WorldWideScience

Sample records for normal state magnetic

  1. Normal ground state of dense relativistic matter in a magnetic field

    International Nuclear Information System (INIS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.

    2011-01-01

    The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter Δ. In the chiral limit, the value of Δ determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the Δ parameter is that it is insensitive to temperature when T 0 , where μ 0 is the chemical potential, and increases with temperature for T>μ 0 . The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.

  2. Unusually large magnetic moments in the normal state and superconducting state of Sn nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chi-Hang; Lee, Chi-Hung; Hsu, Chien-Kang; Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Wu, Chun-Ming; Li, Wen-Hsien, E-mail: whli@phy.ncu.edu.tw [National Central University, Department of Physics and Center for Neutron Beam Applications (China)

    2013-09-15

    We report on the observations of spontaneous magnetic moments in the normal as well as in the superconducting states of a 9 nm Sn nanoparticle assembly, through X-ray diffraction, magnetization, ac magnetic susceptibility, and neutron diffraction measurements. The saturation magnetization reaches an unexpectedly large value of 1.04 emu/g at 5 K, with a temperature profile that can be described by Bloch's law with an exponent of b = 1.8. A magnetic moment of Left-Pointing-Angle-Bracket {mu}{sub Z} Right-Pointing-Angle-Bracket = 0.38 {mu}{sub B} develops after cooling from 260 to 4 K. Superconductivity develops below T{sub C} = 3.98 K, which is 7 % higher than the T{sub C} = 3.72 K of bulk Sn. Surprisingly, an addition magnetic moment of Left-Pointing-Angle-Bracket {mu}{sub Z} Right-Pointing-Angle-Bracket = 0.05 {mu}{sub B} develops upon entering the superconducting state.

  3. Normal state magnetic behavior of (U/sub 1-x/RE/sub x/)Be13 pseudobinaries

    International Nuclear Information System (INIS)

    Zirngiebl, E.; Thompson, J.D.; Smith, J.L.; Fisk, Z.

    1987-01-01

    Any impurity doping seems to modify the low temperature properties of UBe 13 in a way rather unusual compared to normal superconductors. So far, however, little attention has been paid to the modification of the normal state properties of impurity doped UB 13 . We have investigated the normal state magnetic behavior of impurity doped (U/sub 1-x/RE/sub x/)Be 13 pseudobinaries (RE = Th, Y, La, Lu, Sc) in the temperature range between 2 K and 380 K for impurity concentrations x ≤ 0.05 to see if there are correlations with T/sub c/(x)

  4. Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle

    Science.gov (United States)

    Sakhnini, Lama

    2003-05-01

    In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.

  5. Nuclear magnetic resonance imaging of the knee: examples of normal anatomy and pathology.

    Science.gov (United States)

    Kean, D M; Worthington, B S; Preston, B J; Roebuck, E J; McKim-Thomas, H; Hawkes, R C; Holland, G N; Moore, W S

    1983-06-01

    Nuclear magnetic resonance images of the knee were obtained from three normal volunteers and from two patients. The pathology included an osteosarcoma of the distal femur and a fracture of the tibia. Steady State Free Precession (SSFP) techniques were used with a 0.15 Tesla resistive type magnet. Normal anatomy was well displayed and the size of the osteosarcoma was accurately predicted. Using SSFP techniques, the blood in the knee joint was not visualised, but the underlying tibial fracture was clearly outlined.

  6. Normal state resistance and low temperature magnetoresistance of superconducting cables for accelerator magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.; Garber, M.; Ghosh, A.K.

    1988-01-01

    The normal state resistivity of the superconducting NbTi cable used in accelerator magnets is usually specified by the resistance per unit length at room temperature (295 K) and the residual resistance ratio (RRR). Using these resistance parameters, the amount of copper in the multifilamentary wire can be calculated. This method is consistent with the traditional etch and weigh technique, and as such is a alternative and convenient way of specifying the copper to superconductor ratio. In principle the magnetoresistance can be calculated from the RRR and the ''Kohler Plot'', for copper. In practice however, measurements of magnetoresistance for a wide variety of SSC inner cables show considerable disagreement with calculation. In this paper the magnetoresistance data on cables with RRR ranging from 50 to 175 are analyzed taking into account the conductor geometry and the effect of the small interfilamentary spacing on the resistivity of copper. 8 refs., 5 figs., 1 tab

  7. Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals

    Science.gov (United States)

    Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael

    2009-11-01

    The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)

  8. A semimetal model of the normal state magnetic susceptibility and transport properties of Ba(Fe1-xCox)2As2

    International Nuclear Information System (INIS)

    Sales, B.C.; McGuire, M.A.; Sefat, A.S.; Mandrus, D.

    2010-01-01

    A simple two-band 3D model of a semimetal is constructed to determine which normal state features of the Ba(Fe 1-x Co x ) 2 As 2 superconductors can be qualitatively understood within this framework. The model is able to account in a semiquantitative fashion for the measured magnetic susceptibility, Hall, and Seebeck data, and the low temperature Sommerfeld coefficient for 0 < x < 0.3 with only three parameters for all x. The purpose of the model is not to fit the data but to provide a simple starting point for thinking about the physics of these interesting materials. Although many of the static magnetic properties, such as the increase of the magnetic susceptibility with temperature, are reproduced by the model, none of the spin-fluctuation dynamics are addressed. A general conclusion from the model is that the magnetic susceptibility of most semimetals should increase with temperatures.

  9. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  10. Heat Capacity and Thermal Conductance Measurements of a Superconducting-Normal Mixed State by Detection of Single 3 eV Photons in a Magnetic Penetration Thermometer

    Science.gov (United States)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.

    2015-01-01

    We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.

  11. Magnetic dichroism in UV photoemission at off-normal emission: Study of the valence bands

    International Nuclear Information System (INIS)

    Venus, D.; Kuch, W.; Lin, M.; Schneider, C.M.; Ebert, H.; Kirschner, J.

    1997-01-01

    Magnetic dichroism of angle-resolved UV photoemission from fcc Co/Cu(001) thin films has been measured using linearly p-polarized light, and a coplanar geometry where the light and photoelectron wave vectors are antiparallel, and both are perpendicular to the in-plane sample magnetization. This geometry emphasizes information about state dispersion due to the crystalline symmetry. An orderly dispersion of the features in the magnetic dichroism over a wide range of off-normal angles of electron emission is related in detail to the bulk band structure of fcc Co. The measurements confirm the practical utility of magnetic dichroism experiments as a relatively simple complement to spin-resolved photoemission. copyright 1997 The American Physical Society

  12. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances

    Energy Technology Data Exchange (ETDEWEB)

    Arthurs, Owen J. [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); UCL Institute of Child Health, London (United Kingdom); Barber, Joy L. [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Taylor, Andrew M. [Cardiorespiratory Division, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London (United Kingdom); Sebire, Neil J. [UCL Institute of Child Health, London (United Kingdom); Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom)

    2015-04-01

    As postmortem imaging becomes more widely used following perinatal and paediatric deaths, the correct interpretation of images becomes imperative, particularly given the increased use of postmortem magnetic resonance imaging. Many pathological processes may have similar appearances in life and following death. A thorough knowledge of normal postmortem changes is therefore required within postmortem magnetic resonance imaging to ensure that these are not mistakenly interpreted as significant pathology. Similarly, some changes that are interpreted as pathological if they occur during life may be artefacts on postmortem magnetic resonance imaging that are of limited significance. This review serves to illustrate briefly those postmortem magnetic resonance imaging changes as part of the normal changes after death in fetuses and children, and highlight imaging findings that may confuse or mislead an observer to identifying pathology where none is present. (orig.)

  13. Metastable states in magnetic nanorings

    DEFF Research Database (Denmark)

    Castaño, F. J.; Ross, C. A.; Frandsen, Cathrine

    2003-01-01

    Magnetization states and hysteresis behavior of small ferromagnetic rings, of diameters 180-520 nm, have been investigated using magnetic force microscopy. In addition to the expected bi-domain ("onion") and flux-closed ("vortex") magnetization states, a metastable state has been found. This "twi......Magnetization states and hysteresis behavior of small ferromagnetic rings, of diameters 180-520 nm, have been investigated using magnetic force microscopy. In addition to the expected bi-domain ("onion") and flux-closed ("vortex") magnetization states, a metastable state has been found....... This "twisted" state contains a 360degrees domain wall which can exist over a wide range of applied fields. Four possible configurations of the twisted state are possible. Micromagnetic modeling shows that the twisted state is stabilised in small diameter, narrow rings. Additionally, more complex configurations...

  14. Superconducting and Normal State Properties of OsB2*

    Science.gov (United States)

    Singh, Yogesh; Niazi, A.; Zong, X.; Suh, B. J.; Vannette, M. W.; Prozorov, R.; Johnston, D. C.

    2007-03-01

    OsB2 is a layered superhard metallic material that was found to superconduct below Tc= 2.1 K.^1 We report the first detailed measurements of the static and dynamic magnetic susceptibilities χ, electrical resistivity, heat capacity Cp, penetration depth, and ^11B NMR on OsB2 to characterize its superconducting and normal state properties. The results confirm that OsB2 is a bulk superconductor below Tc= 2.1 K@. Its properties can be described by a close to weak-coupling s-wave BCS model with an electron-phonon coupling constant λ= 0.4--0.5, δ(0)/(kBTc) 1.9, a small Ginzburg-Landau parameter κ of order 5 or less, and a small zero-temperature critical magnetic field of roughly 500 Oe. The ^11B NMR measurements in the normal state show a nuclear spin-lattice relaxation time T1= 2.1 s at room temperature and a Korringa law with T1T = 610 s.K at lower T, and a correspondingly small T-independent Knight shift. These results indicate a small s character of the conduction electron wave function at the B site at the Fermi level. Our results will be compared to corresponding data for MgB2.1. J. K. Vandenberg et al., Mater. Res. Bull. 10, 889 (1975).^*Supported by the USDOE under Contract No. W-7405-Eng-82. Permanent address: Dept. Phys., The Catholic Univ. Korea.

  15. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  16. Investigation of linearity of the ITER outer vessel steady-state magnetic field sensors at high temperature

    Science.gov (United States)

    Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.

    2017-07-01

    Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.

  17. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, H. [Fermilab; Flora, B. [Fermilab; Wolff, D. [Fermilab

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  18. Magnetic properties of κ-(MDTTTF)2AuI2 salt in the normal and superconducting states

    International Nuclear Information System (INIS)

    Delhaes, P.; Amiell, J.; Flandrois, S.; Ducasse, L.; Fritsch, A.; Hilti, B.; Mayer, C.W.; Zambounis, J.; Papavassiliou, G.C.

    1990-01-01

    We have investigated the magnetic properties (ESR, static susceptibility and magnetization experiments) of the new organic superconductor κ-(MDTTTF) 2 AuI 2 above and below the SC phase transition temperature (T c ≥ 4 K). At ambient pressure the electronic structures of this salt and of two related compounds κ-(BEDT) 2 Cu(SCN) 2 and κ-(BEDT) 2 Ag(CN) 2 , H 2 O have been calculated using an extended Huckel method. The analysis of both experimental results and calculated data has led us to propose a unified picture independently of the present molecular blocks. Finally the problem of the competition between the SC and AF low-temperature states which is based on the experimental evidences of electronic correlations has been examined. However, in the absence of any experimental evidence of an AF state, the origin of the electron pairing is still unclear in these quasi 2d materials

  19. Modelling of Quench Limit for Steady State Heat Deposits in LHC Magnets

    CERN Document Server

    Bocian, D; Siemko, A

    2008-01-01

    A quench, the transition of a conductor from the superconducting to the normal conducting state, occurs irreversibly in the accelerator magnets if one of the three parameters: temperature, magnetic field or current density exceeds a critical value. Energy deposited in the superconductor by the particle beams provokes quenches detrimental for the accelerator operation. In particular if particles impacting on the vacuum chamber and their secondary showers depose energy in the magnet coils. The Large Hadron Collider (LHC) nominal beam intensity is 3.2 ldr 10^14 protons. A quench occurs if a fraction of the order of 10^7 protons per second is lost locally. A network model is used to simulate the thermodynamic behaviour of the magnets. The heat flow in the network model was validated with measurements performed in the CERN magnet test facility. A steady state heat flow was introduced in the coil by using the quench heaters implemented in the LHC magnets. The value of the heat source current is determined by the ne...

  20. Superconducting and normal-state properties of the layered boride OsB2

    Science.gov (United States)

    Singh, Yogesh; Niazi, A.; Vannette, M. D.; Prozorov, R.; Johnston, D. C.

    2007-12-01

    OsB2 crystallizes in an orthorhombic structure (Pmmn) which contains alternate boron and osmium layers stacked along the c axis. The boron layers consist of puckered hexagons as opposed to the flat graphite-like boron layers in MgB2 . OsB2 is reported to become superconducting below 2.1K . We report results of the dynamic and static magnetic susceptibilities, electrical resistivity, Hall effect, heat capacity, and penetration depth measurements on arc-melted polycrystalline samples of OsB2 to characterize its superconducting and normal-state properties. These measurements confirmed that OsB2 becomes a bulk superconductor below Tc=2.1K . Our results indicate that OsB2 is a moderate-coupling type-II superconductor with an electron-phonon coupling constant λep≈0.4-0.5 , a small Ginzburg-Landau parameter κ˜1-2 , and an upper critical magnetic field Hc2(0.5K)˜420Oe for an unannealed sample and Hc2(1K)˜330Oe for an annealed sample. The temperature dependence of the superfluid density ns(T) for the unannealed sample is consistent with an s -wave superconductor with a slightly enhanced zero temperature gap Δ(0)=1.9kBTc and a zero temperature London penetration depth λ(0)=0.38(2)μm . The ns(T) data for the annealed sample show deviations from the predictions of the single-band s -wave BCS model. The magnetic, transport, and thermal properties in the normal state of isostructural and isoelectronic RuB2 , which is reported to become superconducting below 1.6K , are also reported.

  1. Transport and magnetic resonance in normal and superfluid Fermi liquids

    International Nuclear Information System (INIS)

    Smith, H.

    1976-10-01

    This thesis provides a framework for a series of 19 papers published by the author in a study of transport and magnetic resonance in normal and superfluid Fermi liquids. The Boltzmann equation and methods for its solution are discussed. Electron-electron scattering in metals, with particular emphasis on alkali metals, is considered. Transport in a normal uncharged Fermi liquid such as pure 3 He at temperatures well below its degeneracy temperature of approximately 1 K or mixtures of 3 He in 4 He with degeneracy temperatures ranging typically from 100 to 200 mk is discussed with emphasis on comparison with experiments with the aim of testing models of the particle-particle scattering amplitude. Transport and magnetic resonance in superfluid 3 He is considered. The phenomenological treatment of relaxation is reviewed and the magnitude of the phenomenlogical relaxation time close to Tsub(c) is derived for the case of longitudinal resonance. Comments are made on non-linear magnetic resonance and textures and spin waves. (B.R.H.)

  2. Conductance of graphene based normal-superconductor junction with double magnetic barriers

    Science.gov (United States)

    Abdollahipour, B.; Mohebalipour, A.; Maleki, M. A.

    2018-05-01

    We study conductance of a graphene based normal metal-superconductor junction with two magnetic barriers. The magnetic barriers are induced via two applied magnetic fields with the same magnitudes and opposite directions accompanied by an applied electrostatic potential. We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation to calculate conductance of the junction. We find that applying the magnetic field leads to suppression of the Andreev reflection and conductance for all energies. On the other hand, we observe a crossover from oscillatory to tunneling behavior of the conductance as a function of the applied potential by increasing the magnetic field.

  3. Normal state Raman spectra of high-Tc cuprates

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2003-01-01

    We present a microscopic theory to explain Raman spectra of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green function technique of Zubarev at zero wave vector and finite (room) temperature limit. Parameter dependence of Raman active phonon frequencies are studied by varying model parameters of the system i.e. the position of f-level (ε f ), the effective electron-phonon coupling strength (g), the staggered magnetic field (h 1 ), and the hybridization parameter (v). The four Raman active peaks (P 1 to P 4 ) represent the electronic states of the atomic sub-systems of the cuprate systems. They show up as phonon excitations due to the coupling of the phonon to the electrons and the anti-ferromagnetic gap. (author)

  4. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  5. Combined tangential-normal vector elements for computing electric and magnetic fields

    International Nuclear Information System (INIS)

    Sachdev, S.; Cendes, Z.J.

    1993-01-01

    A direct method for computing electric and magnetic fields in two dimensions is developed. This method determines both the fields and fluxes directly from Maxwell's curl and divergence equations without introducing potential functions. This allows both the curl and the divergence of the field to be set independently in all elements. The technique is based on a new type of vector finite element that simultaneously interpolates to the tangential component of the electric or the magnetic field and the normal component of the electric or magnetic flux. Continuity conditions are imposed across element edges simply by setting like variables to be the same across element edges. This guarantees the continuity of the field and flux at the mid-point of each edge and that for all edges the average value of the tangential component of the field and of the normal component of the flux is identical

  6. Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Surzhikov, S. T., E-mail: surg@ipmnet.ru [Russian Academy of Sciences, Institute for Problems in Mechanics (Russian Federation)

    2017-03-15

    Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.

  7. Energy spectrum and density of states for a graphene quantum dot in a magnetic field

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J; Liu, S Y

    2010-01-01

    In this paper, we determine the spectrum and density of states of a graphene quantum dot in a normal quantizing magnetic field. To accomplish this, we employ the retarded Green function for a magnetized, infinite-sheet graphene layer to describe the dynamics of a tightly confined graphene quantum dot subject to Landau quantization. Considering a δ (2) (r) potential well that supports just one subband state in the well in the absence of a magnetic field, the effect of Landau quantization is to 'splinter' this single energy level into a proliferation of many Landau-quantized states within the well. Treating the graphene sheet and dot as a closed system subject to a fully Hermitian Hamiltonian (including boundary conditions), there is no indication of decay of the Landau-quantized graphene dot states into the quantized states of the host graphene sheet for 'tight' confinement by the δ (2) (r) potential well, notwithstanding extension of the dot Green function (and eigenfunctions) outside the δ (2) (r) potential well.

  8. Similarities between normal- and super-currents in topological insulator magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Chantngarm, Peerasak

    2010-01-01

    This work compares the normal-current in a NM/Fi/NM junction with the super-current in a SC/Fi/SC junction, where both are topological insulator systems. NM and Fi are normal region and ferromagnetic region of thickness d with exchange energy m playing a role of the mass of the Dirac electrons and with the gate voltage V G , respectively. SC is superconducting region induced by a s-wave superconductor. We show that, interestingly, the critical super-current passing through a SC/Fi/SC junction behaves quite similar to the normal-current passing through a NM/Fi/NM junction. The normal-current and super-current exhibit N-peak oscillation, found when currents are plotted as a function of the magnetic barrier strength χ ∼ md/hv F . With the barrier strength Z ∼ V G d/hv F , the number of peaks N is determined through the relation Z ∼ Nπ + σπ (with 0 < σ≤1 for χ < Z). The normal- and the super-currents also exhibit oscillating with the same height for all of peaks, corresponding to the Dirac fermion tunneling behavior. These anomalous oscillating currents due to the interplay between gate voltage and magnetic field in the barrier were not found in graphene-based NM/Fi/NM and SC/Fi/SC junctions. This is due to the different magnetic effect between the Dirac fermions in topological insulator and graphene.

  9. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  10. Use of magnets in medical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, A.

    1983-01-01

    In the Soviet Union magnetic fields were first applied successfully for medical purposes in the treatment of various diseases in the forties. Clinical-experimental research has established that a constant magnetic field and a low-frequency alternating magnetic field posses analgesic, antiedematous and antifebril action, decrease dystrophic processes, and increase blood circulation. An alternating magnetic field at a frequency of 50 cycles per second has a rhythm close to that of muscle nerve currents in the normal bodily state. Thus, in applying a 50-cycle magnetic field to organs and tissues as a specific stimulus we normalize the frequency of the current. By normalizing the electrical state of the tissues it is possible to normalize the general state of the organism as well. It is assumed that the magnetic field, like a tape-recorder heat, erases the pathological recording which has distorted or replaced the normal information characteristic of the cells. The range of magnetotherapy's therapeutic action is very broad: it includes cardiovascular diseases, hypertension, skin diseases, obliterating endarteritis, disturbances of peripheral blood circulation, diseases of the digestive organs, diseases of the musculoskeletal apparatus, osteochondrosis, radiculitis, and many others.

  11. Magnetic properties of the charged Anderson-Brinkman-Morel state: Absence of Hc1

    International Nuclear Information System (INIS)

    Kita, T.

    1991-01-01

    Magnetic properties of the charged Anderson-Brinkman-Morel state are investigated theoretically as a special case of time-reversal-symmetry-breaking superconductivity. The magnetic field is expressed as a superposition of the one from the supercurrent j s (r) and that from the magnetic moment l(r) due to the internal motion of each Cooper pair. This procedure enables us to get rid of the paradox in zero external field that the moments are ordered (l=const) with no magnetic field nor supercurrent, leading to a natural conclusion that there is indeed a field due to l(r) which is screened almost completely by j s (r). If the system size is large enough compared with the penetration depth, the direction l(r) changes gradually toward the surface and the current j s (r) flows over the bulk. This means that the system is essentially nonuniform and forms a coreless vortex in zero external field. As for the magnetization process, the lattice of coreless vortices grows from the infinitesimal external field without H c1 (i.e., no Meissner state), which is subsequently followed by the first-order transition to the lattice with cores. Finally, the transition to the normal state occurs at H c2 enhanced over that of the conventional type-II superconductor due to the field l. An example of the magnetization curve is also given

  12. Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction

    International Nuclear Information System (INIS)

    Tian Hong-Yu; Wang Jun

    2012-01-01

    We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions. The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon. It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived, the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG, while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect, in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations. Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Coherent states of a particle in a magnetic field and the Stieltjes moment problem

    International Nuclear Information System (INIS)

    Gazeau, J.P.; Baldiotti, M.C.; Gitman, D.M.

    2009-01-01

    A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.

  14. Coherent states of a particle in a magnetic field and the Stieltjes moment problem

    Energy Technology Data Exchange (ETDEWEB)

    Gazeau, J.P. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gazeau@apc.univ-paris7.fr; Baldiotti, M.C. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: baldiott@fma.if.usp.br; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gitman@dfn.if.usp.br

    2009-05-11

    A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.

  15. Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy

    Science.gov (United States)

    Kanazawa, N.; White, J. S.; Rønnow, H. M.; Dewhurst, C. D.; Morikawa, D.; Shibata, K.; Arima, T.; Kagawa, F.; Tsukazaki, A.; Kozuka, Y.; Ichikawa, M.; Kawasaki, M.; Tokura, Y.

    2017-12-01

    We report the engineering of spin-hedgehog crystals in thin films of the chiral magnet MnGe by tailoring the magnetic anisotropy. As evidenced by neutron scattering on films with different thicknesses and by varying a magnetic field, we can realize continuously deformable spin-hedgehog crystals, each of which is described as a superposition state of a different set of three spin spirals (a triple-q state). The directions of the three propagation vectors q vary systematically, gathering from the three orthogonal 〈100 〉 directions towards the film normal as the strength of the uniaxial magnetic anisotropy and/or the magnetic field applied along the film normal increase. The formation of triple-q states coincides with the onset of topological Hall signals, that are ascribed to skew scattering by an emergent magnetic field originating in the nontrivial topology of spin hedgehogs. These findings highlight how nanoengineering of chiral magnets makes possible the rational design of unique topological spin textures.

  16. Computed tomography and magnetic resonance imaging of the normal equine carpus

    International Nuclear Information System (INIS)

    Kaser-Hotz, B.; Sartoretti-Schefer, S.; Weiss, R.

    1994-01-01

    A normal equine carpus was used for computed tomography and magnetic resonance imaging. The structures outlined were identified and described. The two techniques were compared. This anatomic description could be helpful as a basis for clinical exams

  17. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  18. Magnetization transfer ratio relates to cognitive impairment in normal elderly

    Directory of Open Access Journals (Sweden)

    Stephan eSeiler

    2014-09-01

    Full Text Available Magnetization transfer imaging (MTI can detect microstructural brain tissue changes and may be helpful in determining age-related cerebral damage. We investigated the association between the magnetization transfer ratio (MTR in gray and white matter and cognitive functioning in 355 participants of the Austrian Stroke Prevention Family Study (ASPS-Fam aged 38 to 86 years. MTR maps were generated for the neocortex, deep gray matter structures, white matter hyperintensities, and normal appearing white matter. Adjusted mixed models determined whole brain and lobar cortical MTR to be directly and significantly related to performance on tests of memory, executive function and motor skills. There existed an almost linear dose-effect relationship. MTR of deep gray matter structures and normal appearing white matter correlated to executive functioning. All associations were independent of demographics, vascular risk factors, focal brain lesions and cortex volume.Further research is needed to understand the basis of this association at the tissue level, and to determine the role of MTR in predicting cognitive decline and dementia.

  19. Oscillations of the energy, magnetic moment, and current with a period equal to the normal or superconducting flux quantum in cyclic systems

    International Nuclear Information System (INIS)

    Svirskii, M.S.

    1985-01-01

    Oscillations with a period equal to the normal or superconducting flux quantum occur in the current density and the orbital parts of the energy and the magnetic moment in cyclic systems. Transitions between these regimes can be induced by changing the number of electrons or by switching between states with different energies

  20. Magnetic resonance imaging of the spinal marrow: Basic understanding of the normal marrow pattern and its variant

    Science.gov (United States)

    Nouh, Mohamed Ragab; Eid, Ahmed Fathi

    2015-01-01

    For now, magnetic resonance (MR) is the best noninvasive imaging modality to evaluate vertebral bone marrow thanks to its inherent soft-tissue contrast and non-ionizing nature. A daily challenging scenario for every radiologist interpreting MR of the vertebral column is discerning the diseased from normal marrow. This requires the radiologist to be acquainted with the used MR techniques to judge the spinal marrow as well as its normal MR variants. Conventional sequences used basically to image marrow include T1W, fat-suppressed T2W and short tau inversion recovery (STIR) imaging provides gross morphological data. Interestingly, using non-routine MR sequences; such as opposed phase, diffusion weighted, MR spectroscopy and contrasted-enhanced imaging; may elucidate the nature of bone marrow heterogeneities; by inferring cellular and chemical composition; and adding new functional prospects. Recalling the normal composition of bone marrow elements and the physiologic processes of spinal marrow conversion and reconversion eases basic understanding of spinal marrow imaging. Additionally, orientation with some common variants seen during spinal marrow MR imaging as hemangiomas and bone islands is a must. Moreover, awareness of the age-associated bone marrow changes as well as changes accompanying different variations of the subject’s health state is essential for radiologists to avoid overrating normal MR marrow patterns as pathologic states and metigate unnecessary further work-up. PMID:26753060

  1. Magnetic resonance imaging of the normal and abnormal pulmonary hila

    International Nuclear Information System (INIS)

    Webb, W.R.; Gamsu, G.; Stark, D.D.; Moore, E.H.

    1984-01-01

    Magnetic resonance (MR) images of the hila were reviewed in 25 normal subjects and 12 patients with unilateral or bilateral hilar masses. On spin echo MR images in normal patients, collections of soft tissue large enough to be confused with an abnormally enlarged lymph node were seen in three locations. In patients with a hilar mass, the mass was differentiated from hilar vasculature more easily using MR than contrast-enhanced CT. However, because the spatial resolution of MR is inferior to that of CT, bronchi were difficult to evaulate using MR. Electrocardiographic-gated images showed better resolution of hilar structures but may not be necessary for large masses

  2. Green's functions for a graphene sheet and quantum dot in a normal magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Liu, S Y

    2009-01-01

    This paper is concerned with the derivation of the retarded Green's function for a two-dimensional graphene layer in a perpendicular magnetic field in two explicit, analytic forms, which we employ in obtaining a closed-form solution for the Green's function of a tightly confined magnetized graphene quantum dot. The dot is represented by a δ (2) (r)-potential well and the system is subject to Landau quantization in the normal magnetic field

  3. Normalized Excited Squeezed Vacuum State and Its Applications

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Liang Baolong

    2007-01-01

    By using the intermediate coordinate-momentum representation in quantum optics and generating function for the normalization of the excited squeezed vacuum state (ESVS), the normalized ESVS is obtained. We find that its normalization constants obtained via two new methods are uniform and a new form which is different from the result obtained by Zhang and Fan [Phys. Lett. A 165 (1992) 14]. By virtue of the normalization constant of the ESVS and the intermediate coordinate-momentum representation, the tomogram of the normalized ESVS and some useful formulae are derived.

  4. Investigation of the chain of 5T full-scale superconducting magnets

    International Nuclear Information System (INIS)

    Ageev, A.I.; Aleksandrov, G.M.; Aleksandrov, A.G.

    1987-01-01

    Bench investigations of the chain of dipoles with warm magnetic screen, connected in series, are being conducted in the framework of the IHEP program of the UNK superconducting magnet simulation. At the given stage conditions of accidental magnet transition to the normal state are being investigated. The study of processes of propagation of the normal phase, temperature fields and pressure growth dynamics, processes of energy and helium evacuation from magnet chain is given. Results of measuring electric and nonstationary processes in the chain during transition of one of superconducting magnets to the normal state are presented

  5. Magnetic resonance imaging of normal pituitary gland

    International Nuclear Information System (INIS)

    Yamanaka, Masami; Uozumi, Tohru; Sakoda, Katsuaki; Ohta, Masahiro; Kagawa, Yoshihiro; Kajima, Toshio.

    1986-01-01

    Magnetic resonance imaging (MRI) is a suitable procedure for diagnosing such midline-positioned lesions as pituitary adenomas. To differentiate them from microadenomas fifty-seven cases (9 - 74 years old, 29 men and 28 women), including 50 patients without any sellar or parasellar diseases and seven normal volunteers, were studied in order to clarify the MR findings of the shape, height, and signal intensity of the normal pituitary gland, especially at the median sagittal section. The height of a normal pituitary gland varied from 2 to 9 mm (mean: 5.7 mm); the upper surface of the gland was convex in 19.3 %, flat in 49.1 %, and concave in 31.6 %. The mean height of the gland in women in their twenties was 7.5 mm, and the upper convex shape appeared exclusively in women of the second to fourth decades. Nine intrasellar pituitary adenomas (PRL-secreting: 4, GH-secreting: 4, ACTH-secreting: 1), all verified by surgery, were diagnosed using a resistive MR system. The heights of the gland in these cases were from 7 to 15 mm (mean: 11.3 mm); the upper surface was convex in 7 cases. A localized bulging of the upper surface of the gland and a localized depression of the sellar floor were depicted on the coronal and sagittal sections in most cases. Although the GH- and ACTH-secreting adenoma cases showed homogeneous intrasellar contents, in all the PRL-secreting adenoma cases a low-signal-intensity area was detected in the IR images. The mean T1 values of the intrasellar content of the normal volunteers, the PRL-, GH-, and ACTH-secreting adenoma cases, were 367, 416, 355, and 411 ms respectively. However, in the PRL-secreting adenoma cases, the mean T1 value of the areas showing a low signal intensity on IR images was 455 ms; this was a significant prolongation in comparison with that of a normal pituitary gland. (J.P.N.)

  6. How to manipulate magnetic states of antiferromagnets

    Science.gov (United States)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  7. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  8. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  9. Geochemical normalization of magnetic susceptibility for investigation of floodplain sediments

    Czech Academy of Sciences Publication Activity Database

    Faměra, Martin; Matys Grygar, Tomáš; Elznicová, J.; Grison, Hana

    2018-01-01

    Roč. 77, č. 5 (2018), č. článku 189. ISSN 1866-6280 R&D Projects: GA ČR(CZ) GA15-00340S Institutional support: RVO:61388980 ; RVO:67985530 Keywords : Background functions * Geochemical normalization * Mass-specific magnetic susceptibility * Post-depositional processes * Provenance Subject RIV: DD - Geochemistry OBOR OECD: Environmental sciences (social aspects to be 5.7); Geology (GFU-E) Impact factor: 1.569, year: 2016

  10. Normal-state Nernst effect of a high-critical-temperature superconductor

    International Nuclear Information System (INIS)

    Lambrecht, S.; Ausloos, M.

    1996-01-01

    We have analyzed the data of Clayhold et al. for the Nernst effect in the normal state of a high critical superconductor, i.e., Tl 2 Ba 2 CaCu 2 O 8+δ . This requested to derive a kinetic expression for the Nernst effect, an expression able to take into account inelastic scattering and magnetic-field dependence. This was done along a relaxation time formalism for the solution of the Boltzmann equation but leaving a background term which can be calculated by the most appropriate method. The final calculation leads to the evaluation of the background term resulting from the thermoelectric field-free effect. In order to do this we have considered a model of Livanov and Sergeev. The Nernst effect is explained by a simple two band model for electrons and holes with different mobilities. The resulting fit to the experimental data looks rather convincing. Several predictions are made thereafter. copyright 1996 The American Physical Society

  11. Magnetization transfer on T2-weighted image : magnetization Transfer ratios in normal brain and cerebral lesions

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Myung Kwan; Roh, Hong Gee; Suh, Chang Hae; Cho, Young Kook; Kim, Hyung Jin; Kim, Jin Hee; Kim, Sung Tae; Choi, Sung Kyu [Inha Univ. College of Medicine, Incheon (Korea, Republic of)

    1998-07-01

    To evaluate the magnetization transfer ratio(MTR) of various normal structures and pathologic lesions, as seen on magnetization transfer T2-weighted images (MT+T2WI). Materials and Methods : In ten normal volunteers, T2-weighted images without MT (MT-T2WI) and with MT(MT+T2WI) were obtained. Off-set pulses used in MT+T2WI were 400, 600, 1000, 1500, and 2000Hz. In 60 clinical cases infarction(n=10), brain tumors(n=5), traumatic hematomas(n=5), other hematomas(n=3) vascular malformation(n=2) white matter disease(n=2) normal(n=31) and others(n=2), both MT-T2WI and MT+T2WI images were obtained using an off-set pulse of 600 Hz. In all volunteers and patients, MTR in various normal brain parenchyma and abnormal areas was measured. Results : The MTRs of white and gray matter were 48% and 45% respectively at 400 Hz, 26% and 22% at 600Hz, 12% and 11% of 1000Hz, 10% and 9% 1500HZ, and 9% and 8% at 2000Hz of RF. The MTR of CSF was 43% at 400 Hz of off-resonance RF, while the contrast resolution of T2WI was poor. An off-resonance of 600Hz appeared to be the optimal frequency. In diseased areas,MTRs varied but were usually similar to or lower than those of brain parenchyma. Conclusion : The optimal off-resonance RF on MT+T2WI appears to be 600 Hz for relatively high MTR of brain parenchyma and low MTR of CSF,in which MTRs of white and gray matter were 26% and 22%, respectively, of 600Hz off-set pulse. The MTRs of cerebral lesions varied and further studies of various cerebral lesions are needed.

  12. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  13. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...

  14. Exotic magnetic states in Pauli-limited superconductors.

    Science.gov (United States)

    Kenzelmann, M

    2017-03-01

    Magnetism and superconductivity compete or interact in complex and intricate ways. Here we review the special case where novel magnetic phenomena appear due to superconductivity, but do not exist without it. Such states have recently been identified in unconventional superconductors. They are different from the mere coexistence of magnetic order and superconductivity in conventional superconductors, or from competing magnetic and superconducting phases in many materials. We describe the recent progress in the study of such exotic magnetic phases, and articulate the many open questions in this field.

  15. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    Science.gov (United States)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  16. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  17. Magnetization Controlled Superconductivity in a Film with Magnetic Dots

    International Nuclear Information System (INIS)

    Lyuksyutov, I.F.; Pokrovsky, V.; Pokrovsky, V.

    1998-01-01

    We consider a superconducting film with a magnetic dots array (MDA) placed upon it. Magnetic moments of the dots are normal to the film and strong enough to create vortices in the superconducting film. Magnetic interaction between dots is negligible. Zero-field cooling leads to random magnetization of the MDA well above the superconducting temperature. With this cooling, the film is in a resistive state below the (expected) superconducting transition. Paradoxically, when field cooled, the film with MDA can be superconducting. copyright 1998 The American Physical Society

  18. Magnetized color flavor locked state and compact stars

    CERN Document Server

    Felipe, R Gonzalez; Martinez, A Perez

    2010-01-01

    The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.

  19. Amygdala Volumetry in Patients with Temporal Lobe Epilepsy and Normal Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Singh, Paramdeep; Kaur, Rupinderjeet; Saggar, Kavita; Singh, Gagandeep; Aggarwal, Simmi

    2016-01-01

    It has been suggested that the pathophysiology of temporal lobe epilepsy may relate to abnormalities in various brain structures, including the amygdala. Patients with mesial temporal lobe epilepsy (MTLE) without MRI abnormalities (MTLE-NMRI) represent a challenge for diagnosis of the underlying abnormality and for presurgical evaluation. To date, however, only few studies have used quantitative structural Magnetic Resonance Imaging-based techniques to examine amygdalar pathology in these patients. Based on clinical examination, 24-hour video EEG recordings and MRI findings, 50 patients with EEG lateralized TLE and normal structural Magnetic Resonance Imaging results were included in this study. Volumetric magnetic resonance imaging (MRI) studies of the amygdalas and hippocampi were conducted in 50 non-epileptic controls (age 7–79 years) and 50 patients with MTLE with normal MRI on a 1.5-Tesla scanner. Visual assessment and amygdalar volumetry were performed on oblique coronal T2W and T1W MP-RAGE images respectively. The T2 relaxation times were measured using the 16-echo Carr-Purcell-Meiboom-Gill sequence (TE, 22–352). Volumetric data were normalized for variation in head size between individuals. Results were assessed by SSPS statistic program. Individual manual volumetric analysis confirmed statistically significant amygdala enlargement (AE) in eight (16%) patients. Overall, among all patients with AE and a defined epileptic focus, 7 had predominant increased volume ipsilateral to the epileptic focus. The T2 relaxometry demonstrated no hyperintense signal of the amygdala in any patient with significant AE. This paper presented AE in a few patients with TLE and normal MRI. These findings support the hypothesis that there might be a subgroup of patients with MTLE-NMRI in which the enlarged amygdala could be related to the epileptogenic process

  20. Amygdala Volumetry in Patients with Temporal Lobe Epilepsy and Normal Magnetic Resonance Imaging

    Science.gov (United States)

    Singh, Paramdeep; Kaur, Rupinderjeet; Saggar, Kavita; Singh, Gagandeep; Aggarwal, Simmi

    2016-01-01

    Summary Background It has been suggested that the pathophysiology of temporal lobe epilepsy may relate to abnormalities in various brain structures, including the amygdala. Patients with mesial temporal lobe epilepsy (MTLE) without MRI abnormalities (MTLE-NMRI) represent a challenge for diagnosis of the underlying abnormality and for presurgical evaluation. To date, however, only few studies have used quantitative structural Magnetic Resonance Imaging-based techniques to examine amygdalar pathology in these patients. Material/Methods Based on clinical examination, 24-hour video EEG recordings and MRI findings, 50 patients with EEG lateralized TLE and normal structural Magnetic Resonance Imaging results were included in this study. Volumetric magnetic resonance imaging (MRI) studies of the amygdalas and hippocampi were conducted in 50 non-epileptic controls (age 7–79 years) and 50 patients with MTLE with normal MRI on a 1.5-Tesla scanner. Visual assessment and amygdalar volumetry were performed on oblique coronal T2W and T1W MP-RAGE images respectively. The T2 relaxation times were measured using the 16-echo Carr-Purcell-Meiboom-Gill sequence (TE, 22–352). Volumetric data were normalized for variation in head size between individuals. Results were assessed by SSPS statistic program. Results Individual manual volumetric analysis confirmed statistically significant amygdala enlargement (AE) in eight (16%) patients. Overall, among all patients with AE and a defined epileptic focus, 7 had predominant increased volume ipsilateral to the epileptic focus. The T2 relaxometry demonstrated no hyperintense signal of the amygdala in any patient with significant AE. Conclusions This paper presented AE in a few patients with TLE and normal MRI. These findings support the hypothesis that there might be a subgroup of patients with MTLE-NMRI in which the enlarged amygdala could be related to the epileptogenic process. PMID:27231493

  1. Vibrating sample magnetometer 2D and 3D magnetization effects associated with different initial magnetization states

    Directory of Open Access Journals (Sweden)

    Ronald E. Lukins

    2017-05-01

    Full Text Available Differences in VSM magnetization vector rotation associated with various initial magnetization states were demonstrated. Procedures and criteria were developed to select sample orientation and initial magnetization states to allow for the combination of two different 2D measurements runs (with the same field profiles to generate a dataset that can be representative of actual 3D magnetization rotation. Nickel, cast iron, and low moment magnetic tape media were used to demonstrate these effects using hysteresis and remanent magnetization test sequences. These results can be used to generate 2D and 3D magnetic properties to better characterize magnetic phenomena which are inherently three dimensional. Example applications are magnetic tape-head orientation sensitivity, reinterpretation of 3D coercivity and other standard magnetic properties, and multi-dimensional shielding effectiveness.

  2. Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, F.J., E-mail: fbonilla@cicenergigune.com; Lacroix, L.-M.; Blon, T., E-mail: thomas.blon@insa-toulouse.fr

    2017-04-15

    Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain/multidomain size range (10–50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on (i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion <12%) made of (ii) a material which combines a zero or positive MCA and a high saturation magnetization, such as Fe or FeCo; and (iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states. - Highlights: • The <111> vortex is numerically determined in nanocubes of cubic anisotropy. • It constitutes an intermediate state in the single-domain limit. • Such a vortex can only be stabilized in perfect or slightly deformed nanocuboids. • It exists in nanocuboids made of materials with zero or positive cubic anisotropy. • The associated magnetization reversal is described by a rotation of the vortex axis.

  3. Excited eigenmodes in magnetic vortex states of soft magnetic half-spheres and spherical caps

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myoung-Woo; Lee, Jae-Hyeok; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr [National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-12-14

    We studied the magnetization dynamics of excitation modes in special geometrical confinements of soft magnetic half-spheres and spherical caps in magnetic vortex states using finite-element micromagnetic numerical calculations. We found additional fine features of the zeroth- and first-order gyrotropic modes and asymmetric m = +1 and m = −1 azimuthal spin-wave modes, which detailed information is unobtainable from two-dimensional mesh-cell based numerical calculations. Moreover, we examined the perpendicular bias field dependence of the excited eigenmodes, which data provide for an efficient means of control over the excited modes. Such numerical calculations offer additional details or new underlying physics on dynamic features in arbitrary-shape magnetic nano-elements such as half-spheres and spherical caps in magnetic vortex states.

  4. Magnetic resonance imaging in patients with unstable angina: comparison with acute myocardial infarction and normals

    International Nuclear Information System (INIS)

    Ahmad, M.; Johnson, R.F. Jr.; Fawcett, H.D.; Schreiber, M.H.

    1988-01-01

    The role of magnetic resonance imaging in characterizing normal, ischemic and infarcted segments of myocardium was examined in 8 patients with unstable angina, 11 patients with acute myocardial infarction, and 7 patients with stable angina. Eleven normal volunteers were imaged for comparison. Myocardial segments in short axis magnetic resonance images were classified as normal or abnormal on the basis of perfusion changes observed in thallium-201 images in 22 patients and according to the electrocariographic localization of infarction in 4 patients. T2 relaxation time was measured in 57 myocardial segments with abnormal perfusion (24 with reversible and 33 with irreversible perfusion changes) and in 25 normally perfused segments. T2 measurements in normally perfused segments of patients with acute myocardial infarction, unstable angina and stable angina were within normal range derived from T2 measurements in 48 myocardial segments of 11 normal volunteers (42 +/- 10 ms). T2 in abnormal myocardial segments of patients with stable angina also was not significantly different from normal. T2 of abnormal segments in patients with unstable angina (64 +/- 14 in reversibly ischemic and 67 +/- 21 in the irreversibly ischemic segments) was prolonged when compared to normal (p less than 0.0001) and was not significantly different from T2 in abnormal segments of patients with acute myocardial infarction (62 +/- 18 for reversibly and 66 +/- 11 for irreversibly ischemic segments). The data indicate that T2 prolongation is not specific for acute myocardial infarction and may be observed in abnormally perfused segments of patients with unstable angina

  5. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  6. Supersolid-like magnetic states in a mixed honeycomb-triangular lattice system.

    Science.gov (United States)

    Garlea, Ovidiu

    Field-induced magnetic states that occur in layered triangular antiferromagnets have been of broad interest due to the emergence of new exotic phases, such as topologically ordered states and supersolids. Experimental realization of the supersolid states where spin components break simultaneously the translational and rotational symmetries remains scarce. In this context, the mixed vanadate -carbonate K2Mn3(VO4)2CO3 is a very promising system. This compound contains two types of two-dimensional layers alternately stacked along the crystallographic c-axis: one layer consists of a honeycomb web structure made of edge sharing MnO6 octahedra, while the other consists of MnO5 trigonal bipyramids linked by [CO3] triangles to form a triangular magnetic lattice. Magnetization and heat capacity measurements reveal a complex magnetic phase diagram that includes three phase transition associated with sequential long range magnetic ordering of the different sublattices. The lowest temperature state resembles a supersolid state that was predicted to occur in two-dimensional frustrated magnet with easy axis anisotropy. Such a supersolid phase is defined by a commensurate √3× √3 magnetic superlattice, where two thirds of the spins are canted away from the easy axis direction. Applied magnetic field destabilizes this ordered state and induces a cascade of new exotic magnetic ground states. The nature of these field-induced magnetic states is evaluated by using neutron scattering techniques. Work at the Oak Ridge National Laboratory was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division and Materials Sciences and Engineering Division.

  7. Stress analysis of superconducting magnets for magnetic fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility (ETF).

  8. Stress analysis of superconducting magnets for magnetic fusion reactors

    International Nuclear Information System (INIS)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility

  9. Influence of magnetic impurities on charge transport in diffusive-normal-metal/superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.

    2005-01-01

    Charge transport in the diffusive normal metal (DN)/insulator/s- and d-wave superconductor junctions is studied in the presence of magnetic impurities in DN in the framework of the quasiclassical Usadel equations with the generalized boundary conditions. The cases of s- and d-wave superconducting

  10. Magnetic Field Effects on Pure-state and Thermal Entanglement of Anisotropic Magnetic Nanodots

    Science.gov (United States)

    Istomin, Andrei Y.

    2005-05-01

    Anisotropic magnetic nanodots have recently been proposed as promising candidates for qubits for scalable quantum computing [1,2]. The main advantages of such magnetic qubits are their well-separated energy levels (which may allow operation at temperature of the order of a few K), nanometer size (which simplifies fabrication), and large spin values (which facilitates measurement of qubit states). The entanglement properties of eigenstates of a pair of Heisenberg-interacting nanodots have been analyzed in [2], where we have shown that ferromagnetic (FM) coupling produces two significantly entangled excited states. Here we investigate the magnetic field effects on the entanglement of these and other states. We show that entanglement of excited FM eigenstates of two non-identical nanodots can be tuned to its maximum value by applying a relatively weak non-uniform magnetic field. [1] J. Tejada, E.M. Chudnovsky, E. del Barco, J.M. Hernandez, and T.P. Spiller, Nanotechnology 12, 181 (2001). [2] R. Skomski, A.Y. Istomin, A.F. Starace, and D.J. Sellmyer, Phys. Rev. A 70, 062307 (2004).

  11. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  12. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  13. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake.

    Science.gov (United States)

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B

    2016-11-01

    In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m - 2 ) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m - 2 ), both before and 30 min after consumption of a standardized meal (~260 kcal). Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (Pfood intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (Pfood intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.

  14. Magnetic resonance imaging of the normal female pelvis

    International Nuclear Information System (INIS)

    Snoep, G.; Engelshoven, J.M.A. van; Willebrand, D.; Haan, J. de; Falke, T.H.M.; Ziedses des Plantes, B.G. Jr.

    1985-01-01

    9 healthy volunteers were examined by magnetic resonance imaging in order to describe the anatomy of the normal female genital tract as seen by this technique. The visualization of the bony and pelvic skeleton and the muscles surrounding these structures is excellent. Due to high contrast resolution relatively small structures like the femoral blood vessels can be positively identified. Imaging of the small bowel is disappointing. Visualization of the rectum and sigmoid colon is relatively good. In the uterine wall three distinct layers can be identified. An interpretation of the origin of these layers based on comparison with macroscopic and microscopic examination of sections of uterine tissue is given. Further research is needed to demonstrate possible cyclic changes in the appearance of the uterus. The ovaries could not be identified with certainty. (Auth.)

  15. Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Visschere, Pieter J.L. de; Pattyn, Eva; Villeirs, Geert M. [Ghent University Hospital, Department of Radiology, Ghent (Belgium); Vral, Anne [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); Perletti, Gianpaolo [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); University of Insubria, Clinical Pharmacology, Medical and Surgical Sciences Section, Department of Biotechnology and Life Sciences, Varese (Italy); Praet, Marleen [Ghent University Hospital, Department of Pathology, Ghent (Belgium); Magri, Vittorio [Instituti Clinici di Perfezionamento, Urology Clinic, Milano (Italy)

    2017-05-15

    To identify the multiparametric magnetic resonance imaging (mpMRI) characteristics of normal, benign and malignant conditions in the prostate. Fifty-six histopathological whole-mount radical prostatectomy specimens from ten randomly selected patients with prostate cancer (PC) were matched with corresponding transverse mpMRI slices. The mpMRI was performed prior to biopsy and consisted of T2-weighted imaging (T2-WI), diffusion-weighted imaging (DWI), dynamic contrast-enhanced imaging (DCE) and magnetic resonance spectroscopic imaging (MRSI). In each prostate specimen, a wide range of histopathological conditions were observed. They showed consistent but overlapping characteristics on mpMRI. Normal glands in the transition zone showed lower signal intensity (SI) on T2-WI, lower ADC values and lower citrate peaks on MRSI as compared to the peripheral zone (PZ) due to sparser glandular elements and more prominent collagenous fibres. In the PZ, normal glands were iso-intense on T2-WI, while high SI areas represented cystic atrophy. Mimickers of well-differentiated PC on mpMRI were inflammation, adenosis, HG-PIN and post-atrophic hyperplasia. Each prostate is a unique mix of normal, benign and/or malignant areas that vary in extent and distribution resulting in very heterogeneous characteristics on mpMRI. Understanding the main concepts of this mpMRI-histopathological correlation may increase the diagnostic confidence in reporting mpMRI. (orig.)

  16. Defect induced electronic states and magnetism in ball-milled graphite.

    Science.gov (United States)

    Milev, Adriyan; Dissanayake, D M A S; Kannangara, G S K; Kumarasinghe, A R

    2013-10-14

    The electronic structure and magnetism of nanocrystalline graphite prepared by ball milling of graphite in an inert atmosphere have been investigated using valence band spectroscopy (VB), core level near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and magnetic measurements as a function of the milling time. The NEXAFS spectroscopy of graphite milled for 30 hours shows simultaneous evolution of new states at ~284.0 eV and at ~290.5 eV superimposed upon the characteristic transitions at 285.4 eV and 291.6 eV, respectively. The modulation of the density of states is explained by evolution of discontinuities within the sheets and along the fracture lines in the milled graphite. The magnetic measurements in the temperature interval 2-300-2 K at constant magnetic field strength show a correlation between magnetic properties and evolution of the new electronic states. With the reduction of the crystallite sizes of the graphite fragments, the milled material progressively changes its magnetic properties from diamagnetic to paramagnetic with contributions from both Pauli and Curie paramagnetism due to the evolution of new states at ~284 and ~290.5 eV, respectively. These results indicate that the magnetic behaviour of ball-milled graphite can be manipulated by changing the milling conditions.

  17. Magnetic properties of the charged Anderson-Brinkman-Morel state: Absence of Hc1

    International Nuclear Information System (INIS)

    Kita, T.

    1992-01-01

    Magnetic properties of the charged Anderson-Brinkman-Morel (ABM) state are investigated theoretically as a special case of time-reversal-symmetry-breaking (T-symmetry breaking) superconductivity, the possibility of which is discussed in heavy-fermion and high T c superconductors. In the ABM state there are two sources of current: The one from the supercurrent j s (r) and that from the moment l(r) due to the internal motion of Cooper pairs. In zero external field, the field h m (r) from l(r) is screened almost completely by j s (r), as expected, with l(r) changing gradually towards the surface and j s (r) flowing over the bulk. This means changing gradually towards the surface and j s (r) flowing over the bulk. This means that the system as a whole is a nonsingular vortex. As for the magnetization process, the lattice of nonsingular vortices grows from the infinitesimal external field without H c1 , subsequently followed by the first-order transition to the lattice with singular cores. Finally, the transition to the normal state occurs at H c2 which is enhanced over that of the conventional type-II superconductor due to the field l. (orig.)

  18. Magnetic properties of anyonic systems in a normal phase

    International Nuclear Information System (INIS)

    Aronov, I.E.; Naftulin, S.A.

    1992-08-01

    We apply the concept of fractional statistics to the two-dimensional conductors. The effective Lagrangian of an external magnetic field in anyon medium at finite temperature and density is presented. The diamagnetic response to the external field is studied at temperatures above T c (i.e. in the normal phase) for various values of external parameters. Oscillations of both thermodynamic (the de Haas - van Alphen effect) and kinetic (the Shubnikov - de Haas effect) quantities are re-examined. Numerous peculiarities arise from the fact that anyon systems possess a non-zero ''statistical'' flux Φ (which is known to be a manifestation of the spontaneous parity breakdown). The cyclotron resonance is suggested as a direct test on possible parity violation (which is the key point of anyonics). The cyclotron mass dependences on external parameters reported in a series of experimental articles (H. Kublbeck and J.P. Kotthaus, Phys. Rev. Lett. 35, 1019 (1975); G. Abstreiter, J.P. Kotthaus, J.F. Koch and G. Dorda, Phys. Rev. B14, 2480 (1976)) may be attributed to an unusual behaviour or magnetic permeability in anyon medium. (author). 20 refs, 2 figs

  19. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  20. Theory of charge transport in diffusive normal metal/conventional superconductor point contacts in the presence of magnetic impurity

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.

    2006-01-01

    Charge transport in the diffusive normal metal/insulator/s-wave superconductor junctions is studied in the presence of the magnetic impurity for various situations, where we have used the Usadel equation with Nazarov's generalized boundary condition. It is revealed that the magnetic impurity

  1. Normal and superconducting state properties of U6Fe at low temperatures and high magnetic fields

    International Nuclear Information System (INIS)

    DeLong, L.E.; Crabtree, G.W.; Hall, L.N.; Kierstead, H.; Aoki, H.; Dhar, S.K.; Gschneidner, K.A. Jr.; Junod, A.

    1985-01-01

    High purity U 6 Fe polycrystals with a resistance ratio rrr=9 at T=4 K are found to exhibit a record onset temperature (T 0 >4.0 K) to superconductivity for U materials. Our measured values of the electronic coefficient of heat capacity Csup(*)=(150+-3) mJ/mol.K 2 , the mean Debye temperature THETA(T->0)=116 K and the normalized jump in heat capacity at Tsub(c), ΔC/γsup(*)Tsub(c)=2.3+-0.1, are all in good agreement with previous work, and suggest that U 6 Fe is a strong-coupled superconductor. Resistive upper critical field measurements on high purity samples revealed a pronounced S-shaped curvature of Hsub(c2)(T) and evidence for anisotropy, similar to effects seen in UPt 3 , but not observed in lower purity U 6 Fe samples. We find Hsub(c2)(0)>10 T and transition widths ΔTsub(c)proportionalHsup(1/2) at moderate fields, followed by an abrupt increase in ΔTsub(c) for H>8 T. Our Hsub(c2) data cannot be explained by existing theoretical models. Preliminary heat capacity measurements in magnetic fields 0 6 Fe at T< or approx.110 K. (orig.)

  2. Electrodynamics in cylindrical symmetry in the magnetic plasma state

    Science.gov (United States)

    López-Bara, F. I.; López-Aguilar, F.

    2018-05-01

    Excited states in magnetic structures of the so-called spin-ices and in some artificial magnetic materials present a behaviour as being a magnetic neutral plasma. In this state the electromagnetic waves in confined systems (waveguides) filled with materials with magnetic charges are able to transmit information and energy. In the natural spin-ices, the difficulty is the very low temperature for which these magnetic entities appear, whose phenomenology under the electromagnetic interaction is that of solids containing magnetic charges. However, similar behaviour may be present in other compounds at higher temperatures, even at room temperature and they are named artificial spin-ice compounds. This analysis is addressed to obtain theoretical results about magnetic responses and frequency-dependent magnetricity. The key physical magnitudes are the plasmon frequency () which is related to the cut-off frequency in a wave guide and the effective inertial masses () of these magnetic charges. All properties of the electromagnetic propagation in these compounds with effective magnetic monopoles depend on and m. This is carried out including the dissipative forces among magnetic charges which give new characteristic features to the electromagnetic propagation. The main goal of this work is the analysis of these electromagnetic properties in order to find possible circuital applications of these materials to be utilized by devices.

  3. Strain engineering of magnetic state in vacancy-doped phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Zhang, Chunxiao, E-mail: zhangchunxiao@xtu.edu.cn [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Li, Jin [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Guo, Zhixin [Department of Physics, Xiangtan University, Xiangtan 411105, Hunan (China); Xiao, Huaping, E-mail: hpxiao@xtu.edu.cn [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Zhong, Jianxin [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China)

    2016-09-23

    Inducing and manipulating the magnetism in two-dimensional materials play an important role for the development of the next-generation spintronics. In this letter, the effects of the biaxial strain on magnetic properties of vacancy-doped phosphorene are investigated using first-principles calculation. We find although only SV956 doping induces magnetism for unstrained phosphorene, the biaxial strain induces nonzero magnetic moment for SV5566 and DVa doped phosphorene. The biaxial strain also modulates the magnetic state for SV956, SV5566 and DVa doped phosphorene. The local magnetic moment derives from the spin polarization of the dangling bonds near the vacancy. The biaxial strain influences the local bonding configuration near the vacancy which determines the presence of dangling bonds, and then modulates the magnetic state. Our findings promise the synergistic effect of strain engineering and vacancy decoration is an effective method for the operation of phosphorene-based spintronic devices. - Highlights: • Investigation of the magnetic moment of vacancy-doped phosphorene by DFT calculation. • The modulation of the magnetic moment by the biaxial strain. • The analysis of the bonding configuration with the biaxial strain. • The analysis of the electronic structures to explain the evolution of the magnetic moment. • The effects of the biaxial strain on the band gap and doping levels.

  4. Magnetization transfer imaging of normal and abnormal testis: preliminary results

    International Nuclear Information System (INIS)

    Tsili, Athina C.; Ntorkou, Alexandra; Maliakas, Vasilios; Argyropoulou, Maria I.; Baltogiannis, Dimitrios; Sylakos, Anastasios; Sofikitis, Nikolaos; Stavrou, Sotirios; Astrakas, Loukas G.

    2016-01-01

    The aim was to determine the magnetization transfer ratio (MTR) of normal testes, possible variations with age and to assess the feasibility of MTR in characterizing various testicular lesions. Eighty-six men were included. A three-dimensional gradient-echo MT sequence was performed, with/without an on-resonance binomial prepulse. MTR was calculated as: (SIo-SIm)/(SIo) x 100 %, where SIm and SIo refers to signal intensities with and without the saturation pulse, respectively. Subjects were classified as: group 1, 20-39 years; group 2, 40-65 years; and group 3, older than 65 years of age. Analysis of variance (ANOVA) followed by the least significant difference test was used to assess variations of MTR with age. Comparison between the MTR of normal testis, malignant and benign testicular lesions was performed using independent-samples t testing. ANOVA revealed differences of MTR between age groups (F = 7.51, P = 0.001). Significant differences between groups 1, 2 (P = 0.011) and 1, 3 (P < 0.001) were found, but not between 2, 3 (P = 0.082). The MTR (in percent) of testicular carcinomas was 55.0 ± 3.2, significantly higher than that of benign lesions (50.3 ± 4.0, P = 0.02) and of normal testes (47.4 ± 2.2, P < 0.001). MTR of normal testes decreases with age. MTR might be helpful in the diagnostic work-up of testicular lesions. (orig.)

  5. A Semimetal Model of the Normal State Susceptibility and Transport Properties of Ba(Fe1-xCox)2As2 Superconductors

    Science.gov (United States)

    Sales, Brian; Sefat, Athena; McGuire, Michael; Mandrus, David

    2010-03-01

    A simple two-band 3D model of a semimetal is constructed to see which normal state features of the Ba(Fe1-xCox)2As2 superconductors can be qualitatively understood within this framework. The model is able to account in a semiquantitative fashion for the measured magnetic susceptibility, Hall, and Seebeck data, and the low temperature Sommerfeld coefficient for 0 general conclusion from the model is that the magnetic susceptibility of most semimetals should increase with temperatures. This is indeed found to be the case for two well-known semimetals Bi and TiSe2. Research supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  6. Capacitor energy needed to induce transitions from the superconducting to the normal state

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Ross, R.R.

    1985-08-01

    The purpose of this paper is to describe a technique to turn a long length of superconducting wire normal by dumping a charged capacitor into it and justify some formulae needed in the design. The physical phenomenon is described. A formula for the energy to be stored in the capacitor is given. There are circumstances where the dc in an electrical circuit containing superconducting elements has to be turned off quickly and where the most convenient way to switch the current off is to turn a large portion or all of the superconducting wire normal. Such was the case of the Time Projection Chamber (TPC) superconducting magnet as soon as a quench was detected. The technique used was the discharge of a capacitor into the coil center tap. It turned the magnet winding normal in ten milliseconds or so and provided an adequate quench protection. The technique of discharging a capacitor into a superconducting wire should have many other applications whenever a substantial resistance in a superconducting circuit has to be generated in that kind of time scale. The process involves generating a pulse of large currents in some part of the circuit and heating the wire up by ac losses until the value of the wire critical current is smaller than the dc current. Use of low inductance connections to the circuit is necessary. Then the dc gets turned off due to the resistance of the wire as in a magnet quench

  7. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer

    Science.gov (United States)

    Chan, Chunkai; Zhang, Xiaodong; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Zhang, Jingzhao; Zhu, Junyi

    2018-01-01

    The long-range magnetism observed in group-V tellurides quintuple layers is the only working example of carrier-free dilute magnetic semiconductors (DMS), whereas the physical mechanism is unclear, except the speculation on the band topology enhanced van Vleck paramagnetism. Based on DFT calculations, we find a stable long-range ferromagnetic order in a single quintuple layer of Cr-doped Bi2Te3 or Sb2Te3, with the dopant separation more than 9 Å. This configuration is the global energy minimum among all configurations. Different from the conventional super exchange theory, the magnetism is facilitated by the lone pair derived anti-bonding states near the cations. Such anti-bonding states work as stepping stones merged in the electron sea and conduct magnetism. Further, spin orbit coupling induced band inversion is found to be insignificant in the magnetism. Therefore, our findings directly dismiss the common misbelief that band topology is the only factor that enhances the magnetism. We further demonstrate that removal of the lone pair derived states destroys the long-range magnetism. This novel mechanism sheds light on the fundamental understanding of long-range magnetism and may lead to discoveries of new classes of DMS. Supported by Chinese University of Hong Kong (CUHK) under Grant No 4053084, University Grants Committee of Hong Kong under Grant No 24300814, and the Start-up Funding of CUHK.

  8. Sixteen-state magnetic memory based on the extraordinary Hall effect

    International Nuclear Information System (INIS)

    Segal, A.; Karpovski, M.; Gerber, A.

    2012-01-01

    We report on a proof-of-concept study of split-cell magnetic storage in which multi-bit magnetic memory cells are composed of several multilevel ferromagnetic dots with perpendicular magnetic anisotropy. Extraordinary Hall effect is used for reading the data. Feasibility of the approach is supported by realization of four-, eight- and sixteen- state cells. - Highlights: ► We propose a novel structure of multi-bit magnetic random access memory. ► Each cell contains several interconnected storage dots. ► Extraordinary Hall effect is used for reading the data. ► Four-, eight- and sixteen-state cells have been realized.

  9. Coherent states of non-relativistic electron in the magnetic-solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Filho, D P Meira; Gitman, D M

    2010-01-01

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  10. Tracking Normalization of Brain Tumor Vasculature by Magnetic Imaging and Proangiogenic Biomarkers

    Science.gov (United States)

    Hormigo, Adília; Gutin, Philip H.; Rafii, Shahin

    2010-01-01

    Clinical assessment of the response to antiangiogenic therapy has been cumbersome. A study in this issue of Cancer Cell demonstrates that a combination of magnetic resonance imaging (MRI) for quantification of normalized vessels with measurements of circulating levels of proangiogenic factors, including FGF2, SDF1, and viable circulating endothelial cells, provides an effective means to evaluate the response of recurrent glioblastoma to a prototypical pan-VEGF receptor tyrosine kinase inhibitor, AZD2171. PMID:17222788

  11. State of the art magnetic resonance imaging

    International Nuclear Information System (INIS)

    Weissman, J.D.

    1987-01-01

    In less than a decade Magnetic Resonance Imaging (MRI) has evolved from a laboratory demonstration to a safe and effective technique for clinical diagnosis. This evolutionary process continues. At this time 2-D and 3-D imaging of the head and body is firmly established in clinical use. Surface coil imaging, two-component chemical shift imaging, in-vivo spectroscopy and flow imaging are currently in various stages of development. The present state of the art of MRI is a function of an array of technologies: magnet, Rf coil, Rf pulse amplifier, gradient coil and driver, pulse programmer, A/D converter, computer system architecture, array processors and mass storage (both magnetic and optical). The overall product design is the result of a complex process which balances the advantages and disadvantages of each component for optimal system performance and flexibility. The author discusses the organization of a state-of-the-art MRI system. Several examples of the kinds of system interactions affecting design choices are given. (Auth.)

  12. Response of hard superconductors to crossed magnetic fields: elliptic critical-state model

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C.; Perez-Rodriguez, F

    2004-05-01

    The behavior of hard superconductors subjected to crossed magnetic fields is theoretically investigated by employing an elliptic critical-state model. Here the anisotropy is induced by flux-line cutting. The model reproduces successfully the collapse of the magnetic moment under the action of a sweeping magnetic field, applied perpendicularly to a dc field, for diamagnetic and paramagnetic initial states. Besides, it explains the transition from the diamagnetic state to the paramagnetic one when the magnitudes of the crossed magnetic fields are of the same order.

  13. Coherent states of non-relativistic electron in the magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050, Tomsk (Russian Federation); Gavrilov, S P; Filho, D P Meira [Institute of Physics, University of Sao Paulo (Brazil); Gitman, D M, E-mail: bagrov@phys.tsu.r, E-mail: gavrilovsergeyp@yahoo.co, E-mail: gitman@dfn.if.usp.b, E-mail: dmeira@dfn.if.usp.b [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo (Brazil)

    2010-09-03

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  14. Wall locking and multiple nonlinear states of magnetic islands

    International Nuclear Information System (INIS)

    Persson, Mikael; Australian National Univ., Canberra, ACT

    1994-01-01

    The nonlinear evolution of magnetic islands is analysed in configurations with multiple resonant magnetic surfaces. The existence of multiple nonlinear steady states, is discussed. These are shown to be associated with states where the dynamics around the different rational surfaces are coupled or decoupled and in the presence of a wall of finite resistivity may correspond wall-locked or non-wall-locked magnetic islands. For the case of strong wall stabilization the locking is shown to consist of two different phases. During the first phase the locking of the plasma at the different rational surfaces occurs. Only when the outermost resonant magnetic surface has locked to the inner surfaces can the actual wall locking process take place. Consequently, wall locking, of a global mode, involving more than one rational surface, can be prevented by the decoupling of the resonant magnetic surfaces by plasma rotation. Possible implications on tokamak experiments are discussed. (author)

  15. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    Science.gov (United States)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  16. Fluctuation theorems and orbital magnetism in nonequilibrium state

    Indian Academy of Sciences (India)

    We study Langevin dynamics of a driven charged particle in the presence as well as in the absence of magnetic field. We discuss the validity of various work fluctuation theorems using different model potentials and external drives. We also show that one can generate an orbital magnetic moment in a nonequilibrium state ...

  17. Reversal of Flux Closure States in Cobalt Nanoparticle Rings With Coaxial Magnetic Pulses

    DEFF Research Database (Denmark)

    Kasama, T; Dunin-Borkowski, Rafal E.; Scheinfein, MR

    2008-01-01

    Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths.......Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths....

  18. Basic mode of nonlinear spin-wave resonance in normally magnetized ferrite films

    International Nuclear Information System (INIS)

    Gulyaev, Yu.V.; Zil'berman, P.E.; Timiryazev, A.G.; Tikhomirova, M.P.

    2000-01-01

    Modes of nonlinear and spin-wave resonance (SWR) in the normally magnetized ferrite films were studied both theoretically and experimentally. The particular emphasis was placed on the basic mode of SWR. One showed theoretically that with the growth of the precession amplitude the profile of the basic mode changed. The nonlinear shift of the resonance field depends on the parameters of fixing of the surface spins. Films of ferroyttrium garnet (FYG) with strong gradient of the single-axis anisotropy field along the film thickness, as well as, FYG films of the submicron thickness where investigated experimentally. With the intensification of Uhf-power one observed the sublinear shift of the basic mode resonance field following by the superlinear growth of the absorbed power. That kind of behaviour is explained by variation of the profile of the varying magnetization space distribution [ru

  19. Warm measurements of CBA superconducting magnets

    International Nuclear Information System (INIS)

    Engelmann, R.; Herrera, J.; Kahn, S.; Kirk, H.; Willen, E.; Yamin, P.

    1983-01-01

    We present results on magnetic field measurements of CBA dipole magnets in the warm (normal conductor) and cryogenic (superconducting) states. We apply two methods for the warm measurements, a dc and ac method. We find a good correlation between warm and cryogenic measurements which lends itself to a reliable diagnosis of magnet field errors using warm measurements early in the magnet assembly process. We further find good agreement between the two warm measurement methods, both done at low currents

  20. A practical approach to magnetic resonance imaging of normal and injured tendons: pictorial essay

    International Nuclear Information System (INIS)

    Forster, B.B.; Khan, K.M.

    2003-01-01

    The imaging of tendon injury can be troublesome from a number of perspectives. First, tendon injuries are extremely common, accounting for 30%-50% of all sports injuries, and are, therefore, seen frequently at imaging centers. Second, tendons have a unique histology and ultra-structure with a number of normal variations that can mimic pathologic conditions, of which the radiologist should be aware. Finally, although full-thickness tears are easily diagnosed both clinically and with imaging, imaging findings for partial tears overlap those of tendinosis and those of normal tendons, and this can be very troublesome for radiologists, clinicians and patients alike. The objective of this article is to develop a practical approach to the magnetic resonance imaging (MRI) and analysis of tendons, both normal and pathologic, emphasizing the common features at different anatomic locations. (author)

  1. A practical approach to magnetic resonance imaging of normal and injured tendons: pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Forster, B.B. [UBC Hospital, Dept. of Radiology, Vancouver, British Columbia (Canada); Khan, K.M. [Univ. of British Columbia, Dept. of Family Practice, Vancouver, British Columbia (Canada)

    2003-10-01

    The imaging of tendon injury can be troublesome from a number of perspectives. First, tendon injuries are extremely common, accounting for 30%-50% of all sports injuries, and are, therefore, seen frequently at imaging centers. Second, tendons have a unique histology and ultra-structure with a number of normal variations that can mimic pathologic conditions, of which the radiologist should be aware. Finally, although full-thickness tears are easily diagnosed both clinically and with imaging, imaging findings for partial tears overlap those of tendinosis and those of normal tendons, and this can be very troublesome for radiologists, clinicians and patients alike. The objective of this article is to develop a practical approach to the magnetic resonance imaging (MRI) and analysis of tendons, both normal and pathologic, emphasizing the common features at different anatomic locations. (author)

  2. Magnetic resonance imaging of the normal placenta

    International Nuclear Information System (INIS)

    Blaicher, Wibke; Brugger, Peter C.; Mittermayer, Christoph; Schwindt, Jens; Deutinger, Josef; Bernaschek, Gerhard; Prayer, Daniela

    2006-01-01

    The goal of this study was to provide a representative description of the normal placenta with contrast medium-free magnetic resonance imaging (MRI) in order to determine a standard of reference. One hundred consecutive singleton pregnancies were investigated by MRI without application of a contrast medium. The mean gestational age (GA) at the time of investigation was 29.5 weeks (range 19-40). Patients with suspected utero-placental insufficiency (UPI) or placental anomalies were excluded. Signal intensities were assessed and correlated with the respective GA. Antenatal MRI without contrast medium was able to depict placental status and morphological changes during gestation. A regular homogeneous structure was found in weeks 19-23. Subsequently, sporadic, slightly marked lobules appeared, which increased in number and markedness with ongoing gestation. Stratification of the lobules was observed after 36 weeks. The ratio of placental and amniotic fluid signal intensities decreased significantly with higher GA and with placental grading. MRI is well suited as an imaging method for the placenta. Our data may be used as a reference in the assessment of the placenta on MRI, and may have further clinical impact with respect to the determination of UPI

  3. Magnetic resonance imaging of the normal placenta

    Energy Technology Data Exchange (ETDEWEB)

    Blaicher, Wibke [Department of Gynecology and Obstetrics, University Hospital Vienna (Austria)]. E-mail: wibke.blaicher@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, University Hospital of Vienna (Austria); Mittermayer, Christoph [Department of Pediatrics, Division of Neonatology and Intensive Care, University Hospital of Vienna (Austria); Schwindt, Jens [Department of Pediatrics, Division of Neonatology and Intensive Care, University Hospital of Vienna (Austria); Deutinger, Josef [Department of Gynecology and Obstetrics, University Hospital Vienna (Austria); Bernaschek, Gerhard [Department of Gynecology and Obstetrics, University Hospital Vienna (Austria); Prayer, Daniela [Department of Radiology, Division of Neuroradiology, University Hospital of Vienna (Austria)

    2006-02-15

    The goal of this study was to provide a representative description of the normal placenta with contrast medium-free magnetic resonance imaging (MRI) in order to determine a standard of reference. One hundred consecutive singleton pregnancies were investigated by MRI without application of a contrast medium. The mean gestational age (GA) at the time of investigation was 29.5 weeks (range 19-40). Patients with suspected utero-placental insufficiency (UPI) or placental anomalies were excluded. Signal intensities were assessed and correlated with the respective GA. Antenatal MRI without contrast medium was able to depict placental status and morphological changes during gestation. A regular homogeneous structure was found in weeks 19-23. Subsequently, sporadic, slightly marked lobules appeared, which increased in number and markedness with ongoing gestation. Stratification of the lobules was observed after 36 weeks. The ratio of placental and amniotic fluid signal intensities decreased significantly with higher GA and with placental grading. MRI is well suited as an imaging method for the placenta. Our data may be used as a reference in the assessment of the placenta on MRI, and may have further clinical impact with respect to the determination of UPI.

  4. Nuclear structure studies by means of magnetic moments of excited states

    International Nuclear Information System (INIS)

    Kaeubler, L.; Prade, H.; Schneider, L.; Brinckmann, H.F.; Stary, F.

    1981-09-01

    Experimental arrangements installed at the cyclotron U-120 and the tandem accelerator EGP-10 for the in-beam measurement of magnetic moments of excited nuclear states are discribed. The Perturbed-Angular-Distribution-method (PAD) has been used. A new evaluation method has been developed for the unique determination of the Larmor frequency from spin-procession spectra R(t) with less than half of an oscillation period between consecutive particle pulses. Magnetic moments in transitional nuclei or in nuclei near closed shells ( 103 Pd, 105 Ag, 117 Sb, 117 Te, 121 Te, 121 I, 143 Pm and 207 Bi) were measured. The results are discussed with the aim to get information about the nuclear structure of the corresponding isomeric states in connection with complex spectroscopic investigations. Therefore, the experimental values are compared to the results of model calculations (core-polarization, core-particle-coupling, Nilsson, particle-rotation-coupling or shell-model) or to the estimates on the basis of the additivity of effective magnetic moments. Single-particle aspects are discussed in connection with the magnetic moments of hsub(11/2)-, dsub(5/2)- and gsub(7/2)-neutron (ν) and proton (π) states in the nuclei 103 Pd, 117 Te, 121 Te and 143 Pm, respectively. The configurations of (π) 3 and (π)(ν) 2 -three-particle states in 105 Ag, 117 Sb, 121 I and 207 Bi could be determined using the additivity rule. The experimental magnetic moments of states in 143 Pm agree very well with the results of shell-model calculations, which have firstly been carried out also for negative-parity states in this mass region. Considering magnetic moments in 117 Te and 121 Te we could demonstrate the influence of different nuclear deformations on the magnetic moments in transitional nuclei. (author)

  5. Irreversible magnetization deep in the vortex-liquid state of a 2D superconductor at high magnetic fields

    International Nuclear Information System (INIS)

    Maniv, T; Zhuravlev, V; Wosnitza, J; Hagel, J

    2004-01-01

    The remarkable phenomenon of weak magnetization hysteresis loops, observed recently deep in the vortex-liquid state of a nearly two-dimensional (2D) superconductor at low temperatures and high magnetic fields, is shown to reflect the existence of an unusual vortex-liquid state, consisting of collectively pinned crystallites of easily sliding vortex chains. (letter to the editor)

  6. Stress state evaluation in low carbon and TRIP steels by magnetic permeability

    International Nuclear Information System (INIS)

    Kouli, M.-E.; Giannakis, M

    2016-01-01

    Magnetic permeability is an indicative factor for the steel health monitoring. The measurements of magnetic permeability lead to the evaluation of the stress state of any ferromagnetic steel. The magnetic permeability measurements were conducted on low carbon and TRIP steel samples, which were subjected to both tensile and compressive stresses. The results indicated a direct correlation of the magnetic permeability with the mechanical properties, the stress state and the microstructural features of the examined samples. (paper)

  7. Magnetic monopole interactions: shell structure of meson and baryon states

    International Nuclear Information System (INIS)

    Akers, D.

    1986-01-01

    It is suggested that a low-mass magnetic monopole of Dirac charge g = (137/2)e may be interacting with a c-quark's magnetic dipole moment to produce Zeeman splitting of meson states. The mass M 0 = 2397 MeV of the monopole is in contrast to the 10 16 -GeV monopoles of grand unification theories (GUT). It is shown that shell structure of energy E/sub n/ = M 0 + 1/4nM 0 ... exists for meson states. The presence of symmetric meson states leads to the identification of the shell structure. The possible existence of the 2397-MeV magnetic monopole is shown to quantize quark masses in agreement with calculations of quantum chromodynamics (QCD). From the shell structure of meson states, the existence of two new mesons is predicted: eta(1814 +/- 50 MeV) with I/sup G/(J/sup PC/) = 0 + (0 -+ ) and eta/sub c/ (3907 +/- 100 MeV) with J/sup PC/ = 0 -+ . The presence of shell structure for baryon states is shown

  8. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, Lianne; Veltman, Dick J.; Nederveen, Aart; van den Brink, Wim; Goudriaan, Anna E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (H-1 MRS) was used to

  9. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D.J.; Nederveen, A.; van den Brink, W.; Goudriaan, A.E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (1 H MRS) was used to

  10. Application of dynamic and transition magnetic fields for determination of magnetic moments of short-lived nuclear states

    International Nuclear Information System (INIS)

    Burgov, N.A.

    1986-01-01

    Problem of measuring magnetic momenta of short-living nuclear states is discussed. Different methods for measuring magnetic momenta using interionic and transient magnetic fields were considered. Possibility for determining a value g by means of measuring correlation attenuation is investigated as well as measuring magnetic momenta by means of inclined foils. At present 2 + level magnetic momenta for many odd-odd nuclei have been determined by means of the above methods. The methods are only ones for determining magnetic momenta of nuclear levels with small lifetimes up to tenth and hundredth of shares of picoseconds

  11. Magnetic edge states in MoS2 characterized using density-functional theory

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Hinnemann, B.; Nørskov, Jens Kehlet

    2009-01-01

    It is known that the edges of a two-dimensional slab of insulating MoS2 exhibit one-dimensional metallic edge states, the so-called "brim states." Here, we find from density-functional theory calculations that several edge structures, which are relevant for the hydrodesulfurization process......, are magnetic. The magnetism is an edge phenomenon associated with certain metallic edge states. Interestingly, we find that among the two low-index edges, only the S edge displays magnetism under hydrodesulfurization conditions. In addition, the implications of this on the catalytic activity are investigated...

  12. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  13. Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer's disease.

    Science.gov (United States)

    Zhang, Nan; Gordon, Marc L; Goldberg, Terry E

    2017-01-01

    Arterial spin labeling (ASL) magnetic resonance imaging uses arterial blood water as an endogenous tracer to measure cerebral blood flow (CBF). In this review, based on ASL studies in the resting state, we discuss state-of-the-art technical and data processing improvements in ASL, and ASL CBF changes in normal aging, mild cognitive impairment (MCI), Alzheimer's disease (AD), and other types of dementia. We propose that vascular and AD risk factors should be considered when evaluating CBF changes in aging, and that other validated biomarkers should be used as inclusion criteria or covariates when evaluating CBF changes in MCI and AD. With improvements in hardware and experimental design, ASL is proving to be an increasingly promising tool for exploring pathogenetic mechanisms, early detection, monitoring disease progression and pharmacological response, and differential diagnosis of AD. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Reversibility of magnetic field driven transition from electronic phase separation state to single-phase state in manganites: A microscopic view

    Science.gov (United States)

    Liu, Hao; Lin, Lingfang; Yu, Yang; Lin, Hanxuan; Zhu, Yinyan; Miao, Tian; Bai, Yu; Shi, Qian; Cai, Peng; Kou, Yunfang; Lan, Fanli; Wang, Wenbin; Zhou, Xiaodong; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2017-11-01

    Electronic phase separation (EPS) is a common phenomenon in strongly correlated oxides. For colossal magnetoresistive (CMR) manganites, the EPS is so pronounced that not only does it govern the CMR behavior, but also raises a question whether EPS exists as a ground state for systems or a metastable state. While it has been well known that a magnetic field can drive the transition of the EPS state into a single-phase state in manganites, the reversibility of this transition is not well studied. In this work we use magnetic force microscopy (MFM) to directly visualize the reversibility of the field driven transition between the EPS state and the single-phase state at different temperatures. The MFM images correspond well with the global magnetic and transport property measurements, uncovering the underlying mechanism of the field driven transition between the EPS state and the single-phase state. We argue that EPS state is a consequence of system quenching whose response to an external magnetic field is governed by a local energy landscape.

  15. Multi-bits memory cell using degenerated magnetic states in a synthetic antiferromagnetic reference layer

    International Nuclear Information System (INIS)

    Fukushima, Akio; Yakushiji, Kay; Konoto, Makoto; Kubota, Hitoshi; Imamura, Hiroshi; Yuasa, Shinji

    2016-01-01

    We newly developed a magnetic memory cell having multi-bit function. The memory cell composed of a perpendicularly magnetized magnetic tunnel junction (MB-pMTJ) and a synthetic antiferromagnetic reference layer. The multi-bit function is realized by combining the freedom of states of the magnetic free layer and that in the antiferromagnetically coupled reference layer. The structure of the reference layer is (FeB/Ta/[Co/Pt]_3)/Ru/([Co/Pt]_6); the top and the bottom layers are coupled through Ru layer where the reference layer has two degrees of freedom of a head-to-head and a bottom-to-bottom magnetic configuration. A four-state memory cell is realized by combination of both degrees of freedom. The states in the reference layer however is hardly detected by the total resistance of MB-pMTJ, because the magnetoresistance effect in the reference layer is negligibly small. That implies that the resistance values for the different states in the reference layer are degenerated. On the other hand, the two different states in the reference layer bring different stray fields to the free layer, which generate two different minor loop with different switching fields. Therefore, the magnetic states in the reference layer can be differentiated by the two-step reading, before and after applying the appropriately pulsed magnetic field which can identify the initial state in the reference layer. This method is similar to distinguishing different magnetic states in an in-plane magnetized spin-valve element. We demonstrated that four different states in the MB-pMTJ can be distinguished by the two-step read-out. The important feature of the two-step reading is a practically large operation margins (large resistance change in reading) which is equal to that of a single MTJ. Even though the two-step reading is a destructive method by which 50% of the magnetic state is changed, this MB-pMTJ is promising for high density non-volatile memory cell with a minor cost of operation speed

  16. Study on magnetic field distribution in superconducting magnetic systems with account of magnetization of a superconducting winding

    International Nuclear Information System (INIS)

    Shakhtarin, V.N.; Koshurnikov, E.K.

    1977-01-01

    A method for investigating a magnetic field in a superconducting magnetic system with an allowance for magnetization of the superconducting winding material is described. To find the field, use was made of the network method for solving a nonlinear differential equation for the scalar magnetic potential of the magnetization field with adjustment of the boundary conditions by the boundary relaxation method. It was assumed that the solenoid did not pass into the normal state, and there were no flow jumps. The calculated dependences for the magnetization field of a superconducting solenoid with an inner diameter of 43 mm, an outer diameter of 138 mm, and a winding of 159 mm length are presented. The solenoid is wound with a 37-strand niobium-titanium wire. The magnetization field gradient in the area of the geometrical centre with a magnetic field strength of 43 kOe was equal to 1 Oe/cm, this meaning that within a sphere of 1 cm radius the inhomogeneity of the magnetization field was 2.5 x 10 -5

  17. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  18. Modelling magnetic laminations under arbitrary starting state and flux waveform

    International Nuclear Information System (INIS)

    Bottauscio, Oriano; Chiampi, Mario; Ragusa, Carlo

    2005-01-01

    A numerical model able to predict the behaviour of a magnetic sheet under arbitrary supply conditions has been developed. The electromagnetic field problem is formulated in terms of an electric vector potential, which provides the magnetic field strength evolution. The hysteretic behaviour of the material is represented through the dynamic Preisach model where the activation law of the bi-state operators is modified in order to guarantee a smooth response. The problem has been solved through a time step procedure using the fixed Point technique for handling nonlinearity. The model has been validated by comparison with suitable experiments and it is applied to the investigation of the influence of the materials' starting state on the magnetic behaviour

  19. Lunar Magnetism: IRMs Normalization and Impact Related Magnetization

    Czech Academy of Sciences Publication Activity Database

    Fuller, M.; Halekas, J.; Adachi, T.; Kletetschka, Günther; Kohout, Tomáš

    2007-01-01

    Roč. 88, č. 23 (2007), P23A-06 ISSN 0096-3941. [American Geophysical Union ; Joint Assembly. 22.05.2007-25.05.2007, Acapulco] Institutional research plan: CEZ:AV0Z30130516 Keywords : Moon * magnetization * impact Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    International Nuclear Information System (INIS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-01-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate. - Highlights: • Magnetic states of electrodeposited nickel in isolated spherical and agglomerated nanogranules, and a continuous film. • Preferential magnetization reversal mechanism in isolated granules is vortex state. • Micromagnetic simulations confirm the three-dimensional vortex. • Transition between the vortex state and multi-domain magnetic pattern causes a significant decrease in the coercive force. • Continuous nickel films electrodeposited on silicon substrate exhibit AMR whose magnitude increases with the film thickness

  1. Magnetic excitations in intermediate valence semiconductors with singlet ground state

    International Nuclear Information System (INIS)

    Kikoin, K.A.; Mishchenko, A.S.

    1994-01-01

    The explanation of the origin inelastic peaks in magnetic neutron scattering spectra of the mixed-valent semiconductor SmB 6 is proposed. It is shown that the excitonic theory of intermediate valence state not only gives the value of the peak frequency but also explains the unusual angular dependence of intensity of inelastic magnetic scattering and describes the dispersion of magnetic excitations in good agreement with experiment

  2. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy

    Directory of Open Access Journals (Sweden)

    Foronda Jesus

    2004-06-01

    Full Text Available Abstract Background What currently appears to be irreversible axonal loss in normal appearing white matter, measured by proton magnetic resonance spectroscopy is of great interest in the study of Multiple Sclerosis. Our aim is to determine the axonal damage in normal appearing white matter measured by magnetic resonance spectroscopy and to correlate this with the functional disability measured by Multiple Sclerosis Functional Composite scale, Neurological Rating Scale, Ambulation Index scale, and Expanded Disability Scale Score. Methods Thirty one patients (9 male and 22 female with relapsing remitting Multiple Sclerosis and a Kurtzke Expanded Disability Scale Score of 0–5.5 were recruited from four hospitals in Andalusia, Spain and included in the study. Magnetic resonance spectroscopy scans and neurological disability assessments were performed the same day. Results A statistically significant correlation was found (r = -0.38 p Conclusions There is correlation between disability (measured by Expanded Disability Scale Score and the NAA/Cr ratio in normal appearing white matter. The lack of correlation between the NAA/Cr ratio and the Multiple Sclerosis Functional Composite score indicates that the Multiple Sclerosis Functional Composite is not able to measure irreversible disability and would be more useful as a marker in stages where axonal damage is not a predominant factor.

  3. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    Science.gov (United States)

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed

  4. The Nature of Magnetic State of Small Fe3O4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Dolinšek

    2011-12-01

    Full Text Available We have investigated the nature of the magnetic state of 4 nm and 7 nm magnetite Fe3O4 nanoparticles and show that they form a collective superspin glass state. Magnetic force on the nanoparticles relevant to the tumor targeting application was determined as well.

  5. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  6. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  7. Cold test facility for 1.8 m superconducting model magnets at the SSC

    International Nuclear Information System (INIS)

    LaBarge, A.

    1993-07-01

    A new facility has been constructed to measure the characteristic features of superconducting model magnets and cable at cryogenic temperatures -- a function which supports the design and development process for building full-scale accelerator magnets. There are multiple systems operating in concert to test the model magnets, namely: cryogenic, magnet power, data acquisition and system control. A typical model magnet test includes the following items: (1) warm measurements of magnet coils, strain gauges and voltage taps; (2) hipot testing of insulation integrity; (3) cooling with liquid nitrogen and then liquid helium; (4) measuring quench current and magnetic field; (5) magnet warm-up. While the magnet is being cooled to 4.22 K, the mechanical stress is monitored through strain gauges. Current is then ramped into the magnet until it reaches some maximum value and the magnet transitions from the superconducting state to the normal state. Normal-zone propagation is monitored using voltage taps on the magnet coils during this process, thus indicating where the transition began. The current ramp is usually repeated until a plateau current is reached, where the magnet has mechanically settled

  8. Time-resolved imaging of domain pattern destruction and recovery via nonequilibrium magnetization states

    Science.gov (United States)

    Wessels, Philipp; Ewald, Johannes; Wieland, Marek; Nisius, Thomas; Vogel, Andreas; Viefhaus, Jens; Meier, Guido; Wilhein, Thomas; Drescher, Markus

    2014-11-01

    The destruction and formation of equilibrium multidomain patterns in permalloy (Ni80Fe20 ) microsquares has been captured using pump-probe x-ray magnetic circular dichroism (XMCD) spectromicroscopy at a new full-field magnetic transmission soft x-ray microscopy endstation with subnanosecond time resolution. The movie sequences show the dynamic magnetization response to intense Oersted field pulses of approximately 200-ps root mean square (rms) duration and the magnetization reorganization to the ground-state domain configuration. The measurements display how a vortex flux-closure magnetization distribution emerges out of a nonequilibrium uniform single-domain state. During the destruction of the initial vortex pattern, we have traced the motion of the central vortex core that is ejected out of the microsquare at high velocities exceeding 1 km/s. A reproducible recovery into a defined final vortex state with stable chirality and polarity could be achieved. Using an additional external bias field, the transient reversal of the square magnetization direction could be monitored and consistently reproduced by micromagnetic simulations.

  9. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  10. Calculation of the spectrum of {gamma} rays connecting superdeformed and normally deformed nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Dossing, T.; Khoo, T.L.; Lauritsen, T. [and others

    1995-08-01

    The decay out of superdeformed states occurs by coupling to compound nuclear states of normal deformation. The coupling is very weak, resulting in mixing of the SD state with one or two normal compound states. With a high energy available for decay, a statistical spectrum ensues. The shape of this statistical spectrum contains information on the level densities of the excited states below the SD level. The level densities are sensitively affected by the pair correlations. Thus decay-out of a SD state (which presents us with a means to start a statistical cascade from a highly-excited sharp state) provides a method for investigating the reduction of pairing with increasing thermal excitation energy.

  11. Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.

    2005-01-01

    The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states

  12. Effects of Consolidation Stress State on Normally Consolidated Clay

    DEFF Research Database (Denmark)

    Lade, Poul V.

    2000-01-01

    The effect of consolidation stress state on the stress-strain and strength characteristics has been studied from experiments on undisturbed block samples of a natural, normally consolidated clay known as San Francisco Bay Mud. The results of experiments on K0-consolidated, hollow cylinder specimens...... and on isotropically consolidated, cubical specimens, both tested in triaxial compression and extension, clearly showed the influence of the undisturbed fabric as well as the effect of the initial consolidation stress states. While the K0-consolidated specimens appeared to retain their original fabric and exhibit...

  13. Helicon normal modes in Proto-MPEX

    Science.gov (United States)

    Piotrowicz, P. A.; Caneses, J. F.; Green, D. L.; Goulding, R. H.; Lau, C.; Caughman, J. B. O.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    The Proto-MPEX helicon source has been operating in a high electron density ‘helicon-mode’. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the ‘helicon-mode’. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besides directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region. ).

  14. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    Science.gov (United States)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  15. High-resolution magnetic resonance imaging of the wrist: Normal anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Baker, L.L.; Hajek, P.C.; Bjoerkengren, A.; Sartoris, D.J.; Resnick, D.; Galbraith, R.; Gelberman, R.H.

    1987-02-01

    Magnetic resonance imaging (MRI) provided adequate depiction of carpal soft tissue structures in normal volunteers, as well as accurate anatomic correlation with cadaveric specimens. Using a high field strength system and surface coil techniques, the intricate anatomy of the wrist was best defined on long TR short TE images. However, from a practical view, T1 weighted images (TR 600 ms, TE 25 ms) were most useful because of short imaging times, satisfactory image quality, and the absence of motion artifacts. The coronal plane provided the clearest definition of important structures. Potential diagnostic limitations exist due to the inability of MRI to clearly delineate articular cartilage, joint capsules, and small interosseous ligaments. The presence of intra-articular fluid in both living subjects and cadaveric specimens, however, allowed for fine depiction of these structures on T2 weighted images.

  16. Quantifying confidence in density functional theory predictions of magnetic ground states

    Science.gov (United States)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there

  17. Spectrum of {gamma} rays connecting superdeformed and normal states in {sup 192}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R.G.; Lauritsen, T.; Khoo, T.L. [and others

    1995-08-01

    Almost a hundred superdeformed bands were found in the mass 150 and 190 regions. Nevertheless, the energies and spins of the SD levels are still not measured (with one possible exception). Many attempts were made to decipher the highly-fragmented pathways connecting SD and normal states, but with hitherto no success. We adopted a new approach that consists of characterizing the overall spectral shape of the {gamma} rays linking SD and normal states.

  18. A multi-state magnetic memory dependent on the permeability of Metglas

    Science.gov (United States)

    Petrie, J. R.; Wieland, K. A.; Timmerwilke, J. M.; Barron, S. C.; Burke, R. A.; Newburgh, G. A.; Burnette, J. E.; Fischer, G. A.; Edelstein, A. S.

    2015-04-01

    A three-state magnetic memory was developed based on differences in the magnetic permeability of a soft ferromagnetic media, Metglas 2826MB (Fe40Ni38Mo4B18). By heating bits of a 250 nm thick Metglas film with 70-100 mW of laser power, we were able to tune the local microstructure, and hence, the permeability. Ternary memory states were created by using lower laser power to enhance the initial permeability through localized atomic rearrangement and higher power to reduce the permeability through crystallization. The permeability of the bits was read by detecting variations in an external 32 Oe probe field within 10 μm of the media via a magnetic tunnel junction read head. Compared to data based on remanent magnetization, these multi-permeability bits have enhanced insensitivity to unexpected field and temperature changes. We found that data was not corrupted after exposure to fields of 1 T or temperatures of 423 K, indicating the effectiveness of this multi-state approach for safely storing large amounts of data.

  19. A multi-state magnetic memory dependent on the permeability of Metglas

    International Nuclear Information System (INIS)

    Petrie, J. R.; Wieland, K. A.; Timmerwilke, J. M.; Burke, R. A.; Newburgh, G. A.; Fischer, G. A.; Edelstein, A. S.; Barron, S. C.; Burnette, J. E.

    2015-01-01

    A three-state magnetic memory was developed based on differences in the magnetic permeability of a soft ferromagnetic media, Metglas 2826MB (Fe 40 Ni 38 Mo 4 B 18 ). By heating bits of a 250 nm thick Metglas film with 70–100 mW of laser power, we were able to tune the local microstructure, and hence, the permeability. Ternary memory states were created by using lower laser power to enhance the initial permeability through localized atomic rearrangement and higher power to reduce the permeability through crystallization. The permeability of the bits was read by detecting variations in an external 32 Oe probe field within 10 μm of the media via a magnetic tunnel junction read head. Compared to data based on remanent magnetization, these multi-permeability bits have enhanced insensitivity to unexpected field and temperature changes. We found that data was not corrupted after exposure to fields of 1 T or temperatures of 423 K, indicating the effectiveness of this multi-state approach for safely storing large amounts of data

  20. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  1. Magnets for fusion reactors and plasma physics research: state of the art in the United States

    International Nuclear Information System (INIS)

    Smith, G.E.

    1977-01-01

    The breadth of magnet development in the United States is covered briefly and a few of the difficult technical issues are touched on. Toroidal field coils for tokamaks and superconducting field coils for mirror devices are covered. Parameters of the magnets of various devices are tabulated

  2. Magnets for fusion reactors and plasma physics research: state of the art in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G. E.

    1977-01-01

    The breadth of magnet development in the United States is covered briefly and a few of the difficult technical issues are touched on. Toroidal field coils for tokamaks and superconducting field coils for mirror devices are covered. Parameters of the magnets of various devices are tabulated. (MHR)

  3. MOKE study of Co/Ti/(Gd-Co) multilayers near the magnetic compensation state

    International Nuclear Information System (INIS)

    Svalov, A.V.; Fernandez, A.; Vas'kovskiy, V.O.; Kurlyandskaya, G.V.; Barandiaran, J.M.; Anton, R. Lopez; Tejedor, M.

    2006-01-01

    The magnetic behaviour of [Co/Ti/a-Gd 0.36 Co 0.64 /Ti] 4 /Co layered structures was studied by means of the transversal magneto-optic Kerr effect, with Ti spacers of different thicknesses. Within the Gd 0.36 Co 0.64 amorphous layer, the Gd magnetic sub-lattice dominates at all investigated temperatures. The strong exchange interaction at the interfaces causes 'macroscopic ferrimagnetic behaviour' in the whole system. The existence of a magnetic compensation state in the complete multilayer system was manifested by the change of sign in the magneto-optic hysteresis loops and the increase of coercivity. The evolution of the critical field for a spin-orientation transition leading to a non-collinear magnetic state near the 'compensation temperature' can be described within molecular field theory. The influence of the non-magnetic spacer thickness on the characteristics of the compensation state is also discussed

  4. Ground state magnetic properties of Fe nanoislands on Cu(111)

    International Nuclear Information System (INIS)

    Kishi, Tomoya; David, Melanie; Nakanishi, Hiroshi; Kasai, Hideaki; Dino, Wilson Agerico; Komori, Fumio

    2005-01-01

    We investigate magnetic properties of Fe nanoislands on Cu(111) in the relaxed structure within the density functional theory. We observe that the nanoislands exhibit the ferromagnetic properties with large magnetic moment. We find that the change in the magnetic moment of each Fe atom is induced by deposition on Cu(111) and structure relaxation of Fe nanoislands. Moreover, we examine the stability of ferromagnetic states of Fe nanoislands by performing the total energy calculations. (author)

  5. Programmable quantum-state discriminator by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Gopinath, T.; Das, Ranabir; Kumar, Anil

    2005-01-01

    A programmable quantum-state discriminator is implemented by using nuclear magnetic resonance. We use a two-qubit spin-1/2 system, one for the data qubit and one for the ancilla (program) qubit. This device does the unambiguous (error-free) discrimination of a pair of states of the data qubit that are symmetrically located about a fixed state. The device is used to discriminate both linearly polarized states and elliptically polarized states. The maximum probability of successful discrimination is achieved by suitably preparing the ancilla qubit. It is also shown that the probability of discrimination depends on the angle of the unitary operator of the protocol and ellipticity of the data qubit state

  6. Steady state magnetic field configurations for the earth's magnetotail

    Science.gov (United States)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  7. Fetal magnetic resonance: technique applications and normal fetal anatomy

    International Nuclear Information System (INIS)

    Martin, C.; Darnell, A.; Duran, C.; Mellado, F.; Corona, M

    2003-01-01

    Ultrasonography is the preferred diagnostic imaging technique for intrauterine fetal examination. Nevertheless, circumstances sometimes dictate the use of other techniques in order to analyze fetal structures. The advent of ultra rapid magnetic resonance (MR) sequencing has led to the possibility of doing MR fetal studies, since images are obtained in an extradordiarily short time and are not affected by either maternal or fetal movements. It does not employ ionizing radiations, it provides high-contrast images and it can obtain such images in any plane of space without being influenced by either the child bearer's physical characteristics of fetal position. MR provides good quality images of most fetal organs. It is extremely useful in analysing distinct structures, as well as permitting an evaluation of cervical structures, lungs, diaphragms, intra-abdominal and retroperitoneal structures, and fetal extremities. It can also provide useful information regarding the placenta,umbilical cord, amniotic fluid and uterus. The objective of this work is to describe MR technique as applied to intrauterine fetal examination, and to illustrate normal fetal anatomy as manifested by MR and its applications. (Author) 42 refs

  8. Magnetic ground and remanent states of synthetic metamagnets with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Kiselev, N S; Roessler, U K; Bogdanov, A N; Hellwig, O

    2011-01-01

    In this work, we summarize our theoretical results within a phenomenological micromagnetic approach for magnetic ground state and nonequilibrium states as topological magnetic defects in multilayers with strong perpendicular anisotropy and antiferromagnetic (AF) interlayer exchange coupling (IEC), e.g. [Co/Pt(Pd)]/Ru(Ir, NiO). We give detailed analysis of our model together with the most representative results which elucidate common features of such systems. We discuss phase diagrams of the magnetic ground state, and compare solutions of our model with experimental data. A model to assess the stability of so-called tiger tail patterns is presented. It is found that these modulated topological defect cannot be stabilized by an interplay between magnetostatic and IEC energies only. It is argued that tiger tail patterns arise as nuclei of ferro-stripe structure in AF domain walls and that they are stabilized by domain wall pinning.

  9. Influence of magnetic disorders on quantum anomalous Hall effect in magnetic topological insulator films beyond the two-dimensional limit

    Science.gov (United States)

    Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui

    2018-04-01

    Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.

  10. Design and Manufacture of the Superconducting Bus-bars for the LHC Main Magnets

    CERN Document Server

    Belova, L M; Perinet-Marquet, J L; Ivanov, P; Urpin, C

    2002-01-01

    The main magnets of the LHC are series-connected electrically in different powering circuits by means of superconducting bus-bars, carrying a maximum current of 13 kA. These superconducting bus-bars consist of a superconducting cable thermally and electrically coupled to a copper profile all along the length. The function of the copper profile is essentially to provide an alternative path for the current in case the superconducting cable loses its superconducting state and returns to normal state because of a transient disturbance or of a normal zone propagation coming from the neighbouring magnets. When a superconducting bus-bar quenches to normal state its temperature must always stay below a safe values of about 100°C while the copper is conducting. When a resistive transition is detected, the protection systems triggers the ramping down of the current from 13000 A to 0. The ramp rate must not exceed a maximum value to avoid the transition of magnets series-connected in the circuit. This paper concerns th...

  11. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  12. Symmetric Double Quantum Dot Energy States in a High Magnetic Field

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J; Sawamura, Makoto

    2011-01-01

    The dynamical Green's function and energy spectrum of a 2D symmetric quantum double-dot system on a planar host in a normal magnetic field are analyzed here, representing the two dots by Dirac delta function potentials. The proliferation of energy levels due to Landau quantization is examined in detail.

  13. Path dependent magnetic states and evidence of kinetically arrested states in Nd doped LaFe{sub 11.5}Al{sub 1.5}

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Pallab; Nath, R., E-mail: rnath@iisertvm.ac.in

    2017-03-15

    First order antiferromagnetic to ferromagnetic transition and path dependent magnetic states in La{sub 1−x}Nd{sub x}Fe{sub 11.5}Al{sub 1.5} for x∼0.1 are studied at low temperatures via powder x-ray diffraction, magnetization, and specific heat measurements. X-ray diffraction measurements suggest that around 8% of high temperature antiferromagnetic phase is converted to ferromagnetic phase at low temperatures in zero field cooling. A systematic study of temperature and magnetic field dependent magnetization measurements show a non-monotonic variation of upper critical field and re-entrant antiferromagnetic-ferromagnetic-antiferromagnetic transition while warming at an applied magnetic field under zero-field-cooled condition. This has been interpreted in the framework of kinetic arrest model for first order magnetic transition. It is also found that the antiferromagnetic phase is in the non-equilibrium state and behaves as a glass-like magnetic state at low temperatures. The specific heat in field-temperature space is studied and found to have a lower electronic contribution for the non-equilibrium antiferromagnetic state, compared to the equilibrium ferromagnetic state in this compound. - Highlights: • Structural and magnetic properties of La{sub 0.9}Nd{sub 0.1}Fe{sub 11.5}Al{sub 1.5} are investigated. • It shows coexistence and path dependent AFM and FM phases at low temperatures. • The AFM and FM phase fractions were estimated from the x-ray diffraction pattern. • Re-entrant transition and a non-monotonic variation of upper critical field. • The glass like AFM state is explained by the kinetic arrest model.

  14. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xingyan, E-mail: yaoxingyan-jsj@163.com [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Liu, Chuanwen; Liang, Huang; Qin, Huafeng [Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Yu, Qibing; Li, Chuan [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China)

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  15. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    International Nuclear Information System (INIS)

    Yao, Xingyan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-01-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  16. Motor-evoked potential amplitudes elicited by transcranial magnetic stimulation do not differentiate between patients and normal controls.

    Science.gov (United States)

    Grunhaus, Leon; Polak, Dana; Amiaz, Revital; Dannon, Pinhas N

    2003-12-01

    Transcranial magnetic stimulation (TMS) applied over the motor cortex depolarizes neurons and leads to motor-evoked potentials (MEP). To assess cortico-spinal excitability we compared the motor threshold (MT) and the averaged MEP amplitude generated by TMS in patients with major depression (MD) and matched controls. Nineteen patients, who where participants in a protocol comparing the antidepressant effects of rTMS with those of ECT, and thirteen age- and gender-matched normal controls were studied. MT was similar between patients and normal controls. The MEP amplitude response was significantly increased by rTMS, however, the magnitude of the response was similar in patients and normal controls. Correlations between the averaged MEP amplitude and age revealed that older subjects demonstrated significantly lower responses at all time-points. We conclude that cortico-spinal excitability is increased following rTMS, however, differences between patients and normal controls were not apparent with the paradigm used.

  17. Effect of Co substitution on magnetic ground state in Sm0.5Ca0.5MnO3

    International Nuclear Information System (INIS)

    Xu, Xiaolong; Li, Yu; Hou, Feifei; Cheng, Qian; Su, Runzhou

    2015-01-01

    Highlights: • Polycrystalline Sm 0.5 Ca 0.5 Mn 1−x Co x O 3 were prepared by standard solid-state reaction. • The orthorhombic deformation and normalized slope were calculated for each sample. • Critical slowing down model and dynamic scaling equation are applied in some samples. • Canted antiferromagnetic state via spin glass state, changes to ferrimagnetic state. - Abstract: The effect of cobalt doping on the structural and magnetic properties of polycrystalline Sm 0.5 Ca 0.5 Mn 1−x Co x O 3 (0 ⩽ x ⩽ 0.20) has been studied. Powder X-ray diffraction (XRD), dc magnetization and ac susceptibility measurements have been performed. The orthorhombic deformation caused by the Jahn–Teller (JT) effect can be counterbalanced by Co 3+ doping. Meanwhile, antiferromagnetic (AFM), spin glass (SG) and phase separation (PS) ferrimagnetic states appear, successively, with the increase of x. The critical slowing down model and the dynamic scaling equation were applied in some samples. The existence of two distinct length scales for SG and finite FM (ferromagnetic) order is the source of the progressive deviation which exists in the dynamic scaling fitting for x = 0.05. Moreover, the small peaks at ∼8 K in χ″(T) curves are believed to be induced by the canted moments of Mn ions as observed in Nd 2/3 Ca 1/3 MnO 3

  18. Evidence for a New Magnetoelectric Effect of Current-Induced Magnetization in a Toroidal Magnetic Ordered State of UNi$_4$B

    OpenAIRE

    Saito, Hiraku; Uenishi, Kenta; Miura, Naoyuki; Tabata, Chihiro; Hidaka, Hiroyuki; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2018-01-01

    Magnetization measurements under direct electric currents were performed for toroidal magnetic ordered state of UNi$_4$B to test a recent theoretical prediction of current-induced magnetization in a metallic system lacking local inversion symmetry.We found that each of the electric currents parallel to [$2\\bar{1}\\bar{1}0$] and [$0001$] in the hexagonal 4-index notation induces uniform magnetization in the direction of [$01\\bar{1}0$].The observed behavior of the induced magnetization is essent...

  19. A steady state tokamak operation by use of magnetic monopoles

    International Nuclear Information System (INIS)

    Narihara, K.

    1991-12-01

    A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficiency is same as that of the ohmic current drive. (author)

  20. Predicating magnetorheological effect of magnetorheological elastomers under normal pressure

    International Nuclear Information System (INIS)

    Dong, X; Qi, M; Ma, N; Ou, J

    2013-01-01

    Magnetorheological elastomers (MREs) present reversible change in shear modulus in an applied magnetic field. For applications and tests of MREs, a normal pressure must be applied on the materials. However, little research paid attention on the effect of the normal pressure on properties of MREs. In this study, a theoretical model is established based on the effective permeability rule and the consideration of the normal pressure. The results indicate that the normal pressure have great influence on magnetic field-induced shear modulus. The shear modulus of MREs increases with increasing normal pressure, such dependence is more significant at high magnetic field levels.

  1. Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism.

    Science.gov (United States)

    Tischler, Hadass; Moran, Anan; Belelovsky, Katya; Bronfeld, Maya; Korngreen, Alon; Bar-Gad, Izhar

    2012-12-01

    Parkinsonism is associated with major changes in neuronal activity throughout the cortico-basal ganglia loop. Current measures quantify changes in baseline neuronal and network activity but do not capture alterations in information propagation throughout the system. Here, we applied a novel non-invasive magnetic stimulation approach using a custom-made mini-coil that enabled us to study transmission of neuronal activity throughout the cortico-basal ganglia loop in both normal and parkinsonian primates. By magnetically perturbing cortical activity while simultaneously recording neuronal responses along the cortico-basal ganglia loop, we were able to directly investigate modifications in descending cortical activity transmission. We found that in both the normal and parkinsonian states, cortical neurons displayed similar multi-phase firing rate modulations in response to magnetic stimulation. However, in the basal ganglia, large synaptically driven stereotypic neuronal modulation was present in the parkinsonian state that was mostly absent in the normal state. The stimulation-induced neuronal activity pattern highlights the change in information propagation along the cortico-basal ganglia loop. Our findings thus point to the role of abnormal dynamic activity transmission rather than changes in baseline activity as a major component in parkinsonian pathophysiology. Moreover, our results hint that the application of transcranial magnetic stimulation (TMS) in human patients of different disorders may result in different neuronal effects than the one induced in normal subjects. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Magnetization states and switching in narrow-gapped ferromagnetic nanorings

    Directory of Open Access Journals (Sweden)

    Jie Li

    2012-03-01

    Full Text Available We study permalloy nanorings that are lithographically fabricated with narrow gaps that break the rotational symmetry of the ring while retaining the vortex ground state, using both micromagnetic simulations and magnetic force microscopy (MFM. The vortex chirality in these structures can be readily set with an in-plane magnetic field and easily probed by MFM due to the field associated with the gap, suggesting such rings for possible applications in storage technologies. We find that the gapped ring edge characteristics (i.e., edge profile and gap shape are critical in determining the magnetization switching field, thus elucidating an essential parameter in the controls of devices that might incorporate such structures.

  3. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    Science.gov (United States)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  4. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    Science.gov (United States)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  5. Procedures for measuring the electrical properties of superconductors for accelerator magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1986-01-01

    There are three important electrical properties associated with the superconductor used to fabricate accelerator magnets. The most important is the critical current since this determines the performance potential of the magnet. The normal state resistivity and the volume magnetization are the other principal electrical parameters. In this report methods for measuring these parameters are presented and procedures for including self field effect and magnetoresistance are discussed

  6. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  7. Simple Methods for Scanner Drift Normalization Validated for Automatic Segmentation of Knee Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dam, Erik Bjørnager

    2018-01-01

    Scanner drift is a well-known magnetic resonance imaging (MRI) artifact characterized by gradual signal degradation and scan intensity changes over time. In addition, hardware and software updates may imply abrupt changes in signal. The combined effects are particularly challenging for automatic...... image analysis methods used in longitudinal studies. The implication is increased measurement variation and a risk of bias in the estimations (e.g. in the volume change for a structure). We proposed two quite different approaches for scanner drift normalization and demonstrated the performance...... for segmentation of knee MRI using the fully automatic KneeIQ framework. The validation included a total of 1975 scans from both high-field and low-field MRI. The results demonstrated that the pre-processing method denoted Atlas Affine Normalization significantly removed scanner drift effects and ensured...

  8. Incremental value of normal adenosine perfusion cardiac magnetic resonance: Long-term outcome.

    Science.gov (United States)

    Sozzi, Fabiola B; Iacuzio, Laura; Civaia, Filippo; Canetta, Ciro; Berthier, Frederic; Rusek, Stephane; Rossi, Philippe; Lombardi, Federico; Dreyfus, Gilles; Dor, Vincent

    2015-06-01

    The purpose of the study was to determine the long-term prognostic value of normal adenosine stress cardiac magnetic resonance imaging (CMR) in patients referred for evaluation of myocardial ischemia. We reviewed 300 consecutive patients (age 65 ± 11 years, 74% male) with suspected or known coronary disease and normal wall motion who had undergone adenosine stress CMR negative for ischemia and scar. Most patients were at intermediate risk of coronary artery disease. The end points studied were all causes of mortality and major adverse cardiac events, including cardiac death, myocardial infarction, revascularization, and hospitalization for unstable angina. During a mean follow-up of 5.5 years (mean = 5.4 ± 1.1), 16 patients died because of various causes (cardiac death in 5 patients). Three patients had a nonfatal myocardial infarction, 7 patients were hospitalized for revascularization, and 11 were medically treated for unstable angina. The annual cardiac event rate was 1.3% (0.78% in the first 3 years and 1.9% between the fourth and sixth years). The predictors of major adverse cardiac events in a multivariate analysis model were as follows: advanced age (hazard ratio [HR] 1.15, 95% confidence interval [95% CI] 1.02-1.30), diabetes (HR 17.5, 95% CI 2.2-140), and the habit of smoking (HR 5.9, 95% CI 1.0-35.5). For all causes of mortality, the only predictor was diabetes (HR 11.4, 95% CI 1.76-74.2). Patients with normal stress CMR had an excellent outcome during the 3 years after the study. The cardiac event rate was higher between the fourth and sixth years. Over a 5.5-year period, a low event rate and excellent prognosis occurred in patients with normal adenosine stress CMR. Low- to intermediate-risk patients with a normal CMR are at low risk for subsequent cardiac events. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Magnetic resonance imaging of the brain in normal aging and dementia

    International Nuclear Information System (INIS)

    Alavi, A.; Fazekas, F.; Chawluk, J.; Zimmerman, R.

    1987-01-01

    The unusual sensitivity of magnetic resonance imaging in detecting white matter lesions has yielded striking results in studying the aging brain and in diagnosing a variety of central nervous system disorders. These lesions are most obvious in the periventricular white matter and appear as punctate or confluent hyperintense abnormalities on T2-weighted images. Their correlation with increasing age and the ensuing increase of cardiovascular risk factors suggests ischemic damage as their probable underlying pathologic cause. MRI thus may prove an early and very sensitive indicator of incipient cerebrovascular disease, adding information on the association of vascular damage with the development of dementing illness. This report is a preliminary communication of an ongoing study which is evaluating the importance of these findings in the 'normal' aging brain and different forms of dementia. 11 refs.; 1 table

  10. First-principles calculation of monitoring spin states of small magnetic nanostructures with IR spectrum of CO

    International Nuclear Information System (INIS)

    Li, C; Lefkidis, G; Huebner, W

    2010-01-01

    A fully ab initio controlled ultrafast magnetooptical switching mechanism in small magnetic clusters is achieved through exploiting spin-orbit-coupling enabled Λ processes. The idea is that in the magnetic molecules a fast transition between two almost degenerate states with different spins can be triggered by a laser pulse, which leads to an electron excitation from one of the degenerate states to a highly spin-mixed state and a deexcitation to the state of opposite spin. In this paper a CO molecule is attached to one magnetic center of the clusters, which serves as an experimental marker to map the laser-induced spin manipulation to the IR spectrum of CO. The predicted spin-state-dependent CO frequencies can facilitate experimental monitoring of the processes. We show that spin flip in magnetic atoms can be achieved in structurally optimized magnetic clusters in a subpicosecond regime with linearly polarized light.

  11. Handling mixed-state magnetization data for magnetocaloric studies-a solution to achieve realistic entropy behaviour

    International Nuclear Information System (INIS)

    Das, S; Amaral, J S; Amaral, V S

    2010-01-01

    We present an approach to extract a realistic magnetic entropy value from non-equilibrium magnetization data near the transition temperature of a typical first-order system with a mixed-phase state, influenced by the phase transformation, which is responsible for large values reported, even higher than the theoretical limit. The effect of the mixed-phase state is modelled in the magnetization and its non-physical contribution is removed to obtain the magnetic entropy in accordance with calorimetric experiment and theoretical simulation. This approach gives a reliable estimation of the magnetic entropy value incorporating experimental non-equilibrium magnetization data and correcting the use of Maxwell's relation. (fast track communication)

  12. Phase diagrams of magnetic state transformations in multiferroic composites controlled by size, shape and interfacial coupling strain

    Directory of Open Access Journals (Sweden)

    Qiang Sheng

    2017-10-01

    Full Text Available This work aims to give a comprehensive view of magnetic state stability and transformations in PZT-film/FeGa-dot multiferroic composite systems due to the combining effects of size, shape and interfacial coupling strain. It is found that the stable magnetic state of the FeGa nanodots is not only a function of the size and shape of the nanodot but also strongly sensitive to the interfacial coupling strain modified by the polarization state of PZT film. In particular, due to the large magnetostriction of FeGa, the phase boundaries between different magnetic states (i.e., in-plane/out-of-plane polar states, and single-/multi-vortex states of FeGa nanodots can be effectively tuned by the polarization-mediated strain. Fruitful strain-mediated transformation paths of magnetic states including those between states with different orderings (i.e., one is polar and the other is vortex, as well as those between states with the same ordering (i.e., both are polar or both are vortex have been revealed in a comprehensive view. Our result sheds light on the potential of utilizing electric field to induce fruitful magnetic state transformation paths in multiferroic film-dot systems towards a development of novel magnetic random access memories.

  13. Determination of the ground state of an Au-supported FePc film based on the interpretation of Fe K - and L -edge x-ray magnetic circular dichroism measurements

    Science.gov (United States)

    Natoli, Calogero R.; Krüger, Peter; Bartolomé, Juan; Bartolomé, Fernando

    2018-04-01

    We determine the magnetic ground state of the FePc molecule on Au-supported thin films based on the observed values of orbital anisotropy and spectroscopic x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and L edges. Starting from ab initio molecular orbital multiplet calculations for the isolated molecule, we diagonalize the spin-orbit interaction in the subspace spanned by the three lowest spin triplet states of 3A2 g and 3Eg symmetry in the presence of a saturating magnetic field at a polar angle θ with respect to the normal to the plane of the film, plus an external perturbation representing the effect of the molecules in the stack on the FePc molecule under consideration. We find that the orbital moment of the ground state strongly depends on the magnetic field direction in agreement with the sum rule analysis of the L23-edge XMCD data. We calculate integrals over the XMCD spectra at the Fe K and L23 edges as used in the sum rules and explicitly show that they agree with the expectation values of the orbital moment and effective spin moment of the ground state. On the basis of this analysis, we can rule out alternative candidates proposed in the literature.

  14. George E. Valley, Jr. Prize Talk: Quantum Frustrated Magnetism and its Expression in the Ground State Selection of Pyrochlore Magnets

    Science.gov (United States)

    Ross, Kate

    In the search for novel quantum states of matter, such as highly entangled Quantum Spin Liquids, ``geometrically frustrated'' magnetic lattices are essential for suppressing conventional magnetic order. In three dimensions, the pyrochlore lattice is the canonical frustrated geometry. Magnetic materials with pyrochlore structures have the potential to realize unusual phases such as ``quantum spin ice'', which is predicted to host emergent magnetic monopoles, electrons, and photons as its fundamental excitations. Even in pyrochlores that form long range ordered phases, this often occurs through unusual routes such as ``order by disorder'', in which the fluctuation spectrum dictates the preferred ordered state. The rare earth-based pyrochlore series R2Ti2O7 provides a fascinating variety of magnetic ground states. I will introduce the general anisotropic interaction Hamiltonian that has been successfully used to describe several materials in this series. Using inelastic neutron scattering, the relevant anisotropic interaction strengths can be extracted quantitatively. I will discuss this approach, and its application to two rare earth pyrochlore materials, Er2Ti2O7 and Yb2Ti<2O7, whose ground state properties have long been enigmatic. From these studies, ErTi2O7 and Yb2Ti2O7 have been suggested to be realizations of "quantum order by disorder" and "quantum spin ice", respectively. This research was supported by NSERC of Canada and the National Science Foundation.

  15. A superconducting magnet: Tb2Mo3Si4

    International Nuclear Information System (INIS)

    Aliev, F.G.; Pryadun, V.V.; Vieira, S.; Villar, R.; Paredes, J.; Levanyuk, A.P.; Yarovets, V.I.

    1994-01-01

    Measurements of transport properties (resistivity, Seebeck coefficient, thermal conductivity), thermal expansion, heat capacity and magnetic susceptibility of Tb 2 Mo 3 Si 4 samples with different annealing conditions show that in this superconductor (with T c between 0.5 and 1.2 K) a complex magnetic structure exists in the normal state, characterized by transitions at 2.3 K and 19 K. The expected magnetic structures are discussed taking into account the absence of experimental evidence of spontaneous magnetization and the possibility of an antiferromagnetic-structure formation without change of translational geometry. (orig.)

  16. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    International Nuclear Information System (INIS)

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated

  17. Accretion onto magnetized neutron stars: Normal mode analysis of the interchange instability at the magnetopause

    International Nuclear Information System (INIS)

    Arons, J.; Lea, S.M.

    1976-01-01

    We describe the results of a linearized hydromagnetic stability analysis of the magnetopause of an accreting neutron star. The magnetosphere is assumed to be slowly rotating, and the plasma just outside of the magnetopause is assumed to be weakly magnetized. The plasma layer is assumed to be bounded above by a shock wave, and to be thin compared with the radius of the magnetosphere. Under these circumstances, the growing modes are shown to be localized in the direction parallel to the zero-order magnetic field. The structure of the modes is still similar to the flute mode, however. The growth rate at each magnetic latitude is lambda given by γ 2 =g/sub n/kα/sub eff/(lambda) tanh [kz/sub s/(lambda)] where g/sub n/ is the magnitude of the gravitational acceleration normal to the surface, kapprox. =vertical-barmvertical-bar/R (lambda)cos lambda, vertical-barmvertical-bar is the azimuthal mode number, R (lambda) is the radius of the magnetosphere, z/sub s/ is the height of the shock above the magnetopause, and α/sub eff/(lambda) <1 is the effective Atwood number which embodies the stabilizing effects of favorable curvature and magnetic tension. We calculate α/sub eff/(lambda), and also discuss the stabilizing effects of viscosity and of aligned flow parallel to the magnetopause

  18. Qualifying tests for TRIAM-1M superconducting toroidal magnetic field coil

    Energy Technology Data Exchange (ETDEWEB)

    Nakanura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Tanaka, Masayoshi; Nagao, Akihiro; Kawasaki, Shoji; Itoh, Satoshi

    1984-09-01

    In the strong toroidal magnetic field experimental facility ''TRIAM-1M'' currently under construction, construction of the superconducting toroidal magnetic field coil and the following qualifying tests conducted on the full-scale superconducting toroidal magnetic field coil actually fabricated are described: (1) coil excitation test, (2) superconducting stability test, (3) external magnetic field application test, and (4) high-speed excitation test. On the basis of these test results, stability was evaluated of the superconducting coil being operated in the tokamak device. In normal tokamak operation, there occurs no normal conduction transition. At the time of plasma disruption, though this transition takes place in part of the coil, the superconducting state is immediately restored. By its electromagnetic force analysis, the superconducting coil is also stable in structure.

  19. Variable-State-Dimension Kalman-based Filter for orientation determination using inertial and magnetic sensors.

    Science.gov (United States)

    Sabatini, Angelo Maria

    2012-01-01

    In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.

  20. Variable-State-Dimension Kalman-Based Filter for Orientation Determination Using Inertial and Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2012-06-01

    Full Text Available In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1, and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2. Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.

  1. On the transition to the normal phase for superconductors surrounded by normal conductors

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2009-01-01

    For a cylindrical superconductor surrounded by a normal material, we discuss transition to the normal phase of stable, locally stable and critical configurations. Associated with those phase transitions, we define critical magnetic fields and we provide a sufficient condition for which those...

  2. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  3. Feasibility study of steady state magnetic field measurement

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Fujita, Junji; Matsuura, Kiyokata; Sakata, Masataka; Fujiwaka, Setsuya; Matoba, Tohru.

    1995-08-01

    A rotating magnetic probe testing system has been designed and constructed for the purpose of establishing a technique of the plasma current measurement on a steady state tokamak. An air turbine is employed to drive the rotating magnetic coil from the viewpoint of avoiding the use of an electric motor in the vicinity of the tokamak device. The signal induced on the rotating probe is transmitted to the amplifier through a transformer coupling. A long term testing on mechanical as well as electrical characteristics has been carried out to find key technical issues on this system. A continuous operation for more than one week has successfully been achieved. (author)

  4. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements

    Science.gov (United States)

    Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur

    2018-01-01

    Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429

  5. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  6. Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    OpenAIRE

    Regnier, S.; Priest, E. R.

    2008-01-01

    To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We inves...

  7. Characteristics of magnetic switch used as main switch of solid-state accelerator

    International Nuclear Information System (INIS)

    Li Song; Qian Baoliang; Yang Hanwu; Meng Zhipeng; Yang Shi

    2012-01-01

    In order to improve the performance of solid-state accelerator, the characteristics of magnetic switch used as the main switch of the accelerator have been investigated. The volume of magnetic core, the loss, and saturated inductance of the magnetic switch have been derived. The results show that the spacing factor of the magnetic switch reaches the peak when the height of the magnetic materials is 0.05 m for selected magnetic cores. The saturated inductance of the windings changes slowly when the average magnetic path length of the core is greater than 1 m. The physical process of saturation in the cores was analyzed by using saturation-wave theory. The rise-time factor of the output pulse was derived. The thickness, resistivity and magnetic path length difference of the magnetic core are shown to be key parameters affecting the rise-time factor. (authors)

  8. Angular momentum, g-value, and magnetic flux of gyration states

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1991-10-01

    Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i Z . According to Richard P. Feynman (and also Frank Wilczek) L = (rxμv) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = iℎ L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L Z = ℎ/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of ''electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint

  9. Bound-state β decay of a neutron in a strong magnetic field

    International Nuclear Information System (INIS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2005-01-01

    The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology

  10. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    Science.gov (United States)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  11. Detailed spectroscopy of the normally deformed states in 132Ce

    International Nuclear Information System (INIS)

    Paul, E.S.; Gizon, A.; Gizon, J.; Santos, D.; Nyako, B.M.; O'Brien, N.J.; Parry, C.M.; Wadsworth, R.

    1997-01-01

    High-spin states have been studied in 132 Ce produced in the 100 Mo( 36 S,4nγ) reaction using the EUROGAM II spectrometer. The structure of the normally deformed states (β 2 ∝0.2) has been investigated. Eight ΔI=2 bands and three ΔI=1 bands have been identified and the level scheme extended up to spin and parity (40 + ) at an excitation energy 19.79 MeV. The results are interpreted with the aid of Woods-Saxon cranking calculations, which suggest a variety of triaxial (γ) shapes in this nucleus stabilised by specific active quasiparticle orbitals. (orig.)

  12. Effects of a primordial magnetic field with log-normal distribution on the cosmic microwave background

    International Nuclear Information System (INIS)

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Takahashi, Keitaro

    2011-01-01

    We study the effect of primordial magnetic fields (PMFs) on the anisotropies of the cosmic microwave background (CMB). We assume the spectrum of PMFs is described by log-normal distribution which has a characteristic scale, rather than power-law spectrum. This scale is expected to reflect the generation mechanisms and our analysis is complementary to previous studies with power-law spectrum. We calculate power spectra of energy density and Lorentz force of the log-normal PMFs, and then calculate CMB temperature and polarization angular power spectra from scalar, vector, and tensor modes of perturbations generated from such PMFs. By comparing these spectra with WMAP7, QUaD, CBI, Boomerang, and ACBAR data sets, we find that the current CMB data set places the strongest constraint at k≅10 -2.5 Mpc -1 with the upper limit B < or approx. 3 nG.

  13. Research Update: Utilizing magnetization dynamics in solid-state thermal energy conversion

    Directory of Open Access Journals (Sweden)

    Stephen R. Boona

    2016-10-01

    Full Text Available We review the spin-Seebeck and magnon-electron drag effects in the context of solid-state energy conversion. These phenomena are driven by advective magnon-electron interactions. Heat flow through magnetic materials generates magnetization dynamics, which can strongly affect free electrons within or adjacent to the magnetic material, thereby producing magnetization-dependent (e.g., remnant electric fields. The relative strength of spin-dependent interactions means that magnon-driven effects can generate significantly larger thermoelectric power factors as compared to classical thermoelectric phenomena. This is a surprising situation in which spin-based effects are larger than purely charge-based effects, potentially enabling new approaches to thermal energy conversion.

  14. Magnetic oscillations and quasiparticle band structure in the mixed state of type-II superconductors

    International Nuclear Information System (INIS)

    Norman, M.R.; MacDonald, A.H.; Akera, H.

    1995-01-01

    We consider magnetic oscillations due to Landau quantization in the mixed state of type-II superconductors. Our work is based on a previously developed formalism which allows the mean-field gap equations of the Abrikosov state to be conveniently solved in a Landau-level representation. We find that the quasiparticle band structure changes qualitatively when the pairing self-energy becomes comparable to the Landau-level separation. For small pairing self-energies, Landau-level mixing due to the superconducting order is weak and magnetic oscillations survive in the superconducting state although they are damped. We find that the width of the quasiparticle Landau levels in this regime varies approximately as Δ 0 n μ -1/4 where Δ 0 is proportional to the magnitude of the order parameter and n μ is the Landau-level index at the Fermi energy. For larger pairing self-energies, the lowest energy quasiparticle bands occur in pairs which are nearly equally spaced from each other and evolve with weakening magnetic field toward the bound states of an isolated vortex core. These bands have a weak magnetic field dependence and magnetic oscillations vanish rapidly in this regime. We discuss recent observations of the de Haas--van Alphen effect in the mixed state of several type-II superconductors in light of our results

  15. Magnetic state controllable critical temperature in epitaxial Ho/Nb bilayers

    Directory of Open Access Journals (Sweden)

    Yuanzhou Gu

    2014-04-01

    Full Text Available We study the magnetic properties of Ho thin films with different crystallinity (either epitaxial or non-epitaxial and investigate their proximity effects with Nb thin films. Magnetic measurements show that epitaxial Ho has large anisotropy in two different crystal directions in contrast to non-epitaxial Ho. Transport measurements show that the superconducting transition temperature (Tc of Nb thin films can be significantly suppressed at zero field by epitaxial Ho compared with non-epitaxial Ho. We also demonstrate a direct control over Tc by changing the magnetic states of the epitaxial Ho layer, and attribute the strong proximity effects to exchange interaction.

  16. State diagram of a perpendicular magnetic tunnel junction driven by spin transfer torque: A power dissipation approach

    Energy Technology Data Exchange (ETDEWEB)

    Lavanant, M. [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France); Department of Physics, New York University, New York, NY 10003 (United States); Petit-Watelot, S. [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France); Kent, A.D. [Department of Physics, New York University, New York, NY 10003 (United States); Mangin, S., E-mail: stephane.mangin@univ-lorraine.fr [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France)

    2017-04-15

    The state diagram of a magnetic tunnel junction with perpendicularly magnetized electrodes in the presence of spin-transfer torques is computed in a macrospin approximation using a power dissipation model. Starting from the macrospin's energy we determine the stability of energy extremum in terms of power received and dissipated, allowing the consideration of non-conservative torques associated with spin transfer and damping. The results are shown to be in agreement with those obtained by direct integration of the Landau-Lifshitz-Gilbert-Slonczewski equation. However, the power dissipation model approach is faster and shows the reason certain magnetic states are stable, such as states that are energy maxima but are stabilized by spin transfer torque. Breaking the axial system, such as by a tilted applied field or tilted anisotropy, is shown to dramatically affect the state diagrams. Finally, the influence of a higher order uniaxial anisotropy that can stabilize a canted magnetization state is considered and the results are compared to experimental data. - Highlights: • Methods to compute state Diagram (Voltage Versus Field) for perpendicular Magnetic Tunnel Junctions. • Comparison between the conventional LLG model and a model based on Power dissipation to study magnetization reversal in magnetic tunnel junction.

  17. An experimental study on the normal stress of magnetorheological fluids

    International Nuclear Information System (INIS)

    Jiang, Jile; Tian, Yu; Ren, Dongxue; Meng, Yonggang

    2011-01-01

    The dependence of the normal stress on the shear rate and magnetic field strength in the shear flow of magnetorheological (MR) fluids has been studied experimentally. An obvious normal stress could be observed when the applied magnetic field was higher than a critical value. The normal stress increases considerably with increase of the shear rate and magnetic field, and decreases suddenly and significantly upon the onset of shear thickening in MR fluids. The ratio of shear stress to normal stress, an analogue of the friction coefficient, increases with increase of the shear rate, but decreases with increase of the applied magnetic field. Along with the shear stress, the normal stress in MR fluids could provide a more comprehensive understanding of the MR effect, and the evolution of the particle structure in shear flow, and may have important implications for preparing high performance magnetostrictive elastomers with high force output along the magnetic field direction

  18. Water in Brain Edema : Observations by the Pulsed Nuclear Magnetic Resonance Technique

    NARCIS (Netherlands)

    GO, KG; Edzes, HT

    The state of water in three types of brain edema and in normal brain of the rat was studied by the pulsed nuclear magnetic resonance (NMR) technique. In cold-induced edema and in osmotic edema both in cortex and in white matter, the water protons have longer nuclear magnetic relaxation times than in

  19. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor.

    Science.gov (United States)

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A J; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-05-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom-based spin sensor that changes the sensor's spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.

  20. Actuated rheology of magnetic micro-swimmers suspensions: Emergence of motor and brake states

    Science.gov (United States)

    Vincenti, Benoit; Douarche, Carine; Clement, Eric

    2018-03-01

    We study the effect of magnetic field on the rheology of magnetic micro-swimmers suspensions. We use a model of a dilute suspension under simple shear and subjected to a constant magnetic field. Particle shear stress is obtained for both pusher and puller types of micro-swimmers. In the limit of low shear rate, the rheology exhibits a constant shear stress, called actuated stress, which only depends on the swimming activity of the particles. This stress is induced by the magnetic field and can be positive (brake state) or negative (motor state). In the limit of low magnetic fields, a scaling relation of the motor-brake effect is derived as a function of the dimensionless parameters of the model. In this case, the shear stress is an affine function of the shear rate. The possibilities offered by such an active system to control the rheological response of a fluid are finally discussed.

  1. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor

    Science.gov (United States)

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-01-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346

  2. Magnetic helices as metastable states of finite XY ferromagnetic chains: An analytical study

    Science.gov (United States)

    Popov, Alexander P.; Pini, Maria Gloria

    2018-04-01

    We investigated a simple but non trivial model, consisting of a chain of N classical XY spins with nearest neighbor ferromagnetic interaction, where each of the two end-point spins is assumed to be exchange-coupled to a fully-pinned fictitious spin. In the mean field approximation, the system might be representative of a soft ferromagnetic film sandwiched between two magnetically hard layers. We show that, while the ground state is ferromagnetic and collinear, the system can attain non-collinear metastable states in the form of magnetic helices. The helical solutions and their stability were studied analytically in the absence of an external magnetic field. There are four possible classes of solutions. Only one class is metastable, and its helical states contain an integer number of turns. Among the remaining unstable classes, there is a class of helices which contain an integer number of turns. Therefore, an integer number of turns in a helical configuration is a necessary, but not a sufficient, condition for metastability. These results may be useful to devise future applications of metastable magnetic helices as energy-storing elements.

  3. Engineering topological edge states in two dimensional magnetic photonic crystal

    Science.gov (United States)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  4. The technology and science of steady-state operation in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Becoulet, A; Hoang, G T

    2008-01-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  5. Steady state magnetic field configurations for the earth's magnetotail

    International Nuclear Information System (INIS)

    Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.

    1989-01-01

    The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet

  6. Switching behavior and novel stable states of magnetic hexagonal nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Yasir Rafique, M., E-mail: myasir.rafique@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Pan, Liqing; Guo, Zhengang [College of Science and Research Institute for New Energy, China Three Gorges University, Yichang 443002 (China)

    2017-06-15

    Micromagnetic simulations for Cobalt hexagonal shape nanorings show onion (O) and vortex state (V) along with new state named “tri-domain state”. The tri-domain state is observed in sufficiently large width of ring. The magnetic reversible mechanism and transition of states are explained with help of vector field display. The transitions from one state to other occur by propagation of domain wall. The vertical parts of hexagonal rings play important role in developing the new “tri-domain” state. The behaviors of switching fields from onion to tri-domain (HO-Tr), tri-domain to vortex state (HTr-V) and vortex to onion state and “states size” are discussed in term of geometrical parameter of ring.

  7. Evolution of frozen magnetic state in co-precipitated ZnδCo1-δFe2O4 (0 ≤ δ ≤ 1) ferrite nanopowders

    Science.gov (United States)

    Kubisztal, M.; Kubisztal, J.; Karolus, M.; Prusik, K.; Haneczok, G.

    2018-05-01

    The evolution of frozen magnetic state of ZnδCo1-δFe2O4 (0 ≤ δ ≤ 1) ferrite nanoparticles was studied by applying vibrating sample magnetometer measurements in temperature range 5-350 K and magnetic fields up to 7 T. It was shown that gradual conversion from the inverse spinel (δ = 0) to the normal one (δ = 1.0) is correlated with a drop of freezing temperature Tf (corresponding to blocking of mean magnetic moment of the system) from 238 K (δ = 0) to 9 K (δ = 1.0) and with a decrease of magnetic anisotropy constant K1 from about 8 · 105 J/m3 to about 3 · 105 J/m3. The percolation threshold predicted for bulk ferrites at 1 - δ ≈ 0.33 was observed as a significant weakness of ferrimagnetic coupling. In this case magnetization curves, determined according to the zero field cooling protocol, reveal two distinct maxima indicating that the system splits into two assemblies with specific ions distribution between A and B sites.

  8. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  9. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  10. The Wiedemann—Franz law in a normal metal—superconductor junction

    International Nuclear Information System (INIS)

    Ghanbari R; Rashedi G

    2011-01-01

    In this paper the influence of superconducting correlations on the thermal and charge conductances in a normal metal—superconductor (NS) junction in the clean limit is studied theoretically. First we solve the quasiclassical Eilenberger equations, and using the obtained density of states we can acquire the thermal and electrical conductances for the NS junction. Then we compare the conductance in a normal region of an NS junction with that in a single layer of normal metal (N). Moreover, we study the Wiedemann—Franz (WF) law for these two cases (N and NS). From our calculations we conclude that the behaviour of the NS junction does not conform to the WF law for all temperatures. The effect of the thickness of normal metal on the thermal conductivity is also theoretically investigated in the paper. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  12. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    International Nuclear Information System (INIS)

    Parazzini, C.; Righini, A.; Triulzi, F.; Rustico, M.; Consonni, D.

    2008-01-01

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  13. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    Energy Technology Data Exchange (ETDEWEB)

    Parazzini, C.; Righini, A.; Triulzi, F. [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Rustico, M. [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynecology, Milan (Italy); Consonni, D. [Fondazione IRCCS Ospedale Maggiore Policlinico, Unit of Epidemiology, Milan (Italy)

    2008-10-15

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  14. 3D volumetry comparison using 3T magnetic resonance imaging between normal and adenoma-containing pituitary glands

    OpenAIRE

    Ernesto Roldan-Valadez; Ana Cristina Garcia-Ulloa; Omar Gonzalez-Gutierrez; Manuel Martinez-Lopez

    2011-01-01

    Background: Computed-assisted three-dimensional data (3D) allows for an accurate evaluation of volumes compared with traditional measurements. Aims: An in vitro method comparison between geometric volume and 3D volumetry to obtain reference data for pituitary volumes in normal pituitary glands (PGs) and PGs containing adenomas. Design: Prospective, transverse, analytical study. Materials and Methods: Forty-eight subjects underwent brain magnetic resonance imaging (MRI) with 3D sequencing for ...

  15. Identification of Raman peaks of high-Tc cuprates in normal state through density of states

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2007-01-01

    We present a microscopic theory to explain and identify the Raman spectral peaks of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green's function technique of Zubarev at zero wave vector and finite (room) temperature limit. The four Raman active peaks (P 1 -P 4 ) representing the electronic states of the atomic sub-systems of the cuprate system are identified by the calculated quasi-particle energy bands and electron density of states (DOS). The effect of interactions on these peaks are also explained

  16. Persistent Fe moments in the normal-state collapsed-tetragonal phase of the pressure-induced superconductor Ca0.67Sr0.33Fe2As2

    Science.gov (United States)

    Jeffries, J. R.; Butch, N. P.; Lipp, M. J.; Bradley, J. A.; Kirshenbaum, K.; Saha, S. R.; Paglione, J.; Kenney-Benson, C.; Xiao, Y.; Chow, P.; Evans, W. J.

    2014-10-01

    Using nonresonant Fe Kβ x-ray emission spectroscopy, we reveal that Sr substitution into CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of Tc with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations.

  17. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  18. Theory of novel normal and superconducting states in doped oxide high-Tc superconductors

    International Nuclear Information System (INIS)

    Dzhumanov, S.

    2001-10-01

    A consistent and complete theory of the novel normal and superconducting (SC) states of doped high-T c superconductors (HTSC) is developed by combining the continuum model of carrier self-trapping, the tight-binding model and the novel Fermi-Bose-liquid (FBL) model. The ground-state energy of carriers in lightly doped HTSC is calculated within the continuum model and adiabatic approximation using the variational method. The destruction of the long-range antiferromagnetic (AF) order at low doping x≥ x cl ≅0.015, the formation of the in-gap states or bands and novel (bi)polaronic insulating phases at x c2 ≅0.06-0.08, and the new metal- insulator transition at x≅x c2 in HTSC are studied within the continuum model of impurity (defect) centers and large (bi)polarons by using the appropriate tight-binding approximations. It is found that the three-dimensional (3d) large (bi)polarons are formed at ε ∞ /ε 0 ≤0.1 and become itinerant when the (bi)polaronic insulator-to-(bi)polaronic metal transitions occur at x x c2 . We show that the novel pseudogapped metallic and SC states in HTSC are formed at x c2 ≤x≤x p ≅0.20-0.24. We demonstrate that the large polaronic and small BCS-like pairing pseudogaps opening in the excitation spectrum of underdoped (x c2 BCS =0.125), optimally doped (x BCS o ≅0.20) and overdoped (x>x o ) HTSC above T c are unrelated to superconductivity and they are responsible for the observed anomalous optical, transport, magnetic and other properties of these HTSC. We develop the original two-stage FBL model of novel superconductivity describing the combined novel BCS-like pairing scenario of fermions and true superfluid (SF) condensation scenario of composite bosons (i.e. bipolarons and cooperons) in any Fermi-systems, where the SF condensate gap Δ B and the BCS-like pairing pseudogap Δ F have different origins. The pair and single particle condensations of attracting 3d and two- dimensional (2d) composite bosons are responsible for

  19. Ground state magnetization of conduction electrons in graphene with Zeeman effect

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, F., E-mail: federico.escudero@uns.edu.ar [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Ardenghi, J.S., E-mail: jsardenhi@gmail.com [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Sourrouille, L., E-mail: lsourrouille@yahoo.es [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Jasen, P., E-mail: pvjasen@uns.edu.ar [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina)

    2017-05-01

    In this work we address the ground state magnetization in graphene, considering the Zeeman effect and taking into account the conduction electrons in the long wavelength approximation. We obtain analytical expressions for the magnetization at T=0 K, where the oscillations given by the de Haas van Alphen (dHvA) effect are present. We find that the Zeeman effect modifies the magnetization by introducing new peaks associated with the spin splitting of the Landau levels. These peaks are very small for typical carrier densities in graphene, but become more important for higher densities. The obtained results provide insight of the way in which the Zeeman effect modifies the magnetization, which can be useful to control and manipulate the spin degrees of freedom. - Highlights: • The magnetization has peaks whenever the last energy level changes discontinuously. • The peaks amplitude depends on the electron density. • The Zeeman effect introduces new peaks in the magnetization.

  20. In vivo P-31 MR spectroscopic studies of liver in normal adults and cirrhotic patients

    International Nuclear Information System (INIS)

    Ban, N.; Moriyasu, F.; Tamada, T.

    1986-01-01

    The author performed in vivo P-31 MR spectroscopic studies of normal and diseased human liver using an experimental 2.0-T whole-body MR imager. Then normal adults and ten cirrhotic patients in the fasting state were studied. Spatially localized in vivo P-31 MR spectra of human liver were obtained in combination with the use of a surface coil and gradient magnetic field. Six spectral peaks were observed in both groups and were assigned, from left to right, to phosphomonoester, inorganic phosphate, phosophodiester, γ-ATP, α-ATP, and β-ATP, on the basis of the chemical shifts. There were no definite differences between the spectral patterns of normal adults and those of cirrhotic patients in the fasting state

  1. Flowing cerebrospinal fluid in normal and hydrocephalic states: Appearance on MR images

    International Nuclear Information System (INIS)

    Bradley, W.G.; Kortman, K.E.; Burgoyne, B.; Eng, D.

    1986-01-01

    The signal intensity of the cerebrospinal fluid (CSF) in the cerebral aqueduct and lateral ventricles on magnetic resonance (MR) images was evaluated in 16 healthy individuals and in 32 patients with various forms of hydrocephalus (20 with chronic normal pressure hydrocephalus [NPH], seven with acute communicating hydrocephalus, and five with hydrocephalus ex vacuo [atrophy]). The low signal intensity frequently observed in the cerebral aqueduct is believed to reflect the pulsatile motion of CSF, which is related to the cardiac cycle. While this aqueductal flow void phenomenon can be observed in healthy individuals, it is most pronounced in patients with chronic, communicating NPH; is less evident in patients with acute, communicating hydrocephalus and is least evident in patients with atrophy. Ventricular compliance is known to be essentially normal in atrophy, mildly decreased in acute, communicating hydrocephalus; and severely decreased in NPH. The degree of aqueductal signal loss is believed to reflect the velocity of the pulsatile CSF motion, which in turn depends on the relative ventricular compliance and surface area

  2. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zueqian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  3. Normal spectral emissivity measurement of molten copper using an electromagnetic levitator superimposed with a static magnetic field

    International Nuclear Information System (INIS)

    Kurosawa, Ryo; Inoue, Takamitsu; Baba, Yuya; Sugioka, Ken-ichi; Kubo, Masaki; Tsukada, Takao; Fukuyama, Hiroyuki

    2013-01-01

    The normal spectral emissivity of molten copper was determined in the wavelength range of 780–920 nm and in the temperature range of 1288–1678 K, by directly measuring the radiance emitted by an electromagnetically levitated molten copper droplet under a static magnetic field of 1.5 T. The spectrometer for radiance measurement was calibrated using the relation between the theoretical blackbody radiance from Planck's law and the light intensity of a quasi-blackbody radiation source measured using a spectrometer at a given temperature. As a result, the normal spectral emissivity of molten copper was determined as 0.075 ± 0.011 at a wavelength of 807 nm, and it was found that its temperature dependence is negligible in the entire measurement temperature range tested. In addition, the results of the normal spectral emissivity and its wavelength dependence were discussed, in comparison with those obtained using the Drude free-electron model. (paper)

  4. CLIQ. A new quench protection technology for superconducting magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele

    2015-01-01

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling

  5. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  6. Spin-state crossover and low-temperature magnetic state in yttrium-doped Pr0.7Ca0.3CoO3

    Science.gov (United States)

    Knížek, K.; Hejtmánek, J.; Maryško, M.; Novák, P.; Šantavá, E.; Jirák, Z.; Naito, T.; Fujishiro, H.; de la Cruz, Clarina

    2013-12-01

    The structural and magnetic properties of two mixed-valence cobaltites with a formal population of 0.30 Co4+ ions per f.u., (Pr1-yYy)0.7Ca0.3CoO3 (y=0 and 0.15), have been studied down to very low temperatures by means of high-resolution neutron diffraction, SQUID magnetometry, and heat-capacity measurements. The results are interpreted within the scenario of the spin-state crossover from a room-temperature mixture of the intermediate-spin Co3+ and low-spin Co4+ (IS/LS) to the LS/LS mixture in the sample ground states. In contrast to the yttrium-free y=0 that retains the metallic-like character and exhibits ferromagnetic (FM) ordering below 55 K, the doped system y=0.15 undergoes a first-order metal-insulator transition at 132 K, during which not only the crossover to low-spin states but also a partial electron transfer from Pr3+ 4f to cobalt 3d states takes place simultaneously. Taking into account the nonmagnetic character of LS Co3+, such a valence shift electronic transition causes a magnetic dilution, formally to 0.12 LS Co4+ or 0.12 t2g hole spins per f.u., which is the reason for an insulating, highly nonuniform magnetic ground state without long-range order. Nevertheless, even in that case there exists a relatively strong molecular field distributed over all the crystal lattice. It is argued that the spontaneous FM order in y=0 and the existence of strong FM correlations in y=0.15 apparently contradict the single t2g band character of LS/LS phase. The explanation we suggest relies on a model of the defect-induced, itinerant hole-mediated magnetism, where the defects are identified with the magnetic high-spin Co3+ species stabilized near oxygen vacancies.

  7. Singlet and triplet states of trions in Zinc Selenide-based quantum wells probed by magnetic fields to 50 Tesla

    International Nuclear Information System (INIS)

    Astakhov, G.V.; Yakovlev, D.R.; Crooker, Scott A.; Barrick, Todd; Dzyubenko, A.B.; Sander, Thomas; Kochereshko, V.P.; Ossau, W.; Faschinger, W.; Waag, A.

    2002-01-01

    Singlet and triplet states of positively (X + ) and negatively (X - ) charged excitons in ZnSe-based quantum wells have been studied by means of photoluminescence in pulsed magnetic fields up to 50 T. The binding energy of the X - singlet state shows a monotonic increase with magnetic field with a tendency to saturation, while that of the X + slightly decreases. The triplet X + and X - states, being unbound at zero magnetic field, noticeably increase their binding energy in high magnetic fields. The experimental evidence for the interaction between the triplet and singlet states of lTions leading to their anticrossing in magnetic fields has been found.

  8. Theoretical investigation into the possibility of multiorbital magnetically ordered states in isotropically superstrained graphene

    Science.gov (United States)

    Craco, L.

    2017-10-01

    Using density functional dynamical mean-field theory (DFDMFT) we address the problem of antiferromagnetic spin ordering in isotropically superstrained graphene. It is shown that the interplay between strain-induced one-particle band narrowing and sizable on-site electron-electron interactions naturally stabilizes a magnetic phase with orbital-selective spin-polarized p -band electronic states. While an antiferromagnetic phase with strong local moments arises in the pz orbitals, the px ,y bands reveal a metallic state with quenched sublattice magnetization. We next investigate the possibility of superconductivity to emerge in this selective magnetoelectronic state. Our theory is expected to be an important step to understanding the next generation of flexible electronics made of Mott localized carbon-based materials as well as the ability of superstrained graphene to host coexisting superconductivity and magnetism at low temperatures.

  9. Effect of annealing treatments on normal state resistivity of YBa 2 ...

    African Journals Online (AJOL)

    Samples of YBa2(Cu1-xTix)3Oy superconductor with x=0.00 , 0.01, 0.03 have been prepared by solide state reaction method. The effect of annealing treatments on normal electrical resistivity has been done using the bipolaron model. The results of this study show the increase of localized charge when the dopant content ...

  10. Energy of surface states for 3D magnetic Schrödinger operators

    DEFF Research Database (Denmark)

    Nasrallah, Marwa

    In this dissertation, we study the Schrödinger operator with magnetic field in a three dimensional domain with compact smooth boundary. Functions in the domain of the operator satisfy (magnetic) Neumann condition on the boundary. The operator depends on the semi-classical parameter....... As this parameter becomes small, certain eigenfunctions of the operator are localized near the boundary of the domain, hence they will be called surface states. The main result of this dissertation is the calculation of the leading order terms of the energy and the number of surface states when the semi-classical...

  11. Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla

    International Nuclear Information System (INIS)

    Bottomley, P.A.; Hart, H.R. Jr.; Edelstein, W.A.; Schenck, J.F.; Smith, L.S.; Leue, W.M.; Mueller, O.M.; Redington, R.W.

    1984-01-01

    Proton magnetic resonance (MR) images were obtained of the human head in magnetic fields as high as 1.5 Tesla (T) using slotted resonator high radio-frequency (RF) detection coils. The images showed no RF field penetration problems and exhibited an 11 (+/-1)-fold improvement in signal-to-noise ratio over a .12-T imaging system. The first localized phosphorus 31, carbon 13, and proton MR chemical shift spectra recorded with surface coils from the head and body in the same instrument showed relative concentrations of phosphorus metabolites, triglycerides, and, when correlated with proton images, negligible lipid (-CH 2 -) signal from brain tissue on the time scale of the imaging experiment. Sugar phosphate and phosphodiester concentrations were significantly elevated in the head compared with muscle. This method should allow the combined assessment of anatomy, metabolism, and biochemistry in both the normal and diseased brain

  12. Electronic properties of high-Tc superconductors. The normal and the superconducting state of high-Tc materials. Proceedings

    International Nuclear Information System (INIS)

    Kuzmany, H.; Mehring, M.; Fink, J.

    1993-01-01

    The International Winter School on Electronic Properties of High-Temperature Superconductors, held between March 7-14, 1992, in Kirchberg, (Tyrol) Austria, was the sixth in a series of meetings to be held at this venue. Four of the earlier meetings were dedicated to issues in the field of conducting polymers, while the winter school held in 1990 was devoted to the new discipline of high-Tc superconductivity. This year's meeting constituted a forum not only for the large number of scientists engaged in high-Tc research, but also for those involved in the new and exciting field of fullerenes. Many of the issues raised during the earlier winter schools on conducting polymers, and the last one on high-Tc superconductivity, have taken on a new significance in the light of the discovery of superconducting C 60 materials. The Kirchberg meetings are organized in the style of a school where experienced scientists from universities, research laboratories and industry have the opportunity to discuss their most recent results, and where students and young scientists can learn about the present status of research and applications from some of the most eminent workers in their field. In common with the previous winter school on high-Tc superconductors, the present one focused on the electronic properties of the cuprate superconductors. In addition, consideration was given to related compounds which are relevant to the understanding of the electronic structure of the cuprates in the normal state, to other oxide superconductors and to fulleride superconductors. Contributions dealing with their preparation, transport and thermal properties, high-energy spectroscopies, nuclear magnetic resonance, inelastic neutron scattering, and optical spectroscopy are presented in this volume. The theory of the normal and superconducting states also occupies a central position. (orig.)

  13. Superconductors with low critical temperature for electro-magnets

    International Nuclear Information System (INIS)

    Devred, A.

    2002-07-01

    Among the superconductors with low critical temperature that are used to build magnets, NbTi has reached a development state that allows a massive production for big equipment of physics and an industrial production in the domain of medicine imaging. The material that might challenge the supremacy of NbTi is Nb 3 Sn but some technical difficulties have yet to be overcome. This report begins with a review of the different industrial processes used to produce superconducting wires based on the NbTi and Nb 3 Sn materials. The transition from the superconducting state to the resistive normal state is described for both materials, the magnetizing of multi-wire superconducting cables is also presented. The author details the different patterns of wires in cables and proposes a formulary that allows the determination, in some simple cases,of energy losses that are generated in a superconducting cable by a variable magnetic field. (A.C.)

  14. Magnetization distribution of single-particle states and 2/sup +/ rotational states from muonic atoms

    CERN Document Server

    Backe, H; Engfer, R; Kankeleit, E; Link, R; Michaelsen, R; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Vuilleumier, J L; Walter, H K; Zehnder, A

    1973-01-01

    The lowest states in muonic atoms are rather sensitive to the spatial distribution of the nuclear magnetization density, and several results were deduced from the broadening of the muonic 2p/sub 1/2/-1s/sub 1/2/ and 3d/sub 3/2/-2p/sub 1/2/ transitions. By measuring low energetic transitions such as the 2s/sub 1/2/-2p/sub 1/2/ transition or nuclear gamma -transitions, it is possible to resolve the magnetic hyperfine splittings. The magnetic hf splitting of the 2s/sub 1/2/-2p/sub 1/2/ transition in mu /sup 115/In and of the 3/2/sup +/-1/2/sup +/ nuclear gamma -transitions in mu /sup 203/Tl at 279 keV, and in mu /sup 205/Tl at 204 keV, have been resolved. For the 2/sup +/-0/sup +/ nuclear gamma -transition in mu /sup 190,192/Os at 187 keV and 206 keV, respectively, the magnetic hf splitting of the 2/sup +/ rotational levels and the intensities of the hf components were determined from a nearly resolved doublet splitting. (7 refs).

  15. Stewart analysis of apparently normal acid-base state in the critically ill

    NARCIS (Netherlands)

    Moviat, M.; Boogaard, M. van den; Intven, F.; Voort, P. van der; Hoeven, H. van der; Pickkers, P.

    2013-01-01

    PURPOSE: This study aimed to describe Stewart parameters in critically ill patients with an apparently normal acid-base state and to determine the incidence of mixed metabolic acid-base disorders in these patients. MATERIALS AND METHODS: We conducted a prospective, observational multicenter study of

  16. Magnetic Circular X-ray Dichroism Study of Paramagnetic and Anti-Ferromagnetic States in SrFeO3 Using a 10-T Superconducting Magnet

    International Nuclear Information System (INIS)

    Okamoto, J.; Mamiya, K.; Fujimori, S.-I.; Okane, T.; Saitoh, Y.; Muramatsu, Y.; Fujimori, A.; Ishiwata, S.; Takano, M.

    2004-01-01

    Magnetic circular x-ray dichroism (MCXD) measurements in Fe 2p absorption have been done on SrFeO3, which shows a spiral anti-ferromagnetism, by using a 10-T superconducting magnet. Finite MCXD structures have been observed under magnetic field of 8 T even in the paramagnetic and anti-ferromagnetic states. The intensity of the MCXD structure at hv ∼ 710 eV increases linearly as magnetic field increases linearly and the total magnetic moments estimated by MCXD sum rules roughly corresponds to the magnetization measured by SQUID measurements. MCXD study of paramagnetic and/or anti-ferromagnetic samples can be done by using a superconducting magnet that generates a strong magnetic field enough to induce finite magnetization

  17. Exploring the relationship between the magnetic frustration and the emergence of FFLO state on a triangular lattice

    International Nuclear Information System (INIS)

    Guo Jia; Jiang Hongmin; Li Jianxin

    2011-01-01

    The formation of the FFLO state on the anisotropic triangular lattices is investigated. Focus on the required lower critical magnetic field to enter the FFLO state. Magnetic frustration facilitates the formation of the FFLO state. Layered organic superconductors are good candidates for exploring the FFLO state. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) unconventional superconductors attract renewed interest in recent years. However, an unambiguous experimental demonstration of the FFLO state is hindered by the stringent requirements for its realization. In this paper, we explore the relationship between the magnetic frustration and the emergence of the FFLO state on an anisotropic triangular lattice, based on the self-consistent calculation of the Bogoliubov-de Gennes equations. We find that the required lower critical magnetic field to enter the FFLO state decreases with the increase of both the anisotropic ratio and the on-site Coulomb repulsive interaction. This demonstrates that it is easier to enter the FFLO state on the structurally frustrated triangular lattice in comparison with the square lattice, and suggests that the layered organic superconductors with a triangular lattice may be good candidates for exploring the FFLO state.

  18. Interface magnetization effect in heterojunctions based on semimagnetic compounds

    International Nuclear Information System (INIS)

    Malkova, N.

    1998-07-01

    The electronic states of stressed heterojunctions formed from narrow-gap semimagnetic semiconductors showing antiferromagnetic ordering are studies. The model Hamiltonian is constructed in the framework of the two-band envelope function approximation including far-band corrections. Heterojunctions both with normal and inverted band arrangements in the initial semiconductors are investigated. The interface Tamm-like states have been shown recently toe appear in these heterojunctions and they are spin-split with the magnetic axis perpendicular to the interface plane. The effect of far-band corrections is shown to be conditioned by the mutual movement of the constituent bands, resulting in changes and in some cases in full disappearance of the energy interval in which the interface state exists. The interface magnetization effect is expected when the Fermi level lies in one of the spin-polarized interface bands. Using the appropriate parameters, the value of the relative interface magnetization is calculated. (author)

  19. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    Science.gov (United States)

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  20. Magnetic isotope and external magnetic field effects upon the photo-Fries rearrangement of 1-naphthyl acetate

    International Nuclear Information System (INIS)

    Nakagaki, R.; Hiramatsu, M.; Watanabe, T.; Tanimoto, Y.; Nagakura, S.

    1985-01-01

    The reaction mechanisms of the photo-Fries rearrangement of 1-naphthyl acetate has been studied by means of steady-state photolysis and laser flash photolysis. A radical pair consisting of the 1-naphthoxyl and acetyl radicals is concluded to be a reaction intermediate. The yield of an in-cage product (2-acetyl-1-naphthol) exhibits a positive external magnetic field effect for the ester labeled by magnetically active 13 C, but no effect for the normal 12 C ester. The magnetic field effect observed for the labeled ester is quantitatively or semiquantitatively explained in terms of the radical-pair mechanism by considering hyperfine coupling between magnetically active nuclei ( 1 H and 13 C) and an unpaired electron in the acetyl radical. The in-cage product is formed through the singlet radical pair. 26 references, 5 figures, 3 tables

  1. Relativistic Killingbeck energy states under external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Eshghi, M. [Islamic Azad University, Researchers and Elite Club, Central Tehran Branch, Tehran (Iran, Islamic Republic of); Mehraban, H. [Semnan University, Faculty of Physics, Semnan (Iran, Islamic Republic of); Ikhdair, S.M. [An-Najah National University, Department of Physics, Faculty of Science, Nablus, West Bank, Palestine (Country Unknown); Near East University, Department of Electrical Engineering, Nicosia, Northern Cyprus (Turkey)

    2016-07-15

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  2. Relativistic Killingbeck energy states under external magnetic fields

    International Nuclear Information System (INIS)

    Eshghi, M.; Mehraban, H.; Ikhdair, S.M.

    2016-01-01

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  3. Possibility of producing the event-ready two-photon polarization entangled state with normal photon detectors

    International Nuclear Information System (INIS)

    Wang Xiangbin

    2003-01-01

    We propose a scheme to produce the maximally two-photon polarization entangled state with single-photon sources and the passive linear optics devices. In particular, our scheme only requires the normal photon detectors which distinguish the vacuum and non-vacuum Fock number states. A sophisticated photon detector distinguishing between one-photon state and two-photon state is unnecessary in the scheme

  4. Singlet and triplet states of trions in ZuSe-based quantum wells probed by magnetic fields to 50 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A. (Scott A.); Barrick, T. (Todd); Dzyubenko, A. B.; Sander, Thomas; Kochereshko, V. P.; Ossau, W.; Faschinger, W.; Waag, A.

    2002-01-01

    Singlet and triplet states of positively (X{sup +}) and negatively (X{sup -}) charged excitons in ZnSe-based quantum wells have been studied by means of photoluminescence in pulsed magnetic fields up to 50 T. The binding energy of the X{sup -} singlet state shows a monotonic increase with magnetic field with a tendency to saturation, while that of the X{sup +} slightly decreases. The triplet X{sup +} and X{sup -} states, being unbound at zero magnetic field, noticeably increase their binding energy in high magnetic fields. The experimental evidence for the interaction between the triplet and singlet states of lTions leading to their anticrossing in magnetic fields has been found.

  5. Normal and pathological findings for the facial nerve on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Al-Noury, K.; Lotfy, A.

    2011-01-01

    Aim: To demonstrate the enhanced radiological anatomy and common pathological conditions of the facial nerve by using magnetic resonance imaging (MRI). Materials and methods: A retrospective review of the MRI findings of the facial nerve of 146 patients who visited a tertiary academic referral center was conducted. Results: The radiological anatomy of the facial nerve was well illustrated using MRI, as were most of the common pathological conditions of the facial nerve. Conclusions: Enhancement of the facial nerve in MRI should be correlated with the clinical data. Normal individuals can show enhancement of the tympanic or vertical segments of the facial nerve. Enhancement of the labyrinthine portion of the nerve is almost diagnostic of Bell's palsy. No specific enhancement patterns were observed for tumours or for infections of the middle or external ear. A larger population study is required for the accurate assessment of facial nerve enhancement in multiple sclerosis patients.

  6. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    International Nuclear Information System (INIS)

    Kamitani, Atsushi; Yokono, Takafumi; Yokono, Takafumi

    2000-01-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency ω. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with ω > or approx. 1 kHz. (author)

  7. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, Atsushi; Yokono, Takafumi [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering; Yokono, Takafumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Information Sciences and Electronics

    2000-06-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency {omega}. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with {omega} > or approx. 1 kHz. (author)

  8. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron state in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Bednarski, Henryk; Spałek, Józef

    2014-01-01

    We extend the theory of the bound magnetic polaron (BMP) in diluted paramagnetic semiconductors to the situation with a ferromagnetic phase transition. This is achieved by including the classical Gaussian fluctuations of magnetization from the quartic (non-Gaussian) term in the effective Ginzburg–Landau Hamiltonian for the spins. Within this approach, we find a ferromagnetically ordered state within the BMP in the temperature range well above the Curie temperature for the host magnetic semiconductor. Numerical results are compared directly with the recently available experimental data for the ferromagnetic semiconductor GdN. The agreement is excellent, given the simplicity of our model, and is because the polaron size (≃1.4 nm) encompasses a relatively large but finite number (N≈400) of quasiclassical spins S=7/2 coming from Gd 3+ ions. The presence of BMP invalidates the notion of critical temperature and thus makes the incorporation of classical Gaussian fluctuations sufficient to realistically describe the situation. (paper)

  9. High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3

    Science.gov (United States)

    Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.

    2018-06-01

    We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.

  10. Magnetic properties and effect of pressure on the electronic state of EuCo2Ge2

    Science.gov (United States)

    Ashitomi, Y.; Kakihana, M.; Honda, F.; Nakamura, A.; Aoki, D.; Uwatoko, Y.; Nakashima, M.; Amako, Y.; Takeuchi, T.; Kida, T.; Tahara, T.; Hagiwara, M.; Haga, Y.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    EuCo2Ge2 with the tetragonal structure is a Eu-divalent antiferromagnet with the Néel temperature TN = 23 K. The magnetic easy-axis corresponds to the [100] direction (a-axis), while the [001] direction (c-axis) is a hard-axis. The magnetization for H∥ [ 100 ] indicates a metamagnetic transition at 25 kOe and saturates above 75 kOe. On the other hand, the hard-axis magnetization increases approximately linearly and saturates above 110 kOe. The magnetic phase diagram was constructed. A characteristic feature in EuCo2Ge2 is known as a valence transition under pressure, from Eu 2+δ to Eu 3 - δ ‧(δ, δ ‧ electronic state is changed into a moderate heavy fermion state and approaches the nearly trivalent electronic state.

  11. Magnetic Resonance Imaging of the Ovaries of Healthy Women: Determination of Normal Values

    International Nuclear Information System (INIS)

    Hauth, E.A.M.; Jaeger, H.J.; Libera, H.; Lange, S.; Forsting, M.

    2006-01-01

    Purpose: To establish normal values for the volume and maximal diameter of ovaries and ovarian follicles and for the number of ovarian follicles in magnetic resonance imaging (MRI) based on menstrual cycle phase and age. Material and Methods: We performed MRI of the pelvis on 100 healthy women. Volume of the ovaries and largest ovarian follicles and the number of ovarian follicles were determined by menstrual cycle phase and age. Results: The mean volume of the ovaries significantly increased with age and reached its peak between 31 and 40 years, and subsequently decreased. The mean volume of the largest ovarian follicles also significantly increased with age to reach its peak at 41-50 years. The highest mean numbers of ovarian follicles were found at 20-40 years. When the volumes of ovaries and of the largest ovarian follicles, and the number of ovarian follicles were compared between the first and second phase of the menstrual cycle, no significant differences were found. Conclusion: The volume and maximal diameter of ovaries and ovarian follicles and the number of ovarian follicles differ significantly with age, but not between the two phases of the menstrual cycle. Knowledge of MRI-related normal values can be expected to aid the early identification of ovarian pathologies

  12. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy.

    Science.gov (United States)

    Flodin, P; Martinsen, S; Mannerkorpi, K; Löfgren, M; Bileviciute-Ljungar, I; Kosek, E; Fransson, P

    2015-01-01

    Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM). However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI) before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity.

  13. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy

    Directory of Open Access Journals (Sweden)

    P. Flodin

    2015-01-01

    Full Text Available Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM. However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity.

  14. Magnetic dipole moments of High-K isomeric states in Hf isotopes

    CERN Multimedia

    Walters, W; Nishimura, K; Bingham, C R

    2007-01-01

    It is proposed to make precision measurements of the magnetic moments of 5 multi-quasi-particle K-isomers in Hf nuclei by the Nuclear Magnetic Resonance of Oriented Nuclei (NMR/ON) technique using the NICOLE on-line nuclear orientation facility and exploiting the unique HfF$_{3}$ beams recently available at ISOLDE. Results will be used to extract single-particle and collective g-factors of the isomeric states and their excitations and to shed new light on their structure.

  15. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS).

    Science.gov (United States)

    Fox, Michael D; Halko, Mark A; Eldaief, Mark C; Pascual-Leone, Alvaro

    2012-10-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include using resting state fcMRI to guide target selection for TMS and using TMS to modulate pathological network interactions identified with resting state fcMRI. The combination of TMS and resting state fcMRI has the potential to accelerate the translation of both techniques into the clinical realm and promises a new approach to the diagnosis and treatment of neurological and psychiatric diseases that demonstrate network pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Magnetic history dependence of metastable states in thin films with dipolar interactions

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Labarta, Amilcar

    2000-01-01

    We present the results of a Monte Carlo simulation of the ground state and magnetic relaxation of a model of a thin film consisting of a two-dimensional square lattice of Heisenberg spins with perpendicular anisotropy K, exchange J and long-range dipolar interactions g. We have studied the ground state configurations of this system for a wide range of the interaction parameters J/g, K/g by means of the simulated annealing procedure, showing that the model is able to reproduce the different magnetic configurations found in real samples. We have found the existence of a certain range of K/g, J/g values for which in-plane and out-of-plane configurations are quasi-degenerated in energy. We show that when a system in this region of parameters is perturbed by an external force that is subsequently removed, different kinds of ordering may be induced depending on the followed procedure. In particular, simulations of relaxations from saturation under an AC demagnetizing field or in zero field are in qualitative agreement with recent experiments on epitaxial and granular alloy thin films, which show a wide variety of magnetic patterns depending on their magnetic history

  17. The magnetic ground state and relationship to Kitaev physics in α-RuCl3

    Science.gov (United States)

    Banerjee, Arnab

    The 2D Kitaev candidate alpha-RuCl3 consists of stacked honeycomb layers weakly coupled by Van der Waals interactions. Here we report the measurements of bulk properties and neutron diffraction in both powder and single crystal samples. Our results show that the full three dimensional magnetic ground state is highly pliable with at least two dominant phases corresponding to two different out-of-plane magnetic orders. They have different Neel temperatures dependent on the stacking of the 2D layers, such as a broad magnetic transition at TN = 14 K as observed in phase-pure powder samples, or a sharp magnetic transition at a lower TN = 7 K as observed in homogeneous single crystals with no evidence for stacking faults. The magnetic refinements of the neutron scattering data will be discussed, which in all cases shows the in-plane magnetic ground state is the zigzag phase common in Kitaev related materials including the honeycomb lattice Iridates. Inelastic neutron scattering in all cases shows that this material consistently exhibit strong two-dimensional magnetic fluctuations leading to a break-down of the classical spin-wave picture. Work performed at ORNL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.

  18. Hybridization of electron states in a step quantum well in a magnetic field

    International Nuclear Information System (INIS)

    Barseghyan, M.G.; Kirakosyan, A.A.

    2005-01-01

    The quantum states and energy levels of an electrion in a rectangular step quantum well in a magnetic field parallel to the plane of two-dimentional electron gas are investigated. It is shown that the joint effect of the magnetic field and confining potential of the quantum well results in redical change of the electron spectrum. The dependence of the electron energy levels on the quantum well parameters, magnetic field induction and projection of the wave-vector along the magnetic field induction are calculated. Numerical calculations are carried out for a AlAs/GaAlAs/GaAs/AlAs step quantum well

  19. Spin polarization and magnetization of conduction-band dilute-magnetic-semiconductor quantum wells with non-step-like density of states

    International Nuclear Information System (INIS)

    Simserides, Constantinos

    2005-01-01

    We study the magnetization, M, and the spin polarization, ζ, of n-doped non-magnetic-semiconductor (NMS)/narrow to wide dilute-magnetic-semiconductor (DMS)/n-doped NMS quantum wells, as a function of the temperature, T, and the in-plane magnetic field, B. Under such conditions the density of states (DOS) deviates from the occasionally stereotypic step-like form, both quantitatively and qualitatively. The DOS modification causes an impressive fluctuation of M in cases of vigorous competition between spatial and magnetic confinement. At low T, the enhanced electron spin-splitting, U oσ , acquires its bigger value. At higher T, U oσ decreases, augmenting the influence of the spin-up electrons. Increasing B, U oσ increases and accordingly electrons populate spin-down subbands while they abandon spin-up subbands. Furthermore, due to the DOS modification, all energetically higher subbands become gradually depopulated

  20. Crystal field splitting and spin states of Co ions in cobalt ferrite with composition Co1.5Fe1.5O4 using magnetization and X-ray absorption spectroscopy measurements

    Science.gov (United States)

    Sinha, A. K.; Singh, M. N.; Achary, S. N.; Sagdeo, A.; Shukla, D. K.; Phase, D. M.

    2017-08-01

    Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co1.5Fe1.5O4 is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (TH) and octahedral (OH) sites. Spin states of Co3+ ions in TH sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L2,3-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t2g and eg absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at OH and TH sites. The results are in agreement with those obtained from magnetization data, and favors Co3+ ions in TH sites in high spin states. Normalized areas of the satellite peaks in TM L2,3-edge XAS spectra have been used to estimate 3dn+1L contribution in ground state wave function and the contributions were found to be significant.

  1. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    Science.gov (United States)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  2. Temperature dependence of the magnetic anisotropy of metallic Y-Ba-Cu-O single crystals in the normal phase

    International Nuclear Information System (INIS)

    Miljak, M.; Zlatic, V.; Kos, I.; Aviani, I.; Hamzic, A.; Collin, G.

    1990-01-01

    The magnetic anisotropy measurements of metallic Y-Ba-Cu-O compounds in the normal phase reveal a temperature-dependent diamagnetic component of the susceptibility that increases with decreasing temperature. The temperature variation of the susceptibility anisotropy and its total change do not seem to be much affected by the presence of the superconductivity at some lower temperature and could not be accounted for by superconducting fluctuations. Rather, the data remind one of the behavior of some quasi-two-dimensional metals with anisotropic Fermi surfaces, reflecting the properties of the low-energy excitations in the normal phase. The anisotropy measurements above the bulk superconducting transition temperature T c reveal the nonlinear effects, which are due to the onset of superconductivity in disconnected grains. The existence of a two-step transition, typical for granular superconductors, should be taken into consideration if the normal-phase susceptibility data are compared with the theoretical predictions in the vicinity of T c

  3. In-situ, In-Memory Stateful Vector Logic Operations based on Voltage Controlled Magnetic Anisotropy.

    Science.gov (United States)

    Jaiswal, Akhilesh; Agrawal, Amogh; Roy, Kaushik

    2018-04-10

    Recently, the exponential increase in compute requirements demanded by emerging applications like artificial intelligence, Internet of things, etc. have rendered the state-of-art von-Neumann machines inefficient in terms of energy and throughput owing to the well-known von-Neumann bottleneck. A promising approach to mitigate the bottleneck is to do computations as close to the memory units as possible. One extreme possibility is to do in-situ Boolean logic computations by using stateful devices. Stateful devices are those that can act both as a compute engine and storage device, simultaneously. We propose such stateful, vector, in-memory operations using voltage controlled magnetic anisotropy (VCMA) effect in magnetic tunnel junctions (MTJ). Our proposal is based on the well known manufacturable 1-transistor - 1-MTJ bit-cell and does not require any modifications in the bit-cell circuit or the magnetic device. Instead, we leverage the very physics of the VCMA effect to enable stateful computations. Specifically, we exploit the voltage asymmetry of the VCMA effect to construct stateful IMP (implication) gate and use the precessional switching dynamics of the VCMA devices to propose a massively parallel NOT operation. Further, we show that other gates like AND, OR, NAND, NOR, NIMP (complement of implication) can be implemented using multi-cycle operations.

  4. A 15O-H2O PET study of meditation and the resting state of normal consciousness

    DEFF Research Database (Denmark)

    Lou, H C; Kjaer, T W; Friberg, L

    1999-01-01

    The aim of the present study was to examine whether the neural structures subserving meditation can be reproducibly measured, and, if so, whether they are different from those supporting the resting state of normal consciousness. Cerebral blood flow distribution was investigated with the 15O-H20...... PET technique in nine young adults, who were highly experienced yoga teachers, during the relaxation meditation (Yoga Nidra), and during the resting state of normal consciousness. In addition, global CBF was measured in two of the subjects. Spectral EEG analysis was performed throughout...... the investigations. In meditation, differential activity was seen, with the noticeable exception of V1, in the posterior sensory and associative cortices known to participate in imagery tasks. In the resting state of normal consciousness (compared with meditation as a baseline), differential activity was found...

  5. Normal form for mirror machine Hamiltonians

    International Nuclear Information System (INIS)

    Dragt, A.J.; Finn, J.M.

    1979-01-01

    A systematic algorithm is developed for performing canonical transformations on Hamiltonians which govern particle motion in magnetic mirror machines. These transformations are performed in such a way that the new Hamiltonian has a particularly simple normal form. From this form it is possible to compute analytic expressions for gyro and bounce frequencies. In addition, it is possible to obtain arbitrarily high order terms in the adiabatic magnetic moment expansion. The algorithm makes use of Lie series, is an extension of Birkhoff's normal form method, and has been explicitly implemented by a digital computer programmed to perform the required algebraic manipulations. Application is made to particle motion in a magnetic dipole field and to a simple mirror system. Bounce frequencies and locations of periodic orbits are obtained and compared with numerical computations. Both mirror systems are shown to be insoluble, i.e., trajectories are not confined to analytic hypersurfaces, there is no analytic third integral of motion, and the adiabatic magnetic moment expansion is divergent. It is expected also that the normal form procedure will prove useful in the study of island structure and separatrices associated with periodic orbits, and should facilitate studies of breakdown of adiabaticity and the onset of ''stochastic'' behavior

  6. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2

    Science.gov (United States)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui

    2018-03-01

    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  7. Magnetic Cluster States in Nanostructured Materials

    International Nuclear Information System (INIS)

    Leslie-Pelecky, Diandra

    2008-01-01

    The goal of this work is to fabricate model nanomaterials with different types of disorder and use atomic-scale characterization and macroscopic magnetization measurements to understand better how specific types of disorder affects macroscopic magnetic behavior. This information can be used to produce magnetic nanomaterials with specific properties for applications such as permanent magnets, soft magnetic material for motors and biomedical applications.

  8. Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface rotor magnets

    Directory of Open Access Journals (Sweden)

    Ogbuka Cosmas

    2016-03-01

    Full Text Available A comprehensive comparison of the dynamic and steady state performance characteristics of permanent magnet synchronous motors (PMSM with interior and surface rotor magnets for line-start operation is presented. The dynamic model equations of the PMSM, with damper windings, are utilized for dynamic studies. Two typical loading scenarios are examined: step and ramp loading. The interior permanent magnet synchronous motor (IPMSM showed superior asynchronous performance under no load, attaining faster synchronism compared to the surface permanent magnet synchronous motor (SPMSM. With step load of 10 Nm at 2 s the combined effect of the excitation and the reluctance torque forced the IPMSM to pull into synchronism faster than the SPMSM which lacks saliency. The ability of the motors to withstand gradual load increase, in the synchronous mode, was examined using ramp loading starting from zero at 2 s. SPMSM lost synchronism at 12 s under 11 Nm load while the IPMSM sustained synchronism until 41 seconds under 40 Nm load. This clearly suggests that the IPMSM has superior load-withstand capability. The superiority is further buttressed with the steady state torque analysis where airgap torque in IPMSM is enhanced by the reluctance torque within 90° to 180° torque angle.

  9. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  10. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    Science.gov (United States)

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  11. Effect of low frequency magnetic field at reproductive system state and peroxidation processes in liver of male rates after low dose chronic irradiation

    International Nuclear Information System (INIS)

    Konoplya, E.F.; Vereshchako, G.T.; Popov, E.G.; Khodosovskaya, A.M.; Artemenko, A.M.; Bulovatskaya, I.V.; Rybakov, V.N.

    2002-01-01

    Low frequency magnetic field (power 3.5 wt, tension 8v, amplitude 15 Tl, frequency of followed impulses 10 Hz, frequency of exposure 70-90 Hz) significantly modified the morphofunctional state of the reproductive system and peroxidation processes in liver of male rates. It concluded in a partial restoration of testicular weight, a recovery of the blood serum testosterone levels and of the molecular characteristics of the androgen receptor system in liver and testes, a normalization of peroxidation processes in liver and a stimulation of some biochemical and bioenergetic processes in testes (authors)

  12. Normal and pathological findings for the facial nerve on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Al-Noury, K., E-mail: Kalnoury@kau.edu.sa [Department of Otolaryngology, King Abdulaziz University, Jeddah (Saudi Arabia); Lotfy, A. [Radiology Department, King Abdulaziz University Hospital and International Medical Centre, Jeddah (Saudi Arabia)

    2011-08-15

    Aim: To demonstrate the enhanced radiological anatomy and common pathological conditions of the facial nerve by using magnetic resonance imaging (MRI). Materials and methods: A retrospective review of the MRI findings of the facial nerve of 146 patients who visited a tertiary academic referral center was conducted. Results: The radiological anatomy of the facial nerve was well illustrated using MRI, as were most of the common pathological conditions of the facial nerve. Conclusions: Enhancement of the facial nerve in MRI should be correlated with the clinical data. Normal individuals can show enhancement of the tympanic or vertical segments of the facial nerve. Enhancement of the labyrinthine portion of the nerve is almost diagnostic of Bell's palsy. No specific enhancement patterns were observed for tumours or for infections of the middle or external ear. A larger population study is required for the accurate assessment of facial nerve enhancement in multiple sclerosis patients.

  13. Classical states of an electric dipole in an external magnetic field: Complete solution for the center of mass and trapped states

    Energy Technology Data Exchange (ETDEWEB)

    Atenas, Boris; Pino, Luis A. del; Curilef, Sergio, E-mail: scurilef@ucn.cl

    2014-11-15

    We study the classical behavior of an electric dipole in the presence of a uniform magnetic field. Using the Lagrangian formulation, we obtain the equations of motion, whose solutions are represented in terms of Jacobi functions. We also identify two constants of motion, namely, the energy E and a pseudomomentumC{sup →}. We obtain a relation between the constants that allows us to suggest the existence of a type of bound states without turning points, which are called trapped states. These results are consistent with and complementary to previous results. - Highlights: • Bound states without turning points. • Lagrangian Formulation for an electric dipole in a magnetic field. • Motion of the center of mass and trapped states. • Constants of motion: pseudomomentum and energy.

  14. Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.; Shibata, Masaru

    2006-01-01

    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can be formed in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both act on differentially rotating stars to redistribute angular momentum. Simulations of these stars are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. We consider stars with two different equations of state (EOS), a gamma-law EOS with Γ=2, and a more realistic hybrid EOS, and we evolve them adiabatically. Our simulations show that the fate of the star depends on its mass and spin. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Normal configurations have rest masses below the maximum achievable with uniform rotation, and angular momentum below the maximum for uniform rotation at the same rest mass. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along

  15. Magnetocaloric effect of polycrystalline Sm0.5Ca0.5MnO3 compound: Investigation of low temperature magnetic state

    Science.gov (United States)

    Das, Kalipada; Banu, Nasrin; Das, I.; Dev, B. N.

    2018-06-01

    An attempt has been made to probe low temperature magnetic state of the polycrystalline Sm0.5Ca0.5MnO3 compound via magnetization and magnetocaloric studies. In the context of the earlier debatable reports on the above mentioned compound between the existence of glassy magnetic state and small ferromagnetic domains from the 'ac' susceptibility measurements, our experimental observation from magnetocaloric effect study clearly indicates the existence of ferromagnetic droplets along with certain amount of superparamagnetic component at low temperature (magnetization (even at H = 0.01 T) data do not exhibit the spin freezing nature at the low temperature which is almost a generic tendency of glassy magnetic state. Our study also highlights the competence of magnetocaloric effect as a tool to distinguish between different magnetic states of a compound.

  16. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  17. Analysis of saturation effects on the operation of magnetic-controlled switcher type FCL

    Directory of Open Access Journals (Sweden)

    Faramarz Faghihi

    2009-12-01

    Full Text Available With the extensive application of electrical power system, suppression of fault current limiter is an important subject that guarantees system security. The superconducting fault current limiters (SFCL have been expected as a possible type of power apparatus to reduce the fault current in the power system. The results shown that under normal state, the FCL has no obvious effect on the power system; under fault state, the current limiting inductance connected in the bias current will be inserted into the fault circuit to limit the fault current. By regulating the bias current, the FCL voltage loss under normal state and the fault current can be adjusted to prescribed level. This kind of SFCL used the nonlinear permeability of the magnetic core for create a sufficient impedance and The transient performance considering the magnetic saturation is analyzed by Preisach model. Preisach model that intrinsically satisfies nonlinear properties is used as the numerical method for analysis of saturation effects. It is able to identification isotropic and no isotropic behaviour. The main idea is to compute the magnetization vector in two steps independently, amplitude and phase. The described model yield results in qualitative agreement with the experimental results.

  18. Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes

    International Nuclear Information System (INIS)

    Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef

    2016-01-01

    The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.

  19. The influence of normal fault on initial state of stress in rock mass

    Directory of Open Access Journals (Sweden)

    Tajduś Antoni

    2016-03-01

    Full Text Available Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  20. The influence of normal fault on initial state of stress in rock mass

    Science.gov (United States)

    Tajduś, Antoni; Cała, Marek; Tajduś, Krzysztof

    2016-03-01

    Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  1. Progressive Transformation between Two Magnetic Ground States for One Crystal Structure of a Chiral Molecular Magnet.

    Science.gov (United States)

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-03-21

    We report the exceptional observation of two different magnetic ground states (MGS), spin glass (SG, T(B) = 7 K) and ferrimagnet (FI, T(C) = 18 K), for one crystal structure of [{Mn(II)(D/L-NH2ala)}3{Mn(III)(CN)6}]·3H2O obtained from [Mn(CN)6](3-) and D/L-aminoalanine, in contrast to one MGS for [{Mn(II)(L-NH2ala)}3{Cr(III)(CN)6}]·3H2O. They consist of three Mn(NH2ala) helical chains bridged by M(III)(CN)6 to give the framework with disordered water molecules in channels and between the M(III)(CN)6. Both MGS are characterized by a negative Weiss constant, bifurcation in ZFC-FC magnetizations, blocking of the moments, both components of the ac susceptibilities, and hysteresis. They differ in the critical temperatures, absolute magnetization for 5 Oe FC (lack of spontaneous magnetization for the SG), and the shapes of the hysteresis and coercive fields. While isotropic pressure increases both T(crit) and the magnetizations linearly and reversibly in each case, dehydration progressively transforms the FI into the SG as followed by concerted in situ magnetic measurements and single-crystal diffraction. The relative strengths of the two moderate Mn(III)-CN-Mn(II) antiferromagnetic (J1 and J2), the weak Mn(II)-OCO-Mn(II) (J3), and Dzyaloshinkii-Moriya antisymmetric (DM) interactions generate the two sets of characters. Examination of the bond lengths and angles for several crystals and their corresponding magnetic properties reveals a correlation between the distortion of Mn(III)(CN)6 and the MGS. SG is favored by higher magnetic anisotropy by less distorted Mn(III)(CN)6 in good accordance with the Mn-Cr system. This conclusion is also born out of the magnetization measurements on orientated single crystals with fields parallel and perpendicular to the unique c axis of the hexagonal space group.

  2. Field-induced magnetic phases in the normal and superconducting states of ErNi2B2C

    DEFF Research Database (Denmark)

    Jensen, A.; Toft, K.N.; Abrahamsen, A.B.

    2004-01-01

    We present a comprehensive neutron-diffraction study of the magnetic structures of ErNi2B2C in the presence of a magnetic field applied along [010], [110], or [001]. In zero field, the antiferromagnetic structure is transversely polarized with Qapproximate to0.55a* and the moments along the b...

  3. Levitation force on a permanent magnet over a superconducting plane: Modified critical-state model

    International Nuclear Information System (INIS)

    Yang, Z.J.

    1997-01-01

    The authors consider a model system of a permanent magnet above a semi-infinite superconductor. They introduce a modified critical-state model, and carry out derivations of the levitation force acting on the magnet. A key feature of the modification allows the current density to be less than the critical value. The theoretical results show an exponential relationship between the force and the distance. Analytical expressions are developed for permanent magnets in the form of a point dipole, a tip of a magnetic force microscope, and a cylindrical magnet. In the latter case, the exponential relationship has been observed in numerous experiments but without previous interpretation

  4. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji

    2004-01-01

    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  5. Magnetic Flux Conversion in the DIII-D Steady-State Hybrid Scenario

    Science.gov (United States)

    Taylor, N. Z.; Luce, T. C.; La Haye, R. J.; Petty, C. C.; Nazikian, R.

    2017-10-01

    The hybrid is a promising high confinement scenario for ITER. The broader current profile aids discharge sustainment by raising qmin > 1 thereby avoiding sawtooth-triggered 2/1 tearing modes. In DIII-D hybrid scenario discharges, the rate of poloidal magnetic energy consumption is more than the rate of energy flow from the poloidal field coils. This is evidence that there is a conversion of toroidal flux to poloidal flux, which may be responsible for the anomalous broadening of the current profile known as flux pumping. The rate of poloidal flux being provided and consumed was tracked with coil and kinetic flux states. During long stationary intervals (1.5 seconds) with constant stored magnetic energy, a significant flux state deficit rate >10 mV was observed. The inequality in the evolution of the flux states was observed in hybrids that were 100% non-inductive and with successful RMP ELM suppression. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC05-06OR23100.

  6. Pressure effect on the superconducting and the normal state of β -B i2Pd

    Science.gov (United States)

    Pristáš, G.; Orendáč, Mat.; Gabáni, S.; Kačmarčík, J.; Gažo, E.; Pribulová, Z.; Correa-Orellana, A.; Herrera, E.; Suderow, H.; Samuely, P.

    2018-04-01

    The pressure effect up to 24.0 kbar on superconducting and normal-state properties of β -B i2Pd single crystal (Tc≈4.98 K at ambient pressure) has been investigated by measurements of the electrical resistivity. In addition, we have performed the heat capacity measurements in the temperature range 0.7-300 K at ambient pressure. The recent calculations of electronic density of states, electron-phonon interaction spectral function, and phonon density of states of β -B i2Pd [Zheng and Margine, Phys. Rev. B 95, 014512 (2017), 10.1103/PhysRevB.95.014512], are used to fit the resistivity and the heat capacity data. In the superconducting state we have focused on the influence of pressure on the superconducting transition temperature Tc and upper critical field Hc 2 and a negative effect with d Tc/d p =-0.025 K /kbar and d Hc 2/d p =-8 mT /kbar is found. A simplified Bloch-Grüneisen model was used to analyze the pressure effect on the temperature dependence of the normal-state resistivity. The obtained results point to a decrease of the electron-phonon coupling parameter λ and to a shift of phonon frequencies to higher values with pressure. Moreover, the temperature dependence of the normal-state resistivity follows a T2 dependence above Tc up to about 25 K. Together with the enhanced value of Sommerfeld coefficient γ =13.23 mJ mo l-1K-2 these results point to a certain role of the electron-electron interaction in the superconducting pairing mechanism in β -B i2Pd .

  7. Safety concerns for superconducting magnets of upcoming fusion experiments

    International Nuclear Information System (INIS)

    Turner, L.R.

    1983-01-01

    -Several fusion experiments being constructed (Tore Supra) or contemplated (DCT 8, Alcator DCT) feature superconducting coils. These coils introduce the following safety concerns: 1. Internally Cooled Conductor (ICC). ICC's are found to be highly stable against short heat pulses, even when the coolant is stagnant or moving at low steady-state velocity. However, a large heat pulse is certain to quench the conductor. Thus, determining the stability limits is vital. 2. Helium II Cooling. Helium II has both unique advantages as a coolant and unique safety problems. 3. Shorted Turns. In magnets with shorts from operational accidents, the current can switch back and forth between the short and the shorted turns, as those alternatively go normal and superconducting. 4. Hybrid Superconducting-Normal Conducting Coil System. The possibility of unequal currents in the different magnets and thus of unexpected forces on the superconducting magnets is much greater than for an all-superconducting system. Analysis of these problems are presented

  8. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    Science.gov (United States)

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems.

  9. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)

    OpenAIRE

    Fox, Michael D.; Halko, Mark A.; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2012-01-01

    Both resting state functional magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS) are increasingly popular techniques that can be used to non-invasively measure brain connectivity in human subjects. TMS shows additional promise as a method to manipulate brain connectivity. In this review we discuss how these two complimentary tools can be combined to optimally study brain connectivity and manipulate distributed brain networks. Important clinical applications include...

  10. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    Science.gov (United States)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  11. Magnetic states of single impurity in disordered environment

    Directory of Open Access Journals (Sweden)

    G.W. Ponedilok

    2013-01-01

    Full Text Available The charged and magnetic states of isolated impurities dissolved in amorphous metallic alloy are investigated. The Hamiltonian of the system under study is the generalization of Anderson impurity model. Namely, the processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a charged impurity are included. The configuration averaged one-particle Green's functions are obtained within Hartree-Fock approximation. A system of self-consistent equations is given for calculation of an electronic spectrum, the charged and the spin-polarized impurity states. Qualitative analysis of the effect of the metallic host structural disorder on the observed values is performed. Additional shift and broadening of virtual impurity level is caused by a structural disorder of impurity environment.

  12. Optical detection of magnetic resonance of the F-centre in CaO in its phosphorescent state

    International Nuclear Information System (INIS)

    Krap, C.J.

    1980-01-01

    The F-centre in CaO consists of two electrons trapped in an oxygen vacancy. The centre possesses bound excited states, of which the phosphorescent 3 Tsub(1u) state is a Jahn-Teller state. Jahn-Teller systems have been of interest in many investigations. However, detailed experimental studies about the relaxation paths for the Jahn-Teller states are relatively few. The author studies by means of optical detection of magnetic resonance (ODMR) and phosphorescence microwave double resonance (PMDR) techniques the relaxation between the components of the 3 Tsub(1u) state, the magnetic properties of the individual spin-vibronic Jahn-Teller states and the inhomogeneous line broadening in the ODMR and PMDR spectra. (Auth.)

  13. Statistical moments of the angular spectrum of normal waves in a turbulent collisional magnetized plasma

    International Nuclear Information System (INIS)

    Aistov, A.V.; Gavrilenko, V.G.

    1996-01-01

    The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption

  14. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: esm041@mail.harvard.edu

    2016-01-18

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  15. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    International Nuclear Information System (INIS)

    Mananga, Eugene Stephane

    2016-01-01

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  16. Probing spin-polarized edge state superconductivity by Andreev reflection in in-plane magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)

    2015-07-01

    Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.

  17. Raman Scattering as a Probe of the Magnetic State of BEDT-TTF Based Mott Insulators

    Directory of Open Access Journals (Sweden)

    Nora Hassan

    2018-05-01

    Full Text Available Quasi-two-dimensional Mott insulators based on BEDT-TTF molecules have recently demonstrated a variety of exotic states, which originate from electron–electron correlations and geometrical frustration of the lattice. Among those states are a triangular S = 1/2 spin liquid and quantum dipole liquid. In this article, we show the power of Raman scattering technique to characterize magnetic and electronic excitations of these states. Our results demonstrate a distinction between a spectrum of magnetic excitations in a simple Mott insulator with antiferromagnetic interactions, and a spectrum of an insulator with an additional on-site charge degree of freedom.

  18. Computed tomography and magnetic resonance for the advanced imaging of the normal nasal cavity and paranasal sinuses of the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Bercier, Marjorie; Alexander, Kate; Gorow, April; Pye, Geoffrey W

    2014-12-01

    The objective of this study is to describe computed tomography (CT) and magnetic resonance (MR) for the cross-sectional imaging of the normal anatomy of the nasal cavity and paranasal sinuses of the koala (Phascolarctos cinereus), to provide reference figures for gross anatomy with corresponding CT and MR images and to compare the features of the nasal cavity and paranasal sinuses of the normal koala with that reported in other domestic species. Advanced imaging can be used to aid in diagnosis, to plan surgical intervention, and to monitor therapeutic responses to diseases of the nasal passages in koalas. One clinically normal koala was anesthetized twice for the separate acquisition of dorsal CT scan images and transverse, dorsal, and sagittal MR images of its nasal cavity and paranasal sinuses. Sagittal and transverse CT planes were reformatted. Three fresh koala skulls were also transected in one of each transverse, sagittal, and dorsal planes and photographed. The CT and MR images obtained were matched with corresponding gross anatomic images and the normal bone, tissues and airway passages were identified. All anatomic structures were readily identifiable on CT, magnetic resonance imaging (MRI), and gross images. CT and MRI are both valuable diagnostic tools for imaging the nasal cavities and paranasal sinuses of koalas. Images obtained from this project can be used as baseline references for future comparison with diseased koalas to help with diagnosis, surgical intervention, and response to therapy.

  19. Magnetic measurements of the correction and adjustment magnets of the main ring

    International Nuclear Information System (INIS)

    Trbojevic, D.

    1986-07-01

    Correction magnets correct the field imperfections and alignment errors of the main quadrupole and bend magnets. For reducing and controlling chromaticity there are 186 sextupoles and 78 octupoles, while for suppressing various resonances there are 12 normal and 18 skew sextupoles and 24 normal and 19 skew quadrupoles. Beam positions are individually controlled by 108 horizontal and 108 skew dipoles. This report includes results of the all Main Ring correction and adjustment magnet harmonic measurements. The measurement principle and basic equations are described

  20. Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4

    Science.gov (United States)

    de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.

    2007-03-01

    We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.

  1. Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, D A

    1975-01-01

    Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.

  2. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    Science.gov (United States)

    Swimm, R.; Garrett, H. B.; Jun, I.; Evans, R. W.

    2004-12-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances from the planet Jupiter from 8 to 28 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron radiation with longitude. We also develop a model of the electron flux with respect to distance normal to the magnetic equatorial plane as a function of the distance from Jupiter.

  3. One-dimensional time-dependent conduction states and temperature distribution along a normal zone during a quench

    International Nuclear Information System (INIS)

    Lopez, G.

    1991-01-01

    The quench simulations of a superconducting (s.c.) magnet requires some assumptions about the evolution of the normal zone and its temperature profile. The axial evolution of the normal zone is considered through the longitudinal quench velocity. However, the transversal quench propagation may be considered through the transversal quench velocity or with the turn-to-turn time delay quench propagation. The temperature distribution has been assumed adiabatic-like or cosine-like in two different computer programs. Although both profiles are different, they bring about more or less the same qualitative quench results differing only in about 8%. Unfortunately, there are not experimental data for the temperature profile along the conductor in a quench event to have a realistic comparison. Little attention has received the temperature profile, mainly because it is not so critical parameter in the quench analysis. Nonetheless, a confident quench analysis requires that the temperature distribution along the normal zone be taken into account with good approximation. In this paper, an analytical study is made about the temperature profile

  4. Structure and magnetic ground states of spin-orbit coupled compound alpha-RuCl3

    Science.gov (United States)

    Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Chakoumakos, Bryan; Tennant, Alan; Nagler, Stephen

    2015-03-01

    The layered material alpha-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3 + ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. In this talk, we discuss the synthesis of phase-pure alpha-RuCl3 and the characterization of the magnetization, susceptibility, and heat-capacity. We also report neutron diffraction on both powder and single crystal alpha-RuCl3, identifying the low temperature magnetic order observed in the material. The results, when compared to theoretical calculations, shed light on the relative importance of Kitaev and Heisenberg terms in the Hamiltonian. The research is supported by the DOE BES Scientific User Facility Division.

  5. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase.......Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets...

  6. Magnetic ground state of Ti{sub 1-x}Sc{sub x}Fe{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Saoudi, M.; Deportes, J.; Ouladdiaf, B. E-mail: ouladdiaf@ill.fr

    2001-06-01

    The magnetic ground states of the Laves phases Ti{sub 1-x}Sc{sub x}Fe{sub 2} system have been investigated by means of powder neutron diffraction and magnetisation techniques. For x=0.23, a transition is observed from a collinear ferromagnet along the c-axis to a canted one at T{sub f}=200 K. For x=0.27, 0.3, 0.33, an additional first-order transition is observed at T{sub t1}{approx}120 K accompanied by a large magnetovolume anomaly associated to a jump of the magnetic moment of the Fe atoms at the 2a site. The magnetic moment instability in a frustrated lattice should be considered to interpret this transition, although most of the other magnetic states can be discussed within Moriya's theory for itinerant electron systems with competing ferromagnetic and antiferromagnetic spin fluctuations.

  7. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  8. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    International Nuclear Information System (INIS)

    Vasilevskaya, Tatiana M.; Sementsov, Dmitriy I.; Shutyi, Anatoliy M.

    2012-01-01

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: ► An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. ► Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. ► Both regular and chaotic precession modes are realized within bifurcation resonance range. ► Appearance of dynamic bistability is typical for bifurcation resonance.

  9. Magnetization and isothermal magnetic entropy change of a mixed spin-1 and spin-2 Heisenberg superlattice

    Science.gov (United States)

    Xu, Ping; Du, An

    2017-09-01

    A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.

  10. On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: emananga@gradcenter.cuny.edu [Harvard Medical School and Massachusetts General Hospital, Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging Physics, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Charpentier, Thibault, E-mail: thibault.charpentier@cea.fr [Commissariat à l’Energie Atomique, IRAMIS, Service interdisciplinaire sur les systèmes moléculaires et matériaux, CEA/CNRS UMR 3299, 91191, Gif-sur-Yvette (France)

    2016-01-22

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Floquet–Magnus expansion that is helpful to describe the time evolution of the spin system at all times in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics, based on promising and useful theory of Floquet–Magnus expansion. This theory provides procedures to control and describe the spin dynamics in solid-state NMR. Major applications of the Floquet–Magnus expansion are illustrated by simple solid-state NMR and physical applications such as in nuclear, atomic, molecular physics, and quantum mechanics, NMR, quantum field theory and high energy physics, electromagnetism, optics, general relativity, search of periodic orbits, and geometric control of mechanical systems. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics. This review article also discusses future potential theoretical directions in solid-state NMR.

  11. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Broderick, A.; Prakash, M.; Lattimer, J. M.

    2000-01-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10 14 G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10 18 G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society

  12. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, A; Prakash, M; Lattimer, J M

    2000-07-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10{sup 14} G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10{sup 18} G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society.

  13. Identification of Raman peaks of high-T{sub c} cuprates in normal state through density of states

    Energy Technology Data Exchange (ETDEWEB)

    Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Auto.), Balasore 756 001 (India)]. E-mail: bishoyi@iopb.res.in; Rout, G.C. [Condensed Matter Physics Group, Govt. Science College, Chatrapur 761 020, Orissa (India); Behera, S.N. [Physics Enclave, H.I.G.-23/1, Housing Board Phase-I, Chandrasekharpur, Bhubaneswar 7510016 (India)

    2007-05-31

    We present a microscopic theory to explain and identify the Raman spectral peaks of high-T{sub c} cuprates R{sub 2-x}M{sub x}CuO{sub 4} in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green's function technique of Zubarev at zero wave vector and finite (room) temperature limit. The four Raman active peaks (P{sub 1}-P{sub 4}) representing the electronic states of the atomic sub-systems of the cuprate system are identified by the calculated quasi-particle energy bands and electron density of states (DOS). The effect of interactions on these peaks are also explained.

  14. Electric and magnetic field reduction and research: A report to the Washington State Legislature

    International Nuclear Information System (INIS)

    Geissinger, L.G.; Waller, P.; Chartier, V.L.; Olsen, R.G.

    1993-01-01

    Increasingly, citizens of Washington State are expressing their concerns about possible adverse health effects of electric and magnetic fields (EMF) from electric utility power systems. A number of legislative proposals over the past several years have prompted governmental officials to evaluate available options for reducing electric and magnetic field strengths surrounding these systems (with a concentration on magnetic fields) or otherwise manage public exposure to power lines by increasing land use controls and setbacks for new development. Unsuccessful proposals brought before the Washington Legislature include 2 mG magnetic field limits for new transmission lines at the right-of-way edge; a temporary moratorium on transmission construction; requirements for providing public information on EMF; and expansion of the role of state governmental agencies in transmission siting and design. A successful Whatcom County initiative limits the voltage of new transmission to 115 kV in all but industrial land use zones, an action likely to have an unintended outcome of increasing magnetic fields in some areas. It is clear that better communication is needed about possible options for EMF management, costs and consequences, despite the fact scientific evidence on the existence of human health effects is inconclusive. This paper describes the work that Washington State undertook in 1990-92 in response to Engrossed Substitute Senate Bill 6771 establishing the Electric Transmission Research Needs Task Force. The Task Force was directed to report to the Legislature on possible exposure reduction methods; recommending engineering research that could lead to more effective approaches in the future

  15. Ground-state magnetization of the Ising spin glass: A recursive numerical method and Chen-Ma scaling

    Science.gov (United States)

    Sepehrinia, Reza; Chalangari, Fartash

    2018-03-01

    The ground-state properties of quasi-one-dimensional (Q1D) Ising spin glass are investigated using an exact numerical approach and analytical arguments. A set of coupled recursive equations for the ground-state energy are introduced and solved numerically. For various types of coupling distribution, we obtain accurate results for magnetization, particularly in the presence of a weak external magnetic field. We show that in the weak magnetic field limit, similar to the 1D model, magnetization exhibits a singular power-law behavior with divergent susceptibility. Remarkably, the spectrum of magnetic exponents is markedly different from that of the 1D system even in the case of two coupled chains. The magnetic exponent makes a crossover from being dependent on a distribution function to a constant value independent of distribution. We provide an analytic theory for these observations by extending the Chen-Ma argument to the Q1D case. We derive an analytical formula for the exponent which is in perfect agreement with the numerical results.

  16. Evidence of a New Current-Induced Magnetoelectric Effect in a Toroidal Magnetic Ordered State of UNi4B

    Science.gov (United States)

    Saito, Hiraku; Uenishi, Kenta; Miura, Naoyuki; Tabata, Chihiro; Hidaka, Hiroyuki; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2018-03-01

    Magnetization measurements under direct electric current were performed in a toroidal magnetic ordered state of UNi4B to test a recent theoretical prediction of current-induced magnetization in a metallic system lacking local-inversion symmetry. We found that electric current parallel to [2\\bar{1}\\bar{1}0] and [0001] in the hexagonal 4-index notation induces a uniform magnetization along the [01\\bar{1}0] direction. The observed behavior of the induced magnetization is essentially consistent with the theoretical prediction; however, it also shows an inconsistency suggesting that the antiferromagnetic state of UNi4B could not be simply regarded as a uniform toroidal order in the ideal honeycomb layered structure.

  17. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  18. Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system

    International Nuclear Information System (INIS)

    Hao, Liang; Wang, Chuan; Long, Gui Lu

    2010-01-01

    Quantum state privacy amplification (QSPA) is the quantum analogue of classical privacy amplification. If the state information of a series of single-particle states has some leakage, QSPA reduces this leakage by condensing the state information of two particles into the state of one particle. Recursive applications of the operations will eliminate the quantum state information leakage to a required minimum level. In this paper, we report the experimental implementation of a quantum state privacy amplification protocol in a nuclear magnetic resonance system. The density matrices of the states are constructed in the experiment, and the experimental results agree well with theory.

  19. Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Joe E [Los Alamos National Laboratory; Nair, S [MAX PLANCK INST.; Stockert, O [MAX PLANCK INST.; Witte, U [INST. FUR FESTKORPERPHYSIK; Nicklas, M [MAX PLANCK INST.; Schedler, R [HELMHOLTZ - ZENTRUM; Bianchi, A [UC, IRVINE; Fisk, Z [UC, IRVINE; Wirth, S [MAX PLANCK INST.; Steglich, K [HELMHOLTZ - ZENTRUM

    2009-01-01

    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

  20. Control over the magnetism and transition between high- and low-spin states of an adatom on trilayer graphene.

    Science.gov (United States)

    Zheng, Anmin; Gao, Guoying; Huang, Hai; Gao, Jinhua; Yao, Kailun

    2017-05-31

    Using density-functional theory, we investigate the electronic and magnetic properties of an adatom (Na, Cu and Fe) on ABA- and ABC-stacked (Bernal and rhombohedral) trilayer graphenes. In particular, we study the influence of an applied gate voltage on magnetism, as it modifies the electronic states of the trilayer graphene (TLG) as well as changes the adatom spin states. Our study performed for a choice of three different adatoms (Na, Cu, and Fe) shows that the nature of adatom-graphene bonding evolves from ionic to covalent in moving from an alkali metal (Na) to a transition metal (Cu or Fe). Applying an external electric field (EEF) to TLG systems with different stacking orders results in the transition between high- and low-spin states in the latter case (Cu, Fe) and induces a little of magnetism in the former (Na) without magnetism in the absence of an external electric field. Our study would be useful for controlled adatom magnetism and (organic) spintronic applications in nanotechnology.

  1. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  2. Study of the muscular metabolism using Phosphorus 31 Magnetic Resonance Spectroscopy (31P-MRS) in normal subjects

    International Nuclear Information System (INIS)

    Batista, T.S.; Salmon, C.E.G.; Santos, A.C.

    2008-01-01

    Phosphorus 31 Magnetic Resonance Spectroscopy ( 31 P-MRS) is a powerful technique for evaluating human muscular metabolism. Some reports indicated the behavior of phosphorylated metabolites (PCr, ADP and Pi) and other indirect parameters (intracellular pH and [Mg 2+ ]) in muscles at rest and after an exercise load. The aim of this work is a quantitative study of the phosphorylated metabolite levels in the calf muscle of normal subjects at rest and post-exercise, in order to create a normal control database. 31 P spectra of seven volunteers were acquired in both conditions. Firstly, different quantification methodologies were evaluated to use the more reliable. The P Cr metabolite was the more stable at rest and it had mono-exponential behavior after exercise. The Pi was the more sensible indicator of the physical activities. The time constants of the recuperation process are report for all the evaluated metabolites and parameters. Finally, the temporal behavior of phospho monoesters was quantified. (author)

  3. Magnetic short-range order in Gd

    International Nuclear Information System (INIS)

    Child, H.R.

    1978-01-01

    The magnetic short-range order in a ferromagnetic, isotopically enriched 160 Gd metal single crystal has been investigated by quasielastic scattering of 81-meV neutrons. Since Gd behaves as an S-state ion in the metal, little anisotropy is expected in its magnetic behavior. However, the data show that there is anisotropic short-range order present over a large temperature interval both above and below T/sub C/. The data have been analyzed in terms of an Ornstein-Zernike Lorentzian form with anisotropic correlation ranges. These correlation ranges as deduced from the observed data behave normally above T/sub C/ but seem to remain constant over a fairly large interval below T/sub C/ before becoming unobservable at lower temperatures. These observations suggest that the magnetic ordering in Gd may be a more complicated phenomenon than first believed

  4. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  5. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut [Institute of Diagnostic Radiology, University Hospital Zurich, 8091 Zurich (Switzerland); Martin, Ernst [Department of Neuroradiology and Magnetic Resonance, University Children' s Hospital, 8091 Zurich (Switzerland)

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  6. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut; Martin, Ernst

    2002-01-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  7. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development.

    Science.gov (United States)

    Huisman, Thierry A G M; Martin, Ernst; Kubik-Huch, Rahel; Marincek, Borut

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality.

  8. Majorana spin in magnetic atomic chain systems

    Science.gov (United States)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  9. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    International Nuclear Information System (INIS)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi

    1994-01-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author)

  10. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi (Kyoto Prefectural Univ. of Medicine (Japan))

    1994-11-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author).

  11. Magnetic quantum ratchet effect in Si-MOSFETs

    International Nuclear Information System (INIS)

    Ganichev, S D; Karch, J; Kamann, J; Tarasenko, S A; Kvon, Z D

    2014-01-01

    We report on the observation of magnetic quantum ratchet effect in metal-oxide-semiconductor field-effect-transistors on silicon surface (Si-MOSFETs). We show that the excitation of an unbiased transistor by ac electric field of terahertz radiation at normal incidence leads to a direct electric current between the source and drain contacts if the transistor is subjected to an in-plane magnetic field. The current rises linearly with the magnetic field strength and quadratically with the ac electric field amplitude. It depends on the polarization state of the ac field and can be induced by both linearly and circularly polarized radiation. We present the quasi-classical and quantum theories of the observed effect and show that the current originates from the Lorentz force acting upon carriers in asymmetric inversion channels of the transistors. (paper)

  12. Functional magnetic resonance imaging of the normal and abnormal visual system in early life

    DEFF Research Database (Denmark)

    Born, A.P.; Miranda Gimenez-Ricco, Maria Jo; Rostrup, Egill

    2000-01-01

    in very young infants and in infants with brain damage. We examined 15 preterm infants, 12 children suspected of having a cerebral visual impairment and 10 children with a normal visual system, all of whom were either spontaneously asleep or sedated with chloral hydrate. Cortical response to stroboscopic...... showed a signal decrease. The activated cortical volumes showed a linear relation to age for healthy children younger than 90 weeks PMA, but were small in children with visual impairment. In two children with unilateral damage to the optic radiations, activation was strongly asymmetrical with greatest......Functional magnetic resonance imaging (fMRI) in young children may provide information about the development of the visual cortex, and may have predictive value for later visual performance. The purpose of this study was to evaluate the usefulness of fMRI for examining cerebral processing of vision...

  13. Magnetic moments of high spin rotational states in 158Dy and 164Dy+

    International Nuclear Information System (INIS)

    Seiler-Clark, G.

    1983-09-01

    For the study of their magnetic moments yrast states in 158 Dy and 164 Dy were excited via the multiple-Coulomb excitation by a 4.7 MeV/u 208 Pb beam. Hereby especially the question was of interest, how the one-particle effects in the nuclear structure in the region of the backbending anomaly in 158 Dy take effects on the g-factors of the high spin states in this region. The particle-γ angular correlations perturbed in the transient magnetic field during the passing of the excited Dy ions through a thin magnetized iron foil were measured. By the selective position-sensitive detection of Dy recoil ions and Pb projectiles under forward angles it was possible to determine additionally to the g-factors in the backbending region also g-factors in the spin region I 158 Dy and 164 Dy by detection of the particle-γ correlations precessing in the static hyperfine field after implantation in iron. The static hyperfine field was at the 4 + state in 164 Dy determined to B (Dy,Fe) = 245+-25 T. The g-factors were determined by comparison of the experimental results with calculations of the perturbed angular correlations by time-differential regarding of the population and de-excitation of the yrast states as well as by precession and hyperfine-relaxation effects during the flight of the Dy ions in the vacuum. (orig./HSI) [de

  14. Normal Conducting Separation Dipoles For The Lhc Beam Cleaning Insertions

    CERN Document Server

    Petrov, V; de Rijk, G; Gerard, D; Hans, O; Kalbreier, Willi; Kiselev, O; Protopopov, I V; Pupkov, Yu; Ramberger, S; Ruvinsky, E; Sukhanov, A

    2004-01-01

    In the Large Hadron Collider (LHC), two straight sections, IR3 and IR7, will be dedicated to beam cleaning [1]. These cleaning insertions will be equipped with normal conducting magnets. MBW magnets are dipole magnets used to increase the separation of the two beams. They have a core length of 3.4 m and a gap height of 52 mm and will operate at a magnetic field ranging from 0.09 T to 1.53 T. Limitations on the dimensions and total weight of the magnet resulted in a special design with a common yoke for the two beams. The orbits of the two beams will be separated horizontally by a distance between 194 mm and 224 mm in the gap of the magnet. The magnet was designed in collaboration between CERN and BINP. The report presents the main design issues and results of the pre-series acceptance tests including mechanical, electrical and magnetic field measurements. Index terms - LHC, normal conducting magnet, twin aperture design, separation dipole

  15. Stability calculations for MHD magnets

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Harrang, J.

    1978-01-01

    When a cryostable composite conductor carrying current experiences a heat input from a mechanical perturbation, a normal region develops which initially propagates and then either collapses or continues to propagate. A computer model has been devised to study this phenomenon. The model incorporates initial or continuing heat input from mechanical perturbations, heat conducted to the neighboring elements of the conductor and, if appropriate, heat conducted through insulation to neighboring turns. Heat is transferred to the helium coolant according to a specified heat transfer coefficient. If the element of conductor is in a normal or current-sharing state, resistive heating also occurs. The (unstable) equilibrium state of heat generation and conduction has been studied; results agree with those of a static calculation. The model has been validated against experimental measurements of response to heat pulses. The model suffers from uncertainties in transient heat transfer to the helium, but even more from uncertainties in the perturbing heat pulse which the magnet might be expected to suffer

  16. Chemical disorder influence on magnetic state of optimally-doped La0.7Ca0.3MnO3

    Science.gov (United States)

    Rozenberg, E.; Auslender, M.; Shames, A. I.; Jung, G.; Felner, I.; Tsindlekht, M. I.; Mogilyansky, D.; Sominski, E.; Gedanken, A.; Mukovskii, Ya. M.; Gorodetsky, G.

    2011-10-01

    X-band electron magnetic resonance and dc/ac magnetic measurements have been employed to study the effects of chemical disorder on magnetic ordering in bulk and nanometer-sized single crystals and bulk ceramics of optimally-doped La0.7Ca0.3MnO3 manganite. The magnetic ground state of bulk samples appeared to be ferromagnetic with the lower Curie temperature and higher magnetic homogeneity in the vicinity of the ferromagnetic-paramagnetic phase transition in the crystal, as compared with those characteristics in the ceramics. The influence of technological driven "macroscopic" fluctuations of Ca-dopant level in crystal and "mesoscopic" disorder within grain boundary regions in ceramics was proposed to be responsible for these effects. Surface spin disorder together with pronounced inter-particle interactions within agglomerated nano-sample results in well defined core/shell spin configuration in La0.7Ca0.3MnO3 nano-crystals. The analysis of the electron paramagnetic resonance data enlightened the reasons for the observed difference in the magnetic order. Lattice effects dominate the first-order nature of magnetic phase transition in bulk samples. However, mesoscale chemical disorder seems to be responsible for the appearance of small ferromagnetic polarons in the paramagnetic state of bulk ceramics. The experimental results and their analysis indicate that a chemical/magnetic disorder has a strong impact on the magnetic state even in the case of mostly stable optimally hole-doped manganites.

  17. 3D volumetry comparison using 3T magnetic resonance imaging between normal and adenoma-containing pituitary glands.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Garcia-Ulloa, Ana Cristina; Gonzalez-Gutierrez, Omar; Martinez-Lopez, Manuel

    2011-01-01

    Computed-assisted three-dimensional data (3D) allows for an accurate evaluation of volumes compared with traditional measurements. An in vitro method comparison between geometric volume and 3D volumetry to obtain reference data for pituitary volumes in normal pituitary glands (PGs) and PGs containing adenomas. Prospective, transverse, analytical study. Forty-eight subjects underwent brain magnetic resonance imaging (MRI) with 3D sequencing for computer-aided volumetry. PG phantom volumes by both methods were compared. Using the best volumetric method, volumes of normal PGs and PGs with adenoma were compared. Statistical analysis used the Bland-Altman method, t-statistics, effect size and linear regression analysis. Method comparison between 3D volumetry and geometric volume revealed a lower bias and precision for 3D volumetry. A total of 27 patients exhibited normal PGs (mean age, 42.07 ± 16.17 years), although length, height, width, geometric volume and 3D volumetry were greater in women than in men. A total of 21 patients exhibited adenomas (mean age 39.62 ± 10.79 years), and length, height, width, geometric volume and 3D volumetry were greater in men than in women, with significant volumetric differences. Age did not influence pituitary volumes on linear regression analysis. Results from the present study showed that 3D volumetry was more accurate than the geometric method. In addition, the upper normal limits of PGs overlapped with lower volume limits during early stage microadenomas.

  18. Copper NMR and hole depletion in the normal state of Y1-xPrxBa2Cu3O7

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.; Reyes, A.P.; Takigawa, M.; Hammel, P.C.; Heffner, R.H.; Thompson, J.D.; Crow, J.E.

    1990-01-01

    Normal-state copper NMR spectra and spin-lattice relaxation rates 1/T 1 have been measured in the planar cuprate system YBa 2 Cu 3 O 7 . With Pr doping the Knight shift K decreases and develops a temperature dependence at both plane and chain sites. Analysis of the bulk susceptibility and NMR data indicate that pair breaking and hole depletion both take part in the suppression of the superconducting transition temperature T c . The Knight shift behavior resembles that in oxygen-deficient YBa 2 Cu 3 O 7-y , as does the temperature dependence of 1/T 1 for plane Cu sites and magnetic field perpendicular to the c axis. This agreement leads to a consistent picture of the role of antiferromagnetic fluctuations in these materials. An analysis of the data in the framework of the phenomenological theory of Millis, Monien, and Pines is given. In the end compound PrBa 2 Cu 3 O 7 the NMR signal from plane Cu sites indicates antiferromagnetic (AF) ordering at a Neel temperature ∼280 K, and in the AF state yields an internal field similar to those found in AF YBa 2 Cu 3 O 6 and La 2 CuO 4 . 32 refs., 7 figs

  19. Magnetic translation group and classification of states of an itinerant electron

    International Nuclear Information System (INIS)

    Wal, Andrzej

    2006-01-01

    We consider an itinerant electron on two-dimensional finite square lattice in a magneticfield. A magnetic translation group (MTG) for this system with the periodic Born- Karman conditions has been introduced. The irreducible representation of MTG is used for classification of energy levels of electron states for this model

  20. Measurement of the D0 WAMUS magnet inductance

    International Nuclear Information System (INIS)

    Kristalinski, A.; Hance, R.; Jaskierny, W.

    1994-12-01

    Historically, the term inductance, as it relates to magnets, has been relatively obscure at Fermilab. Confusion resulted from the typical engineering approach to the matter, whereby distinction may not have been made between analytical and beam line magnets; and distribution transformers. The latter always have a laminated core to reduce eddy currents which makes their inductance in a transitional state very close to that in a steady state. This is true only if the core material is not in saturation, which is once again the case for transformers; but not for magnets, especially the analytical ones. Based on the traditional ''transformer'' thinking, an incorrect method to measure magnet inductance was initially employed. The characteristics of a tank circuit including the magnet under test were observed. Then based on the resonant frequency and quality factor, the inductance was calculated. This method represents a very valuable tool for magnet testing where you can compare newly built magnets to a reference magnet and see if there is any difference. Although electrically correct, this method unfortunately does not reveal any valuable information which could be used to anticipate the magnet behavior under the normal working conditions. Another method of measuring inductance, based on a freewheeling discharge of the magnet, is also widely used in the Lab. To measure the inductance, a magnet is powered from a small power supply for up to 100 A to 200 A, then the power is turned off and the current decay in the magnet is recorded. Based on the dc resistance measurements and the magnet current decay data, one can determine the magnet inductance. In order to do so, the inductance is assumed to be constant and current decay is assumed to be exponential. To find out how well the effective inductance represents the real process taking place in the magnet was one of the purposes of the experiment

  1. Landau levels and shallow donor states in GaAs/AlGaAs multiple quantum wells at megagauss magnetic fields

    Science.gov (United States)

    Zybert, M.; Marchewka, M.; Sheregii, E. M.; Rickel, D. G.; Betts, J. B.; Balakirev, F. F.; Gordon, M.; Stier, A. V.; Mielke, C. H.; Pfeffer, P.; Zawadzki, W.

    2017-03-01

    Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at megagauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6-300 K. The 14 ×14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magnetodonor states in the GaAs wells and possibly in the AlGaAs barriers. The magnetodonor energies are calculated using a variational procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed magneto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.

  2. Magnetic field effects on the quantum wire energy spectrum and Green's function

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J.

    2010-01-01

    We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.

  3. Cardiac Magnetic Resonance Imaging in Myocarditis Reveals Persistent Disease Activity Despite Normalization of Cardiac Enzymes and Inflammatory Parameters at 3-Month Follow-Up.

    Science.gov (United States)

    Berg, Jan; Kottwitz, Jan; Baltensperger, Nora; Kissel, Christine K; Lovrinovic, Marina; Mehra, Tarun; Scherff, Frank; Schmied, Christian; Templin, Christian; Lüscher, Thomas F; Heidecker, Bettina; Manka, Robert

    2017-11-01

    There is a major unmet need to identify high-risk patients in myocarditis. Although decreasing cardiac and inflammatory markers are commonly interpreted as resolving myocarditis, this assumption has not been confirmed as of today. We sought to evaluate whether routine laboratory parameters at diagnosis predict dynamic of late gadolinium enhancement (LGE) as persistent LGE has been shown to be a risk marker in myocarditis. Myocarditis was diagnosed based on clinical presentation, high-sensitivity troponin T, and cardiac magnetic resonance imaging, after exclusion of obstructive coronary artery disease by angiography. Cardiac magnetic resonance imaging was repeated at 3 months. LGE extent was analyzed with the software GT Volume. Change in LGE >20% was considered significant. Investigated cardiac and inflammatory markers included high-sensitivity troponin T, creatine kinase, myoglobin, N-terminal B-type natriuretic peptide, C-reactive protein, and leukocyte count. Twenty-four patients were enrolled. Absolute levels of cardiac enzymes and inflammatory markers at baseline did not predict change in LGE at 3 months. Cardiac and inflammatory markers had normalized in 21 patients (88%). LGE significantly improved in 16 patients (67%); however, it persisted to a lesser degree in 17 of them (71%) and increased in a small percentage (21%) despite normalization of cardiac enzymes. This is the first study reporting that cardiac enzymes and inflammatory parameters do not sufficiently reflect LGE in myocarditis. Although a majority of patients with normalizing laboratory markers experienced improved LGE, in a small percentage LGE worsened. These data suggest that cardiac magnetic resonance imaging might add value to currently existing diagnostic tools for risk assessment in myocarditis. © 2017 American Heart Association, Inc.

  4. Magnetic ground state of SrRuO3 thin film and applicability of standard first-principles approximations to metallic magnetism.

    Science.gov (United States)

    Ryee, Siheon; Han, Myung Joon

    2017-07-05

    A systematic first-principles study has been performed to understand the magnetism of thin film SrRuO 3 which lots of research efforts have been devoted to but no clear consensus has been reached about its ground state properties. The relative t 2g level difference, lattice distortion as well as the layer thickness play together in determining the spin order. In particular, it is important to understand the difference between two standard approximations, namely LDA and GGA, in describing this metallic magnetism. Landau free energy analysis and the magnetization-energy-ratio plot clearly show the different tendency of favoring the magnetic moment formation, and it is magnified when applied to the thin film limit where the experimental information is severely limited. As a result, LDA gives a qualitatively different prediction from GGA in the experimentally relevant region of strain whereas both approximations give reasonable results for the bulk phase. We discuss the origin of this difference and the applicability of standard methods to the correlated oxide and the metallic magnetic systems.

  5. Equilibrium state analysis of a nonneutral plasma under a uniform magnetic field

    International Nuclear Information System (INIS)

    Fernandez, J.E.; Molinari, V.G.; Sumini, M.A.

    1990-01-01

    By recourse to the Boltzmann H-theorem, the existence of a thermodynamic equilibrium state has been proved for a nonneutral plasma under an external magnetic field. The equation describing the density profile of ions or electrons has been found. The density equation has been numerically solved for a generic magnetic field and plasma frequency, giving a parametric limit for the confinement region. An appropriate change of variable allows to approximate the density equation whose analytical solution has been found. The approximated density closely fits the numerical solution of the original equation. (Author)

  6. Temporomandibular joint - normal features and disc displacements: magnetic resonance imaging; Articulacao temporomandibular - aspectos normais e deslocamentos de disco: imagem por ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Ana Carolina Araujo; Sarmento, Viviane Almeida; Campos, Paulo Sergio Flores; Gonzalez, Maria Olivia Dias [Bahia Univ., Salvador, BA (Brazil). Faculdade de Odontologia]. E-mail: ana_carolinaramos@hotmail.com

    2004-12-01

    Disc displacement of the temporomandibular joint has been defined as an abnormal relationship between the articular disc and the mandibular condyle, fossa and articular eminence. Disc displacements may occur without immediate interference in the function of the joint. Magnetic resonance imaging shows high diagnostic accuracy in the determination of articular disc position and has been indicated as the diagnostic method of choice for soft tissue abnormalities of the temporomandibular joint. The aim of this study is to review the literature including the normal features and different types of disc displacement of the temporomandibular joint as well as the imaging findings, emphasizing the role of magnetic resonance imaging. (author)

  7. The ground state magnetic moment and susceptibility of a two electron Gaussian quantum dot

    Science.gov (United States)

    Boda, Aalu; Chatterjee, Ashok

    2018-04-01

    The problem of two interacting electrons moving in a two-dimensional semiconductor quantum dot with Gaussian confinement under the influence of an external magnetic field is studied by using a method of numerical diagonalization of the Hamiltonian matrix with in the effective-mass approximation. The energy spectrum is calculated as a function of the magnetic field. We find the ground state magnetic moment and the magnetic susceptibility show zero temperature diamagnetic peaks due to exchange induced singlet-triplet oscillations. The position and the number of these peaks depend on the size of the quantum dot and also strength of the electro-electron interaction. The theory is applied to a GaAs quantum dot.

  8. Deenergizing method of superconducting magnets for Maglev in an emergency

    Energy Technology Data Exchange (ETDEWEB)

    Kishikawa, Akihiko [Railway Technical Research Inst., Tokyo (Japan); Nemoto, Kaoru [Railway Technical Research Inst., Tokyo (Japan)

    1996-12-31

    The running stability of the superconducting magnets (SCMs) mounted on the JR Maglev vehicle has been confirmed through many researches and actual running tests. So we could confirm that the high performance of our SCMs during the last few years, but we must bear in mind that the SCM which consists of the superconducting wire has the possibility of changing into normal resistive state from superconducting state. If one of the pair SCMs normalizes, a huge lateral force on one side of a bogie will occur suddenly and push the vehicle toward the sidewall of the guideway. This paper describes the method that reduces this huge force acting on one side of a bogie in an SCM accident. (orig.)

  9. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    Science.gov (United States)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  10. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections; TOPICAL

    International Nuclear Information System (INIS)

    G.S. Choe; C.Z. Cheng

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  11. Observation of Dirac state in half-Heusler material YPtBi

    OpenAIRE

    Hosen, M. Mofazzel; Dhakal, Gyanendra; Dimitri, Klauss; Choi, Hongchul; Kabir, Firoza; Sims, Christopher; Pavlosiuk, Orest; Wisniewski, Piotr; Durakiewicz, Tomasz; Zhu, Jian-Xin; Kaczorowski, Dariusz; Neupane, Madhab

    2018-01-01

    The prediction of non-trivial topological electronic states hosted by half-Heusler compounds makes them prime candidates for discovering new physics and devices as they harbor a variety of electronic ground states including superconductivity, magnetism, and heavy fermion behavior. Here we report normal state electronic properties of a superconducting half-Heusler compound YPtBi using angle-resolved photoemission spectroscopy (ARPES). Our data reveal the presence of a Dirac state at the zone c...

  12. Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in an ultrastrong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2011-01-01

    Spin-polarized states in dense neutron matter with the recently developed Skyrme effective interaction (BSk20 parametrization) are considered in the magnetic fields H up to 10 20 G at finite temperature. In a strong magnetic field, the total pressure in neutron matter is anisotropic, and the difference between the pressures parallel and perpendicular to the field direction becomes significant at H>H th ∼10 18 G. The longitudinal pressure decreases with the magnetic field and vanishes in the critical field 10 18 c 19 G, resulting in the longitudinal instability of neutron matter. With increasing temperature, the threshold H th and critical H c magnetic fields also increase. The appearance of the longitudinal instability prevents the formation of a fully spin-polarized state in neutron matter and only the states with moderate spin polarization are accessible. The anisotropic equation of state is determined at densities and temperatures relevant to the interiors of magnetars. The entropy of strongly magnetized neutron matter turns out to be larger than the entropy of nonpolarized matter. This is caused by some specific details in the dependence of the entropy on the effective masses of neutrons with spin up and spin down in a polarized state.

  13. Frozen magnetoresistance at magnetization reversal of granular Bi(Pb)-HTSC

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Omelchenko, V.I.

    2004-01-01

    The frozen magnetoresistance dependences of granular Bi(Pb)-HTSC samples on fields initiating a magnetic flux trapping and on magnetic reversal fields Rt(Hi, Hr) are investigated. It is found that the Rt (Hr) dependences are nonmonotonous. The frozen magnetoresistance decreases substantially after the first pulse Hr applied (Hr < Hi) but remains practically unchanged at subsequent remagnetization by magnetic pulses of alternating polarity and of the same amplitude. The effect of magnetic reversal on magnetoresistance anisotropy and the negative magnetoresistance phenomenon are studied. Is shown that the results obtained are inconsistent with the model of critical state for SC grains and the model of SC loops but are well described quantitatively by the proposed Bi(Pb)-HTSC model according to which the magnetic flux trapping occurs in normal grains with HTSC shells and the sample resistance is determined by weak link chains

  14. The dynamics of magnetic vortices in type II superconductors with pinning sites studied by the time dependent Ginzburg–Landau model

    Energy Technology Data Exchange (ETDEWEB)

    Sørensen, Mads Peter, E-mail: mpso@dtu.dk [Department of Applied Mathematics and Computer Science, Richard Petersens Plads, Bldg. 324, Technical University of Denmark, Kongens Lyngby DK-2800 (Denmark); Pedersen, Niels Falsig [Department of Applied Mathematics and Computer Science, Richard Petersens Plads, Bldg. 324, Technical University of Denmark, Kongens Lyngby DK-2800 (Denmark); Ögren, Magnus [School of Science and Technology, Örebro University, Örebro SE-70182 (Sweden)

    2017-02-15

    We investigate the dynamics of magnetic vortices in type II superconductors with normal state pinning sites using the Ginzburg–Landau equations. Simulation results demonstrate hopping of vortices between pinning sites, influenced by external magnetic fields and external currents. The system is highly nonlinear and the vortices show complex nonlinear dynamical behaviour.

  15. Magnetically modulated microwave absorption (MMMA) measurements at low magnetic fields on the ferromagnetic state of [TDAE]C60

    International Nuclear Information System (INIS)

    Bele, P.; Brunner, H.

    1997-01-01

    The ferromagnetic state and reported superconductivity of [TDAE]C 60 (where TDAE is tetrakis(dimethylamino)ethylene) are investigated by magnetically modulated microwave absorption (MMMA). The results are compared with those reported using alternative physical measurement techniques, and a hypothesis proposed to explain the observed behavior. No evidence for superconductivity is found. (orig.)

  16. The thermal expansion and Co magnetic state in light RCo3 intermetallics (R=Pr, Nd, Sm)

    International Nuclear Information System (INIS)

    Gaidukova, I.Yu.; Granovsky, S.A.; Markosyan, A.S.; Rodimin, V.E.

    2006-01-01

    The temperature variation of the lattice parameters of three light RCo 3 intermetallic compounds with R=Pr, Nd, Sm and the Nd 1- x Y x Co 3 system was studied by X-ray diffraction in a wide temperature range 10-550 K. From the magnetovolume effect arising considerably below the Curie temperature it has been concluded that in the Nd 1- x Y x Co 3 system a temperature-induced change of the Co magnetic state from a low to a high magnetic moment one occurs, whereas in the case of R=Pr and Sm the internal magnetic field acting on the Co sublattice is not high enough and the Co sublattice remains in the low magnetic moment state down to at least 10 K. The results are compared with those of heavy RCo 3 compounds. In SmCo 3 an orthorhombic distortion of the rhombohedral crystal lattice was observed below 125 K. This is accounted for a spin reorientation of the magnetization vector from the c-axis (high temperatures) to the basal plane (low temperatures)

  17. On the study of the magnetic domain pattern via the initial magnetization curve

    International Nuclear Information System (INIS)

    Wu, T.

    1997-01-01

    This study inquires into the relationships between the initial magnetization curve and the magnetic domain pattern in the demagnetized states for amorphous TbFeCo as well as multilayered Co/Pd thin film samples. This was done specifically through an investigation of different demagnetized states of samples demagnetized by a variety of methods. The magnetic domain pattern for the sample demagnetized by an in-plane magnetic field and for the sample demagnetized by a perpendicular magnetic field was found to be quite different even though both states have zero magnetization. The former state has denser and finer domains than the latter. In addition, both states were studied in light of the initial magnetization curves obtained by measurements of the magneto-optic Kerr effect and the extraordinary Hall effect. Moreover, the initial magnetization for the fine domains increases with an increase in magnetic field, while for the coarse domains, the initial magnetization remains at zero for magnetic field below coercivity H c , then rises sharply to saturated magnetization when magnetic field is nearly equal to H c . copyright 1997 American Institute of Physics

  18. Magnetic conditioning in superfluid

    International Nuclear Information System (INIS)

    Caspi, S.

    1988-08-01

    Improvements in superconducting magnet technology have reduced to a handful the number of training quenches typical of dipole magnets. The number of training quenches in long (17 m) and short (1--2 m) SSC magnets are now about the same (operating at 6.6 tesla and 4.4 K). Yet the steps necessary to totally eliminate training are in the future RandD plans for magnet construction and conductor motion prevention. The accepted hypothesis is that Lorentz forces and poor mechanical properties of superconducting cables are the cause of conductor motion. Conductor motion reduces the stored energy in the cable by converting it into heat. The small amount of heat generated (millijoules) during motion is usually enough to quench the magnet when it is close to short sample. During training, the magnet performance normally improves with the number of quenches. It is not the quench itself that improves magnet performance but rather the fact that once conductor motion has occurred it will probably not repeat itself unless subjected to higher forces. Conditioning is a process that enables the magnet to reduce its stored energy without causing a premature quench. During the conditioning process the magnet is further cooled from its operating temperature of 4.4 K to 1.8 K by converting He I into He II. As a result the magnet is placed in a state where it has excess stability as well as excellent heat transfer capabilities. Although this does not eliminate motion, if the magnet is now cycled to /approximately/10% above its operating field at 4.4 K (which is above short sample) the excess stability should be enough to prevent quenching and reduce the probability of conductor motion and training once the magnet has been warmed back up to its operating temperature of 4.4 K. 3 refs., 5 figs

  19. Magnetic conditioning in superfluid

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.

    1988-08-01

    Improvements in superconducting magnet technology have reduced to a handful the number of training quenches typical of dipole magnets. The number of training quenches in long (17 m) and short (1--2 m) SSC magnets are now about the same (operating at 6.6 tesla and 4.4 K). Yet the steps necessary to totally eliminate training are in the future RandD plans for magnet construction and conductor motion prevention. The accepted hypothesis is that Lorentz forces and poor mechanical properties of superconducting cables are the cause of conductor motion. Conductor motion reduces the stored energy in the cable by converting it into heat. The small amount of heat generated (millijoules) during motion is usually enough to quench the magnet when it is close to short sample. During training, the magnet performance normally improves with the number of quenches. It is not the quench itself that improves magnet performance but rather the fact that once conductor motion has occurred it will probably not repeat itself unless subjected to higher forces. Conditioning is a process that enables the magnet to reduce its stored energy without causing a premature quench. During the conditioning process the magnet is further cooled from its operating temperature of 4.4 K to 1.8 K by converting He I into He II. As a result the magnet is placed in a state where it has excess stability as well as excellent heat transfer capabilities. Although this does not eliminate motion, if the magnet is now cycled to /approximately/10% above its operating field at 4.4 K (which is above short sample) the excess stability should be enough to prevent quenching and reduce the probability of conductor motion and training once the magnet has been warmed back up to its operating temperature of 4.4 K. 3 refs., 5 figs.

  20. Magnetic and electric dipole moments of the H 3Δ1 state in ThO

    International Nuclear Information System (INIS)

    Vutha, A. C.; Kirilov, E.; DeMille, D.; Spaun, B.; Gurevich, Y. V.; Hutzler, N. R.; Doyle, J. M.; Gabrielse, G.

    2011-01-01

    The metastable H 3 Δ 1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ H and the molecule-fixed electric dipole moment D H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μ H =8.5(5)x10 -3 μ B displays the predicted cancellation of spin and orbital contributions in a 3 Δ 1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.

  1. Classical to quantum mechanical tunneling mechanism crossover in thermal transitions between magnetic states.

    Science.gov (United States)

    Vlasov, Sergei; Bessarab, Pavel F; Uzdin, Valery M; Jónsson, Hannes

    2016-12-22

    Transitions between states of a magnetic system can occur by jumps over an energy barrier or by quantum mechanical tunneling through the energy barrier. The rate of such transitions is an important consideration when the stability of magnetic states is assessed for example for nanoscale candidates for data storage devices. The shift in transition mechanism from jumps to tunneling as the temperature is lowered is analyzed and a general expression derived for the crossover temperature. The jump rate is evaluated using a harmonic approximation to transition state theory. First, the minimum energy path for the transition is found with the geodesic nudged elastic band method. The activation energy for the jumps is obtained from the maximum along the path, a saddle point on the energy surface, and the eigenvalues of the Hessian matrix at that point as well as at the initial state minimum used to estimate the entropic pre-exponential factor. The crossover temperature for quantum mechanical tunneling is evaluated from the second derivatives of the energy with respect to orientation of the spin vector at the saddle point. The resulting expression is applied to test problems where analytical results have previously been derived, namely uniaxial and biaxial spin systems with two-fold anisotropy. The effect of adding four-fold anisotropy on the crossover temperature is demonstrated. Calculations of the jump rate and crossover temperature for tunneling are also made for a molecular magnet containing an Mn 4 group. The results are in excellent agreement with previously reported experimental measurements on this system.

  2. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  3. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    OpenAIRE

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the st...

  4. Test-bench for characterization of steady state magnetic sensors parameters in wide temperature range

    International Nuclear Information System (INIS)

    Kovařík, Karel; Ďuran, Ivan; Sentkerestiová, Jana; Šesták, David

    2013-01-01

    Highlights: •Prepared test bench for calibration of steady state magnetic sensors. •Test-bench design optimized for calibration up to 300 °C. •Test-bench is remotely controllable and allows long term measurements. •Construction allows easy manipulation with even irradiated samples. -- Abstract: Magnetic sensors in ITER tokamak and in other future fusion devices will face an environment with temperature often elevated well above 200 °C. Dedicated test benches are needed to allow characterization of performance of magnetic sensors at such elevated temperatures. This contribution describes realization of test bench for calibration of steady state magnetic sensors based on Hall effect. The core of the set-up is the coil providing DC calibration magnetic field. Optimization of coils design to ensure its compatibility with elevated temperature up to 300 °C is described. Optimized coil was manufactured, and calibrated both at room temperature and at temperature of 250 °C. Measured calibration magnetic field of the coil biased by a 30 A commercial laboratory power supplies is 224 mT. The coil is supplemented by PID regulated air cooling system for fine control of sensors temperature during measurements. Data acquisition system is composed from PC A/D converter boards with resolution below 1 μV. The key parameters of the test bench are remotely controllable and the system allows long term continuous measurements including tests of irradiated samples. The performance of the test bench is demonstrated on recent measurements with metal Hall sensors based on thin copper sensing layers

  5. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  6. Unstability of the Fulde-Ferrell state in d-wave superconductors by calculating the magnetic penetration depth

    International Nuclear Information System (INIS)

    Rabani, H.; Shahzamanian, M.A.; Yavary, H.

    2007-01-01

    Full text: Fulde, Ferrell, Larkin and Ovchnnikov (FFLO), first proposed the possibility that a superconducting state with a periodic spatial variation of the gap parameter would become stable when a large Zeeman splinting is present [1,2]. The order parameter varies periodically in space when the Pauli paramagnetism or the Zeeman term dominates the orbital effect. The Zeeman splitting could be due to either a strong magnetic field or an internal exchange field. Under these fields there is a splitting of the Fermi surfaces of spin up and spin down electrons, and the condensed pair has a non-zero total momentum, 2q, which causes the phase of the superconducting order parameter to vary. This state is known as the FF state. We determine the penetration depth of the Fulde-Ferrell State (FF) for quasi-two dimensional (2D) d-wave superconductor by calculating the electromagnetic nonlocal kernel response function. The behavior of the penetration depth at low temperatures is an important probe to determine the stability of the FF state. We start from a mean field Hamiltonian for the FF state and we calculate the electromagnetic nonlocal response tensor relating the current density to an applied vector potential to determine the magnetic penetration depth. We show that a linear T dependence of the magnetic penetration depth in the FF state superconductor violates indeed the third law of thermodynamics and the FF state is unstable due to Nernst theorem. (authors)

  7. Comparative study of rabbit VX2 hepatic implantation tumor and normal liver tissue on magnetic resonance perfusion weighted imaging

    International Nuclear Information System (INIS)

    Jiao Zimei; Wang Xizhen; Wang Bin; Liu Feng; Li Haiqing; Sun Yequan; Dong Peng

    2012-01-01

    Objective: To investigate the value of magnetic resonance (MR) perfusion weighted imaging (PWI) in evaluating the blood perfusion of tumor by analyzing the features and indexes of PWI on rabbit VX2 hepatic implantation tumor and normal liver tissue. Methods: Twenty-four New Zealand White rabbits with VX2 carcinoma were established under direct surgical vision embedding tumor tissue. MR examination was performed at 21 days after the tumor implantation. The signal intensity -time curve of hepatic tumor and normal liver tissue were obtained. Mean time to enhance (MTE), negative enhancement integral (NEI), time to minimum (TM), maximum slope of decrease (MSD) and maximum slope of increase (MSI) were measured. Results: MTE, NEI, TM, MSD, and MSI of the normal liver tissue were 208.341±2.226 ms, 78.334±8.152, 24.059±1.927 ms, 38.221±2.443, and 15.389±2.526, respectively. MTE, NEI, TM, MSD, and MSI of the tumor tissue were 175.437±4.182 ms, 123.203±19.455, 17.061±1.834 ms, 125.740±4.842, and 67.832±2.882, respectively. The MTE and TM of tumor were shorter than those of normal hepatic tissue (P<0.05). NEI, MSD, and MSI of tumor were higher than those of normal hepatic tissue (P<0.05). Conclusion: PWI can distinguish the normal liver tissue from the tumor tissue, which is helpful in evaluating blood perfusion of different hepatic tissues. (authors)

  8. Magnetization of Paraffin-Based Magnetic Nanocolloids

    Science.gov (United States)

    Dikanskii, Yu. I.; Ispiryan, A. G.; Kunikin, S. A.; Radionov, A. V.

    2018-01-01

    Using paraffin-based magnetic nanocolloids as an example, the reasons for maxima in the temperature dependence of the magnetic susceptibility of magnetic colloids have been discussed. The behavior of these dependences in a wide temperature interval has been analyzed for colloids in solid and liquid states. It has been concluded that the maximum observed at the melting point of paraffin can be attributed to freezing Brownian degrees of freedom in magnetite coarse particles, the magnetic moment of which is intimately related to the solid matrix. The second main maximum, which arises in the solid state, is explained by the superparamagnetic-magnetically hard transition of most fine particles at lower temperatures. It has been noted that the flatness of this maximum results from the polydispersity of the magnetic nanoparticle ensemble.

  9. A magnetic model for low/hard state of black hole binaries

    Science.gov (United States)

    Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng

    2016-03-01

    A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.

  10. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Kazunari, E-mail: YAMAURA.Kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan)

    2016-04-15

    High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO{sub 3}, LiOsO{sub 3}, and Na{sub 2}OsO{sub 4}, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal–insulator transition in NaOsO{sub 3}, a ferroelectric-like transition in LiOsO{sub 3}, and high-temperature ferrimagnetism driven by a local structural distortion in Ca{sub 2}FeOsO{sub 6} may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices. - Graphical Abstract: Flux-grown crystals of NaOsO{sub 3} under high-pressure and high-temperature conditions in a belt-type apparatus. The crystal shows a magnetically driven metal–insulator transition at a temperature of 410 K. - Highlights: • Short review of high-pressure crystal growth of solid-state osmium oxides. • Wide variety of magnetic properties of solid-state osmium oxides. • Perovskite and related dense structures stabilized at 3–17 GPa.

  11. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. AC susceptibility of thin Pb films in intermediate and mixed state

    Energy Technology Data Exchange (ETDEWEB)

    Janu, Zdenek, E-mail: janu@fzu.cz [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic); Svindrych, Zdenek [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic); Trunecek, Otakar [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague 2 (Czech Republic); Kus, Peter; Plecenik, Andrej [Komenius University in Bratislava, Faculty of Mathematics, Physics, and Informatics, Mlynska dolina, 842 48 Bratislava 4 (Slovakia)

    2011-12-15

    Thickness dependent transition in AC susceptibility between intermediate and mixed state in type-I superconducting films. The temperature induced crossover between reversible and irreversible behavior was observed in the thicker film. The temperature dependence of the AC susceptibility in mixed state follows prediction of model based on Bean critical state. The temperature dependence of the harmonics of the complex AC susceptibility in the intermediate state is explained. Thin films of type I superconductors of a thickness comparable or less than a flux penetration length behave like type II superconductors in a mixed state. With decreasing film thickness normal domains carrying a magnetic flux get smaller with smaller number of flux quanta per domain and finally transform into single quantum flux lines, i.e. quantum vortices similar to those found in type II superconductors. We give an evidence of this behavior from the measurements of the nonlinear response of a total magnetic moment to an applied AC magnetic field, directly from the temperature dependence of an AC susceptibility.

  13. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  14. A new hybrid protection system for high-field superconducting magnets

    CERN Document Server

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A new protection system for superconducting magnets is presented, comprising a combination of a novel coupling-loss induced quench (CLIQ) system and conventional quench heaters. CLIQ can provoke a very fast transition to the normal state in coil windings by introducing coupling loss and thus heat in the coil's conductor. The advantage of the hybrid protection system is a global transition, resulting in a much faster current decay, a significantly lower hot-spot temperature, and a more homogeneous temperature distribution in the magnet's coil.

  15. A normal metal tunnel-junction heat diode

    Energy Technology Data Exchange (ETDEWEB)

    Fornieri, Antonio, E-mail: antonio.fornieri@sns.it; Martínez-Pérez, María José; Giazotto, Francesco, E-mail: giazotto@sns.it [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy)

    2014-05-05

    We propose a low-temperature thermal rectifier consisting of a chain of three tunnel-coupled normal metal electrodes. We show that a large heat rectification is achievable if the thermal symmetry of the structure is broken and the central island can release energy to the phonon bath. The performance of the device is theoretically analyzed and, under the appropriate conditions, temperature differences up to ∼200 mK between the forward and reverse thermal bias configurations are obtained below 1 K, corresponding to a rectification ratio R∼2000. The simplicity intrinsic to its design joined with the insensitivity to magnetic fields make our device potentially attractive as a fundamental building block in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.

  16. Numerical solutions to the critical state in a magnet-high temperature superconductor interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Alonso, D; Coombs, T A; Campbell, A M [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2005-02-01

    This paper presents an algorithm to simulate the electromagnetic behaviour of devices containing high temperature superconductors in axially symmetric problems. The numerical method is built within the finite element method. The electromagnetic properties of HTSCs are described through the critical-state model. Measurements of the axial force between a permanent magnet and a melt-textured YBCO puck are obtained in order to validate the method. This simple system is modelled so that the proposed method obtains the current distribution and electromagnetic fields in the HTSC. The forces in the interaction between the magnet and the HTSC puck can then be calculated. A comparison between experimental and simulation results shows good matching. The simplification of using the critical-state model and ignoring flux creep in this type of configuration is also explored.

  17. The Role of Coronary Computed Tomography Angiography and Cardiac Magnetic Resonance in STEMI Patients with Normal Coronary Angiography

    Directory of Open Access Journals (Sweden)

    Beganu Elena

    2017-09-01

    Full Text Available Usually, the diagnosis of myocardial infarction based on patient symptoms, electrocardiogram (ECG changes, and cardiac enzymes, is not a challenge for cardiologists. The correlation between coronary anatomy and the ECG territories that present ischemic changes can help the clinician to estimate which coronary artery presents lesions upon performing a coronary angiogram. In certain situations, the diagnosis of myocardial infarction can be difficult due to the lack of correlations between the clinical and paraclinical examinations and the coronary angiogram. In some cases, patients with chest pain and ST-segment elevation on the ECG tracing present with a normal coronary angiography. In other cases, patients without important changes on the ECG can present critical lesions or even occlusions upon angiographic examination. The aim of this article is to highlight the role of noninvasive coronary magnetic resonance and multi-slice computed tomography in patients with ST-segment elevation myocardial infarction and normal coronary angiography.

  18. Suppressing magnetic island growth by resonant magnetic perturbation

    Science.gov (United States)

    Yu, Q.; Günter, S.; Lackner, K.

    2018-05-01

    The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.

  19. The measurement of magnetic moments of nuclear states of high angular momentum

    International Nuclear Information System (INIS)

    Goldring, G.

    1978-01-01

    Two problems related to the measurement of the g-factor of relevant nuclear levels and their circumvention are discussed: a) the very high magnetic fields required for the measurements, available only as a hyperfine field of electrons or other charged particles moving very close to the nucleus; b) the large angular momentum of those nuclear states. The nuclei considered are those recoiling from a nuclear reaction at high speeds in either vacuum or gas. The environment of these nuclei are the isolated ions with which they are associated. The hyperfine interaction with such ions is primarily magnetic. (B.G.)

  20. Bifurcated states of a rotating tokamak plasma in the presence of a static error-field

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1998-01-01

    The bifurcated states of a rotating tokamak plasma in the presence of a static, resonant, error-field are strongly analogous to the bifurcated states of a conventional induction motor. The two plasma states are the open-quotes unreconnectedclose quotes state, in which the plasma rotates and error-field-driven magnetic reconnection is suppressed, and the open-quotes fully reconnectedclose quotes state, in which the plasma rotation at the rational surface is arrested and driven magnetic reconnection proceeds without hindrance. The response regime of a rotating tokamak plasma in the vicinity of the rational surface to a static, resonant, error-field is determined by three parameters: the normalized plasma viscosity, P, the normalized plasma rotation, Q 0 , and the normalized plasma resistivity, R. There are 11 distinguishable response regimes. The extents of these regimes are calculated in P endash Q 0 endash R space. In addition, an expression for the critical error-field amplitude required to trigger a bifurcation from the open-quotes unreconnectedclose quotes to the open-quotes fully reconnectedclose quotes state is obtained in each regime. The appropriate response regime for low-density, ohmically heated, tokamak plasmas is found to be the nonlinear constant-ψ regime for small tokamaks, and the linear constant-ψ regime for large tokamaks. The critical error-field amplitude required to trigger error-field-driven magnetic reconnection in such plasmas is a rapidly decreasing function of machine size, indicating that particular care may be needed to be taken to reduce resonant error-fields in a reactor-sized tokamak. copyright 1998 American Institute of Physics

  1. Normalized Mini-Mental State Examination for assessing cognitive change in population-based brain aging studies.

    Science.gov (United States)

    Philipps, Viviane; Amieva, Hélène; Andrieu, Sandrine; Dufouil, Carole; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène; Proust-Lima, Cécile

    2014-01-01

    The Mini-Mental State Examination (MMSE) is widely used in population-based longitudinal studies to quantify cognitive change. However, its poor metrological properties, mainly ceiling/floor effects and varying sensitivity to change, have largely restricted its usefulness. We propose a normalizing transformation that corrects these properties, and makes possible the use of standard statistical methods to analyze change in MMSE scores. The normalizing transformation designed to correct at best the metrological properties of MMSE was estimated and validated on two population-based studies (n = 4,889, 20-year follow-up) by cross-validation. The transformation was also validated on two external studies with heterogeneous samples mixing normal and pathological aging, and samples including only demented subjects. The normalizing transformation provided correct inference in contrast with models analyzing the change in crude MMSE that most often lead to biased estimates of risk factors and incorrect conclusions. Cognitive change can be easily and properly assessed with the normalized MMSE using standard statistical methods such as linear (mixed) models. © 2014 S. Karger AG, Basel.

  2. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  3. Collection of ions in a plasma by magnetic field acceleration with selective polarization

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1976-01-01

    Method and apparatus are described for generating and accelerating ions in a vapor by use of relatively polarized laser radiation and a magnetic field. As applied to uranium isotope enrichment, a flowing uranium vapor has particles of the 235 U isotope type selectively ionized by laser radiation and the ionized flow is subjected to a transverse gradient in a magnetic field. The magnetic field gradient induces an acceleration on the ionized particles of 235 U which deflects them from their normal flow path toward a collecting structure. High magnetic field and corresponding high ion accelerations are achieved without loss in ionization selectivity by maintaining a polarization between the applied laser radiation and magnetic field which minimizes Zeeman splitting of the uranium energy states

  4. Normal-state conductance used to probe superconducting tunnel junctions for quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, Carlos; Bavier, Richard; Kim, Yong-Seung; Kim, Eunyoung; Oh, Seongshik [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kline, Jeffrey S; Pappas, David P, E-mail: carlosch@physics.rutgers.ed, E-mail: ohsean@physics.rutgers.ed [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2010-04-15

    Here we report normal-state conductance measurements of three different types of superconducting tunnel junctions that are being used or proposed for quantum computing applications: p-Al/a-AlO/p-Al, e-Re/e-AlO/p-Al, and e-V/e-MgO/p-V, where p stands for polycrystalline, e for epitaxial, and a for amorphous. All three junctions exhibited significant deviations from the parabolic behavior predicted by the WKB approximation models. In the p-Al/a-AlO/p-Al junction, we observed enhancement of tunneling conductances at voltages matching harmonics of Al-O stretching modes. On the other hand, such Al-O vibration modes were missing in the epitaxial e-Re/e-AlO/p-Al junction. This suggests that absence or existence of the Al-O stretching mode might be related to the crystallinity of the AlO tunnel barrier and the interface between the electrode and the barrier. In the e-V/e-MgO/p-V junction, which is one of the candidate systems for future superconducting qubits, we observed suppression of the density of states at zero bias. This implies that the interface is electronically disordered, presumably due to oxidation of the vanadium surface underneath the MgO barrier, even if the interface was structurally well ordered, suggesting that the e-V/e-MgO/p-V junction will not be suitable for qubit applications in its present form. This also demonstrates that the normal-state conductance measurement can be effectively used to screen out low quality samples in the search for better superconducting tunnel junctions.

  5. Magnetization states and magnetization processes in nanostructures: from a single layer to multilayers

    Czech Academy of Sciences Publication Activity Database

    Maziewski, A.; Fassbender, J.; Kisielewski, J.; Kisielewski, M.; Kurant, Z.; Mazalski, P.; Stobiecki, F.; Stupakiewicz, A.; Sveklo, I.; Tekielak, M.; Wawro, A.; Zablotskyy, Vitaliy A.

    2014-01-01

    Roč. 211, č. 5 (2014), s. 1005-1018 ISSN 1862-6300 R&D Projects: GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : light and ions irradiation effects * magnetic anisotropy * magnetic domains * magnetic ordering * magnetic ultrathin films and multilayers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.616, year: 2014

  6. The impact of chemical doping on the magnetic state of the Sr{sub 2}YRuO{sub 6} double perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Paula; Ranjbar, Ben; Kennedy, Brendan J. [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Avdeev, Maxim [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia)

    2017-05-15

    The impact of chemical doping of the type Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties of Sr{sub 2}YRuO{sub 6}, probed using variable temperature magnetic susceptibility, neutron diffraction and heat capacity measurements, are described. Specific-heat measurements of un-doped Sr{sub 2}YRuO{sub 6} reveal two features at ∼26 and ∼30 K. Neutron scattering measurements at these temperatures are consistent with a change from a 2D ordered state to the 3D type 1 AFM state. Magnetic and structural studies of a number of doped oxides are described that highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} and demonstrate that doping destabilizes the intermediate 2D ordered state. - Graphical abstract: Neutron diffraction measurements of the ordered double perovskite Sr{sub 2}YRuO{sub 6}reveal a with a change from a 2D ordered state to the 3D type 1 AFM state upon cooling. The impact of chemical doping Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties have also been investigated and these highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} with doping destabilizing the intermediate 2D ordered state. - Highlights: • Crystal and Magnetic Structure of Sr{sub 2}YRuO{sub 3} was studied using Neutron Diffraction. • Effect of doping on the magnetic ground state established. • Origin of two low temperature transitions discussed.

  7. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  8. Structure and magnetism in novel group IV element-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Frank [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-08-14

    The project is to investigate structure, magnetism and spin dependent states of novel group IV element-based magnetic thin films and heterostructures as a function of composition and epitaxial constraints. The materials systems of interest are Si-compatible epitaxial films and heterostructures of Si/Ge-based magnetic ternary alloys grown by non-equilibrium molecular beam epitaxy (MBE) techniques, specifically doped magnetic semiconductors (DMS) and half-metallic Heusler alloys. Systematic structural, chemical, magnetic, and electrical measurements are carried out, using x-ray microbeam techniques, magnetotunneling spectroscopy and microscopy, and magnetotransport. The work is aimed at elucidating the nature and interplay between structure, chemical order, magnetism, and spin-dependent states in these novel materials, at developing materials and techniques to realize and control fully spin polarized states, and at exploring fundamental processes that stabilize the epitaxial magnetic nanostructures and control the electronic and magnetic states in these complex materials. Combinatorial approach provides the means for the systematic studies, and the complex nature of the work necessitates this approach.

  9. Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method

    International Nuclear Information System (INIS)

    Li Fashen; Wang Haibo; Wang Li; Wang Jianbo

    2007-01-01

    ZnFe 2 O 4 nanoparticles with average grain size ranging from 40 to 60 nm behaving superparamagnetic at room temperature have been produced using a low-temperature solid-state reaction (LTSSR) method without ball-milling process. Abnormal magnetic properties such as S-shape hysteresis loops and non-zero magnetic moments were observed. ZnFe 2 O 4 nanoparticles were also synthesized using a NaOH coprecipitation method and a PVA sol-gel method to study the relationship between the preparation processes and the magnetic properties. Spin-glass behavior was observed in the low temperature solid-state reaction produced Zn ferrite in the zero-field cooled (ZFC) measurement. Our work proves that the various preparation methods will to some extent determine the properties of magnetic nanoparticles

  10. Designing magnetic compensated states in tetragonal Mn{sub 3}Ge-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    You, Yurong; Xu, Guizhou, E-mail: gzxu@njust.edu.cn; Hu, Fang; Gong, Yuanyuan; Liu, Er; Peng, Guo; Xu, Feng, E-mail: xufeng@njust.edu.cn

    2017-05-01

    Magnetic compensated materials attracted much interests due to the observed large exchange bias and large coercivity, and also their potential applications in the antiferromagnetic spintronics with merit of no stray field. In this work, by using ab-initio studies, we designed several Ni (Pd, Pt) doped Mn{sub 3}Ge-based D0{sub 22}-type tetragonal Heusler alloys with fully compensated states. Theoretically, we find the total moment change is asymmetric across the compensation point (at ~x=0.3) in Mn{sub 3-x}Y{sub x}Ge (Y=Ni, Pd, Pt). In addition, an uncommon discontinuous jump is observed across the critical zero-moment point, indicating that some non-trivial properties may emerge at this point. Further electronic analyses of these compensated alloys reveal high spin polarizations at the Fermi level, which is advantageous for spin transfer torque applications. - Highlights: • Several new fully compensated magnetic states are identified in Mn{sub 3}Ge-based tetragonal alloys. • The magnetic moment changes are asymmetric upon Ni, Pd and Pt substitution. • Discontinuous jumps exist across the compensated points. • The three compensated alloys possess large spin polarizations.

  11. The Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI

    Directory of Open Access Journals (Sweden)

    Masoomeh Fooladi

    2007-12-01

    Full Text Available Introduction: Multiple sclerosis (MS is a demyelinating disease of the central nervous system (CNS, affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathological heterogeneities that occur in MS lesions and brain tissue.Quantitative magnetization transfer imaging (qMTI is a relatively new MRI technique which can be used to examine the pathological processes of the brain parenchyma which occur in MS patients.This quantitative MRI technique can provide more complete information about the extent and nature of the brain tissue destruction in multiple sclerosis, which cannot be detected by conventional MRI. Material and Methods: In this study, twelve patients with relapsing-remitting MS and twelve healthy control subjects underwent conventional MR imaging including: T2-FSE, T1-SE and FLAIR sequences as well as quantitative magnetization transfer imaging. All the focal lesions were identified on T2-weighted images and were classified according to their signal hypointensity on T1-weighted scans. The white matter and MS lesions were segmented using a semi-automated system. MT ratio (MTR histogram analysis was performed for the brain white matter and the average MTR value was calculated for the classified MS lesions. Results: A significant reduction was found in MTR value of the normal appearing white matter (NAWM in patients with relapsing-remitting MS, suggesting that MS is a more diffuse disease, affecting the whole brain tissue. A wide range changes in MTR values can be observed in MS lesions. MTR reduction is correlated with the degree of lesion hypointensity on T1-weighted scans. The lower MTR values of lesions that appear progressively more hypointense on T1-weigted images reflect varying degrees of demyelination and

  12. Ground state analysis of magnetic nanographene molecules with modified edge

    International Nuclear Information System (INIS)

    Gorjizadeh, Narjes; Ota, Norio; Kawazoe, Yoshiyuki

    2013-01-01

    Highlights: ► Graphene molecules can become ferromagnetic by edge modifications. ► Dihydrogenation of one zigzag edge of rectangular flakes make them ferromagnetic. ► Triangular flakes become high-spin state by dehydrogenization of one zigzag edge. - Abstract: We study spin states of edge modified nanographene molecules with rectangular and triangular shapes by first principle calculations using density functional theory (DFT) and Hartree–Fock (HF) methods with Møller–Plesset (MP) correlation energy correction at different levels. Anthracene (C 14 H 10 ) and phenalenyl (C 13 H 9 ), which contain three benzene rings combined in two different ways, can be considered as fragments of a graphene sheet. Carbon-based ferromagnetic materials are of great interest both in fundamental science and technological potential in organic spintronics devices. We show that non-magnetic rectangular molecules such as C 14 H 10 can become ferromagnetic with high-spin state as the ground state by dihydrogenization of one of the zigzag edges, while triangular molecules such as C 13 H 9 become ferromagnetic with high-spin state by dehydrogenization of one of the zigzag edges

  13. Temperature dependence of velocity of sound in high-Tc superconductors in normal state

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2002-01-01

    A microscopic theoretical calculation of temperature dependence of velocity of sound in high temperature superconductors is addressed in this paper. The influence of model parameters of the system in its normal phase is investigated through numerical calculations. The results at the room temperature as well as low temperatures (∼ 25 K), are discussed. The dimensionless parameters involved in the calculations are the electron-phonon coupling (g), staggered magnetic field (h), hybridization (V), position of the f-level (d), temperature (t) and the conduction band width (ω). The model Hamiltonian contains the antiferromagnetism in conduction electrons of cooper and the electron-phonon interaction through the hybridization between conduction electrons and f-electrons of impurity atoms. The phonon Green's functions are calculated by Zubarev's technique. The velocity of sound is calculated in the long wavelength and finite temperature limit. (author)

  14. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  15. Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle.

    Science.gov (United States)

    Takahashi, Kazunori; Ando, Akira

    2017-06-02

    An axial magnetic field induced by a plasma flow in a divergent magnetic nozzle is measured when injecting the plasma flow from a radio frequency (rf) plasma source located upstream of the nozzle. The source is operated with a pulsed rf power of 5 kW, and the high density plasma flow is sustained only for the initial ∼100  μsec of the discharge. The measurement shows a decrease in the axial magnetic field near the source exit, whereas an increase in the field is detected at the downstream side of the magnetic nozzle. These results demonstrate a spatial transition of the plasma-flow state from diverging to stretching the magnetic nozzle, where the importance of both the Alfvén and ion Mach numbers is shown.

  16. Theory of steady state plasma flow and confinement in a periodic magnetic field

    International Nuclear Information System (INIS)

    Brown, M.G.

    1981-02-01

    The steady flow of plasmas through spatially periodic magnetic fields is examined, and a theoretical model is developed for the case of axisymmetric geometry. The externally applied magnetic fields can be cusps or mirrors joined end to end; electrons are then localised by these fields because of their small Larmor radius, while the ions can traverse the magnetic mirrors. The properties of the model equations are studied and dimensionless parameters which appear are interpreted. Numerical methods used in steady flow applications are reviewed, and some techniques of solution for the model equations are discussed. A solution method involving numerical integration of time-dependent equations is described, which approaches the steady state asymptotically; results from this method are presented and compared with the results from perturbation theory. (author)

  17. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  18. Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section

    Science.gov (United States)

    Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther

    2015-06-01

    Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.

  19. Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

    Directory of Open Access Journals (Sweden)

    R. Walter Heinrichs

    2017-01-01

    Full Text Available This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB composite score (T=50 ± 10 and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n=39 had greater cortical thickness than both cognitively normal (n=17 and below-normal range (n=49 patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n=24 or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.

  20. Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity.

    Science.gov (United States)

    Davoyan, Arthur R; Engheta, Nader

    2013-12-20

    We study propagation of transverse-magnetic electromagnetic waves in the bulk and at the surface of a magnetized epsilon-near-zero (ENZ) medium in a Voigt configuration. We reveal that in a certain range of material parameters novel regimes of wave propagation emerge; we show that the transparency of the medium can be altered with the magnetization leading either to magnetically induced Hall opacity or Hall transparency of the ENZ. In our theoretical study, we demonstrate that surface waves at the interface between either a transparent or an opaque Hall medium and a homogeneous medium may, under certain conditions, be predominantly one way. Moreover, we predict that one-way photonic surface states may exist at the interface of an opaque Hall ENZ and a regular metal, giving rise to the possibility for backscattering immune wave propagation and isolation.

  1. Computation of magnetic circular dichroism by sum-over-states summations

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Bouř, Petr

    2013-01-01

    Roč. 34, č. 18 (2013), s. 1531-1539 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033; GA ČR GA13-03978S Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : time-dependent * density functional theory * sum over states * spectroscopy * magnetic circular dichroism * origin dependence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  2. Discovery of a new phase with magnetic short range correlations and its possible relevance for the hidden order in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Steffen [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Becker, Klaus W. [Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2016-07-01

    In this paper we discuss a new phase of the Kondo lattice model which arises from the competition of Kondo and RKKY energy scales. Normally the Kondo lattice model is used to capture the low-energy physics of heavy fermion systems. However, according to the so-called Doniach picture the Kondo state will be replaced by an antiferromagnetic state for the case that the Kondo energy scale becomes smaller than the magnetic interaction between magnetic ions. In the present study we start instead from a modified electronic one-particle dispersion which avoids nesting of particle-hole excitations. Thus the magnetic ordered state should be suppressed which provides an opportunity for the inset of a new low-energy state with competing Kondo and magnetic energies. As will be shown, this new state avoids magnetic symmetry breaking but leads to a number of physical properties which are relevant for the understanding of the hidden order state in URu{sub 2}Si{sub 2}.

  3. Features of magnetic susceptibility and inhomogeneous magnetic state in La-Sr manganites

    International Nuclear Information System (INIS)

    Dovgij, V.T.; Linnik, A.I.; Kamenev, V.I.; Prokopenko, V.K.; Mikhajlov, V.I.; Khokhlov, V.A.; Kadontseva, A.M.; Linnik, T.A.; Davydejko, N.V.; Turchenko, V.A.

    2007-01-01

    Anomalous magnetic susceptibility has been observed in mono- and polycrystalline (ceramic) samples of La-Sr manganites. The oscillations of the magnetic susceptibility observed for monocrystal samples in the vicinity of the Curie temperature (and in the paramagnetic region) are explained by the existence of magnetic clusters. The appearance of susceptibility oscillations in ceramic samples is attributed to the formation of magnetic clusters, which may occur both in grains (at the interface between ferro- and antiferromagnetic phases) and at the grain boundaries [ru

  4. Operator analysis of physical states on magnetized T{sup 2}/Z{sub N} orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomo-hiro, E-mail: t-abe@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Fujimoto, Yukihiro, E-mail: Fujimoto@het.phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka 560-0043 (Japan); Kobayashi, Tatsuo, E-mail: kobayashi@particle.sci.hokudai.ac.jp [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Miura, Takashi, E-mail: takashi.miura@people.kobe-u.ac.jp [Department of Physics, Kobe University, Kobe 657-8501 (Japan); Nishiwaki, Kenji, E-mail: nishiken@kias.re.kr [Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, Allahabad 211 019 (India); School of Physics, Korea Institute for Advanced Study, Seoul 130 722 (Korea, Republic of); Sakamoto, Makoto, E-mail: dragon@kobe-u.ac.jp [Department of Physics, Kobe University, Kobe 657-8501 (Japan)

    2015-01-15

    We discuss an effective way for analyzing the system on the magnetized twisted orbifolds in operator formalism, especially in the complicated cases T{sup 2}/Z{sub 3}, T{sup 2}/Z{sub 4} and T{sup 2}/Z{sub 6}. We can obtain the exact and analytical results which can be applicable for any larger values of the quantized magnetic flux M, and show that the (non-diagonalized) kinetic terms are generated via our formalism and the number of the surviving physical states are calculable in a rigorous manner by simply following usual procedures in linear algebra in any case. Our approach is very powerful when we try to examine properties of the physical states on (complicated) magnetized orbifolds T{sup 2}/Z{sub 3}, T{sup 2}/Z{sub 4}, T{sup 2}/Z{sub 6} (and would be in other cases on higher-dimensional torus) and could be an essential tool for actual realistic model construction based on these geometries. (Note: This article is registered under preprint number: (arXiv:1409.5421).)

  5. Diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) determination in normal and pathological fetal kidneys.

    Science.gov (United States)

    Chaumoitre, K; Colavolpe, N; Shojai, R; Sarran, A; D' Ercole, C; Panuel, M

    2007-01-01

    To assess the use of diffusion-weighted magnetic resonance imaging (DW-MRI) in the evaluation of the fetal kidney and to estimate age-dependent changes in the apparent diffusion coefficient (ADC) of normal and pathological fetal kidneys. DW-MRI was performed on a 1.5-T machine at 23-38 gestational weeks in 51 pregnant women in whom the fetal kidneys were normal and in 10 whose fetuses had renal pathology (three with suspected nephropathy, three with renal tract dilatation, one with unilateral renal venous thrombosis, and three with twin-twin transfusion syndrome (TTTS)). The ADC was measured in an approximately 1-cm2 region of interest within the renal parenchyma. ADC values in normal renal parenchyma ranged from 1.1 to 1.8 10(-3) mm2 s-1. There was no significant age-dependent change in the ADC of normal kidneys. In cases of nephropathy, the ADC value was not always pathological but an ADC map could show abnormal findings. In cases of dilatation, the ADC value was difficult to determine when the dilatation was huge. In cases of TTTS, the ADC of the donor twin was higher than that of the recipient twin and the difference seemed to be related to the severity of the syndrome. Evaluation of the ADC for fetal kidneys is feasible. Fetal measurement of the ADC value and ADC maps may be useful tools with which to explore the fetal kidney when used in conjunction with current methods. DW-MR images, ADC value and ADC map seem to be useful in cases of suspected nephropathy (hyperechoic kidneys), dilated kidney and vascular pathology (renal venous thrombosis, TTTS). Copyright (c) 2006 ISUOG.

  6. Distribution Log Normal of 222 Rn in the state of Zacatecas, Mexico

    International Nuclear Information System (INIS)

    Garcia, M.L.; Mireles, F.; Quirino, L.; Davila, I.; Rios, C.; Pinedo, J.L.

    2006-01-01

    In this work the evaluation of the concentration of 222 Rn in air for Zacatecas is shown. The Solid State Nuclear Track Detectors were used as the technique for the realization of the measurements in large scale with cellulose nitrate LR-115, type 2, in open chambers of 222 Rn. The measurements were carried out during three months in different times of the year. In the results it is presented the log normal distribution, arithmetic mean and geometric media for the concentration at indoor and outdoor of residence constructions, the concentration at indoor of occupational constructions and in the 57 municipal heads of the state of Zacatecas. The statistics of the values in the concentration showed variation according to the time of the year, obtaining high quantities in winter seasons for both cases. The distribution of the concentration of 222 Rn is presented in the state map for each one of the municipalities, representing the measurement places in the entire state of Zacatecas. Finally the places where the values in the concentration of 222 Rn in air are near to the one limit settled down by the EPA of 148 Bq/m 3 are presented. (Author)

  7. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    International Nuclear Information System (INIS)

    Sayed, Fatima; Labaye, Yvan; Sayed Hassan, Rodaina; El Haj Hassan, Fouad; Yaacoub, Nader; Greneche, Jean-Marc

    2016-01-01

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  8. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, Fatima; Labaye, Yvan, E-mail: yvan.labaye@univ-lemans.fr [Université du Maine, Institut des Molécules et Matériaux du Mans CNRS UMR-6283 (France); Sayed Hassan, Rodaina; El Haj Hassan, Fouad [Université Libanaise, Faculté des Sciences Section I, MPLAB (Lebanon); Yaacoub, Nader, E-mail: nader.yaacoub@univ-lemans.fr; Greneche, Jean-Marc [Université du Maine, Institut des Molécules et Matériaux du Mans CNRS UMR-6283 (France)

    2016-09-15

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  9. Landau levels and shallow donor states in GaAs/AlGaAs multiple quantum wells at mega-gauss magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zybert, M. [Univ. of Rzeszow, Pigonia (Poland); Marchweka, M. [Univ. of Rzeszow, Pigonia (Poland); Sheregii, E. M. [Center for Microelectronics and Nanotechnology, University of Rzeszow; Rickel, Dwight Gene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Betts, Jonathan Bobby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gordon, Michael Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stier, Andreas V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mielke, Charles H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pfeffer, P. [Polish Academy of Sciences (PAS), Warsaw (Poland); Zawadski, W. [Polish Academy of Sciences (PAS), Warsaw (Poland)

    2017-03-06

    Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at mega-gauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6 to 300 K. The 14 x 14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magneto-donor states in the GaAs wells and possibly in the AlGaAs barriers. The magneto-donor energies are calculated using a variational procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed mengeto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.

  10. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  11. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  12. Spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor structures

    International Nuclear Information System (INIS)

    Li, Hong; Yang, Wei; Yang, Xinjian; Qin, Minghui; Guo, Jianqin

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator, the spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the subgap resonance peaks. The spin polarization due to the spin-filter effect of the FI causes an imbalance of the peaks heights and can enhance the Zeeman splitting of the gap peaks caused by an applied magnetic field. The spin-filter effect has no contribution to the proximity-effect-induced superconductivity in NM interlayer

  13. Non-conserved magnetization operator and 'fire-and-ice' ground states in the Ising-Heisenberg diamond chain

    Science.gov (United States)

    Torrico, Jordana; Ohanyan, Vadim; Rojas, Onofre

    2018-05-01

    We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped plaquette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain. We analyze the effects of non-conserving magnetization as well as the effects of the appearance of negative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromagnetic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize the "half-fire-half-ice" state introduced in reference Yin et al. (2015). The corresponding zero-temperature ground state phase diagrams are presented.

  14. Magnetic field-induced Landau Fermi liquid in high-T{sub c} metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R

    2003-08-25

    We consider the behavior of strongly correlated electron liquid in high-temperature superconductors within the framework of the fermion condensation model. We show that at low temperatures the normal state recovered by the application of a magnetic field larger than the critical field can be viewed as the Landau Fermi liquid induced by the magnetic field. In this state, the Wiedemann-Franz law and the Korringa law are held and the elementary excitations are the Landau Fermi liquid quasiparticles. Contrary to what might be expected from the Landau theory, the effective mass of quasiparticles depends on the magnetic field. The recent experimental verifications of the Wiedemann-Franz law in heavily hole-overdoped, overdoped and optimally doped cuprates and the verification of the Korringa law in the electron-doped copper oxide superconductor strongly support the existence of fermion condensate in high-T{sub c} metals.

  15. Cylindrical Taylor states conserving total absolute magnetic helicity

    Science.gov (United States)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  16. Anisotropic behaviour of transmission through thin superconducting NbN film in parallel magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Šindler, M., E-mail: sindler@fzu.cz [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Tesař, R. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic); Koláček, J. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Skrbek, L. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic)

    2017-02-15

    Highlights: • Transmission through thin NbN film in parallel magnetic field exhibits strong anisotropic behaviour in the terahertz range. • Response for a polarisation parallel with the applied field is given as weighted sum of superconducting and normal state contributions. • Effective medium approach fails to describe response for linear polarisation perpendicular to the applied magnetic field. - Abstract: Transmission of terahertz waves through a thin layer of the superconductor NbN deposited on an anisotropic R-cut sapphire substrate is studied as a function of temperature in a magnetic field oriented parallel with the sample. A significant difference is found between transmitted intensities of beams linearly polarised parallel with and perpendicular to the direction of applied magnetic field.

  17. Annealing Effects on the Normal-State Resistive Properties of Underdoped Cuprates

    Science.gov (United States)

    Vovk, R. V.; Khadzhai, G. Ya.; Nazyrov, Z. F.; Kamchatnaya, S. N.; Feher, A.; Dobrovolskiy, O. V.

    2018-05-01

    The influence of room-temperature annealing on the parameters of the basal-plane electrical resistance of underdoped YBa_2Cu_3O_{7-δ } and HoBa_2Cu_3O_{7-δ } single crystals in the normal and superconducting states is investigated. The form of the derivatives dρ (T)/dT makes it possible to determine the onset temperature of the fluctuation conductivity and indicates a nonuniform distribution of the labile oxygen. Annealing has been revealed to lead to a monotonic decrease in the oxygen deficiency, that primarily manifests itself as a decrease in the residual resistance, an increase of T_c, and a decrease in the Debye temperature.

  18. The Tectonic Boundary Between Eastern Subbaisin and South-West Subbasin of the South China Sea Revealed from the Normalized Magnetic Source Strength

    Science.gov (United States)

    Guo, L.; Meng, X.

    2014-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, is one of the largest marginal seas in the Western Pacific. It was formed by the interaction of the three plates and the seafloor spreading during Late Oligocene time to Early Miocene time. The boundary between Eastern Subbaisin and South-west Subbasin of the SCS has long been debated in the literature. Refining the boundary is one of the crucial tasks for correctly understanding the seafloor spreading model of the SCS. Due to few drills on the deep ocean basin of the SCS, magnetic data become important information for refining the boundary. However, the interpretation of magnetic data in the SCS suffers from the remanent magnetization of ocean crust as well as igneous rock and seamounts. The conventional reduction-to-pole anomalies at low latitudes usually neglect the remanent magnetization, making the interpretation incorrect. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then did a special transformation of the TMI anomalies with a varying magnetic inclinations algorithm to obtain the normalized source strength (NSS). The NSS has advantage of insensitivity to remanent magnetization, benefitting correct interpretation. The NSS presents discriminative features from east to west in the ocean basin. The boundary of the discriminative features is clear and just ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank. These imply that magnetic structure and tectonic features in the crust are discriminative between both sides of this boundary. It can be deduced that this boundary is the tectonic boundary between Eastern Subbaisin and South-west Subbasin. We acknowledge the financial support of the National Natural Science Foundation of China (41374093) and the SinoProbe-01-05 project.

  19. Magnetic moment of a two-particle bound state in quantum electrodynamics

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Faustov, R.N.

    2002-01-01

    A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium

  20. State-of-the-art superconducting accelerator magnets

    CERN Document Server

    Rossi, L

    2002-01-01

    With the LHC the technology of NbTi-based accelerator magnets has been pushed to the limit. By operating in superfluid helium, magnetic fields in excess of 10 T have been reached in various one meter-long model magnets while full scale magnets, 15 meter-long dipoles, have demonstrated possibility of safe operation in the 8.3-9 tesla range, with the necessary, very tight, field accuracy. The paper reviews the key points of the technology that has permitted the construction of the largest existing superconducting installations (Fermilab, Desy and Brookhaven), highlighting the novelties of the design of the LHC dipoles, quadrupoles and other superconducting magnets. All together the LHC project will need more than 5000 km of fine filament superconducting cables capable of 14 kA @ 10 T, 1.9 K. (13 refs).

  1. Performance of the Main Dipole Magnet Circuits of the LHC during Commissioning

    CERN Document Server

    Verweij, A; Ballarino, A; Bellesia, B; Bordry, Frederick; Cantone, A; Casas Lino, M; Castaneda Serra, A; Castillo Trello, C; Catalan-Lasheras, N; Charifoulline, Z; Coelingh, G; Dahlerup-Petersen, K; D'Angelo, G; Denz, R; Fehér, S; Flora, R; Gruwé, M; Kain, V; Khomenko, B; Kirby, G; MacPherson, A; Marqueta Barbero, A; Mess, K H; Modena, M; Mompo, R; Montabonnet, V; le Naour, S; Nisbet, D; Parma, V; Pojer, M; Ponce, L; Raimondo, A; Redaelli, S; Reymond, H; Richter, D; de Rijk, G; Rijllart, A; Romera Ramirez, I; Saban, R; Sanfilippo, S; Schmidt, R; Siemko, A; Solfaroli Camillocci, M; Thurel, Y; Thiessen, H; Venturini-Delsolaro, W; Vergara Fernandez, A; Wolf, R; Zerlauth, M

    2008-01-01

    During hardware commissioning of the Large Hadron Collider (LHC), 8 main dipole circuits are tested at 1.9 K and up to their nominal current. Each dipole circuit contains 154 magnets of 15 m length, and has a total stored energy of up to 1.3 GJ. All magnets are wound from Nb-Ti superconducting Rutherford cables, and contain heaters to quickly force the transition to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. In this paper the performance of the first three of these circuits is presented, focussing on quench detection, heater performance, operation of the cold bypass diodes, and magnet-to-magnet quench propagation. The results as measured on the entire circuits will be compared to the test results obtained during the reception tests of the individual magnets.

  2. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  3. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Normal state resistivity of single crystalline V3Si as a function of neutron irradiation

    International Nuclear Information System (INIS)

    Caton, R.; Viswanathan, R.

    1978-01-01

    Analysis of the normal state resistivity of a neutron damaged single crystal of V 3 Si shows two different regions of behavior: one for T/sub c/ equal to or greater than 10 0 K and another for T/sub c/ equal to or less than 10 0 K

  5. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  6. Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons

    Science.gov (United States)

    Chuang, Feng-Chuan; Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Su, Wan-Sheng; Guo, Guang-Yu

    The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV, depending on the parent and passivating elements as well as the applied strain, magnetic configuration and magnetization orientation. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as 9 meV/edge-site, being 2000 time greater than that of bulk Ni and Fe ( 5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5 % to 5 %. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.

  7. Studies of Current Induced Magnetization reversal and generation of GHz radiation in magnetic nanopillars

    Science.gov (United States)

    Alhajdarwish, Mustafa Yousef

    This thesis describes studies of two phenomena: Current-Induced Magnetization Switching (CIMS), and Current-Induced Generation of GHz Radiation. The CIMS part contains results of measurements of current-perpendicular-to-plane (CPP) magnetoresistance (MR) and CIMS behavior on Ferromagnetic/Nonmetal/Ferromagnetic (F1/N/F2) nanopillars. Judicious combinations of F1 and F2 metals with different bulk scattering asymmetries, and with F1/N and N/F2 interfaces having different interfacial scattering asymmetries, are shown to be able to controllably, and independently, 'invert' both the CPP-MR and the CIMS. In 'normal' CPP-MR, R(AP) > R(P), where R(AP) and R(P) are the nanopillar resistances for the anti-parallel (AP) and parallel (P) orientations of the Fi and F2 magnetic moments. In 'inverse' CPP-MR, R(P) > R(AP). In 'normal' CIMS, positive current switches the nanopillar from the P to the AP state. In 'inverse' CIMS, positive current switches the nanopillar from AP to P. All four possible combinations of CPP-MR and CIMS---(a) 'normal'-'normal', (b) 'normal'- 'inverse', 'inverse'-'normal', and (d) 'inverse'-'inverse' are shown and explained. These results rule out the self-Oersted field as the switching source, since the direction of that field is independent of the bulk or interfacial scattering asymmetries. Successful use of impurities to reverse the bulk scattering asymmetry shows the importance of scattering off of impurities within the bulk F1 and F2 metals---i.e. that the transport must be treated as 'diffusive' rather than 'ballistic'. The GHz studies consist of five parts: (1) designing a sample geometry that allows reliable measurements; (2) making nanopillar samples with this geometry; (3) constructing a system for measuring frequencies up to 12 GHz and measuring current-driven GHz radiation data with it; (4) showing 'scaling' behavior of GHz data with the critical fields and currents for nominally identical (but actually slightly different) samples, and

  8. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    Science.gov (United States)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  9. Spin-polarized currents in the tunnel contact of a normal conductor and a two-dimensional topological insulator

    International Nuclear Information System (INIS)

    Sukhanov, A. A.; Sablikov, V. A.

    2013-01-01

    The spin filtering of electrons tunneling from the edge states of a two-dimensional topological insulator into a normal conductor under a magnetic field (external or induced due to proximity to a magnetic insulator) is studied. Calculations are performed for a tunnel contact of finite length between the topological insulator and an electronic multimode quantum strip. It is shown that the flow of tunneling electrons is split in the strip, so that spin-polarized currents arise in its left and right branches. These currents can be effectively controlled by the contact voltage and the chemical potential of the system. The presence of a magnetic field, which splits the spin subbands of the electron spectrum in the strip, gives rise to switching of the spin current between the strip branches

  10. Development of magnetic drug delivery system using HTS bulk magnet

    International Nuclear Information System (INIS)

    Terada, T.; Fukui, S.; Mishima, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2008-01-01

    Magnetic drug delivery system (MDDS) is the method which the magnetic seeded drug is injected into a blood vessel and then controlled and accumulated by a magnet located outside of the human body. A high accumulation efficiency of the drug to a local diseased part and reduction in side-effects to normal organs are expected by using MDDS. The most important element in MDDS is a magnetic field generator. The high temperature superconducting (HTS) bulk magnet which can generate high magnetic field and magnetic field gradient extending to a point distant from the magnet in several ten millimeters is necessary to achieve the MDDS. In this study, the computer simulation and model experiment were conducted in order to confirm the applicability of MDDS to ovary of the cow body

  11. Equation of state of strange quark matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2012-01-01

    Thermodynamic properties of strange quark matter (SQM) in strong magnetic fields H up to 10 20 G are considered at zero temperature within the MIT bag model. The effects of the pressure anisotropy, exhibiting in the difference between the pressures along and perpendicular to the field direction, become essential at H>H t h , with the estimate 10 17 t h 18 G. The longitudinal pressure vanishes in the critical field H c , which can be somewhat less or larger than 10 18 G, depending on the total baryon number density and bag pressure. As a result, the longitudinal instability occurs in strongly magnetized SQM. The appearance of such instability sets the upper bound on the magnetic field strength which can be reached in the interior of a neutron star with the quark core. The longitudinal and transverse pressures as well as the anisotropic equation of state of SQM are determined under the conditions relevant for the cores of magnetars

  12. Design practice and operational experience of highly irradiated, high-performance normal magnets

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1982-09-01

    The limitations of high performance magnets are discussed in terms of mechanical, temperature, and electrical limits. The limitations of magnets that are highly irradiated by neutrons, gamma radiation, or x radiation are discussed

  13. Magnetic elements for switching magnetization magnetic force microscopy tips

    International Nuclear Information System (INIS)

    Cambel, V.; Elias, P.; Gregusova, D.; Martaus, J.; Fedor, J.; Karapetrov, G.; Novosad, V.

    2010-01-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.

  14. Theory of singlet-ground-state magnetism. Application to field-induced transitions in CsFeCl3 and CsFeBr3

    DEFF Research Database (Denmark)

    Lindgård, P.-A.; Schmid, B.

    1993-01-01

    In the singlet ground-state systems CsFeCl3 and CsFeBr3 a large single-ion anisotropy causes a singlet ground state and a doubly degenerate doublet as the first excited states of the Fe2+ ion. In addition the magneteic interaction is anisotropic being much larger along the z axis than perpendicular...... to it. Therefore, these quasi-one-dimensional magnetic model systems are ideal to demonstrate unique correlation effects. Within the framework of the correlation theory we derive the expressions for the excitation spectrum. When a magnetic field is applied parallel to the z axis both substances have...

  15. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiele, Ben [Department of Electrical Energy, Systems and Automation, Ghent University, Technologiepark 913, B-9052 Ghent-Zwijnaarde (Belgium); Fin, Samuele [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); Pancaldi, Matteo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); Vavassori, Paolo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Sarella, Anandakumar [Physics Department, Mount Holyoke College, 211 Kendade, 50 College St., South Hadley, Massachusetts 01075 (United States); Bisero, Diego [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); CNISM, Unità di Ferrara, 44122 Ferrara (Italy)

    2016-05-28

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.

  16. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  17. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    Science.gov (United States)

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  18. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    International Nuclear Information System (INIS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B.T.; Si, S.S.; Deng, Z.G.

    2015-01-01

    Highlights: • The loading weight affects the RF tremendously. • Reducing the FCH can improve the stability of the maglev vehicle. • The Halbach-type PMG has better loading capacity than the conventional PMG. • Pre-load is an effective way to enhance the dynamic characteristic of the HTS maglev vehicle. - Abstract: The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  19. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, J., E-mail: jzheng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Che, T. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, B.T.; Si, S.S. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P R China (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China)

    2015-12-15

    Highlights: • The loading weight affects the RF tremendously. • Reducing the FCH can improve the stability of the maglev vehicle. • The Halbach-type PMG has better loading capacity than the conventional PMG. • Pre-load is an effective way to enhance the dynamic characteristic of the HTS maglev vehicle. - Abstract: The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  20. Steady state models for filamentary plasma structures associated with force free magnetic fields

    International Nuclear Information System (INIS)

    Marklund, G.

    1978-05-01

    This paper presents a model for filamentary plasma structures associated with force-free magnetic fields. A homogenous electric field parallel to the symmetry axis of the magnetic field is assumed. Under the influence of these fields, the plasma will drift radially inwards resulting in an accumulation of plasma in the central region. We assume recombination losses to keep the central plasma density at a finite value, and the recombined plasma i.e. the neutrals to diffuse radially outwards. Plasma density and some neutral gas density distributions for a steady state situation are calculated for various cases

  1. The magnetic flux dynamics in the critical state of one-dimensional discrete superconductor

    International Nuclear Information System (INIS)

    Ginzburg, S.L.; Nakin, A.V.; Savitskaya, N.E.

    2006-01-01

    We give a theoretical description of avalanche-like dynamics of magnetic flux in the critical state of discrete superconductors using a one-dimensional model of a multijunction SQUID. We show that the system under consideration demonstrates the self-organized criticality. The avalanches of vortices manifest themselves as jumps of the total magnetic flux in the sample. The sizes of these jumps have a power-law distribution. We argue that similarities in the behavior of discrete and usual type-II superconductors allows to extend our results for description of avalanche-like dynamics in type-II superconductors with strong pinning

  2. Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45%C steel

    Energy Technology Data Exchange (ETDEWEB)

    Chongchong, Li [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Lihong, Dong, E-mail: lihong.dong@126.com [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Haidou, Wang [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Guolu, Li [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Binshi, Xu [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China)

    2016-05-01

    Monitoring fatigue crack propagation behavior of ferromagnetic components is very important. In this paper, the tension–tension fatigue tests of center cracked tension (CCT) specimens were carried out; the variation regularity of both tangential and normal components of magnetic signals during fatigue process were investigated. The results showed that the initial abnormal signals which appeared at the notch were reversed after cyclic loading. The abnormal magnetic signals became more significant with the increase of fatigue cycles and reversed again after failure. The characteristic parameters, i.e., the peak value of tangential component, B{sub tp}, and maximum gradient value of normal component, K{sub m}, showed similar variation trends during the fatigue process, which can be divided into three different stages. An approximate linear relationship was found between the characteristic parameters and fatigue crack length 2a. The feasibility of predicting the fatigue crack propagation using the abnormal magnetic signals was discussed. What's more, the variation and distribution of the magnetic signals were also analyzed based on the theory of magnetic charge. - Highlights: • A novel and passive NDT method, i.e. MMMT method, is proposed. • Both tangential and normal components of magnetic signals were investigated. • The prediction of crack propagation by abnormal magnetic signals was discussed. • A linear relationship was found between the parameters and fatigue crack length 2a. • The parameters can be potentially used to evaluate the crack propagation state.

  3. Theoretical and experimental investigations of frustrated pyrochlore magnets

    International Nuclear Information System (INIS)

    Champion, John Dickon Mathison

    2001-01-01

    This thesis describes the investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Monte Carlo simulations and analytical calculations have been performed on a pyrochlore ferromagnet with local (111) easy-axis anisotropy related to the problem of 'spin ice'. The anisotropy-temperature-magnetic field phase diagram was determined. It contained a tricritical point as well as features related to some real ferroelectrics. A pyrochlore antiferromagnet with local (111) easy-plane anisotropy was studied by Monte Carlo simulation. A general expression for its degenerate ground states was discovered and normal- modes out of the ground states were calculated. Both systems are frustrated yet have a long-range ordered state at low temperature. The degeneracy lifting observed is discussed as well as the reasons for its presence. The rare-earth titanate series Ln 2 Ti 2 O 7 (Ln = rare earth), crystallizes in the Fd3-barm space group, with the magnetic ions situated on the 16c sites which constitute the pyrochlore lattice. Crystal-field effects are known to play a significant role in the frustration observed in these compounds. Powder neutron diffraction was performed on gadolinium and erbium titanate. Both systems are frustrated antiferromagnets yet show long-range magnetic order at ∼ 1 K and ∼ 1.2 K respectively. The magnetic structures of both these compounds have been determined by powder neutron diffraction techniques and related to other theoretical results as well as the theoretical results of the author. Further neutron scattering experiments on the 'spin ice' materials Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 are also described. (author)

  4. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Takahashi, Masato; Maeda, Hideaki; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Nakagome, Hideki; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Kiyoshi, Tsukasa; Yamazaki, Toshio

    2012-01-01

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb 3 Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a 7 Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  5. The thermal expansion and Co magnetic state in light RCo{sub 3} intermetallics (R=Pr, Nd, Sm)

    Energy Technology Data Exchange (ETDEWEB)

    Gaidukova, I.Yu. [Faculty of Physics, M.V. Lomonosov Moscow State University 119992 Moscow, GSP-2 (Russian Federation); Granovsky, S.A. [Faculty of Physics, M.V. Lomonosov Moscow State University 119992 Moscow, GSP-2 (Russian Federation); Markosyan, A.S. [Faculty of Physics, M.V. Lomonosov Moscow State University 119992 Moscow, GSP-2 (Russian Federation)]. E-mail: ashot_markosyan@yahoo.com; Rodimin, V.E. [Faculty of Physics, M.V. Lomonosov Moscow State University 119992 Moscow, GSP-2 (Russian Federation)

    2006-06-15

    The temperature variation of the lattice parameters of three light RCo{sub 3} intermetallic compounds with R=Pr, Nd, Sm and the Nd{sub 1-} {sub x} Y {sub x} Co{sub 3} system was studied by X-ray diffraction in a wide temperature range 10-550 K. From the magnetovolume effect arising considerably below the Curie temperature it has been concluded that in the Nd{sub 1-} {sub x} Y {sub x} Co{sub 3} system a temperature-induced change of the Co magnetic state from a low to a high magnetic moment one occurs, whereas in the case of R=Pr and Sm the internal magnetic field acting on the Co sublattice is not high enough and the Co sublattice remains in the low magnetic moment state down to at least 10 K. The results are compared with those of heavy RCo{sub 3} compounds. In SmCo{sub 3} an orthorhombic distortion of the rhombohedral crystal lattice was observed below 125 K. This is accounted for a spin reorientation of the magnetization vector from the c-axis (high temperatures) to the basal plane (low temperatures)

  6. Electron states in quantum rings with structural distortions under axial or in-plane magnetic fields

    International Nuclear Information System (INIS)

    Planelles, J; Rajadell, F; Climente, J I

    2007-01-01

    A comprehensive study of anisotropic quantum rings, QRs, subject to axial and in-plane magnetic field, both aligned and transverse to the anisotropy direction, is carried out. Elliptical QRs for a wide range of eccentricity values and also perfectly circular QRs including one or more barriers disturbing the QR current are considered. These models mimic anisotropic geometry deformations and mass diffusion occurring in the QR fabrication process. Symmetry considerations and simplified analytical models supply physical insight into the obtained numerical results. Our study demonstrates that, except for unusual extremely large eccentricities, QR geometry deformations only appreciably influence a few low-lying states, while the effect of barriers disturbing the QR current is stronger and affects all studied states to a similar extent. We also show that the response of the electron states to in-plane magnetic fields provides accurate information on the structural anisotropy

  7. Edge-state-dependent tunneling of dipole-exchange spin waves in submicrometer magnetic strips with an air gap.

    Science.gov (United States)

    Xing, X J; Zhang, D; Li, S W

    2012-12-14

    We have investigated the tunneling of dipole-exchange spin waves across an air gap in submicrometer-sized permalloy magnetic strips by means of micromagnetic simulations. The magnetizations beside the gap could form three distinct end-domain states with various strengths of dipolar coupling. Spin-wave tunneling through the gap at individual end-domain states is studied. It is found that the tunneling behavior is strongly dependent on these domain states. Nonmonotonic decay of transmission of spin waves with the increase of the gap width is observed. The underlying mechanism for these behaviors is proposed. The tunneling characteristics of the dipole-exchange spin waves differ essentially from those of the magnetostatic ones reported previously.

  8. Magnetic resonance imaging of the normal equine digit and metacarpophalangeal joint

    International Nuclear Information System (INIS)

    Park, R.D.; Nelson, T.R.; Hoopes, P.J.

    1987-01-01

    Magnetic resonance (MR) images were made in sagittal and transverse planes through the metacarpophalangeal joint and digit of a horse. The images accurately depicted gross anatomic structures in the leg. Soft tissue structures were defined as separate entities on the images. Histologic variation in tissues correlated with signal intensity differences on the MR images. Magnetic resonance imaging appears to be a promising imaging modality for evaluating musculoskeletal structures in equine limbs

  9. The location of the quench origin in a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1987-01-01

    A method of calculating the initial rate of rise of the resistive voltage in a quenching superconducting magnet is described. Comparison of such calculations with data from spontaneously occurring quenches gives the location of the quench origin since the normal state resistance of the conductor is determined by its position in the windings due to the magnetoresistance of the copper matrix. The characteristics of the voltage buildup is used to separate quenches occurring in low field regions, such as the magnet ends, from those starting in the two-dimensional straight section of the coil. The magnitude of V dot is a measure of performance and can be used to determine if the magnet is reaching the maximum current permitted by the conductor parameters

  10. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  11. Magnetic Resonance Imaging of the Normal Stifle Joint in Buffaloes (Bos Bubalis: An Anatomic Study

    Directory of Open Access Journals (Sweden)

    Moustafa Samy Sherif

    2014-12-01

    Full Text Available The aim of the present study was to describe the normal anatomy of the stifle joint in buffaloes (Bos bubalis on magnetic resonance images and related anatomical sectional slices to facilitate the interpretation of all these images, as well as to understand the basis for diseases diagnosis. The hind limbs of ten healthy adult buffaloes (Twenty stifle joints were used. After slaughtering, MR images were made in sagittal, transverse, and dorsal planes. The limbs then were frozen at -20° then correspondingly sectioned using an electric band saw. Clinically relevant anatomic structures were identified and labeled at each level in the corresponding images (MR and anatomic slices. MRI images were used to identify the bony and soft tissue structures of the stifle joint. The articular cartilage appeared with hyperintense signal and separated from the subcondral bone by gray line (moderate signal intensity. It is difficult to differentiate between the synovia, infrapatellar fat body and the articular cartilage because they appeared with hyperintense signal. The meniscial, femoropatellar and cruciate ligaments recognized as moderate signal intensity. However, the collateral and intermediate patellar ligaments, the common tendon of the Mm. extensor digitorum longus and peroneus tertius as well as the menisci and the medial patellar fibrocartilage appeared with hypointense signal. The knowledge of normal anatomy of the buffalo stifle joint would serve as initial reference to the evaluation of MR images in this species.

  12. Probing Magnetism in the Vortex Phase of PuCoGa_{5} by X-Ray Magnetic Circular Dichroism.

    Science.gov (United States)

    Magnani, N; Eloirdi, R; Wilhelm, F; Colineau, E; Griveau, J-C; Shick, A B; Lander, G H; Rogalev, A; Caciuffo, R

    2017-10-13

    We measure x-ray magnetic circular dichroism (XMCD) spectra at the Pu M_{4,5} absorption edges from a newly prepared high-quality single crystal of the heavy-fermion superconductor ^{242}PuCoGa_{5}, exhibiting a critical temperature T_{c}=18.7  K. The experiment probes the vortex phase below T_{c} and shows that an external magnetic field induces a Pu 5f magnetic moment at 2 K equal to the temperature-independent moment measured in the normal phase up to 300 K by a superconducting quantum interference device. This observation is in agreement with theoretical models claiming that the Pu atoms in PuCoGa_{5} have a nonmagnetic singlet ground state resulting from the hybridization of the conduction electrons with the intermediate-valence 5f electronic shell. Unexpectedly, XMCD spectra show that the orbital component of the 5f magnetic moment increases significantly between 30 and 2 K; the antiparallel spin component increases as well, leaving the total moment practically constant. We suggest that this indicates a low-temperature breakdown of the complete Kondo-like screening of the local 5f moment.

  13. Superconductors with low critical temperature for electro-magnets; Supraconducteurs a basse temperature critique pour electroaimants

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    2002-07-01

    Among the superconductors with low critical temperature that are used to build magnets, NbTi has reached a development state that allows a massive production for big equipment of physics and an industrial production in the domain of medicine imaging. The material that might challenge the supremacy of NbTi is Nb{sub 3}Sn but some technical difficulties have yet to be overcome. This report begins with a review of the different industrial processes used to produce superconducting wires based on the NbTi and Nb{sub 3}Sn materials. The transition from the superconducting state to the resistive normal state is described for both materials, the magnetizing of multi-wire superconducting cables is also presented. The author details the different patterns of wires in cables and proposes a formulary that allows the determination, in some simple cases,of energy losses that are generated in a superconducting cable by a variable magnetic field. (A.C.)

  14. Language Patterns Discriminate Mild Depression From Normal Sadness and Euthymic State.

    Science.gov (United States)

    Smirnova, Daria; Cumming, Paul; Sloeva, Elena; Kuvshinova, Natalia; Romanov, Dmitry; Nosachev, Gennadii

    2018-01-01

    Deviations from typical word use have been previously reported in clinical depression, but language patterns of mild depression (MD), as distinct from normal sadness (NS) and euthymic state, are unknown. In this study, we aimed to apply the linguistic approach as an additional diagnostic key for understanding clinical variability along the continuum of affective states. We studied 402 written reports from 124 Russian-speaking patients and 77 healthy controls (HC), including 35 cases of NS, using hand-coding procedures. The focus of our psycholinguistic methods was on lexico-semantic [e.g., rhetorical figures (metaphors, similes)], syntactic [e.g., predominant sentence type (single-clause and multi-clause)], and lexico-grammatical [e.g., pronouns (indefinite, personal)] variables. Statistical evaluations included Cohen's kappa for inter-rater reliability measures, a non-parametric approach (Mann-Whitney U -test and Pearson chi-square test), one-way ANOVA for between-group differences, Spearman's and point-biserial correlations to analyze relationships between linguistic and gender variables, discriminant analysis (Wilks' λ) of linguistic variables in relation to the affective diagnostic types, all using SPSS-22 (significant, p  language, single-clause sentences domination over multi-clause, atypical word order, increased use of personal and indefinite pronouns, and verb use in continuous/imperfective and past tenses. In NS, as compared with HC, we found greater use of lexical repetitions, omission of words, and verbs in continuous and present tenses. MD was significantly differentiated from NS and euthymic state by linguistic variables [98.6%; Wilks' λ(40) = 0.009; p  language use distinguishing depression from NS and euthymic state, which points to a potential role of linguistic indicators in diagnosing affective states.

  15. EEG Oscillatory States: Universality, Uniqueness and Specificity across Healthy-Normal, Altered and Pathological Brain Conditions

    Science.gov (United States)

    Fingelkurts, Alexander A.; Fingelkurts, Andrew A.

    2014-01-01

    For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal. PMID:24505292

  16. Signature of magnetic-dependent gapless odd frequency states at superconductor / ferromagnet interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jason [Department of Materials Science, 27 Charles Babbage Road, Cambridge, CB30FS (United Kingdom)

    2015-07-01

    The theory of superconductivity developed by Bardeen, Cooper, and Schrieffer (BCS) explains the stabilisation of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap below which the density of states (DoS) is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. In this talk I will present scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb sub-gap superconducting DoS on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results verify odd frequency spin-triplet superconductivity at superconductor / inhomogeneous magnet interfaces.

  17. Magnetic Resonance of the Normal and Pathologic Nail

    International Nuclear Information System (INIS)

    Toro, Nancy; Delgado, Jorge Andres; Rascovsky Simon; Sanz Alexander; Castrillon, Juan Gabriel

    2008-01-01

    In this article normal nail anatomy is compared with the anatomy visualized in MRI; we share the experience of the Instituto de Alta Tecnologia Medica de Antioquia (IATM ) in this small but promising, area such as is the use of MRI in dermatology.

  18. A study on metastable superconducting magnets

    International Nuclear Information System (INIS)

    Koyama, Kenichi

    1976-01-01

    It is important to construct superconducting magnets as cheap as possible. One of the methods to achieve such a purpose is to save the superconducting material and operate the magnets at a high current density. Therefore it is useful to investigate the requirements for the operation of metastable superconducting magnets which can work at a current higher than the recovery current. Using the theory of flux jump, we introduce a ''stable current'' below which no flux jump can occur. On a rough approximation, it is given by I sub(s) =√A P sub(i) H sub(e) T sub(o) f(x)/rho where A : cross-section of the composite conductor. P sub(i) : total perimeter of all the superconducting cores. h sub(e) : effective heat transfer coefficient to the liquid helium through the stabilizer. T sub(o) : a characteristic temperature of the superconducting cores. f(x) : a characteristic function for the relative core radius x. rho : effective resistivity of the composite. Then it is shown that superconducting magnets can operate without unexpected normal transitions in the region enclosed by the two curves of I sub(s) and I sub(c). Next, we discuss the characteristics of our saddle shaped superconducting magnet for an one-KW MHD generator. We found that, 1) the magnet does safely operate in the metastable state; 2) the characteristics of the magnet are consistent with our theoretical results. (auth.)

  19. Quantum tunneling of electron snake states in an inhomogeneous magnetic field

    Science.gov (United States)

    Hoodbhoy, Pervez

    2018-05-01

    In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z   =  0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.

  20. Quantum tunneling of electron snake states in an inhomogeneous magnetic field.

    Science.gov (United States)

    Hoodbhoy, Pervez

    2018-05-10

    In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z   =  0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.

  1. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    International Nuclear Information System (INIS)

    Benitez, D; Gaydecki, P; Quek, S; Torres, V

    2007-01-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research

  2. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    Science.gov (United States)

    Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.

    2007-07-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research.

  3. Influence of the materials magnetic state on the accurate determination of the magnetocaloric effect

    Directory of Open Access Journals (Sweden)

    Forchelet J.

    2012-06-01

    Full Text Available In this paper, we report a detailed study of the magnetocaloric effect (MCE in different first order magnetic transition (FOMT materials with different situation of the magnetic state (magnetic order. For this purpose, R-Co2, MnAs based compounds were considered in this study. The MCE is discussed in terms of Maxwell relation (MR and Clausius-Clapeyron (C-C equation. The deviation observed between both methods is discussed and analyzed. On the other hand, practically all the reported data of the MCE in the literature are associated to the applied external magnetic field and have not been corrected taking into account the demagnetization effect related to the materials shape. The obtained results demonstrate that this phenomenon can alter drastically the MCE values by cancelling out a large part of the external field, resulting in spurious values of the measured MCE. The effect of the demagnetization field on the magnetocaloric performances is also the subject of this paper.

  4. Visualization of the normal appendix with MR enterography in children

    Energy Technology Data Exchange (ETDEWEB)

    Kovanlikaya, Arzu; Rosenbaum, Daniel; Brill, Paula W. [Weill Cornell Medical College, New York Presbyterian Hospital, Department of Radiology, New York, NY (United States); Mazumdar, Madhu; Dunning, Allison [Division of Biostatistics and Epidemiology, Weill Cornell Medical College, Department of Public Health, New York, NY (United States)

    2012-08-15

    Magnetic resonance (MR) imaging may provide a radiation-sparing alternative to CT in diagnosing appendicitis in children in whom US is equivocal. However, comparability with CT in the detection of the appendix remains to be established. To determine the detection rate of the normal appendix in children on oral and IV contrast-enhanced MRI. MR imaging of 58 patients who had previously undergone MR enterography was retrospectively reviewed. Detection rate, body mass index, age and gender were recorded. The normal appendix was detected in 28 cases (48 %), with greatest detection rate on the axial fast imaging employing steady-state acquisition (FIESTA) sequence. Children in whom the appendix was detected had significantly higher BMI compared to children in whom the appendix was not seen. Neither age nor gender demonstrated a significant association with detection rate. The detection rate of the normal appendix in children on oral and IV contrast-enhanced MRI was 48 %, which is comparable to detection rates on CT, as well as to previously reported detection rates on MR imaging with neither oral nor IV contrast agents. These findings may serve to guide the development of MRI protocols for pediatric appendicitis. (orig.)

  5. Intrahepatic fat, abdominal adipose tissues, and metabolic state: magnetic resonance imaging study.

    Science.gov (United States)

    Yaskolka Meir, Anat; Tene, Lilac; Cohen, Noa; Shelef, Ilan; Schwarzfuchs, Dan; Gepner, Yftach; Zelicha, Hila; Rein, Michal; Bril, Nitzan; Serfaty, Dana; Kenigsbuch, Shira; Chassidim, Yoash; Sarusy, Benjamin; Dicker, Dror; Thiery, Joachim; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2017-07-01

    Intrahepatic fat (IHF) is best known to associate with waist circumference (WC) and visceral adipose tissue (VAT), but its relation to abdominal subcutaneous adipose tissue is controversial. While IHF ≥ 5% dichotomously defines fatty liver, %IHF is rarely considered as a continuous variable that includes the normal range. In this study, we aimed to evaluate %IHF association with abdominal fat subdepots, pancreatic, and renal-sinus fats. We evaluated %IHF, abdominal fat subdepots, %pancreatic, and renal-sinus fats, among individuals with moderate abdominal obesity, using 3-Tesla magnetic resonance imaging. Among 275 participants, %IHF widely ranged (0.01%-50.4%) and was lower in women (1.6%) than men (7.3%; P fat was positively associated with %IHF (P = .005). In an age, sex, WC, and VAT-adjusted models, elevated liver enzymes, glycemic, lipid, and inflammatory biomarkers were associated with increased %IHF (P fat is differentially associated with abdominal fat subdepots. Intrahepatic-fat as a continuous variable could be predicted by specific traditional parameters, even within the current normal range, and partially independent of VAT. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Is There a Magnet-School Effect? A Multisite Study of MSAP-Funded Magnet Schools

    Science.gov (United States)

    Wang, Jia; Schweig, Jonathan D.; Herman, Joan L.

    2017-01-01

    Magnet schools are one of the largest sectors of choice schools in the United States. In this study, we explored the heterogeneity in magnet-school effects on student achievement by examining 24 magnet schools, funded under the Magnet Schools Assistance Program (MSAP), in 5 school districts across 4 states. The magnet effects were synthesized…

  7. Study of the YBa2Cu3O-7-δ superconductor application as a low magnetic field sensor

    International Nuclear Information System (INIS)

    Oliveira, G.L; Shigue, C.Y.; Santos, C.A.M. dos; Machado, A.J.

    2000-01-01

    It has been proposed in the literature a new regime for high critical temperature superconductors labeled as thermally activated flux flow (TAFF). This regime presents a state in which vortex dynamic exhibit a ohmic behavior. The resistivity in this regime is proportional to the applied magnetic field for small current densities. Materials showing this behavior have high disordering and present semiconductor behavior in normal state with broad transition temperature. In this work is presented a systematic study of the magnetoresistance as a function of the applied magnetic field for polycrystalline samples with several thickness. Results of X ray diffraction, resistivity as a function of the temperature, I-V characteristic curves and magnetoresistance are showed. Finally is proposed a calibration curve of the magnetoresistance as a function of the magnetic field, that show the possibility of its use as magnetic field sensor. (author)

  8. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...

  9. Shape induced magnetic vortex state in hexagonal ordered cofe nanodot arrays using ultrathin alumina shadow mask

    Science.gov (United States)

    Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.

    2018-04-01

    The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.

  10. Spin fluctuations in liquid 3He: a strong-coupling calculation of T/sub c/ and the normal-state distribution function

    International Nuclear Information System (INIS)

    Fay, D.; Layzer, A.

    1975-01-01

    The Berk--Schrieffer method of strong-coupling superconductivity for nearly ferromagnetic systems is generalized to arbitrary L-state pairing and realistic (hard-core) potentials. Application to 3 He yields a P-state transition but very low values for T/sub c/ and an unsatisfactory normal-state momentum distribution

  11. The effect of inertia, viscous damping, temperature and normal stress on chaotic behaviour of the rate and state friction model

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-04-01

    A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic behaviour of the two state variables rate and state friction (2sRSF) model. In general, a slight variation in any of inertia, viscous damping, temperature and effective normal stress reduces the chaotic behaviour of the sliding system. However, the present study has shown the appearance of chaos for the specific values of normal stress before it disappears again as the normal stress varies further. It is also observed that magnitude of system stiffness at which chaotic motion occurs, is less than the corresponding value of critical stiffness determined by using the linear stability analysis. These results explain the practical observation why chaotic nucleation of an earthquake is a rare phenomenon as reported in literature.

  12. The cobalt magnetic state in RCo{sub 3} intermetallics with light rare earth studied by thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Gaidukova, I.Yu. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Granovsky, S.A. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Markosyan, A.S. [State Center for Condensed Matter Physics, M. Zakharova Street, 6/3, 155569 Moscow (Russian Federation)]. E-mail: marko@plms.phys.msu.ru; Petropavlovsky, A.B. [Voronezh Military Institute of Aircraft Engineering, 394064 Voronezh (Russian Federation); Rodimin, V.E. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Uryvaev, V.V. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2006-05-15

    The temperature variation of the lattice parameters of RCo{sub 3} intermetallics with light R=Pr, Nd and Sm was studied by X-ray diffraction in the temperature range 10-550 K. From the magnitude of the magnetovolume effect arising below T {sub C} it has been concluded that in NdCo{sub 3} a temperature-induced change of the Co magnetic state from a weak to a strong ferromagnetic one occurs, whereas in PrCo{sub 3} and SmCo{sub 3} the Co sublattice remains in a weak magnetic state down to at least 10 K. In SmCo{sub 3} an orthorhombic distortion of the rhombohedral crystal lattice was observed below 125 K. This is accounted for a spin reorientation of the spontaneous magnetization vector from the c-axis (high temperatures) toward the basal plane (low temperatures)

  13. Ground-state magnetization of the molecular cluster Mn12O12-acetate as seen by proton NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Jang, Z. H.; Lascialfari, A.; Borsa, F.; Gatteschi, D.

    2000-01-01

    1 H nuclear magnetic resonance (NMR) measurements have been carried out in Mn 12 O 12 -acetate clusters at low temperature in order to investigate microscopically the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. Below liquid helium temperature it is found that the local hyperfine fields at the proton sites are static as expected for the very slow superparamagnetic relaxation of Mn 12 O 12 at low temperature. The magnitude and distribution of the hyperfine fields can be reproduced to a good approximation by considering only the dipolar interaction of protons with the local Mn magnetic moments and by assigning the magnitude and orientation of the local moments of the different Mn 3+ and Mn 4+ ions according to an accepted coupling scheme for the total S=10 ground state. The relaxation time of the macroscopic magnetization of the cluster was measured by monitoring the change of the intensity of the 1 H-NMR shifted lines following inversion of the applied magnetic field. This is possible because the sudden change of the field orientation changes the sign of the shift of the NMR lines in the proton spectrum. Although important differences are noticed, the relaxation time of the magnetization as measured indirectly by the 1 H-NMR method is comparable to the one obtained directly with a superconducting quantum interference device magnetometer. In particular we could reproduce the minima in the relaxation time as a function of magnetic field at the fields for level crossing, minima which are considered to be a signature of the quantum tunneling of the magnetization

  14. The influence of the magnetic state on the thermal expansion in 1:2 rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Gratz, E.; Lindbaum, A.

    1994-01-01

    The attempt is made to demonstrate on some selected rare earth intermetallics the influence of the magnetic state on the thermal expansion. Using the X-ray powder diffraction method we investigated the thermal expansion of some selected nonmagnetic compounds (YAl 2 , YNi 2 and YCo 2 ) and some magnetic RE (rare earth) - cobalt compounds (RCo 2 ) in the temperature range from 4 up to 450 K. All these compounds crystallize in the C15-type structure (cubic Laves phase structure). By comparing the nonmagnetic Y-based compounds we could show that there is an enhanced contribution of the 3d electrons to the thermal expansion in YCo 2 . In the magnetic RCo 2 compounds the induced 3d magnetism gives rise to large volume anomalies at the magnetic ordering temperature T c . Below T c there is in addition a distortion of the cubic unit cell due to the interaction of the magnetically ordered RE ions with the anisotropic crystal field.The thermal expansion of the orthorhombic TmCu 2 , GdCu 2 and YCu 2 compounds has also been investigated for comparison. The influence of the crystal field on the thermal expansion in TmCu 2 in the paramagnetic range (TmCu 2 orders magnetically at T N =6.3 K) has been determined by comparing the thermal expansion of the nonmagnetic YCu 2 with that of TmCu 2 . The data thus obtained are compared with a theoretical model. GdCu 2 , for which the influence of the crystal field can be neglected, has been investigated in order to study the influence of the exchange interaction in the magnetically ordered state (below 42 K). ((orig.))

  15. Physical properties in the normal state of the molecular superconductor Κ-(BEDT)2Cu2(CN)3

    International Nuclear Information System (INIS)

    Papavassiliou, G.C.; Lagouvardos, D.J.; Terzis, A.; Amiell, J.; Garrigou-Lagrange, C.; Delhaes, P.; Hilti, B.; Pfeiffer, J.

    1993-01-01

    We have investigated the electrical, spectroscopic and magnetic properties of the K-phase molecular conductor K-(BEDT) 2 Cu 2 (CN) 3 between room temperature and the liquid He 4 temperature range. We have shown that an intermittent superconducting material is present around or below 4 K which presents above this temperature limited spin fluctuations. The influence of disorder inside the anionic layers is discussed with respect to the X-ray crystal structure, and also the intrinsic effects due to temperature or pressure to explain this situation. Finally, the specific behaviour of the ESR linewidth at low temperature is analysed as a magnetic precursor regime of the supposed superconducting ground state. (orig.)

  16. Bifurcation Phenomena of a Magnetic Island at a Rational Surface in a Magnetic-Shear Control Experiment

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Yoshinuma, M.; Narushima, Y.; Itoh, K.; Kobuchi, T.; Watanabe, K. Y.; Funaba, H.; Sakakibara, S.; Morisaki, T.; LHD Experimental Group

    2008-01-01

    Three states of a magnetic island are observed when the magnetic shear at the rational surface is modified using inductive current associated with the neutral beam current drive in the Large Helical Device. One state is the healed magnetic island with a zero island width. The second state is the saturated magnetic island with partial flattening of the T e profile. The third state is characterized by the global flattening of the T e profile in the core region. As the plasma assumes each of the three states consecutively through a bifurcation process a clear hysteresis in the relation between the size of the magnetic island and the magnetic shear is observed

  17. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    Science.gov (United States)

    Eidietis, N. W.; Choi, W.; Hahn, S. H.; Humphreys, D. A.; Sammuli, B. S.; Walker, M. L.

    2018-05-01

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiple events and actuator prioritization. The finite-state logic is implemented in Matlab®/Stateflow® to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies ‘catch and subdue’ electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to

  18. Studies of the transition temperature and normal state resistivity of Nb3Ge and Nb films

    International Nuclear Information System (INIS)

    Lutz, H.; Weismann, H.; Gurvitch, M.; Goland, A.N.; Kammerer, O.F.; Strongin, M.

    1976-01-01

    Correlations between T/sub c/ and specific features of the normal state resistance vs temperature curves are discussed for both Nb 3 Ge and ion damaged Nb films. Of particular interest is the correlation between T/sub c/ and rho 0 in Nb 3 Ge films

  19. Microscale magnetic compasses

    Science.gov (United States)

    Shiozawa, Hidetsugu; Zhang, Desai; Eisterer, Michael; Ayala, Paola; Pichler, Thomas; McCartney, Martha R.; Smith, David J.

    2017-09-01

    Microscale magnetic compasses have been synthesized with high yield. These ferromagnetic iron carbide nano-particles, which are encapsulated in a pair of parallel carbon needles, change their orientation in response to an external magnetic field. Electron holography reveals magnetic fields confined to the vicinity of the bicone-shaped particles, which are composed of only a few ferromagnetic domains. Aligned magnetically and encapsulated in an acrylate polymer matrix, these micro-compasses exhibit anisotropic bulk magnetic permeability with an easy axis normal to the needle direction that can be understood as a result of the anisotropic demagnetizing field of a non-spherical single-domain particle. This novel type of material with orthogonal magnetic and structural axes could be highly useful as magnetic components in electromagnetic wave absorbent materials and magnetorheological fluids.

  20. The growth of a single crystal of Sr3CuIrO6 and its magnetic ...

    Indian Academy of Sciences (India)

    field. (zfc) dc as well as ac χ(T) (figure 1) for the two crystal orientations stated above, we infer that the easy axis of magnetization lies normal to the [101] direction. For comparison, in figures 1a and 1c we display the corresponding dc and ac ...

  1. Observation of the Distribution of Molecular Spin States by Resonant Quantum Tunneling of the Magnetization

    Science.gov (United States)

    Wernsdorfer, W.; Ohm, T.; Sangregorio, C.; Sessoli, R.; Mailly, D.; Paulsen, C.

    1999-05-01

    Below 360 mK, Fe8 magnetic molecular clusters are in the pure quantum relaxation regime and we show that the predicted ``square-root time'' relaxation is obeyed, allowing us to develop a new method for watching the evolution of the distribution of molecular spin states in the sample. We measure as a function of applied field H the statistical distribution P\\(ξH\\) of magnetic energy bias ξH acting on the molecules. Tunneling initially causes rapid transitions of molecules, thereby ``digging a hole'' in P\\(ξH\\) (around the resonant condition ξH = 0). For small initial magnetization values, the hole width shows an intrinsic broadening which may be due to nuclear spins.

  2. Tolerance of topological surface state towards adsorbed magnetic moments: Fe on Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Markus; Marchenko, Dmitry; Sanchez-Barriga, Jaime; Varykhalov, Andrei; Rader, Oliver [Helmholtz-Zentrum fuer Materialien und Energie, Berlin (Germany); Volykhov, Andrei; Yashina, Lada [Moscow State University, Moskau, Russland (Russian Federation)

    2011-07-01

    Topological surface states on Bi{sub 2}Se{sub 3} and Bi{sub 2}Te{sub 3} are protected by time reversal symmetry. Magnetic fields break time-reversal symmetry, and they have been used in two-dimensional spin quantum-Hall systems to destroy the topological edge states. Another possibility is to introduce magnetic moments. This has been done by substitution of Mn and Fe into the bulk. For Fe a small gap of 44meV was created, however, at very large amounts (12%). In this work, we deposit Fe directly onto the surface where the topological surface state is localized. We show for coverages of 0.25 and 1 ML Fe that the Dirac point remains intact and no gap appears. Core level spectroscopy of Bi and Te states gives insight into the interaction between substrate and adatoms. In addition, extra surface states appear at the Fermi energy which show a large Rashba-type spin-orbit splitting. The orientation of the spin of both, the topological as well as the Rashba-type split surface states is analysed.

  3. Numerical calculation of transient field effects in quenching superconducting magnets

    International Nuclear Information System (INIS)

    Schwerg, Juljan Nikolai

    2010-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  4. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  6. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    OpenAIRE

    Hongwen eSong; Zhiling eZou; Juan eKou; Yang eLiu; LiZhuang eYang; Anna ezilverstand; Federicod’Oleire eUquillas; Xiaochu eZhang; Xiaochu eZhang; Xiaochu eZhang

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI) have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state...

  7. Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy

    CERN Multimedia

    Lievens, P; Rajabali, M M; Krieger, A R

    By combining high-resolution laser spectroscopy with $\\beta$-NMR spectroscopy on polarized K-beams we aim to establish the ground-state spins and magnetic moments of the neutron-rich $^{48,49,50,51}$K isotopes from N=29 to N=32. Spins and magnetic moments of the odd-K isotopes up to N=28 reveal an inversion of the ground-state, from the normal $\\,{I}$=3/2 ($\\pi{d}_{3/2}^{-1}$) in $^{41-45}$K$\\to\\,{I}$=1/2 ($\\pi{s}_{1/2}^{-1}$) in $^{47}$K. This inversion of the proton single particle levels is related to the strong proton $d_{3/2}$ - neutron $f_{7/2}$ interaction which lowers the energy of the $\\pi{d}_{3/2}$ single particle state when filling the $\

  8. Spring ligament complex: Illustrated normal anatomy and spectrum of pathologies on 3T MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Hythem [Musculoskeletal Radiology, UT Southwestern Medical Center, Dallas, TX (United States); Saini, Vikram [Center for Infection and Inflammation Imaging Research, Johns Hopkins University, Baltimore, MD (United States); Wadhwa, Vibhor [Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Liu, George [Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX (United States); Chhabra, Avneesh, E-mail: avneesh.chhabra@utsouthwestern.edu [Musculoskeletal Radiology, UT Southwestern Medical Center, Dallas, TX (United States)

    2016-11-15

    Highlights: • The Spring ligament complex is an important stabilizer of medial arch of foot. • Of all SLC components, the integrity of Supero-Medial band is the most important. • Associated pathologies with SLC instability include PTT injury, pes planovalgus and sinus tarsi syndrome. • Conservative and operative management are viable depending on pes planovalgus progression. - Abstract: The spring (plantar calcaneonavicular) ligament complex connects the calcaneus and navicular bone of the foot and serves as the primary static stabilizer of the medial longitudinal arch of the foot. In this article, we describe the normal anatomy of the spring ligament complex, illustrate 3T magnetic resonance imaging appearances in its normal and abnormal states, and discuss the pathological associations with relevant case examples.

  9. Magnetic susceptibility of CoFeBSiNb alloys in liquid state

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, V., E-mail: vesidor@mail.ru [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Hosko, J. [Institute of Physics SAS, Bratislava (Slovakia); Mikhailov, V.; Rozkov, I.; Uporova, N. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Svec, P.; Janickovic, D.; Matko, I.; Svec Sr, P. [Institute of Physics SAS, Bratislava (Slovakia); Malyshev, L. [Ural Federal University, Ekaterinburg (Russian Federation)

    2014-03-15

    The influence of small additions of gallium and antimony on magnetic susceptibility of the bulk glass forming Co{sub 47}Fe{sub 20.9}B{sub 21.2}Si{sub 4.6}Nb{sub 6.3} alloy was studied in a wide temperature range up to 1830 K by the Faraday’s method. The undercooling for all the samples was measured experimentally. Both Ga and Sb additions were found to increase liquidus and solidification temperatures. However, gallium atoms strengthen interatomic interaction in the melts, whereas antimony atoms reduce it. - Highlights: • Bulk metallic glasses from CoFeBSiNb-based alloys were produced as in situ composites. • Magnetic susceptibility of these alloys was measured in a wide temperature range including liquid state. • Undercooling of these melts was measured experimentally. • Ga additions strengthen interatomic interaction in BMG melts, whereas Sb atoms reduce it.

  10. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Jonathan [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  11. Neutron diffraction and magnetization studies of Tb0.5Er0.5 single crystal in an external magnetic field

    International Nuclear Information System (INIS)

    Kosugi, T.; Yamamoto, N.

    1999-01-01

    Complete text of publication follows. The rare earth Tb 0.5 Er 0.5 alloy exhibits a tilted helix at low temperatures [1]. However, the magnetic structures of Tb 0.5 Er 0.5 and the magnetization processes of the tilted helix are not clear. Neutron diffraction experiments in external magnetic fields and magnetization measurements of Tb 0.5 Er 0.5 single crystal have been performed. At zero magnetic field, the Tb 0.5 Er 0.5 alloy exhibited a normal helix below 170 K, a bunching normal helix below about 28 K, and finally a bunching tilted helix below about 25 K. Below about 60 K, the helical pitch 30 deg showed a lock-in feature. The magnetization measurements at low temperatures showed a four-step magnetic transition. The results are presented as a magnetic field-temperature (H-T) phase diagram. (author) [1] H. Fujii et al., J. Phys. Soc. Jpn. 50 (1981) 2939

  12. Virtual screening for potential inhibitors of Mcl-1 conformations sampled by normal modes, molecular dynamics, and nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Glantz-Gashai Y

    2017-06-01

    Full Text Available Yitav Glantz-Gashai,* Tomer Meirson,* Eli Reuveni, Abraham O Samson Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel *These authors contributed equally to this work Abstract: Myeloid cell leukemia-1 (Mcl-1 is often overexpressed in human cancer and is an important target for developing antineoplastic drugs. In this study, a data set containing 2.3 million lead-like molecules and a data set of all the US Food and Drug Administration (FDA-approved drugs are virtually screened for potential Mcl-1 ligands using Protein Data Bank (PDB ID 2MHS. The potential Mcl-1 ligands are evaluated and computationally docked on to three conformation ensembles generated by normal mode analysis (NMA, molecular dynamics (MD, and nuclear magnetic resonance (NMR, respectively. The evaluated potential Mcl-1 ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to treat cancer, thus partially validating our virtual screen. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in the treatment of cancer. The normal mode-, MD-, and NMR-based conformation greatly expand the conformational sampling used herein for in silico identification of potential Mcl-1 inhibitors. Keywords: virtual screening, Mcl-1, molecular dynamics, NMR, normal modes

  13. Design and implementation of quench detection instrumentation for TF magnet system of SST-1

    International Nuclear Information System (INIS)

    Khristi, Y.; Sharma, A.N.; Doshi, K.; Banaudha, M.; Prasad, U.; Varmora, P.; Patel, D.; Pradhan, S.

    2014-01-01

    Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in engineering validation phase. The assembled Toroidal Field (TF) magnet system of SST-1 will be operated at 10 kA of nominal current at helium cooled condition of 4.5 K. A reliable and fail proof quench detection (QD) system is essential for the safety and the investment protection requirements of the magnets. This QD system needs to continuously monitor all the superconducting coils, which include 16 TF magnets, return-loop, bus bars and current leads. In case of any event initiating the normal resistive zone and reaching thermal run-away, the QD system needs to trigger the magnet protection circuits. Precision instrumentation and control system with 204 signal channels had been developed for detection of quench anywhere in the entire TF magnet system. In the present configuration of quench detection scheme, the voltage drop across each double pancake (DP) of each TF coil are compared with its two adjacent DPs for the detection of normal zone and cancelation of inductive couples. Two identical redundant systems with one out of two configurations are successfully commissioned and tested at IPR. This paper describes the design and implementation of the QD system, Installation experience, validation test and initial results from the recent SST-1 magnet system charging

  14. Effect of vasopressin on rabbit hepatic energy metabolism evaluated using in vivo P-31 magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ono, Shigeki; Moriyasu, Fuminori; Tamada, Takashi

    1989-01-01

    Changes in metabolic state of rabbit livers after administration of vasopressin (10 mU/kg/min d.i.v.) were evaluated using in vivo P-31 magnetic resonance (MR) spectroscopy. Targets were nine normal control rabbits and eight with chronically carbontetrachloride-damaged livers. A 2.0 Tesla whole-body MR imager was used for measurement. After administration of vasopressin, liver spectroscopy showed a mild ischemic pattern. The inorganic phosphate peak increased statistically significantly (p<0.05) both in the normal control group and in the damaged-liver group (20% and 16% above base line value respectively). In the normal control group, there was a statistically significant decrease (p<0.05) in the ATP peak to 18% below the base line value while the PME (phosphomonoester) peak increased slightly (about 10%); there was little change in the damaged-liver group. It was thought that the difference between the two groups was due to differences in blood flow mechanism and liver metabolism. Magnetic resonance spectroscopy was considered to be useful in studying the detailed changes in metabolic state of rabbit liver after administration of vasopressin. (author)

  15. Quantum theory for magnons and phonons interactions under time-varying magnetic fields

    International Nuclear Information System (INIS)

    Guerreiro, S.C.

    1971-01-01

    The magnon-fonon interaction in a ferromagnetic material submited to a time-varying magnetic field is studied by quantum methods. This problem has already been solved by semi-classical methods, and one of its results is that under certain conditions a state of lattice vibrations may be completely converted into spin oscillations. The main proporties of magnetoelastic waves in static magnetic fields and extend the quantum treatment for the time varying magnetic field case is revised. Field operators whose equations of motion are analogous to the classical ones are introduced. Their equations, which appear as a linear system of first order coupled equations, are converted into equations for complex functions by an expansion of the field operators in a time t as linear combinations of the same operators in a time t 0 prior to the variation of the magnetic field. The quantity g vector obtained from the classical solution is quantized and shown to be the linear momentum density of the magnetoelastic system, the quantum field spin density operator is deduced for the two interacting fields, and finally the results are used to study the magnetization and lattice displacement vector fields in the case of a system described by a coherent state of one of its normal modes

  16. Quench characterization and thermo hydraulic analysis of SST-1 TF magnet busbar

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Tanna, V.L.; Patel, D.; Panchal, A. [Institute for Plasma Research, Gandhinagar (India)

    2015-01-15

    Highlights: • Details of SST-1 TF busbar quench detection. • Simulation of slow propagating normal zone. • Thermo hydraulic analyses of TF busbar in current feeder system. - Abstract: Toroidal field (TF) magnet system of steady-state superconducting tokamak-1 (SST-1) has 16 superconducting coils. TF coils are cooled with forced flow supercritical helium at 0.4 MPa, at 4.5 K and operate at nominal current of 10,000 A. Prior to TF magnet system assembly in SST-1 tokamak, each TF coil was tested individually in a test cryostat. During these tests, TF coil was connected to a pair of conventional helium vapor cooled current leads. The connecting busbar was made from the same base cable-in-conduit-conductor (CICC) of SST-1 superconducting magnet system. Quenches experimentally observed in the busbar sections of the single coil test setups have been analyzed in this paper. A steady state thermo hydraulic analysis of TF magnet busbar in actual SST-1 tokamak assembly has been done. The experimental observations of quench and results of relevant thermo hydraulic analyses have been used to predict the safe operation regime of TF magnet system busbar during actual SST-1 tokamak operational scenarios.

  17. Thermal conductivity of niobium single crystals in a magnetic field

    International Nuclear Information System (INIS)

    Gladun, C.; Vinzelberg, H.

    1980-01-01

    The thermal conductivity in longitudinal magnetic fields up to 5 T and in the temperature range 3.5 to 15 K is measured in two high purity niobium single crystals having residual resistivity ratios of 22700 and 19200 and orientations of the rod axis [110] and [100]. The investigations show that by means of the longitudinal magnetic field the thermal conductivity may decrease only to a limiting value. In the crystal directions [110] and [100] for the ratio of the thermal conductivity in zero field and the thermal conductivity in the saturation field the temperature-independent factors 1.92 and 1.27, respectively, are determined. With the aid of these factors the thermal conductivity in the normal state is evaluated from the measured values of thermal conductivity below Tsub(c) in the magnetic field. The different conduction and scattering mechanisms are discussed. (author)

  18. Factors influencing fast low angle positive contrast steady-state free precession (FLAPS) magnetic resonance imaging

    International Nuclear Information System (INIS)

    Dharmakumar, Rohan; Koktzoglou, Ioannis; Li Debiao

    2007-01-01

    The presence of susceptibility-shifting media can lead to signal voids in magnetic resonance images. While signal voids have been traditionally used to detect such magnetic perturbers, selective magnetic resonance imaging of off-resonant spins surrounding susceptibility-shifted media allows for them to be visualized as hyper-intense (positive contrast) regions. These positive contrast methods can potentially improve the detection conspicuity of magnetic perturbers against regions that appear dark due to the absence of protons, such as air. Recently, a fast low angle positive contrast steady-state free precession (FLAPS) technique has been proposed as a positive contrast imaging method. This work systematically evaluates the contrast characteristics and acquisition strategies of FLAPS-based imaging from the standpoint of imaging parameters and physical properties of the magnetic perturbers. Results show that scan parameters (T R , flip angle, B 0 ), physical properties of the perturber (size and concentration of shift reagent) and the ratio of the relaxation constants (T 1 /T 2 ) of the medium are significant factors influencing the FLAPS-based positive contrast

  19. A modified Stern-Gerlach experiment using a quantum two-state magnetic field

    Science.gov (United States)

    Daghigh, Ramin G.; Green, Michael D.; West, Christopher J.

    2018-06-01

    The Stern-Gerlach experiment has played an important role in our understanding of quantum behavior. We propose and analyze a modified version of this experiment where the magnetic field of the detector is in a quantum superposition, which may be experimentally realized using a superconducting flux qubit. We show that if incident spin-1/2 particles couple with the two-state magnetic field, a discrete target distribution results that resembles the distribution in the classical Stern-Gerlach experiment. As an application of the general result, we compute the distribution for a Gaussian waveform of the incident fermion. This analysis allows us to demonstrate theoretically: (1) the quantization of the intrinsic angular momentum of a spin-1/2 particle, and (2) a correlation between EPR pairs leading to nonlocality, without necessarily collapsing the particle's spin wavefunction.

  20. Full-switching FSF-type superconducting spin-triplet magnetic random access memory element

    Science.gov (United States)

    Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.

    2017-11-01

    In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.