WorldWideScience

Sample records for normal infant brain

  1. Studies of extracerebral space on brain CT of infants

    International Nuclear Information System (INIS)

    Shibakiri, Ippei; Furukawa, Takashi; Fukakusa, Shunichi; Nemoto, Yutaka; Takashima, Sumio.

    1983-01-01

    Frontal extracerebral space (ECS) is frequently noticed on brain CT of infants. Based on 70 infants whose initial CTs were available under 1 year of age and who were observed serially by brain CT, we studied the relation between degrees of ECS enlargement and mental and physical development of infants. Development was assessed by clinical observation and the mental test according to Tsumori and Inage at about 1 year of age. 1) Under 1 year of age, ECS was observed both in the normally developed infants and the infants with retarded development. At 1 year of age, CT of the former showed no or only mild widening, but most CT of the latter showed marked dilatation of ECS. 2) Serial observation of brain CT revealed that ECS of normally developed infants tended to reduce at 1 year of age, but that of infants with retarded development did not. 3) Regarding prediction of infantile development, it is important to observe presence of ECS and of the tendency to reduce on brain CT at 1 year of age. 4) Appearance of ECS of normally developed infants is considered to be a physiological phenomenon. (author)

  2. Appearance of normal brain maturation on 1.5-T MR images

    International Nuclear Information System (INIS)

    Barkovich, A.J.; Kjos, B.; Jackson, D.E. Jr.; Norman, D.

    1987-01-01

    To investigate the pattern of normal white-matter maturation as demonstrated by high-field-strength MR imaging, 82 normal infants were examined using a 1.5-T unit with spin-echo T1-weighted and T2-weighted pulse sequences. The infants ranged in age from 4 days to 2 years. The scans were assessed for qualitative changes of white matter relative to gray matter and correlated with the patient's age in 14 anatomic areas of the brain. The MR images showed that changes of brain maturation occur in an orderly manner, commencing in the brain stem and progressing to the cerebellum and the cerebrum. Changes from brain myelination were seen earlier on T1-weighted images than on T2-weighted images, possibly because of T1 shortening by the components of the developing myelin sheaths. The later changes on the T2-weighted images correlated best with the development of myelination, as demonstrated by histochemical methods. T1-weighted images were most useful to monitor normal brain development in the first 6 to 8 months of life; T2-weighted images were more useful after 6 months. The milestones in the MR appearance of normal maturation of the brain are presented. The milestones in the MR appearance of normal maturation of the brain are presented. Persistent areas of long T2 relaxation times are seen superior and dorsal to the ventricular trigone in all infants examined and should not be mistaken for ischemic change

  3. Application of 3.0T magnetic resonance spectroscopy imaging in the evaluation on the development of normal brain white matter in infants and young children

    Directory of Open Access Journals (Sweden)

    Wen-li XU

    2014-01-01

    Full Text Available Objective To calculate the radios of peak area of proton magnetic resonance spectroscopy metabolites in brain white matter of normal infants and young children, to observe the features of metabolite spectra, and to explore the relations between their ratio with age. Methods The peak areas of metabolites, including N-acetyl aspartate (NAA, choline (Cho, creatine (Cr, and their ratio of NAA/Cho, NAA/Cr, Cho/Cr, in paraventricular white matter of 180 normal infants and young children with different ages as evaluated by multi-voxel proton magnetic resonance spectroscopy. Results In paraventricular white matter, spectrum of NAA increased, and that of Cho decreased gradually, while both of them were stabilized at 2 years old. Cr was increased obviously within 3 months, and stabilized after 4 months. Significant differences were found in ratio of different metabolites in paraventricular white matter in different ages (P<0.05. The ratios of NAA/Cho and NAA/Cr in paraventricular white mater were positively correlated with age (r=0.741, r=0.625, while that of Cho/Cr was negatively correlated with age (r=–0.552, P<0.05. Conclusion The ratios of different metabolites are different in brain white matter in infants of different ages. Metabolites concentrations in brain white matter are correlated to some extent with age, which may provide a diagnostic criterion for evaluation of normal brain development and abnormal brain metabolism. DOI: 10.11855/j.issn.0577-7402.2013.12.05

  4. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.

    Science.gov (United States)

    Choe, Myong-Sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S; Benasich, April A; Grant, P Ellen

    2013-09-01

    Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.

  5. [Research on brain white matter network in cerebral palsy infant].

    Science.gov (United States)

    Li, Jun; Yang, Cheng; Wang, Yuanjun; Nie, Shengdong

    2017-10-01

    Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.

  6. Vasoparalysis associated with brain damage in asphyxiated term infants

    International Nuclear Information System (INIS)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B.

    1990-01-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage

  7. Vasoparalysis associated with brain damage in asphyxiated term infants

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B. (Rigshospitalet, Copenhagen (Denmark))

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.

  8. Normalization of similarity-based individual brain networks from gray matter MRI and its association with neurodevelopment in infants with intrauterine growth restriction.

    Science.gov (United States)

    Batalle, Dafnis; Muñoz-Moreno, Emma; Figueras, Francesc; Bargallo, Nuria; Eixarch, Elisenda; Gratacos, Eduard

    2013-12-01

    Obtaining individual biomarkers for the prediction of altered neurological outcome is a challenge of modern medicine and neuroscience. Connectomics based on magnetic resonance imaging (MRI) stands as a good candidate to exhaustively extract information from MRI by integrating the information obtained in a few network features that can be used as individual biomarkers of neurological outcome. However, this approach typically requires the use of diffusion and/or functional MRI to extract individual brain networks, which require high acquisition times and present an extreme sensitivity to motion artifacts, critical problems when scanning fetuses and infants. Extraction of individual networks based on morphological similarity from gray matter is a new approach that benefits from the power of graph theory analysis to describe gray matter morphology as a large-scale morphological network from a typical clinical anatomic acquisition such as T1-weighted MRI. In the present paper we propose a methodology to normalize these large-scale morphological networks to a brain network with standardized size based on a parcellation scheme. The proposed methodology was applied to reconstruct individual brain networks of 63 one-year-old infants, 41 infants with intrauterine growth restriction (IUGR) and 22 controls, showing altered network features in the IUGR group, and their association with neurodevelopmental outcome at two years of age by means of ordinal regression analysis of the network features obtained with Bayley Scale for Infant and Toddler Development, third edition. Although it must be more widely assessed, this methodology stands as a good candidate for the development of biomarkers for altered neurodevelopment in the pediatric population. © 2013 Elsevier Inc. All rights reserved.

  9. Visual performance in preterm infants with brain injuries compared with low-risk preterm infants.

    Science.gov (United States)

    Leonhardt, Merçè; Forns, Maria; Calderón, Caterina; Reinoso, Marta; Gargallo, Estrella

    2012-08-01

    Neonatal brain injuries are the main cause of visual deficit produced by damage to posterior visual pathways. While there are several studies of visual function in low-risk preterm infants or older children with brain injuries, research in children of early age is lacking. To assess several aspects of visual function in preterm infants with brain injuries and to compare them with another group of low-risk preterm infants of the same age. Forty-eight preterm infants with brain injuries and 56 low-risk preterm infants. The ML Leonhardt Battery of Optotypes was used to assess visual functions. This test was previously validated at a post-menstrual age of 40 weeks in newborns and at 30-plus weeks in preterm infants. The group of preterm infants with brain lesions showed a delayed pattern of visual functions in alertness, fixation, visual attention and tracking behavior compared to infants in the healthy preterm group. The differences between both groups, in the visual behaviors analyzed were around 30%. These visual functions could be identified from the first weeks of life. Our results confirm the importance of using a straightforward screening test with preterm infants in order to assess altered visual function, especially in infants with brain injuries. The findings also highlight the need to provide visual stimulation very early on in life. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    Science.gov (United States)

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  11. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    Science.gov (United States)

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  12. Normal lactate concentration range in the neonatal brain.

    Science.gov (United States)

    Tomiyasu, Moyoko; Aida, Noriko; Shibasaki, Jun; Tachibana, Yasuhiko; Endo, Mamiko; Nozawa, Kumiko; Shimizu, Eiji; Tsuji, Hiroshi; Obata, Takayuki

    2016-11-01

    Lactate peaks are occasionally observed during in vivo magnetic resonance spectroscopy (MRS) scans of the neonatal brain, even in healthy patients. The purpose of this study was to investigate the normal range of neonatal brain lactate concentration, as a definitive normal range would be clinically valuable. Using a clinical 3T scanner (echo/repetition times, 30/5000ms), single-voxel MRS data were obtained from the basal ganglia (BG) and centrum semiovale (CS) in 48 healthy neonates (postconceptional age (PCA), 30-43weeks), nine infants (age, 1-12months old), and 20 children (age, 4-15years). Lactate concentrations were calculated using an MRS signal quantification program, LCModel. Correlations between regional lactate concentration and PCA (neonates), or age (all subjects) were investigated. Absolute lactate concentrations of the BG and CS were as follows: neonates, 0.77mM (0-2.02) [median (range)] and 0.77 (0-1.42), respectively; infants, 0.38 (0-0.79) and 0.49 (0.17-1.17); and children, 0.17 (0-0.76) and 0.22 (0-0.80). Overall, subjects' lactate concentrations decreased significantly with age (Spearman: BG, n=61, ρ=-0.38, p=0.003; CS, n=68, ρ=-0.57, p<0.001). However, during the neonatal period no correlations were detected between lactate concentration in either region and PCA. We determined normal ranges of neonatal lactate concentration, which may prove useful for diagnostic purposes. Further studies regarding changes in brain lactate concentration during development would help clarify the reasons for higher concentrations observed during the neonatal period, and contribute to improvements in diagnoses. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Lutein and preterm infants with decreased concentrations of brain carotenoids.

    Science.gov (United States)

    Vishwanathan, Rohini; Kuchan, Matthew J; Sen, Sarbattama; Johnson, Elizabeth J

    2014-11-01

    Lutein and zeaxanthin are dietary carotenoids that may influence visual and cognitive development. The objective of this study was to provide the first data on distribution of carotenoids in the infant brain and compare concentrations in preterm and term infants. Voluntarily donated brain tissues from 30 infants who died during the first 1.5 years of life were obtained from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Brain and Tissue Bank. Tissues (hippocampus and prefrontal, frontal, auditory, and occipital cortices) were extracted using standard lipid extraction procedures and analyzed using reverse-phase high-pressure liquid chromatography. Lutein, zeaxanthin, cryptoxanthin, and β-carotene were the major carotenoids found in the infant brain tissues. Lutein was the predominant carotenoid accounting for 59% of total carotenoids. Preterm infants (n = 8) had significantly lower concentrations of lutein, zeaxanthin, and cryptoxanthin in their brain compared with term infants (n = 22) despite similarity in postmenstrual age. Among formula-fed infants, preterm infants (n = 3) had lower concentrations of lutein and zeaxanthin compared with term infants (n = 5). Brain lutein concentrations were not different between breast milk-fed (n = 3) and formula-fed (n = 5) term decedents. In contrast, term decedents with measurable brain cryptoxanthin, a carotenoid that is inherently low in formula, had higher brain lutein, suggesting that the type of feeding is an important determinant of brain lutein concentrations. These data reveal preferential accumulation and maintenance of lutein in the infant brain despite underrepresentation in the typical infant diet. Further investigation on the impact of lutein on neural development in preterm infants is warranted.

  14. Differential brain responses to cries of infants with autistic disorder and typical development: an fMRI study.

    Science.gov (United States)

    Venuti, Paola; Caria, Andrea; Esposito, Gianluca; De Pisapia, Nicola; Bornstein, Marc H; de Falco, Simona

    2012-01-01

    This study used fMRI to measure brain activity during adult processing of cries of infants with autistic disorder (AD) compared to cries of typically developing (TD) infants. Using whole brain analysis, we found that cries of infants with AD compared to those of TD infants elicited enhanced activity in brain regions associated with verbal and prosodic processing, perhaps because altered acoustic patterns of AD cries render them especially difficult to interpret, and increased activity in brain regions associated with emotional processing, indicating that AD cries also elicit more negative feelings and may be perceived as more aversive and/or arousing. Perceived distress engendered by AD cries related to increased activation in brain regions associated with emotional processing. This study supports the hypothesis that cry is an early and meaningful anomaly displayed by children with AD. It could be that cries associated with AD alter parent-child interactions much earlier than the time that reliable AD diagnosis normally occurs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Volumetric analysis of the normal infant brain and in intrauterine growth retardation

    DEFF Research Database (Denmark)

    Toft, P B; Leth, H; Ring, P B

    1995-01-01

    and the volumes were determined by encircling each structure of interest on every slice. Segmentation into grey matter, white matter and CSF was done by semi-automatic discriminant analysis. Growth charts for the cerebrum, cerebellum, corpora striata, thalami, ventricles, and grey and white matter are provided...... for infants with appropriate birth weight. The striatal (P = 0.02) and thalamic (P matter to white matter (G/W-ratio) increased (P = 0.01). In the neonatal patients, brain volumes were independently associated...... growth retardation reduces grey matter volume more than white matter....

  16. Normal variation in early parental sensitivity predicts child structural brain development.

    Science.gov (United States)

    Kok, Rianne; Thijssen, Sandra; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Verhulst, Frank C; White, Tonya; van IJzendoorn, Marinus H; Tiemeier, Henning

    2015-10-01

    Early caregiving can have an impact on brain structure and function in children. The influence of extreme caregiving experiences has been demonstrated, but studies on the influence of normal variation in parenting quality are scarce. Moreover, no studies to date have included the role of both maternal and paternal sensitivity in child brain maturation. This study examined the prospective relation between mothers' and fathers' sensitive caregiving in early childhood and brain structure later in childhood. Participants were enrolled in a population-based prenatal cohort. For 191 families, maternal and paternal sensitivity was repeatedly observed when the child was between 1 year and 4 years of age. Head circumference was assessed at 6 weeks, and brain structure was assessed using magnetic resonance imaging (MRI) measurements at 8 years of age. Higher levels of parental sensitivity in early childhood were associated with larger total brain volume (adjusted β = 0.15, p = .01) and gray matter volume (adjusted β = 0.16, p = .01) at 8 years, controlling for infant head size. Higher levels of maternal sensitivity in early childhood were associated with a larger gray matter volume (adjusted β = 0.13, p = .04) at 8 years, independent of infant head circumference. Associations with maternal versus paternal sensitivity were not significantly different. Normal variation in caregiving quality is related to markers of more optimal brain development in children. The results illustrate the important role of both mothers and fathers in child brain development. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Biomarkers of brain injury in the premature infant

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2013-01-01

    Full Text Available The term encephalopathy of prematurity encompasses not only the acute brain injury (such as intraventricular hemorrhage but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is intraventricular hemorrhage (IVH and periventricular leukomalacia (PVL. Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9 and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after post-hemorrhagic ventricular dilation. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  18. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory

    OpenAIRE

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-01-01

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and...

  19. Body Maps in the Infant Brain

    Science.gov (United States)

    Marshall, Peter J.; Meltzoff, Andrew N.

    2015-01-01

    Researchers have examined representations of the body in the adult brain, but relatively little attention has been paid to ontogenetic aspects of neural body maps in human infants. Novel applications of methods for recording brain activity in infants are delineating cortical body maps in the first months of life. Body maps may facilitate infants’ registration of similarities between self and other—an ability that is foundational to developing social cognition. Alterations in interpersonal aspects of body representations might also contribute to social deficits in certain neurodevelopmental disorders. PMID:26231760

  20. Infants' brain responses to speech suggest analysis by synthesis.

    Science.gov (United States)

    Kuhl, Patricia K; Ramírez, Rey R; Bosseler, Alexis; Lin, Jo-Fu Lotus; Imada, Toshiaki

    2014-08-05

    Historic theories of speech perception (Motor Theory and Analysis by Synthesis) invoked listeners' knowledge of speech production to explain speech perception. Neuroimaging data show that adult listeners activate motor brain areas during speech perception. In two experiments using magnetoencephalography (MEG), we investigated motor brain activation, as well as auditory brain activation, during discrimination of native and nonnative syllables in infants at two ages that straddle the developmental transition from language-universal to language-specific speech perception. Adults are also tested in Exp. 1. MEG data revealed that 7-mo-old infants activate auditory (superior temporal) as well as motor brain areas (Broca's area, cerebellum) in response to speech, and equivalently for native and nonnative syllables. However, in 11- and 12-mo-old infants, native speech activates auditory brain areas to a greater degree than nonnative, whereas nonnative speech activates motor brain areas to a greater degree than native speech. This double dissociation in 11- to 12-mo-old infants matches the pattern of results obtained in adult listeners. Our infant data are consistent with Analysis by Synthesis: auditory analysis of speech is coupled with synthesis of the motor plans necessary to produce the speech signal. The findings have implications for: (i) perception-action theories of speech perception, (ii) the impact of "motherese" on early language learning, and (iii) the "social-gating" hypothesis and humans' development of social understanding.

  1. Tracing Trajectories of Audio-Visual Learning in the Infant Brain

    Science.gov (United States)

    Kersey, Alyssa J.; Emberson, Lauren L.

    2017-01-01

    Although infants begin learning about their environment before they are born, little is known about how the infant brain changes during learning. Here, we take the initial steps in documenting how the neural responses in the brain change as infants learn to associate audio and visual stimuli. Using functional near-infrared spectroscopy (fNRIS) to…

  2. [Quantitative analysis method based on fractal theory for medical imaging of normal brain development in infants].

    Science.gov (United States)

    Li, Heheng; Luo, Liangping; Huang, Li

    2011-02-01

    The present paper is aimed to study the fractal spectrum of the cerebral computerized tomography in 158 normal infants of different age groups, based on the calculation of chaotic theory. The distribution range of neonatal period was 1.88-1.90 (mean = 1.8913 +/- 0.0064); It reached a stable condition at the level of 1.89-1.90 during 1-12 months old (mean = 1.8927 +/- 0.0045); The normal range of 1-2 years old infants was 1.86-1.90 (mean = 1.8863 +/- 4 0.0085); It kept the invariance of the quantitative value among 1.88-1.91(mean = 1.8958 +/- 0.0083) during 2-3 years of age. ANOVA indicated there's no significant difference between boys and girls (F = 0.243, P > 0.05), but the difference of age groups was significant (F = 8.947, P development.

  3. Third Trimester Brain Growth in Preterm Infants Compared With In Utero Healthy Fetuses.

    Science.gov (United States)

    Bouyssi-Kobar, Marine; du Plessis, Adré J; McCarter, Robert; Brossard-Racine, Marie; Murnick, Jonathan; Tinkleman, Laura; Robertson, Richard L; Limperopoulos, Catherine

    2016-11-01

    Compared with term infants, preterm infants have impaired brain development at term-equivalent age, even in the absence of structural brain injury. However, details regarding the onset and progression of impaired preterm brain development over the third trimester are unknown. Our primary objective was to compare third-trimester brain volumes and brain growth trajectories in ex utero preterm infants without structural brain injury and in healthy in utero fetuses. As a secondary objective, we examined risk factors associated with brain volumes in preterm infants over the third-trimester postconception. Preterm infants born before 32 weeks of gestational age (GA) and weighing <1500 g with no evidence of structural brain injury on conventional MRI and healthy pregnant women were prospectively recruited. Anatomic T2-weighted brain images of preterm infants and healthy fetuses were parcellated into the following regions: cerebrum, cerebellum, brainstem, and intracranial cavity. We studied 205 participants (75 preterm infants and 130 healthy control fetuses) between 27 and 39 weeks' GA. Third-trimester brain volumes were reduced and brain growth trajectories were slower in the ex utero preterm group compared with the in utero healthy fetuses in the cerebrum, cerebellum, brainstem, and intracranial cavity. Clinical risk factors associated with reduced brain volumes included dexamethasone treatment, the presence of extra-axial blood on brain MRI, confirmed sepsis, and duration of oxygen support. These preterm infants exhibited impaired third-trimester global and regional brain growth in the absence of cerebral/cerebellar parenchymal injury detected by using conventional MRI. Copyright © 2016 by the American Academy of Pediatrics.

  4. Spectral Ripple Discrimination in Normal-Hearing Infants.

    Science.gov (United States)

    Horn, David L; Won, Jong Ho; Rubinstein, Jay T; Werner, Lynne A

    Spectral resolution is a correlate of open-set speech understanding in postlingually deaf adults and prelingually deaf children who use cochlear implants (CIs). To apply measures of spectral resolution to assess device efficacy in younger CI users, it is necessary to understand how spectral resolution develops in normal-hearing children. In this study, spectral ripple discrimination (SRD) was used to measure listeners' sensitivity to a shift in phase of the spectral envelope of a broadband noise. Both resolution of peak to peak location (frequency resolution) and peak to trough intensity (across-channel intensity resolution) are required for SRD. SRD was measured as the highest ripple density (in ripples per octave) for which a listener could discriminate a 90° shift in phase of the sinusoidally-modulated amplitude spectrum. A 2 × 3 between-subjects design was used to assess the effects of age (7-month-old infants versus adults) and ripple peak/trough "depth" (10, 13, and 20 dB) on SRD in normal-hearing listeners (experiment 1). In experiment 2, SRD thresholds in the same age groups were compared using a task in which ripple starting phases were randomized across trials to obscure within-channel intensity cues. In experiment 3, the randomized starting phase method was used to measure SRD as a function of age (3-month-old infants, 7-month-old infants, and young adults) and ripple depth (10 and 20 dB in repeated measures design). In experiment 1, there was a significant interaction between age and ripple depth. The infant SRDs were significantly poorer than the adult SRDs at 10 and 13 dB ripple depths but adult-like at 20 dB depth. This result is consistent with immature across-channel intensity resolution. In contrast, the trajectory of SRD as a function of depth was steeper for infants than adults suggesting that frequency resolution was better in infants than adults. However, in experiment 2 infant performance was significantly poorer than adults at 20 d

  5. Brain sonography in African infants with complicated sporadic ...

    African Journals Online (AJOL)

    Background: To determine the structural findings in brain sonography of African infants with complicated sporadic bacterial meningitis. Materials and Methods: Retrospective assessment of medical records of patients who underwent brain sonography on account of complicated bacterial meningitis. The brain sonography ...

  6. Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants.

    Science.gov (United States)

    Kersbergen, Karina J; Makropoulos, Antonios; Aljabar, Paul; Groenendaal, Floris; de Vries, Linda S; Counsell, Serena J; Benders, Manon J N L

    2016-11-01

    To investigate third-trimester extrauterine brain growth and correlate this with clinical risk factors in the neonatal period, using serially acquired brain tissue volumes in a large, unselected cohort of extremely preterm born infants. Preterm infants (gestational age regions covering the entire brain. Multivariable regression analysis was used to determine the influence of clinical variables on volumes at both scans, as well as on volumetric growth. MRIs at term equivalent age were available for 210 infants and serial data were available for 131 infants. Growth over these 10 weeks was greatest for the cerebellum, with an increase of 258%. Sex, birth weight z-score, and prolonged mechanical ventilation showed global effects on brain volumes on both scans. The effect of brain injury on ventricular size was already visible at 30 weeks, whereas growth data and volumes at term-equivalent age revealed the effect of brain injury on the cerebellum. This study provides data about third-trimester extrauterine volumetric brain growth in preterm infants. Both global and local effects of several common clinical risk factors were found to influence serial volumetric measurements, highlighting the vulnerability of the human brain, especially in the presence of brain injury, during this period. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Sleeping Infant Brain Anticipates Development.

    Science.gov (United States)

    Friedrich, Manuela; Wilhelm, Ines; Mölle, Matthias; Born, Jan; Friederici, Angela D

    2017-08-07

    From the age of 3 months, infants learn relations between objects and co-occurring words [1]. These very first representations of object-word pairings in infant memory are considered as non-symbolic proto-words comprising specific visual-auditory associations that can already be formed in the first months of life [2-5]. Genuine words that refer to semantic long-term memory have not been evidenced prior to 9 months of age [6-9]. Sleep is known to facilitate the reorganization of memories [9-14], but its impact on the perceptual-to-semantic trend in early development is unknown. Here we explored the formation of word meanings in 6- to 8-month-old infants and its reorganization during the course of sleep. Infants were exposed to new words as labels for new object categories. In the memory test about an hour later, generalization to novel category exemplars was tested. In infants who took a short nap during the retention period, a brain response of 3-month-olds [1] was observed, indicating generalizations based on early developing perceptual-associative memory. In those infants who napped longer, a semantic priming effect [15, 16] usually found later in development [17-19] revealed the formation of genuine words. The perceptual-to-semantic shift in memory was related to the duration of sleep stage 2 and to locally increased sleep spindle activity. The finding that, after the massed presentation of several labeled category exemplars, sleep enabled even 6-month-olds to create semantic long-term memory clearly challenges the notion that immature brain structures are responsible for the typically slower lexical development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Current insights in brain protection for the sick newborn infant

    OpenAIRE

    KOOI E.M.W.

    2015-01-01

    This paper presents an overview of the modern antenatal and postnatal strategies in brain protection for both preterm and term born infants. It is known, that the two most common causes of neonatal brain injury are prematurity and hypoxic-ischemic encephalopathy (HIE) in the term born infant. Approximately one in nine babies is born before term. Nowadays these preterm born infants more often survive the neonatal period due to developments in treatment options in the last decades. They are how...

  9. Altered Brain Functional Activity in Infants with Congenital Bilateral Severe Sensorineural Hearing Loss: A Resting-State Functional MRI Study under Sedation

    Directory of Open Access Journals (Sweden)

    Shuang Xia

    2017-01-01

    Full Text Available Early hearing deprivation could affect the development of auditory, language, and vision ability. Insufficient or no stimulation of the auditory cortex during the sensitive periods of plasticity could affect the function of hearing, language, and vision development. Twenty-three infants with congenital severe sensorineural hearing loss (CSSHL and 17 age and sex matched normal hearing subjects were recruited. The amplitude of low frequency fluctuations (ALFF and regional homogeneity (ReHo of the auditory, language, and vision related brain areas were compared between deaf infants and normal subjects. Compared with normal hearing subjects, decreased ALFF and ReHo were observed in auditory and language-related cortex. Increased ALFF and ReHo were observed in vision related cortex, which suggest that hearing and language function were impaired and vision function was enhanced due to the loss of hearing. ALFF of left Brodmann area 45 (BA45 was negatively correlated with deaf duration in infants with CSSHL. ALFF of right BA39 was positively correlated with deaf duration in infants with CSSHL. In conclusion, ALFF and ReHo can reflect the abnormal brain function in language, auditory, and visual information processing in infants with CSSHL. This demonstrates that the development of auditory, language, and vision processing function has been affected by congenital severe sensorineural hearing loss before 4 years of age.

  10. Probiotics prophylaxis in pyelonephritis infants with normal urinary tracts.

    Science.gov (United States)

    Lee, Seung Joo; Cha, Jihae; Lee, Jung Won

    2016-11-01

    Pyelonephritis in infants is considered as a major factor for the formation of renal scar. To prevent recurrent pyelonephritis and renal damage, prophylaxis is extremely important. The aim of this study was to compare the effectiveness of probiotic and antibiotic prophylaxis or no-prophylaxis in infants with pyelonephritis and normal urinary tract. Altogether 191 infants, who were diagnosed with acute pyelonephritis, proven to have normal urinary tracts and followed up for 6 months on prophylaxis, were retrospectively evaluated. According to the types of prophylaxis, the infants were divided into three groups [probiotics (Lactobacillus species), antibiotics (trimethoprim/sulfamethoxazole, TMP/SMX), and noprophylaxis]. The incidence of recurrent urinary tract infection (UTI) during 6 months after the development of pyelonephritis, main causative uropathogens, and its antimicrobial sensitivities were compared. The incidence of recurrent UTI in the probiotic group was 8.2%, which was significantly lower than 20.6% in the no-prophylaxis group (P=0.035) and was not significantly different from 10.0% of the antibiotic group (P=0.532). The significant difference between the probiotic and no-prophylaxis groups was seen only in male infants (P=0.032). The main causative organism of recurrent UTI was Escherichia coli (E.coli), which was not different among the three groups (P=0.305). The resistance rate of E. coli to TMP/SMX was 100% in the antibiotic group, which was significantly higher than 25.0% in the probiotic group and 41.7% in the no-prophylaxis group (P=0.008). Probiotic prophylaxis was more effective in infants with pyelonephritis and normal urinary tract than in those with no-prophylaxis. It could be used as a natural alternative to antibiotic prophylaxis.

  11. Premature infants display increased noxious-evoked neuronal activity in the brain compared to healthy age-matched term-born infants.

    Science.gov (United States)

    Slater, Rebeccah; Fabrizi, Lorenzo; Worley, Alan; Meek, Judith; Boyd, Stewart; Fitzgerald, Maria

    2010-08-15

    This study demonstrates that infants who are born prematurely and who have experienced at least 40days of intensive or special care have increased brain neuronal responses to noxious stimuli compared to healthy newborns at the same postmenstrual age. We have measured evoked potentials generated by noxious clinically-essential heel lances in infants born at term (8 infants; born 37-40weeks) and in infants born prematurely (7 infants; born 24-32weeks) who had reached the same postmenstrual age (mean age at time of heel lance 39.2+/-1.2weeks). These noxious-evoked potentials are clearly distinguishable from shorter latency potentials evoked by non-noxious tactile sensory stimulation. While the shorter latency touch potentials are not dependent on the age of the infant at birth, the noxious-evoked potentials are significantly larger in prematurely-born infants. This enhancement is not associated with specific brain lesions but reflects a functional change in pain processing in the brain that is likely to underlie previously reported changes in pain sensitivity in older ex-preterm children. Our ability to quantify and measure experience-dependent changes in infant cortical pain processing will allow us to develop a more rational approach to pain management in neonatal intensive care. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Isointense infant brain MRI segmentation with a dilated convolutional neural network

    OpenAIRE

    Moeskops, Pim; Pluim, Josien P. W.

    2017-01-01

    Quantitative analysis of brain MRI at the age of 6 months is difficult because of the limited contrast between white matter and gray matter. In this study, we use a dilated triplanar convolutional neural network in combination with a non-dilated 3D convolutional neural network for the segmentation of white matter, gray matter and cerebrospinal fluid in infant brain MR images, as provided by the MICCAI grand challenge on 6-month infant brain MRI segmentation.

  13. Early brain development in infants at high risk for autism spectrum disorder.

    Science.gov (United States)

    Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C; Kim, Sun Hyung; Styner, Martin; Wolff, Jason J; Elison, Jed T; Swanson, Meghan R; Zhu, Hongtu; Botteron, Kelly N; Collins, D Louis; Constantino, John N; Dager, Stephen R; Estes, Annette M; Evans, Alan C; Fonov, Vladimir S; Gerig, Guido; Kostopoulos, Penelope; McKinstry, Robert C; Pandey, Juhi; Paterson, Sarah; Pruett, John R; Schultz, Robert T; Shaw, Dennis W; Zwaigenbaum, Lonnie; Piven, Joseph

    2017-02-15

    Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6-12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.

  14. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation

    Science.gov (United States)

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829

  15. Brain responses in 4-month-old infants are already language specific.

    Science.gov (United States)

    Friederici, Angela D; Friedrich, Manuela; Christophe, Anne

    2007-07-17

    Language is the most important faculty that distinguishes humans from other animals. Infants learn their native language fast and effortlessly during the first years of life, as a function of the linguistic input in their environment. Behavioral studies reported the discrimination of melodic contours [1] and stress patterns [2, 3] in 1-4-month-olds. Behavioral [4, 5] and brain measures [6-8] have shown language-independent discrimination of phonetic contrasts at that age. Language-specific discrimination, however, has been reported for phonetic contrasts only for 6-12-month-olds [9-12]. Here we demonstrate language-specific discrimination of stress patterns in 4-month-old German and French infants by using electrophysiological brain measures. We compare the processing of disyllabic words differing in their rhythmic structure, mimicking German words being stressed on the first syllable, e.g., pápa/daddy[13], and French ones being stressed on the second syllable, e.g., papá/daddy. Event-related brain potentials reveal that experience with German and French differentially affects the brain responses of 4-month-old infants, with each language group displaying a processing advantage for the rhythmic structure typical in its native language. These data indicate language-specific neural representations of word forms in the infant brain as early as 4 months of age.

  16. Term-equivalent functional brain maturational measures predict neurodevelopmental outcomes in premature infants.

    Science.gov (United States)

    El Ters, Nathalie M; Vesoulis, Zachary A; Liao, Steve M; Smyser, Christopher D; Mathur, Amit M

    2018-04-01

    Term equivalent age (TEA) brain MRI identifies preterm infants at risk for adverse neurodevelopmental outcomes. But some infants may experience neurodevelopmental impairments even in the absence of neuroimaging abnormalities. Evaluate the association of TEA amplitude-integrated EEG (aEEG) measures with neurodevelopmental outcomes at 24-36 months corrected age. We performed aEEG recordings and brain MRI at TEA (mean post-menstrual age of 39 (±2) weeks in a cohort of 60 preterm infants born at a mean gestational age of 26 (±2) weeks. Forty-four infants underwent Bayley Scales of Infant Development, 3rd Edition (BSID-III) testing at 24-36 months corrected age. Developmental delay was defined by a score greater than one standard deviation below the mean (neurodevelopmental outcomes was assessed using odds ratio, then adjusted for confounding variables using logistic regression. Infants with developmental delay in any domain had significantly lower values of SEF 90 . Absent cyclicity was more prevalent in infants with cognitive and motor delay. Both left and right SEF 90  neurodevelopmental outcomes. Therefore, a larger study is needed to validate these results in premature infants at low and high risk of brain injury. Copyright © 2018. Published by Elsevier B.V.

  17. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory.

    Science.gov (United States)

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-12-02

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and shear strains) were measured to reveal directional growth information every 3 months during the first year of life. Directional normal strain maps revealed that, during the first 6 months, the growth pattern of gray matter is anisotropic and spatially inhomogeneous with higher left-right stretch around the temporal lobe and interhemispheric fissure, anterior-posterior stretch in the frontal and occipital lobes, and superior-inferior stretch in right inferior occipital and right inferior temporal gyri. In contrast, anterior lateral ventricles and insula showed an isotropic stretch pattern. Volumetric and directional growth rates were linearly decreased with age for most of the cortical regions. Our results revealed anisotropic and inhomogeneous brain growth patterns of the human brain during the first year of life using longitudinal MRI and a biomechanical framework.

  18. The apparent diffusion coefficient of water in gray and white matter of the infant brain

    DEFF Research Database (Denmark)

    Toft, P B; Leth, H; Peitersen, Birgit

    1996-01-01

    PURPOSE: The purpose was to obtain normal values of the apparent diffusion coefficient (ADC) in the infant brain and to compare ADC maps with T1- and T2-weighted images. METHOD: Diffusion was measured in nine infants with an ECG-gated SE sequence compensated for first-order motion. One axial slice...... it appeared on T1- or T2-weighted images. In gray and white matter, the mean ADC ranged from 0.95 x 10(-9) to 1.76 x 10(-9) m2/s. In the frontal and occipital white matter, in the genu corporis callosi, and in the lentiform nucleus, the ADC decreased with increasing age. The cortex/white matter ratio...... of the ADC increased with age and approached 1 at the age of 30 weeks. CONCLUSION: ADC maps add information to the T1 and T2 images about the size and course of unmyelinated as well as myelinated tracts in the immature brain....

  19. Neuro-developmental outcome at 18 months in premature infants with diffuse excessive high signal intensity on MR imaging of the brain

    International Nuclear Information System (INIS)

    Hart, Anthony; Whitby, Elspeth; Paley, Martyn; Wilkinson, Stuart; Smith, Michael; Alladi, Sathya

    2011-01-01

    Diffuse excessive high signal intensity (DEHSI) may represent damage to the white matter in preterm infants, but may be best studied alongside quantitative markers. Limited published data exists on its neuro-developmental implications. The purpose of this study was to assess whether preterm children with DEHSI at term-corrected age have abnormal neuro-developmental outcome. This was a prospective observational study of 67 preterm infants with MRI of the brain around term-equivalent age, including diffusion-weighted imaging (DWI). Images were reported as being normal, overtly abnormal or to show DEHSI. A single observer placed six regions of interest in the periventricular white matter and calculated the apparent diffusion coefficients (ADC). DEHSI was defined as (1) high signal on T2-weighted images alone, (2) high signal with raised ADC values or (3) raised ADC values independent of visual appearances. The neuro-development was assessed around 18 months' corrected age using the Bayley Scales of Infant and Toddler Development (3rd Edition). Standard t tests compared outcome scores between imaging groups. No statistically significant difference in neuro-developmental outcome scores was seen between participants with normal MRI and DEHSI, regardless of which definition was used. Preterm children with DEHSI have similar neuro-developmental outcome to those with normal brain MRI, even if the definition includes objective markers alongside visual appearances. (orig.)

  20. Preventing abusive head trauma resulting from a failure of normal interaction between infants and their caregivers.

    Science.gov (United States)

    Barr, Ronald G

    2012-10-16

    Head trauma from abuse, including shaken baby syndrome, is a devastating and potentially lethal form of infant physical abuse first recognized in the early 1970s. What has been less recognized is the role of the early increase in crying in otherwise normal infants in the first few months of life as a trigger for the abuse. In part, this is because infant crying, especially prolonged unsoothable crying, has been interpreted clinically as something wrong with the infant, the infant's caregiver, or the interactions between them. Here, we review an alternative developmental interpretation, namely, that the early increase in crying is a typical behavioral development in normal infants and usually does not reflect anything wrong or abnormal. We also review evidence indicating that this normal crying pattern is the most common trigger for abusive head trauma (AHT). Together, these findings point to a conceptualization of AHT as the consequence of a failure in an otherwise common, iterative, and developmentally normal infant-caregiver interaction. They also imply that there is a window of opportunity for prevention of AHT, and potentially other forms of infant abuse, through a public health primary universal prevention strategy aimed at changing knowledge and behaviors of caregivers and society in general concerning normal development of infants and the significance of early increased infant crying. If effective, there may be important implications for prevention of infant abuse nationally and internationally.

  1. Radiation exposure of the gonads in infant brain computerized tomography

    International Nuclear Information System (INIS)

    Berndt, L.; Rosenkranz, G.; Tellkamp, H.

    1988-01-01

    In 61 babies and infants the gonadal dose due to brain computerized tomography was determined over the symphysis by thermoluminescent dosimetry. The average radiation dose was 43 mGy corresponding with data reported. Shielding of the testes in infants is an additional burden and worth discussing because of the low absolute gonadal dose

  2. Color Doppler Echocardiographic Assessment of Valvular Regurgitation in Normal Infants

    Directory of Open Access Journals (Sweden)

    Shu-Ting Lee

    2010-01-01

    Conclusion: The prevalence of inaudible valvular regurgitation is high in infants with structurally normal hearts. Multiple-valve involvement with regurgitation is not uncommon. Mild severity and low velocity on color Doppler, and the structural information provided by 2D imaging strongly suggest that these regurgitant flows are physiologically normal in infancy.

  3. Fixel-based analysis reveals alterations is brain microstructure and macrostructure of preterm-born infants at term equivalent age

    Directory of Open Access Journals (Sweden)

    Kerstin Pannek

    Full Text Available Preterm birth causes significant disruption in ongoing brain development, frequently resulting in adverse neurodevelopmental outcomes. Brain imaging using diffusion MRI may provide valuable insight into microstructural properties of the developing brain. The aim of this study was to establish whether the recently introduced fixel-based analysis method, with its associated measures of fibre density (FD, fibre bundle cross-section (FC, and fibre density and bundle cross-section (FDC, is suitable for the investigation of the preterm infant brain at term equivalent age. High-angular resolution diffusion weighted images (HARDI of 55 preterm-born infants and 20 term-born infants, scanned around term-equivalent age, were included in this study (3 T, 64 directions, b = 2000 s/mm2. Postmenstrual age at the time of MRI, and intracranial volume (FC and FDC only, were identified as confounding variables. Gestational age at birth was correlated with all fixel measures in the splenium of the corpus callosum. Compared to term-born infants, preterm infants showed reduced FD, FC, and FDC in a number of regions, including the corpus callosum, anterior commissure, cortico-spinal tract, optic radiations, and cingulum. Preterm infants with minimal macroscopic brain abnormality showed more extensive reductions than preterm infants without any macroscopic brain abnormality; however, little differences were observed between preterm infants with no and with minimal brain abnormality. FC showed significant reductions in preterm versus term infants outside regions identified with FD and FDC, highlighting the complementary role of these measures. Fixel-based analysis identified both microstructural and macrostructural abnormalities in preterm born infants, providing a more complete picture of early brain development than previous diffusion tensor imaging (DTI based approaches. Keywords: Fixel-based analysis, Diffusion, Prematurity, Neonate

  4. Brain MRI findings in infants with primary congenital glaucoma

    International Nuclear Information System (INIS)

    Dai, A. Ibrahym; Saygili, O.

    2007-01-01

    Congenital glaucoma appears in the first months of life, eventually at birth. Isolated congenital glaucoma is characterized by minor malformations of the irido-corneal angle of the anterior chamber of the eye. Clinical manifestations include tearing, photophobia and enlargement of the globe appearing in the first months of life. Imaging technology such as optical coherence tomography and measurement of central corneal thickness may play an important role in the assessment of children with suspected or known glaucoma. However, no MRI findings of the CNS in patients with primary congenital glaucoma (PCG) were reported in the literature. The purpose of this study was to investigate MRI findings of the brain in infants with PCG. We reviewed the radiological and histopathological and clinical characteristics of infants with primary congenital glaucoma. The records of 17 patients with PCG were reviewed and the MRIs of the brain and associated manifestations were analyzed. Three patients with PCG had abnormal MRI findings suggesting agenesis of the corpus callosum. Two infants had delayed myelinization of the brain. Significant abnormal optic nerve excavation and increased corneal diameters in 2 patients with delayed myelinization may suggest that intraocular pressure can be more striking and more severe, revealing a close relationship with PCG and abnormal myelinization in white matter. Studies with more patients are needed to confirm these results. (author)

  5. CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus.

    Science.gov (United States)

    Bradley, W G

    2015-05-01

    CSF normally flows back and forth through the aqueduct during the cardiac cycle. During systole, the brain and intracranial vasculature expand and compress the lateral and third ventricles, forcing CSF craniocaudad. During diastole, they contract and flow through the aqueduct reverses. Hyperdynamic CSF flow through the aqueduct is seen when there is ventricular enlargement without cerebral atrophy. Therefore, patients presenting with clinical normal pressure hydrocephalus who have hyperdynamic CSF flow have been found to respond better to ventriculoperitoneal shunting than those with normal or decreased CSF flow. Patients with normal pressure hydrocephalus have also been found to have larger intracranial volumes than sex-matched controls, suggesting that they may have had benign external hydrocephalus as infants. While their arachnoidal granulations clearly have decreased CSF resorptive capacity, it now appears that this is fixed and that the arachnoidal granulations are not merely immature. Such patients appear to develop a parallel pathway for CSF to exit the ventricles through the extracellular space of the brain and the venous side of the glymphatic system. This pathway remains functional until late adulthood when the patient develops deep white matter ischemia, which is characterized histologically by myelin pallor (ie, loss of lipid). The attraction between the bare myelin protein and the CSF increases resistance to the extracellular outflow of CSF, causing it to back up, resulting in hydrocephalus. Thus idiopathic normal pressure hydrocephalus appears to be a "2 hit" disease: benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood. © 2015 by American Journal of Neuroradiology.

  6. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality.

    Science.gov (United States)

    Mongerson, Chandler R L; Jennings, Russell W; Borsook, David; Becerra, Lino; Bajic, Dusica

    2017-01-01

    Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD) signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1) present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA), such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2) review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3) discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used.

  7. Benefits of Docosahexaenoic Acid, Folic Acid, Vitamin D and Iodine on Foetal and Infant Brain Development and Function Following Maternal Supplementation during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Nancy L. Morse

    2012-07-01

    Full Text Available Scientific literature is increasingly reporting on dietary deficiencies in many populations of some nutrients critical for foetal and infant brain development and function. Purpose: To highlight the potential benefits of maternal supplementation with docosahexaenoic acid (DHA and other important complimentary nutrients, including vitamin D, folic acid and iodine during pregnancy and/or breast feeding for foetal and/or infant brain development and/or function. Methods: English language systematic reviews, meta-analyses, randomised controlled trials, cohort studies, cross-sectional and case-control studies were obtained through searches on MEDLINE and the Cochrane Register of Controlled Trials from January 2000 through to February 2012 and reference lists of retrieved articles. Reports were selected if they included benefits and harms of maternal supplementation of DHA, vitamin D, folic acid or iodine supplementation during pregnancy and/or lactation. Results: Maternal DHA intake during pregnancy and/or lactation can prolong high risk pregnancies, increase birth weight, head circumference and birth length, and can enhance visual acuity, hand and eye co-ordination, attention, problem solving and information processing. Vitamin D helps maintain pregnancy and promotes normal skeletal and brain development. Folic acid is necessary for normal foetal spine, brain and skull development. Iodine is essential for thyroid hormone production necessary for normal brain and nervous system development during gestation that impacts childhood function. Conclusion: Maternal supplementation within recommended safe intakes in populations with dietary deficiencies may prevent many brain and central nervous system malfunctions and even enhance brain development and function in their offspring.

  8. Spectral Ripple Discrimination in Normal Hearing Infants

    Science.gov (United States)

    Horn, David L.; Won, Jong Ho; Rubinstein, Jay T.; Werner, Lynne A.

    2016-01-01

    Objectives Spectral resolution is a correlate of open-set speech understanding in post-lingually deaf adults as well as pre-lingually deaf children who use cochlear implants (CIs). In order to apply measures of spectral resolution to assess device efficacy in younger CI users, it is necessary to understand how spectral resolution develops in NH children. In this study, spectral ripple discrimination (SRD) was used to measure listeners’ sensitivity to a shift in phase of the spectral envelope of a broadband noise. Both resolution of peak to peak location (frequency resolution) and peak to trough intensity (across-channel intensity resolution) are required for SRD. Design SRD was measured as the highest ripple density (in ripples per octave) for which a listener could discriminate a 90 degree shift in phase of the sinusoidally-modulated amplitude spectrum. A 2X3 between subjects design was used to assess the effects of age (7-month-old infants versus adults) and ripple peak/trough “depth” (10, 13, and 20 dB) on SRD in normal hearing listeners (Experiment 1). In Experiment 2, SRD thresholds in the same age groups were compared using a task in which ripple starting phases were randomized across trials to obscure within-channel intensity cues. In Experiment 3, the randomized starting phase method was used to measure SRD as a function of age (3-month-old infants, 7-month-old infants, and young adults) and ripple depth (10 and 20 dB in repeated measures design). Results In Experiment 1, there was a significant interaction between age and ripple depth. The Infant SRDs were significantly poorer than the adult SRDs at 10 and 13 dB ripple depths but adult-like at 20 dB depth. This result is consistent with immature across-channel intensity resolution. In contrast, the trajectory of SRD as a function of depth was steeper for infants than adults suggesting that frequency resolution was better in infants than adults. However, in Experiment 2 infant performance was

  9. Overweight and obese infants present lower cognitive and motor development scores than normal-weight peers.

    Science.gov (United States)

    Camargos, Ana Cristina Resende; Mendonça, Vanessa Amaral; Andrade, Camila Alves de; Oliveira, Katherine Simone Caires; Lacerda, Ana Cristina Rodrigues

    2016-12-01

    Compare the cognitive and motor development in overweight/obese infants versus normal-weight peers and investigate the correlation of body weight, body length and body mass index with cognitive and motor development. We conducted a cross-sectional study with 28 overweight/obese infants and 28 normal-weight peers between 6 and 24 months of age. Both groups were evaluated with cognitive and motor scales of the Bayley-III infant development test. The t-test for independent samples was performed to compare the groups, and the Spearman correlation was used to verify the association between variables. Overweight/obese infants showed lower cognitive and motor composite scores than their normal-weight peers. A significant negative association was found of body weight and body length with cognitive development and of body mass index with motor development. This is the first study that found an effect on both cognitive and motor development in overweight/obese infants when compared with normal-weight peers between 6 and 24 months of age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Do animals and furniture items elicit different brain responses in human infants?

    Science.gov (United States)

    Jeschonek, Susanna; Marinovic, Vesna; Hoehl, Stefanie; Elsner, Birgit; Pauen, Sabina

    2010-11-01

    One of the earliest categorical distinctions to be made by preverbal infants is the animate-inanimate distinction. To explore the neural basis for this distinction in 7-8-month-olds, an equal number of animal and furniture pictures was presented in an ERP-paradigm. The total of 118 pictures, all looking different from each other, were presented in a semi-randomized order for 1000ms each. Infants' brain responses to exemplars from both categories differed systematically regarding the negative central component (Nc: 400-600ms) at anterior channels. More specifically, the Nc was enhanced for animals in one subgroup of infants, and for furniture items in another subgroup of infants. Explorative analyses related to categorical priming further revealed category-specific differences in brain responses in the late time window (650-1550ms) at right frontal channels: Unprimed stimuli (preceded by a different-category item) elicited a more positive response as compared to primed stimuli (preceded by a same-category item). In sum, these findings suggest that the infant's brain discriminates exemplars from both global domains. Given the design of our task, we conclude that processes of category identification are more likely to account for our findings than processes of on-line category formation during the experimental session. Copyright © 2009 Elsevier B.V. All rights reserved.

  11. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality

    Directory of Open Access Journals (Sweden)

    Chandler R. L. Mongerson

    2017-08-01

    Full Text Available Early brain development is characterized by rapid growth and perpetual reconfiguration, driven by a dynamic milieu of heterogeneous processes. Postnatal brain plasticity is associated with increased vulnerability to environmental stimuli. However, little is known regarding the ontogeny and temporal manifestations of inter- and intra-regional functional connectivity that comprise functional brain networks. Resting-state functional magnetic resonance imaging (rs-fMRI has emerged as a promising non-invasive neuroinvestigative tool, measuring spontaneous fluctuations in blood oxygen level dependent (BOLD signal at rest that reflect baseline neuronal activity. Over the past decade, its application has expanded to infant populations providing unprecedented insight into functional organization of the developing brain, as well as early biomarkers of abnormal states. However, many methodological issues of rs-fMRI analysis need to be resolved prior to standardization of the technique to infant populations. As a primary goal, this methodological manuscript will (1 present a robust methodological protocol to extract and assess resting-state networks in early infancy using independent component analysis (ICA, such that investigators without previous knowledge in the field can implement the analysis and reliably obtain viable results consistent with previous literature; (2 review the current methodological challenges and ethical considerations associated with emerging field of infant rs-fMRI analysis; and (3 discuss the significance of rs-fMRI application in infants for future investigations of neurodevelopment in the context of early life stressors and pathological processes. The overarching goal is to catalyze efforts toward development of robust, infant-specific acquisition, and preprocessing pipelines, as well as promote greater transparency by researchers regarding methods used.

  12. Sonographic evaluation of normal thymus in infants and children

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, L.; Marconi, V.; Remy, J.; Avni, F.

    1987-05-01

    Sonography has been used to evaluate 50 'asymptomatic' infants (aged from birth up to two years) with typical appearing thymus on chest X-ray. The ultrasonic features of the normal gland are described. Moreover, the contribution of ultrasound is illustrated by five cases of partially ectopic thymus and by one case of prominent gland in a teenager. Ultrasound may help in differentiating normal gland from mediastinal masses by defining echogenicity, location and extension.

  13. Rhythmic EEG patterns in extremely preterm infants : Classification and association with brain injury and outcome

    NARCIS (Netherlands)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C.; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-01-01

    OBJECTIVE: Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. METHODS: Retrospective analysis of 77 infants born <28 weeks gestational age (GA) who had a 2-channel EEG during the first 72 h after birth. Patterns detected by the BrainZ seizure

  14. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    Science.gov (United States)

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Regional Brain Responses Are Biased Toward Infant Facial Expressions Compared to Adult Facial Expressions in Nulliparous Women.

    Science.gov (United States)

    Li, Bingbing; Cheng, Gang; Zhang, Dajun; Wei, Dongtao; Qiao, Lei; Wang, Xiangpeng; Che, Xianwei

    2016-01-01

    Recent neuroimaging studies suggest that neutral infant faces compared to neutral adult faces elicit greater activity in brain areas associated with face processing, attention, empathic response, reward, and movement. However, whether infant facial expressions evoke larger brain responses than adult facial expressions remains unclear. Here, we performed event-related functional magnetic resonance imaging in nulliparous women while they were presented with images of matched unfamiliar infant and adult facial expressions (happy, neutral, and uncomfortable/sad) in a pseudo-randomized order. We found that the bilateral fusiform and right lingual gyrus were overall more activated during the presentation of infant facial expressions compared to adult facial expressions. Uncomfortable infant faces compared to sad adult faces evoked greater activation in the bilateral fusiform gyrus, precentral gyrus, postcentral gyrus, posterior cingulate cortex-thalamus, and precuneus. Neutral infant faces activated larger brain responses in the left fusiform gyrus compared to neutral adult faces. Happy infant faces compared to happy adult faces elicited larger responses in areas of the brain associated with emotion and reward processing using a more liberal threshold of p facial expressions compared to adult facial expressions among nulliparous women, and this bias may be modulated by individual differences in Interest-In-Infants and perspective taking ability.

  16. Normal standards for kidney length as measured with US in premature infants

    International Nuclear Information System (INIS)

    Schlesinger, A.E.; Hedlund, G.L.; Pierson, W.P.; Null, D.M.

    1986-01-01

    In order to develop normal standards for kidney length in premature infants, the authors measured kidney length by US imaging in 39 (to date) premature infants less than 72 hours old and without known renal disease. Kidney length was compared with four different parameters of body size, including gestational age, birth weight, birth length, and body surface area. Similar standards have been generated previously for normal renal length as measured by US imaging in full-term infants and older children. These standards have proven utility in cases of congenital and acquired disorders that abnormally increase or decrease renal size. Scatter plots of kidney length versus body weight and kidney length versus body surface area conformed well to a logarithmic distribution, with a high correlation coefficient and close-fitting 95% confidence limits (SEE = 2.05)

  17. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    International Nuclear Information System (INIS)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M.; Poole, Ian; Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D.

    2012-01-01

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged ≥60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged ≥60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  18. Brain-oriented care in the NICU: a case study.

    Science.gov (United States)

    Bader, Lisa

    2014-01-01

    With the advances of technology and treatment in the field of neonatal care, researchers can now study how the brains of preterm infants are different from full-term infants. The differences are significant, and the outcomes are poor overall for premature infants as a whole. Caregivers at the bedside must know that every interaction with the preterm infant affects brain development-it is critical to the developmental outcome of the infant. The idea of neuroprotection is not new to the medical field but is a fairly new idea to the NICU. Neuroprotection encompasses all interventions that promote normal development of the brain. The concept of brain-oriented care is a necessary extension of developmental care in the NICU. By following the journey of 26-week preterm twin infants through a case study, one can better understand the necessity of brain-oriented care at the bedside.

  19. Brain tumors and CT scans in infants and children, (3)

    International Nuclear Information System (INIS)

    Oi, Shizuo

    1983-01-01

    In clinical pictures of brain tumors in infants and children, many features are not identical to those in adults, including characteristics of the tumors in age population, the locations of the tumors, the clinical symptoms and signs, and various factors affecting prognosis. We have, therefore, clinically and extensively analyzed brain tumors in infants and children. This study was also performed in order to analyze the characteristic CT findings of astrocytoma, the tumor most frequently occurring among infants and children. The subjects were 24 cases of astrocytoma and 2 cases of glioblastoma in infants and children under 16 years. The locations and characteristics of the tumors were as follows. Most of the tumors occurred in the 4th ventricle, had a characteristic low density, and could almost entirely be clearly distinguished from medulloblastomas, but not from ependymomas, on CT. The features of the supratentorial tumors were similar to those of the astrocytomas and glioblastomas mostly appearing in adults, as previously reported, in the relatively close correlation with the location and malignancy of the tumor. There was also a case of diffuse astrocytoma, a ''non-enhanced low-density solid tumor,'' which raised clinical problems. Among low-grade astrocytomas in infants and children, only a few show a high density on plain CT, many have, at least macroscopically, a strong contrast enhancement, and peritumoral edema is not observed on CT or, if observed, is observed only slightly. As individual features, homogenous enhancement pattern, a mixed density, a central low density, and a rare absence of enhancement are listed. (author)

  20. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  1. Reduced brain resting-state network specificity in infants compared with adults.

    Science.gov (United States)

    Wylie, Korey P; Rojas, Donald C; Ross, Randal G; Hunter, Sharon K; Maharajh, Keeran; Cornier, Marc-Andre; Tregellas, Jason R

    2014-01-01

    Infant resting-state networks do not exhibit the same connectivity patterns as those of young children and adults. Current theories of brain development emphasize developmental progression in regional and network specialization. We compared infant and adult functional connectivity, predicting that infants would exhibit less regional specificity and greater internetwork communication compared with adults. Functional magnetic resonance imaging at rest was acquired in 12 healthy, term infants and 17 adults. Resting-state networks were extracted, using independent components analysis, and the resulting components were then compared between the adult and infant groups. Adults exhibited stronger connectivity in the posterior cingulate cortex node of the default mode network, but infants had higher connectivity in medial prefrontal cortex/anterior cingulate cortex than adults. Adult connectivity was typically higher than infant connectivity within structures previously associated with the various networks, whereas infant connectivity was frequently higher outside of these structures. Internetwork communication was significantly higher in infants than in adults. We interpret these findings as consistent with evidence suggesting that resting-state network development is associated with increasing spatial specificity, possibly reflecting the corresponding functional specialization of regions and their interconnections through experience.

  2. Oscillatory Activity in the Infant Brain and the Representation of Small Numbers.

    Science.gov (United States)

    Leung, Sumie; Mareschal, Denis; Rowsell, Renee; Simpson, David; Iaria, Leon; Grbic, Amanda; Kaufman, Jordy

    2016-01-01

    Gamma-band oscillatory activity (GBA) is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6-8 month-old infants during occlusion periods after the representation of two objects vs. that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants' representation of small numbers.

  3. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder.

    Science.gov (United States)

    Shen, Mark D; Nordahl, Christine W; Young, Gregory S; Wootton-Gorges, Sandra L; Lee, Aaron; Liston, Sarah E; Harrington, Kayla R; Ozonoff, Sally; Amaral, David G

    2013-09-01

    Prospective studies of infants at risk for autism spectrum disorder have provided important clues about the early behavioural symptoms of autism spectrum disorder. Diagnosis of autism spectrum disorder, however, is not currently made until at least 18 months of age. There is substantially less research on potential brain-based differences in the period between 6 and 12 months of age. Our objective in the current study was to use magnetic resonance imaging to identify any consistently observable brain anomalies in 6-9 month old infants who would later develop autism spectrum disorder. We conducted a prospective infant sibling study with longitudinal magnetic resonance imaging scans at three time points (6-9, 12-15, and 18-24 months of age), in conjunction with intensive behavioural assessments. Fifty-five infants (33 'high-risk' infants having an older sibling with autism spectrum disorder and 22 'low-risk' infants having no relatives with autism spectrum disorder) were imaged at 6-9 months; 43 of these (27 high-risk and 16 low-risk) were imaged at 12-15 months; and 42 (26 high-risk and 16 low-risk) were imaged again at 18-24 months. Infants were classified as meeting criteria for autism spectrum disorder, other developmental delays, or typical development at 24 months or later (mean age at outcome: 32.5 months). Compared with the other two groups, infants who developed autism spectrum disorder (n = 10) had significantly greater extra-axial fluid at 6-9 months, which persisted and remained elevated at 12-15 and 18-24 months. Extra-axial fluid is characterized by excessive cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount of extra-axial fluid detected as early as 6 months was predictive of more severe autism spectrum disorder symptoms at the time of outcome. Infants who developed autism spectrum disorder also had significantly larger total cerebral volumes at both 12-15 and 18-24 months of age. This is the first magnetic

  4. Structural growth trajectories and rates of change in the first 3 months of infant brain development.

    Science.gov (United States)

    Holland, Dominic; Chang, Linda; Ernst, Thomas M; Curran, Megan; Buchthal, Steven D; Alicata, Daniel; Skranes, Jon; Johansen, Heather; Hernandez, Antonette; Yamakawa, Robyn; Kuperman, Joshua M; Dale, Anders M

    2014-10-01

    The very early postnatal period witnesses extraordinary rates of growth, but structural brain development in this period has largely not been explored longitudinally. Such assessment may be key in detecting and treating the earliest signs of neurodevelopmental disorders. To assess structural growth trajectories and rates of change in the whole brain and regions of interest in infants during the first 3 months after birth. Serial structural T1-weighted and/or T2-weighted magnetic resonance images were obtained for 211 time points from 87 healthy term-born or term-equivalent preterm-born infants, aged 2 to 90 days, between October 5, 2007, and June 12, 2013. We segmented whole-brain and multiple subcortical regions of interest using a novel application of Bayesian-based methods. We modeled growth and rate of growth trajectories nonparametrically and assessed left-right asymmetries and sexual dimorphisms. Whole-brain volume at birth was approximately one-third of healthy elderly brain volume, and did not differ significantly between male and female infants (347 388 mm3 and 335 509 mm3, respectively, P = .12). The growth rate was approximately 1%/d, slowing to 0.4%/d by the end of the first 3 months, when the brain reached just more than half of elderly adult brain volume. Overall growth in the first 90 days was 64%. There was a significant age-by-sex effect leading to widening separation in brain sizes with age between male and female infants (with male infants growing faster than females by 200.4 mm3/d, SE = 67.2, P = .003). Longer gestation was associated with larger brain size (2215 mm3/d, SE = 284, P = 4×10-13). The expected brain size of an infant born one week earlier than average was 5% smaller than average; at 90 days it will not have caught up, being 2% smaller than average. The cerebellum grew at the highest rate, more than doubling in 90 days, and the hippocampus grew at the slowest rate, increasing by 47% in 90 days. There was left

  5. Breastfeeding, Brain Activation to Own Infant Cry, and Maternal Sensitivity

    Science.gov (United States)

    Kim, Pilyoung; Feldman, Ruth; Mayes, Linda C.; Eicher, Virginia; Thompson, Nancy; Leckman, James F.; Swain, James E.

    2011-01-01

    Background: Research points to the importance of breastfeeding for promoting close mother-infant contact and social-emotional development. Recent functional magnetic resonance imaging (fMRI) studies have identified brain regions related to maternal behaviors. However, little research has addressed the neurobiological mechanisms underlying the…

  6. Speaker gaze increases information coupling between infant and adult brains.

    Science.gov (United States)

    Leong, Victoria; Byrne, Elizabeth; Clackson, Kaili; Georgieva, Stanimira; Lam, Sarah; Wass, Sam

    2017-12-12

    When infants and adults communicate, they exchange social signals of availability and communicative intention such as eye gaze. Previous research indicates that when communication is successful, close temporal dependencies arise between adult speakers' and listeners' neural activity. However, it is not known whether similar neural contingencies exist within adult-infant dyads. Here, we used dual-electroencephalography to assess whether direct gaze increases neural coupling between adults and infants during screen-based and live interactions. In experiment 1 ( n = 17), infants viewed videos of an adult who was singing nursery rhymes with ( i ) direct gaze (looking forward), ( ii ) indirect gaze (head and eyes averted by 20°), or ( iii ) direct-oblique gaze (head averted but eyes orientated forward). In experiment 2 ( n = 19), infants viewed the same adult in a live context, singing with direct or indirect gaze. Gaze-related changes in adult-infant neural network connectivity were measured using partial directed coherence. Across both experiments, the adult had a significant (Granger) causal influence on infants' neural activity, which was stronger during direct and direct-oblique gaze relative to indirect gaze. During live interactions, infants also influenced the adult more during direct than indirect gaze. Further, infants vocalized more frequently during live direct gaze, and individual infants who vocalized longer also elicited stronger synchronization from the adult. These results demonstrate that direct gaze strengthens bidirectional adult-infant neural connectivity during communication. Thus, ostensive social signals could act to bring brains into mutual temporal alignment, creating a joint-networked state that is structured to facilitate information transfer during early communication and learning. Copyright © 2017 the Author(s). Published by PNAS.

  7. Using event-related potentials to study perinatal nutrition and brain development in infants of diabetic mothers.

    Science.gov (United States)

    deRegnier, Raye-Ann; Long, Jeffrey D; Georgieff, Michael K; Nelson, Charles A

    2007-01-01

    Proper prenatal and postnatal nutrition is essential for optimal brain development and function. The early use of event-related potentials enables neuroscientists to study the development of cognitive function from birth and to evaluate the role of specific nutrients in development. Perinatal iron deficiency occurs in severely affected infants of diabetic mothers. In animal models, severe perinatal iron deficiency targets the explicit memory system of the brain. Cross-sectional ERP studies have shown that infants of diabetic mothers have impairments in recognition memory from birth through 8 months of age. The purpose of this study was to evaluate longitudinal development of recognition memory using ERPs in infants of diabetic mothers compared with control infants. Infants of diabetic mothers were divided into high and low risk status based upon their birth weights and iron status and compared with healthy control infants. Infants were tested in the newborn period for auditory recognition memory, at 6 months for visual recognition memory and at 8 months for cross modal memory. ERPs were evaluated for developmental changes in the slow waves that are thought to reflect memory and the Nc component that is thought to reflect attention. The results of the study showed differences in development between the IDMs and control infants in the development of the slow waves over the left anterior temporal leads and age-related patterns of development in the NC component. These results are consistent with animal models showing that perinatal iron deficiency affects the development of the memory networks of the brain. This study highlights the value of using ERPs to translate basic science information obtained from animal models to the development of the human infant.

  8. Infant brain tumors: incidence, survival, and the role of radiation based on Surveillance, Epidemiology, and End Results (SEER) Data.

    Science.gov (United States)

    Bishop, Andrew J; McDonald, Mark W; Chang, Andrew L; Esiashvili, Natia

    2012-01-01

    To evaluate the incidence of infant brain tumors and survival outcomes by disease and treatment variables. The Surveillance, Epidemiology, and End Results (SEER) Program November 2008 submission database provided age-adjusted incidence rates and individual case information for primary brain tumors diagnosed between 1973 and 2006 in infants less than 12 months of age. Between 1973 and 1986, the incidence of infant brain tumors increased from 16 to 40 cases per million (CPM), and from 1986 to 2006, the annual incidence rate averaged 35 CPM. Leading histologies by annual incidence in CPM were gliomas (13.8), medulloblastoma and primitive neuroectodermal tumors (6.6), and ependymomas (3.6). The annual incidence was higher in whites than in blacks (35.0 vs. 21.3 CPM). Infants with low-grade gliomas had the highest observed survival, and those with atypical teratoid rhabdoid tumors (ATRTs) or primary rhabdoid tumors of the brain had the lowest. Between 1979 and 1993, the annual rate of cases treated with radiation within the first 4 months from diagnosis declined from 20.5 CPM to incidence of infant brain tumors has been stable since 1986. Survival outcomes varied markedly by histology. For infants with medulloblastoma and ATRTs, improved survival was observed in patients treated with both surgery and early radiation compared with those treated with surgery alone. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Intimate Surveillance: Normalizing Parental Monitoring and Mediation of Infants Online

    Directory of Open Access Journals (Sweden)

    Tama Leaver

    2017-05-01

    Full Text Available Parents are increasingly sharing information about infants online in various forms and capacities. To more meaningfully understand the way parents decide what to share about young people and the way those decisions are being shaped, this article focuses on two overlapping areas: parental monitoring of babies and infants through the example of wearable technologies and parental mediation through the example of the public sharing practices of celebrity and influencer parents. The article begins by contextualizing these parental practices within the literature on surveillance, with particular attention to online surveillance and the increasing importance of affect. It then gives a brief overview of work on pregnancy mediation, monitoring on social media, and via pregnancy apps, which is the obvious precursor to examining parental sharing and monitoring practices regarding babies and infants. The examples of parental monitoring and parental mediation will then build on the idea of “intimate surveillance” which entails close and seemingly invasive monitoring by parents. Parental monitoring and mediation contribute to the normalization of intimate surveillance to the extent that surveillance is (resituated as a necessary culture of care. The choice to not survey infants is thus positioned, worryingly, as a failure of parenting.

  10. A young infant with musicogenic epilepsy.

    Science.gov (United States)

    Lin, Kuang-Lin; Wang, Huei-Shyong; Kao, Pan-Fu

    2003-05-01

    Musicogenic epilepsy is a relatively rare form of epilepsy. In its pure form, it is characterized by epileptic seizures that are provoked exclusively by listening to music. The usual type of seizure is partial complex or generalized tonic-clonic. Precipitating factors are quite specific, such as listening to only one composition or the actual playing of music on an instrument. However, simple sound also can be a trigger. We report a 6-month-old infant with musicogenic epilepsy. She manifested right-sided focal seizures with occasional generalization. The seizures were frequently triggered by loud music, especially that by the Beatles. The interictal electroencephalography results were normal. Ictal spikes were present throughout the left temporal area during continuous electroencephalograpic monitoring. Brain magnetic resonance imaging results were normal, whereas single-photon emission computed tomography of the brain revealed hypoperfusion of the left temporal area. The young age and epileptogenic left temporal lobe lesion in this patient with musicogenic epilepsy were unusual characteristics. Theoretically, three levels of integration are involved in music processing in the brain. The involved integration of this infant's brain may be the sensory level rather than the emotional level. Nevertheless, the personal musicality and musical style of the Beatles might play an important role in this patient's epilepsy.

  11. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome.

    Science.gov (United States)

    Simões, Rui V; Muñoz-Moreno, Emma; Cruz-Lemini, Mónica; Eixarch, Elisenda; Bargalló, Núria; Sanz-Cortés, Magdalena; Gratacós, Eduard

    2017-01-01

    Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. A total of 26 prematurely born intrauterine growth restriction infants (birthweight intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which

  12. Peripheral refraction in normal infant rhesus monkeys

    Science.gov (United States)

    Hung, Li-Fang; Ramamirtham, Ramkumar; Huang, Juan; Qiao-Grider, Ying; Smith, Earl L.

    2008-01-01

    Purpose To characterize peripheral refractions in infant monkeys. Methods Cross-sectional data for horizontal refractions were obtained from 58 normal rhesus monkeys at 3 weeks of age. Longitudinal data were obtained for both the vertical and horizontal meridians from 17 monkeys. Refractive errors were measured by retinoscopy along the pupillary axis and at eccentricities of 15, 30, and 45 degrees. Axial dimensions and corneal power were measured by ultrasonography and keratometry, respectively. Results In infant monkeys, the degree of radial astigmatism increased symmetrically with eccentricity in all meridians. There were, however, initial nasal-temporal and superior-inferior asymmetries in the spherical-equivalent refractive errors. Specifically, the refractions in the temporal and superior fields were similar to the central ametropia, but the refractions in the nasal and inferior fields were more myopic than the central ametropia and the relative nasal field myopia increased with the degree of central hyperopia. With age, the degree of radial astigmatism decreased in all meridians and the refractions became more symmetrical along both the horizontal and vertical meridians; small degrees of relative myopia were evident in all fields. Conclusions As in adult humans, refractive error varied as a function of eccentricity in infant monkeys and the pattern of peripheral refraction varied with the central refractive error. With age, emmetropization occurred for both central and peripheral refractive errors resulting in similar refractions across the central 45 degrees of the visual field, which may reflect the actions of vision-dependent, growth-control mechanisms operating over a wide area of the posterior globe. PMID:18487366

  13. The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is predominant in the human infant brain

    DEFF Research Database (Denmark)

    Kuchan, J M; Jensen, Søren Krogh; Johnson, E J

    2016-01-01

    α-Tocopherol is the principal source of vitamin E, an essential nutrient that plays a crucial role in maintaining healthy brain function. Infant formula is routinely supplemented with synthetic α-tocopherol, a racaemic mixture of eight stereoisomers with less bioactivity than the natural...... stereoisomer RRR-α-tocopherol. α-Tocopherol stereoisomer profiles have not been previously reported in the human brain. In the present study, we analysed total α-tocopherol and α-tocopherol stereoisomers in the frontal cortex (FC), hippocampus (HPC) and visual cortex (VC) of infants (n 36) who died of sudden...... infant death syndrome or other conditions. RRR-α-tocopherol was the predominant stereoisomer in all brain regions (Ptocopherol (5–17 μg/g). Mean RRR-α-tocopherol concentrations in FC, HPC and VC were 10·5, 6·8 and 5·5 μg...

  14. Oscillatory activity in the infant brain and the representation of small numbers

    Directory of Open Access Journals (Sweden)

    Sumie eLeung

    2016-02-01

    Full Text Available Gamma-band oscillatory activity (GBA is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6- to 8-month-old infants during occlusion periods after the representation of two objects versus that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants’ representation of small numbers.

  15. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    International Nuclear Information System (INIS)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T.

    2007-01-01

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process

  16. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  17. Gestational age at birth and brain white matter development in term-born infants and children

    Science.gov (United States)

    Studies on infants/children born preterm have shown that adequate gestational length is critical for brain white matter development. Less is known regarding how variations in gestational age at birth in term infants/children affect white matter development, which was evaluated in this study. Using d...

  18. Lutein Is Differentially Deposited across Brain Regions following Formula or Breast Feeding of Infant Rhesus Macaques.

    Science.gov (United States)

    Jeon, Sookyoung; Ranard, Katherine M; Neuringer, Martha; Johnson, Emily E; Renner, Lauren; Kuchan, Matthew J; Pereira, Suzette L; Johnson, Elizabeth J; Erdman, John W

    2018-01-01

    Lutein, a yellow xanthophyll, selectively accumulates in primate retina and brain. Lutein may play a critical role in neural and retinal development, but few studies have investigated the impact of dietary source on its bioaccumulation in infants. We explored the bioaccumulation of lutein in infant rhesus macaques following breastfeeding or formula-feeding. From birth to 6 mo of age, male and female rhesus macaques (Macaca mulatta) were either breastfed (BF) (n = 8), fed a formula supplemented with lutein, zeaxanthin, β-carotene, and lycopene (237, 19.0, 74.2, and 338 nmol/kg, supplemented formula-fed; SF) (n = 8), or fed a formula with low amounts of these carotenoids (38.6, 2.3, 21.5, and 0 nmol/kg, unsupplemented formula-fed; UF) (n = 7). The concentrations of carotenoids in serum and tissues were analyzed by HPLC. At 6 mo of age, the BF group exhibited significantly higher lutein concentrations in serum, all brain regions, macular and peripheral retina, adipose tissue, liver, and other tissues compared to both formula-fed groups (P Lutein concentrations were higher in the SF group than in the UF group in serum and all tissues, with the exception of macular retina. Lutein was differentially distributed across brain areas, with the highest concentrations in the occipital cortex, regardless of the diet. Zeaxanthin was present in all brain regions but only in the BF infants; it was present in both retinal regions in all groups but was significantly enhanced in BF infants compared to either formula group (P lutein concentrations compared to unsupplemented formula, concentrations were still well below those in BF infants. Regardless of diet, occipital cortex showed selectively higher lutein deposition than other brain regions, suggesting lutein's role in visual processing in early life. © 2018 American Society for Nutrition. All rights reserved.

  19. Creative music therapy to promote brain structure, function, and neurobehavioral outcomes in preterm infants: a randomized controlled pilot trial protocol.

    Science.gov (United States)

    Haslbeck, Friederike Barbara; Bucher, Hans-Ulrich; Bassler, Dirk; Hagmann, Cornelia

    2017-01-01

    Preterm birth is associated with increased risk of neurological impairment and deficits in cognition, motor function, and behavioral problems. Limited studies indicate that multi-sensory experiences support brain development in preterm infants. Music appears to promote neurobiological processes and neuronal learning in the human brain. Creative music therapy (CMT) is an individualized, interactive therapeutic approach based on the theory and methods of Nordoff and Robbins. CMT may promote brain development in preterm infants via concurrent interaction and meaningful auditory stimulation. We hypothesize that preterm infants who receive creative music therapy during neonatal intensive care admission will have developmental benefits short- and long-term brain function. A prospective, randomized controlled single-center pilot trial involving 60 clinically stable preterm infants under 32 weeks of gestational age is conducted in preparation for a multi-center trial. Thirty infants each are randomized to either standard neonatal intensive care or standard care with CMT. Music therapy intervention is approximately 20 min in duration three times per week. A trained music therapist sings for the infants in lullaby style, individually entrained and adjusted to the infant's rhythm and affect. Primary objectives of this study are feasibility of protocol implementation and investigating the potential mechanism of efficacy for this new intervention. To examine the effect of this new intervention, non-invasive, quantitative magnetic resonance imaging (MRI) methods at corrected age and standardized neurodevelopmental assessments using the Bayley Scales of Infant and Toddler Development third edition at a corrected age of 24 months and Kaufman Assessment Battery for Children at 5 years will be performed. All assessments will be performed and analyzed by blinded experts. To our knowledge, this is the first randomized controlled clinical trial to systematically examine possible

  20. Brain ultrasonographic findings of late-onset circulatory dysfunction due to adrenal insufficiency in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su Mi; Chai, Jee Won [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    The aim of this study was to characterize the brain ultrasonographic findings of late-onset circulatory dysfunction (LCD) due to adrenal insufficiency (AI) in preterm infants. Among the 257 preterm infants born at <33 weeks of gestation between December 2009 and February 2014 at our institution, 35 preterm infants were diagnosed with AI. Brain ultrasonographic findings were retrospectively analyzed before and after LCD in 14 preterm infants, after exclusion of the other 21 infants with AI due to the following causes: death (n=2), early AI (n=5), sepsis (n=1), and patent ductus arteriosus (n=13). Fourteen of 257 infants (5.4%) were diagnosed with LCD due to AI. The age at LCD was a median of 18.5 days (range, 9 to 32 days). The last ultrasonographic findings before LCD occurred showed grade 1 periventricular echogenicity (PVE) in all 14 patients and germinal matrix hemorrhage (GMH) with focal cystic change in one patient. Ultrasonographic findings after LCD demonstrated no significant change in grade 1 PVE and no new lesions in eight (57%), grade 1 PVE with newly appearing GMH in three (21%), and increased PVE in three (21%) infants. Five infants (36%) showed new development (n=4) or increased size (n=1) of GMH. Two of three infants (14%) with increased PVE developed cystic periventricular leukomalacia (PVL) and rapid progression to macrocystic encephalomalacia. LCD due to AI may be associated with the late development of GMH, increased PVE after LCD, and cystic PVL with rapid progression to macrocystic encephalomalacia.

  1. Description of 13 Infants Born During October 2015-January 2016 With Congenital Zika Virus Infection Without Microcephaly at Birth - Brazil.

    Science.gov (United States)

    van der Linden, Vanessa; Pessoa, André; Dobyns, William; Barkovich, A James; Júnior, Hélio van der Linden; Filho, Epitacio Leite Rolim; Ribeiro, Erlane Marques; Leal, Mariana de Carvalho; Coimbra, Pablo Picasso de Araújo; Aragão, Maria de Fátima Viana Vasco; Verçosa, Islane; Ventura, Camila; Ramos, Regina Coeli; Cruz, Danielle Di Cavalcanti Sousa; Cordeiro, Marli Tenório; Mota, Vivian Maria Ribeiro; Dott, Mary; Hillard, Christina; Moore, Cynthia A

    2016-12-02

    Congenital Zika virus infection can cause microcephaly and severe brain abnormalities (1). Congenital Zika syndrome comprises a spectrum of clinical features (2); however, as is the case with most newly recognized teratogens, the earliest documented clinical presentation is expected to be the most severe. Initial descriptions of the effects of in utero Zika virus infection centered prominently on the finding of congenital microcephaly (3). To assess the possibility of clinical presentations that do not include congenital microcephaly, a retrospective assessment of 13 infants from the Brazilian states of Pernambuco and Ceará with normal head size at birth and laboratory evidence of congenital Zika virus infection was conducted. All infants had brain abnormalities on neuroimaging consistent with congenital Zika syndrome, including decreased brain volume, ventriculomegaly, subcortical calcifications, and cortical malformations. The earliest evaluation occurred on the second day of life. Among all infants, head growth was documented to have decelerated as early as 5 months of age, and 11 infants had microcephaly. These findings provide evidence that among infants with prenatal exposure to Zika virus, the absence of microcephaly at birth does not exclude congenital Zika virus infection or the presence of Zika-related brain and other abnormalities. These findings support the recommendation for comprehensive medical and developmental follow-up of infants exposed to Zika virus prenatally. Early neuroimaging might identify brain abnormalities related to congenital Zika infection even among infants with a normal head circumference (4).

  2. Contribution of Histologic Chorioamnionitis and Fetal Inflammatory Response Syndrome to Increased Risk of Brain Injury in Infants With Preterm Premature Rupture of Membranes.

    Science.gov (United States)

    Lu, Hong-Yan; Zhang, Qiang; Wang, Qiu-Xia; Lu, Jun-Ying

    2016-08-01

    To determine the association of histologic chorioamnionitis (HCA) and fetal inflammatory response syndrome (FIRS) with brain injuries in infants born to mothers with preterm premature rupture of membranes. A total of 103 singleton infants born to mothers with preterm premature rupture of membranes were enrolled. The placental inflammation was confirmed by HCA, and FIRS was defined in fetuses with preterm labor and an elevation of the fetal plasma interleukin-6 concentration. Examination of brain images was conducted to confirm the existence of brain injuries. Based on placental HCA and umbilical cord blood interleukin-6 level, all patients were divided into three groups: HCA(-)FIRS(+), HCA(+)FIRS(-), and HCA(+)FIRS(+). Among all infants with preterm premature rupture of membranes, 53.40% were exposed to HCA, 20.38% experienced FIRS, and the overall incidence of brain injuries was 38.83%. The incidence of brain injury in HCA(-)FIRS(+), HCA(+)FIRS(-), and HCA(+)FIRS(+) groups were 20.83%, 41.18%, and 76.19%, respectively. HCA at the advanced grades and stages was associated with increased risk of brain injury. Umbilical cord blood levels of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), and granulocyte-colony stimulating factor (G-CSF) in premature infants with brain injuries were significantly higher than in those without brain injuries. Infants diagnosed with both HCA and FIRS showed significantly higher levels of IL-8, TNF-α, and G-CSF than those with HCA alone. Preterm infants exposed to severe chorioamnionitis had an increased risk of brain injury. IL-6, IL-8, TNF-α, and G-CSF in cord blood were associated with brain injuries in preterm infants and may be used as extradiagnostic criteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Breastfeeding Trends Among Very Low Birth Weight, Low Birth Weight, and Normal Birth Weight Infants.

    Science.gov (United States)

    Campbell, Angela G; Miranda, Patricia Y

    2018-05-18

    To examine the change in breastfeeding behaviors over time, among low birth weight (LBW), very low birth weight (VLBW), and normal birth weight (NBW) infants using nationally representative US data. Univariate statistics and bivariate logistic models were examined using the Early Child Longitudinal Study-Birth Cohort (2001) and National Study of Children's Health (2007 and 2011/2012). Breastfeeding behaviors improved for infants of all birth weights from 2007 to 2011/2012. In 2011/2012, a higher percentage of VLBW infants were ever breastfed compared with LBW and NBW infants. In 2011/2012, LBW infants had a 28% lower odds (95% CI, 0.57-0.92) of ever breastfeeding and a 52% lower odds (95% CI, 0.38-0.61) of breastfeeding for ≥6 months compared with NBW infants. Among black infants, a larger percentage of VLBW infants were breastfed for ≥6 months (26.2%) compared with LBW infants (14.9%). Breastfeeding rates for VLBW and NBW infants have improved over time. Both VLBW and NBW infants are close to meeting the Healthy People 2020 ever breastfeeding goal of 81.9%. LBW infants are farther from this goal than VLBW infants. The results suggest a need for policies that encourage breastfeeding specifically among LBW infants. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Editorial brain malformation surveillance in the Zika era

    Science.gov (United States)

    Trevathan, Edwin

    2016-01-01

    The current surveillance systems for congenital microcephaly are necessary to monitor the impact of Zika virus (ZIKV) on the developing human brain, as well as the ZIKV prevention efforts. However, these congenital microcephaly surveillance systems are insufficient. Abnormalities of neuronal differentiation, development and migration may occur among infants with normal head circumference who have intrauterine exposure to ZIKV. Therefore, surveillance for congenital microcephaly does not ascertain many of the infants seriously impacted by congenital ZIKV infection. Furthermore, many infants with normal head circumference and with malformations of the brain cortex do not have clinical manifestations of their congenital malformations until several months to many years after birth, when they present with clinical manifestations such as seizures/epilepsy, developmental delays with or without developmental regression, and/or motor impairment. In response to the ZIKV threat, public health surveillance systems must be enhanced to ascertain a wide variety of congenital brain malformations, as well as their clinical manifestations that lead to diagnostic brain imaging. Birth Defects Research (Part A) 106:869–874, 2016. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc. PMID:27891785

  5. Neuroendocrine Inflammatory Responses in Overweight/Obese Infants.

    Directory of Open Access Journals (Sweden)

    Ana Cristina Resende Camargos

    Full Text Available Childhood obesity is related to a cascade of neuroendocrine inflammatory changes. However, there remains a gap in the current literature regarding the possible occurrence of these changes in overweight/obese infants. The objective of this study was to evaluate adipokines, cortisol, brain-derived neurotrophic factor (BDNF and redox status in overweight/obese infants versus normal-weight peers. A cross-sectional study was conducted with 50 infants (25 in the overweight/obese group and 25 in the normal-weight group between 6 and 24 months. Plasma levels of leptin, adiponectin, resistin, soluble tumor necrosis factor (TNF receptors, chemokines, BDNF, serum cortisol and redox status were measured. Unpaired Student's t-test was used to analyze the results and a probability of p<0.05 was acceptable for rejection of the null hypothesis. The Pearson correlation was used to verify the association between the biomarkers analyzed in each group. Plasma levels of leptin (p = 0.0001, adiponectin (p = 0.0007 and BDNF (p = 0.003, and serum cortisol (p = 0.048 were significantly higher in overweight/obese infants than normal-weight infants. In contrast, the concentration of thiobarbituric acid reactive substances (TBARS (p = 0.004, and catalase (p = 0.045 and superoxide dismutase activity (p = 0.02 were lower in overweight/obese infants than normal-weight peers. All the results together indicate neuroendocrine inflammatory response changes in overweight/obese infants between 6 and 24 months. Although there is already an environment that predisposes for a subsequent pro-inflammatory response, neuroendocrine secretion changes that permit the control of the inflammatory process in this age interval can be observed.

  6. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation

    International Nuclear Information System (INIS)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B.

    1989-01-01

    The reaction of cerebral blood flow to acute changes in arterial carbon dioxide pressure (PaCO2) and mean arterial blood pressure was determined in 57 preterm infants supported by mechanical ventilation (mean gestational age 30.1 weeks) during the first 48 hours of life. All infants had normal brain sonograms at the time of the investigation. In each infant, global cerebral blood flow was determined by xenon-133 clearance two to five times within a few hours at different levels of PaCO2. Changes in PaCO2 followed adjustments of the ventilator settings. Arterial oxygen pressure was intended to be kept constant, and mean arterial blood pressure fluctuated spontaneously between measurements. The data were analyzed by stepwise multiple regression, with changes in global cerebral blood flow, PaCO2, mean arterial blood pressure, and postnatal age or intracranial hemorrhage used as variables. In infants with persistently normal brain sonograms, the global cerebral blood flow-carbon dioxide reactivity was markedly lower during the first day of life (mean 11.2% to 11.8%/kPa PaCO2) compared with the second day of life (mean 32.6/kPa PaCO2), and pressure-flow autoregulation was preserved. Similarly, global cerebral blood flow-carbon dioxide reactivity and pressure-flow autoregulation were present in infants in whom mild intracranial hemorrhage developed after the study. In contrast, global cerebral blood flow reactivity to changes in PaCO2 and mean arterial blood pressure was absent in infants in whom ultrasonographic signs of severe intracranial hemorrhage subsequently developed. These infants also had about 20% lower global cerebral blood flow before hemorrhage, in comparison with infants whose sonograms were normal, a finding that suggests functional disturbances of cerebral blood flow regulation

  7. The Dual Nature of Early-Life Experience on Somatosensory Processing in the Human Infant Brain.

    OpenAIRE

    Maitre, N.L.; Key, A.P.; Chorna, O.D.; Slaughter, J.C.; Matusz, P.J.; Wallace, M.T.; Murray, M.M.

    2017-01-01

    Every year, 15 million preterm infants are born, and most spend their first weeks in neonatal intensive care units (NICUs) [1]. Although essential for the support and survival of these infants, NICU sensory environments are dramatically different from those in which full-term infants mature and thus likely impact the development of functional brain organization [2]. Yet the integrity of sensory systems determines effective perception and behavior [3, 4]. In neonates, touch is a cornerstone of...

  8. Greater brain response to emotional expressions of their own children in mothers of preterm infants: an fMRI study.

    Science.gov (United States)

    Montirosso, R; Arrigoni, F; Casini, E; Nordio, A; De Carli, P; Di Salle, F; Moriconi, S; Re, M; Reni, G; Borgatti, R

    2017-06-01

    The birth of a preterm infant and Neonatal Intensive Care Unit hospitalization constitute a potentially traumatic experience for mothers. Although behavioral studies investigated the parenting stress in preterm mothers, no study focused on the underlying neural mechanisms. We examined the effect of preterm births in mothers, by comparing brain activation in mothers of preterm and full-term infants. We used functional magnetic resonance imaging to measure the cerebral response of 10 first-time mothers of preterm infants (gestational age mothers of full-term infants, viewing happy-, neutral- and distress-face images of their own infant, along with a matched unknown infant. While viewing own infant's face preterm mothers showed increased activation in emotional processing area (i.e., inferior frontal gyrus) and social cognition (i.e., supramarginal gyrus) and affiliative behavior (i.e., insula). Differential brain activation patterns in mothers appears to be a function of the atypical parenthood transition related to prematurity.

  9. What is ''normal aging brain for his/her age'' ? The first report

    International Nuclear Information System (INIS)

    Taki, Yasuyuki; Kinomura, Shigeo; Goto, Ryoi

    2005-01-01

    We evaluated the correlations between the gray matter volume, white matter volume and age, and determined normal aging brain for his/her age in every decade. We analyzed magnetic resonance images of the brain from 828 normal Japanese subjects. Significant negative correlation between the gray matter ratio (ratio of the gray matter volume in intracranial volume) and age was shown. From these results, we determined ''normal aging brain for his/her age'' and ''atrophied brain for his/her age'' in every decade. (author)

  10. Normalized regional brain atrophy measurements in multiple sclerosis

    International Nuclear Information System (INIS)

    Zivadinov, Robert; Locatelli, Laura; Stival, Barbara; Bratina, Alessio; Nasuelli, Davide; Zorzon, Marino; Grop, Attilio; Brnabic-Razmilic, Ozana

    2003-01-01

    There is still a controversy regarding the best regional brain atrophy measurements in multiple sclerosis (MS) studies. The aim of this study was to establish whether, in a cross-sectional study, the normalized measurements of regional brain atrophy correlate better with the MRI-defined regional brain lesions than the absolute measurements of regional brain atrophy. We assessed 45 patients with clinically definite relapsing-remitting (RR) MS (median disease duration 12 years), and measured T1-lesion load (LL) and T2-LL of frontal lobes and pons, using a reproducible semi-automated technique. The regional brain parenchymal volume (RBPV) of frontal lobes and pons was obtained by use of a computerized interactive program, which incorporates semi-automated and automated segmentation processes. A normalized measurement, the regional brain parenchymal fraction (RBPF), was calculated as the ratio of RBPV to the total volume of the parenchyma and the cerebrospinal fluid (CSF) in the frontal lobes and in the region of the pons. The total regional brain volume fraction (TRBVF) was obtained after we had corrected for the total volume of the parenchyma and the CSF in the frontal lobes and in the region of the pons for the total intracranial volume. The mean coefficient of variation (CV) for RBPF of the pons was 1% for intra-observer reproducibility and 1.4% for inter-observer reproducibility. Generally, the normalized measurements of regional brain atrophy correlated with regional brain volumes and disability better than did the absolute measurements. RBPF and TRBVF correlated with T2-LL of the pons (r=-0.37, P=0.011, and r= -0.40, P=0.0005 respectively) and with T1-LL of the pons (r=-0.27, P=0.046, and r=-0.31, P=0.04, respectively), whereas RBPV did not (r=-0.18, P = NS). T1-LL of the frontal lobes was related to RBPF (r=-0.32, P=0.033) and TRBVF (r=-0.29, P=0.05), but not to RBPV (R=-0.27, P= NS). There was only a trend of correlation between T2-LL of the frontal lobes and

  11. Facial Expressivity in Failure to Thrive and Normal Infants: Implications for Their Capacity to Engage in the World.

    Science.gov (United States)

    Abramson, Lauren

    1991-01-01

    Investigated emotional and facial expressivity in infants who failed to thrive and normal infants who were videotaped in social and cognitive contexts. Although differences in emotional expressivity were not found, infants who failed to thrive displayed more negative effects and used their lower faces less often to express emotion. (Author/BB)

  12. Accentuate or repeat? Brain signatures of developmental periods in infant word recognition.

    Science.gov (United States)

    Männel, Claudia; Friederici, Angela D

    2013-01-01

    Language acquisition has long been discussed as an interaction between biological preconditions and environmental input. This general interaction seems particularly salient in lexical acquisition, where infants are already able to detect unknown words in sentences at 7 months of age, guided by phonological and statistical information in the speech input. While this information results from the linguistic structure of a given language, infants also exploit situational information, such as speakers' additional word accentuation and word repetition. The current study investigated the developmental trajectory of infants' sensitivity to these two situational input cues in word recognition. Testing infants at 6, 9, and 12 months of age, we hypothesized that different age groups are differentially sensitive to accentuation and repetition. In a familiarization-test paradigm, event-related brain potentials (ERPs) revealed age-related differences in infants' word recognition as a function of situational input cues: at 6 months infants only recognized previously accentuated words, at 9 months both accentuation and repetition played a role, while at 12 months only repetition was effective. These developmental changes are suggested to result from infants' advancing linguistic experience and parallel auditory cortex maturation. Our data indicate very narrow and specific input-sensitive periods in infant word recognition, with accentuation being effective prior to repetition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Performance of brain-damaged, schizophrenic, and normal subjects on a visual searching task.

    Science.gov (United States)

    Goldstein, G; Kyc, F

    1978-06-01

    Goldstein, Rennick, Welch, and Shelly (1973) reported on a visual searching task that generated 94.1% correct classifications when comparing brain-damaged and normal subjects, and 79.4% correct classifications when comparing brain-damaged and psychiatric patients. In the present study, representing a partial cross-validation with some modification of the test procedure, comparisons were made between brain-damaged and schizophrenic, and brain-damaged and normal subjects. There were 92.5% correct classifications for the brain-damaged vs normal comparison, and 82.5% correct classifications for the brain-damaged vs schizophrenic comparison.

  14. Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants

    International Nuclear Information System (INIS)

    Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der; Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique; Wezel-Meijler, Gerda van

    2014-01-01

    Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age 6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)

  15. T2 Relaxometry MRI Predicts Cerebral Palsy in Preterm Infants.

    Science.gov (United States)

    Chen, L-W; Wang, S-T; Huang, C-C; Tu, Y-F; Tsai, Y-S

    2018-01-18

    T2-relaxometry brain MR imaging enables objective measurement of brain maturation based on the water-macromolecule ratio in white matter, but the outcome correlation is not established in preterm infants. Our study aimed to predict neurodevelopment with T2-relaxation values of brain MR imaging among preterm infants. From January 1, 2012, to May 31, 2015, preterm infants who underwent both T2-relaxometry brain MR imaging and neurodevelopmental follow-up were retrospectively reviewed. T2-relaxation values were measured over the periventricular white matter, including sections through the frontal horns, midbody of the lateral ventricles, and centrum semiovale. Periventricular T2 relaxometry in relation to corrected age was analyzed with restricted cubic spline regression. Prediction of cerebral palsy was examined with the receiver operating characteristic curve. Thirty-eight preterm infants were enrolled for analysis. Twenty patients (52.6%) had neurodevelopmental abnormalities, including 8 (21%) with developmental delay without cerebral palsy and 12 (31.6%) with cerebral palsy. The periventricular T2-relaxation values in relation to age were curvilinear in preterm infants with normal development, linear in those with developmental delay without cerebral palsy, and flat in those with cerebral palsy. When MR imaging was performed at >1 month corrected age, cerebral palsy could be predicted with T2 relaxometry of the periventricular white matter on sections through the midbody of the lateral ventricles (area under the receiver operating characteristic curve = 0.738; cutoff value of >217.4 with 63.6% sensitivity and 100.0% specificity). T2-relaxometry brain MR imaging could provide prognostic prediction of neurodevelopmental outcomes in premature infants. Age-dependent and area-selective interpretation in preterm brains should be emphasized. © 2018 by American Journal of Neuroradiology.

  16. Neonatal Pain in Very Preterm Infants: Long-Term Effects on Brain, Neurodevelopment and Pain Reactivity

    Directory of Open Access Journals (Sweden)

    Ruth Eckstein Grunau

    2013-10-01

    Full Text Available Effects of early life psychosocial adversity have received a great deal of attention, such as maternal separation in experimental animal models and abuse/neglect in young humans. More recently, long-term effects of the physical stress of repetitive procedural pain have begun to be addressed in infants hospitalized in neonatal intensive care. Preterm infants are more sensitive to pain and stress, which cannot be distinguished in neonates. The focus of this review is clinical studies of long-term effects of repeated procedural pain-related stress in the neonatal intensive care unit (NICU in relation to brain development, neurodevelopment, programming of stress systems, and later pain sensitivity in infants born very preterm (24–32 weeks’ gestational age. Neonatal pain exposure has been quantified as the number of invasive and/or skin-breaking procedures during hospitalization in the NICU. Emerging studies provide convincing clinical evidence for an adverse impact of neonatal pain/stress in infants at a time of physiological immaturity, rapidly developing brain microstructure and networks, as well as programming of the hypothalamic-pituitary-adrenal axis. Currently it appears that early pain/stress may influence the developing brain and thereby neurodevelopment and stress-sensitive behaviors, particularly in the most immature neonates. However, there is no evidence for greater prevalence of pain syndromes compared to children and adults born healthy at full term. In addressing associations between pain/stress and outcomes, careful consideration of confounding clinical factors related to prematurity is essential. The need for pain management for humanitarian care is widely advocated. Non-pharmacological interventions to help parents reduce their infant’s stress may be brain-protective.

  17. Tractography of the corticospinal tracts in infants with focal perinatal injury: comparison with normal controls and to motor development

    International Nuclear Information System (INIS)

    Roze, Elise; Harris, Polly A.; Ball, Gareth; Braga, Rodrigo M.; Allsop, Joanna M.; Counsell, Serena J.; Elorza, Leire Zubiaurre; Merchant, Nazakat; Arichi, Tomoki; Edwards, A.D.; Cowan, Frances M.; Porter, Emma; Rutherford, Mary A.

    2012-01-01

    Our aims were to (1) assess the corticospinal tracts (CSTs) in infants with focal injury and healthy term controls using probabilistic tractography and (2) to correlate the conventional magnetic resonance imaging (MRI) and tractography findings in infants with focal injury with their later motor function. We studied 20 infants with focal lesions and 23 controls using MRI and diffusion tensor imaging. Tract volume, fractional anisotropy (FA), apparent diffusion coefficient (ADC) values, axial diffusivity and radial diffusivity (RD) of the CSTs were determined. Asymmetry indices (AIs) were calculated by comparing ipsilateral to contralateral CSTs. Motor outcome was assessed using a standardized neurological examination. Conventional MRI was able to predict normal motor development (n = 9) or hemiplegia (n = 6). In children who developed a mild motor asymmetry (n = 5), conventional MRI predicted a hemiplegia in two and normal motor development in three infants. The AIs for tract volume, FA, ADC and RD showed a significant difference between controls and infants who developed a hemiplegia, and RD also showed a significant difference in AI between controls and infants who developed a mild asymmetry. Conventional MRI was able to predict subsequent normal motor development or hemiplegia following focal injury in newborn infants. Measures of RD obtained from diffusion tractography may offer additional information for predicting a subsequent asymmetry in motor function. (orig.)

  18. No laughing matter: intranasal oxytocin administration changes functional brain connectivity during exposure to infant laughter.

    Science.gov (United States)

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2012-04-01

    Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent-infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter.

  19. Infant Brain Tumors: Incidence, Survival, and the Role of Radiation Based on Surveillance, Epidemiology, and End Results (SEER) Data

    International Nuclear Information System (INIS)

    Bishop, Andrew J.; McDonald, Mark W.; Chang, Andrew L.; Esiashvili, Natia

    2012-01-01

    Purpose: To evaluate the incidence of infant brain tumors and survival outcomes by disease and treatment variables. Methods and Materials: The Surveillance, Epidemiology, and End Results (SEER) Program November 2008 submission database provided age-adjusted incidence rates and individual case information for primary brain tumors diagnosed between 1973 and 2006 in infants less than 12 months of age. Results: Between 1973 and 1986, the incidence of infant brain tumors increased from 16 to 40 cases per million (CPM), and from 1986 to 2006, the annual incidence rate averaged 35 CPM. Leading histologies by annual incidence in CPM were gliomas (13.8), medulloblastoma and primitive neuroectodermal tumors (6.6), and ependymomas (3.6). The annual incidence was higher in whites than in blacks (35.0 vs. 21.3 CPM). Infants with low-grade gliomas had the highest observed survival, and those with atypical teratoid rhabdoid tumors (ATRTs) or primary rhabdoid tumors of the brain had the lowest. Between 1979 and 1993, the annual rate of cases treated with radiation within the first 4 months from diagnosis declined from 20.5 CPM to <2 CPM. For infants with medulloblastoma, desmoplastic histology and treatment with both surgery and upfront radiation were associated with improved survival, but on multivariate regression, only combined surgery and radiation remained associated with improved survival, with a hazard ratio for death of 0.17 compared with surgery alone (p = 0.005). For ATRTs, those treated with surgery and upfront radiation had a 12-month survival of 100% compared with 24.4% for those treated with surgery alone (p = 0.016). For ependymomas survival was higher in patients treated in more recent decades (p = 0.001). Conclusion: The incidence of infant brain tumors has been stable since 1986. Survival outcomes varied markedly by histology. For infants with medulloblastoma and ATRTs, improved survival was observed in patients treated with both surgery and early radiation

  20. Normal Cerebellar Growth by Using Three-dimensional US in the Preterm Infant from Birth to Term-corrected Age.

    Science.gov (United States)

    Benavente-Fernández, Isabel; Rodríguez-Zafra, Enrique; León-Martínez, Jesús; Jiménez-Gómez, Gema; Ruiz-González, Estefanía; Fernández-Colina, Rosalía Campuzano; Lechuga-Sancho, Alfonso M; Lubián-López, Simón P

    2018-04-03

    Purpose To establish cross-sectional and longitudinal reference values for cerebellar size in preterm infants with normal neuroimaging findings and normal 2-year neurodevelopmental outcome by using cranial ultrasonography (US). Materials and Methods This prospective study consecutively enrolled preterm infants admitted to a neonatal intensive care unit from June 2011 to June 2014 with a birth weight of less than or equal to 1500 g and/or gestational age (GA) of less than or equal to 32 weeks. They underwent weekly cranial US from birth to term-equivalent age and magnetic resonance (MR) imaging at term-equivalent age. The infants underwent neurodevelopmental assessments at age 2 years with Bayley Scales of Infant and Toddler Development, 3rd edition (BSID-III). Patients with adverse outcomes (death or abnormal neuroimaging findings and/or BSID-III score of growth in preterm infants, which may be included in routine cranial US. © RSNA, 2018 Online supplemental material is available for this article.

  1. Reduced brain resting-state network specificity in infants compared with adults

    Directory of Open Access Journals (Sweden)

    Wylie KP

    2014-07-01

    Full Text Available Korey P Wylie,1,* Donald C Rojas,1,* Randal G Ross,1 Sharon K Hunter,1 Keeran Maharajh,1 Marc-Andre Cornier,2 Jason R Tregellas1,3 1Department of Psychiatry, 2Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; 3Denver Veterans Affairs Medical Center, Denver, CO, USA *These authors contributed equally to this work Purpose: Infant resting-state networks do not exhibit the same connectivity patterns as those of young children and adults. Current theories of brain development emphasize developmental progression in regional and network specialization. We compared infant and adult functional connectivity, predicting that infants would exhibit less regional specificity and greater internetwork communication compared with adults.Patients and methods: Functional magnetic resonance imaging at rest was acquired in 12 healthy, term infants and 17 adults. Resting-state networks were extracted, using independent components analysis, and the resulting components were then compared between the adult and infant groups.Results: Adults exhibited stronger connectivity in the posterior cingulate cortex node of the default mode network, but infants had higher connectivity in medial prefrontal cortex/anterior cingulate cortex than adults. Adult connectivity was typically higher than infant connectivity within structures previously associated with the various networks, whereas infant connectivity was frequently higher outside of these structures. Internetwork communication was significantly higher in infants than in adults.Conclusion: We interpret these findings as consistent with evidence suggesting that resting-state network development is associated with increasing spatial specificity, possibly reflecting the corresponding functional specialization of regions and their interconnections through experience. Keywords: functional connectivity magnetic resonance imaging

  2. Relationship between brain function (aEEG) and brain structure (MRI) and their predictive value for neurodevelopmental outcome of preterm infants.

    Science.gov (United States)

    Hüning, Britta; Storbeck, Tobias; Bruns, Nora; Dransfeld, Frauke; Hobrecht, Julia; Karpienski, Julia; Sirin, Selma; Schweiger, Bernd; Weiss, Christel; Felderhoff-Müser, Ursula; Müller, Hanna

    2018-05-22

    To improve the prediction of neurodevelopmental outcome in very preterm infants, this study used the combination of amplitude-integrated electroencephalography (aEEG) within the first 72 h of life and cranial magnetic resonance imaging (MRI) at term equivalent age. A single-center cohort of 38 infants born before 32 weeks of gestation was subjected to both investigations. Structural measurements were performed on MRI. Multiple regression analysis was used to identify independent factors including functional and structural brain measurements associated with outcome at a corrected age of 24 months. aEEG parameters significantly correlated with MRI measurements. Reduced deep gray matter volume was associated with low Burdjalov Score on day 3 (p neurodevelopmental outcome: intraventricular hemorrhage (p = 0.0060) and interhemispheric distance (p = 0.0052) for mental developmental index; Burdjalov Score day 1 (p = 0.0201) and interhemispheric distance (p = 0.0142) for psychomotor developmental index. Functional aEEG parameters were associated with altered brain maturation on MRI. The combination of aEEG and MRI contributes to the prediction of outcome at 24 months. What is Known: • Prematurity remains a risk factor for impaired neurodevelopment. • aEEG is used to measure brain activity in preterm infants and cranial MRI is performed to identify structural gray and white matter abnormalities with impact on neurodevelopmental outcome. What is New: • aEEG parameters observed within the first 72 h of life were associated with altered deep gray matter volumes, biparietal width, and transcerebellar diameter at term equivalent age. • The combination of aEEG and MRI contributes to the prediction of neurodevelopmental outcome at 2 years of corrected age in very preterm infants.

  3. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants

    International Nuclear Information System (INIS)

    Childs, Anne-Marie; Cornette, Luc; Ramenghi, Luca A.; Tanner, Steven F.; Arthur, Rosemary J.; Martinez, Delia; Levene, Malcolm I.

    2001-01-01

    OBJECTIVE: To characterize the range of abnormalities within the periventricular white matter (PVWM) in a cohort of newborns using magnetic resonance (MR) brain imaging and to compare the focal MR abnormalities with the cranial ultrasound (CUS) findings. METHODS: Retrospective study of MR brain and CUS findings of infants born in the 18-month period 1998-1999. PVWM abnormalities were identified by MR and focal lesions were characterized by size, number and distribution using a grading scale. Correspondence with CUS findings was assessed. RESULTS: 175 MR examinations corresponding to n = 105 preterm infants, (median GA 28, range 23-36 weeks) and n = 25 term infants (median GA 39, range 37-42 weeks) were analysed for PVWM abnormalities. In the preterm group, MR demonstrated a normal PVWM in n = 76, focal areas of altered signal intensity (SI) in PVWM in n = 26 and venous infarction inn 3. In the term group, MR demonstrated a normal PVWM in n = 15, focal areas of altered SI in PVWM in n = 4, oedematous PVWM in n = 2 and a middle cerebral artery infarction in n = 4. All infants with normal MR had normal CUS findings. A focal PVWM SI abnormality detectable on MR corresponded with an abnormality on CUS in only n = 10/30. CONCLUSIONS: MR appears considerably more sensitive than CUS in demonstrating the existence and extent of focal PVWM lesions in newborn infants. Satisfactory correspondence between the two imaging investigations is obtained only for cystic PVWM lesions. Childs, A.-M. et al. (2001)

  4. Development of visual motion perception for prospective control: Brain and behavioural studies in infants

    Directory of Open Access Journals (Sweden)

    Seth B. Agyei

    2016-02-01

    Full Text Available During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioural and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioural data when studying the neural correlates of prospective control.

  5. Prognostic value of gradient echo T2* sequences for brain MR imaging in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Bruine, Francisca T. de; Berg-Huysmans, Annette A. van den; Buchem, Mark A. van; Grond, Jeroen van der [Leiden University Medical Center, Department of Radiology, PO Box 9600, Leiden (Netherlands); Steggerda, Sylke J.; Leijser, Lara M.; Rijken, Monique [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Wezel-Meijler, Gerda van [Leiden University Medical Center, Department of Pediatrics, subdivision of Neonatology, Leiden (Netherlands); Isala Hospital, Department of Neonatology, Zwolle (Netherlands)

    2014-03-15

    Gradient echo T2*-W sequences are more sensitive than T2-W spin-echo sequences for detecting hemorrhages in the brain. The aim of this study is to correlate presence of hemosiderin deposits in the brain of very preterm infants (gestational age <32 weeks) detected by T2*-W gradient echo MRI to white matter injury and neurodevelopmental outcome at 2 years. In 101 preterm infants, presence and location of hemosiderin were assessed on T2*-W gradient echo MRI performed around term-equivalent age (range: 40-60 weeks). White matter injury was defined as the presence of >6 non-hemorrhagic punctate white matter lesions (PWML), cysts and/or ventricular dilatation. Six infants with post-hemorrhagic ventricular dilatation detected by US in the neonatal period were excluded. Infants were seen for follow-up at 2 years. Univariate and regression analysis assessed the relation between presence and location of hemosiderin, white matter injury and neurodevelopmental outcome. In 38/95 (40%) of the infants, hemosiderin was detected. Twenty percent (19/95) of the infants were lost to follow-up. There was a correlation between hemosiderin in the ventricular wall with >6 PWML (P < 0.001) and cysts (P < 0.001) at term-equivalent age, and with a lower psychomotor development index (PDI) (P=0.02) at 2 years. After correcting for known confounders (gestational age, gender, intrauterine growth retardation and white matter injury), the correlation with PDI was no longer significant. The clinical importance of detecting small hemosiderin deposits is limited as there is no independent association with neurodevelopmental outcome. (orig.)

  6. White Matter Injury and General Movements in High-Risk Preterm Infants.

    Science.gov (United States)

    Peyton, C; Yang, E; Msall, M E; Adde, L; Støen, R; Fjørtoft, T; Bos, A F; Einspieler, C; Zhou, Y; Schreiber, M D; Marks, J D; Drobyshevsky, A

    2017-01-01

    Very preterm infants (birth weight, cognitive and motor impairment, including cerebral palsy. These adverse neurodevelopmental outcomes are associated with white matter abnormalities on MR imaging at term-equivalent age. Cerebral palsy has been predicted by analysis of spontaneous movements in the infant termed "General Movement Assessment." The goal of this study was to determine the utility of General Movement Assessment in predicting adverse cognitive, language, and motor outcomes in very preterm infants and to identify brain imaging markers associated with both adverse outcomes and aberrant general movements. In this prospective study of 47 preterm infants of 24-30 weeks' gestation, brain MR imaging was performed at term-equivalent age. Infants underwent T1- and T2-weighted imaging for volumetric analysis and DTI. General movements were assessed at 10-15 weeks' postterm age, and neurodevelopmental outcomes were evaluated at 2 years by using the Bayley Scales of Infant and Toddler Development III. Nine infants had aberrant general movements and were more likely to have adverse neurodevelopmental outcomes, compared with infants with normal movements. In infants with aberrant movements, Tract-Based Spatial Statistics analysis identified significantly lower fractional anisotropy in widespread white matter tracts, including the corpus callosum, inferior longitudinal and fronto-occipital fasciculi, internal capsule, and optic radiation. The subset of infants having both aberrant movements and abnormal neurodevelopmental outcomes in cognitive, language, and motor skills had significantly lower fractional anisotropy in specific brain regions. Aberrant general movements at 10-15 weeks' postterm are associated with adverse neurodevelopmental outcomes and specific white matter microstructure abnormalities for cognitive, language, and motor delays. © 2017 by American Journal of Neuroradiology.

  7. Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome.

    Science.gov (United States)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-12-01

    Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. Retrospective analysis of 77 infants born Rhythmic patterns were observed in 62.3% (ictal 1.3%, PEDs 44%, other waveforms 86.3%) with multiple patterns in 36.4%. Ictal discharges were only observed in one and excluded from further analyses. The EEG location of the other waveforms (pRhythmic waveforms related to head position are likely artefacts. Rhythmic EEG patterns may have a different significance in extremely preterm infants. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  9. Computerized tomography and head growth curve infantile macrocephaly with normal psychomotor development

    International Nuclear Information System (INIS)

    Eda, Isematsu; Kitahara, Tadashi; Takashima, Sachio; Takeshita, Kenzo

    1982-01-01

    Macrocephaly was defined as a head measuring larger than 98th percentile. We have evaluated CT findings and head growth curves in 25 infants with large heads. Ten (40%) of 25 infants with large heads were normal developmentally and neurologically. Five (20%) of those were mentally retarded. The other 10 infants (40%) included hydrocephalus (4 cases), malformation syndrome (3 cases), brain tumor (1 case), metabolic disorder (1 case) and degenerative disorder (1 case). Their head growth curves were typed as (I), (II) and (III): Type (I) (excessive head growth curve to 2 SDs above normal); Type (II) (head growth curve gradually approached to 2 SDs above normal); Type (III) (head growth curve parallel to 2 SDs above normal). Ten of macrocephaly with normal psychomotor development were studied clinically and radiologically in details. They were all male. CT pictures of those showed normal or various abnormal findings: ventricular dilatations, wide frontal and temporal subdural spaces, wide interhemispheric fissures, wide cerebral sulci, and large sylvian fissures. CT findings in 2 of those, which because normal after repeated CT examinations, resembled benign subdural collection. CT findings in one of those were external hydrocephalus. Head growth curves were obtained from 8 of those. Six cases revealed type (II) and two cases did type (III). The remaining 2 cases could not be followed up. We consider that CT findings of infants showed macrocephaly with normal psychomotor development reveals normal or various abnormal (ventricular dilatations, benign subdural collection, external hydrocephalus) and their head growth curves are not at least excessive. Infants with mental retardation showed similar CT findings and head growth curves as those with normal psychomotor development. It was difficult to distinguish normal from mentally retarded infants by either CT findings or head growth curves. (author)

  10. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome.

    Science.gov (United States)

    Batalle, Dafnis; Eixarch, Elisenda; Figueras, Francesc; Muñoz-Moreno, Emma; Bargallo, Nuria; Illa, Miriam; Acosta-Rojas, Ruthy; Amat-Roldan, Ivan; Gratacos, Eduard

    2012-04-02

    Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the

  11. Brain Volumes at Term-Equivalent Age in Preterm Infants : Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age

    NARCIS (Netherlands)

    Keunen, Kristin; Išgum, Ivana; van Kooij, Britt J M; Anbeek, Petronella; van Haastert, Ingrid C; Koopman-Esseboom, Corine; van Stam, Petronella C; Nievelstein, Rutger A J; Viergever, Max A; de Vries, Linda S; Groenendaal, Floris; Benders, Manon J N L

    OBJECTIVE: To evaluate the relationship between brain volumes at term and neurodevelopmental outcome through early school age in preterm infants. STUDY DESIGN: One hundred twelve preterm infants (born mean gestational age 28.6 ± 1.7 weeks) were studied prospectively with magnetic resonance imaging

  12. Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants

    NARCIS (Netherlands)

    Moeskops, P.; Benders, M.J.N.L.; Kersbergen, K.J.; Groenendaal, F.; de Vries, L.S.; Viergever, M.A.; Išgum, I.

    2015-01-01

    INTRODUCTION: The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants, brain development is very vulnerable because of their often complicated extra-uterine conditions. The aim of this study was to quantitatively describe cortical development in a cohort of 85

  13. Plasma Brain-Derived Neurotrophic Factor Levels in Newborn Infants with Neonatal Abstinence Syndrome

    Directory of Open Access Journals (Sweden)

    Lochan Subedi

    2017-11-01

    Full Text Available BackgroundBrain-derived neurotrophic factor (BDNF is a type of growth factor that promotes growth and survival of neurons. Fetal exposure to opiates can lead to postnatal withdrawal syndrome, which is referred as neonatal abstinence syndrome (NAS. Preclinical and clinical studies have shown an association between opiates exposure and alteration in BDNF expression in the brain and serum levels in adult. However, to date, there are no data available on the effects of opiate exposure on BDNF levels in infant who are exposed to opiates in utero and whether BDNF level may correlate with the severity of NAS.ObjectiveTo compare plasma BDNF levels among NAS and non-NAS infants and to determine the correlation of BDNF levels and the severity of NAS.MethodsThis is a prospective cohort study with no intervention involved. Infants ≥35 weeks of gestation were enrolled. BDNF level was measured using enzyme-linked immunosorbent assay technique from blood samples drawn within 48 h of life. The severity of NAS was determined by the length of hospital stay, number of medications required to treat NAS.Results67 infants were enrolled, 34 NAS and 33 non-NAS. Mean gestational age did not differ between the two groups. Mean birth weight of NAS infants was significantly lower than the non-NAS infants (3,070 ± 523 vs. 3,340 ± 459 g, p = 0.028. Mean BDNF level in NAS group was 252.2 ± 91.6 ng/ml, significantly higher than 211.3 ± 66.3 ng/ml in the non-NAS group (p = 0.04. There were no differences in BDNF levels between NAS infants that required one medication vs. more than one medication (254 ± 91 vs. 218 ± 106 ng/ml, p = 0.47. There was no correlation between the BDNF levels and length of hospital stay (p = 0.68 among NAS infants. Overall, there were no significant correlations between BDNF levels and NAS scores except at around 15 h after admission (correlation 0.35, p = 0.045.ConclusionPlasma BDNF

  14. Plasma Brain-Derived Neurotrophic Factor Levels in Newborn Infants with Neonatal Abstinence Syndrome.

    Science.gov (United States)

    Subedi, Lochan; Huang, Hong; Pant, Amrita; Westgate, Philip M; Bada, Henrietta S; Bauer, John A; Giannone, Peter J; Sithisarn, Thitinart

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a type of growth factor that promotes growth and survival of neurons. Fetal exposure to opiates can lead to postnatal withdrawal syndrome, which is referred as neonatal abstinence syndrome (NAS). Preclinical and clinical studies have shown an association between opiates exposure and alteration in BDNF expression in the brain and serum levels in adult. However, to date, there are no data available on the effects of opiate exposure on BDNF levels in infant who are exposed to opiates in utero and whether BDNF level may correlate with the severity of NAS. To compare plasma BDNF levels among NAS and non-NAS infants and to determine the correlation of BDNF levels and the severity of NAS. This is a prospective cohort study with no intervention involved. Infants ≥35 weeks of gestation were enrolled. BDNF level was measured using enzyme-linked immunosorbent assay technique from blood samples drawn within 48 h of life. The severity of NAS was determined by the length of hospital stay, number of medications required to treat NAS. 67 infants were enrolled, 34 NAS and 33 non-NAS. Mean gestational age did not differ between the two groups. Mean birth weight of NAS infants was significantly lower than the non-NAS infants (3,070 ± 523 vs. 3,340 ± 459 g, p  = 0.028). Mean BDNF level in NAS group was 252.2 ± 91.6 ng/ml, significantly higher than 211.3 ± 66.3 ng/ml in the non-NAS group ( p  = 0.04). There were no differences in BDNF levels between NAS infants that required one medication vs. more than one medication (254 ± 91 vs. 218 ± 106 ng/ml, p  = 0.47). There was no correlation between the BDNF levels and length of hospital stay ( p  = 0.68) among NAS infants. Overall, there were no significant correlations between BDNF levels and NAS scores except at around 15 h after admission (correlation 0.35, p  = 0.045). Plasma BDNF level was significantly increased in NAS infants

  15. Adaptation of vacuum-assisted mouthpiece head immobilization system for precision infant brain radiation therapy.

    Science.gov (United States)

    Wong, Kenneth; Cheng, Justine; Bowlin, Kristine; Olch, Arthur

    Our purpose was to describe an adaptation of a commercially available mouthpiece for vacuum-assisted mouthpiece immobilization for radiation therapy in infants. An infant diagnosed with a brain tumor required radiation therapy. After reviewing dental literature about obturators, we designed a modification for the smallest commercially available mouthpiece tray. The patient was simulated with the adapted mouthpiece tray. We achieved excellent immobilization and had small daily image guided treatment position shifts. Our patient tolerated treatment well without injury to oral cavity or mucosa. Head immobilization with a vacuum-assisted modified mouthpiece has not been described in infants. Our modification is a novel and safe and permits effective and accurate immobilization for infants for radiation therapy. New manufacturing technologies may allow creation of individualized mouthpieces. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  16. A longitudinal study of brain volume changes in normal aging

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa, E-mail: takaoh-tky@umin.ac.jp [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Hayashi, Naoto [Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2012-10-15

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy.

  17. A longitudinal study of brain volume changes in normal aging

    International Nuclear Information System (INIS)

    Takao, Hidemasa; Hayashi, Naoto; Ohtomo, Kuni

    2012-01-01

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy

  18. Functional neuroimaging of normal aging: Declining brain, adapting brain.

    Science.gov (United States)

    Sugiura, Motoaki

    2016-09-01

    Early functional neuroimaging research on normal aging brain has been dominated by the interest in cognitive decline. In this framework the age-related compensatory recruitment of prefrontal cortex, in terms of executive system or reduced lateralization, has been established. Further details on these compensatory mechanisms and the findings reflecting cognitive decline, however, remain the matter of intensive investigations. Studies in another framework where age-related neural alteration is considered adaptation to the environmental change are recently burgeoning and appear largely categorized into three domains. The age-related increase in activation of the sensorimotor network may reflect the alteration of the peripheral sensorimotor systems. The increased susceptibility of the network for the mental-state inference to the socioemotional significance may be explained by the age-related motivational shift due to the altered social perception. The age-related change in activation of the self-referential network may be relevant to the focused positive self-concept of elderly driven by a similar motivational shift. Across the domains, the concept of the self and internal model may provide the theoretical bases of this adaptation framework. These two frameworks complement each other to provide a comprehensive view of the normal aging brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Comparative measurement of ghrelin, leptin, adiponectin, EGF and IGF-1 in breast milk of mothers with overweight/obese and normal-weight infants.

    Science.gov (United States)

    Khodabakhshi, A; Ghayour-Mobarhan, M; Rooki, H; Vakili, R; Hashemy, S-I; Mirhafez, S R; Shakeri, M-T; Kashanifar, R; Pourbafarani, R; Mirzaei, H; Dahri, M; Mazidi, M; Ferns, G; Safarian, M

    2015-05-01

    Obese infants are more susceptible to develop adulthood obesity and its related comorbidities. Previous studies have shown the presence of hormones and growth factors in maternal breast milk that may influence infant adiposity. The aim of this study was to investigate differences in concentrations of three hormones and two growth factors in the breast milk of mothers with obese and non-obese infants. In this cross-sectional study, 40 mothers with overweight or obese infants (weight for length percentile >97) and 40 age-matched mothers with normal-weight infant (-10 milk concentrations of ghrelin and adiponectin, leptin, epithelial growth factor (EGF) and insulin-like growth factor-1 (IGF-1) were measured using enzyme-linked immunosorbent assay methods. The mean breast milk concentration of ghrelin was higher in mothers with normal-weight infants, 137.50 pg/ml, than in mothers with obese infants, 132.00 pg/ml (P=0.001). This was also true regarding the concentration of EGF in mothers with (0/04 ng/ml) and without (0/038 ng/ml) normal-weight infants (P=0.01). No significant differences were observed in concentrations of leptin, adiponectin and IGF-1 between two groups (P > 0.05). There was also a significant positive correlation between EGF and ghrelin in both groups. This study revealed that there was a correlation between ghrelin and EGF level in breast milk of mothers with obese and non-obese infants, suggesting a possible regulatory effect of these two hormones on weight in infants.

  20. Premature infant with a bilateral thalamostriatal hemorrhage. Brain imaging and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hokazono, Yoshimi; Ohtani, Yoshiaki; Inukai, Kazuhisa; Yokochi, Kenji; Takashima, Sachio

    1987-12-01

    Hemorrhagic areas were seen on ultrasonography and computed tomography in both thalamostriatal regions in a preterm female infant with perinatal asphyxia due to abruptio placentae. At autopsy, marked perivascular bleeding in the thalamus and putamen and eosinophilic neuronal changes in the thalamus and pontine tegmentum were seen. These thalamostriatal and brain stem lesions are thought to have been caused by an acute process causing total asphyxia.

  1. Peek-a-What? Infants' Response to the Still-Face Task after Normal and Interrupted Peek-a-Boo

    Science.gov (United States)

    Bigelow, Ann E.; Best, Caitlin

    2013-01-01

    Infants' sensitivity to the vitality or tension envelope within dyadic social exchanges was investigated by examining their responses following normal and interrupted games of peek-a-boo embedded in a Still-Face Task. Infants 5-6 months old engaged in two modified Still-Face Tasks with their mothers. In one task, the initial interaction ended with…

  2. Confirming the diversity of the brain after normalization: an approach based on identity authentication.

    Directory of Open Access Journals (Sweden)

    Fanglin Chen

    Full Text Available During the development of neuroimaging, numerous analyses were performed to identify population differences, such as studies on age, gender, and diseases. Researchers first normalized the brain image and then identified features that represent key differences between groups. In these studies, the question of whether normalization (a pre-processing step widely used in neuroimaging studies reduces the diversity of brains was largely ignored. There are a few studies that identify the differences between individuals after normalization. In the current study, we analyzed brain diversity on an individual level, both qualitatively and quantitatively. The main idea was to utilize brain images for identity authentication. First, the brain images were normalized and registered. Then, a pixel-level matching method was developed to compute the identity difference between different images for matching. Finally, by analyzing the performance of the proposed brain recognition strategy, the individual differences in brain images were evaluated. Experimental results on a 150-subject database showed that the proposed approach could achieve a 100% identification ratio, which indicated distinct differences between individuals after normalization. Thus, the results proved that after the normalization stage, brain images retain their main distinguishing information and features. Based on this result, we suggest that diversity (individual differences should be considered when conducting group analysis, and that this approach may facilitate group pattern classification.

  3. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.

    Science.gov (United States)

    Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2015-03-01

    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the different available image modalities and is often computationally expensive. To cope with these limitations, in this paper, we propose a novel learning-based multi-source integration framework for segmentation of infant brain images. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. Here, the multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infants show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods. Further validation was performed on the MICCAI grand challenge and the proposed method was ranked top among all competing methods. Moreover, to alleviate the possible anatomical errors, our method can also be combined with an anatomically-constrained multi-atlas labeling approach for further improving the segmentation accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Furtado, Andre [Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Lepore, Natasha [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Paquette, Lisa [Children' s Hospital Los Angeles, Center for Fetal and Neonatal Medicine, Los Angeles, CA (United States); Bluml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Department of Biomedical Engineering, Los Angeles, CA (United States)

    2012-01-15

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long

  5. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    International Nuclear Information System (INIS)

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2012-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental

  6. In vivo H MR spectroscopy of human brain in six normal volunteers

    International Nuclear Information System (INIS)

    Choe, Bo Young; Suh, Tae Suk; Bahk, Yong Whee; Shinn, Kyung Sub

    1993-01-01

    In vivo H MR spectroscopic studies were performed on the human brain in six normal volunteers. Some distinct proton metabolites, such as N-acetylaspartate (NAA), creatine/phosphocreatine (Cr), choline/phosphocholine (Cho), myo-inositol (Ins) and lipid (fat) were clearly identified in normal brain tissue. The signal intensity of NAA resonance is strongest. The standard ratios of metabolites from the normal brain tissue in specific regions were obtained for the references of further in vivo H MR spectroscopic studies. Our initial resulting suggest the in vivo H MR spectroscopy may provide more precise diagnosis on the basis of the metabolic information on brain tissues. The unique ability of In vivo H MR spectroscopy to offer noninvasive information about tissue biochemistry in patients will stimulate its impact on clinical research and disease diagnosis

  7. [Distribution of human enterovirus 71 in brainstem of infants with brain stem encephalitis and infection mechanism].

    Science.gov (United States)

    Hao, Bo; Gao, Di; Tang, Da-Wei; Wang, Xiao-Guang; Liu, Shui-Ping; Kong, Xiao-Ping; Liu, Chao; Huang, Jing-Lu; Bi, Qi-Ming; Quan, Li; Luo, Bin

    2012-04-01

    To explore the mechanism that how human enterovirus 71 (EV71) invades the brainstem and how intercellular adhesion molecules-1 (ICAM-1) participates by analyzing the expression and distribution of human EV71, and ICAM-1 in brainstem of infants with brain stem encephalitis. Twenty-two brainstem of infants with brain stem encephalitis were collected as the experimental group and 10 brainstems of fatal congenital heart disease were selected as the control group. The sections with perivascular cuffings were selected to observe EV71-VP1 expression by immunohistochemistry method and ICAM-1 expression was detected for the sections with EV71-VP1 positive expression. The staining image analysis and statistics analysis were performed. The experiment and control groups were compared. (1) EV71-VP1 positive cells in the experimental group were mainly astrocytes in brainstem with nigger-brown particles, and the control group was negative. (2) ICAM-1 positive cells showed nigger-brown. The expression in inflammatory cells (around blood vessels of brain stem and in glial nodules) and gliocytes increased. The results showed statistical difference comparing with control group (P diagnose fatal EV71 infection in infants. EV71 can invade the brainstem via hematogenous route. ICAM-1 may play an important role in the pathogenic process.

  8. Brain metabolite differences in one-year-old infants born small at term and association with neurodevelopmental outcome.

    Science.gov (United States)

    Simões, Rui V; Cruz-Lemini, Mónica; Bargalló, Núria; Gratacós, Eduard; Sanz-Cortés, Magdalena

    2015-08-01

    We assessed brain metabolite levels by magnetic resonance spectroscopy (MRS) in 1-year-old infants born small at term, as compared with infants born appropriate for gestational age (AGA), and their association with neurodevelopment at 2 years of age. A total of 40 infants born small (birthweight growth restriction or as small for gestational age, based on the presence or absence of prenatal Doppler and birthweight predictors of an adverse perinatal outcome, respectively. Single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired from the frontal lobe at short echo time. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales of Infant and Toddler Development, Third Edition, assessing cognitive, language, motor, social-emotional, and adaptive behavior scales. As compared with AGA controls, infants born small showed significantly higher levels of glutamate and total N-acetylaspartate (NAAt) to creatine (Cr) ratio at age 1 year, and lower Bayley Scales of Infant and Toddler Development, Third Edition scores at 2 years. The subgroup with late intrauterine growth restriction further showed lower estimated glutathione levels at age 1 year. Significant correlations were observed for estimated glutathione levels with adaptive scores, and for myo-inositol with language scores. Significant associations were also noticed for NAA/Cr with cognitive scores, and for glutamate/Cr with motor scores. Infants born small show brain metabolite differences at 1 year of age, which are correlated with later neurodevelopment. These results support further research on MRS to develop imaging biomarkers of abnormal neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Integration of Sparse Multi-modality Representation and Geometrical Constraint for Isointense Infant Brain Segmentation

    OpenAIRE

    Wang, Li; Shi, Feng; Li, Gang; Lin, Weili; Gilmore, John H.; Shen, Dinggang

    2013-01-01

    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination process. During the first year of life, the signal contrast between white matter (WM) and gray matter (GM) in MR images undergoes inverse changes. In particular, the inversion of WM/GM signal contrast appears around 6–8 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, posing significan...

  10. Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Leijser, Lara M.; Veen, Sylvia; Boer, Inge P. de; Walther, Frans J.; Wezel-Meijler, Gerda van [Leiden University Medical Center, Department of Pediatrics, Division of Neonatology, Albinusdreef 2, P.O. Box 9600, Leiden (Netherlands); Liauw, Lishya [Leiden University Medical Center, Department of Radiology, Division of Neuroradiology, Albinusdreef 2, P.O. Box 9600, Leiden (Netherlands)

    2008-09-15

    Periventricular white matter (WM) echodensities, frequently seen in preterm infants, can be associated with suboptimal neurodevelopment. Major WM injury is well detected on cranial ultrasound (cUS). cUS seems less sensitive for diffuse or more subtle WM injury. Our aim was to assess the value of cUS and magnetic resonance imaging (MRI) for evaluating WM changes and the predictive value of cUS and/or MRI findings for neurodevelopmental outcome in very preterm infants with normal to severely abnormal WM on sequential high-quality cUS. Very preterm infants (<32 weeks) who had sequential cUS and one MRI within the first three postnatal months were included. Periventricular WM on cUS and MRI was compared and correlated with neurodevelopmental outcome at 2 years corrected age. Forty preterm infants were studied; outcome data were available in 32. WM changes on sequential cUS were predictive of WM changes on MRI. Severely abnormal WM on cUS/MRI was predictive of adverse outcome, and normal-mildly abnormal WM of favorable outcome. Moderately abnormal WM on cUS/MRI was associated with variable outcome. Additional MRI slightly increased the predictive value of cUS in severe WM changes. Sequential cUS in preterm infants is reliable for detecting WM changes and predicting favorable and severely abnormal outcome. Conventional and diffusion-weighted MRI sequences before term equivalent age in very preterm infants, suggested on cUS to have mild to moderately abnormal WM, do not seem to be warranted. (orig.)

  11. Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants

    International Nuclear Information System (INIS)

    Leijser, Lara M.; Veen, Sylvia; Boer, Inge P. de; Walther, Frans J.; Wezel-Meijler, Gerda van; Liauw, Lishya

    2008-01-01

    Periventricular white matter (WM) echodensities, frequently seen in preterm infants, can be associated with suboptimal neurodevelopment. Major WM injury is well detected on cranial ultrasound (cUS). cUS seems less sensitive for diffuse or more subtle WM injury. Our aim was to assess the value of cUS and magnetic resonance imaging (MRI) for evaluating WM changes and the predictive value of cUS and/or MRI findings for neurodevelopmental outcome in very preterm infants with normal to severely abnormal WM on sequential high-quality cUS. Very preterm infants (<32 weeks) who had sequential cUS and one MRI within the first three postnatal months were included. Periventricular WM on cUS and MRI was compared and correlated with neurodevelopmental outcome at 2 years corrected age. Forty preterm infants were studied; outcome data were available in 32. WM changes on sequential cUS were predictive of WM changes on MRI. Severely abnormal WM on cUS/MRI was predictive of adverse outcome, and normal-mildly abnormal WM of favorable outcome. Moderately abnormal WM on cUS/MRI was associated with variable outcome. Additional MRI slightly increased the predictive value of cUS in severe WM changes. Sequential cUS in preterm infants is reliable for detecting WM changes and predicting favorable and severely abnormal outcome. Conventional and diffusion-weighted MRI sequences before term equivalent age in very preterm infants, suggested on cUS to have mild to moderately abnormal WM, do not seem to be warranted. (orig.)

  12. MRI quantitative assessment of brain maturation and prognosis in premature infants using total maturation score

    International Nuclear Information System (INIS)

    Qi Ying; Wang Xiaoming

    2009-01-01

    Objective: To quantitatively assess brain maturation and prognosis in premature infants on conventional MRI using total maturation score (TMS). Methods: Nineteen cases of sequelae of white matter damage (WMD group )and 21 cases of matched controls (control group) in premature infants confirmed by MRI examinations were included in the study. All cases underwent conventional MR imaging approximately during the perinatal period after birth. Brain development was quantitatively assessed using Childs AM's validated scoring system of TMS by two sophisticated radiology physicians. Interobserver agreement and reliability was evaluated by using intraclass correlation (ICC). Linear regression analysis between TMS and postmenstrual age (PMA) was made(Y: TMS, X: PMA). Independent-sample t test of the two groups' TMS was made. Results: Sixteen of 19 cases revealed MRI abnormalities. Lesions showing T 1 and T 2 shortening tended to occur in clusters or a linear pattern in the deep white matter of the centrum semiovale, periventricular white matter. Diffusion-weighted MR image (DWI) showed 3 cases with greater lesions and 4 cases with new lesions in corpus callosum. There was no abnormality in control group on MRI and DWI. The average numbers of TMS between the two observers were 7.13±2.27, 7.13±2.21. Interobservcer agreement was found to be high (ICC=0.990, P 2 =0.6401,0.5156 respectively, P 0.05). Conclusion: Conventional MRI is able to quantify the brain maturation and prognosis of premature infants using TMS. (authors)

  13. Neurodevelopmental status of infants and young children treated for brain tumors with preirradiation chemotherapy

    International Nuclear Information System (INIS)

    Mulhern, R.K.; Horowitz, M.E.; Kovnar, E.H.; Langston, J.; Sanford, R.A.; Kun, L.E.

    1989-01-01

    In an effort to reduce the severity of late neurotoxicities associated with cranial irradiation, 14 infants and young children with malignant brain tumors were given preirradiation chemotherapy for 2 to 22 months (median, 8 months). Prospective neurodevelopmental evaluations were routinely conducted and now extend from 35 to 60 months (median, 41 months) postdiagnosis, and 10 to 52 months (median, 31 months) postirradiation in the 12 surviving children. At the initiation of chemotherapy, less than one fourth of the patients displayed normal performance status or mental functioning on age-corrected tests; the majority remained stable or declined while receiving chemotherapy. Declining mental development and adaptive behavior were noted in six patients following radiation therapy with only two patients now functioning in the normal range for age. The analysis suggests that neurodevelopmental progress is a function of multiple factors, including neurologic and sensorimotor deficits associated with the tumor, surgical intervention, and chemotherapy that antedated radiation therapy. This implies that delaying irradiation will not necessarily improve the patients' functional status. Whether the interval of postponement of irradiation evidenced in this sample will translate into an ultimately better quality of life remains unknown. Given the probable interaction of multiple risk factors, well-controlled prospective clinical trials are needed to definitively analyze this issue

  14. Ferrous and hemoglobin-59Fe absorption from supplemented cow milk in infants with normal and depleted iron stores

    International Nuclear Information System (INIS)

    Heinrich, H.C.; Gabbe, E.E.; Whang, D.H.; Bender-Goetze, C.; Schaefer, K.H.; Hamburg Univ.

    1975-01-01

    Small amounts of milk do inhibit ferrous iron absorption from a 5 mg 59 Fe 2+ dose in 1- to 18-month-old infants. Only 50 ml of 2/3 cow milk reduced the absorption from 18 to 3.8% in infants with normal iron stores (inhibition index 0.21) and from 26 to 8.5% in [de

  15. Referential framework for transcranial anatomical correspondence for fNIRS based on manually traced sulci and gyri of an infant brain.

    Science.gov (United States)

    Matsui, Mie; Homae, Fumitaka; Tsuzuki, Daisuke; Watanabe, Hama; Katagiri, Masatoshi; Uda, Satoshi; Nakashima, Mitsuhiro; Dan, Ippeita; Taga, Gentaro

    2014-03-01

    Functional near infrared spectroscopy (fNIRS), which is compact, portable, and tolerant of body movement, is suitable for monitoring infant brain functions. Nevertheless, fNIRS also poses a technical problem in that it cannot provide structural information. Supplementation with structural magnetic resonance images (MRI) is not always feasible for infants who undergo fNIRS measurement. Probabilistic registration methods using an MRI database instead of subjects' own MRIs are optimized for adult studies and offer only limited resources for infant studies. To overcome this, we used high-quality infant MRI data for a 12-month-old infant and manually delineated segmented gyri from among the highly visible macroanatomies on the lateral cortical surface. These macroanatomical regions are primarily linked to the spherical coordinate system based on external cranial landmarks, and further to traditional 10-20-based head-surface positioning systems. While macroanatomical structures were generally comparable between adult and infant atlases, differences were found in the parietal lobe, which was positioned posteriorly at the vertex in the infant brain. The present study provides a referential framework for macroanatomical analyses in infant fNIRS studies. With this resource, multichannel fNIRS functional data could be analyzed in reference to macroanatomical structures through virtual and probabilistic registrations without acquiring subject-specific MRIs. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months.

    Science.gov (United States)

    Emberson, Lauren L; Richards, John E; Aslin, Richard N

    2015-08-04

    Recent theoretical work emphasizes the role of expectation in neural processing, shifting the focus from feed-forward cortical hierarchies to models that include extensive feedback (e.g., predictive coding). Empirical support for expectation-related feedback is compelling but restricted to adult humans and nonhuman animals. Given the considerable differences in neural organization, connectivity, and efficiency between infant and adult brains, it is a crucial yet open question whether expectation-related feedback is an inherent property of the cortex (i.e., operational early in development) or whether expectation-related feedback develops with extensive experience and neural maturation. To determine whether infants' expectations about future sensory input modulate their sensory cortices without the confounds of stimulus novelty or repetition suppression, we used a cross-modal (audiovisual) omission paradigm and used functional near-infrared spectroscopy (fNIRS) to record hemodynamic responses in the infant cortex. We show that the occipital cortex of 6-month-old infants exhibits the signature of expectation-based feedback. Crucially, we found that this region does not respond to auditory stimuli if they are not predictive of a visual event. Overall, these findings suggest that the young infant's brain is already capable of some rudimentary form of expectation-based feedback.

  17. Determinants of iron accumulation in the normal aging brain.

    Science.gov (United States)

    Pirpamer, Lukas; Hofer, Edith; Gesierich, Benno; De Guio, François; Freudenberger, Paul; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Duchesnay, Edouard; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2016-07-01

    In a recent postmortem study, R2* relaxometry in gray matter (GM) of the brain has been validated as a noninvasive measure for iron content in brain tissue. Iron accumulation in the normal aging brain is a common finding and relates to brain maturation and degeneration. The goal of this study was to assess the determinants of iron accumulation during brain aging. The study cohort consisted of 314 healthy community-dwelling participants of the Austrian Stroke Prevention Study. Their age ranged from 38-82 years. Quantitative magnetic resonance imaging was performed on 3T and included R2* mapping, based on a 3D multi-echo gradient echo sequence. The median of R2* values was measured in all GM regions, which were segmented automatically using FreeSurfer. We investigated 25 possible determinants for cerebral iron deposition. These included demographics, brain volume, lifestyle factors, cerebrovascular risk factors, serum levels of iron, and single nucleotide polymorphisms related to iron regulating genes (rs1800562, rs3811647, rs1799945, and rs1049296). The body mass index (BMI) was significantly related to R2* in 15/32 analyzed brain regions with the strongest correlations found in the amygdala (p = 0.0091), medial temporal lobe (p = 0.0002), and hippocampus (p ≤ 0.0001). Further associations to R2* values were found in deep GM for age and smoking. No significant associations were found for gender, GM volume, serum levels of iron, or iron-associated genetic polymorphisms. In conclusion, besides age, the BMI and smoking are the only significant determinants of brain iron accumulation in normally aging subjects. Smoking relates to iron deposition in the basal ganglia, whereas higher BMI is associated with iron content in the neocortex following an Alzheimer-like distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Delayed visual maturation in infants: a disorder of figure-ground separation?

    Science.gov (United States)

    Harris, C M; Kriss, A; Shawkat, F; Taylor, D; Russell-Eggitt, I

    1996-01-01

    Delayed visual maturation (DVM) is characterised by visual unresponsiveness in early infancy, which subsequently improves spontaneously to normal levels. We studied the optokinetic response and recorded pattern reversal VEPs in six infants with DVM (aged 2-4 months) when they were at the stage of complete visual unresponsiveness. Although no saccades or visual tracking with the eyes or head could be elicited to visual objects, a normal full-field rapid buildup OKN response occurred when viewing biocularly or during monocular stimulation in the temporo-nasal direction of the viewing eye. Almost no monocular OKN could be elicited in the naso-temporal direction, which was significantly poorer than normal age-matched infants. No OKN quick phases were missed, and there were no other signs of "ocular motor apraxia." VEPs were normal in amplitude and latency for age. It appears, therefore, that infants with DVM are delayed in orienting to local regions of the visual field, but can respond to full-field motion. The presence of normal OKN quick-phases and slow-phases suggests normal brain stem function, and the presence of normal pattern VEPs suggests a normal retino-geniculo-striate pathway. These oculomotor and electrophysiological findings suggest delayed development of extra-striate cortical structures, possibly involving either an abnormality in figure-ground segregation or in attentional pathways.

  19. Practical MRI atlas of neonatal brain development

    International Nuclear Information System (INIS)

    Barkovich, A.J.; Truwit, C.L.

    1990-01-01

    This book is an anatomical reference for cranial magnetic resonance imaging (MRI) studies in neonates and infants. It contains 122 clear, sharp MRI scans and drawings showing changes in the normal appearance of the brain and skull during development. Sections of the atlas depict the major processes of maturation: brain myelination, development of the corpus callosum, development of the cranial bone marrow, and iron deposition in the brain. High-quality scans illustrate how these changes appear on magnetic resonance images during various stages of development

  20. A cross-talk between brain-damage patients and infants on action and language.

    Science.gov (United States)

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-06-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to bear insights from the study of brain-damaged patients exhibiting language disorders and from the study of the mechanisms for language acquisition in infants. Cognitive neuropsychology studies have assessed how damage to representations supporting action production impacts patients' ability to process action-related words. While correlations between verbal and nonverbal (motor) impairments are very common in patients, damage to the representations for action production can leave the ability to understand action-words unaffected; likewise, actions can still be produced successfully in cases of impaired action-word understanding. Studies with infants have evaluated the relevance of sensorimotor information when infants learn to map a novel word onto an action that they are performing or perceiving. These results demonstrate that sensorimotor information is insufficient to fully account for the complexity of verb learning: in this process, infants seem to privilege abstract constructs such as goal, intentionality and causality, as well as syntactic constraints, over the perceptual and motor dimensions of an action. Altogether, the empirical data suggest that, while not crucial for verb learning and understanding, sensorimotor processes can contribute to solving the problem of symbol grounding and/or serve as a primary mechanism in social cognition, to learn about others' goals and intentions. By assessing the relevance of sensorimotor representations in the way action-related words are acquired and represented, we aim to provide a useful set of criteria for testing specific predictions made by different theories of concepts

  1. Application of automatic tube current modulation with 64-detector CT in infant brain

    International Nuclear Information System (INIS)

    Li Jianming; Xu Wenbiao; Luo Yuanli; Liu Hongsheng; Zhou Ning

    2010-01-01

    Objective: To evaluate the effect of automatic tube modulation on imaging quality and lesion revealed in infant brain. Methods: The infant patients of 200 cases were divided into four groups according to the values of SD (2.5, 2.75, 3.0, 4.0), 50 cases in each group. They were performed with the automatic tube current modulation scanning in brain. The imaging quality and radiation dose were analyzed. Results: When the values of SD were 2.5, 2.75, 3.0 and 4.0, the high values of CTDI vol were 60.0, 49.8, 42.9 and 25.8 mGy, respectively. The effective doses were (3.27±1.01), (2.78±0.85), (2.40±0.74) and (1.49±0.45) mSv·mGy -1 ·cm -1 , respectively. There was significant difference among those groups (F=48.99, P<0.05). The excellent imaging qualities were 100%, 96%, 70% and 20%, 12 cases were neonate in SD 2.5 group. In SD 2.75 group, the imaging quality of neonate (2 cases) were all fine. In SD 3.0 group, the imaging quality was not ideal for the ages less than 1 year. In SD 4.0 group, when the infants aged over 2 years and 6 months, or with the larger head circumference, their imaging quality were all excellent. Conclusions: The individual application of ATCM could obtain the best balance among imaging quality, radiation dose and diagnostic quality. The SD 2.5, 2.75, 3.0 and 4.0 might be suitable to infants of newborn, 1 month to 1 year old, 1 to 3 years, the larger head circumference and part of the reviewed cases. (authors)

  2. Adult Attachment Styles Associated with Brain Activity in Response to Infant Faces in Nulliparous Women: An Event-Related Potentials Study.

    Science.gov (United States)

    Ma, Yuanxiao; Ran, Guangming; Chen, Xu; Ma, Haijing; Hu, Na

    2017-01-01

    Adult attachment style is a key for understanding emotion regulation and feelings of security in human interactions as well as for the construction of the caregiving system. The caregiving system is a group of representations about affiliative behaviors, which is guided by the caregiver's sensitivity and empathy, and is mature in young adulthood. Appropriate perception and interpretation of infant emotions is a crucial component of the formation of a secure attachment relationship between infant and caregiver. As attachment styles influence the ways in which people perceive emotional information, we examined how different attachment styles associated with brain response to the perception of infant facial expressions in nulliparous females with secure, anxious, and avoidant attachment styles. The event-related potentials of 65 nulliparous females were assessed during a facial recognition task with joy, neutral, and crying infant faces. The results showed that anxiously attached females exhibited larger N170 amplitudes than those with avoidant attachment in response to all infant faces. Regarding the P300 component, securely attached females showed larger amplitudes to all infant faces in comparison with avoidantly attached females. Moreover, anxiously attached females exhibited greater amplitudes than avoidantly attached females to only crying infant faces. In conclusion, the current results provide evidence that attachment style differences are associated with brain responses to the perception of infant faces. Furthermore, these findings further separate the psychological mechanisms underlying the caregiving behavior of those with anxious and avoidant attachment from secure attachment.

  3. Adult Attachment Styles Associated with Brain Activity in Response to Infant Faces in Nulliparous Women: An Event-Related Potentials Study

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-04-01

    Full Text Available Adult attachment style is a key for understanding emotion regulation and feelings of security in human interactions as well as for the construction of the caregiving system. The caregiving system is a group of representations about affiliative behaviors, which is guided by the caregiver’s sensitivity and empathy, and is mature in young adulthood. Appropriate perception and interpretation of infant emotions is a crucial component of the formation of a secure attachment relationship between infant and caregiver. As attachment styles influence the ways in which people perceive emotional information, we examined how different attachment styles associated with brain response to the perception of infant facial expressions in nulliparous females with secure, anxious, and avoidant attachment styles. The event-related potentials of 65 nulliparous females were assessed during a facial recognition task with joy, neutral, and crying infant faces. The results showed that anxiously attached females exhibited larger N170 amplitudes than those with avoidant attachment in response to all infant faces. Regarding the P300 component, securely attached females showed larger amplitudes to all infant faces in comparison with avoidantly attached females. Moreover, anxiously attached females exhibited greater amplitudes than avoidantly attached females to only crying infant faces. In conclusion, the current results provide evidence that attachment style differences are associated with brain responses to the perception of infant faces. Furthermore, these findings further separate the psychological mechanisms underlying the caregiving behavior of those with anxious and avoidant attachment from secure attachment.

  4. Parents' Perceptions of Primary Health Care Physiotherapy With Preterm Infants: Normalization, Clarity, and Trust.

    Science.gov (United States)

    Håkstad, Ragnhild B; Obstfelder, Aud; Øberg, Gunn Kristin

    2016-08-01

    Having a preterm infant is a life-altering event for parents. The use of interventions intended to support the parents is recommended. In this study, we investigated how parents' perceptions of physiotherapy in primary health care influenced their adaptation to caring for a preterm child. We conducted 17 interviews involving parents of seven infants, at infants' corrected age (CA) 3, 6, and 12 months. The analysis was a systematic text condensation, connecting to theory of participatory sense-making. The parents described a progression toward a new normalcy in the setting of persistent uncertainty. Physiotherapists can ameliorate this uncertainty and support the parents' progression toward normalization, by providing knowledge and acknowledging both the child as subject and the parent-child relationship. Via embodied interaction and the exploration of their child's capacity, the parents learn about their children's individuality and gain the confidence necessary to support and care for their children in everyday life. © The Author(s) 2015.

  5. Patterns of brain structural connectivity differentiate normal weight from overweight subjects.

    Science.gov (United States)

    Gupta, Arpana; Mayer, Emeran A; Sanmiguel, Claudia P; Van Horn, John D; Woodworth, Davis; Ellingson, Benjamin M; Fling, Connor; Love, Aubrey; Tillisch, Kirsten; Labus, Jennifer S

    2015-01-01

    Alterations in the hedonic component of ingestive behaviors have been implicated as a possible risk factor in the pathophysiology of overweight and obese individuals. Neuroimaging evidence from individuals with increasing body mass index suggests structural, functional, and neurochemical alterations in the extended reward network and associated networks. To apply a multivariate pattern analysis to distinguish normal weight and overweight subjects based on gray and white-matter measurements. Structural images (N = 120, overweight N = 63) and diffusion tensor images (DTI) (N = 60, overweight N = 30) were obtained from healthy control subjects. For the total sample the mean age for the overweight group (females = 32, males = 31) was 28.77 years (SD = 9.76) and for the normal weight group (females = 32, males = 25) was 27.13 years (SD = 9.62). Regional segmentation and parcellation of the brain images was performed using Freesurfer. Deterministic tractography was performed to measure the normalized fiber density between regions. A multivariate pattern analysis approach was used to examine whether brain measures can distinguish overweight from normal weight individuals. 1. White-matter classification: The classification algorithm, based on 2 signatures with 17 regional connections, achieved 97% accuracy in discriminating overweight individuals from normal weight individuals. For both brain signatures, greater connectivity as indexed by increased fiber density was observed in overweight compared to normal weight between the reward network regions and regions of the executive control, emotional arousal, and somatosensory networks. In contrast, the opposite pattern (decreased fiber density) was found between ventromedial prefrontal cortex and the anterior insula, and between thalamus and executive control network regions. 2. Gray-matter classification: The classification algorithm, based on 2 signatures with 42 morphological features, achieved 69

  6. Patterns of brain structural connectivity differentiate normal weight from overweight subjects

    Science.gov (United States)

    Gupta, Arpana; Mayer, Emeran A.; Sanmiguel, Claudia P.; Van Horn, John D.; Woodworth, Davis; Ellingson, Benjamin M.; Fling, Connor; Love, Aubrey; Tillisch, Kirsten; Labus, Jennifer S.

    2015-01-01

    Background Alterations in the hedonic component of ingestive behaviors have been implicated as a possible risk factor in the pathophysiology of overweight and obese individuals. Neuroimaging evidence from individuals with increasing body mass index suggests structural, functional, and neurochemical alterations in the extended reward network and associated networks. Aim To apply a multivariate pattern analysis to distinguish normal weight and overweight subjects based on gray and white-matter measurements. Methods Structural images (N = 120, overweight N = 63) and diffusion tensor images (DTI) (N = 60, overweight N = 30) were obtained from healthy control subjects. For the total sample the mean age for the overweight group (females = 32, males = 31) was 28.77 years (SD = 9.76) and for the normal weight group (females = 32, males = 25) was 27.13 years (SD = 9.62). Regional segmentation and parcellation of the brain images was performed using Freesurfer. Deterministic tractography was performed to measure the normalized fiber density between regions. A multivariate pattern analysis approach was used to examine whether brain measures can distinguish overweight from normal weight individuals. Results 1. White-matter classification: The classification algorithm, based on 2 signatures with 17 regional connections, achieved 97% accuracy in discriminating overweight individuals from normal weight individuals. For both brain signatures, greater connectivity as indexed by increased fiber density was observed in overweight compared to normal weight between the reward network regions and regions of the executive control, emotional arousal, and somatosensory networks. In contrast, the opposite pattern (decreased fiber density) was found between ventromedial prefrontal cortex and the anterior insula, and between thalamus and executive control network regions. 2. Gray-matter classification: The classification algorithm, based on 2 signatures with 42

  7. Stem cells for brain repair in neonatal hypoxia-ischemia.

    Science.gov (United States)

    Chicha, L; Smith, T; Guzman, R

    2014-01-01

    Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.

  8. Hearing loss - infants

    Science.gov (United States)

    ... can allow many infants to develop normal language skills without delay. In infants born with hearing loss, ... therapy allow many children to develop normal language skills at the same age as their peers with ...

  9. From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth.

    Science.gov (United States)

    Fumagalli, Monica; Provenzi, Livio; De Carli, Pietro; Dessimone, Francesca; Sirgiovanni, Ida; Giorda, Roberto; Cinnante, Claudia; Squarcina, Letizia; Pozzoli, Uberto; Triulzi, Fabio; Brambilla, Paolo; Borgatti, Renato; Mosca, Fabio; Montirosso, Rosario

    2018-01-01

    Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain.

  10. Metabolic alterations and neurodevelopmental outcome of infants with transposition of the great arteries.

    Science.gov (United States)

    Park, I Sook; Yoon, S Young; Min, J Yeon; Kim, Y Hwue; Ko, J Kok; Kim, K Soo; Seo, D Man; Lee, J Hee

    2006-01-01

    Abnormal neurodevelopment has been reported for infants who were born with transposition of the great arteries (TGA) and underwent arterial switch operation (ASO). This study evaluates the cerebral metabolism of TGA infants at birth and before ASO and neurodevelopment 1 year after ASO. Proton magnetic resonance spectroscopy (1H-MRS) was performed on 16 full-term TGA brains before ASO within 3-6 days after birth. The brain metabolite ratios of [NAA/Cr], [Cho/Cr], and [mI/Cr] evaluated measured. Ten infants were evaluated at 1 year using the Bayley Scales of Infants Development II (BSED II). Cerebral metabolism of infants with TGA was altered in parietal white matter (PWM) and occipital gray matter (OGM) at birth before ASO. One year after ASO, [Cho/Cr] in PWM remained altered, but all metabolic ratios in OGM were normal. The results of BSID II at 1 year showed delayed mental and psychomotor development. This delayed neurodevelopmental outcome may reflect consequences of the altered cerebral metabolism in PWM measured by 1H-MRS. It is speculated that the abnormal hemodynamics due to TGA in utero may be responsible for the impaired cerebral metabolism and the subsequent neurodevelopmental deficit.

  11. Evidence for Website Claims about the Benefits of Teaching Sign Language to Infants and Toddlers with Normal Hearing

    Science.gov (United States)

    Nelson, Lauri H.; White, Karl R.; Grewe, Jennifer

    2012-01-01

    The development of proficient communication skills in infants and toddlers is an important component to child development. A popular trend gaining national media attention is teaching sign language to babies with normal hearing whose parents also have normal hearing. Thirty-three websites were identified that advocate sign language for hearing…

  12. Using Event-Related Potentials to Study Perinatal Nutrition and Brain Development in Infants of Diabetic Mothers

    OpenAIRE

    deRegnier, Raye-Ann; Long, Jeffrey D.; Georgieff, Michael K.; Nelson, Charles A.

    2007-01-01

    Proper prenatal and postnatal nutrition is essential for optimal brain development and function. The early use of event-related potentials enables neuroscientists to study the development of cognitive function from birth and to evaluate the role of specific nutrients in development. Perinatal iron deficiency occurs in severely affected infants of diabetic mothers. In animal models, severe perinatal iron deficiency targets the explicit memory system of the brain. Cross-sectional ERP studies ha...

  13. Patterns of brain activity in normals and schizophrenics with positron emission tomography

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wolf, A.P.; Gomez-Mont, F.; Brodie, J.D.; Canero, R.; Van Gelder, P.; Russell, J.A.G.

    1985-01-01

    The authors investigated the functional interaction among brain areas under baseline and upon activation by a visual task to compare the response of normal subjects from the ones of chronic schizophrenics. Cerebral metabolic images were obtained on twelve healthy volunteers an eighteen schizophrenics with positron emission tomography and 11-C-Deoxyglucose. Correlation coefficients among the relative metabolic values (region of interest divided by the average of whole brain gray matter) of 11 brain regions; frontal, parietal, temporal and occipital left and right lobes, left and right basal ganglia and thalamus were computed for the baseline and for the task. Under baseline, normals showed more functional correlations than schizophrenics. Both groups showed a thalamo-occipital (positive) and thalamo-frontal (negative) interaction. The highest correlations among homologous brain areas were the frontal, occipital and basal ganglia

  14. Docosahexaenoic Acid and Neurodevelopmental Outcomes of Term Infants.

    Science.gov (United States)

    Meldrum, Suzanne; Simmer, Karen

    2016-01-01

    Docosahexaenoic acid (DHA), a long-chain polyunsaturated fatty acid, is essential for normal brain development. DHA is found predominantly in seafood, fish oil, breastmilk and supplemented formula. DHA intake in Western countries is often below recommendations. Observational studies have demonstrated an association between DHA intake in pregnancy and neurodevelopment of offspring but cannot fully adjust for confounding factors that influence child development. Randomised clinical trials of DHA supplementation during pregnancy and/or lactation, and of term infants, have not shown a consistent benefit nor harm on neurodevelopment of healthy children born at term. The evidence does not support DHA supplementation of healthy pregnant and lactating women, nor healthy infants. © 2016 S. Karger AG, Basel.

  15. Avoidance of voiding cystourethrography in infants younger than 3 months with Escherichia coli urinary tract infection and normal renal ultrasound.

    Science.gov (United States)

    Pauchard, Jean-Yves; Chehade, Hassib; Kies, Chafika Zohra; Girardin, Eric; Cachat, Francois; Gehri, Mario

    2017-09-01

    Urinary tract infection (UTI) represents the most common bacterial infection in infants, and its prevalence increases with the presence of high-grade vesicoureteral reflux (VUR). However, voiding cystourethrography (VCUG) is invasive, and its indication in infants urinary E. coli infection. Adding a normal renal US finding decreased this probability to 1%. However, in the presence of non- E. coli bacteria, the probability of high-grade VUR was 26%, and adding an abnormal US finding increased further this probability to 55%. In infants aged 0-3 months with a first febrile UTI, the presence of E. coli and normal renal US findings allow to safely avoid VCUG. Performing VCUG only in infants with UTI secondary to non- E. coli bacteria and/or abnormal US would save many unnecessary invasive procedures, limit radiation exposure, with a very low risk (<1%) of missing a high-grade VUR. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques.

    Science.gov (United States)

    Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A

    2018-07-01

    Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

  17. Effect of therapeutic touch on brain activation of preterm infants in response to sensory punctate stimulus: a near-infrared spectroscopy-based study.

    Science.gov (United States)

    Honda, Noritsugu; Ohgi, Shohei; Wada, Norihisa; Loo, Kek Khee; Higashimoto, Yuji; Fukuda, Kanji

    2013-05-01

    The purpose of this study was to determine whether therapeutic touch in preterm infants can ameliorate their sensory punctate stimulus response in terms of brain activation measured by near-infrared spectroscopy. The study included 10 preterm infants at 34-40 weeks' corrected age. Oxyhaemoglobin (Oxy-Hb) concentration, heart rate (HR), arterial oxygen saturation (SaO2) and body movements were recorded during low-intensity sensory punctate stimulation for 1 s with and without therapeutic touch by a neonatal development specialist nurse. Each stimulation was followed by a resting phase of 30 s. All measurements were performed with the infants asleep in the prone position. sensory punctate stimulus exposure significantly increased the oxy-Hb concentration but did not affect HR, SaO2 and body movements. The infants receiving therapeutic touch had significantly decreased oxy-Hb concentrations over time. Therapeutic touch in preterm infants can ameliorate their sensory punctate stimulus response in terms of brain activation, indicated by increased cerebral oxygenation. Therefore, therapeutic touch may have a protective effect on the autoregulation of cerebral blood flow during sensory punctate stimulus in neonates.

  18. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants.

    Science.gov (United States)

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Stecher Guzman, Ximena; Hintz, Susan R; Stevenson, David K; Barnea-Goraly, Naama

    2014-01-01

    Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67

  19. Mother-Infant Face-to-Face Interaction: The Communicative Value of Infant-Directed Talking and Singing.

    Science.gov (United States)

    Arias, Diana; Peña, Marcela

    Across culture, healthy infants show a high interest in infant-directed (ID) talking and singing. Despite ID talking and ID singing being very similar in physical properties, infants differentially respond to each of them. The mechanisms underpinning these different responses are still under discussion. This study explored the behavioral (n = 26) and brain (n = 14) responses from 6- to 8-month-old infants to ID talking and ID singing during a face-to-face mother-infant interaction with their own mother. Behavioral response was analyzed from offline video coding, and brain response was estimated from the analysis of electrophysiological recordings. We found that during ID talking, infants displayed a significantly higher number of visual contacts, vocalizations, and body movements than during ID singing. Moreover, only during ID talking were the number of visual contacts and vocalizations positively correlated with the number of questions and pauses in the mother's speech. Our results suggest that ID talking provides infants with specific cues that allow them not only to react to mother stimulation, but also to act toward them, displaying a rudimentary version of turn-taking behavior. Brain activity partially supported that interpretation. The relevance of our results for bonding is discussed. © 2016 S. Karger AG, Basel.

  20. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  1. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo; Lee, Jae Sung

    2002-01-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5±3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis

  2. Diffusion-weighted imaging in normal fetal brain maturation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F. [University Children' s Hospital UKBB, Department of Pediatric Radiology, Basel (Switzerland); Confort-Gouny, S.; Le Fur, Y.; Viout, P.; Cozzone, P. [UMR-CNRS 6612, Faculte de Medecine, Universite de la Mediterranee, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Bennathan, M.; Chapon, F.; Fogliarini, C.; Girard, N. [Universite de la Mediterranee, Department of Neuroradiology AP-HM Timone, Marseille (France)

    2007-09-15

    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 {+-} 0.05 mm{sup 2}/s) were higher compared with the cerebellar hemisphere (1.25 {+-} 0.06 mm{sup 2}/s) and lowest in the pons (1.11 {+-} 0.05 mm{sup 2}/s). Thalamus and BG showed intermediate values (1.25 {+-} 0.04 mm{sup 2}/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies. (orig.)

  3. Selection of appropriate template for spatial normalization of brain images: tensor based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Although there have been remarkable advances in spatial normalization techniques, the differences in the shape of the hemispheres and the sulcal pattern of brains relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques. T1 SPGR MR images in 16 elderly male normal volunteers (>55 y. mean age: = 61.8 {+-} 3.5 y) were spatially normalized onto the age/gender specific Korean templates, and the Caucasian MNI template and the extent of the deformations were compared. These particular subjects were never included in the development of the templates. First , the images were matched into the templates using an affine transformation to eliminate the global difference between the templates and source images. Second the affine registration was followed by an estimation of nonlinear deformation. Determinants of the Jacobian matrices of the nonlinear deformation were then calculated for every voxel to estimate the regional volume change during the nonlinear transformation Jacobian determinant images highlighted the great magnitude of the relative local volume changes obtained when the elderly brains were spatially normalized onto the young/midlife male or female templates. They reflect the enlargement of CSF space in the lateral ventricles, sylvian fissures and cisterna magna, and the shrinkage of the cortex noted mainly in frontal, insular and lateral temporal cortexes, and the cerebellums in the aged brains. In the Jacobian determinant images, a regional shrinkage of the brain in the left middle prefrontal cortex was observed in addition to the regional expansion in the ventricles and sylvian fissures, which may be due to the age differences between the template and source images. The regional anatomical difference between template and source images could impose an extreme deformation of the source images during the spatial normalization and therefore. Individual brains should be placed into the appropriate

  4. Selection of appropriate template for spatial normalization of brain images: tensor based morphometry

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul

    2004-01-01

    Although there have been remarkable advances in spatial normalization techniques, the differences in the shape of the hemispheres and the sulcal pattern of brains relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques. T1 SPGR MR images in 16 elderly male normal volunteers (>55 y. mean age: = 61.8 ± 3.5 y) were spatially normalized onto the age/gender specific Korean templates, and the Caucasian MNI template and the extent of the deformations were compared. These particular subjects were never included in the development of the templates. First , the images were matched into the templates using an affine transformation to eliminate the global difference between the templates and source images. Second the affine registration was followed by an estimation of nonlinear deformation. Determinants of the Jacobian matrices of the nonlinear deformation were then calculated for every voxel to estimate the regional volume change during the nonlinear transformation Jacobian determinant images highlighted the great magnitude of the relative local volume changes obtained when the elderly brains were spatially normalized onto the young/midlife male or female templates. They reflect the enlargement of CSF space in the lateral ventricles, sylvian fissures and cisterna magna, and the shrinkage of the cortex noted mainly in frontal, insular and lateral temporal cortexes, and the cerebellums in the aged brains. In the Jacobian determinant images, a regional shrinkage of the brain in the left middle prefrontal cortex was observed in addition to the regional expansion in the ventricles and sylvian fissures, which may be due to the age differences between the template and source images. The regional anatomical difference between template and source images could impose an extreme deformation of the source images during the spatial normalization and therefore. Individual brains should be placed into the appropriate template

  5. Body composition is normal in term infants born to mothers with well-controlled gestational diabetes mellitus.

    Science.gov (United States)

    Au, Cheryl P; Raynes-Greenow, Camille H; Turner, Robin M; Carberry, Angela E; Jeffery, Heather E

    2013-03-01

    This study aims to describe body composition in term infants of mothers with gestational diabetes mellitus (GDM) compared with infants of mothers with normal glucose tolerance (NGT). This cross-sectional study included 599 term babies born at Royal Prince Alfred Hospital, Sydney, Australia. Neonatal body fat percentage (BF%) was measured within 48 h of birth using air-displacement plethysmography. Glycemic control data were based on third-trimester HbA(1c) levels and self-monitoring blood glucose levels. Associations between GDM status and BF% were investigated using linear regression adjusted for relevant maternal and neonatal variables. Of 599 babies, 67 (11%) were born to mothers with GDM. Mean ± SD neonatal BF% was 7.9 ± 4.5% in infants with GDM and 9.3 ± 4.3% in infants with NGT, and this difference was not statistically significant after adjustment. Good glycemic control was achieved in 90% of mothers with GDM. In this study, neonatal BF% did not differ by maternal GDM status, and this may be attributed to good maternal glycemic control.

  6. SU-E-T-568: Improving Normal Brain Sparing with Increasing Number of Arc Beams for Volume Modulated Arc Beam Radiosurgery of Multiple Brain Metastases

    International Nuclear Information System (INIS)

    Hossain, S; Hildebrand, K; Ahmad, S; Larson, D; Ma, L; Sahgal, A

    2014-01-01

    Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targets were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery

  7. Brain reorganization as a function of walking experience in 12 month-old infants: Implications for the development of manual laterality

    Directory of Open Access Journals (Sweden)

    Daniela eCorbetta

    2014-03-01

    Full Text Available Hand preference in infancy is marked by many developmental shifts in hand use and arm coupling as infants reach for and manipulate objects. Research has linked these early shifts in hand use to the emergence of fundamental postural-locomotor milestones. Specifically, it was found that bimanual reaching declines when infants learn to sit; increases if infants begin to scoot in a sitting posture; declines when infants begin to crawl on hands-and-knees; and increases again when infants start walking upright. Why such pattern fluctuations during periods of postural-locomotor learning? One proposed hypothesis is that arm use practiced for the specific purpose of controlling posture and achieving locomotion transfers to reaching via brain functional reorganization. There has been scientific support for functional cortical reorganization and change in neural connectivity in response to motor practice in adults and animals, and as a function of crawling experience in human infants. In this research, we examined whether changes in neural connectivity also occurred as infants coupled their arms when learning to walk and whether such coupling mapped onto reaching laterality. EEG coherence data were collected from 43 12-month-olds infants with varied levels of walking experience. EEG was recorded during quiet, attentive baseline. Walking proficiency was laboratory assessed and reaching responses were captured using small toys presented at midline while infants were sitting. Results revealed greater EEG coherence at homologous prefrontal/central scalp locations for the novice walkers compared to the pre-walkers or more experienced walkers. In addition, reaching laterality was low in pre-walkers and early walkers, but high in experienced walkers. These results are consistent with the interpretation that arm coupling practiced during early walking transferred to reaching via brain functional reorganization, leading to the observed developmental changes in

  8. Tomographic criteria of gliomas in the brain stem in infants

    International Nuclear Information System (INIS)

    Machado Junior, M.A.; Bracchi, M.; D'Incerti, L.; Passerini, A.

    1994-01-01

    The relationship between Computed Tomography Imaging, histopathological and prognostic data is evaluated by reviewing 37 cases of brain stem neoplasm in infants. The results indicate a presence of a cystic lesion with solid mural nodule as the single prognostic criteria of a greater survival rate. Such finding frequently corresponds to Pilocytic Astrocytomas. No correlations between contrast enhancement and prognostic was found. The association between the prognostic value to the densitometric characteristics of the lesions was not possible. It was concluded that the evaluations of the extension of such lesion is fundamental. Therefore, Magnetic Resonance Imaging has more value than computed tomography. (M.A.C.)

  9. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  10. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.

    Science.gov (United States)

    Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin

    2018-04-16

    Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

  11. Assessment of brain maturation in the preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN)

    International Nuclear Information System (INIS)

    Ling, Xueying; Tang, Wen; Liu, Guosheng; Huang, Li; Li, Bingxiao; Li, Xiaofei; Liu, Sirun; Xu, Jing

    2013-01-01

    Purpose: To assess the brain maturation of preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN). Materials and methods: Conventional magnetic resonance imaging (MRI), DTI and ESWAN were performed in 60 preterm infants and 21 term controls. 60 preterm infants were subgrouped to two groups according to the age at imaging: before and at term-equivalent age (TEA). Fractional anisotropy (FA), apparent diffusion coefficient (ADC) map from DTI, T 2 * and R 2 * maps from ESWAN were post-processed at an off-line workstation. The values of FA, ADC, T 2 * and R 2 * from the posterior limb of internal capsule (PLIC), frontal white matter (FWM), occipital white matter (OWM) and lentiform nuclei (LN) were determined. These parameters were compared between preterm and term infants. Correlations of DTI and ESWAN parameters with the gestational age, postmenstrual age and postnatal age were analyzed. Results: ADCs of FWM, OWM and LN, and T 2 * values of the PLIC and LN were higher in the preterm infants at TEA compared with the term controls. The correlations were existed between the postmenstrual age and the values of FA, ADC, T 2 *, R 2 * from the PLIC, values of ADC, T 2 *, R 2 * from the LN, T 2 * value from the OWM. The correlations were also found between the postnatal age and the values of FA, ADC, T 2 * from the PLIC, and T 2 * value from the LN. Conclusion: The maturity of preterm brain around TEA was different from that of term controls and appeared to be independent of the prematurity at birth. T 2 * was one of valuable indices to evaluate brain maturation in preterm infants

  12. Assessment of brain maturation in the preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN)

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xueying, E-mail: lingxuey@163.com [Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou (China); Tang, Wen [Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou (China); Liu, Guosheng [Neonatal Intensive Care Unit, the First Affiliated Hospital, Jinan University, Guangzhou (China); Huang, Li [Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Bingxiao [Neonatal Intensive Care Unit, the First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Xiaofei; Liu, Sirun [Department of Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou (China); Xu, Jing [Neonatal Intensive Care Unit, the First Affiliated Hospital, Jinan University, Guangzhou (China)

    2013-09-15

    Purpose: To assess the brain maturation of preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN). Materials and methods: Conventional magnetic resonance imaging (MRI), DTI and ESWAN were performed in 60 preterm infants and 21 term controls. 60 preterm infants were subgrouped to two groups according to the age at imaging: before and at term-equivalent age (TEA). Fractional anisotropy (FA), apparent diffusion coefficient (ADC) map from DTI, T{sub 2}* and R{sub 2}* maps from ESWAN were post-processed at an off-line workstation. The values of FA, ADC, T{sub 2}* and R{sub 2}* from the posterior limb of internal capsule (PLIC), frontal white matter (FWM), occipital white matter (OWM) and lentiform nuclei (LN) were determined. These parameters were compared between preterm and term infants. Correlations of DTI and ESWAN parameters with the gestational age, postmenstrual age and postnatal age were analyzed. Results: ADCs of FWM, OWM and LN, and T{sub 2}* values of the PLIC and LN were higher in the preterm infants at TEA compared with the term controls. The correlations were existed between the postmenstrual age and the values of FA, ADC, T{sub 2}*, R{sub 2}* from the PLIC, values of ADC, T{sub 2}*, R{sub 2}* from the LN, T{sub 2}* value from the OWM. The correlations were also found between the postnatal age and the values of FA, ADC, T{sub 2}* from the PLIC, and T{sub 2}* value from the LN. Conclusion: The maturity of preterm brain around TEA was different from that of term controls and appeared to be independent of the prematurity at birth. T{sub 2}* was one of valuable indices to evaluate brain maturation in preterm infants.

  13. Integration of sparse multi-modality representation and geometrical constraint for isointense infant brain segmentation.

    Science.gov (United States)

    Wang, Li; Shi, Feng; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2013-01-01

    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination process. During the first year of life, the signal contrast between white matter (WM) and gray matter (GM) in MR images undergoes inverse changes. In particular, the inversion of WM/GM signal contrast appears around 6-8 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a novel segmentation method to address the above-mentioned challenge based on the sparse representation of the complementary tissue distribution information from T1, T2 and diffusion-weighted images. Specifically, we first derive an initial segmentation from a library of aligned multi-modality images with ground-truth segmentations by using sparse representation in a patch-based fashion. The segmentation is further refined by the integration of the geometrical constraint information. The proposed method was evaluated on 22 6-month-old training subjects using leave-one-out cross-validation, as well as 10 additional infant testing subjects, showing superior results in comparison to other state-of-the-art methods.

  14. MRS of normal and impaired fetal brain development

    International Nuclear Information System (INIS)

    Girard, Nadine; Fogliarini, Celine; Viola, Angele; Confort-Gouny, Sylviane; Le Fur, Yann; Viout, Patrick; Chapon, Frederique; Levrier, Olivier; Cozzone, Patrick

    2006-01-01

    Cerebral maturation in the human fetal brain was investigated by in utero localized proton magnetic resonance spectroscopy (MRS). Spectra were acquired on a clinical MR system operating at 1.5 T. Body phased array coils (four coils) were used in combination with spinal coils (two coils). The size of the nominal volume of interest (VOI) was 4.5 cm 3 (20 mm x 15 mm x 15 mm). The MRS acquisitions were performed using a spin echo sequence at short and long echo times (TE = 30 ms and 135 ms) with a VOI located within the cerebral hemisphere at the level of the centrum semiovale. A significant reduction in myo-inositol and choline and an increase in N-acetylaspartate were observed with progressive age. The normal MR spectroscopy data reported here will help to determine whether brain metabolism is altered, especially when subtle anatomic changes are observed on conventional images. Some examples of impaired fetal brain development studied by MRS are illustrated

  15. MRS of normal and impaired fetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Nadine [Service de Neuroradiologie, Assistance Publique-Hopitaux de Marseille, Hopital la Timone, Universite de la Mediterranee, Marseille (France)]. E-mail: nadine.girard@ap-hm.fr; Fogliarini, Celine [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Viola, Angele [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Confort-Gouny, Sylviane [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Le Fur, Yann [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Viout, Patrick [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France); Chapon, Frederique [Service de Neuroradiologie, Assistance Publique-Hopitaux de Marseille, Hopital la Timone, Universite de la Mediterranee, Marseille (France); Levrier, Olivier [Service de Neuroradiologie, Assistance Publique-Hopitaux de Marseille, Hopital la Timone, Universite de la Mediterranee, Marseille (France); Cozzone, Patrick [Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Universite de la Mediterranee, Faculte de Medecine la Timone, Marseille (France)

    2006-02-15

    Cerebral maturation in the human fetal brain was investigated by in utero localized proton magnetic resonance spectroscopy (MRS). Spectra were acquired on a clinical MR system operating at 1.5 T. Body phased array coils (four coils) were used in combination with spinal coils (two coils). The size of the nominal volume of interest (VOI) was 4.5 cm{sup 3} (20 mm x 15 mm x 15 mm). The MRS acquisitions were performed using a spin echo sequence at short and long echo times (TE = 30 ms and 135 ms) with a VOI located within the cerebral hemisphere at the level of the centrum semiovale. A significant reduction in myo-inositol and choline and an increase in N-acetylaspartate were observed with progressive age. The normal MR spectroscopy data reported here will help to determine whether brain metabolism is altered, especially when subtle anatomic changes are observed on conventional images. Some examples of impaired fetal brain development studied by MRS are illustrated.

  16. Creating a Magnetic Imaging System for Diagnosing Infant Brain Activity Based on NI PXI and LabVIEW

    Directory of Open Access Journals (Sweden)

    Christopher G. Atwood

    2006-11-01

    Full Text Available Developing a noninvasive magnetic imaging system to spatially and temporally map the magnetic fields generated by brain activity in infants at severe risk of developing cerebral palsy and epilepsy, so that medical doctors can intervene at an early stage.

  17. A numerical analysis of a semi-dry coupling configuration in photoacoustic computed tomography for infant brain imaging

    Directory of Open Access Journals (Sweden)

    Najme Meimani

    2017-09-01

    Full Text Available In the application of photoacoustic human infant brain imaging, debubbled ultrasound gel or water is commonly used as a couplant for ultrasonic transducers due to their acoustic properties. The main challenge in using such a couplant is its discomfort for the patient. In this study, we explore the feasibility of a semi-dry coupling configuration to be used in photoacoustic computed tomography (PACT systems. The coupling system includes an inflatable container consisting of a thin layer of Aqualene with ultrasound gel or water inside of it. Finite element method (FEM is used for static and dynamic structural analysis of the proposed configuration to be used in PACT for infant brain imaging. The outcome of the analysis is an optimum thickness of Aqualene in order to meet the weight tolerance requirement with the least attenuation and best impedance match to recommend for an experimental setting.

  18. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants

    Directory of Open Access Journals (Sweden)

    Jessica Rose, PhD

    2014-01-01

    Results suggest that at near-term age, thalamus WM microstructure may be particularly vulnerable to certain neonatal risk factors. Interactions between albumin, bilirubin, phototherapy, and brain development warrant further investigation. Identification of physiological risk factors associated with selective vulnerability of certain brain regions at near-term age may clarify the etiology of neurodevelopmental impairment and inform neuroprotective treatment for VLBW preterm infants.

  19. Associations between the size of the amygdala in infancy and language abilities during the preschool years in normally developing children.

    Science.gov (United States)

    Ortiz-Mantilla, Silvia; Choe, Myong-sun; Flax, Judy; Grant, P Ellen; Benasich, April A

    2010-02-01

    Recently, structural MRI studies in children have been used to examine relations between brain volume and behavioral measures. However, most of these studies have been done in children older than 2 years of age. Obtaining volumetric measures in infants is considerably more difficult, as structures are less well defined and largely unmyelinated, making segmentation challenging. Moreover, it is still unclear whether individual anatomic variation across development, in healthy, normally developing infants, is reflected in the configuration and function of the mature brain and, as importantly, whether variation in infant brain structure might be related to later cognitive and linguistic abilities. In this longitudinal study, using T1 structural MRI, we identified links between amygdala volume in normally developing, naturally sleeping, 6-month infants and their subsequent language abilities at 2, 3 and 4 years. The images were processed and manually segmented using Cardviews to extract volumetric measures. Intra-rater reliability for repeated segmentation was 87.73% of common voxel agreement. Standardized language assessments were administered at 6 and 12 months and at 2, 3 and 4 years. Significant and consistent correlations were found between amygdala size and language abilities. Children with larger right amygdalae at 6 months had lower scores on expressive and receptive language measures at 2, 3, and 4 years. Associations between amygdala size and language outcomes have been reported in children with autism. The findings presented here extend this association to normally developing children, supporting the idea that the amygdalae might play an important but as yet unspecified role in mediating language acquisition. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Assessment the Plasticity of Cortical Brain Theory through Visual Memory in Deaf and Normal Students

    Directory of Open Access Journals (Sweden)

    Ali Ghanaee-Chamanabad

    2012-10-01

    Full Text Available Background: The main aim of this research was to assess the differences of visual memory in deaf and normal students according to plasticity of cortical brain.Materials and Methods: This is an ex-post factor research. Benton visual test was performed by two different ways on 46 students of primary school. (22 deaf and 24 normal students. The t-student was used to analysis the data. Results: The visual memory in deaf students was significantly higher than the similar normal students (not deaf.While the action of visual memory in deaf girls was risen in comparison to normal girls in both ways, the deaf boys presented the better action in just one way of the two performances of Benton visual memory test.Conclusion: The action of plasticity of brain shows that the brain of an adult is dynamic and there are some changes in it. This brain plasticity has not limited to sensory somatic systems. Therefore according to plasticity of cortical brain theory, the deaf students due to the defect of hearing have increased the visual the visual inputs which developed the procedural visual memory.

  1. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    Britt, R.H.; Pounds, D.W.; Stuart, J.S.; Lyons, B.E.; Saxer, E.L.

    1984-01-01

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  2. Early radiation changes of normal dog brain following internal and external brain irradiation: A preliminary report

    International Nuclear Information System (INIS)

    Chin, H.; Maruyama, Y.; Markesbery, W.; Goldstein, S.; Wang, P.; Tibbs, P.; Young, B.; Feola, J.; Beach, L.

    1984-01-01

    To examine radiation-induced changes in the normal brain, internal or external radiation was given to normal dog brain. Seven medium-sized dogs were used in this study. Two dogs were controls and an ice-pick (plastic implant applicator) was placed in the right frontal lobe for about 5 hours but no irradiation. Two dogs underwent Cs-137 brain implantation for 4 and 5 hours, respectively using an ice-pick technique. Two dogs were given internal neutron irradiation using the same technique of intracerebral ice-pick brachytherapy. One dog received an external photon irradiation using 6-Mev Linear Accelerator. Postmortem microscopic examination was made to study the early cerebral changes to irradiation in three dogs: one control with no irradiation; one received intracerebral Cesium implantation; and one external photon irradiation. Vascular change was the most prominent microscopic finding. There were hemorrhage, endothelial proliferation and fibrinoid changes of small vessel wall. Most of the changes were localized in the white matter and the cortex remained intact. Details (CT, NMR and histological studies) are discussed

  3. Comparison of power Doppler and color Doppler ultrasonography in the detection of intrasticular blood flow of normal infants

    International Nuclear Information System (INIS)

    Shin, Sung Ran; Lee, Ho Kyoung; Lee, Won Gyun; Youk, Dong Joon; Rho, Taek Soo; Lee, Min Jin; Lee, Sang Chun

    1999-01-01

    To compare color Doppler ultrasonography (US) and power Doppler US in the detection of intratesticular blood flow in normal infants and to asses the symmetry of blood flow. Testicular blood flow was assessed prospectively in 100 testes of 50 infants with both power and color Doppler US. We compared the power Doppler with color Doppler to detect intratesticular blood. When the flow was detected, intratesticular blood flow was graded as follows: grade 1: single intratesticular Doppler signal ; grade 2: multiple intratesticular Doppler signals. The symmetry of intratesticular flow was assessed by using the same method. Intratesticular flow was detected in 72 (72%) and 68 (68%) testes on power and color Doppler US, respectively. In 76 testes (76%), intratesticular flow was detected in either one or both techniques. On power Doppler US, grade 1 was seen in 40 tests and grade 2 in 32 testes. On color Doppler US, grade 1 was noted in 52 testes and grade 2 in 16 testes. Testicular blood flow was symmetric on both power and color Doppler US in each patient. There was no difference between power Doppler and color Doppler ultrasonography in detecting intratesticular blood flow in normal infants.

  4. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    International Nuclear Information System (INIS)

    Parazzini, C.; Righini, A.; Triulzi, F.; Rustico, M.; Consonni, D.

    2008-01-01

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  5. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    Energy Technology Data Exchange (ETDEWEB)

    Parazzini, C.; Righini, A.; Triulzi, F. [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Rustico, M. [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynecology, Milan (Italy); Consonni, D. [Fondazione IRCCS Ospedale Maggiore Policlinico, Unit of Epidemiology, Milan (Italy)

    2008-10-15

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  6. Longitudinal motor development of "apparently normal" high-risk infants at 18 months, 3 and 5 years.

    Science.gov (United States)

    Goyen, Traci Anne; Lui, Kei

    2002-12-01

    Motor development appears to be more affected by premature birth than other developmental domains, however few studies have specifically investigated the development of gross and fine motor skills in this population. To examine longitudinal motor development in a group of "apparently normal" high-risk infants. Developmental follow-up clinic in a perinatal centre. Longitudinal observational cohort study. Fifty-eight infants born less than 29 weeks gestation and/or 1000 g and without disabilities detected at 12 months. Longitudinal gross and fine motor skills at 18 months, 3 and 5 years using the Peabody Developmental Motor Scales. The HOME scale provided information of the home environment as a stimulus for development. A large proportion (54% at 18 months, 47% at 3 years and 64% at 5 years) of children continued to have fine motor deficits from 18 months to 5 years. The proportion of infants with gross motor deficits significantly increased over this period (14%, 33% and 81%, pmotor development was positively influenced by the quality of the home environment. A large proportion of high-risk infants continued to have fine motor deficits, reflecting an underlying problem with fine motor skills. The proportion of infants with gross motor deficits significantly increased, as test demands became more challenging. In addition, the development of gross and fine motor skills appears to be influenced differently by the home environment.

  7. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Si, M.

    2007-01-01

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  8. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    NARCIS (Netherlands)

    Cutts, DA; Maguire, RP; Leenders, KL; Spyrou, NM

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. This study determines whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was

  9. Infant intersubjectivity: research, theory, and clinical applications.

    Science.gov (United States)

    Trevarthen, C; Aitken, K J

    2001-01-01

    We review research evidence on the emergence and development of active "self-and-other" awareness in infancy, and examine the importance of its motives and emotions to mental health practice with children. This relates to how communication begins and develops in infancy, how it influences the individual subject's movement, perception, and learning, and how the infant's biologically grounded self-regulation of internal state and self-conscious purposefulness is sustained through active engagement with sympathetic others. Mutual self-other-consciousness is found to play the lead role in developing a child's cooperative intelligence for cultural learning and language. A variety of preconceptions have animated rival research traditions investigating infant communication and cognition. We distinguish the concept of "intersubjectivity", and outline the history of its use in developmental research. The transforming body and brain of a human individual grows in active engagement with an environment of human factors--organic at first, then psychological or inter-mental. Adaptive, human-responsive processes are generated first by interneuronal activity within the developing brain as formation of the human embryo is regulated in a support-system of maternal tissues. Neural structures are further elaborated with the benefit of intra-uterine stimuli in the foetus, then supported in the rapidly growing forebrain and cerebellum of the young child by experience of the intuitive responses of parents and other human companions. We focus particularly on intrinsic patterns and processes in pre-natal and post-natal brain maturation that anticipate psychosocial support in infancy. The operation of an intrinsic motive formation (IMF) that developed in the core of the brain before birth is evident in the tightly integrated intermodal sensory-motor coordination of a newborn infant's orienting to stimuli and preferential learning of human signals, by the temporal coherence and intrinsic

  10. Brain functional near infrared spectroscopy in human infants : cerebral cortical haemodynamics coupled to neuronal activation in response to sensory stimulation

    OpenAIRE

    Bartocci, Marco

    2006-01-01

    The assessment of cortical activation in the neonatal brain is crucial in the study of brain development, as it provides precious information for how the newborn infant processes external or internal stimuli. Thus far functional studies of neonates aimed to assess cortical responses to certain external stimuli are very few, due to the lack of suitable techniques to monitor brain activity of the newborn. Near Infrared Spectroscopy (NIRS) has been found to be suitable for func...

  11. Neurologic Outcomes in Very Preterm Infants Undergoing Surgery.

    LENUS (Irish Health Repository)

    2012-01-31

    OBJECTIVE: To investigate the relationship between surgery in very preterm infants and brain structure at term equivalent and 2-year neurodevelopmental outcome. STUDY DESIGN: A total of 227 infants born at <30 weeks gestation or at a birth weight of <1250 g were prospectively enrolled into a longitudinal observational cohort for magnetic resonance imaging and developmental follow-up. The infants were categorized retrospectively into either a nonsurgical group (n=178) or a surgical group (n=30). Nineteen infants were excluded because of incomplete or unsuitable data. The surgical and nonsurgical groups were compared in terms of clinical demographic data, white matter injury, and brain volume at term. Neurodevelopmental outcome was assessed at age 2 years. RESULTS: Compared with the nonsurgical group, the infants in the surgical group were smaller and more growth-restricted at birth, received more respiratory support and oxygen therapy, and had longer hospital stays. They also had smaller brain volumes, particularly smaller deep nuclear gray matter volumes. Infants who underwent bowel surgery had greater white matter injury. Mental Developmental Index scores were lower in the surgical group, whereas Psychomotor Developmental Index scores did not differ between the groups. The Mental Developmental Index difference became nonsignificant after adjustment for confounding variables. CONCLUSION: Preterm infants exposed to surgery and anesthesia had greater white matter injury and smaller total brain volumes, particularly smaller deep nuclear gray matter volumes. Surgical exposure in the preterm infant should alert the clinician to an increased risk for adverse cognitive outcome.

  12. Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction.

    Science.gov (United States)

    Esteban, Francisco J; Padilla, Nelly; Sanz-Cortés, Magdalena; de Miras, Juan Ruiz; Bargalló, Núria; Villoslada, Pablo; Gratacós, Eduard

    2010-12-01

    In the search for a useful parameter to detect and quantify subtle brain abnormalities in infants with intrauterine growth restriction (IUGR), we hypothesised that the analysis of the structural complexity of grey matter (GM) and white matter (WM) using the fractal dimension (FD), a measurement of the topological complexity of an object, could be established as a useful tool for quantitative studies of infant brain morphology. We studied a sample of 18 singleton IUGR premature infants, (12.72 months corrected age (CA), range: 12 months-14 months), 15 preterm infants matched one-to-one for gestational age (GA) at delivery (12.6 months; range: 12 months-14 months), and 15 neonates born at term (12.4 months; range: 11 months-14 months). The neurodevelopmental outcome was assessed in all subjects at 18 months CA according to the Bayley Scale for Infant and Toddler Development - Third edition (BSID-III). For MRI acquisition and processing, the infants were scanned at 12 months CA, in a TIM TRIO 3T scanner, sleeping naturally. Images were pre-processed using the SPM5 toolbox, the GM and WM segmented under the VBM5 toolbox, and the box-counting method was applied for FD calculation of normal and skeletonized segmented images. The results showed a significant decrease of the FD of the brain GM and WM in the IUGR group when compared to the preterm or at-term controls. We also identified a significant linear tendency of both GM and WM FD from IUGR to preterm and term groups. Finally, multiple linear analyses between the FD of the GM or WM and the neurodevelopmental scales showed a significant regression of the language and motor scales with the FD of the GM. In conclusion, a decreased FD of the GM and WM in IUGR infants could be a sensitive indicator for the investigation of structural brain abnormalities in the IUGR population at 12 months of age, which can also be related to functional disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Freimann, Florian Baptist; Sprung, Christian [Charite - University Medicine Berlin, Campus Virchow-Klinikum, Neurosurgical Department, Berlin (Germany); Streitberger, Kaspar-Josche; Klatt, Dieter; Sack, Ingolf [Charite - University Medicine Berlin, Campus Charite Mitte, Department of Radiology, Berlin (Germany); Lin, Kui; McLaughlin, Joyce [Rensselaer Polytechnic Institute, Mathematics Department, Troy, NY (United States); Braun, Juergen [Charite - University Medicine Campus Benjamin Franklin, Institute of Medical Informatics, Berlin (Germany)

    2012-03-15

    Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics. In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 {+-} 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters {mu} and {alpha}, related to the inherent rigidity and topology of the mechanical network of brain tissue. The viscoelastic parameters {mu} and {alpha} were found to be decreased with -25% and -10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, {alpha} increased after shunt placement (P < 0.001) to almost normal values whereas {mu} remained symptomatically low. The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded. (orig.)

  14. Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus

    International Nuclear Information System (INIS)

    Freimann, Florian Baptist; Sprung, Christian; Streitberger, Kaspar-Josche; Klatt, Dieter; Sack, Ingolf; Lin, Kui; McLaughlin, Joyce; Braun, Juergen

    2012-01-01

    Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics. In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 ± 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters μ and α, related to the inherent rigidity and topology of the mechanical network of brain tissue. The viscoelastic parameters μ and α were found to be decreased with -25% and -10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, α increased after shunt placement (P < 0.001) to almost normal values whereas μ remained symptomatically low. The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded. (orig.)

  15. MR imaging of the neonatal brain: Pathologic features

    International Nuclear Information System (INIS)

    McArdle, C.B.; Richardson, C.J.; Nicholas, D.A.; Hayden, C.K.; Amparo, E.G.

    1986-01-01

    Seventy-three neonates, aged 29-43 weeks since conception, were studied. US and/or CT correlations were obtained in most infants with pathology. In the first 4-5 days after hemorrhage, US and CT were superior to MR imaging, but after that time MR imaging was the single best modality for imaging blood. In early premature infants with very watery white matter, US detected infarction and brain edema that were poorly seen on both MR imaging and CT. However, in late premature and full-term infants, MR imaging was better than CT in distinguishing between normal white matter and infarction. Only MR imaging disclosed delayed myelination in 13 term infants with hydrocephalus and severe asphyxia. MR imaging with play an important role in imaging neonates once MR imaging-compatible monitors and neonatal head coils become widely available

  16. Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain.

    Science.gov (United States)

    Zhang, Huiwei; Wu, Ping; Ziegler, Sibylle I; Guan, Yihui; Wang, Yuetao; Ge, Jingjie; Schwaiger, Markus; Huang, Sung-Cheng; Zuo, Chuantao; Förster, Stefan; Shi, Kuangyu

    2017-02-01

    In brain 18 F-FDG PET data intensity normalization is usually applied to control for unwanted factors confounding brain metabolism. However, it can be difficult to determine a proper intensity normalization region as a reference for the identification of abnormal metabolism in diseased brains. In neurodegenerative disorders, differentiating disease-related changes in brain metabolism from age-associated natural changes remains challenging. This study proposes a new data-driven method to identify proper intensity normalization regions in order to improve separation of age-associated natural changes from disease related changes in brain metabolism. 127 female and 128 male healthy subjects (age: 20 to 79) with brain 18 F-FDG PET/CT in the course of a whole body cancer screening were included. Brain PET images were processed using SPM8 and were parcellated into 116 anatomical regions according to the AAL template. It is assumed that normal brain 18 F-FDG metabolism has longitudinal coherency and this coherency leads to better model fitting. The coefficient of determination R 2 was proposed as the coherence coefficient, and the total coherence coefficient (overall fitting quality) was employed as an index to assess proper intensity normalization strategies on single subjects and age-cohort averaged data. Age-associated longitudinal changes of normal subjects were derived using the identified intensity normalization method correspondingly. In addition, 15 subjects with clinically diagnosed Parkinson's disease were assessed to evaluate the clinical potential of the proposed new method. Intensity normalizations by paracentral lobule and cerebellar tonsil, both regions derived from the new data-driven coherency method, showed significantly better coherence coefficients than other intensity normalization regions, and especially better than the most widely used global mean normalization. Intensity normalization by paracentral lobule was the most consistent method within both

  17. Integrating neurocritical care approaches into neonatology: should all infants be treated equitably?

    Science.gov (United States)

    Mann, P C; Gospe, S M; Steinman, K J; Wilfond, B S

    2015-12-01

    To improve the neurologic outcomes for infants with brain injury, neonatal providers are increasingly implementing neurocritical care approaches into clinical practice. Term infants with brain injury have been principal beneficiaries of neurologically-integrated care models to date, as evidenced by the widespread adoption of therapeutic hypothermia protocols for hypoxic-ischemic encephalopathy. Innovative therapeutic and diagnostic support for very low birth weight infants with brain injury has lagged behind. Given that concern for significant future neurodevelopmental impairment can lead to decisions to withdraw life supportive care at any gestational age, providing families with accurate prognostic information is essential for all infants. Current variable application of multidisciplinary neurocritical care approaches to infants at different gestational ages may be ethically problematic and reflect distinct perceptions of brain injury for infants born extremely premature.

  18. The motivation for very early intervention for infants at high risk for autism spectrum disorders.

    Science.gov (United States)

    Webb, Sara Jane; Jones, Emily J H; Kelly, Jean; Dawson, Geraldine

    2014-02-01

    The first Autism Research Matrix (IACC, 2003) listed the identification of behavioural and biological markers of risk for autism as a top priority. This emphasis was based on the hypothesis that intervention with infants at-risk, at an early age when the brain is developing and before core autism symptoms have emerged, could significantly alter the developmental trajectory of children at risk for the disorder and impact long-range outcome. Research has provided support for specific models of early autism intervention (e.g., Early Start Denver Model) for improving outcomes in young children with autism, based on both behavioural and brain activity measures. Although great strides have been made in ability to identify risk markers for autism in younger infant/toddler samples, how and when to intervene during the prodromal state remains a critical question. Emerging evidence suggests that abnormal brain circuitry in autism precedes altered social behaviours; thus, an intervention designed to promote early social engagement and reciprocity potentially could steer brain development back toward the normal trajectory and remit or reduce the expression of symptoms.

  19. Brain lesions in preterm infants: initial diagnosis and follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece)

    2010-06-15

    Children surviving premature birth present with a wide spectrum of motor, sensory and cognitive disabilities, ranging from slight motor deficits, school difficulties and behavioural problems to cerebral palsy and mental retardation. The anatomic and functional substrate of these problems can be investigated using a variety of imaging techniques. Cranial US coupled with colour Doppler is a well-established method for the initial diagnosis of intraventricular haemorrhage, parenchymal haemorrhagic infarct and periventricular leukomalacia. MRI is useful for the follow-up study of brain maturation. Conventional T1- and T2-weighted sequences, magnetization transfer and diffusion tensor imaging coupled with sophisticated tools of tissue segmentation and analysis at a voxel level offer substantial anatomic and functional information on pathological conditions that define the prognosis of preterm infants. (orig.)

  20. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode.

    Science.gov (United States)

    Howard, M A; Volkov, I O; Noh, M D; Granner, M A; Mirsky, R; Garell, P C

    1997-01-01

    Neurosurgeons have unique access to in vivo human brain tissue, and in the course of clinical treatment important scientific advances have been made that further our understanding of normal brain physiology. In the modern era, microelectrode recordings have been used to systematically investigate the cellular properties of lateral temporal cerebral cortex. The current report describes a hybrid depth electrode (HDE) recording technique that was developed to enable neurosurgeons to simultaneously investigate normal cellular physiology during chronic intracranial EEG recordings. The HDE combines microelectrode and EEG recordings sites on a single shaft. Multiple microelectrode recordings are obtained from MRI defined brain sites and single-unit activity is discriminated from these data. To date, over 60 HDEs have been placed in 20 epilepsy surgery patients. Unique physiologic data have been gathered from neurons in numerous brain regions, including amygdala, hippocampus, frontal lobe, insula and Heschl's gyrus. Functional activation studies were carried out without risking patient safety or comfort.

  1. Length Normalized Indices for Fat Mass and Fat-Free Mass in Preterm and Term Infants during the First Six Months of Life

    Directory of Open Access Journals (Sweden)

    Ipsita Goswami

    2016-07-01

    Full Text Available Objective: Postnatal tissue accretion in preterm infants differs from those in utero, affecting body composition (BC and lifelong morbidity. Length normalized BC data allows infants with different body lengths to be compared and followed longitudinally. This study aims to analyze BC of preterm and term infants during the first six months of life. Methods: The BC data, measured using dual energy X-ray absorptiometry, of 389 preterm and 132 term infants from four longitudinal studies were combined. Fat-mass/length2 (FMI and fat-free mass/length2 (FFMI for postmenstrual age were calculated after reaching full enteral feeding, at term and two further time points up to six months corrected age. Results: Median FMI (preterm increased from 0.4 kg/m2 at 30 weeks to 2.5, 4.3, and 4.8 kg/m2 compared to 1.7, 4.7, and 6 kg/m2 in term infants at 40, 52, and 64 weeks, respectively. Median FFMI (preterm increased from 8.5 kg/m2 (30 weeks to 11.4 kg/m2 (45 weeks and remained constant thereafter, whereas term FFMI remained constant at 11 kg/m2 throughout the tested time points. Conclusion: The study provides a large dataset of length normalized BC indices. Followed longitudinally, term and preterm infants differ considerably during early infancy in the pattern of change in FMI and FFMI for age.

  2. Trisomy 15 mosaicism and uniparental disomy (UPD) in a liveborn infant

    Energy Technology Data Exchange (ETDEWEB)

    Milunsky, J.M. [Boston Univ. School Med, MA (United States)]|[Tufts-New England Med. Ctr, Boston, MA (United States); Wyandt, H.E.; Amos, J.A. [Boston Univ. School Med., MA (United States)] [and others

    1994-09-01

    We describe a liveborn infant with UPD in association with trisomy 15 mosaicism. Third trimester amniocentesis was performed for suspected IUGR. Results revealed 46,XX/47,XX,+15. The infant initially had respiratory distress and fed poorly. Symmetrical growth retardation, craniofacial dysmorphism, excess nuchal folds, a heart murmur, hypermobile joints, minor limb abnormalities, absent spontaneous movement and an abnormal cry were noted. Further study showed complex heart defects, including VSD and PDA, a left choroid plexus cyst, 13 ribs bilaterally, abnormal optic discs, abnormal visual evoked potentials and abnormal auditory brain stem responses. The infant died at 6 weeks of life from cardio-respiratory complications. Blood chromosomes were normal, 46,XX in 100 cells. Parental blood chromosomes were normal. Skin biopsy revealed 46,XX/47,XX,+15 in 40/50 (80%) cells as did autopsy lung tissue. Molecular analysis of the infant`s blood revealed maternal uniparental heterodisomy for chromosome 15 in the 46,XX cell line. Microsatellite analysis demonstrated that the extra chromosome originated from a maternal meiosis I nondisjunction. To our knowledge, this is the first liveborn infant with mosaic trisomy 15 and UPD in the diploid cells. Trisomy 15, heretofore, has been regarded as nonviable, even in mosaic form. While maternal UPD is associated with the Prader-Willi syndrome phenotype, mosaicism for trisomy 15 has been reported only when confined to the placenta. UPD in this case generally complicated prediction of the phenotype and raises the question whether all cases with UPD 15 should have more than one tissue studied to determine undetected trisomy 15.

  3. Longitudinal genetic analysis of brain volumes in normal elderly male twins

    OpenAIRE

    Lessov-Schlaggar, Christina N.; Hardin, Jill; DeCarli, Charles; Krasnow, Ruth E.; Reed, Terry; Wolf, Philip A.; Swan, Gary E.; Carmelli, Dorit

    2010-01-01

    This study investigated the role of genetic and environmental influences on individual differences in brain volumes measured at two time points in normal elderly males from the National Heart, Lung, and Blood Institute Twin Study. The MRI scans were conducted four years apart on 33 monozygotic and 33 dizygotic male twin pairs, aged 68 to 77 years when first scanned. Volumetric measures of total brain and total cerebrospinal fluid were significantly heritable at baseline (over 70%). For both v...

  4. Developmental Readiness of Normal Full Term Infants To Progress from Exclusive Breastfeeding to the Introduction of Complementary Foods: Reviews of the Relevant Literature Concerning Infant Immunologic, Gastrointestinal, Oral Motor and Maternal Reproductive and Lactational Development.

    Science.gov (United States)

    Naylor, Audrey J., Ed.; Morrow, Ardythe L., Ed.

    This review of the developmental readiness of normal, full-term infants to progress from exclusive breastfeeding to the introduction of complementary foods is the result of the international debate regarding the best age to introduce complementary foods into the diet of the breastfed human infant. After a list of definitions, four papers focus on:…

  5. MRI Differences Associated with Intrauterine Growth Restriction in Preterm Infants.

    Science.gov (United States)

    Bruno, Christie J; Bengani, Shreyans; Gomes, William A; Brewer, Mariana; Vega, Melissa; Xie, Xianhong; Kim, Mimi; Fuloria, Mamta

    2017-01-01

    Preterm infants are at risk for neurodevelopmental impairment. Intrauterine growth restriction (IUGR) further increases this risk. Brain imaging studies are often utilized at or near term-equivalent age to determine later prognosis. To evaluate the association between intrauterine growth and regional brain volume on MRI scans performed in preterm infants at or near term-equivalent age. This is a retrospective case-control study of 24 infants born at gestational age ≤30 weeks and cared for in a large, inner-city, academic neonatal intensive-care unit from 2012 to 2013. Each IUGR infant was matched with 1-2 appropriate for gestational age (AGA) infants who served as controls. Predischarge MRI scans routinely obtained at ≥36 weeks' adjusted age were analyzed for regional brain volumetric differences. We examined the association between IUGR and thalamic, basal ganglion, and cerebellar brain volumes in these preterm infants. Compared to AGA infants, IUGR infants had a smaller thalamus (7.88 vs. 5.87 mL, p = 0.001) and basal ganglion (8.87 vs. 6.92 mL, p = 0.002) volumes. There was no difference in cerebellar volumes between the two study groups. Linear regression analyses revealed similar trends in the associations between IUGR and brain volumes after adjusting for sex, gestational age at birth, and postconceptual age and weight at MRI. Thalamus and basal ganglion volumes are reduced in growth-restricted preterm infants. These differences may preferentially impact neurodevelopmental outcomes. Further research is needed to explore these relationships. © 2017 S. Karger AG, Basel.

  6. Electrophysiological Evidence of Phonetic Normalization across Coarticulation in Infants

    Science.gov (United States)

    Mersad, Karima; Dehaene-Lambertz, Ghislaine

    2016-01-01

    The auditory neural representations of infants can easily be studied with electroencephalography using mismatch experimental designs. We recorded high-density event-related potentials while 3-month-old infants were listening to trials consisting of CV syllables produced with different vowels (/bX/ or /gX/). The consonant remained the same for the…

  7. Decoding Pedophilia: Increased Anterior Insula Response to Infant Animal Pictures.

    Science.gov (United States)

    Ponseti, Jorge; Bruhn, Daniel; Nolting, Julia; Gerwinn, Hannah; Pohl, Alexander; Stirn, Aglaja; Granert, Oliver; Laufs, Helmut; Deuschl, Günther; Wolff, Stephan; Jansen, Olav; Siebner, Hartwig; Briken, Peer; Mohnke, Sebastian; Amelung, Till; Kneer, Jonas; Schiffer, Boris; Walter, Henrik; Kruger, Tillmann H C

    2017-01-01

    Previous research found increased brain responses of men with sexual interest in children (i.e., pedophiles) not only to pictures of naked children but also to pictures of child faces. This opens the possibly that pedophilia is linked (in addition to or instead of an aberrant sexual system) to an over-active nurturing system. To test this hypothesis we exposed pedophiles and healthy controls to pictures of infant and adult animals during functional magnetic resonance imaging of the brain. By using pictures of infant animals (instead of human infants), we aimed to elicit nurturing processing without triggering sexual processing. We hypothesized that elevated brain responses to nurturing stimuli will be found - in addition to other brain areas - in the anterior insula of pedophiles because this area was repeatedly found to be activated when adults see pictures of babies. Behavioral ratings confirmed that pictures of infant or adult animals were not perceived as sexually arousing neither by the pedophilic participants nor by the heathy controls. Statistical analysis was applied to the whole brain as well as to the anterior insula as region of interest. Only in pedophiles did infants relative to adult animals increase brain activity in the anterior insula, supplementary motor cortex, and dorsolateral prefrontal areas. Within-group analysis revealed an increased brain response to infant animals in the left anterior insular cortex of the pedophilic participants. Currently, pedophilia is considered the consequence of disturbed sexual or executive brain processing, but details are far from known. The present findings raise the question whether there is also an over-responsive nurturing system in pedophilia.

  8. Perspectives from the symposium: The role of nutrition in infant and toddler brain and behavioral development.

    Science.gov (United States)

    Rosales, Francisco J; Zeisel, Steven H

    2008-06-01

    This symposium examined current trends in neuroscience and developmental psychology as they apply to assessing the effects of nutrients on brain and behavioral development of 0-6-year-olds. Although the spectrum of nutrients with brain effects has not changed much in the last 25 years, there has been an explosion in new knowledge about the genetics, structure and function of the brain. This has helped to link the brain mechanistic pathway by which these nutrients act with cognitive functions. A clear example of this is linking of brain structural changes due to hypoglycemia versus hyperglycemia with cognitive functions by using magnetic resonance imaging (MRI) to assess changes in brain-region volumes in combination with cognitive test of intelligence, memory and processing speed. Another example is the use of event-related potential (ERP) studies to show that infants of diabetic mothers have impairments in memory from birth through 8 months of age that are consistent with alterations in mechanistic pathways of memory observed in animal models of perinatal iron deficiency. However, gaps remain in the understanding of how nutrients and neurotrophic factors interact with each other in optimizing brain development and function.

  9. MR imaging methods for assessing fetal brain development.

    Science.gov (United States)

    Rutherford, Mary; Jiang, Shuzhou; Allsop, Joanna; Perkins, Lucinda; Srinivasan, Latha; Hayat, Tayyib; Kumar, Sailesh; Hajnal, Jo

    2008-05-01

    Fetal magnetic resonance imaging provides an ideal tool for investigating growth and development of the brain in vivo. Current imaging methods have been hampered by fetal motion but recent advances in image acquisition can produce high signal to noise, high resolution 3-dimensional datasets suitable for objective quantification by state of the art post acquisition computer programs. Continuing development of imaging techniques will allow a unique insight into the developing brain, more specifically process of cell migration, axonal pathway formation, and cortical maturation. Accurate quantification of these developmental processes in the normal fetus will allow us to identify subtle deviations from normal during the second and third trimester of pregnancy either in the compromised fetus or in infants born prematurely.

  10. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    Science.gov (United States)

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed

  11. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants.

    Science.gov (United States)

    Akazawa, Kentaro; Chang, Linda; Yamakawa, Robyn; Hayama, Sara; Buchthal, Steven; Alicata, Daniel; Andres, Tamara; Castillo, Deborrah; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2016-03-01

    Diffusion tensor imaging (DTI) has been widely used to investigate the development of the neonatal and infant brain, and deviations related to various diseases or medical conditions like preterm birth. In this study, we created a probabilistic map of fiber pathways with known associated functions, on a published neonatal multimodal atlas. The pathways-of-interest include the superficial white matter (SWM) fibers just beneath the specific cytoarchitectonically defined cortical areas, which were difficult to evaluate with existing DTI analysis methods. The Jülich cytoarchitectonic atlas was applied to define cortical areas related to specific brain functions, and the Dynamic Programming (DP) method was applied to delineate the white matter pathways traversing through the SWM. Probabilistic maps were created for pathways related to motor, somatosensory, auditory, visual, and limbic functions, as well as major white matter tracts, such as the corpus callosum, the inferior fronto-occipital fasciculus, and the middle cerebellar peduncle, by delineating these structures in eleven healthy term-born neonates. In order to characterize maturation-related changes in diffusivity measures of these pathways, the probabilistic maps were then applied to DTIs of 49 healthy infants who were longitudinally scanned at three time-points, approximately five weeks apart. First, we investigated the normal developmental pattern based on 19 term-born infants. Next, we analyzed 30 preterm-born infants to identify developmental patterns related to preterm birth. Last, we investigated the difference in diffusion measures between these groups to evaluate the effects of preterm birth on the development of these functional pathways. Term-born and preterm-born infants both demonstrated a time-dependent decrease in diffusivity, indicating postnatal maturation in these pathways, with laterality seen in the corticospinal tract and the optic radiation. The comparison between term- and preterm

  12. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. MRI of normal fetal brain development

    International Nuclear Information System (INIS)

    Prayer, Daniela; Kasprian, Gregor; Krampl, Elisabeth; Ulm, Barbara; Witzani, Linde; Prayer, Lucas; Brugger, Peter C.

    2006-01-01

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed

  14. MRI of normal fetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria)]. E-mail: Daniela.prayer@meduniwien.ac.at; Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Krampl, Elisabeth [Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna (Austria); Ulm, Barbara [Department of Prenatal Diagnosis, Medical University of Vienna, Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna (Austria)

    2006-02-15

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.

  15. Trace element determinations in brain tissues from normal and clinically demented individuals

    International Nuclear Information System (INIS)

    Saiki, Mitiko; Genezini, Frederico A.; Leite, Renata E.P.; Grinberg, Lea T.; Ferretti, Renata E.L.; Suemoto, Claudia; Pasqualucci, Carlos A.; Jacob-Filho, Wilson

    2013-01-01

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  16. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    Directory of Open Access Journals (Sweden)

    Eridan Rocha-Ferreira

    2016-01-01

    Full Text Available Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  17. The influences of silent cerebral infarction and hypertension on brain atrophy in normal adults

    International Nuclear Information System (INIS)

    Zhefeng, Quan; Bokura, Hirokazu; Iijima, Kenichi; Oguro, Hiroaki; Yamaguchi, Shuhei

    2008-01-01

    We studied the influences of silent brain infarction (SBI) and hypertension on brain atrophy and its longitudinal progression in healthy adults. MRI scans were performed on 109 neurologically normal adults (mean age, 58.6±5.8 years), with follow-up at an average of 4.9 years later. Patient histories of hypertension, smoking habits, and alcohol consumption were examined. We evaluated brain atrophy using the brain atrophy index (BAI; the ratio of the brain area to the intracranial area) and the ventricular atrophy index (VAI; the ratio of the ventricular area to the brain area) on MRI T1-weighted images at the levels of the basal ganglia and lateral ventricle in horizontal sections. There were no differences in age, sex, dyslipidemia, body mass index (BMI), smoking habit, and alcohol consumption between the normal group and the SBI or hypertension group. The BAI was significantly lower at entry for the SBI (+) group than for the SBI (-) group at both the basal ganglia and lateral ventricle levels (basal ganglia level, p=0.02; and lateral ventricle level, p=0.05). Moreover, the VAI was significantly higher at entry for the SBI (+) group than for the SBI (-) group at the lateral ventricle level (p=0.03). Furthermore, the BAI was significantly lower at entry for the hypertensive group than for the non-hypertensive group at the basal ganglia level (p=0.007). There were no significant differences in the annual variations of the BAI and VAI between the normal group and the SBI (+) or hypertensive group. The present results suggest that the SBI and hypertension are accelerating factors for brain atrophy and ventricular dilatation. (author)

  18. The influences of silent cerebral infarction and hypertension on brain atrophy in normal adults

    Energy Technology Data Exchange (ETDEWEB)

    Zhefeng, Quan; Bokura, Hirokazu; Iijima, Kenichi; Oguro, Hiroaki; Yamaguchi, Shuhei [Shimane Univ., Faculty of Medicine, Izumo, Shimane (Japan)

    2008-03-15

    We studied the influences of silent brain infarction (SBI) and hypertension on brain atrophy and its longitudinal progression in healthy adults. MRI scans were performed on 109 neurologically normal adults (mean age, 58.6{+-}5.8 years), with follow-up at an average of 4.9 years later. Patient histories of hypertension, smoking habits, and alcohol consumption were examined. We evaluated brain atrophy using the brain atrophy index (BAI; the ratio of the brain area to the intracranial area) and the ventricular atrophy index (VAI; the ratio of the ventricular area to the brain area) on MRI T1-weighted images at the levels of the basal ganglia and lateral ventricle in horizontal sections. There were no differences in age, sex, dyslipidemia, body mass index (BMI), smoking habit, and alcohol consumption between the normal group and the SBI or hypertension group. The BAI was significantly lower at entry for the SBI (+) group than for the SBI (-) group at both the basal ganglia and lateral ventricle levels (basal ganglia level, p=0.02; and lateral ventricle level, p=0.05). Moreover, the VAI was significantly higher at entry for the SBI (+) group than for the SBI (-) group at the lateral ventricle level (p=0.03). Furthermore, the BAI was significantly lower at entry for the hypertensive group than for the non-hypertensive group at the basal ganglia level (p=0.007). There were no significant differences in the annual variations of the BAI and VAI between the normal group and the SBI (+) or hypertensive group. The present results suggest that the SBI and hypertension are accelerating factors for brain atrophy and ventricular dilatation. (author)

  19. The general movement assessment helps us to identify preterm infants at risk for cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Christa eEinspieler

    2016-03-01

    Full Text Available Apart from motor and behavioral dysfunctions, deficits in cognitive skills are among the well-documented sequelae of preterm birth. However, early identification of infants at risk for poor cognition is still a challenge, as no clear association between pathological findings based on neuroimaging scans and cognitive functions have been detected as yet. The Prechtl General Movement Assessment (GMA has shown its merits for the evaluation of the integrity of the young nervous system. It is a reliable tool for identifying infants at risk for neuromotor deficits. Recent studies on preterm infants demonstrate that abnormal general movements also reflect impairments of brain areas involved in cognitive development. The aim of this systematic review was to discuss studies that included (i the Prechtl GMA applied in preterm infants, and (ii cognitive outcome measures in six data bases. Seven studies met the inclusion criteria and yielded the following results: (a children born preterm with consistently abnormal general movements up to 8 weeks after term had lower intelligence quotients at school age than children with an early normalization of general movements; (b from 3 to 5 months after term, several qualitative and quantitative aspects of the concurrent motor repertoire, including postural patterns, were predictive of intelligence at 7 to 10 years of age. These findings in 428 individuals born preterm suggest that normal general movements along with a normal motor repertoire during the first months after term are markers for normal cognitive development until at least age 10.

  20. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    International Nuclear Information System (INIS)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi

    1994-01-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author)

  1. Magnetic resonance imaging of neonatal brain. Assessment of normal and abnormal findings

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Koh; Kadono, Naoko; Kawase, Shohji; Kihara, Minako; Matsuo, Yasutaka; Yoshioka, Hiroshi; Kinugasa, Akihiko; Sawada, Tadashi (Kyoto Prefectural Univ. of Medicine (Japan))

    1994-11-01

    To establish the normal MRI appearance of the neonatal brain, magnetic resonance imaging (MRI) was performed on 124 neonates who admitted to our neonatal intensive care unit. Degree of myelination, ventricular size, width of the extracerebral space and focal lesion in the brain were evaluated to investigate the relationship between MRI findings of neonatal brain and the neurological prognosis. 85 neonates underwent MRI both at neonatal period and at the corrected age of one year. The change of abnormal MRI findings was evaluated. 19 neonates had abnormal neurological outcome on subsequent examinations. Delayed myelination, ventriculomegaly and large extracerebral space were seen in 13, 7 and 9 neonates respectively. 4, 3 and 5 neonates out of them showed abnormal neurological prognosis respectively. Of the 19 neonates with focal lesion in MRI, 2 had parenchymal hematoma in the brain, 2 had subdural hematoma, 5 had chronic hematoma following subependymal hemorrhage, 6 had cystic formation following subependymal hemorrhage, 2 had subcortical leukomalacia, one had periventricular leukomalacia and one had cyst in the parenchyma of cerebellum. 4 neonates of 19 with focal lesion in MRI showed abnormal development. Of the neonates who had abnormal neurological prognosis, 7 neonates showed no abnormal finding in MRI at neonatal period. 3 of them had mild mental retardation. MRI shows promise in the neonatal period. It facilitates recognition of abnormalities of neonatal brain and may be used to predict abnormal neurologic outcome. However physiological change in the brain of neonates, especially of premature neonates, should be considered on interpreting these findings. Awareness of developmental features should help to minimize misinterpretation of normal changes in the neonatal brain. (author).

  2. Thresholds of Tone Burst Auditory Brainstem Responses for Infants and Young Children with Normal Hearing in Taiwan

    Directory of Open Access Journals (Sweden)

    Chung-Yi Lee

    2007-10-01

    Conclusion: Based on the published research and our study, we suggest setting the normal criterion levels for infants and young children in Taiwan of the tone burst auditory brainstem response to air-conducted tones as 30 dB nHL for 500 and 1000 Hz, and 25 dB nHL for 2000 and 4000 Hz.

  3. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  4. Investigation of infant brain with or without hydrocephalous in our environment using anterior transfontanelle ultrasound scan

    Directory of Open Access Journals (Sweden)

    Tobechukwu T Marchie

    2013-01-01

    Full Text Available Aim: A prospective study aimed to suggest easy and simple reproducible ventricular site that will be basic measurement plane and normal dimension determined, correlated to sizes of infants for comparative evaluation of hydrocephalous infants and should be reproducible in follow-up. Materials and Methods: A prospective study done in University of Benin Teaching Hospital Benin, Nigeria. This study used 50 consecutive infants with Ultrasound scan (US diagnosis of hydrocephalus and a control group of 50 US normal from 1 st January 2007 to 30 th June 2008. The infants were scan through the mid-patent anterior fontanelle in sagittal, and transverse planes with minor angulations to properly outline the ventricles and the position of measurement determined at the foramen of Monro of lateral ventricles and the diameter measured. The infants′ weight, crown-heel length, and head circumference were measured and body mass index (BMI calculated and correlated to lateral ventricular measurement. Data analysis was conducted using the Statistical Package for Social Sciences (SPSS Inc, USA, Version 11.0. Results: There was no statistically sex and age-related difference. There is statistically comparative high mean weight and height and lower BMI in hydrocephalic infants as against the control group (P < 0.001. The mean head circumference for hydrocephalus was 45.6 (± 10.5 standard deviation [SD], whereas the control group was 35.9 (± 2.7 SD with P < 0.001. The mean diameter of the anterior horn of left and right lateral ventricles at the level of foramen of Monro in hydrocephalic subjects is 18.4 mm ± 14.3 mm and 20.1 mm ± 16.8 mm with median diameter of 14.1 mm and 15.2 mm, respectively, whereas control group is 2.5 mm ± 0.6 mm and 2.5 mm ± 0.7 mm with median diameter of 2.5 mm and 2.4 mm, respectively. Conclusion: Transfontanelle US was found highly useful in investigation of hydrocephalous in infant.

  5. Decoding Pedophilia: Increased Anterior Insula Response to Infant Animal Pictures

    Directory of Open Access Journals (Sweden)

    Jorge Ponseti

    2018-01-01

    Full Text Available Previous research found increased brain responses of men with sexual interest in children (i.e., pedophiles not only to pictures of naked children but also to pictures of child faces. This opens the possibly that pedophilia is linked (in addition to or instead of an aberrant sexual system to an over-active nurturing system. To test this hypothesis we exposed pedophiles and healthy controls to pictures of infant and adult animals during functional magnetic resonance imaging of the brain. By using pictures of infant animals (instead of human infants, we aimed to elicit nurturing processing without triggering sexual processing. We hypothesized that elevated brain responses to nurturing stimuli will be found – in addition to other brain areas – in the anterior insula of pedophiles because this area was repeatedly found to be activated when adults see pictures of babies. Behavioral ratings confirmed that pictures of infant or adult animals were not perceived as sexually arousing neither by the pedophilic participants nor by the heathy controls. Statistical analysis was applied to the whole brain as well as to the anterior insula as region of interest. Only in pedophiles did infants relative to adult animals increase brain activity in the anterior insula, supplementary motor cortex, and dorsolateral prefrontal areas. Within-group analysis revealed an increased brain response to infant animals in the left anterior insular cortex of the pedophilic participants. Currently, pedophilia is considered the consequence of disturbed sexual or executive brain processing, but details are far from known. The present findings raise the question whether there is also an over-responsive nurturing system in pedophilia.

  6. Optical coherence tomography of the preterm eye: from retinopathy of prematurity to brain development

    Science.gov (United States)

    Rothman, Adam L; Mangalesh, Shwetha; Chen, Xi; Toth, Cynthia A

    2016-01-01

    Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment. PMID:28539807

  7. Improving the treatment of infant pain

    Science.gov (United States)

    Moultrie, Fiona; Slater, Rebeccah; Hartley, Caroline

    2017-01-01

    Purpose of review Pain management presents a major challenge in neonatal care. Newborn infants who require medical treatment can undergo frequent invasive procedures during a critical period of neurodevelopment. However, adequate analgesic provision is infrequently and inconsistently provided for acute noxious procedures because of limited and conflicting evidence regarding analgesic efficacy and safety of most commonly used pharmacological agents. Here, we review recent advances in the measurement of infant pain and discuss clinical trials that assess the efficacy of pharmacological analgesia in infants. Recent findings Recently developed measures of noxious-evoked brain activity are sensitive to analgesic modulation, providing an objective quantitative outcome measure that can be used in clinical trials of analgesics. Summary Noxious stimulation evokes changes in activity across all levels of the infant nervous system, including reflex activity, altered brain activity and behaviour, and long-lasting changes in infant physiological stability. A multimodal approach is needed if we are to identify efficacious and well tolerated analgesic treatments. Well designed clinical trials are urgently required to improve analgesic provision in the infant population. PMID:28375883

  8. Antenatal mother–infant bonding scores are related to maternal reports of infant crying behaviour

    NARCIS (Netherlands)

    Kommers, D.R.; Truijens, S.E.M.; Oei, S.G.; Bambang Oetomo, S.; Pop, V.J.M.

    2017-01-01

    Objective: To assess the relation between antenatal mother–infant bonding scores and maternal reports of infant crying behaviour. Background: Crying is normal behaviour and it is important for parent–infant bonding. Even though bonding starts antenatally, the relation between antenatal bonding

  9. MO-F-CAMPUS-T-01: Radiosurgery of Multiple Brain Metastases with Single-Isocenter VMAT: Optimizing Treatment Geometry to Reduce Normal Brain Dose

    International Nuclear Information System (INIS)

    Wu, Q; Snyder, K; Liu, C; Huang, Y; Li, H; Chetty, I; Wen, N

    2015-01-01

    Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas were the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API

  10. MO-F-CAMPUS-T-01: Radiosurgery of Multiple Brain Metastases with Single-Isocenter VMAT: Optimizing Treatment Geometry to Reduce Normal Brain Dose

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q [Wayne State University, Detroit, MI (United States); Snyder, K; Liu, C; Huang, Y; Li, H; Chetty, I; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2015-06-15

    Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas were the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API.

  11. Neuroprotection in Preterm Infants

    Directory of Open Access Journals (Sweden)

    R. Berger

    2015-01-01

    Full Text Available Preterm infants born before the 30th week of pregnancy are especially at risk of perinatal brain damage which is usually a result of cerebral ischemia or an ascending intrauterine infection. Prevention of preterm birth and early intervention given signs of imminent intrauterine infection can reduce the incidence of perinatal cerebral injury. It has been shown that administering magnesium intravenously to women at imminent risk of a preterm birth leads to a significant reduction in the likelihood of the infant developing cerebral palsy and motor skill dysfunction. It has also been demonstrated that delayed clamping of the umbilical cord after birth reduces the rate of brain hemorrhage among preterm infants by up to 50%. In addition, mesenchymal stem cells seem to have significant neuroprotective potential in animal experiments, as they increase the rate of regeneration of the damaged cerebral area. Clinical tests of these types of therapeutic intervention measures appear to be imminent. In the last trimester of pregnancy, the serum concentrations of estradiol and progesterone increase significantly. Preterm infants are removed abruptly from this estradiol and progesterone rich environment. It has been demonstrated in animal experiments that estradiol and progesterone protect the immature brain from hypoxic-ischemic lesions. However, this neuroprotective strategy has unfortunately not yet been subject to sufficient clinical investigation.

  12. Regional ADC values of the normal brain: differences due to age, gender, and laterality

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Ishigaki, Takeo [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya 466-8550 (Japan); Sato, Kimihide; Katagiri, Toshio; Mimura, Takeo [Department of Radiology, First Kamiida General Hospital (Japan)

    2003-01-01

    The purpose of this study was to evaluate the stability of measurement for apparent diffusion coefficient (ADC) values in normal brain, to clarify the effect of aging on ADC values, to compare ADC values between men and women, and to compare ADC values between right and left sides of the brain. To evaluate the stability of measurements, five normal volunteers (four men and one woman) were examined five times on different days. Then, 294 subjects with normal MR imaging (147 men and 147 women; age range 20-89 years) were measured. The ADC measurement in normal volunteers was stable. The ADC values stayed within the 5% deviation of average values in all volunteers (mean{+-}standard deviation 2.3{+-}1.2%). The ADC values gradually increased by aging in all regions. In thalamus, no significant difference was seen between right and left in the subjects under 60 years; however, right side showed higher values in the subjects over 60 years (p<0.01). In the subjects under 60 years, women showed higher values in right frontal, bilateral thalamus, and temporal (p<0.01); however, in the subjects over 60 years, no region showed difference between men and women. The knowledge obtained in this study may be helpful to understand the developmental and aging mechanisms of normal brain and may be useful for the future quantitative study as a reference. (orig.)

  13. Regional ADC values of the normal brain: differences due to age, gender, and laterality

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Ishigaki, Takeo; Sato, Kimihide; Katagiri, Toshio; Mimura, Takeo

    2003-01-01

    The purpose of this study was to evaluate the stability of measurement for apparent diffusion coefficient (ADC) values in normal brain, to clarify the effect of aging on ADC values, to compare ADC values between men and women, and to compare ADC values between right and left sides of the brain. To evaluate the stability of measurements, five normal volunteers (four men and one woman) were examined five times on different days. Then, 294 subjects with normal MR imaging (147 men and 147 women; age range 20-89 years) were measured. The ADC measurement in normal volunteers was stable. The ADC values stayed within the 5% deviation of average values in all volunteers (mean±standard deviation 2.3±1.2%). The ADC values gradually increased by aging in all regions. In thalamus, no significant difference was seen between right and left in the subjects under 60 years; however, right side showed higher values in the subjects over 60 years (p<0.01). In the subjects under 60 years, women showed higher values in right frontal, bilateral thalamus, and temporal (p<0.01); however, in the subjects over 60 years, no region showed difference between men and women. The knowledge obtained in this study may be helpful to understand the developmental and aging mechanisms of normal brain and may be useful for the future quantitative study as a reference. (orig.)

  14. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  15. Heart size in new born infants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Won; Yu, Yun Jeong; Chung, Hye Kyung [Eul-ji General Hospital, Seoul (Korea, Republic of)

    1985-10-15

    Cardiac size of 291 new-bone infants was measured using the method illustrated on Fig 1. Among the 291 infants, 53 were asphyxiated, and asphyxia was only regarded from Apgar score below 6 on 1 min. and 5 min. Remaining 238 infants were normal, and classified to group with lung abnormalities and without lung abnormalities on chest A-P film. The results are as follows; 1. The average CTR. of normal group was 52.37. (C/T1; 54.89, C/T2; 49.43, C/T3; 49.15, C/T4;55.97) 2. The average CTR. of asphyxiated group was 54.91 (C/T1; 57.13, C/T2; 51.69, C/T3; 51.94, C/T4;58.25) 3. Consequently, asphyxiated infants revealed larger cardiac size than normal infant group.

  16. 125 Brain Games for Babies: Simple Games To Promote Early Brain Development.

    Science.gov (United States)

    Silberg, Jackie

    Scientists believe that the stimulation that infants and young children receive determines which synapses form in the brain. This book presents 125 games for infants from birth to 12 months and is designed to nurture brain development. The book is organized chronologically in 3-month increments. Each game description includes information from…

  17. Home environment, brain injury, & school performance in LBW survivors.

    Science.gov (United States)

    Mahoney, Ashley Darcy; Pinto-Martin, Jennifer; Hanlon, Alexandra

    2014-01-01

    There has been substantial research on low birthweight (LBW) as a predictor of adverse educational and cognitive outcomes. LBW infants perform worse on cognitive battery tests compared to children born at normal birthweight; however, children exposed to similar risks do not all share the same experiences. The complex, interrelated factors responsible for poor cognitive and achievement performance vary for different populations, but researchers hypothesize that the home environment may influence the infants' long-term health outcomes. Examine the home environment as a moderator in the causal pathway from neonatal brain injury to school performance in a secondary analysis of a prospectively studied, geographically defined cohort from the Neonatal Brain Hemorrhage Study. The secondary analysis sample included 543 infants with birthweights of 501 to 2,000 g who were born consecutively in three community hospitals in New Jersey between 1984 and 1986. School performance at age 9 was measured by the Woodcock-Johnson Tests of Achievement. The home environment variables were tested and analyzed using multistep hierarchical regression modeling. A moderating effect between the variable neighborhood observations and brain injury was demonstrated for the outcome math score. The moderating relationship was found in the category of children without brain injury (β = 1.76, p = .005). There were statistically significant and potentially clinical meaningful models when looking at the home environmental variables as they relate to reading and math scores. The findings suggest that at least one variable within a LBW child's socio-environmental milieu can moderate the effects of perinatal brain injury on school performance outcomes.

  18. Differential effects of intrauterine growth restriction on brain structure and development in preterm infants: a magnetic resonance imaging study.

    Science.gov (United States)

    Padilla, Nelly; Falcón, Carles; Sanz-Cortés, Magdalena; Figueras, Francesc; Bargallo, Núria; Crispi, Fátima; Eixarch, Elisenda; Arranz, Angela; Botet, Francesc; Gratacós, Eduard

    2011-03-25

    Previous evidence suggests that preterm newborns with intrauterine growth restriction (IUGR) have specific neurostructural and neurodevelopmental anomalies, but it is unknown whether these effects persist in early childhood. We studied a sample of 18 preterm IUGR, 15 preterm AGA - born between 26 and 34 weeks of gestational age (GA) - and 15 healthy born-term infants. Infants were scanned at 12 months corrected age (CA), in a 3T scanner, without sedation. Analyses were made by automated lobar volumetry and voxel-based morphometry (VBM). The neurodevelopmental outcome was assessed in all subjects at 18 months CA with the Bayley Scale for Infant and Toddler Development, third edition. IUGR infants had reduced relative volumes for the insular and temporal lobes. According to VBM, IUGR infants had bilateral reduced gray matter (GM) in the temporal, parietal, frontal, and insular regions compared with the other groups. IUGR infants had increased white matter (WM) in temporal regions compared to the AGA group and in frontal, parietal, occipital, and insular regions compared to the term group. They also showed decreased WM in the cerebellum and a non-significant trend in the hippocampus compared to term infants. IUGR infants had reduced neurodevelopmental scores, which were positively correlated with GM in various regions. These data suggest that the IUGR induces a distinct brain pattern of structural changes that persist at 1 year of life and are associated with specific developmental difficulties. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI

    DEFF Research Database (Denmark)

    Cramer, Stig Præstekær; Simonsen, Helle Juhl; Frederiksen, Jette Lautrup Battistini

    2013-01-01

    To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics.......To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics....

  20. Effect of 60Co-irradiation on normal and low protein diet fed rat brain

    International Nuclear Information System (INIS)

    Hasan, S.S.; Habibullah, M.

    1980-01-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain. (orig.) [de

  1. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    Science.gov (United States)

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating brain structural changes during this early developmental period provides new insights into the complicated processes of both typical brain development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional gradients of maturation in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018. Published by Elsevier Inc.

  2. Differences in trace element concentrations between Alzheimer and 'normal' human brain tissue using instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Panayi, A.E.; Spyrou, N.M.

    2001-01-01

    Brain samples obtained from the Netherlands Brain Bank were taken from the superior frontal gyrus, superior parietal gyrus and medial temporal gyrus of 'normal' and Alzheimer's disease subjects in order to determine elemental concentrations and compare elemental composition. Brain samples from the cortex were taken from 18 subjects, eight 'normals' (6 males and 2 females) and eleven with Alzheimer's disease, (1 male and 10 females) and the following elemental concentrations, Na, K, Fe, Zn, Se, Br, Rb, Ag, Cs, Ba, and Eu were determined by instrumental neutron activation analysis (INAA). The element which showed the greatest difference was Br, which was found to be significantly elevated in the cortex of Alzheimer's disease brains as compared to the 'normals' at significance (p < 0.001). (author)

  3. Normal ventricular size and changes with age in pediatric groups on computed tomography

    International Nuclear Information System (INIS)

    Nakada, Yoshitaka; Nose, Tadao; Enomoto, Takao; Maki, Yutaka

    1980-01-01

    The purpose of this report is to determine the normal value of the ventricular size on CT, snd analyze its changes with age in normal pediatric group. Materials and Methods: We searched through our 240 normal pediatric CT film files, aged 4 months to 14 years. Scans were performed on Hitachi CT-II scanner, using 10 mm collimation. Results: 1. The width of the third ventricle showed the same value in all pediatric groups, the mean value of its being 4.8 mm (SD 1.3 mm). 2. Bicaudate cerebroventricular indexes of the anterior horns of lateral ventricles (interecarlate distance/transverse diameter of the brain x100) were 15.3 in infants under one year, 13.8 in the age of one year and 12.7 in the children over two years. The indexes were almost the same in old age group over the age of three years. 3. The upper limit of the normal inverse cella media index (minium width of cella media/transverse diameter of the brain x100) was 31. Therefore the cases with the index above this range can be diagnosed as hydrocephalic. 4. The shape of the anterior horns of lateral ventricles was Y-shaped in infants under one year. II-shaped (paralied shaped) in the age of 1 - 12 years, and again it was Y-shaped in the group over 12 years. 5. In the age group under one year, the temporal horns of the lateral ventricles were visualized in about 60% cases, while the figure decreased to 20% in the older group. (author)

  4. Asymptomatic pons tuberculoma in an infant with miliary tuberculosis

    International Nuclear Information System (INIS)

    Uysal, Gulnar; Guven, Akif; Gursoy, Tugba; Altunc, Umut

    2005-01-01

    Miliary tuberculosis is caused by the hematogenous spread of Mycobacterium tuberculosis and consists of 1.5% of all tuberculosis cases. It is seen mostly in infants because of the immature immune system, and central nervous system CNS involvement is not rare. Tuberculomas are rarely seen in the localized form of CNS tuberculosis, and only 4% are localized in the brain stem. We report a 4.5-month-old infant who deteriorated during follow-up with the diagnosis of cytomegalovirus pneumonia, and afterwards received the diagnosis of miliary tuberculosis. Although the baby had no neurologic abnormality and cerebrospinal fluid findings were normal, cranial MRI revealed contrast enhanced nodular lesions in pons, cerebellum, and right parietal region. The case is presented to intensify the importance of CNS investigation even if the patient with miliary tuberculosis has no neurologic finding. (author)

  5. Computed tomography of the dog's brain: normal aspects and anatomical correlation

    International Nuclear Information System (INIS)

    Lorigados, C.A.B.; Pinto, A.C.B.F.

    2013-01-01

    Normal tomographic images of dog's heads were obtained, aimed to familiarize them with the normal aspects of the brain and correlate these findings with the relevant anatomy of the region studied. Several anatomical structures, such as the parenchyma of the frontal, parietal, temporal and occipital lobes, the longitudinal fissure, the ventricular system, the cerebellum, the olfactory bulb, the corpus callosum, diencephalon, the pons, the medulla oblongata and the chiasmatic sulcus were directly identified or were related to neighboring structures which helped in their identification. (author)

  6. SPM analysis of cerebrovascular reserve capacity after stimulation with acetazolamide measured by Tc-99m ECD SPECT in normal brain MRI patient

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M. H.; Yoon, S. N.; Yoon, J. K.; Cho, C. W. [College of Medicine, Univ. of Ajou, Suwon (Korea, Republic of)

    2003-07-01

    This study was undertaken to evaluate normal response of acetazolamide in normal individuals, whose brain MRI is normal, using SPM99. In total, 10 Tc- 99m ECD brain SPECT were evaluated retrospectively. The half of the patients were male. Their mean age was 47.1 years old with a range of 33-61 years. They all visited our neurology department to evaluate stroke symptom. Their brain MRI was normal. Rest/acetazolamide brain SPECT was perfomed using Tc-99m ECD and the sequential injection and subtraction method. SPECT was acquired using fanbeam collimators and triple-head gamma camera (MultiSPECT III, Siemens medical systems, Inc. Hoffman Estates, III, USA). Chang's attenuation correction was applied their brain SPECT revealed normal rCBF pattern in visual analysis by two nuclear physician and they were diagnosed clinically normal. Using SPM method, we compared rest brain SPECT images with those of acetazolamide brain SPECT and measured the extent of the area with significant perfusion change (P<0.05) in predefined 34 cerebral regions. Acetazolamide brain SPECT showed no significant decreased region in comparison to rest brain SPECT. Only small portion of left mid temporal gyrus revealed increased rCBF on acetazolamide brain SPECT in comparison to rest brain SPECT. It apperas that there is no significant change in rCBF between rest and acetazolamide brain SPECT using Tc-99m ECD. The small number of this study is limitation of our study.

  7. Reversible changes in brain glucose metabolism following thyroid function normalization in hyperthyroidism.

    Science.gov (United States)

    Miao, Q; Zhang, S; Guan, Y H; Ye, H Y; Zhang, Z Y; Zhang, Q Y; Xue, R D; Zeng, M F; Zuo, C T; Li, Y M

    2011-01-01

    Patients with hyperthyroidism frequently present with regional cerebral metabolic changes, but the consequences of endocrine-induced brain changes after thyroid function normalization are unclear. We hypothesized that the changes of regional cerebral glucose metabolism are related to thyroid hormone levels in patients with hyperthyroid, and some of these changes can be reversed with antithyroid therapy. Relative regional cerebral glucose metabolism was compared between 10 new-onset untreated patients with hyperthyroidism and 20 healthy control participants by using brain FDG-PET scans. Levels of emotional distress were evaluated by using the SAS and SDS. Patients were treated with methimazole. A follow-up PET scan was performed to assess metabolic changes of the brain when thyroid functions normalized. Compared with controls, patients exhibited lower activity in the limbic system, frontal lobes, and temporal lobes before antithyroid treatment. There were positive correlations between scores of depression and regional metabolism in the cingulate and paracentral lobule. The severity of depression and anxiety covaried negatively with pretreatment activity in the inferior temporal and inferior parietal gyri respectively. Compared with the hyperthyroid status, patients with normalized thyroid functions showed an increased metabolism in the left parahippocampal, fusiform, and right superior frontal gyri. The decrease in both FT3 and FT4 was associated with increased activity in the left parahippocampal and right superior frontal gyri. The changes of regional cerebral glucose metabolism are related to thyroid hormone levels in patients with hyperthyroidism, and some cerebral hypometabolism can be improved after antithyroid therapy.

  8. Effectiveness of zinc supplementation to full term normal infants: a community based double blind, randomized, controlled, clinical trial.

    Directory of Open Access Journals (Sweden)

    K V Radhakrishna

    Full Text Available The study was aimed to test whether zinc supplementation, if initiated early, can prevent stunting and promote optimum body composition in full term infants. For this, full term pregnant women from low income urban community were enrolled and were followed-up for 24 months postpartum. Body mass index (BMI was calculated from maternal weight and height that were collected one month after delivery. Infants' weight, and length, head, chest and mid upper arm circumferences and skin fold thicknesses at triceps, biceps and subscapular area were collected at baseline (before randomization and once in three months up till 24 months. Three hundred and twenty four infants were randomized and allocated to zinc (163 or placebo (161 groups respectively. Supplementation of zinc was initiated from 4 months of age and continued till children attained 18 months. The control (placebo group of children received riboflavin 0.5 mg/day, whereas the intervention (zinc group received 5 mg zinc plus riboflavin 0.5 mg/day. When infants were 18 months old, dietary intakes (in 78 children were calculated by 24 hour diet recall method and hemoglobin, zinc, copper and vitamin A were quantified in blood samples collected from 70 children. The results showed prevalence of undernutrition (body mass index <18.5 in 37% of the mothers. Mean±SD calorie consumption and zinc intakes from diets in infants were 590±282.8 Kcal/day and 0.97±0.608 mg/day respectively. Multiple linear regression models demonstrated maternal weight as a strong predictor of infants' weight and length at 18 months of age. As expected, diarrhea duration impacted infants' linear growth and weight gain adversely. Zinc supplementation for a mean period of 190 days, starting from 4 months up to 18 months of age, in full term normal infants, consuming an average energy of 590 Kcal/day, had significant effect on the skin fold thicknesses, but not on their linear growth.Clinical Trail Registration India (CTRI CTRI

  9. Attachment Figure's Regulation of Infant Brain and Behavior.

    Science.gov (United States)

    Sullivan, Regina M

    2017-01-01

    Altricial infants (i.e., requiring parental care for survival), such as humans and rats, form an attachment to their caregiver and receive the nurturing and protections needed for survival. Learning has a strong role in attachment, as is illustrated by strong attachment formed to non-biological caregivers of either sex. Here we summarize and integrate results from animal and human infant attachment research that highlights the important role of social buffering (social presence) of the stress response by the attachment figure and its effect on infant processing of threat and fear through modulation of the amygdala. Indeed, this work suggests the caregiver switches off amygdala function in rodents, although recent human research suggests a similar process in humans and nonhuman primates. This cross-species analysis helps provide insight and unique understanding of attachment and its role in the neurobiology of infant behavior within attachment.

  10. R2* mapping for brain iron: associations with cognition in normal aging.

    Science.gov (United States)

    Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2015-02-01

    Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Functional magnetic resonance imaging of the normal and abnormal visual system in early life

    DEFF Research Database (Denmark)

    Born, A.P.; Miranda Gimenez-Ricco, Maria Jo; Rostrup, Egill

    2000-01-01

    in very young infants and in infants with brain damage. We examined 15 preterm infants, 12 children suspected of having a cerebral visual impairment and 10 children with a normal visual system, all of whom were either spontaneously asleep or sedated with chloral hydrate. Cortical response to stroboscopic...... showed a signal decrease. The activated cortical volumes showed a linear relation to age for healthy children younger than 90 weeks PMA, but were small in children with visual impairment. In two children with unilateral damage to the optic radiations, activation was strongly asymmetrical with greatest......Functional magnetic resonance imaging (fMRI) in young children may provide information about the development of the visual cortex, and may have predictive value for later visual performance. The purpose of this study was to evaluate the usefulness of fMRI for examining cerebral processing of vision...

  12. Three-dimensional sonographic measurement of normal fetal brain volume during the second half of pregnancy

    NARCIS (Netherlands)

    N.M. Roelfsema; W.C.J. Hop (Wim); S.M. Boito; J.W. Wladimiroff (Juriy)

    2004-01-01

    textabstractObjectives: This study was undertaken to develop a three-dimensional (3D) ultrasound method of measuring fetal brain volume. Study design: Serial 3D sonographic measurements of fetal brain volume were made in 68 normal singleton pregnancies at 18 to 34 weeks of gestation. A comparison

  13. Cerebral oximetry in preterm infants

    DEFF Research Database (Denmark)

    Greisen, Gorm; Andresen, Bjørn; Plomgaard, Anne Mette

    2016-01-01

    Preterm birth constitutes a major cause of death before 5 years of age and it is a major cause of neurodevelopmental impairment across the world. Preterm infants are most unstable during the transition between fetal and newborn life during the first days of life and most brain damage occurs...... in this period. The brain of the preterm infant is accessible for tissue oximetry by near-infrared spectroscopy. Cerebral oximetry has the potential to improve the long-term outcome by helping to tailor the support of respiration and circulation to the individual infant's needs, but the evidence is still lacking....... The goals for research include testing the benefit and harms of cerebral oximetry in large-scale randomized trials, improved definition of the hypoxic threshold, better understanding the effects of intensive care on cerebral oxygenation, as well as improved precision of oximeters and calibration among...

  14. Embryonal Central Nervous System Neoplasms Arising in Infants: A Pediatric Brain Tumor Consortium Study

    Science.gov (United States)

    McLendon, Roger E.; Adekunle, Adesina; Rajaram, Veena; Kocak, Mehmet; Blaney, Susan M.

    2013-01-01

    Context Medulloblastomas (MBs) and atypical teratoid/rhabdoid tumors (AT/RTs) can be difficult to distinguish; however, histologic characterization is prognostically important. Objective To determine histologic and phenotypic markers associated with utility progression-free survival (PFS) and overall survival (OS) in children under 3 years of age with MBs and AT/RTs. Design We undertook a histologic and immunophenotypic study of MBs and AT/RTs arising in infants treated on a Pediatric Brain Tumor Consortium study. The 41 girls and 55 boys (aged 2 to 36 months at enrollment) exhibited 42 MBs, 26 AT/RTs and 28 other tumors. Median follow-up was 17.2 months from diagnosis (range: 1.4–93 months). Results Infants with AT/RT exhibited shorter PFS and OS when compared to infants with MBs (P=.0003 and P=.0005, respectively). A lack of nuclear BAF47 immunohistochemical reactivity (IHC) proved reliable in identifying AT/RTs. Among MBs, our data demonstrate that anaplasia correlated with OTX2 reactivity and both OTX2 and moderate to severe anaplasia correlated with PFS but not OS. “Nodularity” may be a positive prognostic factor. Conclusion Distinguishing AT/RT from MBs is clinically important. The diagnoses of AT/RT and MB can be reliably made from H&E stains in the majority of cases. However certain rare small cell variants of AT/RT can be confused with MB. IHC for BAF47 is clinically useful in diagnosing AT/RTs, particularly certain small cell AT/RTs. Among MBs, “nodularity”, absent or mild anaplasia, and lack of OTX2 expression may be important prognostic factors for improved PFS and OS in infants. PMID:21809989

  15. Effect of /sup 60/Co-irradiation on normal and low protein diet fed rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S S [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Zoology; Habibullah, M [Jawaharlal Nehru Univ., New Delhi (India). Neurobiology Lab.

    1980-06-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain.

  16. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered

    Science.gov (United States)

    Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C

    2006-01-01

    AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803

  17. MR signal intensity of the perirolandic cirtex in the neonate and infant

    International Nuclear Information System (INIS)

    Korogi, Y.; Takahashi, M.; Sumi, M.; Hirai, T,; Sakamoto, Y.; Ikushima, I.; Miyayama, H.

    1996-01-01

    Our purpose was to study the magnetic resonance (MR) signal intensity of the perirolandic gyri perinatally and to correlate it with the histological findings in formalin-fixed brains, focusing on myelination. MRI of 20 neurologically normal neonates and infants, of 37-64 weeks postconception (PCA), were studied retrospectively. We reviewed four formalin-fixed brains of infants 37-46 weeks PCA microscopically. The posterior cortex of the precentral gyrus (P-PRE) and the anterior cortex of the postcentral gyrus (A-PST) had different signal intensity form the adjacent surrounding cortex. On T1-weighted images P-PRE and A-PST gave higher signal 41-44 weeks PCA; on T2-weighted images, they gave lower signal 37-51 weeks PCA. Histological examination revealed very little myelination of the nerve fibres within both the P-PRE and the A-PST, while considerable myelination was present in the internal capsule and central corona radiata. The changes in signal intensity in the perirolandic gyri may reflect not only the degree of myelination but also the more advanced development of the nerve cells, associated with rapid proliferation and formation of oligodendroglial cells, synapses and dendrites. They could be another important landmark for brain maturation. (orig.)

  18. Elemental analysis of the frontal lobe of 'normal' brain tissue and that affected by Alzheimer's disease

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    'Normal' brain tissue and brain tissue affected by Alzheimer's disease has been taken from the frontal lobe of both hemispheres and their elemental compositions in terms of major, minor and trace elements compared. Brain samples were obtained from the MRC Alzheimer's Disease Brain Bank, London. 25 samples were taken from 18 individuals (5 males and 13 females) of mean age 79.9 ± 7.3 years with pathologically confirmed Alzheimer's disease and 26 samples from 15 individuals (8 males and 7 females) of mean age 71.8 ± 13.0 years with no pathological sings of Alzheimer's disease ('normals'). The elemental concentration of the samples were determined by the techniques of Rutherford backscattering (RBS) analysis, particle induced X-ray emission (PIXE) analysis and instrumental neutron activation analysis (INAA). Na, Mg, Al, Cl, K, Sc, Fe, Zn, Se, Br, Rb and Cs were detected by INAA and significant differences in concentrations were found between concentrations in normal and Alzheimer tissue for the elements. Na, Cl, K, Se, Br and Rb, P, S, Cl, K, Ca, Fe, Zn and Cd were detected by PIXE analysis and significant differences found for the elements P, S, Cl, K and Ca. (author)

  19. Topographical Distribution of Arsenic, Manganese, and Selenium in the Normal Human Brain

    DEFF Research Database (Denmark)

    Larsen, Niels Agersnap; Pakkenberg, H.; Damsgaard, Else

    1979-01-01

    The concentrations of arsenic, manganese and selenium per gram wet tissue weight were determined in samples from 24 areas of normal human brains from 5 persons with ages ranging from 15 to 81 years of age. The concentrations of the 3 elements were determined for each sample by means of neutron...... activation analysis with radiochemical separation. Distinct patterns of distribution were shown for each of the 3 elements. Variations between individuals were found for some but not all brain areas, resulting in coefficients of variation between individuals of about 30% for arsenic, 10% for manganese and 20......% for selenium. The results seem to indicate that arsenic is associated with the lipid phase, manganese with the dry matter and selenium with the aqueous phase of brain tissue....

  20. Regional ADC values of the normal brain: differences due to age, gender, and laterality.

    Science.gov (United States)

    Naganawa, Shinji; Sato, Kimihide; Katagiri, Toshio; Mimura, Takeo; Ishigaki, Takeo

    2003-01-01

    The purpose of this study was to evaluate the stability of measurement for apparent diffusion coefficient (ADC) values in normal brain, to clarify the effect of aging on ADC values, to compare ADC values between men and women, and to compare ADC values between right and left sides of the brain. To evaluate the stability of measurements, five normal volunteers (four men and one woman) were examined five times on different days. Then, 294 subjects with normal MR imaging (147 men and 147 women; age range 20-89 years) were measured. The ADC measurement in normal volunteers was stable. The ADC values stayed within the 5% deviation of average values in all volunteers (mean+/-standard deviation 2.3+/-1.2%). The ADC values gradually increased by aging in all regions. In thalamus, no significant difference was seen between right and left in the subjects under 60 years; however, right side showed higher values in the subjects over 60 years (pright frontal, bilateral thalamus, and temporal (pbrain and may be useful for the future quantitative study as a reference.

  1. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    Science.gov (United States)

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  2. Enteral and parenteral lipid requirements of preterm infants.

    Science.gov (United States)

    Lapillonne, Alexandre

    2014-01-01

    Lipids provide infants with most of their energy needs. The major portion of the fat in human milk is found in the form of triglycerides, the phospholipids and cholesterol contributing for only a small proportion of the total fat. Long-chain polyunsaturated fatty acids (LC-PUFAs) are crucial for normal development of the central nervous system and have potential for long-lasting effects that extend beyond the period of dietary insufficiency. Given the limited and highly variable formation of docosahexaenoic acid (DHA) from α-linolenic acid, and because DHA is critical for normal retinal and brain development in the human, DHA should be considered to be conditionally essential during early development. In early enteral studies, the amount of LC-PUFAs administered in formula was chosen to produce the same concentration of arachidonic acid and DHA as in term breast milk. Recent studies report outcome data in preterm infants fed formula with DHA content 2-3 times higher than the current concentration. Overall, these studies show that providing larger amounts of DHA supplements is associated with better neurological outcomes and may provide other health benefits. One study further suggests that the smallest babies are the most vulnerable to DHA deficiency and likely to reap the greatest benefit from high-dose DHA supplementation. Current nutritional management may not provide sufficient amounts of preformed DHA during the parenteral and enteral nutrition periods and in very preterm/very low birth weight infants until due date and higher amounts than those routinely used are likely to be necessary to compensate for intestinal malabsorption, DHA oxidation, and early deficit. Recommendations for the healthcare provider are made in order to prevent lipid and more specifically LC-PUFA deficit. Research should be continued to fill the gaps in knowledge and to further refine the adequate intake for each group of preterm infants. © 2014 S. Karger AG, Basel.

  3. Quantification of ante-mortem hypoxic ischemic brain injury by post-mortem cerebral magnetic resonance imaging in neonatal encephalopathy.

    Science.gov (United States)

    Montaldo, Paolo; Chaban, Badr; Lally, Peter J; Sebire, Neil J; Taylor, Andrew M; Thayyil, Sudhin

    2015-11-01

    Post-mortem (PM) magnetic resonance imaging (MRI) is increasingly used as an alternative to conventional autopsy in babies dying from neonatal encephalopathy. However, the confounding effect of post-mortem changes on the detection of ante-mortem ischemic injury is unclear. We examined whether quantitative MR measurements can accurately distinguish ante-mortem ischemic brain injury from artifacts using post-mortem MRI. We compared PM brain MRI (1.5 T Siemens, Avanto) in 7 infants who died with neonatal encephalopathy (NE) of presumed hypoxic-ischemic origin with 7 newborn infants who had sudden unexplained neonatal death (SUND controls) without evidence of hypoxic-ischemic brain injury at autopsy. We measured apparent diffusion coefficients (ADCs), T1-weighted signal intensity ratios (SIRs) compared to vitreous humor and T2 relaxation times from 19 predefined brain areas typically involved in neonatal encephalopathy. There were no differences in mean ADC values, SIRs on T1-weighted images or T2 relaxation times in any of the 19 predefined brain areas between NE and SUND infants. All MRI images showed loss of cortical gray/white matter differentiation, loss of the normal high signal intensity (SI) in the posterior limb of the internal capsule on T1-weighted images, and high white matter SI on T2-weighted images. Normal post-mortem changes may be easily mistaken for ante-mortem ischemic injury, and current PM MRI quantitative assessment cannot reliably distinguish these. These findings may have important implications for appropriate interpretation of PM imaging findings, especially in medico-legal practice. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Two-year outcome of normal-birth-weight infants admitted to a Singapore neonatal intensive care unit.

    Science.gov (United States)

    Lian, W B; Yeo, C L; Ho, L Y

    2002-03-01

    To describe the characteristics, the immediate and short-term outcome and predictors of mortality in normal-birth-weight (NBW) infants admitted to a tertiary neonatal intensive care unit (NICU) in Singapore. We retrospectively reviewed the medical records of 137 consecutive NBW infants admitted to the NICU of the Singapore General Hospital from January 1991 to December 1992. Data on the diagnoses, clinical presentation of illness, intervention received, complications and outcome as well as follow-up patterns for the first 2 years of life, were collected and analysed. NBW NICU infants comprised 1.8% of births in our hospital and 40.8% of all NICU admissions. The main reasons for NICU admissions were respiratory disorders (61.3%), congenital anomalies (15.3%) and asphyxia neonatorum (11.7%). Respiratory support was necessary in 81.8%. Among those ventilated, the only predictive factor contributing to mortality was the mean inspired oxygen concentration. The mortality rate was 11.7%. Causes of death included congenital anomalies (43.75%), asphyxia neonatorum (31.25%) and pulmonary failure secondary to meconium aspiration syndrome (12.5%). The median hospital stay among survivors (88.3%) was 11.0 (range, 4 to 70) days. Of 42 patients (out of 117 survivors) who received follow-up for at least 6 months, 39 infants did not have evidence of any major neurodevelopmental abnormalities at their last follow-up visit, prior to or at 2 years of age. Despite their short hospital stay (compared to very-low-birth-weight infants), the high volume of NBW admissions make the care of this population an important area for review to enhance advances in and hence, reduce the cost of NICU care. With improved antenatal diagnostic techniques (allowing earlier and more accurate diagnosis of congenital malformations) and better antenatal and perinatal care (allowing better management of at-risk pregnancies), it is anticipated that there should be a reduction in such admissions with better

  5. Neurotoxic response of infant monkeys to methylmercury

    Energy Technology Data Exchange (ETDEWEB)

    Willes, R.F.; Truelove, J.F.; Nera, E.A.

    1978-02-01

    Four infant monkeys were dosed orally with 500 ..mu..g Hg/kg body wt./day (as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28 to 29 days of treatment; the blood Hg levels were 8.0 to 9.4 ..mu..g Hg/g blood. Dosing was terminated at 28 to 29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35 to 43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver followed by occipital cortex and renal cortex. The mean blood/brain ratio was 0.21 +- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.

  6. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.

    Science.gov (United States)

    Dubois, J; Dehaene-Lambertz, G; Kulikova, S; Poupon, C; Hüppi, P S; Hertz-Pannier, L

    2014-09-12

    Studying how the healthy human brain develops is important to understand early pathological mechanisms and to assess the influence of fetal or perinatal events on later life. Brain development relies on complex and intermingled mechanisms especially during gestation and first post-natal months, with intense interactions between genetic, epigenetic and environmental factors. Although the baby's brain is organized early on, it is not a miniature adult brain: regional brain changes are asynchronous and protracted, i.e. sensory-motor regions develop early and quickly, whereas associative regions develop later and slowly over decades. Concurrently, the infant/child gradually achieves new performances, but how brain maturation relates to changes in behavior is poorly understood, requiring non-invasive in vivo imaging studies such as magnetic resonance imaging (MRI). Two main processes of early white matter development are reviewed: (1) establishment of connections between brain regions within functional networks, leading to adult-like organization during the last trimester of gestation, (2) maturation (myelination) of these connections during infancy to provide efficient transfers of information. Current knowledge from post-mortem descriptions and in vivo MRI studies is summed up, focusing on T1- and T2-weighted imaging, diffusion tensor imaging, and quantitative mapping of T1/T2 relaxation times, myelin water fraction and magnetization transfer ratio. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. A longitudinal study of structural brain network changes with normal aging

    Directory of Open Access Journals (Sweden)

    Kai eWu

    2013-04-01

    Full Text Available The aim of this study was to investigate age-related changes in the topological organization of structural brain networks by applying a longitudinal design over 6 years. Structural brain networks were derived from measurements of regional gray matter volume and were constructed in age-specific groups from baseline and follow-up scans. The structural brain networks showed economical small-world properties, providing high global and local efficiency for parallel information processing at low connection costs. In the analysis of the global network properties, the local and global efficiency of the baseline scan were significantly lower compared to the follow-up scan. Moreover, the annual rate of changes in local and global efficiency showed a positive and negative quadratic correlation with the baseline age, respectively; both curvilinear correlations peaked at approximately the age of 50. In the analysis of the regional nodal properties, significant negative correlations between the annual rate of changes in nodal strength and the baseline age were found in the brain regions primarily involved in the visual and motor/ control systems, whereas significant positive quadratic correlations were found in the brain regions predominately associated with the default-mode, attention, and memory systems. The results of the longitudinal study are consistent with the findings of our previous cross-sectional study: the structural brain networks develop into a fast distribution from young to middle age (approximately 50 years old and eventually became a fast localization in the old age. Our findings elucidate the network topology of structural brain networks and its longitudinal changes, thus enhancing the understanding of the underlying physiology of normal aging in the human brain.

  8. Preliminary application of SPECT three dimensional brain imaging in normal controls and patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Zhaosheng, Luan; Pengyong,; Xiqin, Sun; Wei, Wang; Huisheng, Liu; Wen, Zhou [88 Hospital PLA, Taian, SD (China). Dept. of Nuclear Medicine

    1992-11-01

    10 normal controls and 32 cerebral infarction patients were examined with SPECT three-dimensional (3D) and sectional imaging. The result shows that 3D brain imaging has significant value in the diagnosis of cerebral infarction. 3D brain imaging is superior to sectional imaging in determining the location and size of superficial lesions. For the diagnosis of deep lesions, it is better to combine 3D brain imaging with sectional imaging. The methodology of 3D brain imaging is also discussed.

  9. Preliminary application of SPECT three dimensional brain imaging in normal controls and patients with cerebral infarction

    International Nuclear Information System (INIS)

    Luan Zhaosheng; Pengyong; Sun Xiqin; Wang Wei; Liu Huisheng; Zhou Wen

    1992-01-01

    10 normal controls and 32 cerebral infarction patients were examined with SPECT three-dimensional (3D) and sectional imaging. The result shows that 3D brain imaging has significant value in the diagnosis of cerebral infarction. 3D brain imaging is superior to sectional imaging in determining the location and size of superficial lesions. For the diagnosis of deep lesions, it is better to combine 3D brain imaging with sectional imaging. The methodology of 3D brain imaging is also discussed

  10. Diagnosing dementia and normal aging: clinical relevance of brain ratios and cognitive performance in a Brazilian sample

    Directory of Open Access Journals (Sweden)

    Chaves M.L.F.

    1999-01-01

    Full Text Available The main objective of the present study was to evaluate the diagnostic value (clinical application of brain measures and cognitive function. Alzheimer and multiinfarct patients (N = 30 and normal subjects over the age of 50 (N = 40 were submitted to a medical, neurological and cognitive investigation. The cognitive tests applied were Mini-Mental, word span, digit span, logical memory, spatial recognition span, Boston naming test, praxis, and calculation tests. The brain ratios calculated were the ventricle-brain, bifrontal, bicaudate, third ventricle, and suprasellar cistern measures. These data were obtained from a brain computer tomography scan, and the cutoff values from receiver operating characteristic curves. We analyzed the diagnostic parameters provided by these ratios and compared them to those obtained by cognitive evaluation. The sensitivity and specificity of cognitive tests were higher than brain measures, although dementia patients presented higher ratios, showing poorer cognitive performances than normal individuals. Normal controls over the age of 70 presented higher measures than younger groups, but similar cognitive performance. We found diffuse losses of tissue from the central nervous system related to distribution of cerebrospinal fluid in dementia patients. The likelihood of case identification by functional impairment was higher than when changes of the structure of the central nervous system were used. Cognitive evaluation still seems to be the best method to screen individuals from the community, especially for developing countries, where the cost of brain imaging precludes its use for screening and initial assessment of dementia.

  11. Neurobehaviour between birth and 40 weeks' gestation in infants born parental psychological wellbeing: predictors of brain development and child outcomes.

    Science.gov (United States)

    Spittle, Alicia J; Thompson, Deanne K; Brown, Nisha C; Treyvaud, Karli; Cheong, Jeanie L Y; Lee, Katherine J; Pace, Carmen C; Olsen, Joy; Allinson, Leesa G; Morgan, Angela T; Seal, Marc; Eeles, Abbey; Judd, Fiona; Doyle, Lex W; Anderson, Peter J

    2014-04-24

    Infants born long term neurodevelopmental problems compared with term born peers. The predictive value of neurobehavioural examinations at term equivalent age in very preterm infants has been reported for subsequent impairment. Yet there is little knowledge surrounding earlier neurobehavioural development in preterm infants prior to term equivalent age, and how it relates to perinatal factors, cerebral structure, and later developmental outcomes. In addition, maternal psychological wellbeing has been associated with child development. Given the high rate of psychological distress reported by parents of preterm children, it is vital we understand maternal and paternal wellbeing in the early weeks and months after preterm birth and how this influences the parent-child relationship and children's outcomes. Therefore this study aims to examine how 1) early neurobehaviour and 2) parental mental health relate to developmental outcomes for infants born preterm compared with infants born at term. This prospective cohort study will describe the neurobehaviour of 150 infants born at term equivalent age, and explore how early neurobehavioural deficits relate to brain growth or injury determined by magnetic resonance imaging, perinatal factors, parental mental health and later developmental outcomes measured using standardised assessment tools at term, one and two years' corrected age. A control group of 150 healthy term-born infants will also be recruited for comparison of outcomes. To examine the effects of parental mental health on developmental outcomes, both parents of preterm and term-born infants will complete standardised questionnaires related to symptoms of anxiety, depression and post-traumatic stress at regular intervals from the first week of their child's birth until their child's second birthday. The parent-child relationship will be assessed at one and two years' corrected age. Detailing the trajectory of infant neurobehaviour and parental psychological

  12. Brain regional uptake of radioactive Sc, Mn, Zn, Se, Rb and Zr tracers into normal mice during aging

    International Nuclear Information System (INIS)

    Amano, R.; Enomoto, S.

    2001-01-01

    Radioactive multitracer technique was applied to study the brain regional uptake of trace elements by the normal mice during aging. The brain regional radioactivities of 46 Sc, 54 Mn, 65 Zn, 75 Se, 83 Rb and 88 Zr were measured 48 hours after intraperitoneal injection of a solution in normal mice aged 6 to 52 weeks to evaluate the brain regional (corpus striatum, cerebellum, cerebral cortex, hippocampus, and pons and medulla) uptakes. The radioactive distributions of 46 Sc, 54 Mn and 88 Zr tracers were variable and region-specific in the brain, while those of 65 Zn, 75 Se and 83 Rb tracers were comparable among all regions of interest. The brain regional uptakes of all tracers slightly increased with age from 10 to 28 weeks, and then remained constant during aging after 28 weeks. These uptake variations may be involved in the functional degenerative process of the blood-brain barrier during aging. (author)

  13. The maternal brain and its plasticity in humans

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  14. Hierarchical clustering of Alzheimer and 'normal' brains using elemental concentrations and glucose metabolism determined by PIXE, INAA and PET

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.

    2001-01-01

    Brain tissue samples, obtained from the Alzheimer Disease Brain Bank, Institute of Psychiatry, London, were taken from both left and right hemispheres of three regions of the cerebrum, namely the frontal, parietal and occipital lobes for both Alzheimer and 'normal' subjects. Trace element concentrations in the frontal lobe were determined for twenty six Alzheimer (15 male, 11 female) and twenty six 'normal' (8 male, 18 female) brain tissue samples. In the parietal lobe ten Alzheimer (2 male, 8 female) and ten 'normal' (8 male, 2 female) samples were taken along with ten Alzheimer (4 male, 6 female) and ten 'normal' (6 male, 4 female) from the occipital lobe. For the frontal lobe trace element concentrations were determined using proton induced X-ray emission (PIXE) analysis while in parietal and occipital regions instrumental neutron activation analysis (INAA) was used. Additionally eighteen Alzheimer (9 male, 9 female) and eighteen age matched 'normal' (8 male, 10 female) living subjects were examined using positron emission tomography (PET) in order to determine regional cerebral metabolic rates of glucose (rCMRGlu). The rCMRGlu of 36 regions of the brain was investigated including frontal, occipital and parietal lobes as in the trace element study. Hierarchical cluster analysis was applied to the trace element and glucose metabolism data to discover which variables in the resulting dendrograms displayed the most significant separation between Alzheimer and 'normal' subjects. (author)

  15. Enhancement of object-permanence performance in the Down's syndrome infant.

    Science.gov (United States)

    Morss, J R

    1984-01-01

    Four infants with Down's syndrome (aged 19-33 months) were presented with a restructured version of an object-permanence task. Restructuring consisted of the embedding of single trials of the task within a sequence of simpler, related steps. Following failure on a standard presentation of the task, three Down's syndrome (DS) infants demonstrated success on trials embedded in the training sequence. Comparison was made with the performance of normal infants (aged 14-19 months) matched in terms of failure on the pre-test. Only two out of nine normal infants registered success on the embedded trials. Results are discussed in terms of the differences between the DS infant and the normal infant, and the former's reliance on the deliberate structuring of his learning environment by a parent or educator.

  16. The functional neuroanatomy of maternal love: mother's response to infant's attachment behaviors.

    Science.gov (United States)

    Noriuchi, Madoka; Kikuchi, Yoshiaki; Senoo, Atsushi

    2008-02-15

    Maternal love, which may be the core of maternal behavior, is essential for the mother-infant attachment relationship and is important for the infant's development and mental health. However, little has been known about these neural mechanisms in human mothers. We examined patterns of maternal brain activation in response to infant cues using video clips. We performed functional magnetic resonance imaging (fMRI) measurements while 13 mothers viewed video clips, with no sound, of their own infant and other infants of approximately 16 months of age who demonstrated two different attachment behaviors (smiling at the infant's mother and crying for her). We found that a limited number of the mother's brain areas were specifically involved in recognition of the mother's own infant, namely orbitofrontal cortex (OFC), periaqueductal gray, anterior insula, and dorsal and ventrolateral parts of putamen. Additionally, we found the strong and specific mother's brain response for the mother's own infant's distress. The differential neural activation pattern was found in the dorsal region of OFC, caudate nucleus, right inferior frontal gyrus, dorsomedial prefrontal cortex (PFC), anterior cingulate, posterior cingulate, thalamus, substantia nigra, posterior superior temporal sulcus, and PFC. Our results showed the highly elaborate neural mechanism mediating maternal love and diverse and complex maternal behaviors for vigilant protectiveness.

  17. Pulmonary function in infants with swallowing dysfunction.

    Directory of Open Access Journals (Sweden)

    James D Tutor

    Full Text Available Swallowing dysfunction can lead to recurring aspiration and is frequently associated with chronic symptoms such as cough and wheezing in infants. Our objective was to describe the characteristics of infants with swallowing dysfunction, determine if pulmonary function abnormalities are detectable, and if they improve after therapy.We studied 38 infants with a history of coughing and wheezing who had pulmonary function tests performed within two weeks of their diagnosis of swallowing dysfunction. The raised lung volume rapid thoracoabdominal compression technique was used. After 6 months of therapy, 17 of the infants repeated the tests.Initially, 25 had abnormal spirometry, 18 had abnormal plethysmography, and 15 demonstrated bronchodilator responsiveness. Six months later test were repeated for seventeen patients. Ten patients had continued abnormal spirometry, two patients remained normal, three patients' abnormal spirometry had normalized, and two patients' previously normal studies became abnormal. Eight of the 17 patients had continued abnormal plethysmography, six had continued normal plethysmography, and three patients' normal plethysmography became abnormal. After 6 months of treatment, eight patients demonstrated bronchodilator responsiveness, of which five continued to demonstrate bronchodilator responsiveness and three developed responsiveness. The remainder either continued to be non- bronchodilator responsive (two or lost responsiveness (three. The findings of the abnormal tests in most infants tested is complicated by frequent occurrence of other co-morbidities in this population, including gastroesophageal reflux in 23 and passive smoke exposure in 13 of the infants.The interpretation of lung function changes is complicated by the frequent association of swallowing dysfunction with gastroesophageal reflux and passive smoke exposure in this population. Six months of medical therapy for swallowing dysfunction/gastroesophageal reflux

  18. Prenatal Characteristics of Infants with a Neuronal Migration Disorder: A National-Based Study

    Directory of Open Access Journals (Sweden)

    Estelle Naumburg

    2012-01-01

    Full Text Available The development of the central nervous system is complex and includes dorsal and ventral induction, neuronal proliferation, and neuronal migration, organization, and myelination. Migration occurs in humans in early fetal life. Pathogenesis of malformations of the central nervous system includes both genetic and environmental factors. Few epidemiological studies have addressed the impact of prenatal exposures. All infants born alive and included in the Swedish Medical Birth Register 1980–1999 were included in the study. By linkage to the Patient Register, 820 children with a diagnosis related to a neuronal migration abnormality were identified. Through copies of referrals for computer tomography or magnetic resonance imaging of the brain, the diagnosis was confirmed in 17 children. Median age of the mothers was 29 years. At the start of pregnancy, four out of 17 women smoked. Almost half of the women had a body mass index that is low or in the lower range of average. All infants were born at term with normal birth weights. Thirteen infants had one or more concomitant diseases or malformations. Two infants were born with rubella syndrome. The impact of low maternal body mass index and congenital infections on neuronal migration disorders in infants should be addressed in future studies.

  19. Medical, social and societal issues in infants with abusive head trauma.

    LENUS (Irish Health Repository)

    Koe, S

    2010-04-01

    Abusive head trauma (AHT) is the leading cause of death from traumatic brain injury in under 2 year olds. AHT presents with acute encephalopathy, subdural hemorrhages and retinal hemorrhages occurring in the context of an inappropriate or inconsistent history. We retrospectively analyzed, over a 10 year period, admissions and transfers to our hospital with suspected AHT to assess patterns of presentation, presenting symptoms, investigations, subsequent confirmation, social work input and both neurological and social outcomes. We analyzed all suspected AHT infants and children looking for the time of presentation, presenting symptoms, caregivers concerns prior to presentation, a family profile including stressors, investigations (in particular neuroradiology and ophthalmology assessments), treatment in hospital, length of stay in hospital, social work involvement, subsequent discharge, neurological outcome and subsequent social work follow up. Data was collected from the hospital HIPE system, RIS (radiology reports system) and records from the social work department from a period October 1998 to January 2009 inclusive. Of 22 patients with confirmed AHT, ages seizures and irritability followed by vomiting, poor feeding, a bulging fontanelle and lethargy. The father was the sole minder in 5 cases. There was a delayed history in 4 cases. One had multiple visits to his GP. All cases had subdural hemorrhages proven by either CT or MRI scans and retinal hemorrhages diagnosed by ophthalmology. One infant presented with a torn frenulum. Four had suspicious bruising. All had normal coagulation profiles, skeletal surveys and extensive metabolic tests. Hospital stays ranged from 1 to 124 days (the median was 28 days and mean 33 days). Ten (45%) infants required ventilatory support. Sixteen infants had social work involvement within 4 days of admission (7 of these were interviewed immediately). Outcomes after case conferences were that 6 returned home with parents, 9 were

  20. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  1. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    International Nuclear Information System (INIS)

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Baghban Khojasteh, Nasrin

    2012-01-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: ► Boron distribution in male and female rats' normal brain was studied in this research. ► Coronal sections of animal tissue samples were irradiated with thermal neutrons. ► Alpha and Lithium tracks were counted using alpha autoradiography. ► Different boron concentration was seen in brain sections of male and female rats. ► The highest boron concentration was seen in 4 h after boron compound injection.

  2. Positron emission tomography studies in the normal and abnormal ageing of human brain

    International Nuclear Information System (INIS)

    Comar, D.; Baron, J.C.

    1987-01-01

    Until recently, the investigation of the neurophysiological correlates of normal and abnormal ageing of the human brain was limited by methodological constraints, as the technics available provided only a few parameters (e.g. electroencephalograms, cerebral blood flow) monitored in superficial brain structures in a grossly regional and poorly quantitative way. Lately several non invasive techniques have been developed which allow to investigate in vivo both quantitatively and on local basis a number of previously inaccessible important aspects of brain function. Among these techniques, such as single photon emission tomography imaging of computerized electric events, nuclear magnetic resonance, positron emission tomography stands out as the most powerful and promising method since it allows the in vivo measurement of biochemical and pharmacological parameters

  3. The ω-3-poly-unsaturated fatty acids and the function of the brain and retina in infants

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Damsgaard, Camilla Trab; Andersen, Anders Daniel

    2007-01-01

    The central nervous system of human infants has a uniquely high content of docosahexaenoic acid (DHA, 22:6¿-3), which is accreted during the brain growth spurt that occurs during the first year of life. Based on results from randomized controlled trials on visual acuity it is presently agreed...... LNA could meet the ¿-3 PUFA requirements. Moreover, the potential long-term implications of the early improvements in visual function are not known. ¿-3 PUFA intake in the first year of life is also believed to affect infant cognitive development, although this question remains unresolved. Breast......-developmental outcomes, mirroring the results of observational studies. Some of these studies indicate possible negative effects of ¿-3 LCPUFA, e.g. on language development, but the interpretation is complicated by lack of knowledge of the long-term predictive role of the employed early tests on cognitive development...

  4. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique: A methodological study of the aging brain

    International Nuclear Information System (INIS)

    Chen, Z.G.; Hindmarsh, T.; Li, T.Q.

    2001-01-01

    Purpose: To quantify age-related changes of the average diffusion coefficient value in normal adult brain using orientation-independent diffusion tensor trace mapping and to address the methodological influences on diffusion quantification. Material and Methods: Fifty-four normal subjects (aged 20-79 years) were studied on a 1.5-T whole-body MR medical unit using a diffusion-weighted single-shot echo-planar imaging technique. Orientation-independent diffusion tensor trace maps were constructed for each subject using diffusion-weighted MR measurements in four different directions using a tetrahedral gradient combination pattern. The global average (including cerebral spinal fluid) and the tissue average of diffusion coefficients in adult brains were determined by analyzing the diffusion coefficient distribution histogram for the entire brain. Methodological influences on the measured diffusion coefficient were also investigated by comparing the results obtained using different experimental settings. Results: Both global and tissue averages of the diffusion coefficient are significantly correlated with age (p<0.03). The global average of the diffusion coefficient increases 3% per decade after the age of 40, whereas the increase in the tissue average of diffusion coefficient is about 1% per decade. Experimental settings for self-diffusion measurements, such as data acquisition methods and number of b-values, can slightly influence the statistical distribution histogram of the diffusion tensor trace and its average value. Conclusion: Increased average diffusion coefficient in adult brains with aging are consistent with findings regarding structural changes in the brain that have been associated with aging. The study also demonstrates that it is desirable to use the same experimental parameters for diffusion coefficient quantification when comparing between different subjects and groups of interest

  5. Examination of the Pattern of Growth of Cerebral Tissue Volumes From Hospital Discharge to Early Childhood in Very Preterm Infants.

    Science.gov (United States)

    Monson, Brian B; Anderson, Peter J; Matthews, Lillian G; Neil, Jeffrey J; Kapur, Kush; Cheong, Jeanie L Y; Doyle, Lex W; Thompson, Deanne K; Inder, Terrie E

    2016-08-01

    Smaller cerebral volumes at hospital discharge in very preterm (VPT) infants are associated with poor neurobehavioral outcomes. Brain growth from the newborn period to middle childhood has not been explored because longitudinal data have been lacking. To examine the pattern of growth of cerebral tissue volumes from hospital discharge to childhood in VPT infants and to determine perinatal risk factors for impaired brain growth and associations with neurobehavioral outcomes at 7 years. Prospective cohort study of VPT infants (childhood and outcomes in VPT infants. Low brain volumes observed in VPT infants are exaggerated at 7 years. Low brain volume in infancy is associated with long-term functional outcomes, emphasizing the persisting influence of early brain development on subsequent growth and outcomes.

  6. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model.

    Directory of Open Access Journals (Sweden)

    Habib Baghirov

    Full Text Available The treatment of brain diseases is hindered by the blood-brain barrier (BBB preventing most drugs from entering the brain. Focused ultrasound (FUS with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma.

  7. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model

    Science.gov (United States)

    Baghirov, Habib; Snipstad, Sofie; Sulheim, Einar; Berg, Sigrid; Hansen, Rune; Thorsen, Frits; Mørch, Yrr; Åslund, Andreas K. O.

    2018-01-01

    The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma. PMID:29338016

  8. Even mild respiratory distress alters tissue oxygenation significantly in preterm infants during neonatal transition

    International Nuclear Information System (INIS)

    Schwaberger, Bernhard; Pichler, Gerhard; Binder, Corinna; Pocivalnik, Mirjam; Urlesberger, Berndt; Avian, Alexander

    2014-01-01

    Near-infrared spectroscopy (NIRS) enables continuous non-invasive measurements of regional oxygen saturation (rSO 2 ). The aim was to evaluate the dynamics of rSO 2 of the brain, preductal and postductal tissues during postnatal transition in preterm infants with and without respiratory support (RS). This single-centre study was designed as an exploratory prospective observational study. Fifty one preterm infants (≥ 30 + 0 and < 37 + 0 weeks) delivered by caesarean section were included. RS using a T-Piece-Resuscitator and supplemental oxygen were given according to guidelines. NIRS measurements were carried out by using Invos Monitor (Covidien; USA) for the first 15 min of life. Three NIRS transducers were attached on the forehead (rSO 2 brain), the right forearm (rSO 2 arm) and the left lower leg (rSO 2 leg). Two groups were compared based on need for RS: normal transition (NT) and RS group. Results: In NT group rSO 2 brain increased over time and was significantly higher than rSO 2 arm, whereas in RS group rSO 2 brain and rSO 2 arm increased without significant differences. Courses of rSO 2 arm and rSO 2 leg increased over time and showed a converging pattern with initially lower values of rSO 2 leg in NT group and a diverging pattern with lower levels of rSO 2 leg in RS group. Overall, rSO 2 levels were higher in NT compared to RS group. Conclusion: Our findings indicate that the decreased rSO 2 levels in RS group compared to NT group are not only caused by lower arterial oxygen saturation levels, but also by a compromised perfusion even in infants with only mild respiratory distress. (paper)

  9. Spitting up in Babies: What's Normal, What's Not

    Science.gov (United States)

    ... known as gastroesophageal reflux, infant reflux or infant acid reflux. Normally, a muscle (lower esophageal sphincter) between the ... might prescribe medication to treat reflux. Winter HS. Gastroesophageal reflux in infants. http://www.uptodate.com/home. Accessed ...

  10. EARLY DIAGNOSIS OF CRANIOSYNOSTOSIS IN INFANTS AT PRIMARY HEALTH CARE

    Directory of Open Access Journals (Sweden)

    Skoric Jasmina

    2014-12-01

    Full Text Available Craniosynostosis or premature fusion of one or more cranial sutures in infants disturbs normal brain growth. This condition causes abnormal skull configuration, increased intracranial pressure, headache, strabismus, blurred vision, blindness, psychomotor retardation. The diagnosis of craniosynostosis is very simple. Pediatricians should routinely assess neurological status and measure head circumference and anterior fontanelle. When necessary, ultrasound of CNS, X-ray and cranial CT scan can be done. When it comes to this condition, early diagnosis and surgical intervention are of utmost importance. In this paper, we have presented a case on craniosynostosis in a female infant, discovered in the third month of life during systematic review that included measurement of head circumference, palpation of anterior fontanelle and cranial sutures. The child was referred to a neurosurgeon who performed the CT scan of endocranium and confirmed the initial diagnosis of craniosynostosis. With head circumference of 40 cm and fused anterior fontanelle, the surgery was timely performed at the sixth month of life due to early diagnosis.

  11. Early diagnosis of craniosynostosis in infants at primary health care

    Directory of Open Access Journals (Sweden)

    Skoric Jasmina

    2014-12-01

    Full Text Available Craniosynostosis or premature fusion of one or more cranial sutures in infants disturbs normal brain growth. This condition causes abnormal skull configuration, increased intracranial pressure, headache, strabismus, blurred vision, blindness, psychomotor retardation. The diagnosis of craniosynostosis is very simple. Pediatricians should routinely assess neurological status and measure head circumference and anterior fontanelle. When necessary, ultrasound of CNS, X-ray and cranial CT scan can be done. When it comes to this condition, early diagnosis and surgical intervention are of utmost importance. In this paper, we have presented a case on craniosynostosis in a female infant, discovered in the third month of life during systematic review that included measurement of head circumference, palpation of anterior fontanelle and cranial sutures. The child was referred to a neurosurgeon who performed the CT scan of endocranium and confirmed the initial diagnosis of craniosynostosis. With head circumference of 40 cm and fused anterior fontanelle, the surgery was timely performed at the sixth month of life due to early diagnosis.

  12. A Privileged Status for Male Infant-Directed Speech in Infants of Depressed Mothers? Role of Father Involvement

    Science.gov (United States)

    Kaplan, Peter S.; Danko, Christina M.; Diaz, Andres

    2010-01-01

    Prior research showed that 5- to 13-month-old infants of chronically depressed mothers did not learn to associate a segment of infant-directed speech produced by their own mothers or an unfamiliar nondepressed mother with a smiling female face, but showed better-than-normal learning when a segment of infant-directed speech produced by an…

  13. Hearing Loss in Infants with Microcephaly and Evidence of Congenital Zika Virus Infection - Brazil, November 2015-May 2016.

    Science.gov (United States)

    Leal, Mariana C; Muniz, Lilian F; Ferreira, Tamires S A; Santos, Cristiane M; Almeida, Luciana C; Van Der Linden, Vanessa; Ramos, Regina C F; Rodrigues, Laura C; Neto, Silvio S Caldas

    2016-09-02

    Congenital infection with Zika virus causes microcephaly and other brain abnormalities (1). Hearing loss associated with other congenital viral infections is well described; however, little is known about hearing loss in infants with congenital Zika virus infection. A retrospective assessment of a series of 70 infants aged 0-10 months with microcephaly and laboratory evidence of Zika virus infection was conducted by the Hospital Agamenon Magalhães in Brazil and partners. The infants were enrolled during November 2015-May 2016 and had screening and diagnostic hearing tests. Five (7%) infants had sensorineural hearing loss, all of whom had severe microcephaly; however, one child was tested after receiving treatment with an ototoxic antibiotic. If this child is excluded, the prevalence of sensorineural hearing loss was 5.8% (four of 69), which is similar to that seen in association with other congenital viral infections. Additional information is needed to understand the prevalence and spectrum of hearing loss in children with congenital Zika virus infection; all infants born to women with evidence of Zika virus infection during pregnancy should have their hearing tested, including infants who appear normal at birth.

  14. Emotional Incongruence of Facial Expression and Voice Tone Investigated with Event-Related Brain Potentials of Infants

    Directory of Open Access Journals (Sweden)

    Kota Arai

    2011-10-01

    Full Text Available Human emotions are perceived from multi-modal information including facial expression and voice tone. We aimed to investigate development of neural mechanism for cross-modal perception of emotions. We presented congruent and incongruent combinations of facial expression (happy and voice tone (happy or angry, and measured EEG to analyze event-related brain potentials for 8-10 month-old infants and adults. Ten repetitions of 10 trials were presented in random order for each participant. Half of them performed 20% congruent (happy face with happy voice and 80% incongruent (happy face with angry voice trials, and the others performed 80% congruent and 20% incongruent trials. We employed the oddball paradigm, but did not instruct participants to count a target. The odd-ball (infrequent stimulus increased the amplitude of P2 and delayed its latency for infants in comparison with the frequent stimulus. When the odd-ball stimulus was also emotionally incongruent, P2 amplitude was more increased and its latency was more delayed than for the odd-ball and emotionally congruent stimulus. However, we did not find difference of P2 amplitude or latency for adults between conditions. These results suggested that the 8–10 month-old infants already have a neural basis for detecting emotional incongruence of facial expression and voice tone.

  15. Normal and abnormal fetal brain development during the third trimester as demonstrated by neurosonography

    International Nuclear Information System (INIS)

    Malinger, G.; Lev, D.; Lerman-Sagie, T.

    2006-01-01

    The multiplanar neurosonographic examination of the fetus enables superb visualization of brain anatomy during pregnancy. The examination may be performed using a transvaginal or a transfundal approach and it is indicated in patients at high risk for CNS anomalies or in those with a suspicious finding during a routine examination. The purpose of this paper is to present a description of the normal brain and of abnormal findings usually diagnosed late in pregnancy, including malformations of cortical development, infratentorial anomalies, and prenatal insults

  16. [An autopsy case of brain candidiasis in premature infant: morphology and intraparenchymal distribution of Candida foci].

    Science.gov (United States)

    Yamaguchi, K; Goto, N

    1993-07-01

    An autopsy case of brain candidiasis occurring in a premature infant is presented, and the morphology and intraparenchymal distribution of Candida foci are described in detail with the aid of serial sections of the affected brain. The patient was a boy, who was born after 25 weeks of gestation and died on day 15. Candida foci were composed of two infectious forms of Candida (yeasts and pseudohyphae) and various inflammatory reactions of the host. They were widely disseminated in the brain parenchyma, leptomeninges and ventricular system. In view of their morphology, they were classified into the acute and chronic inflammatory types. The acute type foci, characterized by microabscess of infiltration of neutrophils, were large and localized predominantly in the cerebral white matter, fiber tracts, central grey matter of the midbrain, reticular formation, floor of fourth ventricle and subependymal germinal layer; most of the acute type foci were found in the watershed zones where the blood supply was considered to be poorer than the other parts of the brain parenchyma. In contrast, the chronic type foci, characterized by nodular proliferation of astrocytes, were small and localized in the grey matter (the cerebral cortex, basal ganglia and brainstem nuclei) and the leptomeninges. This study suggests that Candida infection to the brain may occur by different two kinds of way correlating with the proper vasoarchitecture of brain. In addition, it is recommended to make a close examination of the maternal vagina, placenta and umbilical cord after delivery to detect the risk of Candida infection.

  17. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  18. Estimulação ambiental e uso do andador infantil por lactentes com desenvolvimento normal Environmental stimulation and use of a children's baby walkers by infants with normal development

    Directory of Open Access Journals (Sweden)

    Karolina Alves de Albuquerque

    2011-06-01

    Full Text Available OBJETIVOS: avaliar a quantidade e qualidade de estímulos ambientais disponíveis para lactentes com desenvolvimento normal que fizeram uso do andador infantil anteriormente à aquisição da marcha independente. MÉTODOS: estudo transversal, com 24 lactentes distribuídos em dois grupos, sendo 12 do grupo exposto ao andador infantil (AI e 12 do grupo não-exposto (C, mantendo-se equivalência entre grupos em idade, sexo e nível sócio econômico da família. O teste Observation for Measurement of the Environment (HOME documentou os estímulos oferecidos pelo ambiente. Teste-t de Student para amostras independentes comparou os escores médios do teste HOME de ambos os grupos, considerando o nível de significância α=0,05. RESULTADOS: diferenças no teste HOME foram observadas, tendo o grupo AI obtido escores superiores ao grupo C (p=0,014, com efeito de magnitude fraca (d=0,24. CONCLUSÕES: o uso do voador infantil no período pré-aquisição da marcha por lactentes com desenvolvimento normal, pode estar associado a ambientes domiciliares mais estimuladores.OBJECTIVES: to evaluate the quantity and quality of environmental stimuli available to infants with normal development who use a baby walkers prior to learning to walk by themselves. METHODS: a cross-sectional study was carried out with 24 infants distributed into two groups of twelve: one group of children who had used a baby walkers (BW and 12 who had not (C, with the children in both groups being of equivalent ages, sex, and socio-economic background. The Home Observation for Measurement of the Environment (HOME test provided a documentary Record of the stimuli provided by the environment. Student's t-test for independent samples was used to compare the mean scores on the HOME test of both groups, considering the level of significance to be α=0.05. RESULTS: differences in the HOME scores, with the BW group obtaining higher scores than the control group (p=0.014, with a low magnitude

  19. Autopsy and Postmortem Studies Are Concordant: Pathology of Zika Virus Infection Is Neurotropic in Fetuses and Infants With Microcephaly Following Transplacental Transmission.

    Science.gov (United States)

    Schwartz, David A

    2017-01-01

    -Pathology studies have been important in concluding that Zika virus infection occurring in pregnant women can result in vertical transmission of the agent from mother to fetus. Fetal and infant autopsies have provided crucial direct evidence that Zika virus can infect an unborn child, resulting in microcephaly, other malformations, and, in some cases, death. -To better understand the etiologic role and mechanism(s) of Zika virus in causing birth defects such as microcephaly, this communication analyzes the spectrum of clinical and autopsy studies reported from fetuses and infants who developed intrauterine Zika virus infection, and compares these findings with experimental data related to Zika virus infection. -Retrospective analysis of reported clinical, autopsy, pathology, and related postmortem studies from 9 fetuses and infants with intrauterine Zika virus infection and microcephaly. -All fetuses and infants examined demonstrated an overlapping spectrum of gross and microscopic neuropathologic abnormalities. Direct cytopathic effects of infection by the Zika virus were confined to the brain; in cases where other organs were evaluated, no direct viral effects were identified. -There is concordance of the spectrum of brain damage, reinforcing previous data indicating that the Zika virus has a strong predilection for cells of the fetal central nervous system following vertical transmission. The occurrence of additional congenital abnormalities suggests that intrauterine brain damage from Zika virus interferes with normal fetal development, resulting in fetal akinesia. Experimental in vitro and in vivo studies of Zika virus infection corroborate the human autopsy findings of neural specificity.

  20. Sex differences in normal age trajectories of functional brain networks.

    Science.gov (United States)

    Scheinost, Dustin; Finn, Emily S; Tokoglu, Fuyuze; Shen, Xilin; Papademetris, Xenophon; Hampson, Michelle; Constable, R Todd

    2015-04-01

    Resting-state functional magnetic resonance image (rs-fMRI) is increasingly used to study functional brain networks. Nevertheless, variability in these networks due to factors such as sex and aging is not fully understood. This study explored sex differences in normal age trajectories of resting-state networks (RSNs) using a novel voxel-wise measure of functional connectivity, the intrinsic connectivity distribution (ICD). Males and females showed differential patterns of changing connectivity in large-scale RSNs during normal aging from early adulthood to late middle-age. In some networks, such as the default-mode network, males and females both showed decreases in connectivity with age, albeit at different rates. In other networks, such as the fronto-parietal network, males and females showed divergent connectivity trajectories with age. Main effects of sex and age were found in many of the same regions showing sex-related differences in aging. Finally, these sex differences in aging trajectories were robust to choice of preprocessing strategy, such as global signal regression. Our findings resolve some discrepancies in the literature, especially with respect to the trajectory of connectivity in the default mode, which can be explained by our observed interactions between sex and aging. Overall, results indicate that RSNs show different aging trajectories for males and females. Characterizing effects of sex and age on RSNs are critical first steps in understanding the functional organization of the human brain. © 2014 Wiley Periodicals, Inc.

  1. Validation of an MRI Brain Injury and Growth Scoring System in Very Preterm Infants Scanned at 29- to 35-Week Postmenstrual Age.

    Science.gov (United States)

    George, J M; Fiori, S; Fripp, J; Pannek, K; Bursle, J; Moldrich, R X; Guzzetta, A; Coulthard, A; Ware, R S; Rose, S E; Colditz, P B; Boyd, R N

    2017-07-01

    The diagnostic and prognostic potential of brain MR imaging before term-equivalent age is limited until valid MR imaging scoring systems are available. This study aimed to validate an MR imaging scoring system of brain injury and impaired growth for use at 29 to 35 weeks postmenstrual age in infants born at Toddler Development, 3rd ed. (Bayley III), and the Neuro-Sensory Motor Developmental Assessment. Early MR imaging global, WM, and deep gray matter scores were negatively associated with Bayley III motor (regression coefficient for global score β = -1.31; 95% CI, -2.39 to -0.23; P = .02), cognitive (β = -1.52; 95% CI, -2.39 to -0.65; P < .01) and the Neuro-Sensory Motor Developmental Assessment outcomes (β = -1.73; 95% CI, -3.19 to -0.28; P = .02). Early MR imaging cerebellar scores were negatively associated with the Neuro-Sensory Motor Developmental Assessment (β = -5.99; 95% CI, -11.82 to -0.16; P = .04). Results were reconfirmed at term-equivalent-age MR imaging. This clinically accessible MR imaging scoring system is valid for use at 29 to 35 weeks postmenstrual age in infants born very preterm. It enables identification of infants at risk of adverse outcomes before the current standard of term-equivalent age. © 2017 by American Journal of Neuroradiology.

  2. Magnetic resonance imaging at term and neuromotor outcome in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Valkama, A.M.; Paeaekkoe, E.L.E.; Vainionpaeae, L.K.; Lanning, F.P.; Ilkko, E.A.; Koivisto, M.E

    2000-07-01

    In order to evaluate the value of neonatal brain magnetic resonance imaging (MRI) for prediction neuro motor outcome in very low birthweight (VLBW) preterm infants, 51 such infants with gestational age less than 34 wk underwent brain MRI at term age. Myelination, parenchymal lesions (haemorrhage, leukomalacia, infarction, reduction of white matter), parenchymal lesions without subependymal haemorrhage, ventricular/brain ratios and widths of the extra cerebral spaces were assessed. The MRI findings were compared with cranial ultrasound (US) performed at term. Infants' neuro motor development was followed up until 18 mo corrected age. Parenchymal lesions seen in MRI at term predicted cerebral palsy (CP) with 100 % sensitivity and 79 % specificity, the corresponding figures for US being 67 % and 85 %, respectively. Parenchymal lesions in MRI, excluding subependymal haemorrhages, predicted CP with a sensitivity of 82 % and specificity of 97 %, the corresponding figures for US being 58 % and 100 % respectively. Delayed myelination, ventricular/brain ratios and widths of the extra cerebral spaces failed to predict CP. Term age is a good time for neuroradiological examinations in prematurely born high-risk infants. Parenchymal lesions seen in MRI are reliable predictors for CP.

  3. Characterization of tissue metabolism of thyroid hormones in very premature infants

    International Nuclear Information System (INIS)

    Pavelka, S.; Kopecky, J.; Brauner, P.

    1998-01-01

    Thyroid status was characterized in very preterm infants (gestational age 23-32 wk; n = 61) from birth through day 14; in those infants who died within 16 days of delivery (n = 10) it was also correlated with the metabolism of thyroid hormones in peripheral tissues (brain, liver, kidney, skeletal muscle, and different localities of adipose tissue). The results obtained support the view that peripheral tissues of very premature infants are involved in local generation of triiodothyronine (T 3 ) and inactivation of thyroid hormones, but do not represent a major source of circulating T 3 . In this study observations on postnatal development of plasma thyroid hormone levels in normal and critically ill premature neonates are presented. Enzyme activities of all three types of iodothyronine deiodinases were followed in autopsy samples from brain, liver, kidney, muscle, and adipose tissue depots, to better characterize the relationships between peripheral metabolism of thyroid hormones and thyroid status in critically ill very preterm newborns. Plasma concentrations of total T 3 , total T 4 , and total rT 3 were estimated by competitive radioimmunoassay. Plasma TSH concentrations were measured by microparticle enzyme immunoassay. Measurable activities of deiodinases of type I, II and II were detected post mortem in all tissue samples, except for type II activity in kidney. No correlation between postnatal age and the enzyme activities was found in in different tissues in the group of infants who died by 16 days of age. All activities were the highest in liver and differed significantly in particular tissues. Obtained results suggest tat, in contrast to adults, iodothyronine metabolism in peripheral tissues of premature newborns seems to be dominated by thyroid hormones inactivation, and T 3 production mainly for local use inside tissues. (authors)

  4. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  5. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    Science.gov (United States)

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  6. Towards adapting a normal patient database for SPECT brain perfusion imaging

    International Nuclear Information System (INIS)

    Smith, N D; Soleimani, M; Mitchell, C N; Holmes, R B; Evans, M J; Cade, S C

    2012-01-01

    Single-photon emission computerized tomography (SPECT) is a tool which can be used to image perfusion in the brain. Clinicians can use such images to help diagnose dementias such as Alzheimer's disease. Due to the intrinsic stochasticity in the photon imaging system, some form of statistical comparison of an individual image with a 'normal' patient database gives a clinician additional confidence in interpreting the image. Due to the variations between SPECT camera systems, ideally a normal patient database is required for each individual system. However, cost or ethical considerations often prohibit the collection of such a database for each new camera system. Some method of adapting existing normal patient databases to new camera systems would be beneficial. This paper introduces a method which may be regarded as a 'first-pass' attempt based on 2-norm regularization and a codebook of discrete spatially stationary convolutional kernels. Some preliminary illustrative results are presented, together with discussion on limitations and possible improvements

  7. SPET brain perfusion imaging in mild traumatic brain injury without loss of consciousness and normal computed tomography.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Singh, M; el-Zeftawy, H; Atay, S; Kumar, M; Naddaf, S; Aleksic, S; Abdel-Dayem, H M

    1999-06-01

    We present SPET brain perfusion findings in 32 patients who suffered mild traumatic brain injury without loss of consciousness and normal computed tomography. None of the patients had previous traumatic brain injury, CVA, HIV, psychiatric disorders or a history of alcohol or drug abuse. Their ages ranged from 11 to 61 years (mean = 42). The study was performed in 20 patients (62%) within 3 months of the date of injury and in 12 (38%) patients more than 3 months post-injury. Nineteen patients (60%) were involved in a motor vehicle accident, 10 patients (31%) sustained a fall and three patients (9%) received a blow to the head. The most common complaints were headaches in 26 patients (81%), memory deficits in 15 (47%), dizziness in 13 (41%) and sleep disorders in eight (25%). The studies were acquired approximately 2 h after an intravenous injection of 740 MBq (20.0 mCi) of 99Tcm-HMPAO. All images were acquired on a triple-headed gamma camera. The data were displayed on a 10-grade colour scale, with 2-pixel thickness (7.4 mm), and were reviewed blind to the patient's history of symptoms. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in the cortex or basal ganglia less than 70%, or less than 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. The results show that 13 (41%) had normal studies and 19 (59%) were abnormal (13 studies performed within 3 months of the date of injury and six studies performed more than 3 months post-injury). Analysis of the abnormal studies revealed that 17 showed 48 focal lesions and two showed diffuse supratentorial hypoperfusion (one from each of the early and delayed imaging groups). The 12 abnormal studies performed early had 37 focal lesions and averaged 3.1 lesions per patient, whereas there was a reduction to--an average of 2.2 lesions per patient in the five studies (total 11 lesions) performed more than 3 months post-injury. In the

  8. Preliminary study of normal changes in brain white matter during childhood with diffusion tensor imaging

    International Nuclear Information System (INIS)

    Xiao Jiangxi; Guo Xuemei; Xie Sheng; Wang Xiaoying; Jiang Xuexiang

    2005-01-01

    Objective: To study the normal changes in brain white matter during childhood by analyzing the anisotropy of different regions and different age groups with diffusion tensor imaging (DTI). Methods: DTI was performed in 89 children (age range from 2 days to 18 years) without brain abnormalities, and the data measured in fractional anisotropy (FA) maps were analyzed statistically. Children less than 6 months were ranged to group 1, 6-12 months to group 2, 1-3 years to group 3, 3-5 years to group 4, 5-8 years to group 5, 8-12 years to group 6, 12-18 years to group 7. Results: (1) There were significant differences in anisotropy (FA values) among different regions of white matter in brain. In group 7, the FA value of corpus callosum was 0.826 ± 0.039, middle cerebellar peduncle 0.678 ± 0.043, frontal white matter 0.489 ± 0.033. (2) The anisotropy among different age group was statistically different, P<0.05. (3) The anisotropy of white matter increased with the increasing of age, and FA values showed positively exponentially correlations with age. Conclusion: DTI shows the structure of white matters in vivo, with which normal changes in brain during childhood can be evaluated. (authors)

  9. Atlas-free surface reconstruction of the cortical grey-white interface in infants.

    Directory of Open Access Journals (Sweden)

    François Leroy

    Full Text Available BACKGROUND: The segmentation of the cortical interface between grey and white matter in magnetic resonance images (MRI is highly challenging during the first post-natal year. First, the heterogeneous brain maturation creates important intensity fluctuations across regions. Second, the cortical ribbon is highly folded creating complex shapes. Finally, the low tissue contrast and partial volume effects hamper cortex edge detection in parts of the brain. METHODS AND FINDINGS: We present an atlas-free method for segmenting the grey-white matter interface of infant brains in T2-weighted (T2w images. We used a broad characterization of tissue using features based not only on local contrast but also on geometric properties. Furthermore, inaccuracies in localization were reduced by the convergence of two evolving surfaces located on each side of the inner cortical surface. Our method has been applied to eleven brains of one- to four-month-old infants. Both quantitative validations against manual segmentations and sulcal landmarks demonstrated good performance for infants younger than two months old. Inaccuracies in surface reconstruction increased with age in specific brain regions where the tissue contrast decreased with maturation, such as in the central region. CONCLUSIONS: We presented a new segmentation method which achieved good to very good performance at the grey-white matter interface depending on the infant age. This method should reduce manual intervention and could be applied to pathological brains since it does not require any brain atlas.

  10. Development of a screening MRI for infants at risk for abusive head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Flom, Lynda; Panigrahy, Ashok [Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Fromkin, Janet [University of Pittsburgh, Department of Pediatrics, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Tyler-Kabara, Elizabeth [University of Pittsburgh, Department of Neurosurgery, Children' s Hospital of Pittsburgh of UPMC, McGowan Institute for Regenerative Medicine, Pittsburgh, PA (United States); Berger, Rachel P. [University of Pittsburgh, Department of Pediatrics, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Safar Center for Resuscitation Research, Pittsburgh, PA (United States)

    2016-04-15

    Abusive head trauma (AHT) is an important cause of morbidity in infants. Identifying which well-appearing infants are at risk for AHT and need neuroimaging is challenging, and concern about radiation exposure limits the use of head CT. Availability of an MRI protocol that is highly sensitive for intracranial hemorrhage would allow for AHT screening of well-appearing infants without exposing them to radiation. To develop a screening MRI protocol to identify intracranial hemorrhage in well-appearing infants at risk for AHT. Infants enrolled in a parent study of well-appearing infants at increased risk for AHT were eligible for the current study if they underwent both head CT and conventional brain MRI. A derivation cohort of nine infants with AHT was used to identify sequences that provided the highest sensitivity for intracranial hemorrhage. A validation cohort of 78 infants including both controls with normal neuroimaging and cases with AHT was used to evaluate the accuracy of the selected sequences. Three pulse sequences - axial T2, axial gradient recalled echo (GRE) and coronal T1-W inversion recovery - were 100% sensitive for intracranial hemorrhage in the derivation cohort. The same sequences were 100% sensitive (25/25) and 83% specific (44/53) for intracranial hemorrhage in the validation cohort. A screening MRI protocol including axial T2, axial GRE and coronal T1-W inversion recovery sequences is highly sensitive for intracranial hemorrhage and may be useful as a screening tool to differentiate well-appearing infants at risk for AHT who should undergo head CT from those who can safely be discharged without head CT. Additional research is needed to evaluate the feasibility of this approach in clinical practice. (orig.)

  11. White Matter Injury and General Movements in High-Risk Preterm Infants

    NARCIS (Netherlands)

    Peyton, C.; Yang, E.; Msall, M. E.; Adde, L.; Stoen, R.; Fjortoft, T.; Bos, Arie; Einspieler, C.; Zhou, Y; Schreiber, M. D.; Marks, J. D.; Drobyshevsky, A.

    BACKGROUND AND PURPOSE: Very preterm infants (birth weight, MATERIALS AND METHODS: In this prospective study of 47 preterm infants of 24-30 weeks' gestation, brain MR imaging was performed at term-equivalent age. Infants underwent T1- and T2-weighted imaging for volumetric analysis and DTI. General

  12. Low iodine content in the diets of hospitalized preterm infants.

    Science.gov (United States)

    Belfort, Mandy B; Pearce, Elizabeth N; Braverman, Lewis E; He, Xuemei; Brown, Rosalind S

    2012-04-01

    Iodine is critical for normal thyroid hormone synthesis and brain development during infancy, and preterm infants are particularly vulnerable to the effects of both iodine deficiency and excess. Use of iodine-containing skin antiseptics in intensive care nurseries has declined substantially in recent years, but whether the current dietary iodine intake meets the requirement for hospitalized preterm infants is unknown. The aim of the study was to measure the iodine content of enteral and parenteral nutrition products commonly used for hospitalized preterm infants and estimate the daily iodine intake for a hypothetical 1-kg infant. We used mass spectrometry to measure the iodine concentration of seven preterm infant formulas, 10 samples of pooled donor human milk, two human milk fortifiers (HMF) and other enteral supplements, and a parenteral amino acid solution and soy-based lipid emulsion. We calculated the iodine provided by typical diets based on 150 ml/kg · d of formula, donor human milk with or without HMF, and parenteral nutrition. Preterm formula provided 16.4-28.5 μg/d of iodine, whereas unfortified donor human milk provided only 5.0-17.6 μg/d. Adding two servings (six packets) of Similac HMF to human milk increased iodine intake by 11.7 μg/d, whereas adding two servings of Enfamil HMF increased iodine intake by only 0.9 μg/d. The other enteral supplements contained almost no iodine, nor did a parenteral nutrition-based diet. Typical enteral diets for hospitalized preterm infants, particularly those based on donor human milk, provide less than the recommended 30 μg/d of iodine, and parenteral nutrition provides almost no iodine. Additional iodine fortification should be considered.

  13. Magnetization transfer on T2-weighted image : magnetization Transfer ratios in normal brain and cerebral lesions

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Myung Kwan; Roh, Hong Gee; Suh, Chang Hae; Cho, Young Kook; Kim, Hyung Jin; Kim, Jin Hee; Kim, Sung Tae; Choi, Sung Kyu [Inha Univ. College of Medicine, Incheon (Korea, Republic of)

    1998-07-01

    To evaluate the magnetization transfer ratio(MTR) of various normal structures and pathologic lesions, as seen on magnetization transfer T2-weighted images (MT+T2WI). Materials and Methods : In ten normal volunteers, T2-weighted images without MT (MT-T2WI) and with MT(MT+T2WI) were obtained. Off-set pulses used in MT+T2WI were 400, 600, 1000, 1500, and 2000Hz. In 60 clinical cases infarction(n=10), brain tumors(n=5), traumatic hematomas(n=5), other hematomas(n=3) vascular malformation(n=2) white matter disease(n=2) normal(n=31) and others(n=2), both MT-T2WI and MT+T2WI images were obtained using an off-set pulse of 600 Hz. In all volunteers and patients, MTR in various normal brain parenchyma and abnormal areas was measured. Results : The MTRs of white and gray matter were 48% and 45% respectively at 400 Hz, 26% and 22% at 600Hz, 12% and 11% of 1000Hz, 10% and 9% 1500HZ, and 9% and 8% at 2000Hz of RF. The MTR of CSF was 43% at 400 Hz of off-resonance RF, while the contrast resolution of T2WI was poor. An off-resonance of 600Hz appeared to be the optimal frequency. In diseased areas,MTRs varied but were usually similar to or lower than those of brain parenchyma. Conclusion : The optimal off-resonance RF on MT+T2WI appears to be 600 Hz for relatively high MTR of brain parenchyma and low MTR of CSF,in which MTRs of white and gray matter were 26% and 22%, respectively, of 600Hz off-set pulse. The MTRs of cerebral lesions varied and further studies of various cerebral lesions are needed.

  14. Magnetic resonance imaging of the brain in normal aging and dementia

    International Nuclear Information System (INIS)

    Alavi, A.; Fazekas, F.; Chawluk, J.; Zimmerman, R.

    1987-01-01

    The unusual sensitivity of magnetic resonance imaging in detecting white matter lesions has yielded striking results in studying the aging brain and in diagnosing a variety of central nervous system disorders. These lesions are most obvious in the periventricular white matter and appear as punctate or confluent hyperintense abnormalities on T2-weighted images. Their correlation with increasing age and the ensuing increase of cardiovascular risk factors suggests ischemic damage as their probable underlying pathologic cause. MRI thus may prove an early and very sensitive indicator of incipient cerebrovascular disease, adding information on the association of vascular damage with the development of dementing illness. This report is a preliminary communication of an ongoing study which is evaluating the importance of these findings in the 'normal' aging brain and different forms of dementia. 11 refs.; 1 table

  15. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Samereh, E-mail: samere.g@gmail.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of); Pazirandeh, Ali, E-mail: paziran@yahoo.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of); Jameie, Seyed Behnamedin, E-mail: behnamjameie@tums.ac.ir [Basic Science Department, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Baghban Khojasteh, Nasrin, E-mail: khojasteh_n@yahoo.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of)

    2012-06-15

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: Black-Right-Pointing-Pointer Boron distribution in male and female rats' normal brain was studied in this research. Black-Right-Pointing-Pointer Coronal sections of animal tissue samples were irradiated with thermal neutrons. Black-Right-Pointing-Pointer Alpha and Lithium tracks were counted using alpha autoradiography. Black-Right-Pointing-Pointer Different boron concentration was seen in brain sections of male and female rats. Black-Right-Pointing-Pointer The highest boron concentration was seen in 4 h after boron compound injection.

  16. Heart rate variability and QT dispersion study in brain death patients and comatose patients with normal brainstem function

    International Nuclear Information System (INIS)

    Vakilian, A.R.; Iranmanesh, F.; Nadimi, A.E.; Kahnali, J.A.

    2011-01-01

    To compare heart rate variability (HRV) and QT dispersion in comatose patients with normal brainstem function and with brain death. Fourteen brain death patients with clinical signs of imminent brain death and 15 comatose patients were examined by neurologist in intensive care unit. HRV, RR interval and QT dispersion on ECG were assessed for 24 hours in both groups. Independent t-test and chi-square test were used for statistical analysis to determine significance which was set at p < 0.05. According to Holter findings, mean of standard deviation of RR-interval in the comatose and brain death groups was 48.33 and 35 respectively (p = 0.045). Mean of covariance coefficient of RR-interval was 0.065 in the comatose group and 0.043 in the brain deaths (p = 0.006). QT dispersion was not significant difference in two groups. HRV and RR-interval analysis appeared as an early finding for the diagnosis of brainstem death in comparison to comatose patients with normal brainstem function. QT dispersion had not significant in this regard. (author)

  17. Unobtrusive sleep state measurements in preterm infants - A review

    NARCIS (Netherlands)

    Werth, J.V.S.W.; Atallah, L.; Andriessen, P.; Long, X.; Zwartkruis-Pelgrim, E.; Aarts, R.M.

    2017-01-01

    Sleep is important for the development of preterm infants. During sleep, neural connections are formed and the development of brain regions is triggered. In general, various rudimentary sleep states can be identified in the preterm infant, namely active sleep (AS), quiet sleep (QS) and intermediate

  18. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  19. Human Mesenchymal Stem Cell Treatment Normalizes Cortical Gene Expression after Traumatic Brain Injury.

    Science.gov (United States)

    Darkazalli, Ali; Vied, Cynthia; Badger, Crystal-Dawn; Levenson, Cathy W

    2017-01-01

    Traumatic brain injury (TBI) results in a progressive disease state with many adverse and long-term neurological consequences. Mesenchymal stem cells (MSCs) have emerged as a promising cytotherapy and have been previously shown to reduce secondary apoptosis and cognitive deficits associated with TBI. Consistent with the established literature, we observed that systemically administered human MSCs (hMSCs) accumulate with high specificity at the TBI lesion boundary zone known as the penumbra. Substantial work has been done to illuminate the mechanisms by which MSCs, and the bioactive molecules they secrete, exert their therapeutic effect. However, no such work has been published to examine the effect of MSC treatment on gene expression in the brain post-TBI. In the present study, we use high-throughput RNA sequencing (RNAseq) of cortical tissue from the TBI penumbra to assess the molecular effects of both TBI and subsequent treatment with intravenously delivered hMSCs. RNAseq revealed that expression of almost 7000 cortical genes in the penumbra were differentially regulated by TBI. Pathway analysis using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database revealed that TBI regulated a large number of genes belonging to pathways involved in metabolism, receptor-mediated cell signaling, neuronal plasticity, immune cell recruitment and infiltration, and neurodegenerative disease. Remarkably, hMSC treatment was found to normalize 49% of all genes disrupted by TBI, with notably robust normalization of specific pathways within the categories mentioned above, including neuroactive receptor-ligand interactions (57%), glycolysis and gluconeogenesis (81%), and Parkinson's disease (100%). These data provide evidence in support of the multi-mechanistic nature of stem cell therapy and suggest that hMSC treatment is capable of simultaneously normalizing a wide variety of important molecular pathways that are disrupted by brain injury.

  20. Congenital Malformations in Singleton Infants Conceived by Assisted Reproductive Technologies and Singleton Infants by Natural Conception in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Ramin Mozafari Kermani

    2017-10-01

    Full Text Available Background: Multiple pregnancies occur more frequently in assisted reproductive technology (ART compared to normal conception (NC. It is known that the risk of congenital malformations in a multiple pregnancy are higher than single pregnancy. The aim of this study is to compare congenital malformations in singleton infants conceived by ART to singleton infants conceived naturally. Materials and Methods: In this historical cohort study, we performed a historical cohort study of major congenital malformations (MCM in 820 singleton births from January 2012 to December 2014. The data for this analysis were derived from Tehran’s ART linked data file. The risk of congenital malformations was compared in 164 ART infants and 656 NC infants. We performed multiple logistic regression analyses for the independent association of ART on each outcome. Results: We found 40 infants with MCM 29 (4.4% NC infants and 14 (8.3% ART infants. In comparison with NC infants, ART infants had a significant 2-fold increased risk of MCM (P=0.046. After adjusting individually for maternal age, infant gender, prior stillbirth, mother’s history of spontaneous abortion, and type of delivery, we did not find any difference in risk. In this study the majority (95.1% of all infants were normal but 4.9% of infants had at least one MCM. We found a difference in risk of MCMs between in vitro fertilization (IVF and intracytoplasmic sperm injection (ICSI. We excluded the possible role of genotype and other unknown factors in causing more malformations in ART infants. Conclusion: This study reported a higher risk of MCMs in ART singleton infants than in NC singleton infants. Congenital heart disease, developmental dysplasia of the hip (DDH, and urogenital malformations were the most reported major malformations in singleton ART infants according to organ and system classification.

  1. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    International Nuclear Information System (INIS)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S.

    1998-01-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.)

  2. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S. [Internal Medicine III, Shimane Medical University, Izumo (Japan)

    1998-12-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.) With 4 figs., 3 tabs., 16 refs.

  3. Detection of Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging.

    Science.gov (United States)

    Eylers, V V; Maudsley, A A; Bronzlik, P; Dellani, P R; Lanfermann, H; Ding, X-Q

    2016-03-01

    Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. © 2016 by American Journal of Neuroradiology.

  4. Radiological rickets in extremely low birthweight infants

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, A.J.; McIntosh, N.; Wheeler, K.; Williams, J.E.

    1987-01-01

    Forty-eight infants of birthweight less than 1000 grams who survived for more than 28 days, had wrist X-rays to prospectively determine the incidence of radiological rickets. Twelve infants (25%) had normal X-rays throughout, 10 infants (21%) showed osteopoenia and 26 infants (54%) had classical changes or rickets of which 8 (17% of the total) had spontaneous fractures. There was poor correlation between peak values of serum alkaline phosphatase and the radiological changes.

  5. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    Science.gov (United States)

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  6. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  7. Development of normal fetal brain by MRI with a half-Fourier rapid acquisition with relaxation enhancement sequence

    International Nuclear Information System (INIS)

    Li Meilan; Liu Xuejun; Wang Jianhong; Zhao Cheng; Li Xiang

    2006-01-01

    Objective: To evaluate normal maturation of the fetal brain with half-Fourier rapid acquisition with relaxation enhancement (RARE) MRI. Methods: The normal brains of 25 fetuses of 12-38 weeks gestational age were examined in utero with half-Fourier RARE imaging. Gyrus maturation, gray and white matter differentiation, ventricle-to-brain diameter ratio, and subarachnoid space size were evaluated with respect to gestational age. Results: At 12-23 weeks, the brain had a smooth surface, and two or three layers were differentiated in the cerebral cortex. At 24-26 weeks, only a few shallow grooves were seen in the central sulcus, and three layers, including the immature cortex, intermediate zone, and germinal matrix, were differentiated in all fetuses. At 27-29 weeks, sulcus formation was observed in various regions of the brain parenchyma, and the germinal matrix became invisible. Sulcation was seen in the whole cerebral cortex from 30 weeks on. However, the cortex did not undergo infolding, and opercular formation was not seen before 33 weeks. At 23 weeks and earlier, the cerebral ventricles were large; thereafter, they gradually became smaller. The subarachnoid space overlying the cortical convexities was slightly dilated at all gestational ages, most markedly at 21-26 weeks. Conclusion: Changes in brain maturation proceed through stages in an orderly and predictable fashion and can be evaluated reliably with half-Fourier RARE MRI. (authors)

  8. Nutritional recommendations for the late-preterm infant and the preterm infant after hospital discharge.

    Science.gov (United States)

    Lapillonne, Alexandre; O'Connor, Deborah L; Wang, Danhua; Rigo, Jacques

    2013-03-01

    Early nutritional support of preterm infants is critical to life-long health and well being. Numerous studies have demonstrated that preterm infants are at increased risk of mortality and morbidity, including disturbances in brain development. To date, much attention has focused on enhancing the nutritional support of very low and extremely low birth weight infants to improve survival and quality of life. In most countries, preterm infants are sent home before their expected date of term birth for economic or other reasons. It is debatable whether these newborns require special nutritional regimens or discharge formulas. Furthermore, guidelines that specify how to feed very preterm infants after hospital discharge are scarce and conflicting. On the other hand, the late-preterm infant presents a challenge to health care providers immediately after birth when decisions must be made about how and where to care for these newborns. Considering these infants as well babies may place them at a disadvantage. Late-preterm infants have unique and often-unrecognized medical vulnerabilities and nutritional needs that predispose them to greater rates of morbidity and hospital readmissions. Poor or inadequate feeding during hospitalization may be one of the main reasons why late-preterm infants have difficulty gaining weight right after birth. Providing optimal nutritional support to late premature infants may improve survival and quality of life as it does for very preterm infants. In this work, we present a review of the literature and provide separate recommendations for the care and feeding of late-preterm infants and very preterm infants after discharge. We identify gaps in current knowledge as well as priorities for future research. Copyright © 2013 Mosby, Inc. All rights reserved.

  9. APPROACHING THE BIOLOGY OF HUMAN PARENTAL ATTACHMENT: BRAIN IMAGING, OXYTOCIN AND COORDINATED ASSESSMENTS OF MOTHERS AND FATHERS

    Science.gov (United States)

    Swain, JE; Kim, P; Spicer, J; Ho, SS; Dayton, CJ; Elmadih, A; Abel, KM

    2014-01-01

    Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting of offspring enable formation of each individual’s first social bonds and critically shape infants’ behavior. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits toward long-term influence of early-life experiences on offspring. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Known deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses – commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain, and consider a current model and future directions that may have profound implications for intervention long term outcomes in families across risk and resilience profiles. PMID:24637261

  10. Body growth and brain development in premature babies: an MRI study

    International Nuclear Information System (INIS)

    Tzarouchi, Loukia C.; Zikou, Anastasia; Kosta, Paraskevi; Argyropoulou, Maria I.; Drougia, Aikaterini; Andronikou, Styliani; Astrakas, Loukas G.

    2014-01-01

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGA a ) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGA b ). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGA b in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning. (orig.)

  11. Body growth and brain development in premature babies: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tzarouchi, Loukia C.; Zikou, Anastasia; Kosta, Paraskevi; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Drougia, Aikaterini; Andronikou, Styliani [University of Ioannina, Intensive Care Unit, Child Health Department, Medical School, Ioannina (Greece); Astrakas, Loukas G. [University of Ioannina, Department of Medical Physics, Medical School, Ioannina (Greece)

    2014-03-15

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGA{sub a}) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGA{sub b}). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGA{sub b} in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning. (orig.)

  12. Characteristics of antigravity spontaneous movements in preterm infants up to 3 months of corrected age.

    Science.gov (United States)

    Miyagishima, Saori; Asaka, Tadayoshi; Kamatsuka, Kaori; Kozuka, Naoki; Kobayashi, Masaki; Igarashi, Risa; Hori, Tsukasa; Yoto, Yuko; Tsutsumi, Hiroyuki

    2016-08-01

    We investigated whether spontaneous antigravity limbs movements in very low birth weight preterm infants were insufficient compared to those in term infants. The relationship between the quality of general movements (GMs) and antigravity limbs movements was also examined. Preterm infants with very low birth weight without central nervous system disorders nor severe respiration disorders, and healthy term infants were recruited. The infants were set in a supine position. The distance between both hands and between both feet, and the height of both hands and feet from the floor were recorded at 1-3 corrected months for preterm infants, and at 1-3 months for term infants by a 3D motion capture system. The measurements were adjusted for body proportions. GMs in preterm and term infants were assessed similarly. Thirteen preterm and 15 term infants completed the study. In preterm infants, the distance between both hands and between both feet were longer, and the height of both hands and feet were lower than those in term infants in all measurements. In term infants, the height of both hands and feet increased as they developed, but no change was observed in preterm infants. In preterm infants with abnormal GMs, the distance between both hands was longer, and the height of both hands and feet was lower than that in those with normal GMs. There were no such differences between preterm infants with normal GMs and term infants with normal GMs. Antigravity limbs movements in preterm infants within the first 3 month of corrected age were insufficient compared with those in term infants. Furthermore, no improvement with development was observed in preterm infants. In addition, preterm infants with abnormal GMs showed worse antigravity limbs movements than preterm and term infants with normal GMs. The preterm infants with normal GMs could behave similar to the full term infants. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Age-related changes in brain perfusion of normal subjects detected by 99mTc-HMPAO SPECT

    International Nuclear Information System (INIS)

    Krausz, Y.; Karger, H.; Chisin, R.; Bonne, O.; Gorfine, M.; Lerer, B.

    1998-01-01

    Previous functional imaging data generally show impairment in global cerebral blood flow (CBF) with age. Conflicting data, however, concerning age-related changes in regional CBF (rCBF) have been reported. We examined the relative rCBF in a sample of healthy subjects of various ages, to define and localize any age-related CBF reduction. Twenty-seven healthy subjects (17 male, 10 female; mean age 49 ± 15, range 26-71, median 47 years) were studied by 99m Tc-HMPAO brain SPECT. The younger age group consisted of subjects below, the older group above 47 years of age, respectively. Analysis was performed by applying three preformed templates, each containing delineated regions of interest (ROIs), to three transaxial brain slices at approximately 4, 6, and 7 cm above the orbitomeatal line (OML). The average number of counts for each ROI was normalized to mean uptake of the cerebellum and of the whole brain slice. Globally, 99m Tc-HMPAO uptake ratio normalized to cerebellum was significantly decreased in older subjects, affecting both hemispheres. A slight left-to-right asymmetry was observed in HMPAO uptake of the whole study group. It did not, however, change with age. Regionally, both cortical and subcortical structures of older subjects were involved: uptake ratio to cerebellum was significantly lower (after correction for multiple testing) in the left basal ganglia and in the left superior temporal, right frontal and bilateral occipital cortices at 4 cm above the OML. At 6 cm above the OML, reduced uptake ratios were identified in the left frontal and bilateral parietal areas. At 7 cm, reduced uptake was detected in the right frontal and left occipital cortices. Most of these differences were reduced when uptake was normalized to whole slice, whereas an increase in uptake ratios was observed in the cingulate cortex of the elderly. An inverse correlation between age and HMPAO uptake ratios normalized to cerebellum was observed in a number of brain regions. These

  14. Radiological rickets in extremely low birthweight infants

    International Nuclear Information System (INIS)

    Lyon, A.J.; McIntosh, N.; Wheeler, K.; Williams, J.E.

    1987-01-01

    Forty-eight infants of birthweight less than 1000 grams who survived for more than 28 days, had wrist X-rays to prospectively determine the incidence of radiological rickets. Twelve infants (25%) had normal X-rays throughout, 10 infants (21%) showed osteopoenia and 26 infants (54%) had classical changes or rickets of which 8 (17% of the total) had spontaneous fractures. There was poor correlation between peak values of serum alkaline phosphatase and the radiological changes. (orig.)

  15. Elemental composition of 'normal' and Alzheimer brain tissue by INA and PIXE analyses

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    Instrumental methods based on the nuclear and atomic properties of the elements have been used for many years to determine elemental concentrations in a variety of materials for biomedical, industrial and environmental applications. These methods offer high sensitivity for accurate trace element measurements, suffer few interfering or competing effects. Present no blank problems and are convenient for both research and routine analyses. The present article describes the use of two trace element techniques. Firstly the use of activation of stable nuclei irradiated by neutrons in the core of a low power research reactor as a means of detection of elements through the resulting gamma-rays emitted. Secondly, the observations of the interactions of energetic ion beams with the material in order to identify elemental species. Over recent years there has been some interest in determining the elemental composition of 'normal' and Alzheimer affected brain tissue, however literature findings are inconsistent. Possible reasons for discrepancies need to be identified for further progress to be made. Here, post-mortem tissue samples, provided by the Alzheimer's Disease Brain Bank, Institute of Psychiatry, London, were taken from the frontal, occipital, parietal and temporal lobes of both hemispheres of brains from 13 'normal' and 19 Alzheimer subjects. The elemental composition of the samples was determined using the analytical techniques of INAA (instrumental neutron activation analysis), RBS (Rutherford back-scattering) and PIXE (particle induced x-ray emission). The principal findings are summarised here. (author)

  16. Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study.

    Science.gov (United States)

    Uda, Satoshi; Matsui, Mie; Tanaka, Chiaki; Uematsu, Akiko; Miura, Kayoko; Kawana, Izumi; Noguchi, Kyo

    2015-01-01

    Diffusion tensor imaging (DTI), which measures the magnitude of anisotropy of water diffusion in white matter, has recently been used to visualize and quantify parameters of neural tracts connecting brain regions. In order to investigate the developmental changes and sex and hemispheric differences of neural fibers in normal white matter, we used DTI to examine 52 healthy humans ranging in age from 2 months to 25 years. We extracted the following tracts of interest (TOIs) using the region of interest method: the corpus callosum (CC), cingulum hippocampus (CGH), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). We measured fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD). Approximate values and changes in growth rates of all DTI parameters at each age were calculated and analyzed using LOESS (locally weighted scatterplot smoothing). We found that for all TOIs, FA increased with age, whereas ADC, AD and RD values decreased with age. The turning point of growth rates was at approximately 6 years. FA in the CC was greater than that in the SLF, ILF and CGH. Moreover, FA, ADC and AD of the splenium of the CC (sCC) were greater than in the genu of the CC (gCC), whereas the RD of the sCC was lower than the RD of the gCC. The FA of right-hemisphere TOIs was significantly greater than that of left-hemisphere TOIs. In infants, growth rates of both FA and RD were larger than those of AD. Our data show that developmental patterns differ by TOIs and myelination along with the development of white matter, which can be mainly expressed as an increase in FA together with a decrease in RD. These findings clarify the long-term normal developmental characteristics of white matter microstructure from infancy to early adulthood. © 2015 S. Karger AG, Basel.

  17. Fine Motor Development of Low Birth Weight Infants Corrected Aged 8 to 12 Months

    Directory of Open Access Journals (Sweden)

    Sepideh Nazi

    2012-10-01

    Full Text Available Objectives: The aim of this study was to compare the fine motor development between Low Birth Weight (LBW infants and Normal Birth Weight infants (NBW at the age of 8-12 months by using the Peabody Developmental Motor Scale-2 (PDMS-2 . Methods: This was a non experimental and cross sectional study which was conducted on the 18 LBW infants and 14 normal infants. By referring to the profile of infants in NICU of Aliasghar Hospital, those with defined inclusion criteria was recognized (case group. The normal weight infants, randomly selected from Health Center of that hospital, matched with case group for date of birth. After completing the questionnaire about demographic variables, their gross motor development was assessed with PDMS-2. Finally the scores of the motor quotient were analyzed by independent t-test statistical method. Results: There was a significant difference between Fine motor quotient of groups (P=0.007. Discussion: This study showed that LBW infants are significantly lower than normal weight infants in attaining Fine motor skills. It means that the LBW infants are more prone to developmental difficulties.

  18. Simulations of exercise and brain effects of acute exposure to carbon monoxide in normal and vascular-diseased persons.

    Science.gov (United States)

    At some level, carboxyhemoglobin (RbCO) due to inhalation of carbon monoxide (CO) reduces maximum exercise duration in normal and ischemic heart patients. At high RbCO levels in normal subjects, brain function is also affected and behavioral performance is impaired. These are fin...

  19. Hierarchical clustering of Alzheimer and "normal" brains using elemental concentrations and glucose metabolism determined by PIXE, INAA and PET

    NARCIS (Netherlands)

    Cutts, DA; Spyrou, NM; Maguire, RP; Leenders, KL

    Brain tissue samples, obtained from the Alzheimer Disease Brain Bank, Institute of Psychiatry, London, were taken from both left and right hemispheres of three regions of the cerebrum, namely the frontal, parietal and occipital lobes for both Alzheimer and 'normal' subjects. Trace element

  20. Auditory Discrimination of Lexical Stress Patterns in Hearing-Impaired Infants with Cochlear Implants Compared with Normal Hearing: Influence of Acoustic Cues and Listening Experience to the Ambient Language.

    Science.gov (United States)

    Segal, Osnat; Houston, Derek; Kishon-Rabin, Liat

    2016-01-01

    To assess discrimination of lexical stress pattern in infants with cochlear implant (CI) compared with infants with normal hearing (NH). While criteria for cochlear implantation have expanded to infants as young as 6 months, little is known regarding infants' processing of suprasegmental-prosodic cues which are known to be important for the first stages of language acquisition. Lexical stress is an example of such a cue, which, in hearing infants, has been shown to assist in segmenting words from fluent speech and in distinguishing between words that differ only the stress pattern. To date, however, there are no data on the ability of infants with CIs to perceive lexical stress. Such information will provide insight to the speech characteristics that are available to these infants in their first steps of language acquisition. This is of particular interest given the known limitations that the CI device has in transmitting speech information that is mediated by changes in fundamental frequency. Two groups of infants participated in this study. The first group included 20 profoundly hearing-impaired infants with CI, 12 to 33 months old, implanted under the age of 2.5 years (median age of implantation = 14.5 months), with 1 to 6 months of CI use (mean = 2.7 months) and no known additional problems. The second group of infants included 48 NH infants, 11 to 14 months old with normal development and no known risk factors for developmental delays. Infants were tested on their ability to discriminate between nonsense words that differed on their stress pattern only (/dóti/ versus /dotí/ and /dotí/ versus /dóti/) using the visual habituation procedure. The measure for discrimination was the change in looking time between the last habituation trial (e.g., /dóti/) and the novel trial (e.g., /dotí/). (1) Infants with CI showed discrimination between lexical stress pattern with only limited auditory experience with their implant device, (2) discrimination of stress

  1. Intrapartum FHR monitoring and neonatal CT brain scan

    International Nuclear Information System (INIS)

    Takahashi, Yoshiki; Ukita, Masahiko; Nakada, Eizo

    1982-01-01

    The effect of fetal distress on the neonatal brain was investigated by neonatal CT brain scan, FHR monitoring and mode of delivery. This study involved 11 cases of full term vertex delivery in which FHR was recorded by fetal direct ECG during the second stage labor. All infants weighed 2,500 g or more. FHR monitoring was evaluated by Hon's classification. Neonatal brain edema was evaluated by cranial CT histgraphic analysis (Nakada's method). 1) Subdural hemorrhage was noted in 6 of 7 infants delivered by vacuum extraction or fundal pressure (Kristeller's method). 2) Intracranial hemorrhage was demonstrated in all of 3 infants with 5-min. Apgar score 7 or less. 3) Two cases with prolonged bradycardia and no variability had intraventricular or intracerebral hemorrhage which resulted in severe central nervous system damage. 4) The degree of neonatal brain edema correlated with 5-min. Apgar score. 5) One case with prolonged bradycardia and no variability resulted in severe neonatal brain edema. Four cases with variable deceleration and increased variability resulted in mild neonatal brain edema. Two cases with late deceleration and decreased variability resulted in no neonatal brain edema. (author)

  2. The composition of polyunsaturated fatty acids in erythrocytes of lactating mothers and their infants

    DEFF Research Database (Denmark)

    Jørgensen, M.H.; Nielsen, P.K.; Michaelsen, K.F.

    2006-01-01

    Long-chain polyunsaturated fatty acids (LCPUFA) in breastmilk, specifically docosahexaenoic acid (DHA), are important for infant brain development. Accretion of DHA in the infant brain is dependent on DHA-status, intake and metabolism. The aim of this study was to describe changes in maternal...... and infant erythrocyte (RBC) DHA-status during the first four months of lactation. We examined 17 mothers and their term infants at 1, 2 and 4 months of age. Milk samples and RBC from the mothers and infants were obtained and analysed for fatty acid composition. Comparative analysis of the results showed...... that the content of DHA in maternal RBC-phosphatidylcholine (PE) decreased over the four month period and this was not accompanied by a decrease in DHA in infant RBC-PE (P = 0.005). The ratio of n-6 PUFA to n-3 PUFA increased over time in maternal RBC-PE, but not in infant RBC-PE (P

  3. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake.

    Science.gov (United States)

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B

    2016-11-01

    In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m - 2 ) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m - 2 ), both before and 30 min after consumption of a standardized meal (~260 kcal). Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (Pfood intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (Pfood intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.

  4. Blood Cytokine Profiles Associated with Distinct Patterns of Bronchopulmonary Dysplasia among Extremely Low Birth Weight Infants.

    Science.gov (United States)

    D'Angio, Carl T; Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Skogstrand, Kristin; Hougaard, David M; Shankaran, Seetha; Goldberg, Ronald N; Ehrenkranz, Richard A; Tyson, Jon E; Stoll, Barbara J; Das, Abhik; Higgins, Rosemary D

    2016-07-01

    To explore differences in blood cytokine profiles among distinct bronchopulmonary dysplasia (BPD) patterns. We evaluated blood spots collected from 943 infants born at ≤1000 g and surviving to 28 days on postnatal days 1, 3, 7, 14, and 21 for 25 cytokines. Infants were assigned to the following lung disease patterns: (1) no lung disease (NLD); (2) respiratory distress syndrome without BPD; (3) classic BPD (persistent exposure to supplemental oxygen until 28 days of age); or (4) atypical BPD (period without supplemental oxygen before 28 days). Median cytokine levels for infants with BPD were compared with the IQR of results among infants with NLD. The distribution of enrolled infants by group was as follows: 69 (NLD), 73 (respiratory distress syndrome), 381 (classic BPD), and 160 (atypical BPD). The remaining 260 infants could not be classified because of missing data (104) or not fitting a predefined pattern (156). Median levels of 3 cytokines (elevated interleukin [IL]-8, matrix metalloproteinase-9; decreased granulocyte macrophage colony-stimulating factor) fell outside the IQR for at least 2 time points in both infants with atypical and classic BPD. Profiles of 7 cytokines (IL-6, IL-10, IL-18, macrophage inflammatory protein-1α, C-reactive protein, brain-derived neurotrophic factor, regulated on activation, normal T cell expressed and secreted) differed between infants with classic and atypical BPD. Blood cytokine profiles may differ between infants developing classic and atypical BPD. These dissimilarities suggest the possibility that differing mechanisms could explain the varied patterns of pathophysiology of lung disease in extremely premature infants. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Myelination progression in language-correlated regions in brain of normal children determined by quantitative MRI assessment.

    Science.gov (United States)

    Su, Peijen; Kuan, Chen-Chieh; Kaga, Kimitaka; Sano, Masaki; Mima, Kazuo

    2008-12-01

    To investigate the myelination progression course in language-correlated regions of children with normal brain development by quantitative magnetic resonance imaging (MRI) analysis compared with histological studies. The subjects were 241 neurologically intact neonates, infants and young children (128 boys and 113 girls) who underwent MRI between 2001 and 2007 at the University of Tokyo Hospital, ranging in age from 0 to 429 weeks corrected by postnatal age. To compare their data with adult values, 25 adolescents and adults (14 men and 11 women, aged from 14 to 83 years) were examined as controls. Axial T2-weighted images were obtained using spin-echo sequences at 1.5 T. Subjects with a history of prematurity, birth asphyxia, low Apgar score, seizures, active systemic disease, congenital anomaly, delayed development, infarcts, hemorrhages, brain lesions, or central nervous system malformation were excluded from the analysis. Seven regions of interest in language-correlated areas, namely Broca's area, Wernicke's area, the arcuate fasciculus, and the angular gyrus, as well as their right hemisphere homologous regions, and the auditory cortex, the motor cortex, and the visual cortex were examined. Signal intensity obtained by a region-of-interest methodology progresses from hyper- to hypointensity during myelination. We chose the inferior cerebellar peduncle as the internal standard of maturation. Myelination in all these seven language-correlated regions examined in this study shared the same curve pattern: no myelination was observed at birth, it reached maturation at about 1.5 years of age, and it continued to progress slowly thereafter into adult life. On the basis of scatter plot results, we put these areas into three groups: Group A, which included the motor cortex, the auditory cortex, and the visual cortex, myelinated faster than Group B, which included Broca's area, Wernicke's area, and the angular gyrus before 1.5 years old; Group C, consisting of the

  6. Gluconeogenesis continues in premature infants receiving total parenteral nutrition

    Science.gov (United States)

    To determine the contribution of total gluconeogenesis, to glucose production in preterm infants receiving total parenteral nutrition (TPN) providing glucose exceeding normal infant glucose turnover rate, eight infants (0.955 +/- 0.066 kg, 26.5 - 0.5 wks, 4-1 d) were studied while receiving routine ...

  7. The clinical use of near infrared spectroscopy-monitored cerebral oxygen saturation and extraction in the preterm infant

    NARCIS (Netherlands)

    Lemmers, P.M.A.

    2010-01-01

    Survival of extremely preterm infants has greatly improved over the last decades. Despite this, perinatal brain damage with adverse neurodevelopmental outcome is still affecting a considerable number of these infants. Although the etiology of brain damage is multifactorial and even partly unknown,

  8. The importance of a forensics investigation of sudden infant death syndrome: recommendations for developing, low and middle income countries

    Directory of Open Access Journals (Sweden)

    Steven A. Koehler

    2010-11-01

    Full Text Available Sudden infant deaths syndrome (SIDS, the sudden and unexpected death of a normal and healthy infant, has remained a medical and forensic mystery. Despite years of research all attempts to ascertain the exact cause and manner of death have failed. The information collected during the course of the comprehensive investigation by the various investigation agencies and analysis of the data has not been in vain. The epidemiological, demographic, and pathological data have identified distinctive features and risk factors associated with infants that died from SIDS. Epidemiological data has provided the unique characteristics of infants that died of SIDS that differentiates them from non-SIDS infants. Analysis of information from the death scene investigation has identified key risk factor behaviour associated with SIDS, namely the prone sleeping position. Pathological examination of the internal organs, specifically the brain, has shown some differences between SIDS and non-SIDS infants. However, to gain a complete picture of SIDS data, all countries around the world must provide information, even basic information, to understand this syndrome better. Developing countries must understand their role and importance in developing plans to investigate, collect, and disseminate SIDS data to the rest of the world. This paper provides general guidelines for the investigation of SIDS in developing countries.

  9. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. It is determined whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was examined in a group of 72 subjects, ages 22 to 82 years, with 36 regions of interest chosen from both hemispheres of the cortex, midbrain and cerebellum. To determine metabolic rates the in-vivo technique of positron emission tomography (PET) was employed. Three age groups were chosen to compare hemispherical differences. In both young and intermediate age groups the left hemisphere had higher rCMRGlu values than those of the right for the majority of regions with, although less pronounced in the intermediate group. Importantly, the older age group displayed little difference between hemispheres. (author)

  10. Sudden infant death syndrome, childhood thrombosis, and presence of genetic risk factors for thrombosis

    DEFF Research Database (Denmark)

    Larsen, T B; Nørgaard-Pedersen, B; Banner, Jytte

    2000-01-01

    in the child. This prompted us to investigate these genetic markers of thromboembolic disease in 121 cases of sudden infant death syndrome and in relevant controls, in the expectation of a more frequent occurrence of these markers if thrombosis is an etiological factor in sudden infant death syndrome......Sudden infant death syndrome or "cot death" has until the late eighties been a significant cause of death in children between the ages of 1 month and 1 year. Approximately two per 1000 children born alive dies of sudden infant death syndrome each year in Western Europe, North America, and Australia....... The vulnerability of the infant brain stem to ischemia has been suggested to be a conceivable cause of sudden infant death syndrome. This is compatible with a hypothesis that genetic risk factors for cerebral thrombosis could cause microinfarction in the brain stem during the first month of life, affecting vital...

  11. Neurotoxic response of infant monkeys to methylmercury.

    Science.gov (United States)

    Willes, R F; Truelove, J F; Nera, E A

    1978-02-01

    Four infant monkeys were dosed orally with 500 microgram Hg/kg body wt./day /as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28--29 days of treatment; the blood Hg levels were 8.0--9.4 microgram Hg/g blood. Dosing was terminated at 28--29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35--43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver (55.8 +/- 3.2 microgram Hg/g) followed by occipital cortex (35.6 +/- 4.8 microgram Hg/g) renal cortex (32.8 +/- 1.6 microgram Hg/g). The frontal and temporal cortices had 27.0 +/- 3.4 and 29.6 +/- 4.9 microgram Hg/g respectively while the cerebellar Hg concentration averaged 13.0 +/- 1.5 microgram Hg/g. The mean blood/brain ratio was 0.21 +/- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.

  12. Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury

    DEFF Research Database (Denmark)

    Hwabejire, John O; Imam, Ayesha M; Jin, Guang

    2013-01-01

    We have previously shown that the extent of traumatic brain injury (TBI) in large animal models can be reduced with early infusion of fresh frozen plasma (FFP), but the precise mechanisms remain unclear. In this study, we investigated whether resuscitation with FFP or normal saline differed in th...... in their effects on cerebral metabolism and excitotoxic secondary brain injury in a model of polytrauma, TBI, and hemorrhagic shock....

  13. Maternal Attachment Representation and Neurophysiological Processing during the Perception of Infants' Emotional Expressions.

    Directory of Open Access Journals (Sweden)

    Rainer Leyh

    Full Text Available The perception of infant emotions is an integral part of sensitive caregiving within the mother-child relationship, a maternal ability which develops in mothers during their own attachment history. In this study we address the association between maternal attachment representation and brain activity underlying the perception of infant emotions. Event related potentials (ERPs of 32 primiparous mothers were assessed during a three stimulus oddball task presenting negative, positive and neutral emotion expressions of infants as target, deviant or standard stimuli. Attachment representation was assessed with the Adult Attachment Interview during pregnancy. Securely attached mothers recognized emotions of infants more accurately than insecurely attached mothers. ERPs yielded amplified N170 amplitudes for insecure mothers when focusing on negative infant emotions. Secure mothers showed enlarged P3 amplitudes to target emotion expressions of infants compared to insecure mothers, especially within conditions with frequent negative infant emotions. In these conditions, P3 latencies were prolonged in insecure mothers. In summary, maternal attachment representation was found associated with brain activity during the perception of infant emotions. This further clarifies psychological mechanisms contributing to maternal sensitivity.

  14. Optimization of stereotactically-guided conformal treatment planning of sellar and parasellar tumors, based on normal brain dose volume histograms

    International Nuclear Information System (INIS)

    Perks, Julian R.; Jalali, Rakesh; Cosgrove, Vivian P.; Adams, Elizabeth J.; Shepherd, Stephen F.; Warrington, Alan P.; Brada, Michael

    1999-01-01

    Purpose: To investigate the optimal treatment plan for stereo tactically-guided conformal radiotherapy (SCRT) of sellar and parasellar lesions, with respect to sparing normal brain tissue, in the context of routine treatment delivery, based on dose volume histogram analysis. Methods and Materials: Computed tomography (CT) data sets for 8 patients with sellar- and parasellar-based tumors (6 pituitary adenomas and 2 meningiomas) have been used in this study. Treatment plans were prepared for 3-coplanar and 3-, 4-, 6-, and 30-noncoplanar-field arrangements to obtain 95% isodose coverage of the planning target volume (PTV) for each plan. Conformal shaping was achieved by customized blocks generated with the beams eye view (BEV) facility. Dose volume histograms (DVH) were calculated for the normal brain (excluding the PTV), and comparisons made for normal tissue sparing for all treatment plans at ≥80%, ≥60%, and ≥40% of the prescribed dose. Results: The mean volume of normal brain receiving ≥80% and ≥60% of the prescribed dose decreased by 22.3% (range 14.8-35.1%, standard deviation σ = 7.5%) and 47.6% (range 25.8-69.1%, σ 13.2%), respectively, with a 4-field noncoplanar technique when compared with a conventional 3-field coplanar technique. Adding 2 further fields, from 4-noncoplanar to 6-noncoplanar fields reduced the mean normal brain volume receiving ≥80% of the prescribed dose by a further 4.1% (range -6.5-11.8%, σ = 6.4%), and the volume receiving ≥60% by 3.3% (range -5.5-12.2%, σ = 5.4%), neither of which were statistically significant. Each case must be considered individually however, as a wide range is seen in the volume spared when increasing the number of fields from 4 to 6. Comparing the 4- and 6-field noncoplanar techniques to a 30-field conformal field approach (simulating a dynamic arc plan) revealed near-equivalent normal tissue sparing. Conclusion: Four to six widely spaced, fixed-conformal fields provide the optimum class solution

  15. Post partum emotional distress in mothers of preterm infants: a ...

    African Journals Online (AJOL)

    More mothers of preterm neonates(27.3%) had GHQ-30 scores which categorised them as having significant emotional distress than mothers of full term normal infants(3.7%). Similarly more mothers of preterm neonates(15.1%) were more depressed than mothers of full term normal infants(3.7%). These differences were ...

  16. Third World adversity: African infant precocity and the role of environment.

    Science.gov (United States)

    Saugstad, Letten F

    2002-01-01

    The war against illiteracy has not been won. The number of illiterates approaches a billion. Most reside in Third World countries--former colonies--where they are caught in a poverty trap of disease, low agricultural production and environmental adversity requiring technology beyond their means. I argue against the commonly held view that this is mainly attributable to the four hundred years of traffic in men. According to the late K.O. Dike, middle men along the African coast barred foreign merchants from the hinterland, and because of this the social, political structure and sovereignty of the African states remained fundamentally unchanged during the period 1400-1807, whereas a few decades after colonisation the socio-political system collapsed and was replaced by a small rich elite and many poor, while resources were taken out of Africa. Present poverty and underdevelopment represent as great a challenge as the trade in slaves. As did the African Middle-Men of that time, African leaders now must unite in an ambitious and confident Pan-African Union demonstrating strength. Western countries should focus on reducing poverty and improving nutrition. This also makes terrorism and legal and illegal migration less likely. Education is important, but the West should not limit its effort to fighting illiteracy but should also support the establishment of institutions for higher education. Africa possessed optimal conditions and an enriched environment for human evolution. African Infant Precocity is a persistent example. The human brain, like other brains, consists 60% of poly-unsaturated fatty acids (Marine-Fat), the rest being water. A sufficient amount is required to secure optimal brain growth. It normalizes brain function, and prevents sudden cardiac and infant death, which have been increasing in Western societies. Humans are unique in having a mismatch between the need for brain food--marine fat--and our common high protein diet. Nowhere is the neglect of the

  17. Glucose kinetics in infants of diabetic mothers

    International Nuclear Information System (INIS)

    Cowett, R.M.; Susa, J.B.; Giletti, B.; Oh, W.; Schwartz, R.

    1983-01-01

    Glucose kinetic studies were performed to define the glucose turnover rate with 78% enriched D-[U-13C] glucose by the prime constant infusion technique at less than or equal to 6 hours of age in nine infants of diabetic mothers (four insulin-dependent and five chemical diabetic patients) at term. Five normal infants were studied as control subjects. All infants received 0.9% saline intravenously during the study with the tracer. Fasting plasma glucose, insulin, and glucose13/12C ratios were measured during the steady state, and the glucose turnover rate was derived. The average plasma glucose concentration was similar during the steady state in the infants of the diabetic mothers and in the control infants, and the glucose turnover rate was not significantly different among the groups: 2.3 +/- 0.6 mg . kg-1 min-1 in infants of insulin-dependent diabetic patients; 2.4 +/- 0.4 mg . kg-1 min-1 in infants of chemical diabetic patients; and 3.2 +/- 0.3 mg . kg-1 min-1 in the control subjects. Good control of maternal diabetes evidenced by the normal maternal hemoglobin A1c and plasma glucose concentration at delivery and cord plasma glucose concentration resulted in glucose kinetic values in the infants of diabetic mothers that were indistinguishable from those of control subjects. The data further support the importance of good control of the diabetic state in the pregnant woman to minimize or prevent neonatal hypoglycemia

  18. Motor Development of Premature Infants Born between 32 and 34 Weeks

    Directory of Open Access Journals (Sweden)

    S. A. Prins

    2010-01-01

    Full Text Available Little is known about motor development in late preterm born infants. Our objective was to determine long-term outcome of motor skills of infants born between 32 and 34 weeks. All infants were assessed at corrected ages of 3 and 9 months, using the Alberta Infant Motor Scale. At corrected ages of 4 years, the Movement Assessment Battery for Children was done. Seventy infants were seen at 4 years of age (median of 3 assessments per infant. Abnormal assessment at 3 or 9 months of age resulted in normal outcome in almost 80% at 4 years. On the other hand, a normal outcome in the first year of life resulted in an abnormal outcome at 4 years in 10% of the infants. Our results suggest that long-term followup of these late preterm born infants is necessary, as the assessments in the first year do not predict the long-term outcome.

  19. Different methods of measuring ADC values in normal human brain

    International Nuclear Information System (INIS)

    Wei Youping; Sheng Junkang; Zhang Caiyuan

    2009-01-01

    Objective: To investigate better method of measuring ADC values of normal brain, and provide reference for further research. Methods: Twenty healthy people's MR imaging were reviewed. All of them underwent routine MRI scans and echo-planar diffusion-weighted imaging (DWI), and ADC maps were reconstructed on work station. Six regions of interest (ROI) were selected for each object, the mean ADC values were obtained for each position on DWI and ADC maps respectively. Results: On the anisotropic DWI map calculated in the hypothalamus, ADC M , ADC P , ADC S values were no significant difference (P>0.05), in the frontal white matter and internal capsule hindlimb, there was a significant difference (P ave value exist significant difference to direct measurement on the anisotropic (isotropic) ADC map (P<0.001). Conclusion: Diffusion of water in the frontal white matter and internal capsule are anisotropic, but it is isotropic in the hypothalamus; different quantitative methods of diffusion measurement of 4ADC values have significant difference, but ADC values calculated through the DWI map is more accurate, quantitative diffusion study of brain tissue should also consider the diffusion measurement method. (authors)

  20. Learning-based deformable image registration for infant MR images in the first year of life.

    Science.gov (United States)

    Hu, Shunbo; Wei, Lifang; Gao, Yaozong; Guo, Yanrong; Wu, Guorong; Shen, Dinggang

    2017-01-01

    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration

  1. Feasibility of using fMRI to study mothers responding to infant cries.

    Science.gov (United States)

    Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S

    1999-01-01

    While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.

  2. Leptomeningeal neurons are a common finding in infants and are increased in sudden infant death syndrome

    NARCIS (Netherlands)

    Rickert, Christian H.; Gross, Oliver; Nolte, Kay W.; Vennemann, Mechtild; Bajanowski, Thomas; Brinkmann, Bernd

    Developmental abnormalities of the brain, in particular, the brainstem potentially affecting centers for breathing, circulation and sleep regulation, are thought to be involved in the etiology of sudden infant death syndrome (SIDS). In order to investigate whether leptomeningeal neurons could serve

  3. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  4. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  5. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI.

    Science.gov (United States)

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-04-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Response of avian embryonic brain to spatially segmented x-ray microbeams.

    Science.gov (United States)

    Dilmanian, F A; Morris, G M; Le Duc, G; Huang, X; Ren, B; Bacarian, T; Allen, J C; Kalef-Ezra, J; Orion, I; Rosen, E M; Sandhu, T; Sathé, P; Wu, X Y; Zhong, Z; Shivaprasad, H L

    2001-05-01

    Duck embryo was studied as a model for assessing the effects of microbeam radiation therapy (MRT) on the human infant brain. Because of the high risk of radiation-induced disruption of the developmental process in the immature brain, conventional wide-beam radiotherapy of brain tumors is seldom carried out in infants under the age of three. Other types of treatment for pediatric brain tumors are frequently ineffective. Recent findings from studies in Grenoble on the brain of suckling rats indicate that MRT could be of benefit for the treatment of early childhood tumors. In our studies, duck embryos were irradiated at 3-4 days prior to hatching. Irradiation was carried out using a single exposure of synchrotron-generated X-rays, either in the form of parallel microplanar beams (microbeams), or as non-segmented broad beam. The individual microplanar beams had a width of 27 microm and height of 11 mm, and a center-to-center spacing of 100 microm. Doses to the exposed areas of embryo brain were 40, 80, 160 and 450 Gy (in-slice dose) for the microbeam, and 6, 12 and 18 Gy for the broad beam. The biological end point employed in the study was ataxia. This neurological symptom of radiation damage to the brain developed within 75 days of hatching. Histopathological analysis of brain tissue did not reveal any radiation induced lesions for microbeam doses of 40-160 Gy (in-slice), although some incidences of ataxia were observed in that dose group. However, severe brain lesions did occur in animals in the 450 Gy microbeam dose groups, and mild lesions in the 18 Gy broad beam dose group. These results indicate that embryonic duck brain has an appreciably higher tolerance to the microbeam modality, as compared to the broad beam modality. When the microbeam dose was normalized to the full volume of the irradiated tissue. i.e., the dose averaged over microbeams and the space between the microbeams, brain tolerance was estimated to be about three times higher to microbeam

  7. Prevalence of lateral ventricle asymmetry in brain MRI studies of neurologically normal dogs and dogs with idiopathic epilepsy.

    Science.gov (United States)

    Pivetta, Mauro; De Risio, Luisa; Newton, Richard; Dennis, Ruth

    2013-01-01

    Asymmetry of the cerebral lateral ventricles is a common finding in cross-sectional imaging of otherwise normal canine brains and has been assumed to be incidental. The purpose of this retrospective study was to compare the prevalence of ventricular asymmetry in brain MRI studies of normal dogs and dogs with idiopathic epilepsy. Brain MRI archives were searched for 100 neurologically normal dogs (Group 1) and 100 dogs with idiopathic epilepsy (Group 2). For each dog, asymmetry of the lateral ventricles was subjectively classified as absent, mild, moderate, and severe based on a consensus of two observers who were unaware of group status. Ventricular areas were measured from transverse T1W images at the level of the interthalamic adhesion. An asymmetry ratio was calculated as the ratio of the larger to smaller ventricular transverse area. There was excellent agreement between subjective assessments of ventricular asymmetry and quantitative assessments using asymmetry ratios (k = 0.995). The prevalence of asymmetry was 38% in Group 1 dogs and 44% in Group 2 dogs. Assymmetry was scored as mild in the majority of Group 2 dogs. There was no significant association between presence/absence and degree of ventricular asymmetry vs. dog group, age, gender, or skull conformation. Findings from the current study supported previously published assumptions that asymmetry of the lateral cerebral ventricles is an incidental finding in MRI studies of the canine brain. © 2013 Veterinary Radiology & Ultrasound.

  8. Brain connectivity in normally developing children and adolescents.

    Science.gov (United States)

    Khundrakpam, Budhachandra S; Lewis, John D; Zhao, Lu; Chouinard-Decorte, François; Evans, Alan C

    2016-07-01

    The developing human brain undergoes an astonishing sequence of events that continuously shape the structural and functional brain connectivity. Distinct regional variations in the timelines of maturational events (synaptogenesis and synaptic pruning) occurring at the synaptic level are reflected in brain measures at macroscopic resolution (cortical thickness and gray matter density). Interestingly, the observed brain changes coincide with cognitive milestones suggesting that the changing scaffold of brain circuits may subserve cognitive development. Recent advances in connectivity analysis propelled by graph theory have allowed, on one hand, the investigation of maturational changes in global organization of structural and functional brain networks; and on the other hand, the exploration of specific networks within the context of global brain networks. An emerging picture from several connectivity studies is a system-level rewiring that constantly refines the connectivity of the developing brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake

    OpenAIRE

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schi?th, H B

    2016-01-01

    BACKGROUND: In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. OBJECTIVE: To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese...

  10. Cerebral circulation and metabolism in the patients with higher brain dysfunction caused by chronic minor traumatic brain injury. A study by the positron emission tomography in twenty subjects with normal MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Kabasawa, Hidehiro; Ogawa, Tetsuo; Iida, Akihiko; Matsubara, Michitaka [Nagoya City Rehabilitation and Sports Center (Japan)

    2002-06-01

    Many individuals are affected on their higher brain functions, such as intelligence, memory, and attention, even after minor traumatic brain injury (MTBI). Although higher brain dysfunction is based on impairment of the cerebral circulation and metabolism, the precise relationship between them remains unknown. This study was undertaken to investigate the relationship between the cerebral circulation or cerebral metabolism and higher brain dysfunction. Twenty subjects with higher brain dysfunction caused by chronic MTBI were studied. They had no abnormal MRI findings. The full-scale intelligence quotient (FIQ) were quantitatively evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the subjects were classified into the normal group and the impaired group. Concurrent with the evaluation of FIQ, positron emission tomography (PET) was performed by the steady state method with {sup 15}O gases inhalation. Regional cerebral blood flow (rCBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) were calculated in the bilateral frontal, parietal, temporal, and occipital lobe. First, of all twenty subjects, we investigated rCBF, OEF and CMRO{sub 2} in all regions. Then we compared rCBF, OEF, and CMRO{sub 2} between the normal group and the impaired group based on FIQ score. We also studied the change of FIQ score of 13 subjects 9.3 months after the first evaluation. In addition, we investigated the change of rCBF, OEF and CMRO{sub 2} along with the improvement of FIQ score. Although rCBF and OEF of all subjects were within the normal range in all regions, CMRO{sub 2} of more than half of subjects was under the lower normal limit in all regions except in the right occipital lobe, showing the presence of ''relative luxury perfusion''. Comparison of rCBF, OEF and CMRO{sub 2} between normal group and impaired group revealed that CMRO{sub 2} of the impaired group was significantly lower than that of the

  11. Cerebral circulation and metabolism in the patients with higher brain dysfunction caused by chronic minor traumatic brain injury. A study by the positron emission tomography in twenty subjects with normal MRI findings

    International Nuclear Information System (INIS)

    Kabasawa, Hidehiro; Ogawa, Tetsuo; Iida, Akihiko; Matsubara, Michitaka

    2002-01-01

    Many individuals are affected on their higher brain functions, such as intelligence, memory, and attention, even after minor traumatic brain injury (MTBI). Although higher brain dysfunction is based on impairment of the cerebral circulation and metabolism, the precise relationship between them remains unknown. This study was undertaken to investigate the relationship between the cerebral circulation or cerebral metabolism and higher brain dysfunction. Twenty subjects with higher brain dysfunction caused by chronic MTBI were studied. They had no abnormal MRI findings. The full-scale intelligence quotient (FIQ) were quantitatively evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the subjects were classified into the normal group and the impaired group. Concurrent with the evaluation of FIQ, positron emission tomography (PET) was performed by the steady state method with 15 O gases inhalation. Regional cerebral blood flow (rCBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2 ) were calculated in the bilateral frontal, parietal, temporal, and occipital lobe. First, of all twenty subjects, we investigated rCBF, OEF and CMRO 2 in all regions. Then we compared rCBF, OEF, and CMRO 2 between the normal group and the impaired group based on FIQ score. We also studied the change of FIQ score of 13 subjects 9.3 months after the first evaluation. In addition, we investigated the change of rCBF, OEF and CMRO 2 along with the improvement of FIQ score. Although rCBF and OEF of all subjects were within the normal range in all regions, CMRO 2 of more than half of subjects was under the lower normal limit in all regions except in the right occipital lobe, showing the presence of ''relative luxury perfusion''. Comparison of rCBF, OEF and CMRO 2 between normal group and impaired group revealed that CMRO 2 of the impaired group was significantly lower than that of the normal group in the bilateral frontal, temporal, and occipital

  12. Investigation of olfactory function in normal volunteers by Tc-99m ECD Brain SPECT: Analysis using statistical parametric mapping

    International Nuclear Information System (INIS)

    Chung, Y.A.; Kim, S.H.; Park, Y.H.; Lee, S.Y.; Sohn, H.S.; Chung, S.K.

    2002-01-01

    The purpose of this study was to investigate olfactory function according to Tc-99m ECD uptake pattern in brain perfusion SPET of normal volunteer by means of statistical parametric mapping (SPM) analysis. The study population was 8 healthy volunteer subjects (M:F = 6:2, age range: 22-54 years, mean 34 years). We performed baseline brain perfusion SPET using 555 MBq of Tc-99m ECD in a silent dark room. Two hours later, we obtained brain perfusion SPET using 1110 MBq of Tc-99m ECD after 3% butanol solution under the same condition. All SPET images were spatially transformed to standard space smoothed and globally normalized. The differences between the baseline and odor-identification SPET images were statistically analyzed using SPM-99 software. The difference between two sets of brain perfusion SPET was considered significant at a threshold of uncorrected p values less than 0.01. SPM analysis revealed significant hyper-perfusion in both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on odor-identification SPET. This study shows that brain perfusion SPET can securely support other diagnostic techniques in the evaluation of olfactory function

  13. Why lutein is important for the eye and the brain

    Directory of Open Access Journals (Sweden)

    Ramirez Maria

    2016-01-01

    Full Text Available Lutein and zeaxanthin are carotenoids that accumulate in the macula. The macula is a yellow spot near the center of the retina that is responsible of high resolution vision. Macular pigment acts as a natural blue light filter and protects the eye from damage. Macular pigment optical density (MPOD increases with lutein administration and is related to visual function and to the prevention of age-related macular degeneration. MOPD can be measured non-invasively and has been related to better cognitive performance. Moreover, compositional analyses of centenarian brains have shown that lutein is the main carotenoid in the brain although not in plasma, indicating a preferential accumulation in neural tissues, and that carotenoids status is correlated with some functional outcomes. Carotenoids are present in human milk with higher concentration in colostrum than in transitional and mature milk. Formula fed-infants have less plasma lutein concentration than breast fed infants. Analyses of brain from infants who died during the first year of life showed that lutein is also the predominant carotenoid of brain. Studies in non-human primates revealed that carotenoids are determinant in the formation of the retinal epithelia. In vitro studies showed that lutein stimulates the differentiation of human stem cells to neural progenitor cells. All this findings together, mostly the presence of lutein in breast milk, plasma concentration in breast-fed infants vs. formula fed infants, preferential accumulation in the brain and evidences of influence on the retina and the functionality of the brain signal the importance of the role of lutein and zeaxanthin on visual maturation and brain development.

  14. Final Syllable Lengthening (FSL) in Infant Vocalizations.

    Science.gov (United States)

    Nathani, Suneeti; Oller, D. Kimbrough; Cobo-Lewis, Alan B.

    2003-01-01

    Sought to verify research findings that suggest there may be a U-shaped developmental trajectory for final syllable lengthening (FSL). Attempted to determine whether vocal maturity and deafness influence FSL . Eight normally hearing infants and eight deaf infants were examined at three levels of prelinguistic vocal development. (Author/VWL)

  15. Problems of radiotherapy on the brain tumors in children less than two years of age

    Energy Technology Data Exchange (ETDEWEB)

    Miyagami, Mitsusuke; Tsubokawa, Takashi (Nihon Univ., Tokyo (Japan). School of Medicine); Nishimoto, Hiroshi; Ueno, Yuhichi

    1990-06-01

    Impaired growth and mental or developmental disturbance due to radiotherapy for 10 cases of brain tumors in the children ages less than 2 years old were evaluated. Six cases of brain tumor which did not involve the hypothalamic-pituitary axis, were followed more than 2 years after cranial or craniospinal irradiation. Four cases irradiated greater than 2900 rad to the whole brain all revealed markedly lower body heights than -2 SD of the medium. Growth impairment was found to be progressive over time, and markedly evident after 2 years following cranial or craniospinal radiotherapy. Somatomedin C in the blood was measured in 8 cases of brain tumors in childhood receiving radiotherapy. The measurement of Somatomedin C showed markedly low values measuring 0.19 to 0.54 U/ml (medium; 0.36 U/ml) in children having lower body height than -2 SD. Mental retardation or developmental disturbances were found in IQ or DQ tests in all of 5 infants or children younger than 2 years with brain tumors who got radiotherapy over 2900 rad to the whole brain. A case of craniopharyngioma, which had 5400 rad for tumor localization at the hypothalamus-pituitary axis and showed markedly low height, was given growth hormone and grew to normal height without distinct side effects. It was suggested that radiotherapy for brain tumors in infants or children should have special care in deciding the dose, field and time of radiation. If low height due to radiotherapy results, growth hormone therapy should be used for its treatment in childhood. (author).

  16. Detecting brain growth patterns in normal children using tensor-based morphometry.

    Science.gov (United States)

    Hua, Xue; Leow, Alex D; Levitt, Jennifer G; Caplan, Rochelle; Thompson, Paul M; Toga, Arthur W

    2009-01-01

    Previous magnetic resonance imaging (MRI)-based volumetric studies have shown age-related increases in the volume of total white matter and decreases in the volume of total gray matter of normal children. Recent adaptations of image analysis strategies enable the detection of human brain growth with improved spatial resolution. In this article, we further explore the spatio-temporal complexity of adolescent brain maturation with tensor-based morphometry. By utilizing a novel non-linear elastic intensity-based registration algorithm on the serial structural MRI scans of 13 healthy children, individual Jacobian growth maps are generated and then registered to a common anatomical space. Statistical analyses reveal significant tissue growth in cerebral white matter, contrasted with gray matter loss in parietal, temporal, and occipital lobe. In addition, a linear regression with age and gender suggests a slowing down of the growth rate in regions with the greatest white matter growth. We demonstrate that a tensor-based Jacobian map is a sensitive and reliable method to detect regional tissue changes during development. (c) 2007 Wiley-Liss, Inc.

  17. The neuro-radiological anatomy of the normal and abnormal rat brain

    International Nuclear Information System (INIS)

    Schumacher, M.; Doller, P.; Voigt, K.

    1979-01-01

    In vivo and post mortem techniques for the radiological examination of normal brains have been developed, using 66 white adult rats. Aortic arch injections for survey angiograms (10 animals), selective catheterisation of the internal carotid artery (16 animals) and ventriculography by percutaneous needle puncture (20 animals) were performed in vivo; the animals survived and the examinations could be repeated. The techniques proved useful and accurate methods for the radiological demonstration of the topography and morphology of cerebral vessels and chambers; they also provided information on the function of the cerebral circulation and C.S.F. dynamics. The findings were checked and correlated by post mortem studies (20 animals) using contact radiography, micro-angiography and casts of the ventricles. As a result, extensive topographic and anatomic information concerning the cerebral vessels in the rat was obtained, including some microscopic-radiological findings. The combined use of these methods provided a basis for studying the growth of experimentally induced brain tumours and the effect of various types of treatment. (orig.) [de

  18. Prognostic accuracy of electroencephalograms in preterm infants

    DEFF Research Database (Denmark)

    Fogtmann, Emilie Pi; Plomgaard, Anne Mette; Greisen, Gorm

    2017-01-01

    CONTEXT: Brain injury is common in preterm infants, and predictors of neurodevelopmental outcome are relevant. OBJECTIVE: To assess the prognostic test accuracy of the background activity of the EEG recorded as amplitude-integrated EEG (aEEG) or conventional EEG early in life in preterm infants...... for predicting neurodevelopmental outcome. DATA SOURCES: The Cochrane Library, PubMed, Embase, and the Cumulative Index to Nursing and Allied Health Literature. STUDY SELECTION: We included observational studies that had obtained an aEEG or EEG within 7 days of life in preterm infants and reported...... neurodevelopmental outcomes 1 to 10 years later. DATA EXTRACTION: Two reviewers independently performed data extraction with regard to participants, prognostic testing, and outcomes. RESULTS: Thirteen observational studies with a total of 1181 infants were included. A metaanalysis was performed based on 3 studies...

  19. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut [Institute of Diagnostic Radiology, University Hospital Zurich, 8091 Zurich (Switzerland); Martin, Ernst [Department of Neuroradiology and Magnetic Resonance, University Children' s Hospital, 8091 Zurich (Switzerland)

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  20. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.; Kubik-Huch, Rahel; Marincek, Borut; Martin, Ernst

    2002-01-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality. (orig.)

  1. Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development.

    Science.gov (United States)

    Huisman, Thierry A G M; Martin, Ernst; Kubik-Huch, Rahel; Marincek, Borut

    2002-08-01

    Fetal MRI examines non-invasively the unborn fetus. Ultrafast MRI sequences effectively suppress fetal motion. Multiple case reports and studies have shown that fetal MRI is particularly helpful in the evaluation of the central nervous system. The high contrast-to-noise ratio, the high spatial resolution, the multiplanar capabilities, the large field of view and the simultaneous visualisation of fetal and maternal structures have proven to be advantageous. Fetal MRI is particularly helpful in the evaluation of the normal and pathological development of the brain. Despite the fact that no side effects have been reported or are to be expected, the use of MRI during pregnancy is still limited to the second and third trimester of pregnancy. Magnetic resonance imaging contrast media are not to be used as it passes the placenta. Ultrasound remains the primary screening modality for fetal pathology; fetal MRI can serve as an adjunct or second-line imaging modality.

  2. Hearing faces: how the infant brain matches the face it sees with the speech it hears.

    Science.gov (United States)

    Bristow, Davina; Dehaene-Lambertz, Ghislaine; Mattout, Jeremie; Soares, Catherine; Gliga, Teodora; Baillet, Sylvain; Mangin, Jean-François

    2009-05-01

    Speech is not a purely auditory signal. From around 2 months of age, infants are able to correctly match the vowel they hear with the appropriate articulating face. However, there is no behavioral evidence of integrated audiovisual perception until 4 months of age, at the earliest, when an illusory percept can be created by the fusion of the auditory stimulus and of the facial cues (McGurk effect). To understand how infants initially match the articulatory movements they see with the sounds they hear, we recorded high-density ERPs in response to auditory vowels that followed a congruent or incongruent silently articulating face in 10-week-old infants. In a first experiment, we determined that auditory-visual integration occurs during the early stages of perception as in adults. The mismatch response was similar in timing and in topography whether the preceding vowels were presented visually or aurally. In the second experiment, we studied audiovisual integration in the linguistic (vowel perception) and nonlinguistic (gender perception) domain. We observed a mismatch response for both types of change at similar latencies. Their topographies were significantly different demonstrating that cross-modal integration of these features is computed in parallel by two different networks. Indeed, brain source modeling revealed that phoneme and gender computations were lateralized toward the left and toward the right hemisphere, respectively, suggesting that each hemisphere possesses an early processing bias. We also observed repetition suppression in temporal regions and repetition enhancement in frontal regions. These results underscore how complex and structured is the human cortical organization which sustains communication from the first weeks of life on.

  3. Change-point analysis data of neonatal diffusion tensor MRI in preterm and term-born infants

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2017-06-01

    Full Text Available The data presented in this article are related to the research article entitled “Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI” (Wu et al., 2017 [1]. Brain immaturity at birth poses critical neurological risks in the preterm-born infants. We used a novel change-point model to analyze the critical gestational age at birth (GAB that could affect postnatal development, based on diffusion tensor MRI (DTI acquired from 43 preterm and 43 term-born infants in 126 brain regions. In the corresponding research article, we presented change-point analysis of fractional anisotropy (FA and mean diffusivities (MD measurements in these infants. In this article, we offered the relative changes of axonal and radial diffusivities (AD and RD in relation to the change of FA and FA-based change-points, and we also provided the AD- and RD-based change-point results.

  4. Regional Brain Biometrics at Term-Equivalent Age and Developmental Outcome in Extremely Low-Birth-Weight Infants.

    Science.gov (United States)

    Melbourne, Launice; Murnick, Jonathan; Chang, Taeun; Glass, Penny; Massaro, An N

    2015-10-01

    This study aims to evaluate individual regional brain biometrics and their association with developmental outcome in extremely low-birth-weight (ELBW) infants. This is a retrospective study evaluating term-equivalent magnetic resonance imaging (TE-MRI) from 27 ELBW infants with known developmental outcomes beyond 12 months corrected age. Regional biometric measurements were performed by a pediatric neuroradiologist blinded to outcome data. Measures included biparietal width, transcerebellar diameter (TCD), deep gray matter area (DGMA), ventricular dilatation, corpus callosum, and interhemispheric distance. The relationship between regional biometrics and Bayley-II developmental scores were evaluated with linear regression models. The study cohort had an average±standard deviation birth weight of 684±150 g, gestational age of 24.6±2 weeks and 48% males. DGMA was significantly associated with both cognitive and motor outcomes. Significant associations were also observed between TCD and corpus callosum splenium with cognitive and motor outcomes, respectively. Other biometric measures were not associated with outcome (p>0.05). DGMAbiometrics reflecting impaired deep gray matter, callosal, and cerebellar size is associated with worse early childhood cognitive and motor outcomes. DGMA may be the most robust single biometric measure to predict adverse developmental outcome in preterm survivors. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Use of brain lactate levels to predict outcome after perinatal asphyxia

    DEFF Research Database (Denmark)

    Leth, H; Toft, P.B.; Peitersen, Birgit

    1996-01-01

    Perinatal asphyxia is an important cause of neurological disability, but early prediction of outcome can be difficult. We performed proton magnetic resonance spectroscopy (MRS) and global cerebral blood flow measurements by xenon-133 clearance in 16 infants with evidence of perinatal asphyxia...... neurological deficits and the rest seemed to be progressing normally at neurodevelopmental follow-up at 1 year of age. A significant correlation was found between initial brain lactate levels and severe outcome (p = 0.0003) just as between cerebral hyperperfusion (mean cerebral blood flow (CBF) 86 ml(100 g)-1...

  6. Computed tomography of the head of new born premature infants

    International Nuclear Information System (INIS)

    Ohno, Tsutomu; Mizobe, Naoki; Takehiro, Hideo

    1983-01-01

    Evaluation of the extracerebral space on CT resulted as follows: The existence of the etracerebral space in the parieto-occipital region (PO-ECS) was physiological findings characteristic to premature infants. Its incidence was higher and the width of the space was greater, in those of premature infants. Generally PO-ECS disappeared around 40 weeks of gestation, while it tended to remaine beyond 40 weeks in premature infants born after less than 30 weeks of pregnancy. The appearance and disappearance of the PO-ECS may present some approach to learning the development of the brain in premature infants. (Ueda, J.)

  7. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    Science.gov (United States)

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  8. Does β-APP staining of the brain in infant bed-sharing deaths differentiate these cases from sudden infant death syndrome?

    DEFF Research Database (Denmark)

    Jensen, Lisbeth Lund; Banner, Jytte; Byard, Roger W

    2014-01-01

    between bed-sharers and non-bed-sharers with a male to female ratio of 1:1 in the first group and 2:1 in the latter. Of 48 Australian and 76 Danish SIDS infants, β-APP staining was present in 116 (94%) cases. The eight negative cases were all from the Danish cohort. This study has shown that the amount...... with sleeping situation (shared vs. alone) showing a significantly higher amount of β-APP staining in the non-bed-sharing, than in the bed-sharing infants (Mann-Whitney, Australia: p = 0.0128, Denmark: p = 0.0014, Combined: p = 0.0031). There was also a marked but non-significant difference in sex distribution...... of β-APP staining was significantly higher in infants who were sleeping alone compared to those who were bed-sharing with one or more adults, in both an Australian and Danish cohort of SIDS infants. Whether this results from differences in the speed with which these infants die, differences in lethal...

  9. Infants' social withdrawal symptoms assessed with a direct infant observation method in primary health care.

    Science.gov (United States)

    Puura, Kaija; Mäntymaa, Mirjami; Luoma, Ilona; Kaukonen, Pälvi; Guedeney, Antoine; Salmelin, Raili; Tamminen, Tuula

    2010-12-01

    Distressed infants may withdraw from social interaction, but recognising infants' social withdrawal is difficult. The aims of the study were to see whether an infant observation method can be reliably used by front line workers, and to examine the prevalence of infants' social withdrawal symptoms. A random sample of 363 families with four, eight or 18-month-old infants participated in the study. The infants were examined by general practitioners (GPs) in well-baby clinics with the Alarm Distress BaBy Scale (ADBB), an observation method developed for clinical settings. A score of five or more on the ADBB Scale in two subsequent assessments at a two-week interval was regarded as a sign of clinically significant infant social withdrawal. Kappas were calculated for the GPs' correct rating of withdrawn/not withdrawn against a set of videotapes rated by developer of the method, Professor Guedeney and his research group. The kappas for their ratings ranged from 0.5 to 1. The frequency of infants scoring above the cut off in two subsequent assessments was 3%. The ADBB Scale is a promising method for detecting infant social withdrawal in front line services. Three percents of infants were showing sustained social withdrawal as a sign of distress in this normal population sample. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Clinical use of cerebral oximetry in extremely preterm infants is feasible

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Austin, Topun; van Bel, Frank

    2013-01-01

    The research programme Safeguarding the Brains of our smallest Children (SafeBoosC) aims to test the benefits and harms of cerebral near-infrared spectroscopy (NIRS) oximetry in infants born before 28 weeks of gestation. In a phase II trial, infants will be randomised to visible cerebral NIRS...

  11. Clinical use of cerebral oximetry in extremely preterm infants is feasible

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Austin, Topun; van Bel, Frank

    2013-01-01

    The research programme Safeguarding the Brains of our smallest Children (SafeBoosC) aims to test the benefits and harms of cerebral near-infrared spectroscopy (NIRS) oximetry in infants born before 28 weeks of gestation. In a phase II trial, infants will be randomised to visible cerebral NIRS oxi...

  12. Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain

    International Nuclear Information System (INIS)

    Bouchet, Audrey; Lemasson, Benjamin; Christen, Thomas; Potez, Marine; Rome, Claire; Coquery, Nicolas; Le Clec’h, Céline; Moisan, Anaick; Bräuer-Krisch, Elke; Leduc, Géraldine; Rémy, Chantal; Laissue, Jean A.; Barbier, Emmanuel L.; Brun, Emmanuel; Serduc, Raphaël

    2013-01-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose X-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. Methods: Tissue responses to MRT (two orthogonal arrays (2 × 400 Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MR S O 2 ) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. Results: In tumors, MR S O 2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MR S O 2 , although vessel inter-distances increased slightly. Conclusion: We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia

  13. Lumbar cisternography in evaluation of hydrocephalus in the preterm infant

    International Nuclear Information System (INIS)

    Donn, S.M.; Roloff, D.W.; Keyes, J.W. Jr.

    1983-01-01

    Radionuclide lumbar cisternography using indium 111-diethylenetriamine pentaacetic acid (111In-DTPA) and a mobile gamma-camera with a converging collimator was utilized as a bedside procedure to evaluate CSF dynamics and the patency of the cerebral ventricular system in 30 preterm infants with hydrocephalus. Serial images of the brain were obtained at 0, 1, 2, 6, 24, and 48 hours after instillation of the isotope in the lumbar subarachnoid space. Three distinct patterns were seen. Infants with posthemorrhagic hydrocephalus displayed prompt ventricular filling but markedly delayed emptying with minimal flow over the cerebral convexities. Infants with ventriculomegaly secondary to suspected brain atrophy or periventricular leukomalacia demonstrated a pattern of prompt ventricular filling, delayed emptying, but with flow present over the convexities. An infant with noncommunicating hydrocephalus secondary to an Arnold-Chiari malformation showed a pattern of complete obstruction with no ventricular filling. Radionuclide lumbar cisternography appears to be a safe, well-tolerated procedure which produces images of sufficient resolution to provide valuable information about CSF dynamics, delineating basal cisternae, ventricles, and subarachnoid flow paths

  14. Network dynamics in the healthy and epileptic developing brain

    Directory of Open Access Journals (Sweden)

    Richard Rosch

    2018-03-01

    Full Text Available Electroencephalography (EEG allows recording of cortical activity at high temporal resolution. EEG recordings can be summarized along different dimensions using network-level quantitative measures, such as channel-to-channel correlation, or band power distributions across channels. These reveal network patterns that unfold over a range of different timescales and can be tracked dynamically. Here we describe the dynamics of network state transitions in EEG recordings of spontaneous brain activity in normally developing infants and infants with severe early infantile epileptic encephalopathies (n = 8, age: 1–8 months. We describe differences in measures of EEG dynamics derived from band power, and correlation-based summaries of network-wide brain activity. We further show that EEGs from different patient groups and controls may be distinguishable on a small set of the novel quantitative measures introduced here, which describe dynamic network state switching. Quantitative measures related to the sharpness of switching from one correlation pattern to another show the largest differences between groups. These findings reveal that the early epileptic encephalopathies are associated with characteristic dynamic features at the network level. Quantitative network-based analyses like the one presented here may in the future inform the clinical use of quantitative EEG for diagnosis.

  15. Cardiopulmonary adaptation in large for gestational age infants of diabetic and nondiabetic mothers.

    Science.gov (United States)

    Vela-Huerta, M; Aguilera-López, A; Alarcón-Santos, S; Amador, N; Aldana-Valenzuela, C; Heredia, A

    2007-09-01

    To compare cardiopulmonary adaptation in large for gestational age infants of diabetic and nondiabetic mothers. Color Doppler echocardiography was performed in 113 (22 large for gestational age infants of diabetic mothers, 21 of nondiabetic mothers and 70 adequate for gestational age newborns) full-term infants. Pulmonary arterial pressure was significantly higher in infants of diabetic mothers than in those of nondiabetic mothers and normal infants at 24 h (38.5 vs. 32.5, and 35.5 mmHg, respectively). However, slow fall in this parameter was shown in all large for gestational age infants. Open ductus arteriosus was frequent in all large for gestational age infants, but its closure was significantly delayed in infants of diabetic mothers. Septal hypertrophy was higher in infants of diabetic mothers than in large for gestational age infants of nondiabetic mothers. Large for gestational age infants born from nondiabetic mothers showed delayed fall in pulmonary arterial pressure similar to those born from diabetic mothers but showed lower proportion of septal hypertrophy. Patent ductus arteriosus persisted for longer period of time in all large for gestational age infants than in normal infants, but its closure was significantly delayed in infants of diabetic mothers.

  16. ''Intraventricular'' hemorrhage and cystic periventricular leukomalacia in preterm infants: how are they related?

    NARCIS (Netherlands)

    Kusters, C.D.J.; Chen, M.L.; Follett, P.L.; Dammann, O.

    2009-01-01

    Intraventricular hemorrhage and cystic periventricular leukomalacia are often co-occurring characteristics of brain damage in preterm infants. Using data from 1016 infants born before 30 completed weeks' gestational age, we sought to clarify the relationship between severe intraventricular

  17. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease

    Directory of Open Access Journals (Sweden)

    Michelle E. Watts

    2018-06-01

    Full Text Available Dynamic metabolic changes occurring in neurons are critically important in directing brain plasticity and cognitive function. In other tissue types, disruptions to metabolism and the resultant changes in cellular oxidative state, such as increased reactive oxygen species (ROS or induction of hypoxia, are associated with cellular stress. In the brain however, where drastic metabolic shifts occur to support physiological processes, subsequent changes to cellular oxidative state and induction of transcriptional sensors of oxidative stress likely play a significant role in regulating physiological neuronal function. Understanding the role of metabolism and metabolically-regulated genes in neuronal function will be critical in elucidating how cognitive functions are disrupted in pathological conditions where neuronal metabolism is affected. Here, we discuss known mechanisms regulating neuronal metabolism as well as the role of hypoxia and oxidative stress during normal and disrupted neuronal function. We also summarize recent studies implicating a role for metabolism in regulating neuronal plasticity as an emerging neuroscience paradigm.

  18. The effect of color priming on infant brain and behavior.

    Science.gov (United States)

    Wilcox, Teresa; Hirshkowitz, Amy; Hawkins, Laura; Boas, David A

    2014-01-15

    Behavioral studies have identified select experiences that can prime infants to attend to color information as the basis for individuating objects prior to the time they do so spontaneously. For example, viewing pretest events in which the color of an object predicts the function in which it will engage leads 9-month-olds (who typically do not attend to color differences) to demonstrate increased sensitivity to color information in a subsequent individuation task (Wilcox and Chapa, 2004). In contrast, viewing pretest events in which the color of an object predicts distinct object motions, but the motions are not functionally relevant, does not produce color priming. The purpose of the present research was to identify the cortical underpinnings of these behavioral effects. Infants aged 8 and 9 months viewed function or motion pretest events and then their capacity to individuate-by-color was assessed in an object individuation task. Behavioral and neuroimaging data were collected. Two main findings emerged. First, as predicted, the infants who viewed the function but not the motion pretest events showed prolonged looking to the test event, a behavioral indicator of object individuation. In addition, they evidenced increased activation in anterior temporal cortex, thought to be a cortical signature of object individuation. A second and unexpected finding was that viewing either type of pretest events led to increased activation in the posterior temporal cortex, as compared to infants who did not see pretest events, revealing that prior exposure to the motion pretest events does influence infants' processing of the test event, even though it is not evident in the behavioral results. The cognitive processes involved, and the cortical structures that mediate these processes, are discussed. © 2013 Elsevier Inc. All rights reserved.

  19. Present practice of diagnostic imaging in the newborn infants

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi

    1994-01-01

    The present practice of diagnostic imaging in our NICU (which includes premature unit) was studied, surveying the total 637 admitted newborn infants during the year of 1992. The total number of diagnostic imaging performed other than scout radiography was 939. The number of ultrasonography of the heart and the brain, and brain CT was 752 or 80.0% of the total. These were done more frequently in the cases of very low birth weight infants. In our NICU, ultrasonography including pulse-doppler method, is performed for diagnosis of structural and functional abnormality of the cardiopulmonary systems and also for finding intracranial lesion, on the basis of finding in plain chest films. In spite of various limitation, we are performing, as the necessity commands, fluoroscopic contrast study, angiography, scintigraphy and MRI for the low birth weight (≥1,500g) and mature infants. Some of the actual cases in which diagnostic imaging was helpful were presented. Recently, upon admittance to the NICU for the specific abnormality of the newborn and premature infants, orginally, asymptomatic diseases are often found and diagnosed. This should be the results of progress in diagnostic imaging in recent years. (author)

  20. Imaging the corpus callosum, septum pellucidum and fornix in children: normal anatomy and variations of normality

    International Nuclear Information System (INIS)

    Griffiths, Paul D.; Batty, Ruth; Connolly, Dan J.A.; Reeves, Michael J.

    2009-01-01

    The midline structures of the supra-tentorial brain are important landmarks for judging if the brain has formed correctly. In this article, we consider the normal appearances of the corpus callosum, septum pellucidum and fornix as shown on MR imaging in normal and near-normal states. (orig.)

  1. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Directory of Open Access Journals (Sweden)

    Sookyoung Jeon

    2017-01-01

    Full Text Available Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group. All samples were analyzed by high pressure liquid chromatography (HPLC. Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.

  2. Traumatic brain lesions in newborns

    Directory of Open Access Journals (Sweden)

    Nícollas Nunes Rabelo

    Full Text Available ABSTRACT The neonatal period is a highly vulnerable time for an infant. The high neonatal morbidity and mortality rates attest to the fragility of life during this period. The incidence of birth trauma is 0.8%, varying from 0.2-2 per 1,000 births. The aim of this study is to describe brain traumas, and their mechanism, anatomy considerations, and physiopathology of the newborn traumatic brain injury. Methods A literature review using the PubMed data base, MEDLINE, EMBASE, Science Direct, The Cochrane Database, Google Scholar, and clinical trials. Selected papers from 1922 to 2016 were studied. We selected 109 papers, through key-words, with inclusion and exclusion criteria. Discussion This paper discusses the risk factors for birth trauma, the anatomy of the occipito-anterior and vertex presentation, and traumatic brain lesions. Conclusion Birth-related traumatic brain injury may cause serious complications in newborn infants. Its successful management includes special training, teamwork, and an individual approach.

  3. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy.

    Science.gov (United States)

    Shapiro, Kevin A; Kim, Hosung; Mandelli, Maria Luisa; Rogers, Elizabeth E; Gano, Dawn; Ferriero, Donna M; Barkovich, A James; Gorno-Tempini, Maria Luisa; Glass, Hannah C; Xu, Duan

    2017-01-01

    Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE). However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM) to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III) at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  4. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy

    Directory of Open Access Journals (Sweden)

    Kevin A. Shapiro

    2017-01-01

    Full Text Available Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE. However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  5. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Conte, Giorgio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan (Italy); Boito, Simona; Persico, Nicola [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Obstetrics and Gynaecology ' L. Mangiagalli' , Milan (Italy); Rizzuti, Tommaso [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Pathology Unit, Milan (Italy); Triulzi, Fabio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan (Italy)

    2018-01-15

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  6. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    International Nuclear Information System (INIS)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria; Conte, Giorgio; Boito, Simona; Persico, Nicola; Rizzuti, Tommaso; Triulzi, Fabio

    2018-01-01

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  7. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum.

    Science.gov (United States)

    De Luca, Arnaud; Frasquet-Darrieux, Marine; Gaud, Marie-Agnès; Christin, Patricia; Boquien, Clair-Yves; Millet, Christine; Herviou, Manon; Darmaun, Dominique; Robins, Richard J; Ingrand, Pierre; Hankard, Régis

    2016-01-01

    Exclusively breastfed infants born to obese mothers have previously been shown to gain less weight by 1-month postpartum than infants of normal-weight mothers. Our hypothesis is that human milk composition and volume may differ between obese and normal-weight mothers. To compare human milk leptin, macronutrient concentration, and volume in obese and normal-weight mothers. Mother and infant characteristics were studied as secondary aims. This cross-sectional observational study compared 50 obese mothers matched for age, parity, ethnic origin, and educational level with 50 normal-weight mothers. Leptin, macronutrient human milk concentration, and milk volume were determined at 1 month in exclusively breastfed infants. Mother characteristics and infant growth were recorded. Human milk leptin concentration was higher in obese mothers than normal-weight mothers (4.8±2.7 vs. 2.5±1.5 ng.mL-1, pobese and normal-weight mothers in protein, lipid, carbohydrate content, and volume, nor in infant weight gain. Leptin concentration was higher in the milk of obese mothers than that of normal-weight mothers, but macronutrient concentration was not. It remains to be established whether the higher leptin content impacts on infant growth beyond the 1-month of the study period.

  8. Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio

    2014-06-01

    Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks' λ = 0.324, χ(2) (3) = 38.907, p tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases.

  9. Neurotrophins expression is decreased in lungs of human infants with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    O'Hanlon LD

    2014-02-01

    Full Text Available Lynn D O'Hanlon, Sherry M Mabry, Ikechukwu I EkekezieChildren's Mercy Hospitals/University of Missouri-Kansas City School of Medicine, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Kansas City, MO, USAObjectives: To evaluate neurotrophin (NT (nerve growth factor [NGF], NT-3, and brain-derived neurotrophic factor [BDNF] expression in autopsy lung tissues of human congenital diaphragmatic hernia (CDH infants versus that of infants that expired with: 1 "normal" lungs (controls; 2 chronic lung disease (CLD; and 3 pulmonary hypertension (PPHN.Hypothesis: NT expression will be significantly altered in CDH lung tissue compared with normal lung tissue and other neonatal lung diseases.Study design: Immunohistochemical studies for NT proteins NGF, BDNF, and NT-3 were applied to human autopsy neonatal lung tissue samples.Subject selection: The samples included a control group of 18 samples ranging from 23-week gestational age to term, a CDH group of 15 samples, a PPHN group of six samples, and a CLD group of 12 samples.Methodology: The tissue samples were studied, and four representative slide fields of alveoli/saccules and four of bronchioles were recorded from each sample. These slide fields were then graded (from 0 to 3 by three blinded observers for intensity of staining.Results: BDNF, NGF, and NT-3 immunostaining intensity scores were significantly decreased in the CDH lung tissue (n=15 compared with normal neonatal lung tissue (n=18 (P<0.001. The other neonatal pulmonary diseases that were studied, CLD and PPHN, were much less likely to be affected and were much more variable in their neurotrophin expression.Conclusion: NT expression is decreased in CDH lungs. The decreased expression of NT in CDH lung tissue may suggest they contribute to the abnormality in this condition.Keywords: nerve growth factor, NGF, brain-derived neurotrophic factor, BDNF, neurotrophin-3, NT-3, chronic lung disease, persistent pulmonary hypertension, lung

  10. Maternal obesity and gestational weight gain are risk factors for infant death.

    Science.gov (United States)

    Bodnar, Lisa M; Siminerio, Lara L; Himes, Katherine P; Hutcheon, Jennifer A; Lash, Timothy L; Parisi, Sara M; Abrams, Barbara

    2016-02-01

    Assessment of the joint and independent relationships of gestational weight gain and prepregnancy body mass index (BMI) on risk of infant mortality was performed. This study used Pennsylvania linked birth-infant death records (2003-2011) from infants without anomalies born to mothers with prepregnancy BMI categorized as underweight (n = 58,973), normal weight (n = 610,118), overweight (n = 296,630), grade 1 obesity (n = 147,608), grade 2 obesity (n = 71,740), and grade 3 obesity (n = 47,277). Multivariable logistic regression models stratified by BMI category were used to estimate dose-response associations between z scores of gestational weight gain and infant death after confounder adjustment. Infant mortality risk was lowest among normal-weight women and increased with rising BMI category. For all BMI groups except for grade 3 obesity, there were U-shaped associations between gestational weight gain and risk of infant death. Weight loss and very low weight gain among women with grades 1 and 2 obesity were associated with high risks of infant mortality. However, even when gestational weight gain in women with obesity was optimized, the predicted risk of infant death remained higher than that of normal-weight women. Interventions aimed at substantially reducing preconception weight among women with obesity and avoiding very low or very high gestational weight gain may reduce risk of infant death. © 2015 The Obesity Society.

  11. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  12. Normal Pressure Hydrocephalus (NPH)

    Science.gov (United States)

    ... local chapter Join our online community Normal Pressure Hydrocephalus (NPH) Normal pressure hydrocephalus is a brain disorder ... Symptoms Diagnosis Causes & risks Treatments About Normal Pressure Hydrocephalus Normal pressure hydrocephalus occurs when excess cerebrospinal fluid ...

  13. Iron overload in very low birth weight infants: Serum Ferritin and adverse outcomes

    LENUS (Irish Health Repository)

    Barrett, M

    2011-11-01

    Adequate iron isessential for growth and haematpoiesis. Oral iron supplementation is the standard of care in VLBW infants. Post mortem evidence has confirmed significant iron overload. Excessive free iron has been associated with free radical formation and brain injury in term infants.

  14. Neonatal Morphine Exposure in Very Preterm Infants – Cerebral Development and Outcomes

    Science.gov (United States)

    Steinhorn, Rachel; McPherson, Chris; Anderson, Peter J; Neil, Jeffrey; Doyle, Lex W; Inder, Terrie

    2015-01-01

    Objective To investigate the association of morphine exposure in very preterm infants with cerebral volumes and neurodevelopmental outcome from birth through middle childhood. Study design Observational study of very preterm infants in the Victorian Infant Brain Study cohort. 230 infants born neonatal intensive care unit (NICU) of the Royal Women’s Hospital. 57 (25%) infants received morphine analgesia during their NICU stay at the attending physician’s discretion. Primary outcomes were regional brain volumes at term and 7 years; neurobehavioral performance at term; and cognitive, motor, emotional, behavioral, communication, and executive function scores at age 2 and 7 years. Linear regressions were used to compare outcomes between participants who did and did not receive morphine. Results At term, preterm infants who received morphine had similar rates of grey matter injury to no-morphine infants, but a trend towards smaller cortical volumes in the orbitofrontal (pleft=0.002, pright=0.01) and subgenual (pleft=0.01) regions. At seven years, cortical volumes did not differ between groups. At 2 years, morphine-exposed children were more likely to show behavioral dysregulation (p=0.007) than no-morphine children, but at seven years no detrimental impacts of morphine on neurobehavioral outcome were observed. Conclusions Low-dose morphine analgesia received during neonatal intensive care was associated with early alterations in cerebral structure and short-term neurobehavioral problems that did not persist into childhood. PMID:25919729

  15. Analysis of simulataneous I-123-IPT/Tc-99m-HMPAO dual isotope brain SPECT in Parkinson's disease and normal volunteers using SPM

    International Nuclear Information System (INIS)

    Chung, Y. A.; Juh, R. H.; Kim, S. H.; Park, Y. H.; Lee, S. Y.; Sohn, H. S.; Chung, S. K.

    2002-01-01

    The basal ganglia are usually poorly delineated in Parkinson's diseases on IPT images. We have studied simultaneous dual isotope brain SPECTs using I-123-IPT and Tc-99m-HMPAO, in order to overcome this limitation of IPT imaging. 17 patients (M: 7, F: 10) with Parkinson's disease (Idiopathic parkison's disease: 12, Multiple system atrophy: 5) and 4 normal volunteers (N) underwent the dual isotope brain SPECT following simultaneously injection of 370 MBq Tc-99m-HMPAO (energy window: 130-146 keV) and 111 MBq I-123-IPT (energy window: 152-168 keV). We first obtained parameters of spatial normalization during spatial normalization of Tc-99m-HMPAO brain SPECT using SPECT template. Using these parameters, we could spatially normalized I-123-IPT brain PSECT to standard space, because these images were obtained simultaneously. The difference between each groups(N vs IPD, N vs MSA, IPD vs MSA) were compared with t-test (p<0.01). We demonstrated decreased perfusion in the head and body caudate and globus pallidus on MSA compared with IPD. No significant hypo- and hyperperfusion area was observed in the other analysis. The method proposed in this study can effectively evaluate the dopamine function, and is easily applicable to conventional gamma camera system with any dual energy window acquisition modes

  16. Measuring Neural Entrainment to Beat and Meter in Infants: Effects of Music Background

    Science.gov (United States)

    Cirelli, Laura K.; Spinelli, Christina; Nozaradan, Sylvie; Trainor, Laurel J.

    2016-01-01

    Caregivers often engage in musical interactions with their infants. For example, parents across cultures sing lullabies and playsongs to their infants from birth. Behavioral studies indicate that infants not only extract beat information, but also group these beats into metrical hierarchies by as early as 6 months of age. However, it is not known how this is accomplished in the infant brain. An EEG frequency-tagging approach has been used successfully with adults to measure neural entrainment to auditory rhythms. The current study is the first to use this technique with infants in order to investigate how infants' brains encode rhythms. Furthermore, we examine how infant and parent music background is associated with individual differences in rhythm encoding. In Experiment 1, EEG was recorded while 7-month-old infants listened to an ambiguous rhythmic pattern that could be perceived to be in two different meters. In Experiment 2, EEG was recorded while 15-month-old infants listened to a rhythmic pattern with an unambiguous meter. In both age groups, information about music background (parent music training, infant music classes, hours of music listening) was collected. Both age groups showed clear EEG responses frequency-locked to the rhythms, at frequencies corresponding to both beat and meter. For the younger infants (Experiment 1), the amplitudes at duple meter frequencies were selectively enhanced for infants enrolled in music classes compared to those who had not engaged in such classes. For the older infants (Experiment 2), amplitudes at beat and meter frequencies were larger for infants with musically-trained compared to musically-untrained parents. These results suggest that the frequency-tagging method is sensitive to individual differences in beat and meter processing in infancy and could be used to track developmental changes. PMID:27252619

  17. Evaluation by computed tomography in premature and newborn infants

    International Nuclear Information System (INIS)

    Kuckein, D.

    1981-01-01

    By means of cranio-cerebral computed tomography hypoxic brain damage of varying degrees and different types may be demonstrated in premature infants and high-risk newborns. Paraventricular leucomalacia of varying extent up to porencephalic defects are found, as well as cortical infarctions, hemorrhage into brain tissue or ventricles, cerebral atrophy, developing hydrocephalus and congenital anomalies. (orig.) [de

  18. Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain.

    Science.gov (United States)

    Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M; Masuoka, Kobe L; Williams, Sasha L; Martin, Lauren D; Dissen, Gregory A; Ikonomidou, Chrysanthy; Schenning, Katie J; Olney, John W; Brambrink, Ansgar M

    2018-03-28

    Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.

  19. Age-related deposition of brain iron in normal adults: an in vivo susceptibility weighted imaging study

    International Nuclear Information System (INIS)

    Wang Qidong; Xu Xiaojun; Zhang Minming

    2008-01-01

    Objective: The purpose of this study was to investigate the effect of age on the iron concentration of the human brain. Methods: The brain iron level was evaluated in vivo in 78 healthy adult volunteers using a noninvasive magnetic resonance method termed susceptibility weighted imaging. The subjects were divided intothree groups due to different ages: young (22-35 years old, n=27), middle- aged (36-55 years old, n=35), and aged (56-78 years old, n=16). The phase values were measured on the corrected phase images in the globus pallidus, putamen, caudate, substantia nigra, red nucleus, thalamus and frontal white matter. The phase values of those regions measured from the subjects over than 30 years old were correlated with published values of brain iron concentration in normal adults to check the validity of the data. Then, the phase values of the three groups were tested for significant age-related differences using one-way ANOVA, followed by post hoc testing using least significant difference (LSD) procedure. Regression analysis was used to further examine age-related effects revealed by group comparisons, and to estimate the rates of age-related changes. Results: A strong negative correlation was found between the phase values and the published values of the brain iron concentration (r=-0.796, P= 0.032), which indicated that the higher the iron deposition level, the greater the negative phase values. In the putamen (F=20.115, P<0.01) and frontal white matter (F=3.536, P=0.034), significant differences were detected in the phase values of the three age groups. Linear regression analysis showed that phase values of the putamen, frontal white matter, and red nucleus decreased with age (The regression coefficients were -0.001, -0.001, and < -0.001 respectively, and the P value were all < 0.05), which indicated that the iron concentration of those brain structures increased with age. No significant age- related changes of the iron concentration were found in the

  20. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Grova, C [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Jannin, P [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Biraben, A [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Buvat, I [INSERM U494, CHU Pitie Salpetriere, Paris (France); Benali, H [INSERM U494, CHU Pitie Salpetriere, Paris (France); Bernard, A M [Service de Medecine Nucleaire, Centre Eugene Marquis, Rennes (France); Scarabin, J M [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Gibaud, B [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France)

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were

  1. Automated Spatial Brain Normalization and Hindbrain White Matter Reference Tissue Give Improved [(18)F]-Florbetaben PET Quantitation in Alzheimer's Model Mice.

    Science.gov (United States)

    Overhoff, Felix; Brendel, Matthias; Jaworska, Anna; Korzhova, Viktoria; Delker, Andreas; Probst, Federico; Focke, Carola; Gildehaus, Franz-Josef; Carlsen, Janette; Baumann, Karlheinz; Haass, Christian; Bartenstein, Peter; Herms, Jochen; Rominger, Axel

    2016-01-01

    Preclinical PET studies of β-amyloid (Aβ) accumulation are of growing importance, but comparisons between research sites require standardized and optimized methods for quantitation. Therefore, we aimed to evaluate systematically the (1) impact of an automated algorithm for spatial brain normalization, and (2) intensity scaling methods of different reference regions for Aβ-PET in a large dataset of transgenic mice. PS2APP mice in a 6 week longitudinal setting (N = 37) and another set of PS2APP mice at a histologically assessed narrow range of Aβ burden (N = 40) were investigated by [(18)F]-florbetaben PET. Manual spatial normalization by three readers at different training levels was performed prior to application of an automated brain spatial normalization and inter-reader agreement was assessed by Fleiss Kappa (κ). For this method the impact of templates at different pathology stages was investigated. Four different reference regions on brain uptake normalization were used to calculate frontal cortical standardized uptake value ratios (SUVRCTX∕REF), relative to raw SUVCTX. Results were compared on the basis of longitudinal stability (Cohen's d), and in reference to gold standard histopathological quantitation (Pearson's R). Application of an automated brain spatial normalization resulted in nearly perfect agreement (all κ≥0.99) between different readers, with constant or improved correlation with histology. Templates based on inappropriate pathology stage resulted in up to 2.9% systematic bias for SUVRCTX∕REF. All SUVRCTX∕REF methods performed better than SUVCTX both with regard to longitudinal stability (d≥1.21 vs. d = 0.23) and histological gold standard agreement (R≥0.66 vs. R≥0.31). Voxel-wise analysis suggested a physiologically implausible longitudinal decrease by global mean scaling. The hindbrain white matter reference (R mean = 0.75) was slightly superior to the brainstem (R mean = 0.74) and the cerebellum (R mean = 0.73). Automated

  2. Birth defects in perinatal infants in areas contiguous to Hongyanhe Nuclear Power Plant before its normal operation

    International Nuclear Information System (INIS)

    Zhou Ling; Yin Zhihua; Han Zhonghui

    2011-01-01

    Objective: To understand the status of birth defects among the perinatal infants in the areas contiguous to Hongyanhe nuclear power plant before its normal operation, so as to provide background information for the evaluation of the impact of nuclear power plant on birth defects. Methods: From 1 October 1995 to 30 September 2009 the midwifery units at second class and above of Wafangdian City were asked to be in charge of recording the birth defects among the perinatal infants born during this period within the range of 50 km around the Hongyanhe nuclear power plant. Results: The total number of birth defects was 697, and the maternal number Was 83779. The average defect rate Was 83.20/10 4 . There were significant differences in the birth defect rate among different years (χ 2 =39.54, P<0.05), however, without linear trend therein,and among the survey areas (χ 2 =15.36, P<0.05) as well. The top five birth defects were congenital heart disease (148 cases), cleft lip with cleft palate (67 cases), congenital hydrocephalus (63 cases), and spina bifida (37 cases) and cleft lip (36 cases). Conclusions: The birth defect rate within the range of 50 km around the Hongyanhe nuclear power plant is lower than that of the region of Liaoning Province and the national rate of birth defects. (authors)

  3. Does CT scan performed at one week of age help predict neurodevelopmental outcome following perinatal hypoxic-ischaemic injury in term infants?

    International Nuclear Information System (INIS)

    Gunn, M.; Battin, M.R.; Teele, R.L.; O'Connor, K.; Hope, J.A.

    2002-01-01

    Full text: Cerebral imaging may be used as an adjunct to clinical assessment to help prognostician following a perinatal hypoxic ischaemic insult. A good correlation has been shown between MRI and neurologic outcome but data obtained using CT is less clear. The aim of this study was to determine whether CT of the brain performed at one week of age was prognostic for neurodevelopmental outcome in term infants with hypoxic ischaemic encephalopathy. Term infants with an umbilical artery pH<7.1 or Apgar score <6 at 5 minutes plus evidence of encephalopathy and no evidence of major congenital anomalies were reviewed and data obtained. Nearly all of the infants in the study (35) were part of a trial of selective head cooling. CT scans were randomised and reviewed independently by three practising neuroradiologists on two occasions. The CTs were graded as 0) normal; 1) white matter oedema; 2a) mild watershed infarction; 2b) moderate watershed infarction; 3) severe generalised infarction; 4) involvement of basal ganglia. Follow up neurological examination was performed at regular intervals, until 18 months of age, by a neonatologist. Developmental testing at 18 months using the revised Bailey Scales of Infant Development was performed by a psychologist. The study group consisted of 36 infants. Mean birth weight was 3555 (SD+/- 510)g, gestational age was 39.7 (+/- 1.4) weeks, umbilical or first arterial pH was 6.9 (+/- 0.2) and 5 min Apgar scores was 4.3 (+/- 1.9). Neurological outcome was designated as cerebral palsy (7), tone abnormalities before 12 months but only mild abnormality or normal examination at 18 months (2), developmental delay but normal physical examination (1) and functionally normal at 18 months (24). In 27% of infants the images were with normal limits. In only 17% there was overt basal ganglia damage and in 56% there was some degree of white matter abnormality. Overall, an abnormal CT had a sensitivity of 78%, and a specificity of 91% for the prediction

  4. Infant visual attention and object recognition.

    Science.gov (United States)

    Reynolds, Greg D

    2015-05-15

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Brain MR imaging in child abuse

    International Nuclear Information System (INIS)

    Sato, Y.; Ellerbroek, C.J.; Alexander, R.; Kao, S.C.S.; Yuh, W.T.C.; Smith, W.L.

    1988-01-01

    Intracranial injuries represent the most severe manifestation of child abuse. CT of the brain is the current standard for evaluation of these infants; however, MR imaging offers several potential advantages. MR imaging and CT were performed in ten infants who suffered intracranial trauma owing to child abuse. CT was slightly better at demonstrating subarachnoid hemorrhage and had definite advantages for defining fractures. MR imaging was superior in the demonstration of subacute extraaxial hemorrhage, deep brain injuries owing to shearing effects from shaking, and anoxic injuries. MR imaging has a definite complementary role in the evaluation of acute intracranial trauma in child abuse victims

  6. Normalization of coagulopathy is associated with improved outcome after isolated traumatic brain injury.

    Science.gov (United States)

    Epstein, Daniel S; Mitra, Biswadev; Cameron, Peter A; Fitzgerald, Mark; Rosenfeld, Jeffrey V

    2016-07-01

    Acute traumatic coagulopathy (ATC) has been reported in the setting of isolated traumatic brain injury (iTBI) and is associated with poor outcomes. We aimed to evaluate the effectiveness of procoagulant agents administered to patients with ATC and iTBI during resuscitation, hypothesizing that timely normalization of coagulopathy may be associated with a decrease in mortality. A retrospective review of the Alfred Hospital trauma registry, Australia, was conducted and patients with iTBI (head Abbreviated Injury Score [AIS] ⩾3 and all other body AIS normalized ratio ⩾1.3) were selected for analysis. Data on procoagulant agents used (fresh frozen plasma, platelets, cryoprecipitate, prothrombin complex concentrates, tranexamic acid, vitamin K) were extracted. Among patients who had achieved normalization of INR or survived beyond 24hours and were not taking oral anticoagulants, the association of normalization of INR and death at hospital discharge was analyzed using multivariable logistic regression analysis. There were 157 patients with ATC of whom 68 (43.3%) received procoagulant products within 24hours of presentation. The median time to delivery of first products was 182.5 (interquartile range [IQR] 115-375) minutes, and following administration of coagulants, time to normalization of INR was 605 (IQR 274-1146) minutes. Normalization of INR was independently associated with significantly lower mortality (adjusted odds ratio 0.10; 95% confidence interval 0.03-0.38). Normalization of INR was associated with improved mortality in patients with ATC in the setting of iTBI. As there was a substantial time lag between delivery of products and eventual normalization of coagulation, specific management of coagulopathy should be implemented as early as possible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

    Directory of Open Access Journals (Sweden)

    R. Walter Heinrichs

    2017-01-01

    Full Text Available This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB composite score (T=50 ± 10 and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n=39 had greater cortical thickness than both cognitively normal (n=17 and below-normal range (n=49 patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n=24 or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.

  8. Morphometric connectivity analysis to distinguish normal, mild cognitive impaired, and Alzheimer subjects based on brain MRI

    DEFF Research Database (Denmark)

    Erleben, Lene Lillemark; Sørensen, Lauge; Mysling, Peter

    2013-01-01

    This work investigates a novel way of looking at the regions in the brain and their relationship as possible markers to classify normal control (NC), mild cognitive impaired (MCI), and Alzheimer Disease (AD) subjects. MRI scans from a subset of 101 subjects from the ADNI study at baseline was used...

  9. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  10. Home Environments of Low SES Non-Organic Failure-to-Thrive Infants.

    Science.gov (United States)

    Bradley, Robert H.; And Others

    1984-01-01

    Failure-to-thrive infants were more often found in homes that were disorganized and where mothers were less responsive and less accepting of their child's behavior than were normally developing infants. Results suggest that infants need a socially and physically responsive environment which they can control to some extent. (RH)

  11. Infants learn better from left to right: a directional bias in infants' sequence learning.

    Science.gov (United States)

    Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola

    2017-05-26

    A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.

  12. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults.

    Science.gov (United States)

    Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C

    2014-06-01

    Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.

  13. Lipid needs of preterm infants: updated recommendations.

    Science.gov (United States)

    Lapillonne, Alexandre; Groh-Wargo, Sharon; Gonzalez, Carlos H Lozano; Uauy, Ricardo

    2013-03-01

    Long-chain polyunsaturated fatty acids (LCPUFAs) are of nutritional interest because they are crucial for normal development of the central nervous system and have potential long-lasting effects that extend beyond the period of dietary insufficiency. Here we review the recent literature and current recommendations regarding LCPUFAs as they pertain to preterm infant nutrition. In particular, findings that relate to fetal accretion, LCPUFA absorption and metabolism, effects on development, and current practices and recommendations have been used to update recommendations for health care providers. The amounts of long-chain polyunsaturated fatty acids (LCPUFAs) used in early studies were chosen to produce the same concentrations as in term breast milk. This might not be a wise approach for preterm infants, however, particularly for very and extremely preterm infants, whose requirements for LCPUFAs and other nutrients exceed what is normally provided in the small volumes that they are able to tolerate. Recent studies have reported outcome data in preterm infants fed milk with a docosahexaenoic acid (DHA) content 2-3 times higher than the current concentration in infant formulas. Overall, these studies show that providing larger amounts of DHA supplements, especially to the smallest infants, is associated with better neurologic outcomes in early life. We emphasize that current nutritional management might not provide sufficient amounts of preformed DHA during the parenteral and enteral nutrition periods and in very preterm/very low birth weight infants until their due date, and that greater amounts than used routinely likely will be needed to compensate for intestinal malabsorption, DHA oxidation, and early deficit. Research should continue to address the gaps in knowledge and further refine adequate intake for each group of preterm infants. Copyright © 2013 Mosby, Inc. All rights reserved.

  14. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Kim, S. H.; Sohn, H. S.; Chung, S. K. [Catholic University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia.

  15. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    International Nuclear Information System (INIS)

    Chung, Y. A.; Kim, S. H.; Sohn, H. S.; Chung, S. K.

    2002-01-01

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia

  16. Nutritional requirements and parenteral nutrition in preterm infants ...

    African Journals Online (AJOL)

    Provision of appropriate nutritional requirements soon after birth is critical for normal development and growth of preterm infants. Preterm infants are often not able to tolerate volumes of oral feeds that will provide adequate daily requirements for growth within the first week or two of life, therefore parenteral nutrition is often ...

  17. Blocked, delayed, or obstructed: What causes poor white matter development in intrauterine growth restricted infants?

    Science.gov (United States)

    Tolcos, Mary; Petratos, Steven; Hirst, Jonathan J; Wong, Flora; Spencer, Sarah J; Azhan, Aminath; Emery, Ben; Walker, David W

    2017-07-01

    Poor white matter development in intrauterine growth restricted (IUGR) babies remains a major, untreated problem in neonatology. New therapies, guided by an understanding of the mechanisms that underlie normal and abnormal oligodendrocyte development and myelin formation, are required. Much of our knowledge of the mechanisms that underlie impaired myelination come from studies in adult demyelinating disease, preterm brain injury, or experimental models of hypoxia-ischemia. However, relatively less is known for IUGR which is surprising because IUGR is a leading cause of perinatal mortality and morbidity, second only to premature birth. IUGR is also a significant risk factor for the later development of cerebral palsy, and is a greater risk compared to some of the more traditionally researched antecedents - asphyxia and inflammation. Recent evidence suggests that the white matter injury and reduced myelination in the brains of some preterm babies is due to impaired maturation of oligodendrocytes thereby resulting in the reduced capacity to synthesize myelin. Therefore, it is not surprising that the hypomyelination observable in the central nervous system of IUGR infants has similarly lead to investigations identifying a delay or blockade in the progress of maturation of oligodendrocytes in these infants. This review will discuss current ideas thought to account for the poor myelination often present in the neonate's brain following IUGR, and discuss novel interventions that are promising as treatments that promote oligodendrocyte maturation, and thereby repair the myelination deficits that otherwise persist into infancy and childhood and lead to neurodevelopmental abnormalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Family Nurture Intervention in preterm infants alters frontal cortical functional connectivity assessed by EEG coherence.

    Science.gov (United States)

    Myers, M M; Grieve, P G; Stark, R I; Isler, J R; Hofer, M A; Yang, J; Ludwig, R J; Welch, M G

    2015-07-01

    To assess the impact of Family Nurture Intervention (FNI) on cortical function in preterm infants at term age. Family Nurture Intervention is a NICU-based intervention designed to establish emotional connection between mothers and preterm infants. Infants born at 26-34 weeks postmenstrual age (PMA) were divided into two groups, standard care (SC, N = 49) and FNI (FNI, N = 56). Infants had EEG recordings of ~one hour duration with 124 lead nets between 37 and 44 weeks PMA. Coherence was measured between all pairs of electrodes in ten frequency bands. Data were summarised both within and between 12 regions during two sleep states (active, quiet). Coherence levels were negatively correlated with PMA age in both groups. As compared to SC infants, FNI infants showed significantly lower levels of EEG coherence (1-18 Hz) largely within and between frontal regions. Coherence in FNI infants was decreased in regions where we previously found robust increases in EEG power. As coherence decreases with age, results suggest that FNI may accelerate brain maturation particularly in frontal brain regions, which have been shown in research by others to be involved in regulation of attention, cognition and emotion regulation; domains deficient in preterm infants. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  19. Considering ethical dilemmas related to brain death in newborns

    Directory of Open Access Journals (Sweden)

    Ilias Chatziioannidis

    2014-01-01

    Full Text Available Brain death (BD, as the irreversible and permanent loss of cerebral and brainstem function, is relatively uncommon among newborns who need life support. It is considered the result of an acute and irreversible central nervous system insult. Asphyxia, severe intracranial hemorrhage and infection are the most common causes of  BD in children. BD diagnosis is usually based on clinical criteria. Dilemmas about life prolonging treatment for severely compromised infants – as brain dead infants are – has become challenging since neonatal intensive care unit (NICU care has developed, quality of life and resource issues are nowadays continuously underlined. Caring for premature babies is expensive and costs have risen especially since an increased number of infants with handicaps survives. Intensivists’ main duty is first to save lives and then to interrupt treatment in certain conditions like detrimental brain damage. The objective of this article is to present ethical decisions regarding brain dead newborns in order to balance between organ donation necessities and withholding/withdrawing treatment, with respect to the important role of infants’ parents in the process.

  20. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs

    DEFF Research Database (Denmark)

    Dekker, Simone E; Sillesen, Martin; Bambakidis, Ted

    2014-01-01

    ), colloids (Hextend [HEX]), and fresh frozen plasma (FFP) resuscitation are associated with differential effects on coagulation and endothelial systems. METHODS: We subjected 15 Yorkshire swine to TBI and HS (40% blood volume), and kept in HS for 2 hours before resuscitation with NS, HEX, or FFP. Markers......BACKGROUND: Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related deaths. These insults disrupt coagulation and endothelial systems. This study investigated whether previously reported differences in lesion size and brain swelling during normal saline (NS...... of endothelial activation (E-selectin, Intercellular adhesion molecule [ICAM]-1), coagulation activation (prothrombin fragment 1 + 2), and natural anticoagulation (activated protein C [aPC]) were determined in serum and brain whole cell lysates. RESULTS: Serum levels of aPC were greater in the NS group (203 ± 30...

  1. A comparision of Brain-Behavioral Systems in patients with multiple sclerosis and normal individuals

    Directory of Open Access Journals (Sweden)

    kobra Moradi

    2016-05-01

    Full Text Available Background: The aim of this study was to compare   Brain-Behavioral Systems in patient with multiple sclerocis (MS and normal individuals. Materials and Methods: This research was a post facto comparative study, subjects included  healthy persons and all patients with MS, which in summer and autumn 2013 referred to neurologists in the Lorestan province. Of the population using as samples, 117 cases (75 patients and 42 normal subjects were selected, then Gray- Wilson Personality Questionnaire was completed for them. To analyze the data, multivariate analysis of variance (MANOVA test  was used to compare the two groups. Results: The results showed, in BAS scales, people with MS had significantly lower scores than normal subjects Conclusion: What comes from findings indicates that a low score in behavioral activation as a pathological factors in chronic diseases such as MS is concerned and is in need of psychological treatment.

  2. Maternal prenatal cortisol and infant cognitive development: moderation by infant-mother attachment.

    Science.gov (United States)

    Bergman, Kristin; Sarkar, Pampa; Glover, Vivette; O'Connor, Thomas G

    2010-06-01

    Experimental animal studies suggest that early glucocorticoid exposure may have lasting effects on the neurodevelopment of the offspring; animal studies also suggest that this effect may be eliminated by positive postnatal rearing. The relevance of these findings to humans is not known. We prospectively followed 125 mothers and their normally developing children from pregnancy through 17 months postnatal. Amniotic fluid was obtained at, on average, 17.2 weeks gestation; infants were assessed at an average age of 17 months with the Bayley Scales of Infant Development, and ratings of infant-mother attachment classification were made from the standard Ainsworth Strange Situation assessment. Prenatal cortisol exposure, indexed by amniotic fluid levels, negatively predicted cognitive ability in the infant, independent of prenatal, obstetric, and socioeconomic factors. This association was moderated by child-mother attachment: in children with an insecure attachment, the correlation was [r(54) = -.47, p < .001]; in contrast, the association was nonexistent in children who had a secure attachment [r(70) = -.05, ns]. These findings mimic experimental animal findings and provide the first direct human evidence that increased cortisol in utero is associated with impaired cognitive development, and that its impact is dependent on the quality of the mother-infant relationship. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Microstructure, length, and connection of limbic tracts in normal human brain development

    Directory of Open Access Journals (Sweden)

    Qiaowen eYu

    2014-08-01

    Full Text Available The cingulum and fornix play an important role in memory, attention, spatial orientation and feeling functions. Both microstructure and length of these limbic tracts can be affected by mental disorders such as Alzheimer’s disease, depression, autism, anxiety, and schizophrenia. To date, there has been little systematic characterization of their microstructure, length and functional connectivity in normally developing brains. In this study, diffusion tensor imaging (DTI and resting state functional MRI (rs-fMRI data from 65 normally developing right-handed subjects from birth to young adulthood was acquired. After cingulate gyrus part of the cingulum (cgc, hippocampal part of the cingulum (cgh and fornix (fx were traced with DTI tractography, absolute and normalized tract lengths and DTI-derived metrics including fractional anisotropy, mean, axial and radial diffusivity were measured for traced limbic tracts. Free water elimination (FWE algorithm was adopted to improve accuracy of the measurements of DTI-derived metrics. The role of these limbic tracts in the functional network at birth and adulthood was explored. We found a logarithmic age-dependent trajectory for FWE-corrected DTI metric changes with fast increase of microstructural integrity from birth to 2-year-old followed by a slow increase to 25-year-old. Normalized tract length of cgc increases with age, while no significant relationship with age was found for normalized tract lengths of cgh and fx. Stronger microstructural integrity on the left side compared to that of right side was found. With integrated DTI and rs-fMRI, the key connectional role of cgc and cgh in the default mode network (DMN was confirmed as early as birth. Systematic characterization of length and DTI metrics after FWE correction of limbic tracts offers insight into their morphological and microstructural developmental trajectories. These trajectories may serve as a normal reference for pediatric patients with

  4. An Overview of Iron in Term Breast-Fed Infants

    Directory of Open Access Journals (Sweden)

    Wafaa A. Qasem

    2015-01-01

    Full Text Available Background Iron is an essential nutrient for normal growth and neurodevelopment of infants. Iron deficiency (ID remains the most common micronutrient deficiency worldwide. There are convincing data that ID is associated with negative effects on neurological and psychomotor development. Objectives In this review, we provide an overview of current knowledge of the importance of iron in normal term breast-fed infants with a focus on recommendations, metabolism, and iron requirements. Conclusions Health organizations around the world recommend the introduction of iron-rich foods or iron supplements for growing infants to prevent ID. However, there is no routine screening for ID in infancy. Multicenter trials with long-term follow-up are needed to investigate the association between iron fortification/supplementation and various health outcomes.

  5. Changes in brain magnetic resonance imaging patterns for preterm infants after introduction of a magnetic resonance-compatible incubator coil system: 5-year experience at a single institution.

    Science.gov (United States)

    Cho, Hyun-Hae; Kim, In-One; Cheon, Jung-Eun; Choi, Young Hun; Lee, So Mi; Kim, Woo Sun

    2016-09-01

    To evaluate the changes in using patterns of brain magnetic resonance imaging (MRI) in preterm infants after introduction of a MR-compatible incubator coil system. Brain MRIs for preterm infants with the MR-compatible incubator coil from March 2010 to July 2014 (n=154, group A) were compared with MRIs prior to the introduction of the incubator coil, from March 2005 to February 2010 (n=65, group B). Clinical data, MRI findings, acquisition time, and incidence of adverse events during the study were retrospectively reviewed. For the qualitative analysis of the examinations, the presence of motion artefact, spatial resolution, and overall image quality were assessed. Signal uniformity of each sequence was evaluated for a quantitative comparison. Comparing with group B, Group A was significantly younger (36+3 vs. 38+3 weeks, pimage acquisition time was significantly shorter in group A (21.4±4.5 vs. 25.4±5.5min, pimage quality with decreased signal variation than group B (all pimage quality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain

    Science.gov (United States)

    Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M

    2013-01-01

    It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-13C3]heptanoate was examined in the normal mouse brain and in G1D by 13C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in 13C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and 13C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752

  7. Lutein-fortified infant formula fed to healthy term infants: evaluation of growth effects and safety

    Directory of Open Access Journals (Sweden)

    Davis Anne M

    2010-05-01

    Full Text Available Abstract Background/Objectives Breast milk contains lutein derived from the mother's diet. This carotenoid is currently not added to infant formula, which has a small and variable lutein content from innate ingredients. This study was conducted to compare the growth of infants fed lutein-fortified infant formula with that of infants fed infant formula without lutein fortification. Subjects/Methods This 16-week study was prospective, randomized, controlled, and double-blind with parallel groups of healthy term infants fed either control formula (Wyeth S-26 Gold, designated as Gold or experimental formula (Wyeth S-26 Gold fortified with lutein at 200 mcg/l, designated as Gold + Lutein. Two hundred thirty-two (232 infants ≤ 14 days postnatal age were randomized and 220 (94.8% completed the study. Weight (g, head circumference (cm, and length (cm were measured at Weeks 4, 8, 12, and 16. The primary endpoint was weight gain (g/day from baseline to Week 16. Safety was assessed through monitoring of study events (SEs throughout the study and evaluation of selected blood chemistry tests performed at Week 16. Results Infants in both treatment groups demonstrated appropriate growth. No differences between treatment groups were found in any of the measures of growth at any of the measurement time points. Both study formulas were well tolerated. The mean values of all measured blood chemistry parameters fell within the modified normal ranges for infants, and the values for both groups for any measured parameter were similar. Conclusions Infants fed lutein-fortified S-26 Gold demonstrated growth equivalent to that of infants fed unfortified lutein formula.

  8. NEONATAL MORBIDITY AND EARLY OUTCOME OF VERY PRETERM INFANTS

    Directory of Open Access Journals (Sweden)

    Heljić Suada

    2013-01-01

    Full Text Available Background: Although the mortality rate for preterm infants and the gestational age-specific mortality rate have dramatically improved over the last 3 to 4 decades, infants born preterm remain vulnerable to many complications, including respiratory distress syndrome, chronic lung disease, necrotizing enterocolitis, a compromised immune system, cardiovascular disorders, hearing and vision problems, and brain lesions.The aim is to determine mortality and morbidity rates and selected outcome variables for preterm infant’s < 30 weeks’ gestation, who were admitted to the NICU. Patients and methods: This study enrolled 102 infants with gestational age less than 30 weeks’ gestation, hospitalized in Neonatal Intensive Care Unit, Pediatric Hospital, Clinical University Center Sarajevo, from Jan. 2010 to Dec. 2010. Parameters taken at admission were: birth weight, gestational age, Apgar score, excess base and CRIB score. Early outcome is considered as a survival at discharge or common preterm morbidities presented during hospitalizationResults: The mean BW of evaluated preterm infants was 1086 ± 250 g, the mean GA27.89 ± 1.97, Apgar score 5.41 ± 1.76, excess base at admission 6.39 ± 1.74 and mean CRIB score 3.72 ± 3.16. The overall survival rate was 70.5%. Selected outcomes at discharge were: RDS with 70.5% infants treated with natural surfactant, PDA treated with NSAIDS (23.5%, brain injury ( ≥ grade 3 IVH or PVL 16.6%, NEC Bell stages II or III 9.8%, BPD 25/72 (33.3% of infants who survived to 36 weeks postmenstrual age. In 38 (37.2% infants, episodes of infections were noticed (one or more episodes in 25 infants, half of them were caused by Gram positive bacteria, most frequent coagulasa negative staphylococci. Klebsiella pneumoniae was the mostfrequent organism among Gram negative bacteria. One patient had invasive candidiasis caused by Candida albicans. In 5 infants (4.9% early onset of sepsis was documented. Conclusion: Very preterm

  9. Birth Defects Among Fetuses and Infants of US Women With Evidence of Possible Zika Virus Infection During Pregnancy.

    Science.gov (United States)

    Honein, Margaret A; Dawson, April L; Petersen, Emily E; Jones, Abbey M; Lee, Ellen H; Yazdy, Mahsa M; Ahmad, Nina; Macdonald, Jennifer; Evert, Nicole; Bingham, Andrea; Ellington, Sascha R; Shapiro-Mendoza, Carrie K; Oduyebo, Titilope; Fine, Anne D; Brown, Catherine M; Sommer, Jamie N; Gupta, Jyoti; Cavicchia, Philip; Slavinski, Sally; White, Jennifer L; Owen, S Michele; Petersen, Lyle R; Boyle, Coleen; Meaney-Delman, Dana; Jamieson, Denise J

    2017-01-03

    Understanding the risk of birth defects associated with Zika virus infection during pregnancy may help guide communication, prevention, and planning efforts. In the absence of Zika virus, microcephaly occurs in approximately 7 per 10 000 live births. To estimate the preliminary proportion of fetuses or infants with birth defects after maternal Zika virus infection by trimester of infection and maternal symptoms. Completed pregnancies with maternal, fetal, or infant laboratory evidence of possible recent Zika virus infection and outcomes reported in the continental United States and Hawaii from January 15 to September 22, 2016, in the US Zika Pregnancy Registry, a collaboration between the CDC and state and local health departments. Laboratory evidence of possible recent Zika virus infection in a maternal, placental, fetal, or infant sample. Birth defects potentially Zika associated: brain abnormalities with or without microcephaly, neural tube defects and other early brain malformations, eye abnormalities, and other central nervous system consequences. Among 442 completed pregnancies in women (median age, 28 years; range, 15-50 years) with laboratory evidence of possible recent Zika virus infection, birth defects potentially related to Zika virus were identified in 26 (6%; 95% CI, 4%-8%) fetuses or infants. There were 21 infants with birth defects among 395 live births and 5 fetuses with birth defects among 47 pregnancy losses. Birth defects were reported for 16 of 271 (6%; 95% CI, 4%-9%) pregnant asymptomatic women and 10 of 167 (6%; 95% CI, 3%-11%) symptomatic pregnant women. Of the 26 affected fetuses or infants, 4 had microcephaly and no reported neuroimaging, 14 had microcephaly and brain abnormalities, and 4 had brain abnormalities without microcephaly; reported brain abnormalities included intracranial calcifications, corpus callosum abnormalities, abnormal cortical formation, cerebral atrophy, ventriculomegaly, hydrocephaly, and cerebellar abnormalities

  10. The Emergence of Network Inefficiencies in Infants With Autism Spectrum Disorder.

    Science.gov (United States)

    Lewis, John D; Evans, Alan C; Pruett, John R; Botteron, Kelly N; McKinstry, Robert C; Zwaigenbaum, Lonnie; Estes, Annette M; Collins, D Louis; Kostopoulos, Penelope; Gerig, Guido; Dager, Stephen R; Paterson, Sarah; Schultz, Robert T; Styner, Martin A; Hazlett, Heather C; Piven, Joseph

    2017-08-01

    Autism spectrum disorder (ASD) is a developmental disorder defined by behavioral features that emerge during the first years of life. Research indicates that abnormalities in brain connectivity are associated with these behavioral features. However, the inclusion of individuals past the age of onset of the defining behaviors complicates interpretation of the observed abnormalities: they may be cascade effects of earlier neuropathology and behavioral abnormalities. Our recent study of network efficiency in a cohort of 24-month-olds at high and low familial risk for ASD reduced this confound; we reported reduced network efficiencies in toddlers classified with ASD. The current study maps the emergence of these inefficiencies in the first year of life. This study uses data from 260 infants at 6 and 12 months of age, including 116 infants with longitudinal data. As in our earlier study, we use diffusion data to obtain measures of the length and strength of connections between brain regions to compute network efficiency. We assess group differences in efficiency within linear mixed-effects models determined by the Akaike information criterion. Inefficiencies in high-risk infants later classified with ASD were detected from 6 months onward in regions involved in low-level sensory processing. In addition, within the high-risk infants, these inefficiencies predicted 24-month symptom severity. These results suggest that infants with ASD, even before 6 months of age, have deficits in connectivity related to low-level processing, which contribute to a developmental cascade affecting brain organization and eventually higher-level cognitive processes and social behavior. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Effects of active music therapy on the normal brain: fMRI based evidence.

    Science.gov (United States)

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings.

  12. Automatic burst detection for the EEG of the preterm infant

    NARCIS (Netherlands)

    Jennekens, W.; Ruijs, L.S.; Lommen, Ch.M.L.; Niemarkt, H.J.; Pasman, J.W.; van Kranen-Mastenbroek, V.H.J.M.; Wijn, P.F.F.; van Pul, C.; Andriessen, P.

    2011-01-01

    To aid with prognosis and stratification of clinical treatment for preterm infants, a method for automated detection of bursts, interburst-intervals (IBIs) and continuous patterns in the electroencephalogram (EEG) is developed. Results are evaluated for preterm infants with normal neurological

  13. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities.

    Directory of Open Access Journals (Sweden)

    Jae Hyun Park

    Full Text Available Thirty-six VLBW infants who underwent F-18 fluorodeoxyglucose (F-18 FDG brain PET and MRI were prospectively enrolled, while infants with evidence of parenchymal brain injury on MRI were excluded. The regional glucose metabolic ratio and asymmetry index were calculated. The asymmetry index more than 10% (right > left asymmetry or less than -10% (left > right asymmetry were defined as abnormal. Regional cerebral glucose metabolism were compared between right and left cerebral hemispheres, and between the following subgroups: multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, and low-grade intraventricular hemorrhage.In the individual analysis, 21 (58.3% of 36 VLBW infants exhibited asymmetric cerebral glucose metabolism. Fifteen infants (41.7% exhibited right > left asymmetry, while six (16.7% exhibited left > right asymmetry. In the regional analysis, right > left asymmetry was more extensive than left > right asymmetry. The metabolic ratio in the right frontal, temporal, and occipital cortices and right thalamus were significantly higher than those in the corresponding left regions. In the subgroup analyses, the cerebral glucose metabolism in infants with multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, or low-grade intraventricular hemorrhage were significantly lower than those in infants without these.VLBW infants without structural abnormalities have asymmetry of cerebral glucose metabolism. Decreased cerebral glucose metabolism are noted in infants with neurodevelopmental risk factors. F-18 FDG PET could show microstructural abnormalities not detected by MRI in VLBW infants.

  14. Soy-based Infant Formula: A Safe Choice for Babies?

    OpenAIRE

    Su, Tien-l Karleen

    2002-01-01

    Making up about 25% of the current infant-formula market in the U.S., soy-based infant formulas are lifesaving alternatives for infants who cannot rely on traditional sources of milk for complete nutrition. While many studies have supported the effectiveness of soy-formula consumption for normal growth and development, the controversy over the potentially harmful effects of early exposure to isoflavones (phytoestrogens found in soy formulas) remains to be resolved. The plasma concentration of...

  15. The metabolism of Tay-Sachs ganglioside: catabolic studies with lysosomal enzymes from normal and Tay-Sachs brain tissue

    Science.gov (United States)

    Tallman, John F.; Johnson, William G.; Brady, Roscoe O.

    1972-01-01

    The catabolism of Tay-Sachs ganglioside, N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galactosylglucosylceramide, has been studied in lysosomal preparations from normal human brain and brain obtained at biopsy from Tay-Sachs patients. Utilizing Tay-Sachs ganglioside labeled with 14C in the N-acetylgalactosaminyl portion or 3H in the N-acetylneuraminosyl portion, the catabolism of Tay-Sachs ganglioside may be initiated by either the removal of the molecule of N-acetylgalactosamine or N-acetylneuraminic acid. The activity of the N-acetylgalactosamine-cleaving enzyme (hexosaminidase) is drastically diminished in such preparations from Tay-Sachs brain whereas the activity of the N-acetylneuraminic acid-cleaving enzyme (neuraminidase) is at a normal level. Total hexosaminidase activity as measured with an artificial fluorogenic substrate is increased in tissues obtained from patients with the B variant form of Tay-Sachs disease and it is virtually absent in the O-variant patients. The addition of purified neuraminidase and various purified hexosaminidases exerted only a minimal synergistic effect on the hydrolysis of Tay-Sachs ganglioside in the lysosomal preparations from the control or patient with the O variant of Tay-Sachs disease. Images PMID:4639018

  16. Comparison of infants with jaundice due to maternal diabetes and infants with unknown jaundice

    Directory of Open Access Journals (Sweden)

    Hassan Boskabadi

    2017-07-01

    Methods: In this cross-sectional study, among 2,800 infants with jaundice in Ghaem hospital in Mashhad during the 2007 to 2014, features of 59 infants of diabetic mother's (case group and 78 infants with unknown jaundice (control group were analyzed. After confirming of jaundice (Bilirubin ≥ 17 mg/dl in newborns based on examination of pediatrician and laboratory results, a researcher made questionnaire containing maternal demographic data, (maternal age, parity, maternal problems during pregnancy, route of delivery. Also neonatal characteristics including age, sex, birth weight, current weight, duration of hospitalization, current age, age of recovery and laboratory data (Bilirubin, direct bilirubin, hematocrit, platelet, sodium, potassium, blood urea nitrogen, Cr, TSH, T4 were assessed. After data collection and recording information in SPSS software, version 19.5 (IBM SPSS, Armonk, NY, USA, by using tables, charts and statistical indices, the study was evaluated. Data were analyzed using statistical tests such as Mann-Whitney, Chi-square tests after normality control. Comparison of the two groups in normal distribution with t-test and for non-standard data with Mann-Whitney test. Also for definitive variables Chi-square test was used. P-value less than 0.50 was the significant level minimum. Results: In this study, the prevalence of jaundice due to maternal diabetes was 2.10 percent. Birth weight (P=0.02, current age (P=0.003, parity (P=0.000, maternal age (P=0.000, age of recovery (P=0.04, cesarean section (P=0.001, prematurity (P=0.000, maternal problems during pregnancy (P=0.000, abnormal physical examinations (P=0.001 in diabetic mother's infants and Bilirubin (P=0.000, length of hospitalization (P=0.003, in infants with unknown jaundice were higher. Conclusion: The infant of diabetic mother are at increased risk of maternal and neonatal complications. Neonatal complications consist of high birth weight, preterm labor, more jaundice and late recovery

  17. CT findings in neonatal hypothermia

    International Nuclear Information System (INIS)

    Schulman, H.; Laufer, L.; Berginer, J.; Hertzanu, Y.; Hershkowitz, E.; Berenstein, T.; Sofer, S.; Maor, E.

    1998-01-01

    Background. Newborn infants are particularly prone to hypothermia, a condition with a high mortality. Objective. To study the CT brain patterns in infants with hypothermia and neurological symptoms. Materials and methods. We reviewed the brain CT of nine infants with neonatal hypothermia, multiple organ failure, seizures and coma. Results. Two infants had normal CT scans, acutely and at follow-up, and were clinically normal at follow-up. In seven infants, CT showed diffuse cerebral oedema, with reversal of the normal density relationship between grey and white matter and a relative increased density of the thalami, brainstem and cerebellum - the 'reversal sign'. In six surviving infants with severe developmental delay, follow-up CT revealed cerebral atrophy with multicystic encephalomalacia. Conclusions. The 'reversal sign' has been described in the abused child, birth asphyxia and anoxia due to drowning. Neonatal hypothermia is offered as a further cause. (orig.)

  18. Sleep confers a benefit for retention of statistical language learning in 6.5month old infants.

    Science.gov (United States)

    Simon, Katharine N S; Werchan, Denise; Goldstein, Michael R; Sweeney, Lucia; Bootzin, Richard R; Nadel, Lynn; Gómez, Rebecca L

    2017-04-01

    Infants show robust ability to track transitional probabilities within language and can use this information to extract words from continuous speech. The degree to which infants remember these words across a delay is unknown. Given well-established benefits of sleep on long-term memory retention in adults, we examine whether sleep similarly facilitates memory in 6.5month olds. Infants listened to an artificial language for 7minutes, followed by a period of sleep or wakefulness. After a time-matched delay for sleep and wakefulness dyads, we measured retention using the head-turn-preference procedure. Infants who slept retained memory for the extracted words that was prone to interference during the test. Infants who remained awake showed no retention. Within the nap group, retention correlated with three electrophysiological measures (1) absolute theta across the brain, (2) absolute alpha across the brain, and (3) greater fronto-central slow wave activity (SWA). Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Network analysis of perception-action coupling in infants

    Directory of Open Access Journals (Sweden)

    Naama eRotem-Kohavi

    2014-04-01

    Full Text Available The functional networks that support action observation are of great interest in understanding the development of social cognition and motor learning. How infants learn to represent and understand the world around them remains one of the most intriguing questions in developmental cognitive neuroscience. Recently, mathematical measures derived from graph theory have been used to study connectivity networks in the developing brain. Thus far, this type of analysis in infancy has only been applied to the resting state. In this study, we recorded electroencephalography (EEG from infants (ages 4-11 months of age and adults while they observed three types of actions: a reaching for an object, b walking and c object motion. Graph theory based analysis was applied to these data to evaluate changes in brain networks. Global metrics that provide measures of the structural properties of the network (characteristic path, density, global efficiency, and modularity were calculated for each group and for each condition. We found statistically significant differences in measures for the observation of walking condition only. Specifically, in comparison to adults, infants showed increased density and global efficiency in combination with decreased modularity during observation of an action that is not within their motor repertoire (i.e. independent walking, suggesting a less structured organization. There were no group differences in global metric measures for observation of object motion or for observation of actions that are within the repertoire of infants (i.e. reaching. These preliminary results suggest that infants and adults may share a basic functional network for action observation that is sculpted by experience. Motor experience may lead to a shift towards a more efficient functional network.

  20. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development.

    Science.gov (United States)

    2012-01-01

    Using a population-based sampling strategy, the National Institutes of Health (NIH) Magnetic Resonance Imaging Study of Normal Brain Development compiled a longitudinal normative reference database of neuroimaging and correlated clinical/behavioral data from a demographically representative sample of healthy children and adolescents aged newborn through early adulthood. The present paper reports brain volume data for 325 children, ages 4.5-18 years, from the first cross-sectional time point. Measures included volumes of whole-brain gray matter (GM) and white matter (WM), left and right lateral ventricles, frontal, temporal, parietal and occipital lobe GM and WM, subcortical GM (thalamus, caudate, putamen, and globus pallidus), cerebellum, and brainstem. Associations with cross-sectional age, sex, family income, parental education, and body mass index (BMI) were evaluated. Key observations are: 1) age-related decreases in lobar GM most prominent in parietal and occipital cortex; 2) age-related increases in lobar WM, greatest in occipital, followed by the temporal lobe; 3) age-related trajectories predominantly curvilinear in females, but linear in males; and 4) small systematic associations of brain tissue volumes with BMI but not with IQ, family income, or parental education. These findings constitute a normative reference on regional brain volumes in children and adolescents.

  1. Categorical ERP Repetition Effects for Human and Furniture Items in 7-Month-Old Infants

    Science.gov (United States)

    Peykarjou, Stefanie; Wissner, Julia; Pauen, Sabina

    2017-01-01

    Behavioural and recent neural evidence indicates that young infants discriminate broad stimulus categories. However, little is known about the categorical perception of humans represented as full bodies with heads and their discrimination from inanimate objects. This study compares infants' brain processing of human and furniture pictures, probing…

  2. Post partum emotional distress in mothers of preterm infants: a ...

    African Journals Online (AJOL)

    Objectives: To investigate whether mothers of preterm infants experience more psychological distress than mothers of normal full term infants in the immediate postpartum period. Design: Cross sectional prospective study of postpartal women using the Beck Depression Inventory(BDI) and the GHQ-30. Setting: Neonatal ...

  3. CT findings of central nervous system in congenital syphilis infant

    International Nuclear Information System (INIS)

    Yang Cheng; Yang Xinghui; Wang Man

    2005-01-01

    Objective: To investigate the CT features of the central nervous system in congenital syphilis infant. Methods: CT findings of central nervous system in 11 infants with clinically proved congenital syphilis were analyzed retrospectively. Results: CT findings in 10 syphilis neonates were diffuse hypodense lesions in the white matter, with subarachnoid and intra-encephalic hemorrhage in 3 and 1 cases, respectively. One 2-month-old syphilis infant case and 5 cases of follow-up after 45 days to 6 months of treatment demonstrated bilateral widened sulci and cistern with enlarged ventricles in 3 of them. Conclusion: CT findings of the central nervous system in congenital syphilis infant are similar to those of hypoxic-ischemic encephalopathy in neonates, and extra-encephalic hydrocephalus or brain hypogenesis ensues later on. (authors)

  4. Neural systems and hormones mediating attraction to infant and child faces

    Directory of Open Access Journals (Sweden)

    Lizhu eLuo

    2015-07-01

    Full Text Available We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed Kindchenschema or baby schema, and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It next reviews the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in both parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and then neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cutenessin infant faces with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses.Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention andattractionto infant cues in both sexes.

  5. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    Energy Technology Data Exchange (ETDEWEB)

    Akamaguna, A I; Odita, J C; Ugbodaga, C I; Okolo, A A

    1986-01-01

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.).

  6. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    International Nuclear Information System (INIS)

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okolo, A.A.

    1986-01-01

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.)

  7. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  8. Ultrasonographic Measurement of the Diameter of a Normal Bile Duct, Hepatic Artery and Portal Vein in Infants Younger Than 3 Months

    International Nuclear Information System (INIS)

    Kim, Sang Yoon; Lee, Young Seok

    2009-01-01

    This study focused on measuring the diameter of the normal bile duct, hepatic artery and portal vein with high resolution US in infants younger than 3 months, and we wanted to determine the relative ratio of these diameters. Fifty US examinations were performed on infants younger than 3 months and who did not have any clinical or laboratory abnormality associated with the hepatobiliary system. We measured the diameter of the bile duct, hepatic artery and portal vein at the level of the portal vein bifurcation with using 17-5 MHz US and we determined the relative ratios of these diameters. To evaluate the statistical difference in the diameter of the bile duct, hepatic artery and portal vein, we performed one-way ANOVA and Scheffe's multiple comparison test. To determine the relative ratio of these diameters, the ratio of the bile duct to the hepatic artery was defined as the hepatic artery/bile duct, the ratio of the hepatic artery to the portal vein was defined as the portal vein/hepatic artery and the ratio of the bile duct to the portal vein was defined as the portal vein/bile duct. We calculated the averages ± standard deviations of this data (minimum ∼ maximum). In all fifty infants, the bile duct, hepatic artery and portal vein were detectable and measurable. The average diameter of a bile duct was 0.85 ± 0.19 mm (0.56 ∼ 1.47 mm), it was 1.33 ± 0.31 mm (0.90 ∼ 2.37 mm) for the hepatic artery and 3.32 ± 0.68 mm (2.06 ∼ 5.08 mm) for the portal vein. The diameter of these structures was significantly different from each other according to one-way ANOVA (p < 0.001). The average diameter of the hepatic artery was significantly larger than that of the bile duct and the average diameter of the portal vein was significantly larger than that of bile duct and hepatic artery on Scheffe's multiple comparison test. The relative ratio of the bile duct to the hepatic artery was 1.60 ± 0.41 (0.77 ∼ 2.66), that of the hepatic artery to the portal vein was 2

  9. Growth of infants born to HIV-infected women when fed a ...

    African Journals Online (AJOL)

    Growth of infants born to HIV-infected women when fed a ... breast-feeding.1 This must be balanced against the many benefits of ... milk formulas for their newborn infants. Outcome ... Inclusion criteria were normally grown (birth weight 2500–.

  10. Brain Microstructural Correlates of Cognitive Dysfunction in Clinically and Biochemically Normal Hepatitis C Virus Infection.

    Science.gov (United States)

    Kumar, Ajay; Deep, Amar; Gupta, Rakesh K; Atam, Virendra; Mohindra, Samir

    2017-09-01

    This study examined correlates of the brain's neurocognitive performance among clinically and biochemically normal adult patient with hepatitis C virus (HCV). We hypothesized that anti-HCV positive individuals would demonstrate structural brain abnormalities and neurocognitive dysfunction as well as the changes in cell component and extracellular space in the white matter regions of brain in asymptomatic HCV infection by using diffusion tensor tractrography (DTT) metrics. Anti-HCV positive patient ( n  = 40), and healthy controls ( n  = 31), fulfilling inclusion criteria (incidentally detected anti-HCV positive) and able to provide informed consent were screened and recruited for the study. All these subjects and controls underwent subjective assessment of their quality of life related symptoms, neuropsychometric tests (NPT) and magnetic resonance imaging. The patients were subjected to neuroimaging as well as psychological testing. There was no significant difference in basic laboratory parameters in these two groups. Independent t -test reveals significantly lower neuropsychological functioning as compared to healthy control. A significantly decreased FA values and myoinsitol were observed in HCV subjects on sensory, inferior longitudinal fascicules, and STR fiber bundles as compared to healthy control. Bivariate correlation analysis reveals that neuropsychological scores are significantly positive. Our result show that HCV positive individuals would demonstrate structural brain abnormalities and neurocognitive dysfunction as well as the changes in cell component and extracellular space in the white matter regions of brain in asymptomatic HCV infection by using DTT metrics.

  11. Simulation of hydrocephalus condition in infant head

    Science.gov (United States)

    Wijayanti, Erna; Arif, Idam

    2014-03-01

    Hydrocephalus is a condition of an excessive of cerebrospinal fluid in brain. In this paper, we try to simulate the behavior of hydrocephalus conditions in infant head by using a hydro-elastic model which is combined with orthotropic elastic skull and with the addition of suture that divide the skull into two lobes. The model then gives predictions for the case of stenosis aqueduct by varying the cerebral aqueduct diameter, time constant and brain elastic modulus. The hydrocephalus condition which is shown by the significant value of ventricle displacement, as the result shows, is occurred when the aqueduct is as resistant as brain parenchyma for the flow of cerebrospinal fluid. The decrement of brain elastic modulus causes brain parenchyma displacement value approach ventricle displacement value. The smaller of time constant value causes the smaller value of ventricle displacement.

  12. The role of diffusion weighted magnetic resonance imaging in ...

    African Journals Online (AJOL)

    Aim of the work: To demonstrate the role of Diffusion Weighted Imaging and ADC maps in assessing normal progression of the infantile brain myelination. Patients and methods: The present work included 30 infants with normal MRI study of the brain, normal psychomotor development and normal neurological examination.

  13. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Xu Lei; Gao Peiyi; Lin Yan; Han Jiancheng; Xi Zhinong; Shen Hao

    2007-01-01

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  14. Early neurodevelopment in very low birth weight infants with mild intraventricular hemorrhage or those without intraventricular hemorrhage

    Directory of Open Access Journals (Sweden)

    Il Rak Choi

    2012-11-01

    Full Text Available &lt;B&gt;Purpose:&lt;/B&gt; This study aimed to assess early development in very low birth weight (VLBW infants with mild intraventricular hemorrhage (IVH or those without IVH and to identify the perinatal morbidities affecting early neurodevelopmental outcome. &lt;B&gt;Methods:&lt;/B&gt; Bayley Scales of Infant Development-II was used for assessing neurological development in 49 infants with a birth weight &lt;1,500 g and with low grade IVH (?#167;rade II or those without IVH at a corrected age of 12 months. &lt;B&gt;Results:&lt;/B&gt; Among the 49 infants, 19 infants (38.8% showed normal development and 14 (28.6% showed abnormal mental and psychomotor development. Infants with abnormal mental development (n=14 were mostly male and had a longer hospitalization, a higher prevalence of patent ductus arteriosus (PDA and bronchopulmonary dysplasia (BPD, and were under more frequent postnatal systemic steroid treatment compared with infants with normal mental development (n=35, P&lt;0.05. Infants with abnormal psychomotor development (n=29 had a longer hospitalization and more associated PDA compared to infants with normal psychomotor development (n=20, P&lt;0.05. Infants with abnormal mental and psychomotor development were mostly male and had a longer hospitalization and a higher prevalence of PDA and BPD compared to infants with normal mental and psychomotor development (n=19, P&lt;0.05. Using multiple logistic regression analysis, a longer duration of hospitalization and male gender were found to be significant risk factors. &lt;B&gt;Conclusion:&lt;/B&gt; Approximately 62% of VLBW infants with low grade IVH or those without IVH had impaired early development.

  15. The clinical utility of MR diffusion tensor imaging and spatially normalized PET to evaluate traumatic brain injury patients with memory and cognitive impairments

    International Nuclear Information System (INIS)

    Okumura, Ayumi; Yasokawa, Yuuto; Nakayama, Noriyuki; Miwa, Kazuhiro; Shinoda, Jun; Iwama, Toru

    2005-01-01

    We detected and compared abnormal brain areas using both MR diffusion tensor imaging (DTI) and easy Z score imaging system (eZIS) of fluorodeoxyglucose (FDG)-PET for traumatic brain injury patients with memory and cognitive impairments. Twenty normal subjects and eighteen diffuse axonal injury patients with memory and cognitive impairments were studied with DTI and eZIS of 18 F-FDG-PET. DTI contained fractional anisotorophy (FA) analysis and the tractography for the corpus callosum. After PET imaging was performed, statistical analysis using eZIS was undergone with followed processing steps, including smoothing, normalization and z transformation with respect to normal database. Z score map was superimposed on 3D MRI brain. Group analysis was performed using statistical parametric mapping (SPM). In diffuse axonal injury patients, the decline of FA was observed around the corpus callosum in comparison with normal subjects and the reduction of glucose metabolism was shown in the cingulated association. These results suggest that the reduction of metabolism within the cingulated cortex indicated deprived neuronal activation caused by the impaired neuronal connectivity that was revealed with DTI. Furthermore, the metabolic abnormalities within the cingulated cortex may be responsible for memory and cognitive impairments. DTI and spatially normalized PET have a role in neuroimaging interpretation for patients with memory and cognition impairments be cause its 3D better visualization allows objective and systematic investigation. (author)

  16. Transport, monitoring, and successful brain MR imaging in unsedated neonates

    International Nuclear Information System (INIS)

    Mathur, Amit M.; Neil, Jeffrey J.; McKinstry, Robert C.; Inder, Terrie E.

    2008-01-01

    Neonatal cerebral MR imaging is a sensitive technique for evaluating brain injury in the term and preterm infant. In term encephalopathic infants, MR imaging reliably detects not only the pattern of brain injury but might also provide clues about the timing of injury. In premature infants, MR imaging has surpassed US in the detection of white matter injury, a common lesion in this population. Concerns remain about the safety and transport of sedated neonates for MR examination to radiology suites, which are usually located at a distance from neonatal intensive care units. We present our own institutional experience and guidelines used to optimize the performance of cerebral MR examinations in neonates without sedation or anesthesia. (orig.)

  17. Digit-Sucking Among Ibo Infants In Eastern Nigeria | Ibekwe ...

    African Journals Online (AJOL)

    Background: Digit-sucking is a common habit among infants and toddlers, it is a normal adaptive process and attempts at stopping are discouraged before 2-4 years of age. Prevalence varies along racial lines. This study is intended to document the prevalence and pattern of this habit among Ibo infants and also to ...

  18. Analysis of infant cry through weighted linear prediction cepstral coefficients and Probabilistic Neural Network.

    Science.gov (United States)

    Hariharan, M; Chee, Lim Sin; Yaacob, Sazali

    2012-06-01

    Acoustic analysis of infant cry signals has been proven to be an excellent tool in the area of automatic detection of pathological status of an infant. This paper investigates the application of parameter weighting for linear prediction cepstral coefficients (LPCCs) to provide the robust representation of infant cry signals. Three classes of infant cry signals were considered such as normal cry signals, cry signals from deaf babies and babies with asphyxia. A Probabilistic Neural Network (PNN) is suggested to classify the infant cry signals into normal and pathological cries. PNN is trained with different spread factor or smoothing parameter to obtain better classification accuracy. The experimental results demonstrate that the suggested features and classification algorithms give very promising classification accuracy of above 98% and it expounds that the suggested method can be used to help medical professionals for diagnosing pathological status of an infant from cry signals.

  19. Perinatal brain damage : The term infant

    NARCIS (Netherlands)

    Hagberg, Henrik; David Edwards, A.; Groenendaal, Floris

    2016-01-01

    Perinatal brain injury at term is common and often manifests with neonatal encephalopathy including seizures. The most common aetiologies are hypoxic–ischaemic encephalopathy, intracranial haemorrhage and neonatal stroke. Besides clinical and biochemical assessment the diagnostic evaluation rely

  20. Brain structural correlates of reward sensitivity and impulsivity in adolescents with normal and excess weight.

    Directory of Open Access Journals (Sweden)

    Laura Moreno-López

    Full Text Available INTRODUCTION: Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups. METHODS: Fifty-two adolescents (16 with normal weight and 36 with excess weight were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ, the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM was used to assess possible between-group differences in regional gray matter (GM and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices and motivation/impulse control (hippocampus, prefrontal cortex. RESULTS: Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents. CONCLUSION: Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.

  1. CT findings in neonatal hypothermia

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, H.; Laufer, L.; Berginer, J.; Hertzanu, Y. [Department of Radiology, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P. O. Box 151, Beer-Sheva 84101 (Israel); Hershkowitz, E.; Berenstein, T.; Sofer, S. [Pediatric Intensive Care Unit, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Maor, E. [Department of Pathology, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    1998-06-01

    Background. Newborn infants are particularly prone to hypothermia, a condition with a high mortality. Objective. To study the CT brain patterns in infants with hypothermia and neurological symptoms. Materials and methods. We reviewed the brain CT of nine infants with neonatal hypothermia, multiple organ failure, seizures and coma. Results. Two infants had normal CT scans, acutely and at follow-up, and were clinically normal at follow-up. In seven infants, CT showed diffuse cerebral oedema, with reversal of the normal density relationship between grey and white matter and a relative increased density of the thalami, brainstem and cerebellum - the `reversal sign`. In six surviving infants with severe developmental delay, follow-up CT revealed cerebral atrophy with multicystic encephalomalacia. Conclusions. The `reversal sign` has been described in the abused child, birth asphyxia and anoxia due to drowning. Neonatal hypothermia is offered as a further cause. (orig.) With 6 figs., 1 tab., 13 refs.

  2. Individual differences in object permanence performance at 8 months: locomotor experience and brain electrical activity.

    Science.gov (United States)

    Bell, M A; Fox, N A

    1997-12-01

    This work was designed to investigate individual differences in hands-and-knees crawling and frontal brain electrical activity with respect to object permanence performance in 76 eight-month-old infants. Four groups of infants (one prelocomotor and 3 with varying lengths of hands-and-knees crawling experience) were tested on an object permanence scale in a research design similar to that used by Kermoian and Campos (1988). In addition, baseline EEG was recorded and used as an indicator of brain development, as in the Bell and Fox (1992) longitudinal study. Individual differences in frontal and occipital EEG power and in locomotor experience were associated with performance on the object permanence task. Infants successful at A-not-B exhibited greater frontal EEG power and greater occipital EEG power than unsuccessful infants. In contrast to Kermoian and Campos (1988), who noted that long-term crawling experience was associated with higher performance on an object permanence scale, infants in this study with any amount of hands and knees crawling experience performed at a higher level on the object permanence scale than prelocomotor infants. There was no interaction among brain electrical activity, locomotor experience, and object permanence performance. These data highlight the value of electrophysiological research and the need for a brain-behavior model of object permanence performance that incorporates both electrophysiological and behavioral factors.

  3. Patterned feeding experience for preterm infants: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Pickler, Rita H; Wetzel, Paul A; Meinzen-Derr, Jareen; Tubbs-Cooley, Heather L; Moore, Margo

    2015-06-04

    Neurobehavioral disabilities occur in 5-15% of preterm infants with an estimated 50-70% of very low birth weight preterm infants experiencing later dysfunction, including cognitive, behavioral, and social delays that often persist into adulthood. Factors implicated in poor neurobehavioral and developmental outcomes are hospitalization in the neonatal intensive care unit (NICU) and inconsistent caregiving patterns. Although much underlying brain damage occurs in utero or shortly after birth, neuroprotective strategies can stop lesions from progressing, particularly when these strategies are used during the most sensitive periods of neural plasticity occurring months before term age. The purpose of this randomized trial is to test the effect of a patterned feeding experience on preterm infants' neurobehavioral organization and development, cognitive function, and clinical outcomes. This trial uses an experimental, longitudinal, 2-group design with 120 preterm infants. Infants are enrolled within the first week of life and randomized to an experimental group receiving a patterned feeding experience from the first gavage feeding through discharge or to a control group receiving usual feeding care experience. The intervention involves a continuity of tactile experiences associated with feeding to train and build neuronal networks supportive of normal infant feeding experience. Primary outcomes are neurobehavioral organization as measured by Neurobehavioral Assessment of the Preterm Infant at 3 time points: the transition to oral feedings, NICU discharge, and 2 months corrected age. Secondary aims are cognitive function measured using the Bayley Scales of Infant and Toddler Development, Third Edition at 6 months corrected age, neurobehavioral development (sucking organization, feeding performance, and heart rate variability), and clinical outcomes (length of NICU stay and time to full oral feeding). The potential effects of demographic and biobehavioral factors

  4. Normal CT in infants and children

    Energy Technology Data Exchange (ETDEWEB)

    Takao, T; Okuno, T; Ito, M; Konishi, Y; Yoshioka, M [Kyoto Univ. (Japan). Faculty of Medicine

    1980-10-01

    There have been several reports as to normal CT in children. However, they included children with convulsions as normal subjects. In our experience, children with convulsions have an enlargement of the subdural space in the frontal region. Therefore, we studied CT in children without convulsions. Of the 10,000 patients examined with EMI 1000 or EMI 1010 at Kyoto Univ. Hospital from 1976 to 1979, 110 children could be classified into the following types according to their symptoms: 1) Type-1 head injury, without abnormalities in CT resulting from this injury, 2) non-migraining headaches, and 3) others without CT abnormalities who were routinely examined. Previous studies have shown that the enlargement of the subdural space in the frontal region was not abnormal under one year. However, the present study has shown that it was not dilated in children without convulsions. We stressed the usefulness of our newly calculated basal cistern index, because the SD was small and could be readily indentified (this index was under 0.29 in most cases; their SD's were 0.04 in those under one year and 0.02 over one year). The other data were not so different from those of previous studies.

  5. 7-Tesla Susceptibility-Weighted Imaging to Assess the Effects of Radiotherapy on Normal-Appearing Brain in Patients With Glioma

    International Nuclear Information System (INIS)

    Lupo, Janine M.; Chuang, Cynthia F.; Chang, Susan M.; Barani, Igor J.; Jimenez, Bert; Hess, Christopher P.; Nelson, Sarah J.

    2012-01-01

    Purpose: To evaluate the intermediate- and long-term imaging manifestations of radiotherapy on normal-appearing brain tissue in patients with treated gliomas using 7T susceptibility-weighted imaging (SWI). Methods and Materials: SWI was performed on 25 patients with stable gliomas on a 7 Tesla magnet. Microbleeds were identified as discrete foci of susceptibility that did not correspond to vessels. The number of microbleeds was counted within and outside of the T2-hyperintense lesion. For 3 patients, radiation dosimetry maps were reconstructed and fused with the 7T SWI data. Results: Multiple foci of susceptibility consistent with microhemorrhages were observed in patients 2 years after chemoradiation. These lesions were not present in patients who were not irradiated. The prevalence of microhemorrhages increased with the time since completion of radiotherapy, and these lesions often extended outside the boundaries of the initial high-dose volume and into the contralateral hemisphere. Conclusions: High-field SWI has potential for visualizing the appearance of microbleeds associated with long-term effects of radiotherapy on brain tissue. The ability to visualize these lesions in normal-appearing brain tissue may be important in further understanding the utility of this treatment in patients with longer survival.

  6. Restoring the basal ganglia in Parkinson's disease to normal via multi-input phase-shifted deep brain stimulation.

    Science.gov (United States)

    Agarwal, Rahul; Sarma, Sridevi V

    2010-01-01

    Deep brain stimulation (DBS) injects a high frequency current that effectively disables the diseased basal ganglia (BG) circuit in Parkinson's disease (PD) patients, leading to a reversal of motor symptoms. Though therapeutic, high frequency stimulation consumes significant power forcing frequent surgical battery replacements and causing widespread influence into other brain areas which may lead to adverse side effects. In this paper, we conducted a rigorous study to assess whether low frequency signals can restore behavior in PD patients by restoring neural activity in the BG to the normal state. We used a biophysical-based model of BG nuclei and motor thalamus whose parameters can be set to simulate the normal state and the PD state with and without DBS. We administered pulse train DBS waveforms to the subthalamic nucleus (STN) with frequencies ranging from 1-150Hz. For each DBS frequency, we computed statistics on the simulated neural activity to assess whether it is restored to the normal state. In particular, we searched for DBS waveforms that suppress pathological bursting, oscillations, correlations and synchronization prevalent in the PD state and that enable thalamic cells to relay cortical inputs reliably. We found that none of the tested waveforms restores neural activity to the normal state. However, our simulations led us to construct a novel DBS strategy involving low frequency multi-input phaseshifted DBS to be administered into the STN. This strategy successfully suppressed all pathological symptoms in the BG in addition to enabling thalamic cells to relay cortical inputs reliably.

  7. Rough Sets and Stomped Normal Distribution for Simultaneous Segmentation and Bias Field Correction in Brain MR Images.

    Science.gov (United States)

    Banerjee, Abhirup; Maji, Pradipta

    2015-12-01

    The segmentation of brain MR images into different tissue classes is an important task for automatic image analysis technique, particularly due to the presence of intensity inhomogeneity artifact in MR images. In this regard, this paper presents a novel approach for simultaneous segmentation and bias field correction in brain MR images. It integrates judiciously the concept of rough sets and the merit of a novel probability distribution, called stomped normal (SN) distribution. The intensity distribution of a tissue class is represented by SN distribution, where each tissue class consists of a crisp lower approximation and a probabilistic boundary region. The intensity distribution of brain MR image is modeled as a mixture of finite number of SN distributions and one uniform distribution. The proposed method incorporates both the expectation-maximization and hidden Markov random field frameworks to provide an accurate and robust segmentation. The performance of the proposed approach, along with a comparison with related methods, is demonstrated on a set of synthetic and real brain MR images for different bias fields and noise levels.

  8. Abnormal infant neurodevelopment predicts schizophrenia spectrum disorders.

    Science.gov (United States)

    Fish, Barbara; Kendler, Kenneth S

    2005-06-01

    The aim of this study was to detect infants who carry a schizophrenic genotype and study the development of schizophrenia spectrum disorders (SZSD) from birth. In the 1940s, Bender described uneven maturation in childhood schizophrenics and in 1952 found this in the infant histories of 6 schizophrenic children. We tested a possible index for defective neural integration in infants termed "pandysmaturation" (PDM). This required retarded cranial growth plus retarded and erratic gross motor development on a single exam. Twelve offspring of hospitalized schizophrenic mothers and 12 infants in a "Well Baby Clinic," were examined 10 times between birth and 2 years of age. Psychiatric interviews and psychological testing were done at 10, 15, and 22 years of age, plus follow-up at 27-35 years of age. Six infants had PDM at 2, 6, or 13 months of age. Five individuals have been blindly diagnosed (by KSK) as having lifetime SZSD; all 5 had PDM before 8 months. Chi-square one-tailed tests confirmed the predictions: (1) PDM was related to subsequent SZSD (chi(2) = 11.43; p < 0.0005); (2) schizophrenic mothers had more infants with PDM than nonschizophrenic mothers (chi(2) = 3.28; p < 0.05); and (3) schizophrenic mothers had more SZSD offspring than nonschizophrenic mothers (chi(2) = 6.39; p < 0.0125). These first behavioral observations of aberrant neurodevelopment in pre- SZSD infants support the evidence of early neurodevelopmental disorder seen in studies of brain pathology in SZSD adults.

  9. Perfusion impairments in children with reactive attachment disorder (RAD) on 99mTc-ECD brain SPECT: comparison with MR findings

    International Nuclear Information System (INIS)

    Yoo, Y. H.; Sin, E. J.; Cheon, K. A.; Yoon, M. J.; Lee, J. D.; Jeon, T. J.

    2002-01-01

    This study aimed to reveal that severe disturbance of attachment relationship with primary care-giver can affect functional and anatomical brain development by measuring cerebral perfusion on 99m Tc-ECD brain SPECT and correlative MRI. We included 18 children aged 31 to 76 months who met the diagnostic criteria of RAD as defined in DSM-IV and ICD-10 and SSP and CARS. 99m Tc-ECD SPECT was performed using CERASPECT. MRI was performed in all patients. SPECT data were visually assessed. 15 of 18 children had abnormal perfusion on SPECT, revealing decreased perfusion of Lt.thalamus (7/15) and Rt.thalamus (3/15), and bilateral thalami (5/15). Perfusion of basal ganglia was decreased in 8 children. Decreased perfusion of Lt. parietal area was seen in 2. Whereas, all patients had normal MR findings. Perfusion abnormalities involving thalamus, BG in most children with RAD were found in this study. These results suggest that brain development of infant could be impeded by severe pathologic care and early nurturing environment would be important for normal development

  10. "Whatever average is:" understanding African-American mothers' perceptions of infant weight, growth, and health.

    Science.gov (United States)

    Thompson, Amanda L; Adair, Linda; Bentley, Margaret E

    2014-06-01

    Biomedical researchers have raised concerns that mothers' inability to recognize infant and toddler overweight poses a barrier to stemming increasing rates of overweight and obesity, particularly among low-income or minority mothers. Little anthropological research has examined the sociocultural, economic or structural factors shaping maternal perceptions of infant and toddler size or addressed biomedical depictions of maternal misperception as a "socio-cultural problem." We use qualitative and quantitative data from 237 low-income, African-American mothers to explore how they define 'normal' infant growth and infant overweight. Our quantitative results document that mothers' perceptions of infant size change with infant age, are sensitive to the size of other infants in the community, and are associated with concerns over health and appetite. Qualitative analysis documents that mothers are concerned with their children's weight status and assess size in relation to their infants' cues, local and societal norms of appropriate size, interactions with biomedicine, and concerns about infant health and sufficiency. These findings suggest that mothers use multiple models to interpret and respond to child weight. An anthropological focus on the complex social and structural factors shaping what is considered 'normal' and 'abnormal' infant weight is critical for shaping appropriate and successful interventions.

  11. Refining Stimulus Parameters in Assessing Infant Speech Perception Using Visual Reinforcement Infant Speech Discrimination: Sensation Level.

    Science.gov (United States)

    Uhler, Kristin M; Baca, Rosalinda; Dudas, Emily; Fredrickson, Tammy

    2015-01-01

    Speech perception measures have long been considered an integral piece of the audiological assessment battery. Currently, a prelinguistic, standardized measure of speech perception is missing in the clinical assessment battery for infants and young toddlers. Such a measure would allow systematic assessment of speech perception abilities of infants as well as the potential to investigate the impact early identification of hearing loss and early fitting of amplification have on the auditory pathways. To investigate the impact of sensation level (SL) on the ability of infants with normal hearing (NH) to discriminate /a-i/ and /ba-da/ and to determine if performance on the two contrasts are significantly different in predicting the discrimination criterion. The design was based on a survival analysis model for event occurrence and a repeated measures logistic model for binary outcomes. The outcome for survival analysis was the minimum SL for criterion and the outcome for the logistic regression model was the presence/absence of achieving the criterion. Criterion achievement was designated when an infant's proportion correct score was >0.75 on the discrimination performance task. Twenty-two infants with NH sensitivity participated in this study. There were 9 males and 13 females, aged 6-14 mo. Testing took place over two to three sessions. The first session consisted of a hearing test, threshold assessment of the two speech sounds (/a/ and /i/), and if time and attention allowed, visual reinforcement infant speech discrimination (VRISD). The second session consisted of VRISD assessment for the two test contrasts (/a-i/ and /ba-da/). The presentation level started at 50 dBA. If the infant was unable to successfully achieve criterion (>0.75) at 50 dBA, the presentation level was increased to 70 dBA followed by 60 dBA. Data examination included an event analysis, which provided the probability of criterion distribution across SL. The second stage of the analysis was a

  12. "Did you call me?" 5-month-old infants own name guides their attention.

    Directory of Open Access Journals (Sweden)

    Eugenio Parise

    2010-12-01

    Full Text Available An infant's own name is a unique social cue. Infants are sensitive to their own name by 4 months of age, but whether they use their names as a social cue is unknown. Electroencephalogram (EEG was measured as infants heard their own name or stranger's names and while looking at novel objects. Event related brain potentials (ERPs in response to names revealed that infants differentiate their own name from stranger names from the first phoneme. The amplitude of the ERPs to objects indicated that infants attended more to objects after hearing their own names compared to another name. Thus, by 5 months of age infants not only detect their name, but also use it as a social cue to guide their attention to events and objects in the world.

  13. "Did you call me?" 5-month-old infants own name guides their attention.

    Science.gov (United States)

    Parise, Eugenio; Friederici, Angela D; Striano, Tricia

    2010-12-03

    An infant's own name is a unique social cue. Infants are sensitive to their own name by 4 months of age, but whether they use their names as a social cue is unknown. Electroencephalogram (EEG) was measured as infants heard their own name or stranger's names and while looking at novel objects. Event related brain potentials (ERPs) in response to names revealed that infants differentiate their own name from stranger names from the first phoneme. The amplitude of the ERPs to objects indicated that infants attended more to objects after hearing their own names compared to another name. Thus, by 5 months of age infants not only detect their name, but also use it as a social cue to guide their attention to events and objects in the world.

  14. As tears go by : Baby tears trigger more brain activity than adult tears in nulliparous women

    NARCIS (Netherlands)

    Hendricx-Riem, M.M.E.; De Carli, P.; van IJzendoorn, M.H.; Vingerhoets, A.J.J.M.; Bakermans-Kranenburg, M.J.

    2017-01-01

    The current functional magnetic resonance imaging study examines brain activity during the perception of infant and adult tears. Infant tears evoke stronger responses in the visual cortex than adult tears, indicating that infant tears are highly salient. In addition, our study shows that infant

  15. Brain tumors and CT scan in infants and children, (1). The impact on pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, S; Velasco, J M [Northwestern Univ., Chicago, IL (USA). Medical School

    1980-10-01

    The dramatic change in the neuroradiological procedures have been noted after CT scan was introduced in the last several years. Remarkable decreasing numbers of angiographic, pneumoencephalographic and other invasive neuroradiologic studies as well as nuclear brain scan were also found in the pediatric neuroradiology. The authors analyzed the total numbers of these studies performed in the last several years in pediatric neurological/neurosurgical practice in the light of the impact of CT scan especially in the diagnostic procedures and treatments of brain tumor in children. Although the number of these procedures decreased up to 49% in plain skull X-ray, 54% in cerebral angiography, 70% in pneumoencephalography/ventriculography and 79% in nuclear brain scan after CT scan was installed in our results, it is extremely important to renew understanding of those characteristics in each special procedures. Cerebral angiography as well as pneumoencephalography may give the surgeon more precise ideas of the anatomical relationship between the lesion and other normal structures, especially in the posterior fossa tumor in which CT scan occassionally demonstrates only a gross finding. A case with false negative result and another case with a complicated anatomical structure in CT scan were presented. The significance of cerebral angiography and other invasive studies in the diagnosis and follow up of brain tumor in CT scan were discussed.

  16. The CT (Hounsfield unit) number of brain tissue in healthy infants. A new reliable method for detection of possible degenerative disease.

    Science.gov (United States)

    Boris, P; Bundgaard, F; Olsen, A

    1987-01-01

    It is difficult to correlate CT Hounsfield unit (H. U.) numbers from one CT investigation to another and from one CT scanner to another, especially when dealing with small changes in the brain substance, as in degenerative brain diseases in children. By subtracting the mean value of cerebrospinal fluid (CSF) from the mean value of grey and white matter, it is possible to remove most of the errors due, for example, to maladjustments, short and long-term drift, X-ray fan, and detector asymmetry. Measurements of white and grey matter using these methods showed CT H. U. numbers changing from 15 H. U. to 22 H. U. in white matter and 23 H. U. to 30 H. U. in grey matter in 86 healthy infants aged 0-5 years. In all measurements, the difference between grey and white matter was exactly 8 H. U. The method has proven to be highly accurate and reproducible.

  17. Clinical significance of I-123 IMP brain SPECT in children with brain diseases

    International Nuclear Information System (INIS)

    Takishima, Teruo; Machida, Kikuo; Honda, Norinari; Mamiya, Toshio; Takahashi, Taku; Kamano, Tsuyoshi; Hasegawa, Noriko

    1990-01-01

    Single photon emission computed tomography (SPECT) of the brain using N-isopropyl p-I-123-iodoamphetamine (I-123 IMP) was performed in 43 children with suspected brain diseases. Forty-three children (25 males and 18 females), with an age range of 24 days-15 years (mean: 6.6 years), were included in the study. Six patients were subsequently diagnosed as normal. Early SPECT of the brain was performed 30 minutes after intravenous administration of 74-111 MBq (2-3 mCi) I-123 IMP using a rotating gamma camera equipped with a 30-degree slant hole and medium energy collimator. Transverse images were reconstructed by Shepp-Logan filtered back projection method with attenuation correction after spatial filtering using an 8th order Butterworth-Wiener filter. Findings of I-123 IMP SPECT were compared with those of X-ray computed tomography (CT) and electroencephalography (EEG). The results showed that in I-123 IMP SPECT, abnormality was found in 30 out of 37 children with brain diseases. The incidence of abnormal findings in the 37 patients was 81% in I-123 IMP SPECT, 61% in X-ray CT, and 78% in EEG; in both cryptogenic and secondary epilepsy, the incidence of abnormality was higher in I-123 IMP SPECT than in X-ray CT. (70% and 94% vs 50% and 81% respectively), and epileptic foci detected by EEG did not correspond with defects found using I-123 IMP SPECT in 27% of the patients; and in asphyxiated infants, a high incidence of abnormality was observed on both I-123 IMP SPECT (86%) and X-ray CT (86%). In conclusion, I-123 IMP SPECT is a clinically useful examination in children with brain disease. (author)

  18. Prognosis of psychomotor and mental development in premature infants by early cranial ultrasound.

    Science.gov (United States)

    Duan, Yang; Sun, Fu-qiang; Li, Yue-qin; Que, Sheng-shun; Yang, Su-yan; Xu, Wen-jing; Yu, Wen-hong; Chen, Jun-hua; Lu, Ya-jie; Li, Xin

    2015-04-09

    It is of high incidence of brain injuries in premature infants, so it is necessary to diagnose and treat the brain injury early for neonatal clinical practice. We are aimed to investigate the relationship between early postnatal cranial ultrasonography and psychomotor and mental development in prematrue infants at the age of 12 months. Two-hundred and eight premature infants were selected and underwent follow-up from January, 2007 to November, 2012. Cranial ultrasonography was performed on them. The developmental outcomes of these premature infants at the age of 12 months were assessed by the psychomotor developmental index (PDI) scale and mental development index (MDI). The relationship between ultrasonic gray-scale value and PDI and MDI was analyzed. The worse prognosis for psychomotor and mental development was associated with the gestational age, Apgar score(1 min), gender, chorioamnionitis, duration of mechanical ventilation and duration of mechanic ventilation. The differences between the prognosis of psychomotor and mental development, and peri-intraventricular hemorrhage (PIVH) and periventricular white matter damage (PWMD), were statistically significant (Ppsychomotor development and mental development (Ppsychomotor and mental development for premature infants. The higher grade of PIVH and PWMD was associated with the worse prognosis of psychomotor and mental development.

  19. Presentation of 60 Cases of Infantile Spasms Based on Etiology, Clinical Manifestation EEG and Brain CT Scan in Mofid Children Hospital

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Taghdiri

    2002-06-01

    Full Text Available Objective: Among different epileptic syndrome infantile spasm is one of the most malignant forms which cause irrepairable brain damage in the child. Consequently the longer this type of epilepsy lasts the more harmful results will follow. The majority of children with infantile spasm are younger than one year age and only 5 percent of affected children are in the age group above one year. Materials & Methods: This descriptive study was done on 60 (36 male and 24 female infants 2-24 months age with clinical examination, observation, interview and questionnaire  in pediatric neurology department of Mofid children hospital during two years. Results: From 60 patients (36 male and 24 female, 48 case (80% symptomatic and 12 case (20% cryptogenic and idiopathic. Based on clinical manifestation 35 case (58% were flexor type. 6 case (10% extensor and 19 cases (32% mixed. In EEG hypsarrhythmia in all patients was seen. Brain CT scan in 11 cases showed brain atrophy and in remainder was normal. Conclusion: In our study etiologically symptomatic and clinically flexor type was more common. Hysparrhythmia in all patients was seen and brain CT scan in 80% of patients was normal.

  20. Early MRI in term infants with perinatal hypoxic–ischaemic brain injury: Interobserver agreement and MRI predictors of outcome at 2 years

    International Nuclear Information System (INIS)

    Goergen, S.K.; Ang, H.; Wong, F.; Carse, E.A.; Charlton, M.; Evans, R.; Whiteley, G.; Clark, J.; Shipp, D.; Jolley, D.; Paul, E.; Cheong, J.L.Y.

    2014-01-01

    Aim: To compare diffusion-weighted imaging (DWI) and non-DWI magnetic resonance imaging (MRI), proton MR spectroscopy (1H-MRS), and clinical biomarkers for prediction of 2 year developmental outcome in term infants with perinatal hypoxic–ischaemic encephalopathy (HIE). Materials and methods: Nineteen infants ≥36 weeks gestation with HIE were recruited and MRI performed day 3–7 (mean = 5). MRI was scored independently by three radiologists using a standardized scoring system. Lactate-to-N-acetylaspartate ratio (Lac:NAA) in the lentiform nucleus was calculated. Developmental assessment was performed at 2 years using the Bayley Scales of Infant and Toddler Development (BSID-III). Interobserver agreement about abnormality in 10 brain regions was measured. Univariate analysis was performed to determine variables associated with adverse outcome (i.e., death or Bayley score for any domain <70). Results: Good interobserver agreement (kappa = 0.61–0.69) on scores for DWI was obtained for the cortex, putamen, and brainstem, but not for any region on non-DWI. A significant association was found between outcome and Lac:NAA (p < 0.003) and DWI scores for lentiform nucleus, thalamus, cortex, posterior limb of the internal capsule (PLIC), and paracentral white matter (p = 0.001–0.013), but for non-DWI score only in the vermis or brainstem. A combination of Lac:NAA ≥0.25 or DWI/apparent diffusion coefficient (ADC) signal abnormality in the PLIC had 100% specificity and sensitivity for poor outcome. Conclusion: Interobserver agreement for non-DWI performed during the first week is poor. Agreement by three radiologists about the presence of abnormal signal within the PLIC on ADC/DWI images or elevation of Lac:NAA above 0.25 improved sensitivity without reducing the prognostic specificity of MRS in the 19 patients, but this requires validation in a larger group of infants with HIE who have been treated with hypothermia