest found in the sections are described, and an attempt is made to interpret them in terms of the isopycnal property distributions associated with the large-scale ocean circulation. These features include: various near-surface waters observed in the tropical and subtropical regions and the fronts that mark the boundaries of these waters; the possible importance of salt fingering to the downward salt transfer from the high-salinity subtropical water; a shallow thermostad (pycnostad) developed at 16°-18.5°C in the subtropical water; low-salinity surface water in the subantarctic zone west of southern Chile; large domains of extremely low oxygen in the subpycnocline layer on both sides of the equator and a secondary nitrite maximum associated with a nitrate minimum in these low-oxygen domains; high-salinity, low-oxygen, high-nutrient subpycnocline water that is carried poleward along the eastern boundary by the Peru-Chile Undercurrent; the Subantarctic Mode and Antarctic Intermediate waters; middepth isopycnal property extrema observed at the crest of the Sala y Gomez Ridge; influences of the North Pacific and the North Atlantic upon deep waters along the section; and the characteristics and sources of the bottom waters in the five deep basins along the section.

  16. Influence of obliquely subducting slab on Pacific-North America shear motion inferred from seismic anisotropy along the Queen Charlotte margin

    Science.gov (United States)

    Cao, L.; Kao, H.; Wang, K.; Wang, Z.

    2016-12-01

    Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence

  17. Current direction and CTD data from moored current meter and CTD casts in the North Pacific Ocean from 1979-02-05 to 1980-12-01 (NODC Accession 8300042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the North Pacific Ocean from February 5, 1979 to December 1, 1980. Data...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from MOORING_TAO165E0N in the North Pacific Ocean and South Pacific Ocean from 2010-02-23 to 2013-02-03 (NODC Accession 0113238)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113238 includes chemical, meteorological, physical and time series data collected from MOORING_TAO165E0N in the North Pacific Ocean and South Pacific...

  19. Long-term (2001-2012) trends of carbonaceous aerosols from a remote island in the western North Pacific: an outflow region of Asian pollutants

    Science.gov (United States)

    Boreddy, Suresh K. R.; Mozammel Haque, M.; Kawamura, Kimitaka

    2018-01-01

    The present study reports on long-term trends of carbonaceous aerosols in total suspended particulate (TSP) samples collected at Chichijima in the western North Pacific during 2001-2012. Seasonal variations of elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) concentrations showed maxima in winter to spring and minima in summer. These seasonal differences in the concentrations of carbonaceous aerosols were associated with the outflows of polluted air masses from East Asia, which are clearly distinguishable from pristine air masses from the central Pacific. The higher concentrations of carbonaceous aerosols during winter to spring are associated with long-range atmospheric transport of East Asian continental polluted air masses, whereas lower concentrations may be due to pristine air masses from the central Pacific in summer. The annual trends of OC / EC (+0.46 % yr-1), WSOC (+0.18 % yr-1) and WSOC / OC (+0.08 % yr-1) showed significant (p Asia.

  20. Secular variation of the Pacific Decadal Oscillation, the North Pacific Oscillation and climatic jumps in a multi-millennial simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, PO Box 1, Melbourne (Australia)

    2008-04-15

    Outputs from a 10,000-year simulation with a coupled global climatic model for present climatic conditions have been used to investigate the behaviour of the Pacific Decadal Oscillation (PDO), the North Pacific Oscillation (NPO) and related phenomena. The analysis reveals a wide range of temporal variability for these Oscillations, suggesting that observations to date provide only a limited sample of possible outcomes. In addition, the simulation suggests that the current observed phase relation between the PDO and NPO may not be typical of longer-term variability. Climatic jumps appear to be a ubiquitous feature of climatic variability, and while, as observed, the most common interval between such jumps is about 20 years, intervals of up to 100 years occur in the simulation. The probability density functions of the PDO and NPO are very close to Gaussian, with the PDO being represented by an auto-regressive function of order one, while the NPO consisted of white noise. An FFT analysis of PC1 of the PDO revealed periodicities concentrated near 10 years, while for the NPO the principal periodicities were decadal to bidecadal. Global distributions of the distributions of the correlations between PC1 or the NPO and selected climatic variables were similar, and in agreement with observations. These correlations highlight the inter-relationships between these two Oscillations. The above correlations were not necessarily stable in time for a given geographical point, with transitions occurring between positive and negative extremes. Climatic jumps were identified with transitions of both the PDO and NPO, with magnitudes of importance as regards climatic perturbations. Spatial patterns of the changes associated with such jumps have global scales, and the need to consider the implications of these jumps in regard to greenhouse induced climatic change is noted. (orig.)

  1. The Pacific sea surface temperature

    International Nuclear Information System (INIS)

    Douglass, David H.

    2011-01-01

    The Pacific sea surface temperature data contains two components: N L , a signal that exhibits the familiar El Niño/La Niña phenomenon and N H , a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F S ; (2) N H is phase locked directly to F S while N L is frequently phase locked to the 2nd or 3rd subharmonic of F S . At least ten distinct subharmonic time segments of N L since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N L is the familiar El Niño/La Niña effect. ► The second N H component has a period of 1 cycle/year. ► N L can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  2. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  3. Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific

    Science.gov (United States)

    Zhou, Xingyan; Lu, Riyu; Chen, Guanghua; Wu, Liang

    2018-05-01

    The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific (WNP) and its relationship with large-scale circulation for the period 1958-2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Niño3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects. Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.

  4. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the Indian Ocean, North Pacific Ocean and South Pacific Ocean from 2001-12-08 to 2002-01-19 (NODC Accession 0113547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113547 includes biological, chemical, discrete sample, physical and profile data collected from Hakuho Maru in the Indian Ocean, North Pacific Ocean...

  5. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the Indian Ocean, North Pacific Ocean and South Pacific Ocean from 2001-12-08 to 2002-01-19 (NODC Accession 0112347)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112347 includes biological, chemical, discrete sample, physical and profile data collected from Hakuho Maru in the Indian Ocean, North Pacific Ocean...

  6. Salinity and sigma-t data from moored current meter and CTD casts in the North Pacific Ocean from 1979-08-26 to 1982-06-07 (NODC Accession 8200146)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and sigma-t data were collected using moored current meter and CTD casts in the North Pacific Ocean from August 26, 1979 to June 7, 1982. Data were...

  7. The Effect of ENSO on Phytoplankton Composition in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p less than 0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (pphytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Ni a events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  8. PODs cruise - Pacific Orcinus Distrbution Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Orcinus spp. occur in the Pacific Ocean throughout the West Coast of North America. Data concerning their precise locations and abundance are critical to...

  9. Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: A proof of concept

    Science.gov (United States)

    Mugo, Robinson M.; Saitoh, Sei-Ichi; Takahashi, Fumihiro; Nihira, Akira; Kuroyama, Tadaaki

    2014-09-01

    Cold- and warm-water species' fishing grounds show a spatial synchrony around fronts in the western North Pacific (WNP). However, it is not yet clear whether a front (thermal, salinity or chlorophyll) acts as an absolute barrier to fish migration on either side or its structure allows interaction of species with different physiological requirements. Our objective was to assess potential areas of overlap between cold- and warm-water species using probabilities of presence derived from fishery datasets and remotely sensed environment data in the Kuroshio-Oyashio region in the WNP. Fishery data comprised skipjack tuna (Katsuwonus pelamis) fishing locations and proxy presences (derived from fishing night light images) for neon flying squid (Ommastrephes bartrami) and Pacific saury (Cololabis saira). Monthly (August-November) satellite remotely sensed sea-surface temperature, chlorophyll-a and sea-surface height anomaly images were used as environment data. Maximum entropy (MaxEnt) models were used to determine probabilities of presence (PoP) for each set of fishery and environment data for the area 35-45°N and 140-160°E. Maps of both sets of PoPs were compared and areas of overlap identified using a combined probability map. Results indicated that areas of spatial overlap existed among the species habitats, which gradually widened from September to November. The reasons for these overlaps include the presence of strong thermal/ocean-color gradients between cold Oyashio and warm Kuroshio waters, and also the presence of the sub-arctic front. Due to the high abundance of food along frontal zones, the species use the fronts as foraging grounds while confining within physiologically tolerable waters on either side of the front. The interaction zone around the front points to areas that might be accessible to both species for foraging, which suggests intense prey-predator interaction zones.

  10. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    Science.gov (United States)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2018-06-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  11. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    Science.gov (United States)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2017-09-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  12. Influences of two types of El Niño event on the Northwest Pacific and tropical Indian Ocean SST anomalies

    Science.gov (United States)

    Hu, Haibo; Wu, Qigang; Wu, Zepeng

    2018-01-01

    Based on the HadISST1 and NCEP datasets, we investigated the influences of the central Pacific El Niño event (CP-EL) and eastern Pacific El Niño event (EP-EL) on the Sea Surface Temperature (SST) anomalies of the Tropical Indian Ocean. Considering the remote effect of Indian Ocean warming, we also discussed the anticyclone anomalies over the Northwest Pacific, which is very important for the South China precipitation and East Asian climate. Results show that during the El Niño developing year of EP-EL, cold SST anomalies appear and intensify in the east of tropical Indian Ocean. At the end of that autumn, all the cold SST anomaly events lead to the Indian Ocean Dipole (IOD) events. Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs. However, considering the statistical significance, more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year. For further research, EP-EL accompany with Indian Ocean Basin Warming (EPI-EL) and CP El Niño accompany with Indian Ocean Basin Warming (CPI-EL) events are classified. With the remote effects of Indian Ocean SST anomalies, the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific. For the EPI-EL developing year, large-scale warm SST anomalies arise in the North Indian Ocean in May, and persist to the autumn of the El Niño decaying year. However, for the CPI-EL, weak warm SST anomalies in the North Indian Ocean maintain to the El Niño decaying spring. Because of these different SST anomalies in the North Indian Ocean, distinct zonal SST gradient, atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Niño decaying years. Specifically, the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years, can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean. The atmospheric

  13. Neodymium isotopic variations in Northwest Pacific waters

    Science.gov (United States)

    Amakawa, Hiroshi; Nozaki, Yoshiyuki; Alibo, Dia Sotto; Zhang, Jing; Fukugawa, Kiyotaka; Nagai, Hisao

    2004-02-01

    Four vertical profiles of the concentration and isotopic composition of Nd in seawater were obtained in the western North Pacific. Two profiles from the Kuroshio Current regime showed congruently that although the Nd concentration increases gradually with depth, its isotopic composition varies significantly with depth depending upon the water mass occupying the water column. The high-salinity Kuroshio waters originating from the North Pacific Tropical Water (NPTW) carry the least radiogenic Nd (ɛ Nd = -7.4 to -8.7) to this region at ˜250 m from the western margin continental shelves, most likely from the East China Sea. The Nd isotopic compositions in the North Pacific Intermediate Water (NPIW) that occurs at 600 to 1000 m in the subtropical region are fairly uniform at ɛ Nd = -3.7. The profile data from the ˜38° to 40°N Kuroshio/Oyashio mixed water region off Sanriku of Honshu, Japan, also suggest that the newest NPIW with ɛ Nd = -3.2 is formed there by the mixing of various source waters, and the radiogenic component of Nd is derived mainly from the Oyashio waters. In the Pacific Deep Water (PDW) below ˜1000 m, the Nd isotopic composition is neither vertically nor horizontally homogeneous, suggesting that it serves as a useful tracer for sluggish deep water circulation as well. Two profiles from the Izu-Ogasawara Trench showed a minimum ɛ Nd value at ˜2000 m, suggesting that there exists a horizontal advective flow in the vicinity of Honshu, Japan. There is some evidence from other chemical properties to support this observation. The waters below 4000 m including those within the trench in the subtropical region have ɛ Nd values of around -5, suggesting that the deep waters are fed from the south along the western boundary, ultimately from the Antarctic Bottom Water (AABW) in the South Pacific. This extends up to ˜40°N along the Japanese Islands. In the subarctic region (>˜42°N), the waters have more radiogenic Nd with ɛ Nd > -4.0 throughout the

  14. Multidecadal, centennial, and millennial variability in sardine and anchovy abundances in the western North Pacific and climate-fish linkages during the late Holocene

    Science.gov (United States)

    Kuwae, Michinobu; Yamamoto, Masanobu; Sagawa, Takuya; Ikehara, Ken; Irino, Tomohisa; Takemura, Keiji; Takeoka, Hidetaka; Sugimoto, Takashige

    2017-12-01

    Paleorecords of pelagic fish abundance could better define the nature of fishery productivity dynamics and help understand responses of pelagic fish stocks to long-term climate changes. We report a high-resolution record of sardine and anchovy scale deposition rates (SDRs) from Beppu Bay, Southwest Japan, showing multidecadal and centennial variability in the abundance of Japanese sardine and Japanese anchovy during the last 2850 years. Variations in the sardine SDR showed periodicities at ∼50, ∼100, and ∼300 yr, while variations in the anchovy SDR showed periodicities at ∼30 and ∼260 yr. Comparisons between and correlation analyses of the time series of the sardine and anchovy SDRs demonstrate that there is not a consistent out-of-phase relationship during the last 2850 years. This indicates that the multidecadal alternations in the sardine and anchovy populations commonly seen in the 20th century did not necessarily occur during earlier periods. The Japanese sardine SDR record shows a long-term decreasing trend in the amplitudes of the multidecadal to centennial fluctuations. This decreasing trend may have resulted from an increasing trend in the winter sea surface temperature in the western North Pacific. The multicentennial variability in sardine abundance during the last millennium is consistent with the variabilities in the abnormal snow index in East Asia and the American tree ring-based Pacific Decadal Oscillation index, suggesting a basin-wide or regional climate-marine ecosystem linkage.

  15. Denali Ice Core MSA: A Record of North Pacific Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Winski, D.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2017-12-01

    The high nutrient, low chlorophyll region of the North Pacific is one of the most biologically productive marine ecosystems in the world and forms the basis of commercial, sport, and subsistence fisheries worth more than a billion dollars annually. Marine phytoplankton prove to be important both as the primary producers in these ecosystems and as a major source of biogenic sulfur emissions which have long been hypothesized to serve as a biological control on Earth's climate system. Despite their importance, the record of marine phytoplankton abundance and the flux of biogenic sulfur from these regions is not well constrained. In situ measurements of marine phytoplankton from oceanographic cruises over the past several decades are limited in both spatial and temporal resolution. Meanwhile, marine sediment records may provide insight on million year timescales, but lack decadal resolution due to slow sediment deposition rates and bioturbation. In this study, we aim to investigate changes in marine phytoplankton productivity of the northeastern subarctic Pacific Ocean (NSPO) over the twentieth century using the methanesulfonic acid (MSA) record from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 meter long ice cores were drilled during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 4,000 m above sea level). Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) modeling is used to identify likely source areas in the NSPO for MSA being transported to the core site. SeaWiFS satellite imagery allows for a direct comparison of chlorophyll a concentrations in these source areas with MSA concentrations in the core record through time. Our findings suggest that the Denali ice core MSA record reflects changes in the biological productivity of marine phytoplankton and shows a significant decline in MSA beginning in 1961. We investigate several hypotheses for potential mechanisms driving this MSA decline

  16. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 1998-12-29 to 1999-02-01 (NODC Accession 0112349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112349 includes biological, chemical, discrete sample, meteorological, physical and profile data collected from MIRAI in the North Pacific Ocean and...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from MIRAI in the Bismarck Sea, North Pacific Ocean and South Pacific Ocean from 2011-01-12 to 2012-02-09 (NCEI Accession 0157014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157014 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the Bismarck Sea, North Pacific...

  18. 77 FR 16538 - Endangered and Threatened Species; Initiation of 5-Year Review for the North Atlantic Right Whale...

    Science.gov (United States)

    2012-03-21

    ... and Threatened Species; Initiation of 5-Year Review for the North Atlantic Right Whale and the North Pacific Right Whale AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...: NMFS announces a 5-year review of North Atlantic right whale (Eubalaena glacialis) and North Pacific...

  19. The leading mode of observed and CMIP5 ENSO-residual sea surface temperatures and associated changes in Indo-Pacific climate

    Science.gov (United States)

    Funk, Christopher C.; Hoell. Andrew,

    2015-01-01

    SSTs in the western Pacific Ocean have tracked closely with CMIP5 simulations despite recent hiatus cooling in the eastern Pacific. This paper quantifies these similarities and associated circulation and precipitation variations using the first global 1900–2012 ENSO-residual empirical orthogonal functions (EOFs) of 35 variables: observed SSTs; 28 CMIP5 SST simulations; Simple Ocean Data Assimilation (SODA) 25-, 70-, and 171-m ocean temperatures and sea surface heights (SSHs); and Twentieth Century Reanalysis, version 2 (20CRv2), surface winds and precipitation.

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from RYOFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2010-07-06 to 2010-08-22 (NODC Accession 0109921)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109921 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean, Philippine Sea...

  1. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the North Pacific Ocean and South Pacific Ocean from 1999-11-21 to 1999-12-27 (NODC Accession 0112351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112351 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the North Pacific Ocean and South...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2002-10-01 to 2002-11-27 (NODC Accession 0115283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115283 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  3. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the North Pacific Ocean and South Pacific Ocean from 2002-01-07 to 2002-02-16 (NODC Accession 0112354)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112354 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the North Pacific Ocean and South...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 1997-09-12 to 1997-11-07 (NODC Accession 0115286)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115286 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 1998-09-16 to 1998-11-13 (NODC Accession 0115280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115280 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2000-09-20 to 2000-11-04 (NODC Accession 0115288)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115288 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  7. Pan-North Pacific comparison of long-term variation in Neocalanus copepods based on stable isotope analysis

    Science.gov (United States)

    Chiba, Sanae; Sugisaki, Hiroya; Kuwata, Akira; Tadokoro, Kazuaki; Kobari, Toru; Yamaguchi, Atsushi; Mackas, David L.

    2012-05-01

    Regional differences in the mechanisms of temporal variation in the lower trophic levels in the western, central, and eastern subarctic North Pacific were studied using the nitrogen stable isotope ratio (δ15N) of the major copepod species, Neocalanus cristatus, Neocalanus flemingeri, and Neocalanus plumchrus. We used formalin-preserved specimens collected in the Oyashio region (OY), three sections from north to south along the 180° longitudinal line (180LineSA, TN, and TS), off Vancouver Island (Off-Van), and at Sta. P, during the periods of 1960-2000, 1979-1997, 1981-2007, and 1996-2007, respectively. The regional mean δ15N of the three species roughly corresponded to the surface nitrate distribution and the extent of its drawdown from winter to spring; it was higher in regions of larger seasonal drawdown as observed in the coastal regions OY and Off-Van (7-10‰), but lower in regions with less seasonal drawdown, such as in the offshore regions at St. P and stations along the 180Line (3-6‰). Time series analysis revealed possible region-specific mechanisms for temporal variation in Neocalanus δ15N. First, δ15N indicated shifts in feeding strategies between herbivorous to omnivorous/carnivorous at OY and 180LineSA, where δ15N tended to be lower in the years with warmer winters, suggesting that Neocalanus took advantage of enhanced phytoplankton production under favorable light availability due to increased stratification. Conversely, wind-induced latitudinal advection of surface water was considered to be the initial cause of interannual variation in Neocalanus δ15N at 180LineTN, 180LineTS, and Off-Van, where δ15N was higher in the years with strong southerly or westerly winds at 180LineTN and TS, and the Off-Van site. This suggests that pole-ward transport of relatively oligotrophic, southern water might enhance the uptake of the heavier isotope by phytoplankton, which Neocalanus feed upon. Another possibility at the Off-Van site, where high δ15N was

  8. Trace gas concentrations, intertropical convergence, atmospheric fronts, and ocean currents in the tropical Pacific m(Paper 8C1060)

    International Nuclear Information System (INIS)

    Wilkniss, P.E.; Rodgers, E.B.; Swinnerton, J.W.; Larson, R.E.; Lamontagne, R.A.

    1979-01-01

    Shipboard measurements of atmospheric 222 Rn, CO, and CH 4 and of dissolved CO in surface waters have been carried out in the equatorial Pacific on a cruise from Ecuador to Hawaii, Tahiti and Panama in March and April of 1974, and during transit from Los Angeles to Antarctica in November and December of 1972. The trace gas results, combined with conventional meteorological data and with satellite images from Nimbus 5 and the defense meteorological satellite project (DMSP), have provided descriptions of the intertropical convergence zones (ITCZ) near 04 0 N, 102 0 W and 03 0 N, 154 0 W in March of 1974, near 04 0 N, 86 0 W in April of 1974, and near 05 0 N, 139 0 W in November of 1972. In all cases the ITCZ seems to be located north of the south equatorial current (SEC) as shown by dissolved CO peaks in surface waters. In April of 1974 a 'second' ITCZ was observed near 01 0 S, 102 0 W just south of the SEC. A stationary front near Hawaii (20 0 N, 147 0 W) in March of 1974 was investigated. The ITCZ was marked by light shifting winds near a zone of heavy cloud cover and precipitation. In the eastern Tropical Pacific atmospheric 222 Rn increases distinctly north of the ITCZ and thus serves as an indicator for the ITCZ. CO and CH 4 do not always increase coincident with atmospheric 222 Rn. The atmospheric features of the stationary front near Hawaii are in many ways similar to those observed for the ITCZ. The front is marked by cloud cover, precipitation zone and light shifting winds. 222 Rn, CO and CH 4 increase signifantly behind the front in subsiding air which was traced back to the Asian continent. The variation of atmospheric 222 Rn, CO and CH 4 with time and geographical area over the equatorial Pacific seems to be a consequence of seasonal variations of the trade wind field and long range transport to the central Pacific from Asia and to the eastern equatorial Pacific from North and Central America

  9. The role of the Indonesian Throughflow in equatorial Pacific thermocline ventilation

    Science.gov (United States)

    Rodgers, Keith B.; Cane, Mark A.; Naik, Naomi H.; Schrag, Daniel P.

    1999-09-01

    The role of the Indonesian Throughflow (ITF) in the thermocline circulation of the low-latitude Pacific Ocean is explored using a high-resolution primitive equation ocean circulation model. Seasonally forced runs for a domain with an open Indonesian passage are compared with seasonally forced runs for a closed Pacific domain. Three cases are considered: one with no throughflow, one with 10 Sv of imposed ITF transport, and one with 20 Sv of ITF transport. Two idealized tracers, one that tags northern component subtropical water and another that tags southern component subtropical water, are used to diagnose the mixing ratio of northern and southern component waters in the equatorial thermocline. It is found that the mixing ratio of north/south component waters in the equatorial thermocline is highly sensitive to whether the model accounts for an ITF. Without an ITF, the source of equatorial undercurrent water is primarily of North Pacific origin, with the ratio of northern to southern component water being approximately 2.75 to 1. The ratio of northern to southern component water in the Equatorial Undercurrent with 10 Sv of ITF is approximately 1.4 to 1, and the ratio with 20 Sv of imposed ITF is 1 to 1.25. Estimates from data suggest a mean mixing ratio of northern to southern component water of less than 1 to 1. Assuming that the mixing ratio changes approximately linearly as the ITF transport varies between 10 and 20 Sv, an approximate balance between northern and southern component water is reached when the ITF transport is approximately 16 Sv. It is also shown that for the isopycnal surfaces within the core of the equatorial undercurrent, a 2°C temperature front exists across the equator in the western equatorial Pacific, beneath the warm pool. The implications of the model results and the temperature data for the heat budget of the equatorial Pacific are considered.

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and Calcium collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship MILLER FREEMAN in the North Pacific Ocean and South Pacific Ocean from 1979-04-01 to 1982-06-30 (NODC Accession 0000180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0000180 includes chemical, discrete sample, physical and profile data collected from NOAA Ship MILLER FREEMAN in the North Pacific Ocean and South...

  11. Circulation in the eastern North Pacific: results from a current meter array along 152°W

    Science.gov (United States)

    Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.

    1997-07-01

    Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period ( 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.

  12. Environmental biogeography of near-surface phytoplankton in the southeast Pacific Ocean

    Science.gov (United States)

    Hardy, John; Hanneman, Andrew; Behrenfeldt, Michael; Horner, Rita

    1996-10-01

    Biogeographic interpretation of large-scale phytoplankton distribution patterns in relation to surface hydrography is essential to understanding pelagic food web dynamics and biogeochemical processes influencing global climate. We examined the abundance and biomass of phytoplankton in relation to physical and chemical parameters in the southeast Pacific Ocean. Samples were collected along longitude 110°W, between 10°N and 60°S during late austral summer. Patterns of taxa abundance and hydrographic variables were interpreted by principal components analysis. Five distinct phytohydrographic regions were identified: (i) a north equatorial region of moderate productivity dominated by small flagellates, low nitrate and low-to-moderate pCO 2; (ii) a south equatorial region characterized by high primary productivity dominated by diatoms, high nutrient levels, and relatively high pCO 2; (iii) a central gyre region characterized by low productivity dominated by small flagellates, low nitrate, and high pCO 2; (iv) a sub-Antarctic region with moderate productivity dominated by coccolithophores, moderate nitrate concentrations, and low pCO 2; and (v) an Antarctic region with high productivity dominated by diatoms, very high nitrate, and low pCO 2. Productivity and average phytoplankton cell size were positively correlated with nitrate concentration. Total phytoplankton abundance was negatively correlated with pCO 2, photosynthetically active radiation, and ultraviolet-B radiation. The interaction between phytoplankton carbon assimilation, atmospheric CO2, and the inhibitory effect of ultraviolet radiation could have implications for the global climate. These data suggest that the effects would be greatest at southern mid-latitudes (40-50°S) where present phytoplankton production and predicted future increases in UV-B are both relatively high.

  13. Photic zone changes in the north-west Pacific Ocean from MIS 4–5e

    Directory of Open Access Journals (Sweden)

    G. E. A. Swann

    2015-01-01

    Full Text Available In comparison to other sectors of the marine system, the palaeoceanography of the subarctic North Pacific Ocean is poorly constrained. New diatom isotope records of δ13C, δ18O, δ30Si (δ13Cdiatom, δ18Odiatom, and δ30Sidiatom are presented alongside existing geochemical and isotope records to document changes in photic zone conditions, including nutrient supply and the efficiency of the soft-tissue biological pump, between Marine Isotope Stage (MIS 4 and MIS 5e. Peaks in opal productivity in MIS 5b/c and MIS 5e are both associated with the breakdown of the regional halocline stratification and increased nutrient supply to the photic zone. Whereas the MIS 5e peak is associated with low rates of nutrient utilisation, the MIS 5b/c peak is associated with significantly higher rates of nutrient utilisation. Both peaks, together with other smaller increases in productivity in MIS 4 and 5a, culminate with a significant increase in freshwater input which strengthens/re-establishes the halocline and limits further upwelling of sub-surface waters to the photic zone. Whilst δ30Sidiatom and previously published records of diatom δ15N (δ15Ndiatom (Brunelle et al., 2007, 2010 show similar trends until the latter half of MIS 5a, the records become anti-correlated after this juncture and into MIS 4, suggesting a possible change in photic zone state such as may occur with a shift to iron or silicon limitation.

  14. Surface wind energy trends near Taiwan in winter since 1871

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available The tropical surface wind speed in boreal winter reaches a maximum near Taiwan. This stable wind resource may be used for future clean energy development. How this surface wind energy source has changed in past 141 years is investigated using the 20th century reanalysis dataset and CMIP5 models. Our observational analysis shows that the surface wind speed experienced a weakening trend in the past 141 years (1871 - 2010. The average decreasing rate is around -1.4 m s-1 per century. The decrease is primarily attributed to the relative sea surface temperature (SST cooling in the subtropical North Pacific, which forces a large-scale low-level anti-cyclonic circulation anomaly in situ and is thus responsible for the southerly trend near Taiwan. The relative SST trend pattern is attributed mainly to the greenhouse gas effect associated with anthropogenic activities. The southerly trend near Taiwan is more pronounced in the boreal winter than in summer. Such seasonal difference is attributed to the reversed seasonal mean wind, which promotes more efficient positive feedback in the boreal winter. The CMIP5 historical run analysis reveals that climate models capture less SST warming and large-scale anti-cyclonic circulation in the subtropical North Pacific, but the simulated weakening trend of the surface wind speed near Taiwan is too small.

  15. Thirteen years of observations on primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific

    Science.gov (United States)

    Verma, Santosh Kumar; Kawamura, Kimitaka; Chen, Jing; Fu, Pingqing

    2018-01-01

    In order to understand the atmospheric transport of bioaerosols, we conducted long-term observations of primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific from 2001 to 2013. Our results showed that concentrations of total sugar compounds for 13 years ranged from 1.2 to 310 ng m-3 (average of 46 ± 49 ng m-3). We found that atmospheric circulations significantly affect the seasonal variations of bioaerosol distributions over the western North Pacific. The primary sugars (glucose and fructose) maximized in summer, possibly due to an increased emission of the vegetation products from local vascular plants in Chichijima. We also found higher concentrations of sugar components (arabitol, mannitol, and trehalose) in more recent years during summer and autumn, suggesting an enhanced emission of fungal and microbial species over the island. Sucrose peaked in late winter to early spring, indicating a springtime pollen contribution by long-range atmospheric transport, while elevated concentrations of sucrose in early summer could be explained by long-range transport of soil dust from Southeast Asia to Chichijima. Sucrose and trehalose were found to present increasing trends from 2001 to 2013, while total sugar components did not show any clear trends during the 13-year period. Positive matrix factorization analyses suggested the locally emitted sugar compounds as well as long-range-transported airborne pollen grains, microbes, and fungal spores are the major contributors to total sugar compounds in the Chichijima aerosols. Backward air mass trajectories support the atmospheric transport of continental aerosols from the Asian continent during winter and spring over Chichijima.

  16. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Brandes, J.A.; Devol, A.H.; Yoshinari, T.; Jayakumar, D.A.; Naqvi, S.W.A.

    Trench. Ph.D. Thesis, Univ. of Cali- fornia, Los Angeles. -. AND I. R. KAPLAN. 1975. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pa- cific. Mar. Chem. 3: 271-299. CODISPOTI, L. A., AND J. P....-K. 1979. Geochemistry of inorganic nitrogen compounds in two marine environments: The Santa Barbara basin and the ocean off Peru. Ph.D. Thesis, Univ. of California, Los Angeles. -, AND I. R. KAPLAN. 1989. The eastern tropical Pacific as a source of 15N...

  17. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHN V. VICKERS in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 1992-08-16 to 1992-10-21 (NODC Accession 0115003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115003 includes chemical, discrete sample, physical and profile data collected from JOHN V. VICKERS in the Bering Sea, North Pacific Ocean and South...

  18. Micro contaminants in surface sediments and macrobenthic invertebrates of the North Sea

    NARCIS (Netherlands)

    Everaarts, J.M.; Fischer, C.V.

    1989-01-01

    Trace metal concentrations (copper, zinc, cadmium and lead) were measured in the silt fraction (grainsize < 63 µm) of surface sediment of the North Sea. The concentrations varied in different areas of the Dutch continental shelf of the North Sea. The trace metal concentrations were highly related

  19. Comparative phytosociological investigation of subalpine alder thickets in southwestern Alaska and the North Pacific

    Science.gov (United States)

    Talbot, Stephen S.; Talbot, Sandra L.; Daniëls, F. J. A.

    2005-01-01

    We present the first vegetation analysis of subalpine alder (Alnus viridis) thickets in southwestern Alaska. The data are primarily from mesic, hilly and mountainous sites ranging from the westernmost tip of the Alaska Peninsula to the northern Kenai Peninsula, spanning 1,000 km on an E–W gradient and 700 km on a N–S gradient. 127 relevés from 18 sites represent the range of structural and compositional variation in the matrix of vegetation and landform diversity. Data were analyzed by multivariate and traditional Braun-Blanquet methods. One association is distinguished, Sambuco racemosi-Alnetum viridis ass. nov. with three new subassociations, oplopanacetosum horridi, typicum, and rubetosum spectabilis with the latter subdivided into four variants. These phytocoena are well-differentiated, although they form a syntaxonomical continuum. The composition and structure of these communities are described and interpreted in relation to complex environmental factors; these are analyzed using Jancey's ranking on F-values. Community composition is primarily related to elevation, longitude, soil moisture, and latitude. Phytogeographic comparison of southwestern Alaska alder communities with those elsewhere in the North Pacific suggests a close floristic relationship to those of southcentral, southeastern Alaska and coastal British Columbia, Canada. All these communities belong to the same association, while those of the eastern and southern parts of the Kamchatka Peninsula, Russia belong to a different association. Syntaxonomy of the 4 major communities is discussed. Within the Northern Hemisphere, vascular plant species of southwestern Alaska alder thickets primarily occur in East Asia and North America, 36 %; while 26 % are circumpolar, and 22 % are restricted to North America. From a latitudinal perspective, the distribution of vascular plant species within these alder thickets peaks in the high-subarctic, low-subarctic, and temperate latitudinal zones, with low

  20. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters

    International Nuclear Information System (INIS)

    Van Sebille, Erik; England, Matthew H; Froyland, Gary

    2012-01-01

    Much of the debris in the near-surface ocean collects in so-called garbage patches where, due to convergence of the surface flow, the debris is trapped for decades to millennia. Until now, studies modelling the pathways of surface marine debris have not included release from coasts or factored in the possibilities that release concentrations vary with region or that pathways may include seasonal cycles. Here, we use observational data from the Global Drifter Program in a particle-trajectory tracer approach that includes the seasonal cycle to study the fate of marine debris in the open ocean from coastal regions around the world on interannual to centennial timescales. We find that six major garbage patches emerge, one in each of the five subtropical basins and one previously unreported patch in the Barents Sea. The evolution of each of the six patches is markedly different. With the exception of the North Pacific, all patches are much more dispersive than expected from linear ocean circulation theory, suggesting that on centennial timescales the different basins are much better connected than previously thought and that inter-ocean exchanges play a large role in the spreading of marine debris. This study suggests that, over multi-millennial timescales, a significant amount of the debris released outside of the North Atlantic will eventually end up in the North Pacific patch, the main attractor of global marine debris. (letter)

  1. 1500-year Record of trans-Pacific Dust Flux collected from the Denali Ice Core, Mt. Hunter, Alaska

    Science.gov (United States)

    Saylor, P. L.; Osterberg, E. C.; Koffman, B. G.; Winski, D.; Ferris, D. G.; Kreutz, K. J.; Wake, C. P.; Handley, M.; Campbell, S. W.

    2016-12-01

    Mineral dust aerosols are a critical component of the climate system through their influence on atmospheric radiative forcing, ocean productivity, and surface albedo. Dust aerosols derived from Asian deserts are known to reach as far as Europe through efficient transport in the upper tropospheric westerlies. While centennially-to-millennially resolved Asian dust records exist over the late Holocene from North Pacific marine sediment cores and Asian loess deposits, a high-resolution (sub-annual to decadal) record of trans-Pacific dust flux will significantly improve our understanding of North Pacific dust-climate interactions and provide paleoclimatological context for 20th century dust activity. Here we present an annually resolved 1500-year record of trans-Pacific dust transport based on chemical and physical dust measurements in parallel Alaskan ice cores (208 m to bedrock) collected from the summit plateau of Mt. Hunter in Denali National Park. The cores were sampled at high resolution using a continuous melter system with discrete analyses for major ions (Dionex ion chromatograph), trace elements (Element2 inductively coupled plasma mass spectrometer), and stable water isotope ratios (Picarro laser ringdown spectroscopy), and continuous flow analysis for dust concentration and size distribution (Klotz Abakus). We compare the ice core dust record to instrumental aerosol stations, satellite observations, and dust model data from the instrumental period, and evaluate climatic controls on dust emission and trans-Pacific transport using climate reanalysis data, to inform dust-climate relationships over the past 1500 years. Physical particulate and chemical data demonstrate remarkable fidelity at sub-annual resolution, with both displaying a strong springtime peak consistent with periods of high dust activity over Asian desert source regions. Preliminary results suggest volumetric mode typically ranges from 4.5 - 6.5 um, with a mean value of 5.5 um. Preliminary

  2. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  3. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    Science.gov (United States)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  4. Coral Records of 20th Century Central Tropical Pacific SST and Salinity: Signatures of Natural and Anthropogenic Climate Change

    Science.gov (United States)

    Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.

    2011-12-01

    Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century

  5. Distribution and Magnitude of Dinitrogen Fixation in the Eastern Tropical North Pacific Oxygen Deficient Zone.

    Science.gov (United States)

    Selden, C.; Mulholland, M. R.; Widner, B.; Bernhardt, P. W.; Macías Tapia, A.; Jayakumar, A.

    2016-12-01

    The Eastern Tropical North Pacific Ocean (ETNP) hosts one of the world's three major open ocean oxygen deficient zones (ODZs). Hotspots for fixed nitrogen (N) loss processes, ODZs have classically been discounted as areas of significant dinitrogen (N2) fixation, the microbe-mediated reduction of N2 to ammonium (NH4+), which has historically been ascribed primarily to euphotic, nutrient-deplete tropical waters. Challenging this paradigm, active expression of nifH (the dinitrogen reductase structural gene) has recently been documented in the ETNP, Eastern Tropical South Pacific, and Arabian Sea ODZs, implying a closer coupling of fixed nitrogen input and loss processes than previously thought. Here, we report rates of N­2 fixation measured in the ETNP ODZ along vertical gradients of oxygen, light, and dissolved N concentrations. Detailed vertical profiles of N2 fixation rates and dissolved N concentrations made within the ODZ were compared with similar profiles from oxic waters outside the ODZ. In addition, different organic carbon sources were investigated as potential rate-limiting factors for N2 fixation in sub-euphotic waters. By establishing the magnitude and distribution of N­2 fixation in the ETNP ODZ, this study contributes to current understanding of N cycling in anoxic and aphotic waters, and serves to elucidate nuances in the global N budget, enabling more accurate biogeochemical modeling. Understanding these processes in present day ODZs is crucial for predicting how ongoing anthropogenic intensification of coastal ODZs will alter biogeochemical cycles in the future.

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2001-10-10 to 2001-12-06 (NODC Accession 0115281)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115281 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean, Philippine Sea...

  7. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from NOAA Ship MALCOLM BALDRIGE in the North Pacific Ocean, South Pacific Ocean and Southern Oceans from 1990-02-22 to 1990-04-16 (NODC Accession 0000183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0000183 includes chemical, discrete sample, physical and profile data collected from NOAA Ship MALCOLM BALDRIGE in the North Pacific Ocean, South...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1993-04-13 to 1993-06-11 (NODC Accession 0112228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112228 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1993-08-07 to 1993-10-05 (NODC Accession 0112229)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112229 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1994-08-08 to 1994-10-06 (NODC Accession 0112339)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112339 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1994-04-13 to 1994-06-11 (NODC Accession 0112230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112230 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2001-01-19 to 2001-03-09 (NODC Accession 0115321)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115321 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1992-08-07 to 1992-10-05 (NODC Accession 0112227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112227 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and South Pacific Ocean from 2008-06-17 to 2008-08-03 (NODC Accession 0112336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112336 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and South...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2002-01-17 to 2002-03-06 (NODC Accession 0115278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115278 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2011-05-15 to 2011-08-26 (NODC Accession 0115178)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115178 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  17. Assimilation of Long-Range Lightning Data over the Pacific

    Science.gov (United States)

    2011-09-30

    convective rainfall analyses over the Pacific, and (iii) to improve marine prediction of cyclogenesis of both tropical and extratropical cyclones through...data over the North Pacific Ocean, refine the relationships between lightning and storm hydrometeor characteristics, and assimilate lightning...unresolved storm -scale areas of deep convection over the data-sparse open oceans. Diabatic heating sources, especially latent heat release in deep

  18. Variability of Atmospheric CO2 over the western North Pacific: Influence of Asian outflow during March-April 2001

    Science.gov (United States)

    Vay, S. A.; Woo, J.; Anderson, B. E.; Thornhill, K. L.; Kiley, C.; Avery, M. A.; Sachse, G. W.; Blake, D. R.; Streets, D. G.; Nolf, S. R.

    2002-12-01

    We report here tropospheric CO2 measurements made as part of the airborne component of NASA's Transport and Chemical Evolution over the Pacific (TRACE-P) Mission during March and April in 2001. CO2 mixing ratios, sampled in the subtropics (23.5-45.5° N) west of 150° E, exhibited a decreasing trend with height (0.5-12 km), were highly correlated with latitude showing a distinct north to south gradient, and peaked between 35-40° N within the planetary boundary layer. Near the Asian continent, discrete plumes encountered below 4 km contained up to 393.6 ppmv CO2 and were augmented with the combustion and industrial tracers CO, C2H6, C3H8, CH3Cl, C2Cl4, and C6H6. A chemically based air mass classification scheme using the combustion products CO and C2H2 as tracers of continental source emissions was employed in this analysis. Results show an excellent positive correlation for CO2 (r2=0.98) with respect to this ratio in the lower to mid free troposphere (4-8 km) providing evidence of continental outflow. South of the Tropic of Cancer, mean and median CO2 values derived from samples obtained below 8 km are less than those calculated for the subtropics. However, within the upper troposphere (UT) of both regions, similar values were determined and enhancements in combustion-derived species in the 8-12 km altitude range were observed. The relationship revealed between CO2 and the C2H2/CO ratio, particularly for the tropics, suggests recent inputs from the surface to the UT. In order to elucidate the processes determining the variations of CO2 in the Asian Pacific rim region during TRACE-P, a CO2 emissions data base developed for Asia was examined in conjunction with the chemistry and 5 day backward trajectories in an attempt to link CO2 enhancements observed in pollution plumes to source regions. From these data acquired downwind of the Asian continent when CO2 concentrations at the surface were approaching their seasonal maximum, we estimate a net export flux on the

  19. Extreme conditions over Europe and North America: role of the Atlantic Multidecadal Variability

    Science.gov (United States)

    Ruprich-Robert, Yohan; Msadek, Rym; Delworth, Tom

    2016-04-01

    The Atlantic Multidecadal Variability (AMV) is the result and possibly the source of marked modulations of the climate over many areas of the globe. For instance, the relatively warm and dry climate of North America throughout the 30-yr interval of 1931-60, during which the Dust Bowl and the 1950's drought occurred, has been linked to the concomitant warm phase of the AMV. During this period relative warm and wet conditions prevailed over Europe. After 1960, the Atlantic began to cool, and for almost three decades the North American climate turned wetter and cooler whereas Europe experienced cooler and dryer conditions. However, the shortness of the historical observations compared to the AMV period suggested by longer proxy (~60-80yr) does not allow to firmly conclude on the causal effect of the AMV. We use a model approach to isolate the causal role of the AMV on the occurrence of extreme events over Europe and North America. We present experiments based on two GFDL global climate models, a low resolution version, CM2.1 and a higher resolution model for the atmospheric component, FLOR. In both model experiments sea surface temperatures in the North Atlantic sector are restored to the observed AMV pattern, while the other basins are left fully coupled. In order to explore and robustly isolate the AMV impacts on extreme events, we use large ensemble simulations (100 members for CM2.1 and 50 for FLOR) that we run for 20 years. We find that a positive phase of the AMV increases the frequency of occurrence of drought over North America and of extremely cold/warm conditions over Northern/Central Europe during winter/summer. Interestingly, we find that the AMV impacts on these extreme conditions are modulated by the Pacific response to the AMV itself. Members that develop a weak Pacific response show more extreme events over Europe whereas those that develop a strong Pacific response show more extreme events over North America.

  20. Underway pCO2 Measurements in Surface Waters and the Atmosphere During the CGC Healy 2016 Expeditions (NCEI Accession 0166631)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0166631 includes Surface underway data collected from CGC Healy in the North Pacific Ocean, Bering Sea, Chukchi Sea and Arctic Ocean from 2016-06-30...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from THOMAS G. THOMPSON in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 1993-07-05 to 1993-09-02 (NODC Accession 0115008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115008 includes chemical, discrete sample, physical and profile data collected from THOMAS G. THOMPSON in the Bering Sea, North Pacific Ocean and...

  2. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the L'ATALANTE in the Coral Sea, North Pacific Ocean and South Pacific Ocean from 1994-09-23 to 1994-10-29 (NODC Accession 0111870)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0111870 includes chemical, discrete sample, physical and profile data collected from L'ATALANTE in the Coral Sea, North Pacific Ocean and South...

  3. Temperature, salinity, nutrients, oxygen and other data profiles from CTD and bottle casts from NOAA/NMFS cruises of NOAA Ship Townsend Cromwell in the central north Pacific, 1997-2002 (NODC Accession 0100295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains measurements from CTD hydrocast stations from seven cruises of NOAA Ship Townsend Cromwell in the central north Pacific from 1997 to 2002...

  4. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  5. A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust

    Science.gov (United States)

    Boreddy, S. K. R.; Kawamura, K.

    2015-06-01

    In order to characterize the long-term trend of remote marine aerosols, a 12-year observation was conducted for water-soluble ions in TSP (total suspended particulate) aerosols collected from 2001 to 2012 in the Asian outflow region at Chichijima Island in the western North Pacific. We found a clear difference in chemical composition between the continentally affected and marine background air masses over the observation site. Asian continental air masses are delivered from late autumn to spring, whereas marine air masses were dominated in summer. Concentrations of non-sea salt (nss-) SO42-, NO3-, NH4+, nss-K+ and nss-Ca2+ are high in winter and spring and low in summer. On the other hand, MSA- (methanesulfonate) exhibits higher concentrations during spring and winter, probably due to springtime dust bloom or due to the direct continental transport of MSA- to the observation site. We could not find any clear decadal trend for Na+, Cl-, Mg2+ and nss-Ca2+ in all seasons, although there exists a clear seasonal trend. However, concentrations of nss-SO42- continuously decreased from 2007 to 2012, probably due to the decreased SO2 emissions in East Asia especially in China. In contrast, nss-K+ and MSA- concentrations continuously increased from 2001 to 2012 during winter and spring seasons, demonstrating that biomass burning and/or terrestrial biological emissions in East Asia are being increasingly transported from the Asian continent to the western North Pacific. This study also demonstrates that Asian dusts can act as an important source of nutrients for phytoplankton and thus sea-to-air emission of dimethyl sulfide over the western North Pacific.

  6. Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation

    Science.gov (United States)

    Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge

    1996-08-01

    The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.

  7. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  8. Current meter and other data from current meter casts from NOAA Ship RESEARCHER in the North and South Pacific Ocean from 1984-06-28 to 1984-07-01 (NODC Accession 8500226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and other data were collected using current meter casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean from June 28, 1984 to July 1, 1984....

  9. Final Report for UW-Madison Portion of DE-SC0005301, "Collaborative Project: Pacific Decadal Variability and Central Pacific Warming El Niño in a Changing Climate"

    Energy Technology Data Exchange (ETDEWEB)

    Vimont, Daniel [University of Wisconsin - Madison

    2014-06-13

    This project funded two efforts at understanding the interactions between Central Pacific ENSO events, the mid-latitude atmosphere, and decadal variability in the Pacific. The first was an investigation of conditions that lead to Central Pacific (CP) and East Pacific (EP) ENSO events through the use of linear inverse modeling with defined norms. The second effort was a modeling study that combined output from the National Center for Atmospheric Research (NCAR) Community Atmospheric Model (CAM4) with the Battisti (1988) intermediate coupled model. The intent of the second activity was to investigate the relationship between the atmospheric North Pacific Oscillation (NPO), the Pacific Meridional Mode (PMM), and ENSO. These two activities are described herein.

  10. Operational Prediction of the Habitat Suitability Index (HSI) Distribution for Neon Flying Squid in Central North Pacific by Using FORA Dataset and a New Data Assimilation System SKUIDS

    Science.gov (United States)

    Igarashi, H.; Ishikawa, Y.; Wakamatsu, T.; Tanaka, Y.; Nishikawa, S.; Nishikawa, H.; Kamachi, M.; Kuragano, T.; Takatsuki, Y.; Fujii, Y.; Usui, N.; Toyoda, T.; Hirose, N.; Sakai, M.; Saitoh, S. I.; Imamura, Y.

    2016-02-01

    The neon flying squid (Ommastrephes bartramii) has a wide-spread distribution in subtropical and temperate waters in the North Pacific, which plays an important role in the pelagic ecosystem and is one of the major targets in Japanese squid fisheries. The main fishing areas for Japanese commercial vessels are located in the central North Pacific (35-45N, around the date line) in summer. In this study, we have developed several kinds of habitat suitability index (HSI) models of the neon flying squid for investigating the relationship between its potential habitat and the ocean state variations in the target area. For developing HSI models, we have used a new ocean reanalysis dataset FORA (4-dimensional variational Ocean Re-Analysis) produced by JAMSTEC/CEIST and MRI-JMA. The horizontal resolution is 0.1*0.1 degree of latitude and longitude with 54 vertical levels, which can provide realistic fields of 3-dimensional ocean circulation and environmental structures including meso-scale eddies. In addition, we have developed a new 4D-VAR (4-dimensional variational) ocean data assimilation system for predicting ocean environmental changes in the main fishing grounds. We call this system "SKUIDS" (Scalable Kit of Under-sea Information Delivery System). By using these prediction fields of temperature, salinity, sea surface height, horizontal current velocity, we produced daily HSI maps of the neon flying squid, and provided them to the Japanese commercial vessels in operation. Squid fishermen can access the web site for delivering the information of ocean environments in the fishing ground by using Inmarsat satellite communication on board, and show the predicted fields of subsurface temperatures and HSI. Here, we present the details of SKUIDS and the web-delivery system for squid fishery, and some preliminary results of the operational prediction.

  11. Nitrate + nitrite content (concentration), phosphate, and silicate collected from NOAA Ship Oscar Elton Sette in the North Pacific Ocean from 2008-03-26 to 2011-03-24 (NCEI Accession 0129883)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laboratory analysis of water samples collected aboard NOAA Ship Oscar Elton Sette along a 158°W transect from 26°-36°N in the central North Pacific. Laboratory...

  12. 75 FR 56903 - Pacific Halibut Fisheries; Limited Access for Guided Sport Charter Vessels in Alaska

    Science.gov (United States)

    2010-09-17

    .... 100503209-0430-02] RIN 0648-AY85 Pacific Halibut Fisheries; Limited Access for Guided Sport Charter Vessels... program for charter vessels in the guided sport fishery for Pacific halibut in the waters of International... necessary to achieve the halibut fishery management goals of the North Pacific Fishery Management Council...

  13. Thirteen years of observations on primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific

    Directory of Open Access Journals (Sweden)

    S. K. Verma

    2018-01-01

    Full Text Available In order to understand the atmospheric transport of bioaerosols, we conducted long-term observations of primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific from 2001 to 2013. Our results showed that concentrations of total sugar compounds for 13 years ranged from 1.2 to 310 ng m−3 (average of 46 ± 49 ng m−3. We found that atmospheric circulations significantly affect the seasonal variations of bioaerosol distributions over the western North Pacific. The primary sugars (glucose and fructose maximized in summer, possibly due to an increased emission of the vegetation products from local vascular plants in Chichijima. We also found higher concentrations of sugar components (arabitol, mannitol, and trehalose in more recent years during summer and autumn, suggesting an enhanced emission of fungal and microbial species over the island. Sucrose peaked in late winter to early spring, indicating a springtime pollen contribution by long-range atmospheric transport, while elevated concentrations of sucrose in early summer could be explained by long-range transport of soil dust from Southeast Asia to Chichijima. Sucrose and trehalose were found to present increasing trends from 2001 to 2013, while total sugar components did not show any clear trends during the 13-year period. Positive matrix factorization analyses suggested the locally emitted sugar compounds as well as long-range-transported airborne pollen grains, microbes, and fungal spores are the major contributors to total sugar compounds in the Chichijima aerosols. Backward air mass trajectories support the atmospheric transport of continental aerosols from the Asian continent during winter and spring over Chichijima.

  14. The air-sea exchange of mercury in the low latitude Pacific and Atlantic Oceans

    Science.gov (United States)

    Mason, Robert P.; Hammerschmidt, Chad R.; Lamborg, Carl H.; Bowman, Katlin L.; Swarr, Gretchen J.; Shelley, Rachel U.

    2017-04-01

    Air-sea exchange is an important component of the global mercury (Hg) cycle as it mediates the rate of increase in ocean Hg, and therefore the rate of change in levels of methylmercury (MeHg), the most toxic and bioaccumulative form of Hg in seafood and the driver of human health concerns. Gas evasion of elemental Hg (Hg0) from the ocean is an important sink for ocean Hg with previous studies suggesting that evasion is not uniform across ocean basins. To understand further the factors controlling Hg0 evasion, and its relationship to atmospheric Hg deposition, we made measurements of dissolved Hg0 (DHg0) in surface waters, along with measurements of Hg in precipitation and on aerosols, and Hg0 in marine air, during two GEOTRACES cruises; GP16 in the equatorial South Pacific and GA03 in the North Atlantic. We contrast the concentrations and estimated evasion fluxes of Hg0 during these cruises, and the factors influencing this exchange. Concentrations of DHg0 and fluxes were lower during the GP16 cruise than during the GA03 cruise, and likely reflect the lower atmospheric deposition in the South Pacific. An examination of Hg/Al ratios for aerosols from the cruises suggests that they were anthropogenically-enriched relative to crustal material, although to a lesser degree for the South Pacific than the aerosols over the North Atlantic. Both regions appear to be net sources of Hg0 to the atmosphere (evasion>deposition) and the reasons for this are discussed. Overall, the studies reported here provide further clarification on the factors controlling evasion of Hg0 from the ocean surface, and the role of anthropogenic inputs in influencing ocean Hg concentrations.

  15. Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring

    Directory of Open Access Journals (Sweden)

    T. W. Walker

    2010-09-01

    Full Text Available We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B in spring 2006 using a global chemical transport model (GEOS-Chem to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO2 columns to provide timely estimates of trends in NOx emissions. NOx emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NOx emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30° N–60° N tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs. A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NOx from regions of low ozone production efficiency (OPE and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is

  16. Species identification and other data collected from visual observation and other data from AIRCRAFT in the North Pacific Ocean and Puget Sound from 30 November 1977 to 04 October 1978 (NODC Accession 7800394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Species identification and other data were collected using visual observation and other instruments from AIRCRAFT in the Puget Sound and North Pacific Ocean. Data...

  17. Climate Variability and Phytoplankton in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (pphytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  18. Environmental Effects on Mesozooplankton Size Structure and Export Flux at Station ALOHA, North Pacific Subtropical Gyre

    Science.gov (United States)

    Valencia, Bellineth; Décima, Moira; Landry, Michael R.

    2018-02-01

    Using size-fractionated mesozooplankton biomass data collected over 23 years (1994-2016) of increasing primary production (PP) at station ALOHA (A Long-Term Oligotrophic Habitat Assessment), we evaluate how changing environmental conditions affect mesozooplankton size structure, trophic cycling, and export fluxes in the subtropical North Pacific. From generalized additive model analysis, size structure is significantly influenced by a nonlinear relationship with sea surface temperature that is mainly driven by the strong 1997-1998 El Niño and a positive and linear relationship with PP. Increasing PP has more strongly enhanced the biomass of smaller (0.2-0.5 mm) and larger (>5 mm) mesozooplankton, increasing evenness of the biomass spectra, while animals of 2-5 mm, the major size class for vertically migrating mesozooplankton, show no long-term trend. Measured PP is sufficient to meet feeding requirements that satisfy mesozooplankton respiration and growth rates, as determined by commonly used empirical relationships based on animal size and temperature, consistent with a tightly coupled food web with one intermediate level for protistan consumers. Estimated fecal pellet production suggests an enhanced contribution of mesozooplankton to passive particle export relative to the material collected in 150 m sediment traps. In contrast, the biomass of vertically migrants does not vary systematically with PP due to the varying responses of the different size classes. These results illustrate some complexities in understanding how varying environmental conditions can affect carbon cycling and export processes at the community level in open-ocean oligotrophic systems, which need to be confirmed and better understood by process-oriented mechanistic study.

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-01-20 to 2004-02-06 (NODC Accession 0112210)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112210 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2007-01-17 to 2007-02-26 (NODC Accession 0112331)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112331 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...