WorldWideScience

Sample records for normal equation systems

  1. On a computer implementation of the block Gauss–Seidel method for normal systems of equations

    OpenAIRE

    Alexander I. Zhdanov; Ekaterina Yu. Bogdanova

    2016-01-01

    This article focuses on the modification of the block option Gauss-Seidel method for normal systems of equations, which is a sufficiently effective method of solving generally overdetermined, systems of linear algebraic equations of high dimensionality. The main disadvantage of methods based on normal equations systems is the fact that the condition number of the normal system is equal to the square of the condition number of the original problem. This fact has a negative impact on the rate o...

  2. On a computer implementation of the block Gauss–Seidel method for normal systems of equations

    Directory of Open Access Journals (Sweden)

    Alexander I. Zhdanov

    2016-12-01

    Full Text Available This article focuses on the modification of the block option Gauss-Seidel method for normal systems of equations, which is a sufficiently effective method of solving generally overdetermined, systems of linear algebraic equations of high dimensionality. The main disadvantage of methods based on normal equations systems is the fact that the condition number of the normal system is equal to the square of the condition number of the original problem. This fact has a negative impact on the rate of convergence of iterative methods based on normal equations systems. To increase the speed of convergence of iterative methods based on normal equations systems, for solving ill-conditioned problems currently different preconditioners options are used that reduce the condition number of the original system of equations. However, universal preconditioner for all applications does not exist. One of the effective approaches that improve the speed of convergence of the iterative Gauss–Seidel method for normal systems of equations, is to use its version of the block. The disadvantage of the block Gauss–Seidel method for production systems is the fact that it is necessary to calculate the pseudoinverse matrix for each iteration. We know that finding the pseudoinverse is a difficult computational procedure. In this paper, we propose a procedure to replace the matrix pseudo-solutions to the problem of normal systems of equations by Cholesky. Normal equations arising at each iteration of Gauss–Seidel method, have a relatively low dimension compared to the original system. The results of numerical experimentation demonstrating the effectiveness of the proposed approach are given.

  3. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Directory of Open Access Journals (Sweden)

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  4. Solitary-wave families of the Ostrovsky equation: An approach via reversible systems theory and normal forms

    International Nuclear Information System (INIS)

    Roy Choudhury, S.

    2007-01-01

    The Ostrovsky equation is an important canonical model for the unidirectional propagation of weakly nonlinear long surface and internal waves in a rotating, inviscid and incompressible fluid. Limited functional analytic results exist for the occurrence of one family of solitary-wave solutions of this equation, as well as their approach to the well-known solitons of the famous Korteweg-de Vries equation in the limit as the rotation becomes vanishingly small. Since solitary-wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves and its reduction to the KdV limit, we find a second family of multihumped (or N-pulse) solutions, as well as a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The second and third families of solutions occur in regions of parameter space distinct from the known solitary-wave solutions and are thus entirely new. Directions for future work are also mentioned

  5. The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels

    Energy Technology Data Exchange (ETDEWEB)

    Bobodzhanov, A A; Safonov, V F [National Research University " Moscow Power Engineering Institute" , Moscow (Russian Federation)

    2013-07-31

    The paper deals with extending the Lomov regularization method to classes of singularly perturbed Fredholm-type integro-differential systems, which have not so far been studied. In these the limiting operator is discretely noninvertible. Such systems are commonly known as problems with unstable spectrum. Separating out the essential singularities in the solutions to these problems presents great difficulties. The principal one is to give an adequate description of the singularities induced by 'instability points' of the spectrum. A methodology for separating singularities by using normal forms is developed. It is applied to the above type of systems and is substantiated in these systems. Bibliography: 10 titles.

  6. Nevanlinna theory, normal families, and algebraic differential equations

    CERN Document Server

    Steinmetz, Norbert

    2017-01-01

    This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers wor...

  7. Normal solutions of the Boltzmann equation with small Knudsen number

    International Nuclear Information System (INIS)

    Ding, E.J.; Huang, Z.Q.

    1986-01-01

    A singular perturbation method is used to find the normal solutions of the Boltzmann equation with small Knudsen number. It is proved that the secular terms may be removed by improving the Hilbert expansion and the Enskog expansion

  8. Adjustment technique without explicit formation of normal equations /conjugate gradient method/

    Science.gov (United States)

    Saxena, N. K.

    1974-01-01

    For a simultaneous adjustment of a large geodetic triangulation system, a semiiterative technique is modified and used successfully. In this semiiterative technique, known as the conjugate gradient (CG) method, original observation equations are used, and thus the explicit formation of normal equations is avoided, 'huge' computer storage space being saved in the case of triangulation systems. This method is suitable even for very poorly conditioned systems where solution is obtained only after more iterations. A detailed study of the CG method for its application to large geodetic triangulation systems was done that also considered constraint equations with observation equations. It was programmed and tested on systems as small as two unknowns and three equations up to those as large as 804 unknowns and 1397 equations. When real data (573 unknowns, 965 equations) from a 1858-km-long triangulation system were used, a solution vector accurate to four decimal places was obtained in 2.96 min after 1171 iterations (i.e., 2.0 times the number of unknowns).

  9. Soliton equations and Hamiltonian systems

    CERN Document Server

    Dickey, L A

    2002-01-01

    The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau

  10. Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations

    Science.gov (United States)

    DeVille, R. E. Lee; Harkin, Anthony; Holzer, Matt; Josić, Krešimir; Kaper, Tasso J.

    2008-06-01

    For singular perturbation problems, the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. E. 49 (1994) 4502-4511] has been shown to be an effective general approach for deriving reduced or amplitude equations that govern the long time dynamics of the system. It has been applied to a variety of problems traditionally analyzed using disparate methods, including the method of multiple scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, the method of averaging, and others. In this article, we show how the RG method may be used to generate normal forms for large classes of ordinary differential equations. First, we apply the RG method to systems with autonomous perturbations, and we show that the reduced or amplitude equations generated by the RG method are equivalent to the classical Poincaré-Birkhoff normal forms for these systems up to and including terms of O(ɛ2), where ɛ is the perturbation parameter. This analysis establishes our approach and generalizes to higher order. Second, we apply the RG method to systems with nonautonomous perturbations, and we show that the reduced or amplitude equations so generated constitute time-asymptotic normal forms, which are based on KBM averages. Moreover, for both classes of problems, we show that the main coordinate changes are equivalent, up to translations between the spaces in which they are defined. In this manner, our results show that the RG method offers a new approach for deriving normal forms for nonautonomous systems, and it offers advantages since one can typically more readily identify resonant terms from naive perturbation expansions than from the nonautonomous vector fields themselves. Finally, we establish how well the solution to the RG equations approximates the solution of the original equations on time scales of O(1/ɛ).

  11. Investigating Equations Used to Design a Very Small Normal-Mode Helical Antenna in Free Space

    Directory of Open Access Journals (Sweden)

    Dang Tien Dung

    2018-01-01

    Full Text Available A normal-mode helical antenna (NMHA has been applied in some small devices such as tire pressure monitoring systems (TPMS and radio frequency identification (RFID tags. Previously, electrical characteristics of NMHA were obtained through electromagnetic simulations. In practical design of NMHA, equational expressions for the main electrical characteristics are more convenient. Electrical performances of NMHA can be expressed by a combination of a short dipole and small loops. Applicability of equations for a short dipole and a small loop to very small normal-mode helical antennas such as antennas around 1/100 wavelengths was not clear. In this paper, accuracies of equations for input resistances, antenna efficiency, and axial ratios are verified by comparisons with electromagnetic simulation results by FEKO software at 402 MHz. In addition, the structure of the antenna equal to 0.021 λ is fabricated, and measurements are performed to confirm the design accuracy.

  12. Systems of Inhomogeneous Linear Equations

    Science.gov (United States)

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  13. The respiratory system in equations

    CERN Document Server

    Maury, Bertrand

    2013-01-01

    The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.

  14. Nonlinear integrodifferential equations as discrete systems

    Science.gov (United States)

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  15. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)

  16. Linear integral equations and soliton systems

    International Nuclear Information System (INIS)

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  17. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  18. Normal freezing of ideal ternary systems of the pseudobinary type

    Science.gov (United States)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  19. Lie symmetries for systems of evolution equations

    Science.gov (United States)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2018-01-01

    The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.

  20. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    OpenAIRE

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  1. Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity

    Science.gov (United States)

    Faria, T.; Magalhaes, L. T.

    The paper addresses, for retarded functional differential equations (FDEs), the computation of normal forms associated with the flow on a finite-dimensional invariant manifold tangent to invariant spaces for the infinitesimal generator of the linearized equation at a singularity. A phase space appropriate to the computation of these normal forms is introduced, and adequate nonresonance conditions for the computation of the normal forms are derived. As an application, the general situation of Bogdanov-Takens singularity and its versal unfolding for scalar retarded FDEs with nondegeneracy at second order is considered, both in the general case and in the case of differential-delay equations of the form ẋ( t) = ƒ( x( t), x( t-1)).

  2. Introduction to differential equations with dynamical systems

    CERN Document Server

    Campbell, Stephen L

    2011-01-01

    Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

  3. On the wall-normal velocity of the compressible boundary-layer equations

    Science.gov (United States)

    Pruett, C. David

    1991-01-01

    Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x,y) plane to a computational (xi,eta) plane in which the evolution of the flow is 'slow' in the time-like xi direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-similar boundary-layer flows, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. In light of recent research which shows mean-flow non-parallelism to significantly influence the stability of high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be routinely neglected. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally-accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to machine precision. These qualities make the method well suited to the computation of the non-parallel mean flows needed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of stability.

  4. Estimating structural equation models with non-normal variables by using transformations

    NARCIS (Netherlands)

    Montfort, van K.; Mooijaart, A.; Meijerink, F.

    2009-01-01

    We discuss structural equation models for non-normal variables. In this situation the maximum likelihood and the generalized least-squares estimates of the model parameters can give incorrect estimates of the standard errors and the associated goodness-of-fit chi-squared statistics. If the sample

  5. Particle Systems and Partial Differential Equations I

    CERN Document Server

    Gonçalves, Patricia

    2014-01-01

    This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012.  The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory, and to stimulate discussions and possibly new collaborations among researchers with different backgrounds.  The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navie...

  6. On normal modes in classical Hamiltonian systems

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.

    1983-01-01

    Normal modes of Hamittonian systems that are even and of classical type are characterized as the critical points of a normalized kinetic energy functional on level sets of the potential energy functional. With the aid of this constrained variational formulation the existence of at least one family

  7. A hierarchy of systems of nonlinear equations

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1985-01-01

    Imposing isospectral invariance for the one-dimensional Dirac operator yields an infinite hierarchy of systems of chiral invariant nonlinear partial differential equations. The same system is obtained through a Lax pair construction and finally a formulation in terms of Kac-Moody generators is given. (Author)

  8. Discrete ordinate solution of the radiative transfer equation in the 'polarization normal wave representation'

    Science.gov (United States)

    Kylling, A.

    1991-01-01

    The transfer equations for normal waves in finite, inhomogeneous and plane-parallel magnetoactive media are solved using the discrete ordinate method. The physical process of absorption, emission, and multiple scattering are accounted for, and the medium may be forced both at the top and bottom boundary by anisotropic radiation as well as by internal anisotropic sources. The computational procedure is numerically stable for arbitrarily large optical depths, and the computer time is independent of optical thickness.

  9. Statistical mechanics of normal grain growth in one dimension: A partial integro-differential equation model

    International Nuclear Information System (INIS)

    Ng, Felix S.L.

    2016-01-01

    We develop a statistical-mechanical model of one-dimensional normal grain growth that does not require any drift-velocity parameterization for grain size, such as used in the continuity equation of traditional mean-field theories. The model tracks the population by considering grain sizes in neighbour pairs; the probability of a pair having neighbours of certain sizes is determined by the size-frequency distribution of all pairs. Accordingly, the evolution obeys a partial integro-differential equation (PIDE) over ‘grain size versus neighbour grain size’ space, so that the grain-size distribution is a projection of the PIDE's solution. This model, which is applicable before as well as after statistically self-similar grain growth has been reached, shows that the traditional continuity equation is invalid outside this state. During statistically self-similar growth, the PIDE correctly predicts the coarsening rate, invariant grain-size distribution and spatial grain size correlations observed in direct simulations. The PIDE is then reducible to the standard continuity equation, and we derive an explicit expression for the drift velocity. It should be possible to formulate similar parameterization-free models of normal grain growth in two and three dimensions.

  10. On A System of Rational Difference Equation

    OpenAIRE

    Din Qamar

    2014-01-01

    In this paper, we study local asymptotic stability, global character and periodic nature of solutions of the system of rational difference equations given by xn+1= , yn=, n=0, 1,…, where the parameters a; b; c; d; e; f ∊ (0; ∞), and with initial conditions x0; y0 ∊ (0; ∞). Some numerical examples are given to illustrate our results.

  11. A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates

    Directory of Open Access Journals (Sweden)

    Shibata Darryl

    2010-01-01

    Full Text Available Abstract Background The purpose of this article is to present a relatively easy to understand cancer model where transformation occurs when the first cell, among many at risk within a colon, accumulates a set of driver mutations. The analysis of this model yields a simple algebraic equation, which takes as inputs the number of stem cells, mutation and division rates, and the number of driver mutations, and makes predictions about cancer epidemiology. Methods The equation [p = 1 - (1 - (1 - (1 - udkNm ] calculates the probability of cancer (p and contains five parameters: the number of divisions (d, the number of stem cells (N × m, the number of critical rate-limiting pathway driver mutations (k, and the mutation rate (u. In this model progression to cancer "starts" at conception and mutations accumulate with cell division. Transformation occurs when a critical number of rate-limiting pathway mutations first accumulates within a single stem cell. Results When applied to several colorectal cancer data sets, parameter values consistent with crypt stem cell biology and normal mutation rates were able to match the increase in cancer with aging, and the mutation frequencies found in cancer genomes. The equation can help explain how cancer risks may vary with age, height, germline mutations, and aspirin use. APC mutations may shorten pathways to cancer by effectively increasing the numbers of stem cells at risk. Conclusions The equation illustrates that age-related increases in cancer frequencies may result from relatively normal division and mutation rates. Although this equation does not encompass all of the known complexity of cancer, it may be useful, especially in a teaching setting, to help illustrate relationships between small and large cancer features.

  12. Normal scheme for solving the transport equation independently of spatial discretization

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    1993-01-01

    To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)

  13. Comparison of SUVs normalized by lean body mass determined by CT with those normalized by lean body mass estimated by predictive equations in normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Dae Weung [Wonkwang Univ. School of Medicine, Iksan (Korea, Republic of)

    2012-09-15

    Standardized uptake values (SUVs)normalized by lean body mass (LBM)determined by CT were compared with those normalized by LBM estimated using predictive equations (PEs)in normal liver, spleen, and aorta using {sup 18}F FDG PET/CT. Fluorine 18 fluorodeoxyglucose (F FDG)positron emission tomography/computed tomography (PET/CT)was conducted on 453 patients. LBM determined by CT was defined in 3 ways (LBM{sup CT1}-3). Five PEs were used for comparison (LBM{sup PE1}-5). Tissue SUV normalized by LBM (SUL) was calculated using LBM from each method (SUL{sup CT1}-3, SUL{sup PE1}-5). Agreement between methods was assessed by Bland Altman analysis. Percentage difference and percentage error were also calculated. For all liver SUL{sup CTS} vs. liver SUL{sup PES} except liver SUL{sup PE3}, the range of biases, SDs of percentage difference and percentage errors were -0.17-0.24 SUL, 6.15-10.17%, and 25.07-38.91%, respectively. For liver SUL{sup CTs} vs. liver SUL{sup PE3}, the corresponding figures were 0.47-0.69 SUL, 10.90-11.25%, and 50.85-51.55%, respectively, showing the largest percentage errors and positive biases. Irrespective of magnitudes of the biases, large percentage errors of 25.07-51.55% were observed between liver SUL{sup CT1}-3 and liver SUL{sup PE1}-5. The results of spleen and aorta SUL{sup CTs} and SUL{sup PEs} comparison were almost identical to those for liver. The present study demonstrated substantial errors in individual SUL{sup PEs} compared with SUL{sup CTs} as a reference value. Normalization of SUV by LBM determined by CT rather than PEs may be a useful approach to reduce errors in individual SUL{sup PEs}.

  14. Comparison of SUVs normalized by lean body mass determined by CT with those normalized by lean body mass estimated by predictive equations in normal tissues

    International Nuclear Information System (INIS)

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Dae Weung

    2012-01-01

    Standardized uptake values (SUVs)normalized by lean body mass (LBM)determined by CT were compared with those normalized by LBM estimated using predictive equations (PEs)in normal liver, spleen, and aorta using 18 F FDG PET/CT. Fluorine 18 fluorodeoxyglucose (F FDG)positron emission tomography/computed tomography (PET/CT)was conducted on 453 patients. LBM determined by CT was defined in 3 ways (LBM CT1 -3). Five PEs were used for comparison (LBM PE1 -5). Tissue SUV normalized by LBM (SUL) was calculated using LBM from each method (SUL CT1 -3, SUL PE1 -5). Agreement between methods was assessed by Bland Altman analysis. Percentage difference and percentage error were also calculated. For all liver SUL CTS vs. liver SUL PES except liver SUL PE3 , the range of biases, SDs of percentage difference and percentage errors were -0.17-0.24 SUL, 6.15-10.17%, and 25.07-38.91%, respectively. For liver SUL CTs vs. liver SUL PE3 , the corresponding figures were 0.47-0.69 SUL, 10.90-11.25%, and 50.85-51.55%, respectively, showing the largest percentage errors and positive biases. Irrespective of magnitudes of the biases, large percentage errors of 25.07-51.55% were observed between liver SUL CT1 -3 and liver SUL PE1 -5. The results of spleen and aorta SUL CTs and SUL PEs comparison were almost identical to those for liver. The present study demonstrated substantial errors in individual SUL PEs compared with SUL CTs as a reference value. Normalization of SUV by LBM determined by CT rather than PEs may be a useful approach to reduce errors in individual SUL PEs

  15. On A System of Rational Difference Equation

    Directory of Open Access Journals (Sweden)

    Din Qamar

    2014-06-01

    Full Text Available In this paper, we study local asymptotic stability, global character and periodic nature of solutions of the system of rational difference equations given by xn+1= , yn=, n=0, 1,…, where the parameters a; b; c; d; e; f ∊ (0; ∞, and with initial conditions x0; y0 ∊ (0; ∞. Some numerical examples are given to illustrate our results.

  16. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    1978-01-01

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)

  17. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)

  18. Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation

    Science.gov (United States)

    Luo, Xiao

    2018-06-01

    We study the existence, multiplicity, quantitative property and asymptotic behavior of normalized solutions for a gauged nonlinear Schrödinger equation arising from the Chern-Simons theory Δ u + ω u +|x|^2u+ λ ( {{h^2}(| x | )}/{{{| x | ^2}}} + \\int \\limits _{| x | }^{ + ∞} {{h(s)}/s} {u^2}(s)ds) u = {| u | ^{p - 2}}u,\\quad x\\in R^2, where ω \\in R, λ >0, p>4 and h(s) = 1/2\\int \\limits _0^s {r{u^2}(r)dr} . Combining constraint minimization method and minimax principle, we prove that the problem possesses at least two normalized solutions: One is a ground state and the other is an excited state. Furthermore, the asymptotic behavior and quantitative property of the ground state are analyzed.

  19. Integrable systems of partial differential equations determined by structure equations and Lax pair

    International Nuclear Information System (INIS)

    Bracken, Paul

    2010-01-01

    It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.

  20. Introduction to linear systems of differential equations

    CERN Document Server

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  1. How to derive biological information from the value of the normalization constant in allometric equations.

    Science.gov (United States)

    Kaitaniemi, Pekka

    2008-04-09

    Allometric equations are widely used in many branches of biological science. The potential information content of the normalization constant b in allometric equations of the form Y = bX(a) has, however, remained largely neglected. To demonstrate the potential for utilizing this information, I generated a large number of artificial datasets that resembled those that are frequently encountered in biological studies, i.e., relatively small samples including measurement error or uncontrolled variation. The value of X was allowed to vary randomly within the limits describing different data ranges, and a was set to a fixed theoretical value. The constant b was set to a range of values describing the effect of a continuous environmental variable. In addition, a normally distributed random error was added to the values of both X and Y. Two different approaches were then used to model the data. The traditional approach estimated both a and b using a regression model, whereas an alternative approach set the exponent a at its theoretical value and only estimated the value of b. Both approaches produced virtually the same model fit with less than 0.3% difference in the coefficient of determination. Only the alternative approach was able to precisely reproduce the effect of the environmental variable, which was largely lost among noise variation when using the traditional approach. The results show how the value of b can be used as a source of valuable biological information if an appropriate regression model is selected.

  2. Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space

    International Nuclear Information System (INIS)

    Rodriguez D, R.

    2007-01-01

    In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)

  3. Solutions of system of P1 equations without use of auxiliary differential equations coupled

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  4. Structural equation modeling and natural systems

    Science.gov (United States)

    Grace, James B.

    2006-01-01

    This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.

  5. A generalized estimating equations approach to quantitative trait locus detection of non-normal traits

    Directory of Open Access Journals (Sweden)

    Thomson Peter C

    2003-05-01

    Full Text Available Abstract To date, most statistical developments in QTL detection methodology have been directed at continuous traits with an underlying normal distribution. This paper presents a method for QTL analysis of non-normal traits using a generalized linear mixed model approach. Development of this method has been motivated by a backcross experiment involving two inbred lines of mice that was conducted in order to locate a QTL for litter size. A Poisson regression form is used to model litter size, with allowances made for under- as well as over-dispersion, as suggested by the experimental data. In addition to fixed parity effects, random animal effects have also been included in the model. However, the method is not fully parametric as the model is specified only in terms of means, variances and covariances, and not as a full probability model. Consequently, a generalized estimating equations (GEE approach is used to fit the model. For statistical inferences, permutation tests and bootstrap procedures are used. This method is illustrated with simulated as well as experimental mouse data. Overall, the method is found to be quite reliable, and with modification, can be used for QTL detection for a range of other non-normally distributed traits.

  6. Bandwidth Optimization of Normal Equation Matrix in Bundle Block Adjustment in Multi-baseline Rotational Photography

    Directory of Open Access Journals (Sweden)

    WANG Xiang

    2016-02-01

    Full Text Available A new bandwidth optimization method of normal equation matrix in bundle block adjustment in multi-baseline rotational close range photography by image index re-sorting is proposed. The equivalent exposure station of each image is calculated by its object space coverage and the relationship with other adjacent images. Then, according to the coordinate relations between equivalent exposure stations, new logical indices of all images are computed, based on which, the optimized bandwidth value can be obtained. Experimental results show that the bandwidth determined by our proposed method is significantly better than its original value, thus the operational efficiency, as well as the memory consumption of multi-baseline rotational close range photography in real-data applications, is optimized to a certain extent.

  7. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  8. Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes

    International Nuclear Information System (INIS)

    Thuburn, J.; Woollings, T.J.

    2005-01-01

    Accurate representation of different kinds of wave motion is essential for numerical models of the atmosphere, but is sensitive to details of the discretization. In this paper, numerical dispersion relations are computed for different vertical discretizations of the compressible Euler equations and compared with the analytical dispersion relation. A height coordinate, an isentropic coordinate, and a terrain-following mass-based coordinate are considered, and, for each of these, different choices of prognostic variables and grid staggerings are considered. The discretizations are categorized according to whether their dispersion relations are optimal, are near optimal, have a single zero-frequency computational mode, or are problematic in other ways. Some general understanding of the factors that affect the numerical dispersion properties is obtained: heuristic arguments concerning the normal mode structures, and the amount of averaging and coarse differencing in the finite difference scheme, are shown to be useful guides to which configurations will be optimal; the number of degrees of freedom in the discretization is shown to be an accurate guide to the existence of computational modes; there is only minor sensitivity to whether the equations for thermodynamic variables are discretized in advective form or flux form; and an accurate representation of acoustic modes is found to be a prerequisite for accurate representation of inertia-gravity modes, which, in turn, is found to be a prerequisite for accurate representation of Rossby modes

  9. Algebraic limit cycles in polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Llibre, Jaume; Zhao Yulin

    2007-01-01

    Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

  10. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    Science.gov (United States)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  11. EGSIEM combination service: combination of GRACE monthly K-band solutions on normal equation level

    Science.gov (United States)

    Meyer, Ulrich; Jean, Yoomin; Arnold, Daniel; Jäggi, Adrian

    2017-04-01

    The European Gravity Service for Improved Emergency Management (EGSIEM) project offers a scientific combination service, combining for the first time monthly GRACE gravity fields of different analysis centers (ACs) on normal equation (NEQ) level and thus taking all correlations between the gravity field coefficients and pre-eliminated orbit and instrument parameters correctly into account. Optimal weights for the individual NEQs are commonly derived by variance component estimation (VCE), as is the case for the products of the International VLBI Service (IVS) or the DTRF2008 reference frame realisation that are also derived by combination on NEQ-level. But variance factors are based on post-fit residuals and strongly depend on observation sampling and noise modeling, which both are very diverse in case of the individual EGSIEM ACs. These variance factors do not necessarily represent the true error levels of the estimated gravity field parameters that are still governed by analysis noise. We present a combination approach where weights are derived on solution level, thereby taking the analysis noise into account.

  12. The 'strength' of a system of differential equations

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1977-01-01

    A review of Einstein's concept of ''strength'' of a system of differential equations is given. As an example the strength of the Einstein-Maxwell equations for non-null Maxwell field is calculated and shown to be the same as for the pure vacuum Einstein equations. (auth.)

  13. Integrable coupling system of fractional soliton equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-10-05

    In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.

  14. How Normal is Our Solar System?

    Science.gov (United States)

    Kohler, Susanna

    2015-10-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because

  15. The numerical solution of linear multi-term fractional differential equations: systems of equations

    Science.gov (United States)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  16. Dirac equations for generalised Yang-Mills systems

    International Nuclear Information System (INIS)

    Lechtenfeld, O.; Nahm, W.; Tchrakian, D.H.

    1985-06-01

    We present Dirac equations in 4p dimensions for the generalised Yang-Mills (GYM) theories introduced earlier. These Dirac equations are related to the self-duality equations of the GYM and are checked to be elliptic in a 'BPST' background. In this background these Dirac equations are integrated exactly. The possibility of imposing supersymmetry in the GYM-Dirac system is investigated, with negative results. (orig.)

  17. The Dirac equation and the normalization of its solutions in a closed Friedmann- Robertson-Walker universe

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I-Mathematik, Universitaet Regensburg, D-93040 Regensburg (Germany); Reintjes, Moritz, E-mail: Felix.Finster@mathematik.uni-regensburg.d, E-mail: moritz@math.ucdavis.ed [Mathematics Department, University of California, Davis, CA 95616 (United States)

    2009-05-21

    We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and separate the spatial and time variables. In the case of a closed universe, the spatial dependence is solved explicitly, giving rise to a discrete set of solutions. We compute the probability integral and analyze a spacetime normalization integral. This analysis allows us to introduce the fermionic projector in a closed Friedmann-Robertson-Walker geometry and to specify its global normalization as well as its local form.

  18. The Dirac equation and the normalization of its solutions in a closed Friedmann- Robertson-Walker universe

    International Nuclear Information System (INIS)

    Finster, Felix; Reintjes, Moritz

    2009-01-01

    We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and separate the spatial and time variables. In the case of a closed universe, the spatial dependence is solved explicitly, giving rise to a discrete set of solutions. We compute the probability integral and analyze a spacetime normalization integral. This analysis allows us to introduce the fermionic projector in a closed Friedmann-Robertson-Walker geometry and to specify its global normalization as well as its local form.

  19. Stochastic differential equations and a biological system

    DEFF Research Database (Denmark)

    Wang, Chunyan

    1994-01-01

    The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based...... on experimental data is considered. As an example, the growth of bacteria Pseudomonas fluorescens is taken. Due to the specific features of stochastic differential equations, namely that their solutions do not exist in the general sense, two new integrals - the Ito integral and the Stratonovich integral - have...... description. In order to identify the parameters, a Maximum likelihood estimation method is used together with a simplified truncated second order filter. Because of the continuity feature of the predictor equation, two numerical integration methods, called the Odeint and the Discretization method...

  20. Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-Pempinelli equations system and Time-fractional Cahn-Allen equation

    Directory of Open Access Journals (Sweden)

    Mostafa M.A. Khater

    Full Text Available In this article and for the first time, we introduce and describe Khater method which is a new technique for solving nonlinear partial differential equations (PDEs.. We apply this method for each of the following models Bogoyavlenskii equation, couple Boiti-Leon-Pempinelli system and Time-fractional Cahn-Allen equation. Khater method is very powerful, Effective, felicitous and fabulous method to get exact and solitary wave solution of (PDEs.. Not only just like that but it considers too one of the general methods for solving that kind of equations since it involves some methods as we will see in our discuss of the results. We make a comparison between the results of this new method and another method. Keywords: Bogoyavlenskii equations system, Couple Boiti-Leon-Pempinelli equations system, Time-fractional Cahn-Allen equation, Khater method, Traveling wave solutions, Solitary wave solutions

  1. The flow equation approach to many-particle systems

    CERN Document Server

    Kehrein, Stefan; Fujimori, A; Varma, C; Steiner, F

    2006-01-01

    This self-contained monograph addresses the flow equation approach to many-particle systems. The flow equation approach consists of a sequence of infinitesimal unitary transformations and is conceptually similar to renormalization and scaling methods. Flow equations provide a framework for analyzing Hamiltonian systems where these conventional many-body techniques fail. The text first discusses the general ideas and concepts of the flow equation method. In a second part these concepts are illustrated with various applications in condensed matter theory including strong-coupling problems and non-equilibrium systems. The monograph is accessible to readers familiar with graduate- level solid-state theory.

  2. Robust Satisfiability of Systems of Equations

    Czech Academy of Sciences Publication Activity Database

    Franek, Peter; Krčál, M.

    2015-01-01

    Roč. 62, č. 4 (2015), Article 26 ISSN 0004-5411 R&D Projects: GA ČR GBP202/12/G061 Grant - others:GA MŠk(CZ) LL1201 Institutional support: RVO:67985807 Keywords : nonlinear equations * satisfability * undecibility * topological extensions * uncertainty * robustness Subject RIV: IN - Informatics, Computer Science Impact factor: 1.803, year: 2015

  3. Conservation properties and potential systems of vorticity-type equations

    International Nuclear Information System (INIS)

    Cheviakov, Alexei F.

    2014-01-01

    Partial differential equations of the form divN=0, N t +curl M=0 involving two vector functions in R 3 depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R 4 (t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations, it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented

  4. Covariant single-time equations for a system of N spinor particles

    International Nuclear Information System (INIS)

    Dej, E.A.; Kapshaj, V.N.; Skachkov, N.B.

    1993-01-01

    Based on the field-theoretical Green functions that describe a system of N fermions in terms of a single-time variables we have derived covariant equations for the wave function of a bound state. The interaction operators in these equations and normalization conditions for the wave function are determined. As an example, the baryon is considered as a bound state of three quarks. 19 refs.; 1 fig

  5. A New Algorithm for System of Integral Equations

    Directory of Open Access Journals (Sweden)

    Abdujabar Rasulov

    2014-01-01

    Full Text Available We develop a new algorithm to solve the system of integral equations. In this new method no need to use matrix weights. Beacause of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.

  6. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 1

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Using some simplifying hypotheses, different expressions of the Boltzmann integrodifferential equation are obtained. Posteriorly, they are applied to some particular cases: slowing down, thermalization, multigroups, critical reactors and virtual critical reactors with k, α and lambda. (author)

  7. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations in Holonomic Systems with Unilateral Constraints

    International Nuclear Information System (INIS)

    Jia Liqun; Cui Jinchao; Zhang Yaoyu; Luo Shaokai

    2009-01-01

    Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomic mechanic systems with unilateral constraints are established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups are also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results. (general)

  8. Method for the determination of the equation of state of advanced fuels based on the properties of normal fluids

    International Nuclear Information System (INIS)

    Hecht, M.J.; Catton, I.; Kastenberg, W.E.

    1976-12-01

    An equation of state based on the properties of normal fluids, the law of rectilinear averages, and the second law of thermodynamics can be derived for advanced LMFBR fuels on the basis of the vapor pressure, enthalpy of vaporization, change in heat capacity upon vaporization, and liquid density at the melting point. The method consists of estimating an equation of state by means of the law of rectilinear averages and the second law of thermodynamics, integrating by means of the second law until an instability is reached, and then extrapolating by means of a self-consistent estimation of the enthalpy of vaporization

  9. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    Science.gov (United States)

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  10. The Dirac equation and the normalization of its solutions in a closed Friedmann- Robertson-Walker universe

    Science.gov (United States)

    Finster, Felix; Reintjes, Moritz

    2009-05-01

    We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and separate the spatial and time variables. In the case of a closed universe, the spatial dependence is solved explicitly, giving rise to a discrete set of solutions. We compute the probability integral and analyze a spacetime normalization integral. This analysis allows us to introduce the fermionic projector in a closed Friedmann-Robertson-Walker geometry and to specify its global normalization as well as its local form. First author supported in part by the Deutsche Forschungsgemeinschaft.

  11. Algebraic method for analysis of nonlinear systems with a normal matrix

    International Nuclear Information System (INIS)

    Konyaev, Yu.A.; Salimova, A.F.

    2014-01-01

    A promising method has been proposed for analyzing a class of quasilinear nonautonomous systems of differential equations whose matrix can be represented as a sum of nonlinear normal matrices, which makes it possible to analyze stability without using the Lyapunov functions [ru

  12. Modulation equations for spatially periodic systems: derivation and solutions

    NARCIS (Netherlands)

    Schielen, R.; Doelman, A.

    1996-01-01

    We study a class of partial dierential equations in one spatial dimension, which can be seen as model equations for the analysis of pattern formation in physical systems dened on unbounded, weakly oscillating domains. We perform a linear and weakly nonlinear stability analysis for solutions that

  13. Undergraduate Students' Mental Operations in Systems of Differential Equations

    Science.gov (United States)

    Whitehead, Karen; Rasmussen, Chris

    2003-01-01

    This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…

  14. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    NARCIS (Netherlands)

    Kant, Gijs; van de Pol, Jan Cornelis; Wijs, A.J.; Bošnački, D.; Edelkamp, S.

    Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then

  15. Solution of degenerate hypergeometric system of Horn consisting of three equations

    Science.gov (United States)

    Tasmambetov, Zhaksylyk N.; Zhakhina, Ryskul U.

    2017-09-01

    The possibilities of constructing normal-regular solutions of a system consisting of three partial differential equations of the second order are studied by the Frobenius-Latysheva method. The method of determining unknown coefficients is shown and the relationship of the studied system with the system, which solution is Laguerre's polynomial of three variables is indicated. The generalization of the Frobenius-Latysheva method to the case of a system consisting of three equations makes it possible to clarify the relationship of such systems, which solutions are special functions of three variables. These systems include the functions of Whittaker and Bessel, 205 special functions of three variables from the list of M. Srivastava and P.W. Carlsson, as well as orthogonal polynomials of three variables. All this contributes to the further development of the analytic theory of systems consisting of three partial differential equations of the second order.

  16. Systems of evolution equations and the singular perturbation method

    International Nuclear Information System (INIS)

    Mika, J.

    Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)

  17. On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations.

    Science.gov (United States)

    Dubrovin, Boris; Grava, Tamara; Klein, Christian; Moro, Antonio

    2015-01-01

    We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P[Formula: see text]) equation or its fourth-order analogue P[Formula: see text]. As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.

  18. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    Science.gov (United States)

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  19. Convex solutions of systems arising from Monge-Ampere equations

    Directory of Open Access Journals (Sweden)

    Haiyan Wang

    2009-10-01

    Full Text Available We establish two criteria for the existence of convex solutions to a boundary value problem for weakly coupled systems arising from the Monge-Ampère equations. We shall use fixed point theorems in a cone.

  20. Stochastic equations for complex systems theoretical and computational topics

    CERN Document Server

    Bessaih, Hakima

    2015-01-01

    Mathematical analyses and computational predictions of the behavior of complex systems are needed to effectively deal with weather and climate predictions, for example, and the optimal design of technical processes. Given the random nature of such systems and the recognized relevance of randomness, the equations used to describe such systems usually need to involve stochastics.  The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality.  This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations ...

  1. FORSIM-6, Automatic Solution of Coupled Differential Equation System

    International Nuclear Information System (INIS)

    Carver, M.B.; Stewart, D.G.; Blair, J.M.; Selander, W.N.

    1983-01-01

    1 - Description of problem or function: The FORSIM program is a versatile package which automates the solution of coupled differential equation systems. The independent variables are time, and up to three space coordinates, and the equations may be any mixture of partial and/or ordinary differential equations. The philosophy of the program is to provide a tool which will solve a system of differential equations for a user who has basic but unspecialized knowledge of numerical analysis and FORTRAN. The equations to be solved, together with the initial conditions and any special instructions, may be specified by the user in a single FORTRAN subroutine, although he may write a number of routines if this is more suitable. These are then loaded with the control routines, which perform the solution and any requested input and output. 2 - Method of solution: Partial differential equations are automatically converted into sets of coupled ordinary differential equations by variable order discretization in the spatial dimensions. These and other ordinary differential equations are integrated continuously in time using efficient variable order, variable step, error-controlled algorithms

  2. Systems of quasilinear equations and their applications to gas dynamics

    CERN Document Server

    Roždestvenskiĭ, B L; Schulenberger, J R

    1983-01-01

    This book is essentially a new edition, revised and augmented by results of the last decade, of the work of the same title published in 1968 by "Nauka." It is devoted to mathematical questions of gas dynamics. Topics covered include Foundations of the Theory of Systems of Quasilinear Equations of Hyperbolic Type in Two Independent Variables; Classical and Generalized Solutions of One-Dimensional Gas Dynamics; Difference Methods for Solving the Equations of Gas Dynamics; and Generalized Solutions of Systems of Quasilinear Equations of Hyperbolic Type.

  3. Null controllability of a cascade system of Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Marcos Lopez-Garcia

    2016-03-01

    Full Text Available This article presents a control problem for a cascade system of two linear N-dimensional Schrodinger equations. We address the problem of null controllability by means of a control supported in a region not satisfying the classical geometrical control condition. The proof is based on the application of a Carleman estimate with degenerate weights to each one of the equations and a careful analysis of the system in order to prove null controllability with only one control force.

  4. Normal development of the female reproductive system

    Science.gov (United States)

    The embryonic development of the female reproductive system involves a progression of events that is conserved across vertebrate species. The early gonad progresses from a form that is undifferentiated in both genotypic males and females. Rudimentary male (Wolffian) and female (M...

  5. The least weighted squares I. The asymptotic linearity of normal equations

    Czech Academy of Sciences Publication Activity Database

    Víšek, Jan Ámos

    2002-01-01

    Roč. 9, č. 15 (2002), s. 31-58 ISSN 1212-074X R&D Projects: GA AV ČR KSK1019101 Grant - others:GA UK(CZ) 255/2002/A EK /FSV Institutional research plan: CEZ:AV0Z1075907 Keywords : the least weighted squares * robust regression * asymptotic normality and representation Subject RIV: BA - General Mathematics

  6. Normal form of linear systems depending on parameters

    International Nuclear Information System (INIS)

    Nguyen Huynh Phan.

    1995-12-01

    In this paper we resolve completely the problem to find normal forms of linear systems depending on parameters for the feedback action that we have studied for the special case of controllable linear systems. (author). 24 refs

  7. PV System Performance Evaluation by Clustering Production Data to Normal and Non-Normal Operation

    NARCIS (Netherlands)

    Tsafarakis, O.; Sinapis, K.; van Sark, W.G.J.H.M.

    2018-01-01

    The most common method for assessment of a photovoltaic (PV) system performance is by comparing its energy production to reference data (irradiance or neighboring PV system). Ideally, at normal operation, the compared sets of data tend to show a linear relationship. Deviations from this linearity

  8. Nonlinear analysis of a reaction-diffusion system: Amplitude equations

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2012-10-15

    A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.

  9. MANAGERIAL ACCOUNTING SYSTEM: UTILITY, PRACTICE, MANIPULATION, NORMALIZATION

    Directory of Open Access Journals (Sweden)

    Flavius-Andrei GUINEA

    2017-05-01

    Full Text Available Economic entities accuse current managerial accounting instruments due to their used indicators, their post operativeness, and their lack of necessary adjustments, short-term target, information handling and decisions taken for various reasons, except the efficiency one. In order to manage a more and more complex organization, located in an uncertain environment, managers require a permanent, real-time, information system. There is no longer sufficient the simple retrospective measurement of results, as there should be provided those instruments that support the decision making process throughout the strategic and operational processes. The implementation of a managerial accounting tool will always interact with the human behavioural dimension. In the initial stage, the actors of an organization will initially manifest reactions of difficult acceptance or even rejection. Each of them will adopt that behaviour which ensures the maximization of its own goals, even if these are, or not, convergent with the organizational objectives.

  10. Some exact solutions to the potential Kadomtsev-Petviashvili equation and to a system of shallow water wave equations

    International Nuclear Information System (INIS)

    Inan, Ibrahim E.; Kaya, Dogan

    2006-01-01

    In this Letter by considering an improved tanh function method, we found some exact solutions of the potential Kadomtsev-Petviashvili equation. Some exact solutions of the system of the shallow water wave equation were also found

  11. Adiabatically steered open quantum systems: Master equation and optimal phase

    International Nuclear Information System (INIS)

    Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.

    2010-01-01

    We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.

  12. Solution methods for large systems of linear equations in BACCHUS

    International Nuclear Information System (INIS)

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  13. Exact solutions for a system of nonlinear plasma fluid equations

    International Nuclear Information System (INIS)

    Prahovic, M.G.; Hazeltine, R.D.; Morrison, P.J.

    1991-04-01

    A method is presented for constructing exact solutions to a system of nonlinear plasma fluid equations that combines the physics of reduced magnetohydrodynamics and the electrostatic drift-wave description of the Charney-Hasegawa-Mima equation. The system has nonlinearities that take the form of Poisson brackets involving the fluid field variables. The method relies on modifying a class of simple equilibrium solutions, but no approximations are made. A distinguishing feature is that the original nonlinear problem is reduced to the solution of two linear partial differential equations, one fourth-order and the other first-order. The first-order equation has Hamiltonian characteristics and is easily integrated, supplying information about the general structure of solutions. 6 refs

  14. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  15. Characteristic Equation of the Modified Smith predictor to MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jorge A. Herrera-Cuartas

    2013-11-01

    Full Text Available The delay in control systems is a feature frequently in real systems due to the transport of objects or information, a series connection of multiple systems or own processing and sensors delay, among others. Recently there have been several studies to identify the external delay MIMO systems, these works are focused on identification and on-line control of MIMO systems and use a multimodel structure based on modified Smith predictor using different search method. It is clear that for the implementation of the algorithm, and to obtain the convergence and stability analysis, it is necessary to have closed-loop equations of modified Smith predictor. However, in these works is not presented the analytical procedure, not be the main object, displaying only the closed loop equations without the procedure for obtaining it. Therefore, to respond, in this paper, we present an analytical way to derive the closed-loop equations of a modified Smith predictor.  

  16. Selected equation of state in the acentric factor system

    International Nuclear Information System (INIS)

    Schreiber, D.R.; Pitzer, K.S.

    1988-06-01

    A new equation of state in the acentric factor system is developed on the basis of high-precision data. The region in critical temperature T/sub r/, critical density P/sub r/ space is identified where there is good agreement as well as the regions of significant departures. The equation fits very well in the critical region. 10 refs., 6 figs., 3 tabs

  17. Normal form and synchronization of strict-feedback chaotic systems

    International Nuclear Information System (INIS)

    Wang, Feng; Chen, Shihua; Yu Minghai; Wang Changping

    2004-01-01

    This study concerns the normal form and synchronization of strict-feedback chaotic systems. We prove that, any strict-feedback chaotic system can be rendered into a normal form with a invertible transform and then a design procedure to synchronize the normal form of a non-autonomous strict-feedback chaotic system is presented. This approach needs only a scalar driving signal to realize synchronization no matter how many dimensions the chaotic system contains. Furthermore, the Roessler chaotic system is taken as a concrete example to illustrate the procedure of designing without transforming a strict-feedback chaotic system into its normal form. Numerical simulations are also provided to show the effectiveness and feasibility of the developed methods

  18. The action principle for a system of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Instituto de FIsica, Universidade de Sao Paulo (Brazil); Kupriyanov, V G [Instituto de FIsica, Universidade de Sao Paulo (Brazil)

    2007-08-17

    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of constructing the action principle are presented. From simple consideration, we derive the necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of the Euler-Lagrange equations. An explicit form of the action is constructed if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples.

  19. The action principle for a system of differential equations

    International Nuclear Information System (INIS)

    Gitman, D M; Kupriyanov, V G

    2007-01-01

    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of constructing the action principle are presented. From simple consideration, we derive the necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of the Euler-Lagrange equations. An explicit form of the action is constructed if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples

  20. On the stability of some systems of exponential difference equations

    Directory of Open Access Journals (Sweden)

    N. Psarros

    2018-01-01

    Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.

  1. Lyapunov equation for infinite-dimensional discrete bilinear systems

    International Nuclear Information System (INIS)

    Costa, O.L.V.; Kubrusly, C.S.

    1991-03-01

    Mean-square stability for discrete systems requires that uniform convergence is preserved between input and state correlation sequences. Such a convergence preserving property holds for an infinite-dimensional bilinear system if and only if the associate Lyapunov equation has a unique strictly positive solution. (author)

  2. On Robust Stability of Systems of Differential-Algebraic Equations

    Directory of Open Access Journals (Sweden)

    A. Shcheglova

    2016-06-01

    The sufficient conditions of robust stability for index-one and index-two systems are obtained. We use the values of real and complex stability radii obtained for system of ordinary differential equations solved with respect to the derivatives. We consider the example illustrating the obtained results.

  3. Nonlocal Symmetries to Systems of Nonlinear Diffusion Equations

    International Nuclear Information System (INIS)

    Qu Changzheng; Kang Jing

    2008-01-01

    In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Those systems have physical applications in soil science, mathematical biology, and invariant curve flows in R 3 . Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.

  4. Poincare map for some polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Varin, V P

    2004-01-01

    One approach to the classical problem of distinguishing between a centre and a focus for a system of differential equations with polynomial right-hand sides in the plane is discussed. For a broad class of such systems necessary and sufficient conditions for a centre are expressed in terms of equations in variations of higher order. By contrast with the existing methods of investigation, attention is concentrated on the explicit calculation of the asymptotic behaviour of the Poincare map rather than on finding sufficient centre conditions as such; this also enables one to study bifurcations of birth of arbitrarily strongly degenerate cycles.

  5. Multiparameter extrapolation and deflation methods for solving equation systems

    Directory of Open Access Journals (Sweden)

    A. J. Hughes Hallett

    1984-01-01

    Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.

  6. Convergence criteria for systems of nonlinear elliptic partial differential equations

    International Nuclear Information System (INIS)

    Sharma, R.K.

    1986-01-01

    This thesis deals with convergence criteria for a special system of nonlinear elliptic partial differential equations. A fixed-point algorithm is used, which iteratively solves one linearized elliptic partial differential equation at a time. Conditions are established that help foresee the convergence of the algorithm. Under reasonable hypotheses it is proved that the algorithm converges for such nonlinear elliptic systems. Extensive experimental results are reported and they show the algorithm converges in a wide variety of cases and the convergence is well correlated with the theoretical conditions introduced in this thesis

  7. Prolongation Loop Algebras for a Solitonic System of Equations

    Directory of Open Access Journals (Sweden)

    Maria A. Agrotis

    2006-11-01

    Full Text Available We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials.

  8. NIMROD: a program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations.

    Science.gov (United States)

    Prague, Mélanie; Commenges, Daniel; Guedj, Jérémie; Drylewicz, Julia; Thiébaut, Rodolphe

    2013-08-01

    Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the use of mixed-effects models to estimate population parameters. Although the maximum likelihood approach is a valuable option, identifiability issues favour Bayesian approaches which can incorporate prior knowledge in a flexible way. However, the combination of difficulties coming from the ODE system and from the presence of random effects raises a major numerical challenge. Computations can be simplified by making a normal approximation of the posterior to find the maximum of the posterior distribution (MAP). Here we present the NIMROD program (normal approximation inference in models with random effects based on ordinary differential equations) devoted to the MAP estimation in ODE models. We describe the specific implemented features such as convergence criteria and an approximation of the leave-one-out cross-validation to assess the model quality of fit. In pharmacokinetics models, first, we evaluate the properties of this algorithm and compare it with FOCE and MCMC algorithms in simulations. Then, we illustrate NIMROD use on Amprenavir pharmacokinetics data from the PUZZLE clinical trial in HIV infected patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Refined Fuchs inequalities for systems of linear differential equations

    International Nuclear Information System (INIS)

    Gontsov, R R

    2004-01-01

    We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point

  10. Existence of a coupled system of fractional differential equations

    International Nuclear Information System (INIS)

    Ibrahim, Rabha W.; Siri, Zailan

    2015-01-01

    We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator

  11. Some overdetermined systems of complex partial differential equations

    International Nuclear Information System (INIS)

    Le Hung Son.

    1990-01-01

    In this paper we extend some properties of analytic functions on several complex variables to solutions of overdetermined systems of complex partial differential equations. It is proved that many global properties of analytic functions are true for solutions of the Vekua system in special cases. The relation between analytic functions and solutions of quasi-linear systems is discussed in the paper. (author). 8 refs

  12. Existence of a coupled system of fractional differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Rabha W. [Multimedia unit, Department of Computer System and Technology Faculty of Computer Science & IT, University of Malaya, 50603 Kuala Lumpur (Malaysia); Siri, Zailan [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.

  13. External validation of equations to estimate resting energy expenditure in 14952 adults with overweight and obesity and 1948 adults with normal weight from Italy.

    Science.gov (United States)

    Bedogni, Giorgio; Bertoli, Simona; Leone, Alessandro; De Amicis, Ramona; Lucchetti, Elisa; Agosti, Fiorenza; Marazzi, Nicoletta; Battezzati, Alberto; Sartorio, Alessandro

    2017-11-24

    We cross-validated 28 equations to estimate resting energy expenditure (REE) in a very large sample of adults with overweight or obesity. 14952 Caucasian men and women with overweight or obesity and 1498 with normal weight were studied. REE was measured using indirect calorimetry and estimated using two meta-regression equations and 26 other equations. The correct classification fraction (CCF) was defined as the fraction of subjects whose estimated REE was within 10% of measured REE. The highest CCF was 79%, 80%, 72%, 64%, and 63% in subjects with normal weight, overweight, class 1 obesity, class 2 obesity, and class 3 obesity, respectively. The Henry weight and height and Mifflin equations performed equally well with CCFs of 77% vs. 77% for subjects with normal weight, 80% vs. 80% for those with overweight, 72% vs. 72% for those with class 1 obesity, 64% vs. 63% for those with class 2 obesity, and 61% vs. 60% for those with class 3 obesity. The Sabounchi meta-regression equations offered an improvement over the above equations only for class 3 obesity (63%). The accuracy of REE equations decreases with increasing values of body mass index. The Henry weight & height and Mifflin equations are similarly accurate and the Sabounchi equations offer an improvement only in subjects with class 3 obesity. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Semilinear hyperbolic systems and equations with singular initial data

    International Nuclear Information System (INIS)

    Gramchev, T.

    1991-07-01

    We study the weak limits of solutions u ε (t, ·) for ε→0 to semilinear strictly hyperbolic systems and wave equations with initial data u ε (0, ·) approximating a distribution κ, 0 ε (t, ·) for ε→0 exists. 13 refs

  15. Local first integrals for systems of differential equations

    International Nuclear Information System (INIS)

    Zhang Xiang

    2003-01-01

    The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)

  16. Almost periodic solutions to systems of parabolic equations

    Directory of Open Access Journals (Sweden)

    Janpou Nee

    1994-01-01

    Full Text Available In this paper we show that the second-order differential solution is 2-almost periodic, provided it is 2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.

  17. Consistency of a system of equations: What does that mean?

    NARCIS (Netherlands)

    Still, Georg J.; Kern, Walter; Koelewijn, Jaap; Bomhoff, M.J.

    2010-01-01

    The concept of (structural) consistency also called structural solvability is an important basic tool for analyzing the structure of systems of equations. Our aim is to provide a sound and practically relevant meaning to this concept. The implications of consistency are expressed in terms of

  18. Variables and equations in hybrid systems with structural changes

    NARCIS (Netherlands)

    Beek, van D.A.

    2001-01-01

    In many models of physical systems, structural changes are common. Such structural changes may cause a variable to change from a differential variable to an algebraic variable, or to a variable that is not defined by an equation at all. Most hybrid modelling languages either restrict the kind of

  19. On Coupled System of Navier-Stokes Equations and Temperature

    African Journals Online (AJOL)

    Dr. Anthony Peter

    ABSTRACT. This paper deals with the coupled system of Navier-Stokes equations and temperature (Thermohydraulics) in a strip in the class of spatially non-decaying (infinite-energy) solutions belonging to the properly chosen uniformly local Sobolev spaces. The global well-posedness and dissipativity of the Navier- ...

  20. An equations of motion approach for open shell systems

    International Nuclear Information System (INIS)

    Yeager, D.L.; McKoy, V.

    1975-01-01

    A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given

  1. The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations

    International Nuclear Information System (INIS)

    Chen Jinbing; Qiao Zhijun

    2011-01-01

    A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.

  2. Fully Digital Chaotic Differential Equation-based Systems And Methods

    KAUST Repository

    Radwan, Ahmed Gomaa Ahmed

    2012-09-06

    Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.

  3. Fully Digital Chaotic Differential Equation-based Systems And Methods

    KAUST Repository

    Radwan, Ahmed Gomaa Ahmed; Zidan, Mohammed A.; Salama, Khaled N.

    2012-01-01

    Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.

  4. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. MINPACK-1, Subroutine Library for Nonlinear Equation System

    International Nuclear Information System (INIS)

    Garbow, Burton S.

    1984-01-01

    1 - Description of problem or function: MINPACK1 is a package of FORTRAN subprograms for the numerical solution of systems of non- linear equations and nonlinear least-squares problems. The individual programs are: Identification/Description: - CHKDER: Check gradients for consistency with functions, - DOGLEG: Determine combination of Gauss-Newton and gradient directions, - DPMPAR: Provide double precision machine parameters, - ENORM: Calculate Euclidean norm of vector, - FDJAC1: Calculate difference approximation to Jacobian (nonlinear equations), - FDJAC2: Calculate difference approximation to Jacobian (least squares), - HYBRD: Solve system of nonlinear equations (approximate Jacobian), - HYBRD1: Easy-to-use driver for HYBRD, - HYBRJ: Solve system of nonlinear equations (analytic Jacobian), - HYBRJ1: Easy-to-use driver for HYBRJ, - LMDER: Solve nonlinear least squares problem (analytic Jacobian), - LMDER1: Easy-to-use driver for LMDER, - LMDIF: Solve nonlinear least squares problem (approximate Jacobian), - LMDIF1: Easy-to-use driver for LMDIF, - LMPAR: Determine Levenberg-Marquardt parameter - LMSTR: Solve nonlinear least squares problem (analytic Jacobian, storage conserving), - LMSTR1: Easy-to-use driver for LMSTR, - QFORM: Accumulate orthogonal matrix from QR factorization QRFAC Compute QR factorization of rectangular matrix, - QRSOLV: Complete solution of least squares problem, - RWUPDT: Update QR factorization after row addition, - R1MPYQ: Apply orthogonal transformations from QR factorization, - R1UPDT: Update QR factorization after rank-1 addition, - SPMPAR: Provide single precision machine parameters. 4. Method of solution - MINPACK1 uses the modified Powell hybrid method and the Levenberg-Marquardt algorithm

  6. A Proposed Method for Solving Fuzzy System of Linear Equations

    Directory of Open Access Journals (Sweden)

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  7. Methodology for the hybrid solution of systems of differential equations

    International Nuclear Information System (INIS)

    Larrinaga, E.F.; Lopez, M.A.

    1993-01-01

    This work shows a general methodology of solution to systems of differential equations in hybrid computers. Taking into account this methodology, a mathematical model was elaborated. It offers wide possibilities of recording and handling the results on the basis of using the hybrid system IBM-VIDAC 1224 which the ISCTN has. It also presents the results gained when simulating a simple model of a nuclear reactor, which was used in the validation of the results of the computational model

  8. Cross-Validation of a Recently Published Equation Predicting Energy Expenditure to Run or Walk a Mile in Normal-Weight and Overweight Adults

    Science.gov (United States)

    Morris, Cody E.; Owens, Scott G.; Waddell, Dwight E.; Bass, Martha A.; Bentley, John P.; Loftin, Mark

    2014-01-01

    An equation published by Loftin, Waddell, Robinson, and Owens (2010) was cross-validated using ten normal-weight walkers, ten overweight walkers, and ten distance runners. Energy expenditure was measured at preferred walking (normal-weight walker and overweight walkers) or running pace (distance runners) for 5 min and corrected to a mile. Energy…

  9. Differential equations, dynamical systems, and an introduction to chaos

    CERN Document Server

    Smale, Stephen; Devaney, Robert L

    2003-01-01

    Thirty years in the making, this revised text by three of the world''s leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra.The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of the Field''s Medal for his work in dynamical systems.* Developed by award-winning researchers and authors* Provides a rigorous yet accessible introduction to differential equations and dynamical systems* Includes bifurcation theory throughout* Contains numerous explorations for students to embark uponNEW IN THIS EDITION* New contemporary material and updated applications* Revisions throughout the text, including simplification...

  10. Multigrid solution of diffusion equations on distributed memory multiprocessor systems

    International Nuclear Information System (INIS)

    Finnemann, H.

    1988-01-01

    The subject is the solution of partial differential equations for simulation of the reactor core on high-performance computers. The parallelization and implementation of nodal multigrid diffusion algorithms on array and ring configurations of the DIRMU multiprocessor system is outlined. The particular iteration scheme employed in the nodal expansion method appears similarly efficient in serial and parallel environments. The combination of modern multi-level techniques with innovative hardware (vector-multiprocessor systems) provides powerful tools needed for real time simulation of physical systems. The parallel efficiencies range from 70 to 90%. The same performance is estimated for large problems on large multiprocessor systems being designed at present. (orig.) [de

  11. Randomly transitional phenomena in the system governed by Duffing's equation

    International Nuclear Information System (INIS)

    Ueda, Yoshisuke.

    1978-06-01

    This paper deals with turbulent or chaotic phenomena which occur in the system governed by Duffing's equation, a special type of 2-dimensional periodic systems. By using analog and digital computers, experiments are undertaken with special reference to the changes of attractors and of average power spectra of the random processes under the variation of the system parameters. On the basis of the experimental results, an outline of the random process is made clear. The results obtained in this paper will be applied to the phenomena of the same kind which occur in 3-dimensional autonomous systems. (author)

  12. Master equation approach to the intra-urban passenger flow and application to the Metropolitan Seoul Subway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keumsook [Department of Geography, Sungshin University, Seoul 136-742 (Korea, Republic of); Goh, Segun; Choi, M Y [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Jong Soo [School of Information Technology, Sungshin University, Seoul 136-742 (Korea, Republic of); Jung, Woo-Sung, E-mail: kslee@sungshin.ac.kr, E-mail: mychoi@snu.ac.kr [Department of Physics and Basic Science Research Institute, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2011-03-18

    The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is found to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.

  13. Master equation approach to the intra-urban passenger flow and application to the Metropolitan Seoul Subway system

    International Nuclear Information System (INIS)

    Lee, Keumsook; Goh, Segun; Choi, M Y; Park, Jong Soo; Jung, Woo-Sung

    2011-01-01

    The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is found to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.

  14. Normal-Mode Splitting in a Weakly Coupled Optomechanical System

    Science.gov (United States)

    Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David

    2018-02-01

    Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.

  15. Dynamic pathways to mediate reactions buried in thermal fluctuations. I. Time-dependent normal form theory for multidimensional Langevin equation.

    Science.gov (United States)

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2009-12-14

    We present a novel theory which enables us to explore the mechanism of reaction selectivity and robust functions in complex systems persisting under thermal fluctuation. The theory constructs a nonlinear coordinate transformation so that the equation of motion for the new reaction coordinate is independent of the other nonreactive coordinates in the presence of thermal fluctuation. In this article we suppose that reacting systems subject to thermal noise are described by a multidimensional Langevin equation without a priori assumption for the form of potential. The reaction coordinate is composed not only of all the coordinates and velocities associated with the system (solute) but also of the random force exerted by the environment (solvent) with friction constants. The sign of the reaction coordinate at any instantaneous moment in the region of a saddle determines the fate of the reaction, i.e., whether the reaction will proceed through to the products or go back to the reactants. By assuming the statistical properties of the random force, one can know a priori a well-defined boundary of the reaction which separates the full position-velocity space in the saddle region into mainly reactive and mainly nonreactive regions even under thermal fluctuation. The analytical expression of the reaction coordinate provides the firm foundation on the mechanism of how and why reaction proceeds in thermal fluctuating environments.

  16. Experimental quantum computing to solve systems of linear equations.

    Science.gov (United States)

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  17. Planck constant as spectral parameter in integrable systems and KZB equations

    Science.gov (United States)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-10-01

    We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

  18. Is Yang-Mills equation a totally integrable system. Lecture III

    International Nuclear Information System (INIS)

    Chau Wang, L.L.

    1981-01-01

    Topics covered include: loop-space formulation of gauge theory - loop-space chiral equation; two dimensional chiral equation - conservation laws, linear system and integrability; and parallel development for the loop-space chiral equation - subtlety

  19. Advanced-Retarded Differential Equations in Quantum Photonic Systems

    Science.gov (United States)

    Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique

    2017-01-01

    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090

  20. Solution of generalized control system equations at steady state

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-01-01

    Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it

  1. Resummed memory kernels in generalized system-bath master equations

    International Nuclear Information System (INIS)

    Mavros, Michael G.; Van Voorhis, Troy

    2014-01-01

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics

  2. Solving Fully Fuzzy Linear System of Equations in General Form

    Directory of Open Access Journals (Sweden)

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  3. Construction of normal-regular decisions of Bessel typed special system

    Science.gov (United States)

    Tasmambetov, Zhaksylyk N.; Talipova, Meiramgul Zh.

    2017-09-01

    Studying a special system of differential equations in the separate production of the second order is solved by the degenerate hypergeometric function reducing to the Bessel functions of two variables. To construct a solution of this system near regular and irregular singularities, we use the method of Frobenius-Latysheva applying the concepts of rank and antirank. There is proved the basic theorem that establishes the existence of four linearly independent solutions of studying system type of Bessel. To prove the existence of normal-regular solutions we establish necessary conditions for the existence of such solutions. The existence and convergence of a normally regular solution are shown using the notion of rank and antirank.

  4. Topological resilience in non-normal networked systems

    Science.gov (United States)

    Asllani, Malbor; Carletti, Timoteo

    2018-04-01

    The network of interactions in complex systems strongly influences their resilience and the system capability to resist external perturbations or structural damages and to promptly recover thereafter. The phenomenon manifests itself in different domains, e.g., parasitic species invasion in ecosystems or cascade failures in human-made networks. Understanding the topological features of the networks that affect the resilience phenomenon remains a challenging goal for the design of robust complex systems. We hereby introduce the concept of non-normal networks, namely networks whose adjacency matrices are non-normal, propose a generating model, and show that such a feature can drastically change the global dynamics through an amplification of the system response to exogenous disturbances and eventually impact the system resilience. This early stage transient period can induce the formation of inhomogeneous patterns, even in systems involving a single diffusing agent, providing thus a new kind of dynamical instability complementary to the Turing one. We provide, first, an illustrative application of this result to ecology by proposing a mechanism to mute the Allee effect and, second, we propose a model of virus spreading in a population of commuters moving using a non-normal transport network, the London Tube.

  5. Equation-free model reduction for complex dynamical systems

    International Nuclear Information System (INIS)

    Le Maitre, O. P.; Mathelin, L.; Le Maitre, O. P.

    2010-01-01

    This paper presents a reduced model strategy for simulation of complex physical systems. A classical reduced basis is first constructed relying on proper orthogonal decomposition of the system. Then, unlike the alternative approaches, such as Galerkin projection schemes for instance, an equation-free reduced model is constructed. It consists in the determination of an explicit transformation, or mapping, for the evolution over a coarse time-step of the projection coefficients of the system state on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the projection coefficients and is computed once and for all in a pre-processing stage using the detailed model equation of the system. The reduced system can then be advanced in time by successive applications of the mapping. The CPU cost of the method lies essentially in the mapping approximation which is performed offline, in a parallel fashion, and only once. Subsequent application of the mapping to perform a time-integration is carried out at a low cost thanks to its explicit character. Application of the method is considered for the 2-D flow around a circular cylinder. We investigate the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and transient stages. It is shown that the method leads to a stable and accurate time-integration for only a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated and the reduced basis remains relevant for the dynamics investigated. (authors)

  6. Systemic sclerosis with normal or nonspecific nailfold capillaroscopy.

    Science.gov (United States)

    Fichel, Fanny; Baudot, Nathalie; Gaitz, Jean-Pierre; Trad, Salim; Barbe, Coralie; Francès, Camille; Senet, Patricia

    2014-01-01

    In systemic sclerosis (SSc), a specific nailfold videocapillaroscopy (NVC) pattern is observed in 90% of cases and seems to be associated with severity and progression of the disease. To describe the characteristics of SSc patients with normal or nonspecific (normal/nonspecific) NVC. In a retrospective cohort study, clinical features and visceral involvements of 25 SSc cases with normal/nonspecific NVC were compared to 63 SSc controls with the SSc-specific NVC pattern. Normal/nonspecific NVC versus SSc-specific NVC pattern was significantly associated with absence of skin sclerosis (32 vs. 6.3%, p = 0.004), absence of telangiectasia (47.8 vs. 17.3%, p = 0.006) and absence of sclerodactyly (60 vs. 25.4%, p = 0.002), and less frequent severe pulmonary involvement (26.3 vs. 58.2%, p = 0.017). Normal/nonspecific NVC in SSc patients appears to be associated with less severe skin involvement and less frequent severe pulmonary involvement. © 2014 S. Karger AG, Basel.

  7. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems

    International Nuclear Information System (INIS)

    Liu Chunliang; Xie Xi; Chen Yinbao

    1991-01-01

    The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation

  8. Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2012-10-01

    Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.

  9. Cellular solutions for the Poisson equation in extended systems

    International Nuclear Information System (INIS)

    Zhang, X.; Butler, W.H.; MacLaren, J.M.; van Ek, J.

    1994-01-01

    The Poisson equation for the electrostatic potential in a solid is solved using three different cellular techniques. The relative merits of these different approaches are discussed for two test charge densities for which an analytic solution to the Poisson equation is known. The first approach uses full-cell multiple-scattering theory and results in the famililar structure constant and multipole moment expansion. This solution is shown to be valid everywhere inside the cell, although for points outside the muffin-tin sphere but inside the cell the sums must be performed in the correct order to yield meaningful results. A modification of the multiple-scattering-theory approach yields a second method, a Green-function cellular method, which only requires the solution of a nearest-neighbor linear system of equations. A third approach, a related variational cellular method, is also derived. The variational cellular approach is shown to be the most accurate and reliable, and to have the best convergence in angular momentum of the three methods. Coulomb energies accurate to within 10 -6 hartree are easily achieved with the variational cellular approach, demonstrating the practicality of the approach in electronic structure calculations

  10. Analytical solutions for systems of partial differential-algebraic equations.

    Science.gov (United States)

    Benhammouda, Brahim; Vazquez-Leal, Hector

    2014-01-01

    This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.

  11. Ferroelectric-antiferroelectric mixed systems. Equation of state, thermodynamic functions

    Directory of Open Access Journals (Sweden)

    N.A.Korynevskii

    2006-01-01

    Full Text Available The problem of equation of state for ferroelectric-antiferroelectric mixed systems in the whole region of a concentration change (0≤n≤1 is discussed. The main peculiarity of the presented model turns out to be the possibility for the site dipole momentum to be oriented ferroelectrically in z-direction and antiferroelectrically in x-direction. Such a situation takes place in mixed compounds of KDP type. The different phases (ferro-, antiferro-, paraelectric, dipole glass and some combinations of them have been found and analyzed.

  12. Integrability of a system of two nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhukhunashvili, V.Z.

    1989-01-01

    In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants

  13. Iterative solution of large sparse systems of equations

    CERN Document Server

    Hackbusch, Wolfgang

    2016-01-01

    In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.

  14. Experiments and Recommendations for Partitioning Systems of Equations

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-06-01

    Full Text Available Partitioning the systems of equations is a very important process when solving it on a parallel computer. This paper presents some criteria which leads to more efficient parallelization, that must be taken into consideration. New criteria added to preconditioning process by reducing average bandwidth are pro- posed in this paper. These new criteria lead to a combination between preconditioning and partitioning of systems equations, so no need two distinct algorithms/processes. In our proposed methods - where the preconditioning is done by reducing the average bandwidth- two directions were followed in terms of partitioning: for a given preconditioned system determining the best partitioning (or one as close and the second consist in achieving an adequate preconditioning, depending on a given/desired partitioning. A mixed method it is also proposed. Experimental results, conclusions and recommendations, obtained after parallel implementation of conjugate gradient on IBM BlueGene /P supercomputer- based on a synchronous model of parallelization- are also presented in this paper.

  15. A normalized PID controller in networked control systems with varying time delays.

    Science.gov (United States)

    Tran, Hoang-Dung; Guan, Zhi-Hong; Dang, Xuan-Kien; Cheng, Xin-Ming; Yuan, Fu-Shun

    2013-09-01

    It requires not only simplicity and flexibility but also high specified stability and robustness of system to design a PI/PID controller in such complicated networked control systems (NCSs) with delays. By gain and phase margins approach, this paper proposes a novel normalized PI/PID controller for NCSs based on analyzing the stability and robustness of system under the effect of network-induced delays. Specifically, We take into account the total measured network delays to formulate the gain and phase margins of the closed-loop system in the form of a set of equations. With pre-specified values of gain and phase margins, this set of equations is then solved for calculating the closed forms of control parameters which enable us to propose the normalized PI/PID controller simultaneously satisfying the following two requirements: (1) simplicity without re-solving the optimization problem for a new process, (2) high flexibility to cope with large scale of random delays and deal with many different processes in different conditions of network. Furthermore, in our method, the upper bound of random delay can be estimated to indicate the operating domain of proposed PI/PID controller. Finally, simulation results are shown to demonstrate the advantages of our proposed controller in many situations of network-induced delays. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Discrete Painlevé equations from Y-systems

    International Nuclear Information System (INIS)

    Hone, Andrew N W; Inoue, Rei

    2014-01-01

    We consider T-systems and Y-systems arising from cluster mutations applied to quivers that have the property of being periodic under a sequence of mutations. The corresponding nonlinear recurrences for cluster variables (coefficient-free T-systems) were described in the work of Fordy and Marsh, who completely classified all such quivers in the case of period 1, and characterized them in terms of the skew-symmetric exchange matrix B that defines the quiver. A broader notion of periodicity in general cluster algebras was introduced by Nakanishi, who also described the corresponding Y-systems, and T-systems with coefficients. A result of Fomin and Zelevinsky says that the coefficient-free T-system provides a solution of the Y-system. In this paper, we show that in general there is a discrepancy between these two systems, in the sense that the solution of the former does not correspond to the general solution of the latter. This discrepancy is removed by introducing additional non-autonomous coefficients into the T-system. In particular, we focus on the period 1 case and show that, when the exchange matrix B is degenerate, discrete Painlevé equations can arise from this construction. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  17. A New RF System for the CEBAF Normal Conducting Cavities

    International Nuclear Information System (INIS)

    Curt Hovater; Hai Dong; Alicia Hofler; George Lahti; John Musson; Tomasz Plawski

    2004-01-01

    The CEBAF Accelerator at Jefferson Lab is a 6 GeV five pass electron accelerator consisting of two superconducting linacs joined by independent magnetic transport arcs. CEBAF also has numerous normal conducting cavities for beam conditioning in the injector and for RF extraction to the experimental halls. The RF systems that presently control these cavities are becoming expensive to maintain, therefore a replacement RF control system is now being developed. For the new RF system, cavity field control is maintained digitally using an FPGA which contains the feedback algorithm. The system incorporates digital down conversion, using quadrature under-sampling at an IF frequency of 70 MHz. The VXI bus-crate was chosen as the operating platform because of its excellent RFI/EMI properties and its compatibility with the EPICS control system. The normal conducting cavities operate at both the 1497 MHz accelerating frequency and the sub-harmonic frequency of 499 MHz. To accommodate this, the ne w design will use different receiver-transmitter daughter cards for each frequency. This paper discusses the development of the new RF system and reports on initial results

  18. Normalization of the collage regions of iterated function systems

    Science.gov (United States)

    Zhang, Zhengbing; Zhang, Wei

    2012-11-01

    Fractal graphics, generated with iterated function systems (IFS), have been applied in broad areas. Since the collage regions of different IFS may be different, it is difficult to respectively show the attractors of iterated function systems in a same region on a computer screen using one program without modifying the display parameters. An algorithm is proposed in this paper to solve this problem. A set of transforms are repeatedly applied to modify the coefficients of the IFS so that the collage region of the resulted IFS changes toward the unit square. Experimental results demonstrate that the collage region of any IFS can be normalized to the unit square with the proposed method.

  19. Tunneling junction as an open system. Normal tunneling

    International Nuclear Information System (INIS)

    Ono, Y.

    1978-01-01

    The method of the tunneling Hamiltonian is reformulated in the case of normal tunneling by introducing two independent particle baths. Due to the baths, it becomes possible to realize a final stationary state where the electron numbers of the two electrodes in the tunneling system are maintained constant and where there exists a stationary current. The effect of the bath-system couplings on the current-voltage characteristics of the junction is discussed in relation to the usual expression of the current as a function of voltage. (Auth.)

  20. INTERVAL STATE ESTIMATION FOR SINGULAR DIFFERENTIAL EQUATION SYSTEMS WITH DELAYS

    Directory of Open Access Journals (Sweden)

    T. A. Kharkovskaia

    2016-07-01

    Full Text Available The paper deals with linear differential equation systems with algebraic restrictions (singular systems and a method of interval observer design for this kind of systems. The systems contain constant time delay, measurement noise and disturbances. Interval observer synthesis is based on monotone and cooperative systems technique, linear matrix inequations, Lyapunov function theory and interval arithmetic. The set of conditions that gives the possibility for interval observer synthesis is proposed. Results of synthesized observer operation are shown on the example of dynamical interindustry balance model. The advantages of proposed method are that it is adapted to observer design for uncertain systems, if the intervals of admissible values for uncertain parameters are given. The designed observer is capable to provide asymptotically definite limits on the estimation accuracy, since the interval of admissible values for the object state is defined at every instant. The obtained result provides an opportunity to develop the interval estimation theory for complex systems that contain parametric uncertainty, varying delay and nonlinear elements. Interval observers increasingly find applications in economics, electrical engineering, mechanical systems with constraints and optimal flow control.

  1. Normalized noise power spectrum of full field digital mammography system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (Author)

  2. Normalized Noise Power Spectrum of Full Field Digital Mammography System

    International Nuclear Information System (INIS)

    Isa, Norriza Mohd; Wan Hassan, Wan Muhamad Saridan

    2010-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality.

  3. Transforming parts of a differential equations system to difference equations as a method for run-time savings in NONMEM.

    Science.gov (United States)

    Petersson, K J F; Friberg, L E; Karlsson, M O

    2010-10-01

    Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.

  4. Using Difference Equation to Model Discrete-time Behavior in System Dynamics Modeling

    NARCIS (Netherlands)

    Hesan, R.; Ghorbani, A.; Dignum, M.V.

    2014-01-01

    In system dynamics modeling, differential equations have been used as the basic mathematical operator. Using difference equation to build system dynamics models instead of differential equation, can be insightful for studying small organizations or systems with micro behavior. In this paper we

  5. System of adjoint P1 equations for neutron moderation

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  6. Linear homotopy solution of nonlinear systems of equations in geodesy

    Science.gov (United States)

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  7. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    Science.gov (United States)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  8. Langevin equation in systems with also negative temperatures

    Science.gov (United States)

    Baldovin, Marco; Puglisi, Andrea; Vulpiani, Angelo

    2018-04-01

    We discuss how to derive a Langevin equation (LE) in non standard systems, i.e. when the kinetic part of the Hamiltonian is not the usual quadratic function. This generalization allows to consider also cases with negative absolute temperature. We first give some phenomenological arguments suggesting the shape of the viscous drift, replacing the usual linear viscous damping, and its relation with the diffusion coefficient modulating the white noise term. As a second step, we implement a procedure to reconstruct the drift and the diffusion term of the LE from the time-series of the momentum of a heavy particle embedded in a large Hamiltonian system. The results of our reconstruction are in good agreement with the phenomenological arguments. Applying the method to systems with negative temperature, we can observe that also in this case there is a suitable LE, obtained with a precise protocol, able to reproduce in a proper way the statistical features of the slow variables. In other words, even in this context, systems with negative temperature do not show any pathology.

  9. Nonlinear perturbations of systems of partial differential equations with constant coefficients

    Directory of Open Access Journals (Sweden)

    Carmen J. Vanegas

    2000-01-01

    Full Text Available In this article, we show the existence of solutions to boundary-value problems, consisting of nonlinear systems of partial differential equations with constant coefficients. For this purpose, we use the right inverse of an associated operator and a fix point argument. As illustrations, we apply this method to Helmholtz equations and to second order systems of elliptic equations.

  10. ON ENTIRE SOLUTIONS OF TWO TYPES OF SYSTEMS OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Lingyun GAO

    2017-01-01

    In this paper,we will mainly investigate entire solutions with finite order of two types of systems of differential-difference equations,and obtain some interesting results.It extends some results concerning complex differential (difference) equations to the systems of differential-difference equations.

  11. Relating systems properties of the wave and the Schrödinger equation

    NARCIS (Netherlands)

    Zwart, Heiko J.; Le Gorrec, Yann; Maschke, B.M.

    In this article we show that systems properties of the systems governed by the second order differential equation d2wdt2=−A0w and the first order differential equation dzdt=iA0z are related. This can be used to show that, for instance, exact observability of the N-dimensional wave equation implies

  12. Excess Entropy Production in Quantum System: Quantum Master Equation Approach

    Science.gov (United States)

    Nakajima, Satoshi; Tokura, Yasuhiro

    2017-12-01

    For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.

  13. Generation of static solutions of the self-consistent system of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Anchikov, A.M.; Daishev, R.A.

    1988-01-01

    A theorem is proved, according to which to each solution of the Einstein equations with an arbitrary momentum-energy tensor in the right hand side there corresponds a static solution of the self-consistent system of Einstein-Maxwell equations. As a consequence of this theorem, a method is established of generating static solutions of the self-consistent system of Einstein-Maxwell equations with a charged grain as a source of vacuum solutions of the Einstein equations

  14. Solving differential–algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas

    2006-01-01

    of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....

  15. Solving differential-algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph

    2006-01-01

    of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....

  16. ODEPACK, Initial Value Problems of Ordinary Differential Equation System

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    I - Description of program or function: ODEPACK is a collection of Fortran solvers for the initial value problem for ordinary differential equation systems. It consists of nine solvers, namely a basic solver called LSODE and eight variants of it -- LSODES, LSODA, LSODAR, LSODPK, LSODKR, LSODI, LSOIBT, and LSODIS. The collection is suitable for both stiff and non-stiff systems. It includes solvers for systems given in explicit form, dy/dt = f(t,y), and also solvers for systems given in linearly implicit form, A(t,y) dy/dt = g(t,y). Two of the solvers use general sparse matrix solvers for the linear systems that arise. Two others use iterative (preconditioned Krylov) methods instead of direct methods for these linear systems. The most recent addition is LSODIS, which solves implicit problems with general sparse treatment of all matrices involved. The ODEPACK solvers are written in standard Fortran 77, with a few exceptions, and with minimal machine dependencies. There are separate double and single precision versions of ODEPACK. The actual solver names are those given above with a prefix of D- or S- for the double or single precision version, respectively, i.e. DLSODE/SLSODE, etc. Each solver consists of a main driver subroutine having the same name as the solver and some number of subordinate routines. For each solver, there is also a demonstration program, which solves one or two simple problems in a somewhat self-checking manner. A. Solvers for explicitly given systems. For each of the following solvers, it is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. 1. LSODE (Livermore Solver for Ordinary Differential Equations) is the basic solver of the collection. It solves stiff and non-stiff systems of the form dy/dt = f. In the stiff case, it treats the Jacobian matrix df/dy as either a dense (full) or a banded matrix, and as

  17. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  18. Computer programs for solving systems of nonlinear equations

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1978-03-01

    Computer programs to find a solution, usually the one closest to some guess, of a system of simultaneous nonlinear equations are provided for real functions of the real arguments. These are based on quasi-Newton methods or projection methods, which are briefly reviewed in the present report. Benchmark tests were performed on these subroutines to grasp their characteristics. As the program not requiring analytical forms of the derivatives of the Jacobian matrix, we have dealt with NS01A of Powell, NS03A of Reid for a system with the sparse Jacobian and NONLIN of Brown. Of these three subroutines of quasi-Newton methods, NONLIN is shown to be the most useful because of its stable algorithm and short computation time. On the other hand, as the subroutine for which the derivatives of the Jacobian are to be supplied analytically, we have tested INTECH of a quasi-Newton method based on the Boggs' algorithm, PROJA of Georg and Keller based on the projection method and an option of NS03A. The results have shown that INTECH, treating variables which appear only linearly in the functions separately, takes the shortest computation time, on the whole, while the projection method requires further research to find an optimal algorithm. (auth.)

  19. The Thalamostriatal System in Normal and Diseased States

    Directory of Open Access Journals (Sweden)

    Yoland eSmith

    2014-01-01

    Full Text Available Because of our limited knowledge of the functional role of the thalamostriatal system, this massive network is often ignored in models of the pathophysiology of brain disorders of basal ganglia origin, such as Parkinson’s disease. However, over the past decade, significant advances have led to a deeper understanding of the anatomical, electrophysiological, behavioral and pathological aspects of the thalamostriatal system. The cloning of the vesicular glutamate transporters 1 and 2 (vGluT1 and vGluT2 has provided powerful tools to differentiate thalamostriatal from corticostriatal glutamatergic terminals, allowing us to carry out comparative studies of the synaptology and plasticity of these two systems in normal and pathological conditions. Findings from these studies have led to the recognition of two thalamostriatal systems, based on their differential origin from the caudal intralaminar nuclear group, the centre median/parafascicular (CM/Pf complex, or other thalamic nuclei. The recent use of optogenetic methods supports this model of the organization of the thalamostriatal systems, showing differences in functionality and glutamate receptor localization at thalamostriatal synapses from Pf and other thalamic nuclei. At the functional level, evidence largely gathered from thalamic recordings in awake monkeys strongly suggests that the thalamostriatal system from the CM/Pf is involved in regulating alertness and switching behaviors. Importantly, there is evidence that the caudal intralaminar nuclei and their axonal projections to the striatum partly degenerate in Parkinson’s disease and that CM/Pf deep brain stimulation may be therapeutically useful in several movement disorders.

  20. Solution of Large Systems of Linear Equations with Quadratic or Non-Quadratic Matrices and Deconvoiution of Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K

    1967-12-15

    The numerical deconvolution of spectra is equivalent to the solution of a (large) system of linear equations with a matrix which is not necessarily a square matrix. The demand that the square sum of the residual errors shall be minimum is not in general sufficient to ensure a unique or 'sound' solution. Therefore other demands which may include the demand for minimum square errors are introduced which lead to 'sound' and 'non-oscillatory' solutions irrespective of the shape of the original matrix and of the determinant of the matrix of the normal equations.

  1. Maxwell-Vlasov equations as a continuous Hamiltonian system

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1980-09-01

    The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion

  2. On normal modes and dispersive properties of plasma systems

    International Nuclear Information System (INIS)

    Weiland, J.

    1976-01-01

    The description of nonlinear wave phenomena in terms of normal modes contra that of electric fields is discussed. The possibility of defining higher order normal modes is pointed out and the field energy is expressed in terms of the normal mode and the electric field. (Auth.)

  3. On the specification of structural equation models for ecological systems

    Science.gov (United States)

    Grace, J.B.; Michael, Anderson T.; Han, O.; Scheiner, S.M.

    2010-01-01

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical concepts using latent variables. In this paper, we discuss characteristics of ecological theory and some of the challenges for proper specification of theoretical ideas in structural equation models (SE models). In our presentation, we describe some of the requirements for classical latent variable models in which observed variables (indicators) are interpreted as the effects of underlying causes. We also describe alternative model specifications in which indicators are interpreted as having causal influences on the theoretical concepts. We suggest that this latter nonclassical specification (which involves another variable type-the composite) will often be appropriate for ecological studies because of the multifaceted nature of our theoretical concepts. In this paper, we employ the use of meta-models to aid the translation of theory into SE models and also to facilitate our ability to relate results back to our theories. We demonstrate our approach by showing how a synthetic theory of grassland biodiversity can be evaluated using SEM and data from a coastal grassland. In this example, the theory focuses on the responses of species richness to abiotic stress and disturbance, both directly and through intervening effects on community biomass. Models examined include both those based on classical forms (where each concept is represented using a single latent variable) and also ones in which the concepts are recognized to be multifaceted and modeled as such. To address the challenge of matching SE models with the conceptual level of our theory, two approaches are illustrated, compositing and aggregation. Both approaches are shown to have merits, with the former being preferable for cases where the multiple facets of a concept have widely differing effects in the

  4. The soliton solution of BBGKY quantum kinetic equations chain for different type particles system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu.; Avazov, U.; Hassan, T.

    2006-12-01

    In the present paper on the basis of BBGKY chain of quantum kinetic equations the chain of equations for correlation matrices is derived, describing the evolution of a system of different types particles, which interact by pair potential. The series, which is the solution of this chain of equations for correlation matrices, is suggested. Using this series the solution of the last chain of equations is reduced to a solution of a set of homogeneous and nonhomogeneous von-Neumann's kinetic equations (analogue of Vlasov equations for quantum case). The first and second equations of this set of equations coincide with the first and second kinetic equations of the set, which is used in plasma physics. For an potential in the form of Dirac delta function, the solution of von-Neumann equation is defined through soliton solution of nonlinear Schrodinger equations. Based on von-Neumann equation one can define all terms of series, which is a solution of a chain of equations for correlation matrices. On the basis of these correlation matrices for a system of different types of particles we can define exact solution of BBGKY chain of quantum kinetic equations

  5. Microscopic coefficients for the quantum master equation of a Fermi system

    International Nuclear Information System (INIS)

    Stefanescu, E.; Sandulescu, A.

    2002-01-01

    In a previous paper, we derived a master equation for fermions, of Lindblad's form, with coefficients depending on microscopic quantities. In this paper, we study the properties of the dissipative coefficients taking into account the explicit expressions of: (a) the matrix elements of the dissipative potential, evaluated from the condition that, essentially, this potential induces transitions among the system eigenstates without significantly modifying these states, (b) the densities of the environment states according to the Thomas-Fermi model, and (c) the occupation probabilities of these states taken as a Fermi-Dirac distribution. The matrix of these coefficients correctly describes the system dynamics: (a) for a normal, Fermi-Dirac distribution of the environment population, the decays dominate the excitation processes; (b) for an inverted (exotic) distribution of this population, specific to a clustering state, the excitation processes are dominant. (author)

  6. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    International Nuclear Information System (INIS)

    Brett, Tobias; Galla, Tobias

    2014-01-01

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period

  7. Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system.

    Science.gov (United States)

    Brett, Tobias; Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  8. Poincaré-MacMillan Equations of Motion for a Nonlinear Nonholonomic Dynamical System

    Science.gov (United States)

    Amjad, Hussain; Syed Tauseef, Mohyud-Din; Ahmet, Yildirim

    2012-03-01

    MacMillan's equations are extended to Poincaré's formalism, and MacMillan's equations for nonlinear nonholonomic systems are obtained in terms of Poincaré parameters. The equivalence of the results obtained here with other forms of equations of motion is demonstrated. An illustrative example of the theory is provided as well.

  9. On realization of nonlinear systems described by higher-order differential equations

    NARCIS (Netherlands)

    van der Schaft, Arjan

    1987-01-01

    We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the

  10. A canonical form of the equation of motion of linear dynamical systems

    Science.gov (United States)

    Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias

    2018-03-01

    The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

  11. Discrete systems related to the sixth Painleve equation

    International Nuclear Information System (INIS)

    Ramani, A; Ohta, Y; Grammaticos, B

    2006-01-01

    We present discrete Painleve equations which can be obtained as contiguity relations of the solutions of the continuous Painleve VI. The derivation is based on the geometry of the affine Weyl group D (1) 4 associated with the bilinear formalism. As an offshoot we also present the contiguity relations of the solutions of the Bureau-Ablowitz-Fokas equation, which is a Miura transformed, 'modified', P VI

  12. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    International Nuclear Information System (INIS)

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  13. Solution of systems of linear algebraic equations by the method of summation of divergent series

    International Nuclear Information System (INIS)

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  14. Asymptotic behavior of solutions of linear multi-order fractional differential equation systems

    OpenAIRE

    Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.

    2017-01-01

    In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...

  15. Equations of motion for free-flight systems of rotating-translating bodies

    International Nuclear Information System (INIS)

    Hodapp, A.E. Jr.

    1976-09-01

    General vector differential equations of motion are developed for a system of rotating-translating, unbalanced, constant mass bodies. Complete flexibility is provided in placement of the reference coordinates within the system of bodies and in placement of body fixed axes within each body. Example cases are presented to demonstrate the ease in reduction of these equations to the equations of motion for systems of interest

  16. Magnetic properties of anyonic systems in a normal phase

    International Nuclear Information System (INIS)

    Aronov, I.E.; Naftulin, S.A.

    1992-08-01

    We apply the concept of fractional statistics to the two-dimensional conductors. The effective Lagrangian of an external magnetic field in anyon medium at finite temperature and density is presented. The diamagnetic response to the external field is studied at temperatures above T c (i.e. in the normal phase) for various values of external parameters. Oscillations of both thermodynamic (the de Haas - van Alphen effect) and kinetic (the Shubnikov - de Haas effect) quantities are re-examined. Numerous peculiarities arise from the fact that anyon systems possess a non-zero ''statistical'' flux Φ (which is known to be a manifestation of the spontaneous parity breakdown). The cyclotron resonance is suggested as a direct test on possible parity violation (which is the key point of anyonics). The cyclotron mass dependences on external parameters reported in a series of experimental articles (H. Kublbeck and J.P. Kotthaus, Phys. Rev. Lett. 35, 1019 (1975); G. Abstreiter, J.P. Kotthaus, J.F. Koch and G. Dorda, Phys. Rev. B14, 2480 (1976)) may be attributed to an unusual behaviour or magnetic permeability in anyon medium. (author). 20 refs, 2 figs

  17. Developing Visualization Support System for Teaching/Learning Database Normalization

    Science.gov (United States)

    Folorunso, Olusegun; Akinwale, AdioTaofeek

    2010-01-01

    Purpose: In tertiary institution, some students find it hard to learn database design theory, in particular, database normalization. The purpose of this paper is to develop a visualization tool to give students an interactive hands-on experience in database normalization process. Design/methodology/approach: The model-view-controller architecture…

  18. 75 FR 35098 - Federal Employees' Retirement System; Normal Cost Percentages

    Science.gov (United States)

    2010-06-21

    ... normal cost percentages and requests for actuarial assumptions and data to the Board of Actuaries, care of Gregory Kissel, Actuary, Office of Planning and Policy Analysis, Office of Personnel Management... Regulations, regulates how normal costs are determined. Recently, the Board of Actuaries of the Civil Service...

  19. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  20. Towards an Explanation of Overeating Patterns Among Normal Weight College Women: Development and Validation of a Structural Equation Model

    OpenAIRE

    Russ, Christine Runyan II

    1998-01-01

    Although research describing relationships between psychosocial factors and various eating patterns is growing, a model which explains the mechanisms through which these factors may operate is lacking. A model to explain overeating patterns among normal weight college females was developed and tested. The model contained the following variables: global adjustment, eating and weight cognitions, emotional eating, and self-efficacy. Three hundred ninety-o...

  1. The Schroedinger-Newton equation as model of self-gravitating quantum systems

    International Nuclear Information System (INIS)

    Grossardt, Andre

    2013-01-01

    The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem

  2. Multi criteria evaluation for universal soil loss equation based on geographic information system

    Science.gov (United States)

    Purwaamijaya, I. M.

    2018-05-01

    The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.

  3. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  4. Solving nonlinear evolution equation system using two different methods

    Science.gov (United States)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  5. Environmental effects of normal and off-normal releases of tritium from CTR systems

    International Nuclear Information System (INIS)

    McKone, T.E.

    1978-08-01

    Near term fusion technology will utilize the deuterium-tritium reaction. To quantify the magnitude of the hazard presented by major tritium release mechanisms, a method is presented for determining doses to the public from releases of tritium as tritiated water vapor or tritiated lithium compounds. Inclusion of this method in a computer model is described. This model uses the Gaussian dispersion method to predict distribution of tritium species in the downwind environment. Movement of tritium into biological systems is determined by treating these systems as a series of interacting water compartments. Dispersion and uptake calculations are applied to two sample sites in order to predict health effects. These effects are compared to the long range effect of introducing tritium into the world water system

  6. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  7. Wigner distribution functions for complex dynamical systems: the emergence of the Wigner-Boltzmann equation.

    Science.gov (United States)

    Sels, Dries; Brosens, Fons

    2013-10-01

    The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.

  8. Adams Predictor-Corrector Systems for Solving Fuzzy Differential Equations

    Directory of Open Access Journals (Sweden)

    Dequan Shang

    2013-01-01

    Full Text Available A predictor-corrector algorithm and an improved predictor-corrector (IPC algorithm based on Adams method are proposed to solve first-order differential equations with fuzzy initial condition. These algorithms are generated by updating the Adams predictor-corrector method and their convergence is also analyzed. Finally, the proposed methods are illustrated by solving an example.

  9. On the specification of structural equation models for ecological systems

    NARCIS (Netherlands)

    Grace, James B.; Anderson, T. Michael; Olff, Han; Scheiner, Samuel M.

    The use of structural equation modeling (SEM) is often motivated by its utility for investigating complex networks of relationships, but also because of its promise as a means of representing theoretical Concepts using latent variables. In this paper, we discuss characteristics of ecological theory

  10. An integrated approach to determine phenomenological equations in metallic systems

    Science.gov (United States)

    Ghamarian, Iman

    It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.

  11. Quarter-Sweep Iteration Concept on Conjugate Gradient Normal Residual Method via Second Order Quadrature - Finite Difference Schemes for Solving Fredholm Integro-Differential Equations

    International Nuclear Information System (INIS)

    Aruchunan, E.

    2015-01-01

    In this paper, we have examined the effectiveness of the quarter-sweep iteration concept on conjugate gradient normal residual (CGNR) iterative method by using composite Simpson's (CS) and finite difference (FD) discretization schemes in solving Fredholm integro-differential equations. For comparison purposes, Gauss- Seidel (GS) and the standard or full- and half-sweep CGNR methods namely FSCGNR and HSCGNR are also presented. To validate the efficacy of the proposed method, several analyses were carried out such as computational complexity and percentage reduction on the proposed and existing methods. (author)

  12. Evaluating accounting information systems that support multiple GAAP reporting using Normalized Systems Theory

    NARCIS (Netherlands)

    Vanhoof, E.; Huysmans, P.; Aerts, Walter; Verelst, J.; Aveiro, D.; Tribolet, J.; Gouveia, D.

    2014-01-01

    This paper uses a mixed methods approach of design science and case study research to evaluate structures of Accounting Information Systems (AIS) that report in multiple Generally Accepted Accounting Principles (GAAP), using Normalized Systems Theory (NST). To comply with regulation, many companies

  13. A structure-preserving approach to normal form analysis of power systems; Una propuesta de preservacion de estructura al analisis de su forma normal en sistemas de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Carrillo, Irma

    2008-01-15

    Power system dynamic behavior is inherently nonlinear and is driven by different processes at different time scales. The size and complexity of these mechanisms has stimulated the search for methods that reduce the original dimension but retain a certain degree of accuracy. In this dissertation, a novel nonlinear dynamical analysis method for the analysis of large amplitude oscillations that embraces ideas from normal form theory and singular perturbation techniques is proposed. This approach allows the full potential of the normal form method to be reached, and is suitably general for application to a wide variety of nonlinear systems. Drawing on the formal theory of dynamical systems, a structure-preserving model of the system is developed that preservers network and load characteristics. By exploiting the separation of fast and slow time scales of the model, an efficient approach based on singular perturbation techniques, is then derived for constructing a nonlinear power system representation that accurately preserves network structure. The method requires no reduction of the constraint equations and gives therefore, information about the effect of network and load characteristics on system behavior. Analytical expressions are then developed that provide approximate solutions to system performance near a singularity and techniques for interpreting these solutions in terms of modal functions are given. New insights into the nature of nonlinear oscillations are also offered and criteria for characterizing network effects on nonlinear system behavior are proposed. Theoretical insight into the behavior of dynamic coupling of differential-algebraic equations and the origin of nonlinearity is given, and implications for analyzing for design and placement of power system controllers in complex nonlinear systems are discussed. The extent of applicability of the proposed procedure is demonstrated by analyzing nonlinear behavior in two realistic test power systems

  14. Classification of all solutions of the algebraic Riccati equations for infinite-dimensional systems

    NARCIS (Netherlands)

    Iftime, O; Curtain, R; Zwart, H

    2003-01-01

    We obtain a complete classification of all self-adjoint solution of the control algebraic Riccati equation for infinite-dimensional systems under the following assumptions: the system is output stabilizable, strongly detectable and the filter Riccati equation has an invertible self-adjoint

  15. Quantum-mechanical transport equation for atomic systems.

    Science.gov (United States)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  16. Dynamical System Analysis of Reynolds Stress Closure Equations

    Science.gov (United States)

    Girimaji, Sharath S.

    1997-01-01

    In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior.

  17. Fractional equations of kicked systems and discrete maps

    International Nuclear Information System (INIS)

    Tarasov, Vasily E; Zaslavsky, George M

    2008-01-01

    Starting from kicked equations of motion with derivatives of non-integer orders, we obtain 'fractional' discrete maps. These maps are generalizations of well-known universal, standard, dissipative, kicked damped rotator maps. The main property of the suggested fractional maps is a long-term memory. The memory effects in the fractional discrete maps mean that their present state evolution depends on all past states with special forms of weights. These forms are represented by combinations of power-law functions

  18. Generation of static solutions of self-consistent system of Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Anchikov, A.M.; Daishev, R.A.

    1988-01-01

    The theorem, according to which the static solution of the self-consistent system of the Einstein-Maxwell equations is assigned to energy static solution of the Einstein equations with the arbitrary energy-momentum tensor in the right part, is proved. As a consequence of this theorem, the way of the generation of the static solutions of the self-consistent system of the Einstein-Maxwell equations with charged dust as a source of the vacuum solutions of the Einstein equations is shown

  19. Modeling imperfectly repaired system data via grey differential equations with unequal-gapped times

    International Nuclear Information System (INIS)

    Guo Renkuan

    2007-01-01

    In this paper, we argue that grey differential equation models are useful in repairable system modeling. The arguments starts with the review on GM(1,1) model with equal- and unequal-spaced stopping time sequence. In terms of two-stage GM(1,1) filtering, system stopping time can be partitioned into system intrinsic function and repair effect. Furthermore, we propose an approach to use grey differential equation to specify a semi-statistical membership function for system intrinsic function times. Also, we engage an effort to use GM(1,N) model to model system stopping times and the associated operating covariates and propose an unequal-gapped GM(1,N) model for such analysis. Finally, we investigate the GM(1,1)-embed systematic grey equation system modeling of imperfectly repaired system operating data. Practical examples are given in step-by-step manner to illustrate the grey differential equation modeling of repairable system data

  20. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  1. Lyapunov stability and its application to systems of ordinary differential equations

    Science.gov (United States)

    Kennedy, E. W.

    1979-01-01

    An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.

  2. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  3. Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

    Science.gov (United States)

    Ford, Neville J.; Connolly, Joseph A.

    2009-07-01

    We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.

  4. Periodic Solutions of a System of Delay Differential Equations for a Small Delay

    Directory of Open Access Journals (Sweden)

    Adu A.M. Wasike

    2002-06-01

    Full Text Available We prove the existence of an asymptotically stable periodic solution of a system of delay differential equations with a small time delay t > 0. To achieve this, we transform the system of equations into a system of perturbed ordinary differential equations and then use perturbation results to show the existence of an asymptotically stable periodic solution. This approach is contingent on the fact that the system of equations with t = 0 has a stable limit cycle. We also provide a comparative study of the solutions of the original system and the perturbed system.  This comparison lays the ground for proving the existence of periodic solutions of the original system by Schauder's fixed point theorem.

  5. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    Science.gov (United States)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  6. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part Two: Multibody Systems

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    Full Text Available This paper presents the explicit dynamic equations of multibody mechanical systems. This is the second paper on this topic. In the first paper the dynamics of a single rigid body from the Boltzmann--Hamel equations were derived. In this paper these results are extended to also include multibody systems. We show that when quasi-velocities are used, the part of the dynamic equations that appear from the partial derivatives of the system kinematics are identical to the single rigid body case, but in addition we get terms that come from the partial derivatives of the inertia matrix, which are not present in the single rigid body case. We present for the first time the complete and correct derivation of multibody systems based on the Boltzmann--Hamel formulation of the dynamics in Lagrangian form where local position and velocity variables are used in the derivation to obtain the singularity-free dynamic equations. The final equations are written in global variables for both position and velocity. The main motivation of these papers is to allow practitioners not familiar with differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion.

  7. Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations

    International Nuclear Information System (INIS)

    Frank, T.D.

    2003-01-01

    Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model

  8. Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2010-01-01

    Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .

  9. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    Science.gov (United States)

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  10. Parallel computation for solving the tridiagonal linear system of equations

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.

    1981-09-01

    Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)

  11. Parametric Borel summability for some semilinear system of partial differential equations

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamazawa

    2015-01-01

    Full Text Available In this paper we study the Borel summability of formal solutions with a parameter of first order semilinear system of partial differential equations with \\(n\\ independent variables. In [Singular perturbation of linear systems with a regular singularity, J. Dynam. Control. Syst. 8 (2002, 313-322], Balser and Kostov proved the Borel summability of formal solutions with respect to a singular perturbation parameter for a linear equation with one independent variable. We shall extend their results to a semilinear system of equations with general independent variables.

  12. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    Science.gov (United States)

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  13. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

    Science.gov (United States)

    Rosenbaum, J. S.

    1971-01-01

    Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

  14. Effective methods of solving of model equations of certain class of thermal systems

    International Nuclear Information System (INIS)

    Lach, J.

    1985-01-01

    A number of topics connected with solving of model equations of certain class of thermal systems by the method of successive approximations is touched. A system of partial differential equations of the first degree, appearing most frequently in practical applications of heat and mass transfer theory is reduced to an equivalent system of Volterra integral equations of the second kind. Among a few sample applications the thermal processes appearing in the fuel channel of nuclear reactor are solved. The theoretical analysis is illustrated by the results of numerical calculations given in tables and diagrams. 111 refs., 17 figs., 16 tabs. (author)

  15. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  16. Two-fluid equations for a nuclear system with arbitrary motions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae [Chungnam National University, Daejeon (Korea, Republic of); Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Ocean nuclear systems include a seabed-type plant, a floating-type plant, and a nuclear-propulsion ship. We asked ourselves, 'What governing equations should be used for ocean nuclear systems?' Since ocean nuclear systems are apt to move arbitrarily, the two-fluid model must be formulated in the non-inertial frame of reference that is undergoing acceleration with respect to an inertial frame. Two-phase flow systems with arbitrary motions are barely reported. Kim et al. (1996) added the centripetal and Euler acceleration forces to the homogeneous equilibrium momentum equation embedded in the RETRAN code. However, they did not look into the mass and energy equations. The purpose of this study is to derive general two-fluid equations in the non-inertial frame of reference, which can be used for safety analysis of ocean nuclear systems. The two-fluid equation forms for scalar properties such as mass, internal energy, and enthalpy equation in the moving frame are the same as those in the absolute frame. On the other hand, the fictitious effect must be included in the momentum equation.

  17. On extension of solutions of a simultaneous system of iterative functional equations

    Directory of Open Access Journals (Sweden)

    Janusz Matkowski

    2009-01-01

    Full Text Available Some sufficient conditions which allow to extend every local solution of a simultaneous system of equations in a single variable of the form \\[ \\varphi(x = h (x, \\varphi[f_1(x],\\ldots,\\varphi[f_m(x],\\] \\[\\varphi(x = H (x, \\varphi[F_1(x],\\ldots,\\varphi[F_m(x],\\] to a global one are presented. Extensions of solutions of functional equations, both in single and in several variables, play important role (cf. for instance [M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warsaw, 1968, M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of Mathematics and Its Applications v. 32, Cambridge, 1990, J. Matkowski, Iteration groups, commuting functions and simultaneous systems of linear functional equations, Opuscula Math. 28 (2008 4, 531-541].

  18. On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia

    Directory of Open Access Journals (Sweden)

    N. Tangdamrongsub

    2018-03-01

    Full Text Available An accurate estimation of soil moisture and groundwater is essential for monitoring the availability of water supply in domestic and agricultural sectors. In order to improve the water storage estimates, previous studies assimilated terrestrial water storage variation (ΔTWS derived from the Gravity Recovery and Climate Experiment (GRACE into land surface models (LSMs. However, the GRACE-derived ΔTWS was generally computed from the high-level products (e.g. time-variable gravity fields, i.e. level 2, and land grid from the level 3 product. The gridded data products are subjected to several drawbacks such as signal attenuation and/or distortion caused by a posteriori filters and a lack of error covariance information. The post-processing of GRACE data might lead to the undesired alteration of the signal and its statistical property. This study uses the GRACE least-squares normal equation data to exploit the GRACE information rigorously and negate these limitations. Our approach combines GRACE's least-squares normal equation (obtained from ITSG-Grace2016 product with the results from the Community Atmosphere Biosphere Land Exchange (CABLE model to improve soil moisture and groundwater estimates. This study demonstrates, for the first time, an importance of using the GRACE raw data. The GRACE-combined (GC approach is developed for optimal least-squares combination and the approach is applied to estimate the soil moisture and groundwater over 10 Australian river basins. The results are validated against the satellite soil moisture observation and the in situ groundwater data. Comparing to CABLE, we demonstrate the GC approach delivers evident improvement of water storage estimates, consistently from all basins, yielding better agreement on seasonal and inter-annual timescales. Significant improvement is found in groundwater storage while marginal improvement is observed in surface soil moisture estimates.

  19. On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia

    Science.gov (United States)

    Tangdamrongsub, Natthachet; Han, Shin-Chan; Decker, Mark; Yeo, In-Young; Kim, Hyungjun

    2018-03-01

    An accurate estimation of soil moisture and groundwater is essential for monitoring the availability of water supply in domestic and agricultural sectors. In order to improve the water storage estimates, previous studies assimilated terrestrial water storage variation (ΔTWS) derived from the Gravity Recovery and Climate Experiment (GRACE) into land surface models (LSMs). However, the GRACE-derived ΔTWS was generally computed from the high-level products (e.g. time-variable gravity fields, i.e. level 2, and land grid from the level 3 product). The gridded data products are subjected to several drawbacks such as signal attenuation and/or distortion caused by a posteriori filters and a lack of error covariance information. The post-processing of GRACE data might lead to the undesired alteration of the signal and its statistical property. This study uses the GRACE least-squares normal equation data to exploit the GRACE information rigorously and negate these limitations. Our approach combines GRACE's least-squares normal equation (obtained from ITSG-Grace2016 product) with the results from the Community Atmosphere Biosphere Land Exchange (CABLE) model to improve soil moisture and groundwater estimates. This study demonstrates, for the first time, an importance of using the GRACE raw data. The GRACE-combined (GC) approach is developed for optimal least-squares combination and the approach is applied to estimate the soil moisture and groundwater over 10 Australian river basins. The results are validated against the satellite soil moisture observation and the in situ groundwater data. Comparing to CABLE, we demonstrate the GC approach delivers evident improvement of water storage estimates, consistently from all basins, yielding better agreement on seasonal and inter-annual timescales. Significant improvement is found in groundwater storage while marginal improvement is observed in surface soil moisture estimates.

  20. Integrator Performance Analysis In Solving Stiff Differential Equation System

    International Nuclear Information System (INIS)

    B, Alhadi; Basaruddin, T.

    2001-01-01

    In this paper we discuss the four-stage index-2 singly diagonally implicit Runge-Kutta method, which is used to solve stiff ordinary differential equations (SODE). Stiff problems require a method where step size is not restricted by the method's stability. We desire SDIRK to be A-stable that has no stability restrictions when solving y'= λy with Reλ>0 and h>0, so by choosing suitable stability function we can determine appropriate constant g) to formulate SDIRK integrator to solve SODE. We select the second stage of the internal stage as embedded method to perform low order estimate for error predictor. The strategy for choosing the step size is adopted from the strategy proposed by Hall(1996:6). And the algorithm that is developed in this paper is implemented using MATLAB 5.3, which is running on Window's 95 environment. Our performance measurement's local truncation error accuracy, and efficiency were evaluated by statistical results of sum of steps, sum of calling functions, average of Newton iterations and elapsed times.As the results, our numerical experiment show that SDIRK is unconditionally stable. By using Hall's step size strategy, the method can be implemented efficiently, provided that suitable parameters are used

  1. An implicit iterative scheme for solving large systems of linear equations

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-12-01

    An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches

  2. Consistency of direct integral estimator for partially observed systems of ordinary differential equations

    NARCIS (Netherlands)

    Vujačić, Ivan; Dattner, Itai

    In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.

  3. Amplitude equations for a sub-diffusive reaction-diffusion system

    International Nuclear Information System (INIS)

    Nec, Y; Nepomnyashchy, A A

    2008-01-01

    A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points

  4. Full information estimations of a system of simultaneous equations with error component structure

    OpenAIRE

    Balestra, Pietro; Krishnakumar, Jaya

    1987-01-01

    In this paper we develop full information methods for estimating the parameters of a system of simultaneous equations with error component struc-ture and establish relationships between the various structural estimat

  5. Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems

    Directory of Open Access Journals (Sweden)

    Dieter Schuch

    2008-05-01

    Full Text Available The time-evolution of the maximum and the width of exact analytic wave packet (WP solutions of the time-dependent Schrödinger equation (SE represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.

  6. A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space

    International Nuclear Information System (INIS)

    Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel

    2006-01-01

    Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations

  7. Hybrid inverse problems for a system of Maxwell’s equations

    International Nuclear Information System (INIS)

    Bal, Guillaume; Zhou, Ting

    2014-01-01

    This paper concerns the quantitative step of the medical imaging modality thermo-acoustic tomography (TAT). We model the radiation propagation by a system of Maxwell’s equations. We show that the index of refraction of light and the absorption coefficient (conductivity) can be uniquely and stably reconstructed from a sufficiently large number of TAT measurements. Our method is based on verifying that the linearization of the inverse problem forms a redundant elliptic system of equations. We also observe that the reconstructions are qualitatively quite different from the setting where radiation is modeled by a scalar Helmholtz equation as in Bal G et al (2011 Inverse Problems 27 055007). (paper)

  8. Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations

    CERN Document Server

    Aliyu, MDS

    2011-01-01

    A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter

  9. Constructing New Discrete Integrable Coupling System for Soliton Equation by Kronecker Product

    International Nuclear Information System (INIS)

    Yu Fajun; Zhang Hongqing

    2008-01-01

    It is shown that the Kronecker product can be applied to constructing new discrete integrable coupling system of soliton equation hierarchy in this paper. A direct application to the fractional cubic Volterra lattice spectral problem leads to a novel integrable coupling system of soliton equation hierarchy. It is also indicated that the study of discrete integrable couplings by using the Kronecker product is an efficient and straightforward method. This method can be used generally

  10. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Directory of Open Access Journals (Sweden)

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  11. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions

    International Nuclear Information System (INIS)

    Kalmykov, Mikhail Yu.; Kniehl, Bernd A.

    2012-05-01

    We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.

  12. Computer programs for the solution of systems of linear algebraic equations

    Science.gov (United States)

    Sequi, W. T.

    1973-01-01

    FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

  13. Implicit Lagrangian equations and the mathematical modeling of physical systems

    NARCIS (Netherlands)

    Moreau, Luc; van der Schaft, Arjan

    2002-01-01

    We introduce a class of optimal control problems on manifolds which gives rise (via the Pontryagin maximum principle) to a class of implicit Lagrangian systems (a notion which is introduced in the paper). We apply this to the mathematical modeling of interconnected mechanical systems and mechanical

  14. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  15. On the relation between the fundamental equation of thermodynamics and the energy balance equation in the context of closed and open systems

    NARCIS (Netherlands)

    Knuiman, J.T.; Barneveld, P.A.

    2012-01-01

    In this paper, we elaborate on the connection between the fundamental equation of thermodynamics, which is essentially the combination of the First and Second Laws of thermodynamics, and the energy balance equation in the context of closed and open systems. We point out some misinterpretations in

  16. Symmetric positive differential equations and first order hyperbolic systems

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1981-12-01

    We prove that under some conditions the first order hyperbolic system and its associated mixed initial boundary conditions considered, for example, in Kreiss (Math. Comp. 22, 703-704 (1968)) and Kreiss and Gustafsson (Math. Comp. 26, 649-686 (1972)), can be transformed into a symmetric positive system of P.D.E.'s with admissible boundary conditions of Friedrich's type (Comm. Pure Appl. Math 11, 333-418 (1958)). (author)

  17. Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions.

    Science.gov (United States)

    Latella, Ivan; Pérez-Madrid, Agustín

    2013-10-01

    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

  18. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  19. 3rd International Conference on Particle Systems and Partial Differential Equations

    CERN Document Server

    Soares, Ana

    2016-01-01

    The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were presented at the Third International Conference on Particle Systems and Partial Differential Equations, held at the University of Minho, Braga, Portugal in December 2014. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. This book will appeal to probabilists, analysts and those mathematicians whose wor...

  20. Interacting multiagent systems kinetic equations and Monte Carlo methods

    CERN Document Server

    Pareschi, Lorenzo

    2014-01-01

    The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough number of individuals. Examples of such systems are interacting agents in a financial market, potential voters during political elections, or groups of animals with a tendency to flock or herd. Among other possible approaches, this book provides a step-by-step introduction to the mathematical modelling based on a mesoscopic description and the construction of efficient simulation algorithms by Monte Carlo methods. The ar...

  1. Lyapunov Functions and Solutions of the Lyapunov Matrix Equation for Marginally Stable Systems

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian

    2000-01-01

    We consider linear systems of differential equations $I \\ddot{x}+B \\dot{x}+C{x}={0}$ where $I$ is the identity matrix and $B$ and $C$ are general complex $n$ x $n$ matrices. Our main interest is to determine conditions for complete marginalstability of these systems. To this end we find solutions...... of the Lyapunov matrix equation and characterize the set of matrices $(B, C)$ which guarantees marginal stability. The theory is applied to gyroscopic systems, to indefinite damped systems, and to circulatory systems, showing how to choose certain parameter matrices to get sufficient conditions for marginal...... stability.Comparison is made with some known results for equations with real system matrices.Moreover more general cases are investigated and several examples are given....

  2. Pod systems: an equivariant ordinary differential equation approach to dynamical systems on a spatial domain

    International Nuclear Information System (INIS)

    Elmhirst, Toby; Stewart, Ian; Doebeli, Michael

    2008-01-01

    We present a class of systems of ordinary differential equations (ODEs), which we call 'pod systems', that offers a new perspective on dynamical systems defined on a spatial domain. Such systems are typically studied as partial differential equations, but pod systems bring the analytic techniques of ODE theory to bear on the problems, and are thus able to study behaviours and bifurcations that are not easily accessible to the standard methods. In particular, pod systems are specifically designed to study spatial dynamical systems that exhibit multi-modal solutions. A pod system is essentially a linear combination of parametrized functions in which the coefficients and parameters are variables whose dynamics are specified by a system of ODEs. That is, pod systems are concerned with the dynamics of functions of the form Ψ(s, t) = y 1 (t) φ(s; x 1 (t)) + ··· + y N (t) φ(s; x N (t)), where s in R n is the spatial variable and φ: R n × R d → R. The parameters x i in R d and coefficients y i in R are dynamic variables which evolve according to some system of ODEs, x-dot i = G i (x, y) and y-dot i = H i (x, y), for i = 1, ..., N. The dynamics of Ψ in function space can then be studied through the dynamics of the x and y in finite dimensions. A vital feature of pod systems is that the ODEs that specify the dynamics of the x and y variables are not arbitrary; restrictions on G i and H i are required to guarantee that the dynamics of Ψ in function space are well defined (that is, that trajectories are unique). One important restriction is symmetry in the ODEs which arises because Ψ is invariant under permutations of the indices of the (x i , y i ) pairs. However, this is not the whole story, and the primary goal of this paper is to determine the necessary structure of the ODEs explicitly to guarantee that the dynamics of Ψ are well defined

  3. Fractal differential equations and fractal-time dynamical systems

    Indian Academy of Sciences (India)

    like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...

  4. Accelerating Inexact Newton Schemes for Large Systems of Nonlinear Equations

    NARCIS (Netherlands)

    Fokkema, D.R.; Sleijpen, G.L.G.; Vorst, H.A. van der

    Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general

  5. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations.

    Science.gov (United States)

    1981-08-01

    With a third matrix-vector product, b(i) can be computed as i j ( ATAr i+l’pj)/ApjpApj), and the previous (Apj) need not be saved. Page 8 I OCR I Orthomin... Economics and Mathematical Systems, Volume 134, Springer-Verlag, Berlin, 1976. [51 Paul Concus, Gene H. Golub, and Dianne P. O’Leary. A generalized

  6. Asymmetric systems described by a pair of local covariant wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1979-07-16

    A class of asymmetric solutions of the integrability conditions for systems obeying the Leutwyler-Stern pair of covariant wave equations is obtained. The class of unequal-mass systems described by these solutions does not embed the particle-antiparticle system behaving as a relativistic harmonic oscillator.

  7. TECHNOLOGY OF CONSTRUCTING OF GUADRATIC EQUATIONS AND SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS WITH PARAMETERS IN A MAPLE-MEDIUM

    Directory of Open Access Journals (Sweden)

    Kushnir V.

    2017-12-01

    Full Text Available The problem of constructing quadratic equations and systems of equations with parameters using Maple-technology is studied. Today, the "learning tasks of reverse thinking" (V.A. Krutetsky or simply "inverse problems" (P.M.Erdniev are increasingly being introduced into the educational process. The tasks of constructing mathematical tasks in advance of a certain type and certain properties are inverse problems that unfold another aspect of the learning situation and thereby create a "surplus of its vision" (M.M. Bakhtin. The solution of inverse problems develops students’ thinking, imagination and other higher mental functions. However, their introduction into the educational process is still insufficient. One of the reasons for this situation is the insufficient number of benefits with a sufficient number of variants of the same type of tasks. Especially it concerns the construction of problems with parameters. Designing in "manual mode" requires significant temporary cognitive, physical and other efforts, carries the risks of allowing technical and computational errors. In the days of the information society and the digital economy, there are all the possibilities to perform the chain of design actions in a certain ICT environment (we have a Maple-environment. It solves the resulted difficulties of construction, creates a new educational and information environment, allows to produce automatically a sufficient number of different versions of the same type of tasks. Tasks with parameters require creativity from the students, non-standard approaches to the solution. Each task with parameters requires the creation of its own method and algorithm for solving and productive learning. The article is devoted to solving of the above problems.

  8. Solution of Fractional Order System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Zahoor Raja

    2011-01-01

    Full Text Available A stochastic technique has been developed for the solution of fractional order system represented by Bagley-Torvik equation. The mathematical model of the equation was developed with the help of feed-forward artificial neural networks. The training of the networks was made with evolutionary computational intelligence based on genetic algorithm hybrid with pattern search technique. Designed scheme was successfully applied to different forms of the equation. Results are compared with standard approximate analytic, stochastic numerical solvers and exact solutions.

  9. A Nonmonotone Line Search Filter Algorithm for the System of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Zhong Jin

    2012-01-01

    Full Text Available We present a new iterative method based on the line search filter method with the nonmonotone strategy to solve the system of nonlinear equations. The equations are divided into two groups; some equations are treated as constraints and the others act as the objective function, and the two groups are just updated at the iterations where it is needed indeed. We employ the nonmonotone idea to the sufficient reduction conditions and filter technique which leads to a flexibility and acceptance behavior comparable to monotone methods. The new algorithm is shown to be globally convergent and numerical experiments demonstrate its effectiveness.

  10. A computational method for direct integration of motion equations of structural systems

    International Nuclear Information System (INIS)

    Brusa, L.; Ciacci, R.; Creco, A.; Rossi, F.

    1975-01-01

    The dynamic analysis of structural systems requires the solution of the matrix equations: Md 2 delta/dt(t) + Cddelta/dt(t) + Kdelta(t) = F(t). Many numerical methods are available for direct integration of this equation and their efficiency is due to the fulfillment of the following requirements: A reasonable order of accuracy must be obtained for the approximation of the response relevant to the first modes: the model contributions relevant to the eigenvalues with large real part must be essentially neglected. This paper presents a step-by-step numerical scheme for the integration of this equation which satisfies the requirements previously mentioned. (Auth.)

  11. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maccari, A.

    1997-01-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics

  12. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  13. Asymptotic behavior of a system of micropolar equations

    Directory of Open Access Journals (Sweden)

    Pedro Marin-Rubio

    2016-03-01

    Full Text Available This work is concerned with three-dimensional micropolar fluids flows in a bounded domain with boundary of class $C^{\\infty}.$ Based on the theory of dissipative systems, we prove the existence of a restricted global attractors for local semiflows on suitable fractional phase spaces $\\mathbf{Z}^{\\alpha}_{p},$ namely for $p\\in (3,+\\infty$ and $\\alpha\\in [1/2,1$. Moreover, we prove that all these attractors are in fact the same set. Previously, it is shown that the Lamé operator is a sectorial operator in each $L_{p}(\\Omega$ with $1

  14. Equation-free modeling unravels the behavior of complex ecological systems

    Science.gov (United States)

    DeAngelis, Donald L.; Yurek, Simeon

    2015-01-01

    Ye et al. (1) address a critical problem confronting the management of natural ecosystems: How can we make forecasts of possible future changes in populations to help guide management actions? This problem is especially acute for marine and anadromous fisheries, where the large interannual fluctuations of populations, arising from complex nonlinear interactions among species and with varying environmental factors, have defied prediction over even short time scales. The empirical dynamic modeling (EDM) described in Ye et al.’s report, the latest in a series of papers by Sugihara and his colleagues, offers a promising quantitative approach to building models using time series to successfully project dynamics into the future. With the term “equation-free” in the article title, Ye et al. (1) are suggesting broader implications of their approach, considering the centrality of equations in modern science. From the 1700s on, nature has been increasingly described by mathematical equations, with differential or difference equations forming the basic framework for describing dynamics. The use of mathematical equations for ecological systems came much later, pioneered by Lotka and Volterra, who showed that population cycles might be described in terms of simple coupled nonlinear differential equations. It took decades for Lotka–Volterra-type models to become established, but the development of appropriate differential equations is now routine in modeling ecological dynamics. There is no question that the injection of mathematical equations, by forcing “clarity and precision into conjecture” (2), has led to increased understanding of population and community dynamics. As in science in general, in ecology equations are a key method of communication and of framing hypotheses. These equations serve as compact representations of an enormous amount of empirical data and can be analyzed by the powerful methods of mathematics.

  15. New Quasi-Newton Method for Solving Systems of Nonlinear Equations

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2017-01-01

    Roč. 62, č. 2 (2017), s. 121-134 ISSN 0862-7940 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : nonlinear equations * systems of equations * trust-region methods * quasi-Newton methods * adjoint Broyden methods * numerical algorithms * numerical experiments Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.618, year: 2016 http://hdl.handle.net/10338.dmlcz/146699

  16. Planck constant as spectral parameter in integrable systems and KZB equations

    OpenAIRE

    Levin, A.NRU HSE, Department of Mathematics, Myasnitskaya str. 20, Moscow, 101000, Russia; Olshanetsky, M.(ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218, Russia); Zotov, A.(ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218, Russia)

    2014-01-01

    We construct special rational ${\\rm gl}_N$ Knizhnik-Zamolodchikov-Bernard (KZB) equations with $\\tilde N$ punctures by deformation of the corresponding quantum ${\\rm gl}_N$ rational $R$-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is $\\tau$. At the level of classical mechanics the deformation parameter $\\tau$ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Ne...

  17. Simultaneous exact controllability for Maxwell equations and for a second-order hyperbolic system

    Directory of Open Access Journals (Sweden)

    Boris V. Kapitonov

    2010-02-01

    Full Text Available We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modified multipliers in order to generate a necessary observability estimate which allow us to use the Hilbert Uniqueness Method (HUM introduced by Lions.

  18. On the economical solution method for a system of linear algebraic equations

    Directory of Open Access Journals (Sweden)

    Jan Awrejcewicz

    2004-01-01

    Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

  19. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

    Science.gov (United States)

    Abdulwahhab, Muhammad Alim

    2016-10-01

    Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

  20. Asymptotic Analysis of a System of Algebraic Equations Arising in Dislocation Theory

    KAUST Repository

    Hall, Cameron L.; Chapman, S. Jonathan; Ockendon, John R.

    2010-01-01

    The system of algebraic equations given by σn j=0, j≠=i sgn(xi-xj )|xi-xj|a = 1, i = 1, 2, ⋯ , n, x0 = 0, appears in dislocation theory in models of dislocation pile-ups. Specifically, the case a = 1 corresponds to the simple situation where n dislocations are piled up against a locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up against a locked dipole. We present a general analysis of systems of this type for a > 0 and n large. In the asymptotic limit n→∞, it becomes possible to replace the system of discrete equations with a continuum equation for the particle density. For 0 < a < 2, this takes the form of a singular integral equation, while for a > 2 it is a first-order differential equation. The critical case a = 2 requires special treatment, but, up to corrections of logarithmic order, it also leads to a differential equation. The continuum approximation is valid only for i neither too small nor too close to n. The boundary layers at either end of the pile-up are also analyzed, which requires matching between discrete and continuum approximations to the main problem. © 2010 Society for Industrial and Applied Mathematics.

  1. Bethe-Salpeter equation for fermion-antifermion system in the ladder approximation

    International Nuclear Information System (INIS)

    Fukui, Ichio; Seto, Noriaki; Yoshida, Toshihiro.

    1977-01-01

    The Bethe-Salpeter (B-S) equation is important for studying hadron physics. Especially intensive investigation on the fermion-antifermion B-S equation is indispensable for the phenomenological studies of hardrons. However, many components of the B-S amplitude and the Wick-rotated integral kernel of non-Fredholm type have prevented from knowing details the solutions even in the ladder approximation. Some particular solutions are known in case of the vanishing four-momenta of bound states. The B-S equation for the bound state of fermion-anti-fermion system interacting through vector (axial-vector) particle exchange was studied in the ladder approximation with Feynman gauge. The reduced equations were obtained for suitably decomposed amplitude, and it is shown that, in the S-wave case, the coupled equations separate into two parts. In the nonrelativistic limit, large components of the amplitude satisfy the Wick-Cutkosky equation, and small components are expressed in terms of the large ones. Equations are derived for the equal-time amplitudes. (Kobatake, H.)

  2. A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mountassir Hamdi Cherif

    2017-11-01

    Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

  3. Exploring the Phase Space of a System of Differential Equations: Different Mathematical Registers

    Science.gov (United States)

    Dana-Picard, Thierry; Kidron, Ivy

    2008-01-01

    We describe and analyze a situation involving symbolic representation and graphical visualization of the solution of a system of two linear differential equations, using a computer algebra system. Symbolic solution and graphical representation complement each other. Graphical representation helps to understand the behavior of the symbolic…

  4. On the coupling of systems of hyperbolic conservation laws with ordinary differential equations

    International Nuclear Information System (INIS)

    Borsche, Raul; Colombo, Rinaldo M; Garavello, Mauro

    2010-01-01

    Motivated by applications to the piston problem, to a manhole model, to blood flow and to supply chain dynamics, this paper deals with a system of conservation laws coupled with a system of ordinary differential equations. The former is defined on a domain with boundary and the coupling is provided by the boundary condition. For each of the examples considered, numerical integrations are provided

  5. Application of homotopy perturbation method for systems of Volterra integral equations of the first kind

    International Nuclear Information System (INIS)

    Biazar, J.; Eslami, M.; Aminikhah, H.

    2009-01-01

    In this article, an application of He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example.

  6. He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind

    International Nuclear Information System (INIS)

    Biazar, J.; Ghazvini, H.

    2009-01-01

    In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.

  7. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    Science.gov (United States)

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  8. Solution of the Lyapunov matrix equation for a system with a time-dependent stiffness matrix

    DEFF Research Database (Denmark)

    Pommer, Christian; Kliem, Wolfhard

    2004-01-01

    The stability of the linearized model of a rotor system with non-symmetric strain and axial loads is investigated. Since we are using a fixed reference system, the differential equations have the advantage to be free of Coriolis and centrifugal forces. A disadvantage is nevertheless the occurrence...

  9. On existence of soliton solutions of arbitrary-order system of nonlinear Schrodinger equations

    International Nuclear Information System (INIS)

    Zhestkov, S.V.

    2003-01-01

    The soliton solutions are constructed for the system of arbitrary-order coupled nonlinear Schrodinger equations . The necessary and sufficient conditions of existence of these solutions are obtained. It is shown that the maximum number of solitons in nondegenerate case is 4L, where L is order of the system. (author)

  10. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    Science.gov (United States)

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  11. Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor

    International Nuclear Information System (INIS)

    Saha Ray, S.

    2012-01-01

    Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.

  12. Solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    International Nuclear Information System (INIS)

    Rosenfeld, M.; Kwak, D.; Vinokur, M.

    1988-01-01

    A solution method based on a fractional step approach is developed for obtaining time-dependent solutions of the three-dimensional, incompressible Navier-Stokes equations in generalized coordinate systems. The governing equations are discretized conservatively by finite volumes using a staggered mesh system. The primitive variable formulation uses the volume fluxes across the faces of each computational cell as dependent variables. This procedure, combined with accurate and consistent approximations of geometric parameters, is done to satisfy the discretized mass conservation equation to machine accuracy as well as to gain favorable convergence properties of the Poisson solver. The discretized equations are second-order-accurate in time and space and no smoothing terms are added. An approximate-factorization scheme is implemented in solving the momentum equations. A novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two and three-dimensional solutions are compared with other numerical and experimental results to validate the present method. 23 references

  13. Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems

    Science.gov (United States)

    Zúñiga-Galindo, W. A.

    2018-06-01

    We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.

  14. Elliptic Euler–Poisson–Darboux equation, critical points and integrable systems

    International Nuclear Information System (INIS)

    Konopelchenko, B G; Ortenzi, G

    2013-01-01

    The structure and properties of families of critical points for classes of functions W(z, z-bar ) obeying the elliptic Euler–Poisson–Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(β, β-bar ;1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed. (paper)

  15. A theory of post-stall transients in axial compression systems. I - Development of equations

    Science.gov (United States)

    Moore, F. K.; Greitzer, E. M.

    1985-01-01

    An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.

  16. Dirac delta representation by exact parametric equations.. Application to impulsive vibration systems

    Science.gov (United States)

    Chicurel-Uziel, Enrique

    2007-08-01

    A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.

  17. On the interpretations of Langevin stochastic equation in different coordinate systems

    International Nuclear Information System (INIS)

    Martinez, E.; Lopez-Diaz, L.; Torres, L.; Alejos, O.

    2004-01-01

    The stochastic Langevin Landau-Lifshitz equation is usually utilized in micromagnetics formalism to account for thermal effects. Commonly, two different interpretations of the stochastic integrals can be made: Ito and Stratonovich. In this work, the Langevin-Landau-Lifshitz (LLL) equation is written in both Cartesian and Spherical coordinates. If Spherical coordinates are employed, the noise is additive, and therefore, Ito and Stratonovich solutions are equal. This is not the case when (LLL) equation is written in Cartesian coordinates. In this case, the Langevin equation must be interpreted in the Stratonovich sense in order to reproduce correct statistical results. Nevertheless, the statistics of the numerical results obtained from Euler-Ito and Euler-Stratonovich schemes are equivalent due to the additional numerical constraint imposed in Cartesian system after each time step, which itself assures that the magnitude of the magnetization is preserved

  18. Master equations for degenerate systems: electron radiative cascade in a Coulomb potential

    International Nuclear Information System (INIS)

    Uskov, D B; Pratt, R H

    2004-01-01

    We examine the effects of degeneracy and its lifting for the problem of electron radiative cascade, described by master equations of the Lindblad form (quantum optical master equations). A weak external field approximation is used to study the resulting gradual transformation of cascade dynamics between degenerate and non-degenerate forms. Exploiting the spherical symmetry properties of the system we demonstrate significant difference between perturbations commuting with angular momentum and perturbations breaking the spherical symmetry, such as a homogeneous external field. We discuss the possibility and the general approach for reduction of the Lindblad master equations in the case of spectral degeneracy to the Pauli balance equations. This determines the appropriate choice of basis as, for example, spherical or parabolic

  19. On the validity of the Jarzynski equation in quantum systems; Zur Gueltigkeit der Jarzynskigleichung in Quantensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Nolte, Roman

    2009-11-20

    Discovered in 1997, the Jarzynski equation is one of several new theorems of nonequilibrium thermodynamics. Not only this equation makes a more severe statement than the second law of thermodynamics, it does also relate process quantities from processes far from equilibrium to equilibrium quantities. In particular during the investigation of very small systems there has been drawn much attention to this equation and the related fluctuation theorems during the last years. Something similar applies for the description of microbiological processes which take place often stationary but rarely in thermodynamical equilibrium. However, especially according to small systems the question of the validity of the equation in the quantum case emerges. Though meanwhile quite comprehensive proofs concerning classical systems have been found, for that case uncertainty and contradictory statements exist, founding on different definitions and interpretations of the quantum analogon of expressions of the equation. Simple examples on which the different approaches can be tested, are so far missing. In this work two such examples are investigated and it is examined, how the results differ from their classical counterparts and which properties of quantum systems influence the result. (orig.)

  20. Solution of underdetermined systems of equations with gridded a priori constraints.

    Science.gov (United States)

    Stiros, Stathis C; Saltogianni, Vasso

    2014-01-01

    The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.

  1. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin

    NARCIS (Netherlands)

    Bos, J. D.; Zonneveld, I.; Das, P. K.; Krieg, S. R.; van der Loos, C. M.; Kapsenberg, M. L.

    1987-01-01

    The complexity of immune response-associated cells present in normal human skin was recently redefined as the skin immune system (SIS). In the present study, the exact immunophenotypes of lymphocyte subpopulations with their localizations in normal human skin were determined quantitatively. B cells

  2. Conservation laws for certain time fractional nonlinear systems of partial differential equations

    Science.gov (United States)

    Singla, Komal; Gupta, R. K.

    2017-12-01

    In this study, an extension of the concept of nonlinear self-adjointness and Noether operators is proposed for calculating conserved vectors of the time fractional nonlinear systems of partial differential equations. In our recent work (J Math Phys 2016; 57: 101504), by proposing the symmetry approach for time fractional systems, the Lie symmetries for some fractional nonlinear systems have been derived. In this paper, the obtained infinitesimal generators are used to find conservation laws for the corresponding fractional systems.

  3. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

    Science.gov (United States)

    Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2016-04-12

    Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.

  4. New component-based normalization method to correct PET system models

    International Nuclear Information System (INIS)

    Kinouchi, Shoko; Miyoshi, Yuji; Suga, Mikio; Yamaya, Taiga; Yoshida, Eiji; Nishikido, Fumihiko; Tashima, Hideaki

    2011-01-01

    Normalization correction is necessary to obtain high-quality reconstructed images in positron emission tomography (PET). There are two basic types of normalization methods: the direct method and component-based methods. The former method suffers from the problem that a huge count number in the blank scan data is required. Therefore, the latter methods have been proposed to obtain high statistical accuracy normalization coefficients with a small count number in the blank scan data. In iterative image reconstruction methods, on the other hand, the quality of the obtained reconstructed images depends on the system modeling accuracy. Therefore, the normalization weighing approach, in which normalization coefficients are directly applied to the system matrix instead of a sinogram, has been proposed. In this paper, we propose a new component-based normalization method to correct system model accuracy. In the proposed method, two components are defined and are calculated iteratively in such a way as to minimize errors of system modeling. To compare the proposed method and the direct method, we applied both methods to our small OpenPET prototype system. We achieved acceptable statistical accuracy of normalization coefficients while reducing the count number of the blank scan data to one-fortieth that required in the direct method. (author)

  5. Integrability and Poisson Structures of Three Dimensional Dynamical Systems and Equations of Hydrodynamic Type

    Science.gov (United States)

    Gumral, Hasan

    Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.

  6. Conservation properties of numerical integration methods for systems of ordinary differential equations

    Science.gov (United States)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  7. Boundary-value problems with free boundaries for elliptic systems of equations

    CERN Document Server

    Monakhov, V N

    1983-01-01

    This book is concerned with certain classes of nonlinear problems for elliptic systems of partial differential equations: boundary-value problems with free boundaries. The first part has to do with the general theory of boundary-value problems for analytic functions and its applications to hydrodynamics. The second presents the theory of quasiconformal mappings, along with the theory of boundary-value problems for elliptic systems of equations and applications of it to problems in the mechanics of continuous media with free boundaries: problems in subsonic gas dynamics, filtration theory, and problems in elastico-plasticity.

  8. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.

    Science.gov (United States)

    Shah, Kamal; Khan, Rahmat Ali

    2016-01-01

    In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.

  9. Geometric methods of global attraction in systems of delay differential equations

    Science.gov (United States)

    El-Morshedy, Hassan A.; Ruiz-Herrera, Alfonso

    2017-11-01

    In this paper we deduce criteria of global attraction in systems of delay differential equations. Our methodology is new and consists in "dominating" the nonlinear terms of the system by a scalar function and then studying some dynamical properties of that function. One of the crucial benefits of our approach is that we obtain delay-dependent results of global attraction that cover the best delay-independent conditions. We apply our results in a gene regulatory model and the classical Nicholson's blowfly equation with patch structure.

  10. Coupled replicator equations for the dynamics of learning in multiagent systems

    Science.gov (United States)

    Sato, Yuzuru; Crutchfield, James P.

    2003-01-01

    Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos—behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.

  11. Multilevel solvers of first-order system least-squares for Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chen-Yao G. [National Chung Cheng Univ., Chia-Yi (Taiwan, Province of China)

    1996-12-31

    Recently, The use of first-order system least squares principle for the approximate solution of Stokes problems has been extensively studied by Cai, Manteuffel, and McCormick. In this paper, we study multilevel solvers of first-order system least-squares method for the generalized Stokes equations based on the velocity-vorticity-pressure formulation in three dimensions. The least-squares functionals is defined to be the sum of the L{sup 2}-norms of the residuals, which is weighted appropriately by the Reynolds number. We develop convergence analysis for additive and multiplicative multilevel methods applied to the resulting discrete equations.

  12. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

    KAUST Repository

    Southern, J.A.; Plank, G.; Vigmond, E.J.; Whiteley, J.P.

    2009-01-01

    The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

  13. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

    KAUST Repository

    Southern, J.A.

    2009-10-01

    The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

  14. Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system

    International Nuclear Information System (INIS)

    Bishop, A.R.; Flesch, R.; Forests, M.G.; Overman, E.A.

    1990-01-01

    The purpose of this paper is to present a first step toward providing coordinates and associated dynamics for low-dimensional attractors in nearly integrable partial differential equations (pdes), in particular, where the truncated system reflects salient geometric properties of the pde. This is achieved by correlating: (1) numerical results on the bifurcations to temporal chaos with spatial coherence of the damped, periodically forced sine-Gordon equation with periodic boundary conditions; (2) an interpretation of the spatial and temporal bifurcation structures of this perturbed integrable system with regard to the exact structure of the sine-Gordon phase space; (3) a model dynamical systems problem, which is itself a perturbed integrable Hamiltonian system, derived from the perturbed sine-Gordon equation by a finite mode Fourier truncation in the nonlinear Schroedinger limit; and (4) the bifurcations to chaos in the truncated phase space. In particular, a potential source of chaos in both the pde and the model ordinary differential equation systems is focused on: the existence of homoclinic orbits in the unperturbed integrable phase space and their continuation in the perturbed problem. The evidence presented here supports the thesis that the chaotic attractors of the weakly perturbed periodic sine-Gordon system consists of low-dimensional metastable attacking states together with intermediate states that are O(1) unstable and correspond to homoclinic states in the integrable phase space. It is surmised that the chaotic dynamics on these attractors is due to the perturbation of these homocline integrable configurations

  15. Studies on normal incidence backscattering in nodule areas using the multibeam-hydrosweep system

    Digital Repository Service at National Institute of Oceanography (India)

    Pathak, D.; Chakraborty, B.

    The acoustic response from areas of varying nodule abundance and number densities in the Central Indian Ocean has been studied by using the echo peak amplitudes of the normal incidence beam in the Multibeam Hydrosweep system. It is observed...

  16. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2012-01-01

    Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

  17. UNIFIED MODELS OF ELEMENTS OF POWER SUPPLY SYSTEMS BASED ON EQUATIONS IN PHASE COORDINATES

    Directory of Open Access Journals (Sweden)

    Yu.N. Vepryk

    2015-12-01

    Full Text Available Purpose. The models of electrical machines in the phase coordinates, the universal algorithm for the simulation of separate elements in a d-q coordinates system and in a phase-coordinates system are proposed. Methodology. Computer methods of investigation of transients in electrical systems are based on a compilation of systems of differential equations and their numerical integration solution methods. To solve differential equations an implicit method of numerical integration was chosen. Because it provides to complete structural simulation possibility: firstly developing models of separate elements and then forming a model of the complex system. For the mathematical simulation of electromagnetic transients in the elements of the electrical systems has been accepted the implicit Euler-Cauchy method, because it provides a higher precision and stability of the computing processes. Results. In developing the model elements identified two groups of elements: - Static elements and electrical machines in the d-q coordinates; - Rotating electrical machines in phase coordinates. As an example, the paper provides a model of synchronous and asynchronous electric machines in the d-q coordinates system and the phase coordinate system. The generalization algorithm and the unified notation form of equations of elements of an electrical system are obtained. It provides the possibility of using structural methods to develop a mathematical model of power systems under transient conditions. Practical value. In addition, the using of a computer model allows to implement multivariant calculations for research and study of factors affecting the quantitative characteristics of the transients.

  18. Normal variants and non-pathologic findings of the skeletal system in childhood

    International Nuclear Information System (INIS)

    Schaper, J.; Heinen, W.

    2006-01-01

    The knowledge of normal variants of the skeletal system in childhood protects the child from false radiologic diagnosis and the resulting malpractice. In this article we present a survey of common variants of childhood skeletal system. The awareness of these entities, e. g. the benign extraaxial fluid collections of infancy, allows accurate clinical and radiological diagnosis. The most important impact of radiological expertise in normal variations results in avoidance of unneccessary examinations and in omission of unsubstantiated parental and patients fears. Nearly all normal variations with definite radiologic findings should be treated according to the ''leave-me-alone'' principle. (orig.)

  19. Forward-backward equations for nonlinear propagation in axially invariant optical systems

    International Nuclear Information System (INIS)

    Ferrando, Albert; Zacares, Mario; Fernandez de Cordoba, Pedro; Binosi, Daniele; Montero, Alvaro

    2005-01-01

    We present a general framework to deal with forward and backward components of the electromagnetic field in axially invariant nonlinear optical systems, which include those having any type of linear or nonlinear transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order equations for forward and backward components, explicitly showing the nonlinear couplings among them. The modal approach used allows for an effective reduction of the dimensionality of the original problem from 3+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency dimension). The new equations can be written in a spinor Dirac-like form, out of which conserved quantities can be calculated in an elegant manner. Finally, these equations inherently incorporate spatiotemporal couplings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear forward pulse propagation and nonparaxial evolution of spatial structures are analyzed as examples

  20. Model Selection and Risk Estimation with Applications to Nonlinear Ordinary Differential Equation Systems

    DEFF Research Database (Denmark)

    Mikkelsen, Frederik Vissing

    eective computational tools for estimating unknown structures in dynamical systems, such as gene regulatory networks, which may be used to predict downstream eects of interventions in the system. A recommended algorithm based on the computational tools is presented and thoroughly tested in various......Broadly speaking, this thesis is devoted to model selection applied to ordinary dierential equations and risk estimation under model selection. A model selection framework was developed for modelling time course data by ordinary dierential equations. The framework is accompanied by the R software...... package, episode. This package incorporates a collection of sparsity inducing penalties into two types of loss functions: a squared loss function relying on numerically solving the equations and an approximate loss function based on inverse collocation methods. The goal of this framework is to provide...

  1. Continuous limits for an integrable coupling system of Toda equation hierarchy

    International Nuclear Information System (INIS)

    Li Li; Yu Fajun

    2009-01-01

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  2. Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations

    International Nuclear Information System (INIS)

    Udaltsov, Vladimir S.; Goedgebuer, Jean-Pierre; Larger, Laurent; Cuenot, Jean-Baptiste; Levy, Pascal; Rhodes, William T.

    2003-01-01

    We report that signal encoding with high-dimensional chaos produced by delayed feedback systems with a strong nonlinearity can be broken. We describe the procedure and illustrate the method with chaotic waveforms obtained from a strongly nonlinear optical system that we used previously to demonstrate signal encryption/decryption with chaos in wavelength. The method can be extended to any systems ruled by nonlinear time-delayed differential equations

  3. Continuous limits for an integrable coupling system of Toda equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-09-21

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  4. New form of the Euler-Bernoulli rod equation applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Filipović Mirjana

    2008-01-01

    Full Text Available This paper presents a theoretical background and an example of extending the Euler-Bernoulli equation from several aspects. Euler-Bernoulli equation (based on the known laws of dynamics should be supplemented with all the forces that are participating in the formation of the bending moment of the considered mode. The stiffness matrix is a full matrix. Damping is an omnipresent elasticity characteristic of real systems, so that it is naturally included in the Euler-Bernoulli equation. It is shown that Daniel Bernoulli's particular integral is just one component of the total elastic deformation of the tip of any mode to which we have to add a component of the elastic deformation of a stationary regime in accordance with the complexity requirements of motion of an elastic robot system. The elastic line equation mode of link of a complex elastic robot system is defined based on the so-called 'Euler-Bernoulli Approach' (EBA. It is shown that the equation of equilibrium of all forces present at mode tip point ('Lumped-mass approach' (LMA follows directly from the elastic line equation for specified boundary conditions. This, in turn, proves the essential relationship between LMA and EBA approaches. In the defined mathematical model of a robotic system with multiple DOF (degree of freedom in the presence of the second mode, the phenomenon of elasticity of both links and joints are considered simultaneously with the presence of the environment dynamics - all based on the previously presented theoretical premises. Simulation results are presented. .

  5. Evaluation of the CPU time for solving the radiative transfer equation with high-order resolution schemes applying the normalized weighting-factor method

    Science.gov (United States)

    Xamán, J.; Zavala-Guillén, I.; Hernández-López, I.; Uriarte-Flores, J.; Hernández-Pérez, I.; Macías-Melo, E. V.; Aguilar-Castro, K. M.

    2018-03-01

    In this paper, we evaluated the convergence rate (CPU time) of a new mathematical formulation for the numerical solution of the radiative transfer equation (RTE) with several High-Order (HO) and High-Resolution (HR) schemes. In computational fluid dynamics, this procedure is known as the Normalized Weighting-Factor (NWF) method and it is adopted here. The NWF method is used to incorporate the high-order resolution schemes in the discretized RTE. The NWF method is compared, in terms of computer time needed to obtain a converged solution, with the widely used deferred-correction (DC) technique for the calculations of a two-dimensional cavity with emitting-absorbing-scattering gray media using the discrete ordinates method. Six parameters, viz. the grid size, the order of quadrature, the absorption coefficient, the emissivity of the boundary surface, the under-relaxation factor, and the scattering albedo are considered to evaluate ten schemes. The results showed that using the DC method, in general, the scheme that had the lowest CPU time is the SOU. In contrast, with the results of theDC procedure the CPU time for DIAMOND and QUICK schemes using the NWF method is shown to be, between the 3.8 and 23.1% faster and 12.6 and 56.1% faster, respectively. However, the other schemes are more time consuming when theNWFis used instead of the DC method. Additionally, a second test case was presented and the results showed that depending on the problem under consideration, the NWF procedure may be computationally faster or slower that the DC method. As an example, the CPU time for QUICK and SMART schemes are 61.8 and 203.7%, respectively, slower when the NWF formulation is used for the second test case. Finally, future researches to explore the computational cost of the NWF method in more complex problems are required.

  6. Results of numerically solving an integral equation for a two-fermion system

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Solov'eva, T.M.

    2003-01-01

    A two-particle system is described by integral equations whose kernels are dependent on the total energy of the system. Such equations can be reduced to an eigenvalue problem featuring an eigenvalue-dependent operator. This nonlinear eigenvalue problem is solved by means of an iterative procedure developed by the present authors. The energy spectra of a two-fermion system formed by particles of identical masses are obtained for two cases, that where the total spin of the system is equal to zero and that where the total spin of the system is equal to unity. The splitting of the ground-state levels of positronium and dimuonium, the frequency of the transition from the ground state of orthopositronium to its first excited state, and the probabilities of parapositronium and paradimuonium decays are computed. The results obtained in this way are found to be in good agreement with experimental data

  7. Cross Coursing in Mathematics: Physical Modelling in Differential Equations Crossing to Discrete Dynamical Systems

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)

  8. Inverse operator method for solutions of nonlinear dynamical system and application to Lorentz equation

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    1993-01-01

    The inverse operator method (IOM) for solutions of nonlinear dynamical systems (NDS) is briefly described and realized by the Mathematics-Mechanization (MM) in computers. For the first time IOM and MM are successfully applied to study the chaotic behaviors of Lorentz equation

  9. Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations

    Directory of Open Access Journals (Sweden)

    Bahman Ghazanfari

    2013-08-01

    Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.

  10. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  11. Positive Solutions for System of Nonlinear Fractional Differential Equations in Two Dimensions with Delay

    Directory of Open Access Journals (Sweden)

    Azizollah Babakhani

    2010-01-01

    Full Text Available We investigate the existence and uniqueness of positive solution for system of nonlinear fractional differential equations in two dimensions with delay. Our analysis relies on a nonlinear alternative of Leray-Schauder type and Krasnoselskii's fixed point theorem in a cone.

  12. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    OpenAIRE

    Sun, Jiebao; Zhang, Dazhi; Wu, Boying

    2011-01-01

    We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  13. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Jiebao Sun

    2011-01-01

    parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  14. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    Science.gov (United States)

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  15. Existence and uniqueness of solution for a system of equations of ...

    African Journals Online (AJOL)

    The existence and uniqueness of solution for a system of equations of microwave heating of biologic issue is discussed. Using the Green function approach we establish the existence and uniqueness of solution. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 177-180 ...

  16. A Direct Derivation of the Equations of Motion for 3D-Flexible Mechanical Systems

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Mads Leergaard

    1998-01-01

    equations for flexible mechanical systems are derived using the principle of virtual work, which introduces inertia in a straightforward manner, because this principle treats inertia as a force. The flexible formulation is exemplified by the use of circular beam elements and some basic matrices are derived...

  17. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  18. Computational Experience with Globally Convergent Descent Methods for Large Sparse Systems of Nonlinear Equations

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    1998-01-01

    Roč. 8, č. 3-4 (1998), s. 201-223 ISSN 1055-6788 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear equations * Armijo-type descent methods * Newton-like methods * truncated methods * global convergence * nonsymmetric linear systems * conjugate gradient -type methods * residual smoothing * computational experiments Subject RIV: BB - Applied Statistics, Operational Research

  19. On the solution of a class of fuzzy system of linear equations

    Indian Academy of Sciences (India)

    J. Mathematics and Comput. Sci. 1: 1–5. Salkuyeh D K 2011 On the solution of the fuzzy Sylvester matrix equation. Soft Computing 15: 953–961. Senthilkumar P and Rajendran G 2011 New approach to solve symmetric fully fuzzy linear systems. S¯adhan¯a 36: 933–940. Wang K and Zheng B 2007 Block iterative methods ...

  20. Approximate solution to the Kolmogorov equation for a fission chain-reacting system

    International Nuclear Information System (INIS)

    Ruby, L.; McSwine, T.L.

    1986-01-01

    An approximate solution has been obtained for the Kolmogorov equation describing a fission chain-reacting system. The method considers the population of neutrons, delayed-neutron precursors, and detector counts. The effect of the detector is separated from the statistics of the chain reaction by a weak coupling assumption that predicts that the detector responds to the average rather than to the instantaneous neutron population. An approximate solution to the remaining equation, involving the populations of neutrons and precursors, predicts a negative-binomial behaviour for the neutron probability distribution

  1. On a system of differential equations with fractional derivatives arising in rod theory

    International Nuclear Information System (INIS)

    Atanackovic, Teodor M; Stankovic, Bogoljub

    2004-01-01

    We study a system of equations with fractional derivatives, that arises in the analysis of the lateral motion of an elastic column fixed at one end and loaded by a concentrated follower force at the other end. We assume that the column is positioned on a viscoelastic foundation described by a constitutive equation of fractional derivative type. The stability boundary is determined. It is shown that as in the case of an elastic (Winkler) type of foundation the stability boundary remains the same as for the column without a foundation! Thus, with the solution analysed here, the column exhibits the so-called Hermann-Smith paradox

  2. Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system

    International Nuclear Information System (INIS)

    Wang, C.

    1992-01-01

    The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories

  3. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    Science.gov (United States)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  4. Comparing direct and iterative equation solvers in a large structural analysis software system

    Science.gov (United States)

    Poole, E. L.

    1991-01-01

    Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.

  5. Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion

    International Nuclear Information System (INIS)

    Zhang Mei-Ling; Wang Xiao-Xiao; Xie Yin-Li; Jia Li-Qun; Sun Xian-Ting

    2011-01-01

    Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results. (general)

  6. Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems

    Science.gov (United States)

    Skinner, Thomas E.

    2018-01-01

    The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems. Many important processes, including those in more complicated systems, can be modeled and understood through the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation has been the subject of considerable analysis in the 70 years since its inception, there is still, perhaps surprisingly, significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact, tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem. Degenerate roots, which modify the solutions, have been ignored altogether. Here the roots are obtained explicitly in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal and transverse rates. These rates are functions of the applied field, which

  7. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    Directory of Open Access Journals (Sweden)

    Florian Thüroff

    2014-11-01

    Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.

  8. Quantum Discord in Two-Qubit System Constructed from the Yang—Baxter Equation

    International Nuclear Information System (INIS)

    Gou Li-Dan; Wang Xiao-Qian; Sun Yuan-Yuan; Xu Yu-Mei

    2014-01-01

    Quantum correlations among parts of a composite quantum system are a fundamental resource for several applications in quantum information. In general, quantum discord can measure quantum correlations. In that way, we investigate the quantum discord of the two-qubit system constructed from the Yang—Baxter Equation. The density matrix of this system is generated through the unitary Yang—Baxter matrix R. The analytical expression and numerical result of quantum discord and geometric measure of quantum discord are obtained for the Yang—Baxter system. These results show that quantum discord and geometric measure of quantum discord are only connect with the parameter θ, which is the important spectral parameter in Yang—Baxter equation. (general)

  9. Size dependent diffusive parameters and tensorial diffusion equations in neutronic models for optically small nuclear systems

    International Nuclear Information System (INIS)

    Premuda, F.

    1983-01-01

    Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated

  10. The coordinate system transformation of a serial kinematic structures and use in the derivation of systems motion equations

    Directory of Open Access Journals (Sweden)

    Zátopek Jiří

    2016-01-01

    Full Text Available This text discusses the use of transformation matrices to determine the motion equations of the complex mechanical structure. Use of the transformation matrix does not apply only to motion equations but has the general use in relative positions determine of objects in the 3D space. Analysed model is divided into seven physical objects, the transformation matrix and the corresponding inertia/pseudo-inertia matrix is included in each of them. This matrices are strictly necessary to the system dynamic description using the matrix form of Lagrange Equations of the Second Type. Another possibility to use the transformation matrix is shown in the camera system measurement. Model was designed in 3D CAD system SolidWorks, MATLAB was used for the mathematical calculations.

  11. TOEPLITZ, Solution of Linear Equation System with Toeplitz or Circulant Matrix

    International Nuclear Information System (INIS)

    Garbow, B.

    1984-01-01

    Description of program or function: TOEPLITZ is a collection of FORTRAN subroutines for solving linear systems Ax=b, where A is a Toeplitz matrix, a Circulant matrix, or has one or several block structures based on Toeplitz or Circulant matrices. Such systems arise in problems of electrodynamics, acoustics, mathematical statistics, algebra, in the numerical solution of integral equations with a difference kernel, and in the theory of stationary time series and signals

  12. Domestic and outbound tourism demand in Australia: a System-of-Equations Approach

    OpenAIRE

    George Athanasopoulos; Minfeng Deng; Gang Li; Haiyan Song

    2013-01-01

    This study uses a system-of-equations approach to model the substitution relationship between Australian domestic and outbound tourism demand. A new price variable based on relative ratios of purchasing power parity index is developed for the substitution analysis. Short-run demand elasticities are calculated based on the estimated dynamic almost ideal demand system. The empirical results reveal significant substitution relationships between Australian domestic tourism and outbound travel to ...

  13. Ray equations of a weak shock in a hyperbolic system of ...

    Indian Academy of Sciences (India)

    differential form of this system of conservation laws is a hyperbolic system of partial differential equations. A(u)ut + B(α)(u)uxα = 0,. (1.3) where. A(u) = 〈∇u,H〉 and B(α)(u) = 〈∇u, F(α)〉,. (1.4) and we use the summation convention that a repeated symbol in subscripts and super- scripts in a term will mean summation over the ...

  14. System of delay difference equations with continuous time with lag function between two known functions

    Directory of Open Access Journals (Sweden)

    Hajnalka Péics

    2016-08-01

    Full Text Available The asymptotic behavior of solutions of the system of difference equations with continuous time and lag function between two known real functions is studied. The cases when the lag function is between two linear delay functions, between two power delay functions and between two constant delay functions are observed and illustrated by examples. The asymptotic estimates of solutions of the considered system are obtained.

  15. A semi-analytical approach for solving of nonlinear systems of functional differential equations with delay

    Science.gov (United States)

    Rebenda, Josef; Šmarda, Zdeněk

    2017-07-01

    In the paper, we propose a correct and efficient semi-analytical approach to solve initial value problem for systems of functional differential equations with delay. The idea is to combine the method of steps and differential transformation method (DTM). In the latter, formulas for proportional arguments and nonlinear terms are used. An example of using this technique for a system with constant and proportional delays is presented.

  16. Application of the variational iteration method for system of initial value problems delay differential equations

    Science.gov (United States)

    Yousef, Hamood. M.; Ismail, A. I. B. MD.

    2017-08-01

    Many attempts have been presented to solve the system of Delay Differential Equations (DDE) with Initial Value Problem. As a result, it has shown difficulties when getting the solution or cannot be solved. In this paper, a Variational Iteration Method is employed to find out an approximate solution for the system of DDE with initial value problems. The example illustrates convenient and an efficiency comparison with the exact solution.

  17. Baecklund transformations and zero-curvature representations of systems of partial differential equations

    International Nuclear Information System (INIS)

    Brandt, F.

    1993-01-01

    It is shown that Baecklund transformations (BTs) and zero-curvature representations (ZCRs) of systems of partial differential equations (PDEs) are closely related. The connection is established by nonlinear representations of the symmetry group underlying the ZCR which induce gauge transformations relating different BTs. This connection is used to construct BTs from ZCRs (and vice versa). Furthermore a procedure is outlined which allows a systematic search for ZCRs of a given system of PDEs. (orig.)

  18. Normal anatomy of the lymphatic system in the CT-image

    International Nuclear Information System (INIS)

    Steinbrich, W.; Peters, P.E.

    1982-01-01

    To evaluate a pathologic process of a lymphatic node, detailed knowledge is required of the normal anatomy of the lumphatic system in an axial CT image. The anatomy is demonstrated in a comparative study before and after lymphography with CT-scans of patients with normal lymphadenographs. Hereby it appears that with the high-resolution scanning method and favourable imaging conditions even small lymphatic nodes can be differentiated without a lymphographic contrast technique. However, nerves and vessels cannot be differentiated. The extreme variability in the size of normal lymphatic nodes makes the differentiation of pathologic processes very difficult. (orig.) [de

  19. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  20. On the co-derivative of normal cone mappings to inequality systems

    Czech Academy of Sciences Publication Activity Database

    Henrion, R.; Outrata, Jiří; Surowiec, T.

    2009-01-01

    Roč. 71, 3-4 (2009), s. 1213-1226 ISSN 0362-546X R&D Projects: GA AV ČR IAA1030405 Institutional research plan: CEZ:AV0Z10750506 Keywords : Mordukhovich coderivative * Normal cone mapping * Calmness * Inequality constraints Subject RIV: BA - General Mathematics Impact factor: 1.487, year: 2009 http://library.utia.cas.cz/separaty/2009/MTR/outrata-on the co-derivative of normal cone mappings to inequality systems.pdf

  1. Exact results in the large system size limit for the dynamics of the chemical master equation, a one dimensional chain of equations.

    Science.gov (United States)

    Martirosyan, A; Saakian, David B

    2011-08-01

    We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.

  2. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  3. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping

    International Nuclear Information System (INIS)

    Bucci, Francesca; Toundykov, Daniel

    2010-01-01

    The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping

  4. Matrix equation decomposition and parallel solution of systems resulting from unstructured finite element problems in electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Cwik, T. [California Institute of Technology, Pasadena, CA (United States); Katz, D.S. [Cray Research, El Segundo, CA (United States)

    1996-12-31

    Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.

  5. Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems

    Directory of Open Access Journals (Sweden)

    Misha V. Feigin

    2009-09-01

    Full Text Available We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (v-system and we determine all trigonometric v-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric v-system; this inverts a one-way implication observed by Veselov for the rational solutions.

  6. Tensor-GMRES method for large sparse systems of nonlinear equations

    Science.gov (United States)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  7. Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems

  8. A new hierarchy of generalized derivative nonlinear Schroedinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system

    International Nuclear Information System (INIS)

    Yan, Z.; Zhang, H.

    2001-01-01

    In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed

  9. The core spline method for solution of quantum-mechanical systems of differential equations for bound states

    International Nuclear Information System (INIS)

    Aleksandrov, L.; Drenska, M.; Karadzhov, D.

    1986-01-01

    A generalization of the core spline method is given in the case of solution of the general bound state problem for a system of M linear differential equations with coefficients depending on the spectral parameter. The recursion scheme for construction of basic splines is described. The wave functions are expressed as linear combinations of basic splines, which are approximate partial solutions of the system. The spectral parameter (the eigenvalue) is determined from the condition for existence of a nontrivial solution of a (MxM) linear algebraic system at the last collocation point. The nontrivial solutions of this system determine (M - 1) coefficients of the linear spans, expressing the wave functions. The last unknown coefficient is determined from a boundary (or normalization) condition for the system. The computational aspects of the method are discussed, in particular, its concrete algorithmic realization used in the RODSOL program. The numerical solution of the Dirac system for the bound states of a hydrogen atom is given is an example

  10. Normal and Abnormal Scenario Modeling with GoldSim for Radioactive Waste Disposal System

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-08-01

    A modeling study and development of a total system performance assessment (TSPA) template program, by which an assessment of safety and performance for the radioactive waste repository with normal and/or abnormal nuclide release cases could be assessed has been carried out by utilizing a commercial development tool program, GoldSim. Scenarios associated with the various FEPs and involved in the performance of the proposed repository in view of nuclide transport and transfer both in the geosphere and biosphere has been also carried out. Selected normal and abnormal scenarios that could alter groundwater flow scheme and then nuclide transport are modeled with the template program. To this end in-depth system models for the normal and abnormal well and earthquake scenarios that are conceptually and rather practically described and then ready for implementing into a GoldSim TSPA template program are introduced with conceptual schemes for each repository system. Illustrative evaluations with data currently available are also shown

  11. Study of the components of renin-angiotensinaldosterone system and KalliKrein -Kinin system in normal pregnancy

    International Nuclear Information System (INIS)

    Abreu Fagundes, V.G. de.

    1984-01-01

    The alterations in the renin-angiotensin-aldosterone system and Kallikrein-Kinin system were studied. The possible interferences of these systems on the arterial pressure and on the evolution of normal pregnancy were presented in the following situations: when the pregnant change from dorsal decumbency to left lateral decumbency and to orthostatic position. (M.A.C.) [pt

  12. Analytical solution of the Poisson-Nernst-Planck equations for an electrochemical system close to electroneutrality

    International Nuclear Information System (INIS)

    Pabst, M.

    2014-01-01

    Single charge densities and the potential are used to describe models of electrochemical systems. These quantities can be calculated by solving a system of time dependent nonlinear coupled partial differential equations, the Poisson-Nernst-Planck equations. Assuming small deviations from the electroneutral equilibrium, the linearized and decoupled equations are solved for a radial symmetric geometry, which represents the interface between a cell and a sensor device. The densities and the potential are expressed by Fourier-Bessels series. The system considered has a ratio between the Debye-length and its geometric dimension on the order of 10 −4 so the Fourier-Bessel series can be approximated by elementary functions. The time development of the system is characterized by two time constants, τ c and τ g . The constant τ c describes the approach to the stationary state of the total charge and the potential. τ c is several orders of magnitude smaller than the geometry-dependent constant τ g , which is on the order of 10 ms characterizing the transition to the stationary state of the single ion densities

  13. Autonomous monitoring of control hardware to predict off-normal conditions using NIF automatic alignment systems

    International Nuclear Information System (INIS)

    Awwal, Abdul A.S.; Wilhelmsen, Karl; Leach, Richard R.; Miller-Kamm, Vicki; Burkhart, Scott; Lowe-Webb, Roger; Cohen, Simon

    2012-01-01

    Highlights: ► An automatic alignment system was developed to process images of the laser beams. ► System uses processing to adjust a series of control loops until alignment criteria are satisfied. ► Monitored conditions are compared against nominal values with an off-normal alert. ► Automated health monitoring system trends off-normals with a large image history. - Abstract: The National Ignition Facility (NIF) is a high power laser system capable of supporting high-energy-density experimentation as a user facility for the next 30 years. In order to maximize the facility availability, preventive maintenance enhancements are being introduced into the system. An example of such an enhancement is a camera-based health monitoring system, integrated into the automated alignment system, which provides an opportunity to monitor trends in measurements such as average beam intensity, size of the beam, and pixel saturation. The monitoring system will generate alerts based on observed trends in measurements to allow scheduled pro-active maintenance before routine off-normal detection stops system operations requiring unscheduled intervention.

  14. Autonomous monitoring of control hardware to predict off-normal conditions using NIF automatic alignment systems

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, Abdul A.S., E-mail: awwal1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Wilhelmsen, Karl; Leach, Richard R.; Miller-Kamm, Vicki; Burkhart, Scott; Lowe-Webb, Roger; Cohen, Simon [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer An automatic alignment system was developed to process images of the laser beams. Black-Right-Pointing-Pointer System uses processing to adjust a series of control loops until alignment criteria are satisfied. Black-Right-Pointing-Pointer Monitored conditions are compared against nominal values with an off-normal alert. Black-Right-Pointing-Pointer Automated health monitoring system trends off-normals with a large image history. - Abstract: The National Ignition Facility (NIF) is a high power laser system capable of supporting high-energy-density experimentation as a user facility for the next 30 years. In order to maximize the facility availability, preventive maintenance enhancements are being introduced into the system. An example of such an enhancement is a camera-based health monitoring system, integrated into the automated alignment system, which provides an opportunity to monitor trends in measurements such as average beam intensity, size of the beam, and pixel saturation. The monitoring system will generate alerts based on observed trends in measurements to allow scheduled pro-active maintenance before routine off-normal detection stops system operations requiring unscheduled intervention.

  15. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  16. Recent symbolic summation methods to solve coupled systems of differential and difference equations

    International Nuclear Information System (INIS)

    Schneider, Carsten; Bluemlein, Johannes; Freitas, Abilio de

    2014-07-01

    We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.

  17. On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Tam, Honwah

    2016-01-01

    In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)

  18. Exact differential equation for the density and ionization energy of a many-particle system

    Science.gov (United States)

    Levy, M.; Perdew, J. P.; Sahni, V.

    1984-01-01

    The present investigation is concerned with relations studied by Hohenberg and Kohn (1964) and Kohn and Sham (1965). The properties of a ground-state many-electron system are determined by the electron density. The correct differential equation for the density, as dictated by density-functional theory, is presented. It is found that the ground-state density n of a many-electron system obeys a Schroedinger-like differential equation which may be solved by standard Kohn-Sham programs. Results are connected to the traditional exact Kohn-Sham theory. It is pointed out that the results of the current investigations are readily extended to spin-density functional theory.

  19. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    Science.gov (United States)

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Recent symbolic summation methods to solve coupled systems of differential and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Freitas, Abilio de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-07-15

    We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.

  1. Late effects of normal tissues (lent) scoring system: the soma scale

    International Nuclear Information System (INIS)

    Mornex, F.; Pavy, J.J.; Denekamp, J.

    1997-01-01

    Radiation tolerance of normal tissues remains the limiting factor for delivering tumoricidal dose. The late toxicity of normal tissues is the most critical element of an irradiation: somatic, functional and structural alterations occur during the actual treatment itself, but late effects manifest months to years after acute effects heal, and may progress with time. The optimal therapeutic ratio ultimately requires not only complete tumor clearance, but also minimal residual injury to surrounding vital normal tissues. The disparity between the intensity of acute and late effects and the inability to predict the eventual manifestation of late normal tissue injury has made radiation oncologists recognize the importance of careful patient follow-up. There is so far no uniform toxicity scoring system to compare several clinical studies in the absence of a 'common toxicity language'. This justifies the need to establish a precise evaluation system for the analysis of late effects of radiation on normal tissues. The SOMA/LENT scoring system results from an international collaboration. European Organization Treatment of Cancer (EORTC) and Radiation Therapy Oncology Group (RTOG) have created subcommittees with the aim of addressing the question of standardized toxic effects criteria. This effort appeared as a necessity to standardize and improve the data recording, to then describe and evaluate uniform toxicity at regular time intervals. The current proposed scale is not yet validated, and should be used cautiously. (authors)

  2. A method for exponential propagation of large systems of stiff nonlinear differential equations

    Science.gov (United States)

    Friesner, Richard A.; Tuckerman, Laurette S.; Dornblaser, Bright C.; Russo, Thomas V.

    1989-01-01

    A new time integrator for large, stiff systems of linear and nonlinear coupled differential equations is described. For linear systems, the method consists of forming a small (5-15-term) Krylov space using the Jacobian of the system and carrying out exact exponential propagation within this space. Nonlinear corrections are incorporated via a convolution integral formalism; the integral is evaluated via approximate Krylov methods as well. Gains in efficiency ranging from factors of 2 to 30 are demonstrated for several test problems as compared to a forward Euler scheme and to the integration package LSODE.

  3. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

    Science.gov (United States)

    Sweilam, N. H.; Abou Hasan, M. M.

    2017-05-01

    In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

  4. Development and adjustment of programs for solving systems of linear equations

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1978-03-01

    Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)

  5. ASYS: a computer algebra package for analysis of nonlinear algebraic equations systems

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Khutornoj, N.V.

    1992-01-01

    A program package ASYS for analysis of nonlinear algebraic equations based on the Groebner basis technique is described. The package is written in REDUCE computer algebra language. It has special facilities to treat polynomial ideals of positive dimension, corresponding to algebraic systems with infinitely many solutions. Such systems can be transformed to an equivalent set of subsystems with reduced number of variables in completely automatic way. It often allows to construct the explicit form of a solution set in many problems of practical importance. Some examples and results of comparison with the standard Reduce package GROEBNER and special-purpose systems FELIX and A1PI are given. 21 refs.; 2 tabs

  6. EXISTENCE OF POSITIVE SOLUTION TO TWO-POINT BOUNDARY VALUE PROBLEM FOR A SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we consider a two-point boundary value problem for a system of second order ordinary differential equations. Under some conditions, we show the existence of positive solution to the system of second order ordinary differential equa-tions.

  7. Solvability of a class of systems of infinite-dimensional integral equations and their application in statistical mechanics

    International Nuclear Information System (INIS)

    Gonchar, N.S.

    1986-01-01

    This paper presents a mathematical method developed for investigating a class of systems of infinite-dimensional integral equations which have application in statistical mechanics. Necessary and sufficient conditions are obtained for the uniqueness and bifurcation of the solution of this class of systems of equations. Problems of equilibrium statistical mechanics are considered on the basis of this method

  8. About local fractional three-dimensional compressible Navier-Stokes equations in Cantor-type cylindrical co-ordinate system

    Directory of Open Access Journals (Sweden)

    Gao Guo-Ping

    2016-01-01

    Full Text Available In this article, we investigate the local fractional 3-D compressible Navier-Stokes equation via local fractional derivative. We use the Cantor-type cylindrical co-ordinate method to transfer 3-D compressible Navier-Stokes equation from the Cantorian co-ordinate system to the Cantor-type cylindrical co-ordinate system.

  9. Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity

    International Nuclear Information System (INIS)

    Yepez, Jeffrey

    2006-01-01

    Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory

  10. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  11. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    H. Montazeri

    2012-01-01

    Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

  12. Non-classical relaxation cycle of a three-dimensional system of Lotka-Volterra equations

    International Nuclear Information System (INIS)

    Kolesov, Yu S

    2000-01-01

    A mathematical model of the well-known Belousov's reaction is the object of study. It is reasonable to assume that one coefficient in the corresponding system of differential equations is large, while the other parameters are finite. Non-standard tools taking account of the peculiarities of the problem bring one to a theorem on the existence of a relaxation cycle, allowing at the same time to reveal its characteristic features

  13. A vanishing diffusion limit in a nonstandard system of phase field equations

    Czech Academy of Sciences Publication Activity Database

    Colli, P.; Gilardi, G.; Krejčí, Pavel; Sprekels, J.

    2014-01-01

    Roč. 3, č. 2 (2014), s. 257-275 ISSN 2163-2480 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : nonstandard phase field system * nonlinear partial differential equations * asympotic limit Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=9918

  14. On Landweber–Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces

    International Nuclear Information System (INIS)

    Leitão, A; Alves, M Marques

    2012-01-01

    In this paper, iterative regularization methods of Landweber–Kaczmarz type are considered for solving systems of ill-posed equations modeled (finitely many) by operators acting between Banach spaces. Using assumptions of uniform convexity and smoothness on the parameter space, we are able to prove a monotony result for the proposed method, as well as to establish convergence (for exact data) and stability results (in the noisy data case). (paper)

  15. A combined modification of Newton`s method for systems of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, M.T.; Fernandes, E.M.G.P. [Universidade do Minho, Braga (Portugal)

    1996-12-31

    To improve the performance of Newton`s method for the solution of systems of nonlinear equations a modification to the Newton iteration is implemented. The modified step is taken as a linear combination of Newton step and steepest descent directions. In the paper we describe how the coefficients of the combination can be generated to make effective use of the two component steps. Numerical results that show the usefulness of the combined modification are presented.

  16. Existence and Uniqueness of Solutions for Coupled Systems of Higher-Order Nonlinear Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Ahmad Bashir

    2010-01-01

    Full Text Available We study an initial value problem for a coupled Caputo type nonlinear fractional differential system of higher order. As a first problem, the nonhomogeneous terms in the coupled fractional differential system depend on the fractional derivatives of lower orders only. Then the nonhomogeneous terms in the fractional differential system are allowed to depend on the unknown functions together with the fractional derivative of lower orders. Our method of analysis is based on the reduction of the given system to an equivalent system of integral equations. Applying the nonlinear alternative of Leray-Schauder, we prove the existence of solutions of the fractional differential system. The uniqueness of solutions of the fractional differential system is established by using the Banach contraction principle. An illustrative example is also presented.

  17. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    Science.gov (United States)

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  18. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

    Science.gov (United States)

    Voronova, Veronika; Zhudenkov, Kirill; Helmlinger, Gabriel; Peskov, Kirill

    2017-01-01

    Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.

  19. Correction of Bowtie-Filter Normalization and Crescent Artifacts for a Clinical CBCT System.

    Science.gov (United States)

    Zhang, Hong; Kong, Vic; Huang, Ke; Jin, Jian-Yue

    2017-02-01

    To present our experiences in understanding and minimizing bowtie-filter crescent artifacts and bowtie-filter normalization artifacts in a clinical cone beam computed tomography system. Bowtie-filter position and profile variations during gantry rotation were studied. Two previously proposed strategies (A and B) were applied to the clinical cone beam computed tomography system to correct bowtie-filter crescent artifacts. Physical calibration and analytical approaches were used to minimize the norm phantom misalignment and to correct for bowtie-filter normalization artifacts. A combined procedure to reduce bowtie-filter crescent artifacts and bowtie-filter normalization artifacts was proposed and tested on a norm phantom, CatPhan, and a patient and evaluated using standard deviation of Hounsfield unit along a sampling line. The bowtie-filter exhibited not only a translational shift but also an amplitude variation in its projection profile during gantry rotation. Strategy B was better than strategy A slightly in minimizing bowtie-filter crescent artifacts, possibly because it corrected the amplitude variation, suggesting that the amplitude variation plays a role in bowtie-filter crescent artifacts. The physical calibration largely reduced the misalignment-induced bowtie-filter normalization artifacts, and the analytical approach further reduced bowtie-filter normalization artifacts. The combined procedure minimized both bowtie-filter crescent artifacts and bowtie-filter normalization artifacts, with Hounsfield unit standard deviation being 63.2, 45.0, 35.0, and 18.8 Hounsfield unit for the best correction approaches of none, bowtie-filter crescent artifacts, bowtie-filter normalization artifacts, and bowtie-filter normalization artifacts + bowtie-filter crescent artifacts, respectively. The combined procedure also demonstrated reduction of bowtie-filter crescent artifacts and bowtie-filter normalization artifacts in a CatPhan and a patient. We have developed a step

  20. The Use of a Code-generating System for the Derivation of the Equations for Wind Turbine Dynamics

    Science.gov (United States)

    Ganander, Hans

    2003-10-01

    For many reasons the size of wind turbines on the rapidly growing wind energy market is increasing. Relations between aeroelastic properties of these new large turbines change. Modifications of turbine designs and control concepts are also influenced by growing size. All these trends require development of computer codes for design and certification. Moreover, there is a strong desire for design optimization procedures, which require fast codes. General codes, e.g. finite element codes, normally allow such modifications and improvements of existing wind turbine models. This is done relatively easy. However, the calculation times of such codes are unfavourably long, certainly for optimization use. The use of an automatic code generating system is an alternative for relevance of the two key issues, the code and the design optimization. This technique can be used for rapid generation of codes of particular wind turbine simulation models. These ideas have been followed in the development of new versions of the wind turbine simulation code VIDYN. The equations of the simulation model were derived according to the Lagrange equation and using Mathematica®, which was directed to output the results in Fortran code format. In this way the simulation code is automatically adapted to an actual turbine model, in terms of subroutines containing the equations of motion, definitions of parameters and degrees of freedom. Since the start in 1997, these methods, constituting a systematic way of working, have been used to develop specific efficient calculation codes. The experience with this technique has been very encouraging, inspiring the continued development of new versions of the simulation code as the need has arisen, and the interest for design optimization is growing.

  1. Normalization references for USEtoxTM-based toxic impact categories: North American and European economic systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Lautier, Anne; Rosenbaum, Ralph K.

    2011-01-01

    economic regions, North America and Europe, to calculate normalization references for the three currently-modelled USEtoxTM-based impact categories, i.e. freshwater ecotoxicity, human toxicity, divided into cancer effects and non-cancer effects. Base years for the references are 2004 for Europe and 2006...... coverage of organics in both the inventory and the CF databases. With respect to the intended global character of the USEtoxTM model, different approaches to determine normalization references of other economic systems (e.g. Asia or world) are discussed in relation to these findings. Overall, we thus...... recommend the use of the provided set of normalization references for USEtoxTM, but we also advocate 1) to perform an update as soon as a more comprehensive inventory can be obtained and as soon as characterization factors for metals are revised; 2) to consider extension to other economic systems in order...

  2. Method of normal coordinates in the formulation of a system with dissipation: The harmonic oscillator

    International Nuclear Information System (INIS)

    Mshelia, E.D.

    1994-07-01

    The method of normal coordinates of the theory of vibrations is used in decoupling the motion of n oscillators (1 ≤ n ≤4) representing intrinsic degrees of freedom coupled to collective motion in a quantum mechanical model that allows the determination of the probability for energy transfer from collective to intrinsic excitations in a dissipative system. (author). 21 refs

  3. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, H. [Fermilab; Flora, B. [Fermilab; Wolff, D. [Fermilab

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  4. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  5. Safety of the HyperSound® Audio System in subjects with normal hearing

    Directory of Open Access Journals (Sweden)

    Ritvik P. Mehta

    2015-11-01

    Full Text Available The objective of the study was to assess the safety of the HyperSound® Audio System (HSS, a novel audio system using ultrasound technology, in normal hearing subjects under normal use conditions; we considered preexposure and post-exposure test design. We investigated primary and secondary outcome measures: i temporary threshold shift (TTS, defined as >10 dB shift in pure tone air conduction thresholds and/or a decrement in distortion product otoacoustic emissions (DPOAEs >10 dB at two or more frequencies; ii presence of new-onset otologic symptoms after exposure. Twenty adult subjects with normal hearing underwent a pre-exposure assessment (pure tone air conduction audiometry, tympanometry, DPOAEs and otologic symptoms questionnaire followed by exposure to a 2-h movie with sound delivered through the HSS emitter followed by a post-exposure assessment. No TTS or new-onset otological symptoms were identified. HSS demonstrates excellent safety in normal hearing subjects under normal use conditions.

  6. Safety of the HyperSound® Audio System in Subjects with Normal Hearing.

    Science.gov (United States)

    Mehta, Ritvik P; Mattson, Sara L; Kappus, Brian A; Seitzman, Robin L

    2015-06-11

    The objective of the study was to assess the safety of the HyperSound® Audio System (HSS), a novel audio system using ultrasound technology, in normal hearing subjects under normal use conditions; we considered pre-exposure and post-exposure test design. We investigated primary and secondary outcome measures: i) temporary threshold shift (TTS), defined as >10 dB shift in pure tone air conduction thresholds and/or a decrement in distortion product otoacoustic emissions (DPOAEs) >10 dB at two or more frequencies; ii) presence of new-onset otologic symptoms after exposure. Twenty adult subjects with normal hearing underwent a pre-exposure assessment (pure tone air conduction audiometry, tympanometry, DPOAEs and otologic symptoms questionnaire) followed by exposure to a 2-h movie with sound delivered through the HSS emitter followed by a post-exposure assessment. No TTS or new-onset otological symptoms were identified. HSS demonstrates excellent safety in normal hearing subjects under normal use conditions.

  7. Solutions of system of P1 equations without use of auxiliary differential equations coupled; Solucoes do sistema de equacoes P1 sem o uso de equacoes diferenciais auxiliares acopladas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  8. Development and validation of equations utilizing lamb vision system output to predict lamb carcass fabrication yields.

    Science.gov (United States)

    Cunha, B C N; Belk, K E; Scanga, J A; LeValley, S B; Tatum, J D; Smith, G C

    2004-07-01

    This study was performed to validate previous equations and to develop and evaluate new regression equations for predicting lamb carcass fabrication yields using outputs from a lamb vision system-hot carcass component (LVS-HCC) and the lamb vision system-chilled carcass LM imaging component (LVS-CCC). Lamb carcasses (n = 149) were selected after slaughter, imaged hot using the LVS-HCC, and chilled for 24 to 48 h at -3 to 1 degrees C. Chilled carcasses yield grades (YG) were assigned on-line by USDA graders and by expert USDA grading supervisors with unlimited time and access to the carcasses. Before fabrication, carcasses were ribbed between the 12th and 13th ribs and imaged using the LVS-CCC. Carcasses were fabricated into bone-in subprimal/primal cuts. Yields calculated included 1) saleable meat yield (SMY); 2) subprimal yield (SPY); and 3) fat yield (FY). On-line (whole-number) USDA YG accounted for 59, 58, and 64%; expert (whole-number) USDA YG explained 59, 59, and 65%; and expert (nearest-tenth) USDA YG accounted for 60, 60, and 67% of the observed variation in SMY, SPY, and FY, respectively. The best prediction equation developed in this trial using LVS-HCC output and hot carcass weight as independent variables explained 68, 62, and 74% of the variation in SMY, SPY, and FY, respectively. Addition of output from LVS-CCC improved predictive accuracy of the equations; the combined output equations explained 72 and 66% of the variability in SMY and SPY, respectively. Accuracy and repeatability of measurement of LM area made with the LVS-CCC also was assessed, and results suggested that use of LVS-CCC provided reasonably accurate (R2 = 0.59) and highly repeatable (repeatability = 0.98) measurements of LM area. Compared with USDA YG, use of the dual-component lamb vision system to predict cut yields of lamb carcasses improved accuracy and precision, suggesting that this system could have an application as an objective means for pricing carcasses in a value

  9. Supporting second grade lower secondary school students’ understanding of linear equation system in two variables using ethnomathematics

    Science.gov (United States)

    Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.

    2018-03-01

    The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.

  10. Iterative Systems Biology for Medicine – time for advancing from network signature to mechanistic equations

    KAUST Repository

    Gomez-Cabrero, David

    2017-05-09

    The rise and growth of Systems Biology following the sequencing of the human genome has been astounding. Early on, an iterative wet-dry methodology was formulated which turned out as a successful approach in deciphering biological complexity. Such type of analysis effectively identified and associated molecular network signatures operative in biological processes across different systems. Yet, it has proven difficult to distinguish between causes and consequences, thus making it challenging to attack medical questions where we require precise causative drug targets and disease mechanisms beyond a web of associated markers. Here we review principal advances with regard to identification of structure, dynamics, control, and design of biological systems, following the structure in the visionary review from 2002 by Dr. Kitano. Yet, here we find that the underlying challenge of finding the governing mechanistic system equations enabling precision medicine remains open thus rendering clinical translation of systems biology arduous. However, stunning advances in raw computational power, generation of high-precision multi-faceted biological data, combined with powerful algorithms hold promise to set the stage for data-driven identification of equations implicating a fundamental understanding of living systems during health and disease.

  11. Fokker-Planck-Rosenbluth-type equations for self-gravitating systems in the 1PN approximation

    International Nuclear Information System (INIS)

    Ramos-Caro, Javier; Gonzalez, Guillermo A

    2008-01-01

    We present two formulations of Fokker-Planck-Rosenbluth-type (FPR) equations for many-particle self-gravitating systems, with first-order relativistic corrections in the post-Newtonian approach (1PN). The first starts from a covariant Fokker-Planck equation for a simple gas, introduced recently by Chacon-Acosta and Kremer (2007 Phys. Rev. E 76 021201). The second derivation is based on the establishment of an 1PN-BBGKY hierarchy, developed systematically from the 1PN microscopic law of force and using the Klimontovich-Dupree (KD) method. We close the hierarchy by the introduction of a two-point correlation function that describes adequately the relaxation process. This picture reveals an aspect that is not considered in the first formulation: the contribution of ternary correlation patterns to the diffusion coefficients, as a consequence of the nature of 1PN interaction. Both formulations can be considered as a generalization of the equation derived by Rezania and Sobouti (2000 Astron. Astrophys. 354 1110), to stellar systems where the relativistic effects of gravitation play a significant role

  12. Utility rate equations of group population dynamics in biological and social systems.

    Directory of Open Access Journals (Sweden)

    Vyacheslav I Yukalov

    Full Text Available We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors and of three groups (cooperators, defectors, and regulators and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about [Formula: see text] each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita.

  13. DISPL-1, 2. Order Nonlinear Partial Differential Equation System Solution for Kinetics Diffusion Problems

    International Nuclear Information System (INIS)

    Leaf, G.K.; Minkoff, M.

    1982-01-01

    1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code

  14. Equation of material balance for systems of double porosity with layer of initial gas

    International Nuclear Information System (INIS)

    Niz, Eider; Hidrobo, Eduardo A; Penuela, Gherson; Ordonez, Anibal; Calderon, Zuly H

    2004-01-01

    The physical complexity associated to naturally fractured reservoirs calls for the use of more robust formulations of the Material-Balance Equation (MBE) for determining the initial hydrocarbon in place and predicting reservoir performance. In this paper, we present an improved version of the dual-porosity MBE for naturally fractured reservoirs, published by Penuela et al. (2001), including the existence of an initial gas phase in the reservoir. Considering that a fractured reservoir may be modeled either using different properties for each porous medium or with average values for the total system, two solution techniques based on each of these assumptions are proposed. Convenient arrangements of the equation allow us to estimate not only the original oil and gas volumes but also the relative storage capacity of the porous media (fractures and matrix) and the compressibility for the fractured and total systems. The new equation can be applied to a broader range of reservoirs due to its more general character. The consistency of the expression proposed has been tested with a set of synthetic models exhibiting different storage capacity in the fractures

  15. Utility Rate Equations of Group Population Dynamics in Biological and Social Systems

    Science.gov (United States)

    Yukalov, Vyacheslav I.; Yukalova, Elizaveta P.; Sornette, Didier

    2013-01-01

    We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita. PMID:24386163

  16. Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations

    KAUST Repository

    Figalli, Alessio; Gomes, Diogo A.; Marcon, Diego

    2016-01-01

    Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.

  17. Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations

    KAUST Repository

    Figalli, Alessio

    2016-06-23

    Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.

  18. Numerical Oscillations Analysis for Nonlinear Delay Differential Equations in Physiological Control Systems

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-01-01

    Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.

  19. Solution of charged particle transport equation by Monte-Carlo method in the BRANDZ code system

    International Nuclear Information System (INIS)

    Artamonov, S.N.; Androsenko, P.A.; Androsenko, A.A.

    1992-01-01

    Consideration is given to the issues of Monte-Carlo employment for the solution of charged particle transport equation and its implementation in the BRANDZ code system under the conditions of real 3D geometry and all the data available on radiation-to-matter interaction in multicomponent and multilayer targets. For the solution of implantation problem the results of BRANDZ data comparison with the experiments and calculations by other codes in complexes systems are presented. The results of direct nuclear pumping process simulation for laser-active media by a proton beam are also included. 4 refs.; 7 figs

  20. A modified Friedmann equation for a system with varying gravitational mass

    Science.gov (United States)

    Gorkavyi, Nick; Vasilkov, Alexander

    2018-05-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system. Using an assumption that the energy-momentum pseudo-tensor of gravitational waves is not considered as a source of gravitational field, we analyse a perturbation of the Friedmann-Robertson-Walker metric caused by the varying gravitational mass of a system. This perturbation leads to a modified Friedmann equation that contains a term similar to the `cosmological constant'. Theoretical estimates of the effective cosmological constant quantitatively corresponds to observed cosmological acceleration.

  1. General decay of solutions of a nonlinear system of viscoelastic wave equations

    KAUST Repository

    Said-Houari, Belkacem; Messaoudi, Salim A.; Guesmia, Aï ssa

    2011-01-01

    This work is concerned with a system of two viscoelastic wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we prove that, for certain class of relaxation functions and for some restrictions on the initial data, the rate of decay of the total energy depends on those of the relaxation functions. This result improves many results in the literature, such as the ones in Messaoudi and Tatar (Appl. Anal. 87(3):247-263, 2008) and Liu (Nonlinear Anal. 71:2257-2267, 2009) in which only the exponential and polynomial decay rates are considered. © 2011 Springer Basel AG.

  2. General decay of solutions of a nonlinear system of viscoelastic wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2011-04-16

    This work is concerned with a system of two viscoelastic wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we prove that, for certain class of relaxation functions and for some restrictions on the initial data, the rate of decay of the total energy depends on those of the relaxation functions. This result improves many results in the literature, such as the ones in Messaoudi and Tatar (Appl. Anal. 87(3):247-263, 2008) and Liu (Nonlinear Anal. 71:2257-2267, 2009) in which only the exponential and polynomial decay rates are considered. © 2011 Springer Basel AG.

  3. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  4. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation

    KAUST Repository

    Mélykúti, Bence; Burrage, Kevin; Zygalakis, Konstantinos C.

    2010-01-01

    The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when

  5. Three-dimensional integral equation approach to light scattering, extinction cross sections, local density of states, and quasi-normal modes

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Mørk, Jesper; Kristensen, Philip Trøst

    2013-01-01

    We present a numerical formalism for solving the Lippmann–Schwinger equation for the electric field in three dimensions. The formalism may be applied to scatterers of different shapes and embedded in different background media, and we develop it in detail for the specific case of spherical scatte...

  6. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr

  7. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr

  8. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

    International Nuclear Information System (INIS)

    Greenspan, D.

    2006-01-01

    An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

  9. A comparision of Brain-Behavioral Systems in patients with multiple sclerosis and normal individuals

    Directory of Open Access Journals (Sweden)

    kobra Moradi

    2016-05-01

    Full Text Available Background: The aim of this study was to compare   Brain-Behavioral Systems in patient with multiple sclerocis (MS and normal individuals. Materials and Methods: This research was a post facto comparative study, subjects included  healthy persons and all patients with MS, which in summer and autumn 2013 referred to neurologists in the Lorestan province. Of the population using as samples, 117 cases (75 patients and 42 normal subjects were selected, then Gray- Wilson Personality Questionnaire was completed for them. To analyze the data, multivariate analysis of variance (MANOVA test  was used to compare the two groups. Results: The results showed, in BAS scales, people with MS had significantly lower scores than normal subjects Conclusion: What comes from findings indicates that a low score in behavioral activation as a pathological factors in chronic diseases such as MS is concerned and is in need of psychological treatment.

  10. Development of advanced automatic operation system for nuclear ship. 1. Perfect automatic normal operation

    International Nuclear Information System (INIS)

    Nakazawa, Toshio; Yabuuti, Noriaki; Takahashi, Hiroki; Shimazaki, Junya

    1999-02-01

    Development of operation support system such as automatic operating system and anomaly diagnosis systems of nuclear reactor is very important in practical nuclear ship because of a limited number of operators and severe conditions in which receiving support from others in a case of accident is very difficult. The goal of development of the operation support systems is to realize the perfect automatic control system in a series of normal operation from the reactor start-up to the shutdown. The automatic control system for the normal operation has been developed based on operating experiences of the first Japanese nuclear ship 'Mutsu'. Automation technique was verified by 'Mutsu' plant data at manual operation. Fully automatic control of start-up and shutdown operations was achieved by setting the desired value of operation and the limiting value of parameter fluctuation, and by making the operation program of the principal equipment such as the main coolant pump and the heaters. This report presents the automatic operation system developed for the start-up and the shutdown of reactor and the verification of the system using the Nuclear Ship Engineering Simulator System. (author)

  11. Fitting and verification of frequency modulation systems on children with normal hearing.

    Science.gov (United States)

    Schafer, Erin C; Bryant, Danielle; Sanders, Katie; Baldus, Nicole; Algier, Katherine; Lewis, Audrey; Traber, Jordan; Layden, Paige; Amin, Aneeqa

    2014-06-01

    Several recent investigations support the use of frequency modulation (FM) systems in children with normal hearing and auditory processing or listening disorders such as those diagnosed with auditory processing disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, Friedreich ataxia, and dyslexia. The American Academy of Audiology (AAA) published suggested procedures, but these guidelines do not cite research evidence to support the validity of the recommended procedures for fitting and verifying nonoccluding open-ear FM systems on children with normal hearing. Documenting the validity of these fitting procedures is critical to maximize the potential FM-system benefit in the above-mentioned populations of children with normal hearing and those with auditory-listening problems. The primary goal of this investigation was to determine the validity of the AAA real-ear approach to fitting FM systems on children with normal hearing. The secondary goal of this study was to examine speech-recognition performance in noise and loudness ratings without and with FM systems in children with normal hearing sensitivity. A two-group, cross-sectional design was used in the present study. Twenty-six typically functioning children, ages 5-12 yr, with normal hearing sensitivity participated in the study. Participants used a nonoccluding open-ear FM receiver during laboratory-based testing. Participants completed three laboratory tests: (1) real-ear measures, (2) speech recognition performance in noise, and (3) loudness ratings. Four real-ear measures were conducted to (1) verify that measured output met prescribed-gain targets across the 1000-4000 Hz frequency range for speech stimuli, (2) confirm that the FM-receiver volume did not exceed predicted uncomfortable loudness levels, and (3 and 4) measure changes to the real-ear unaided response when placing the FM receiver in the child's ear. After completion of the fitting, speech recognition in noise at a -5

  12. Symmetries and conserved quantities of discrete wave equation associated with the Ablowitz—Ladik—Lattice system

    International Nuclear Information System (INIS)

    Fu Jing-Li; He Yu-Fang; Hong Fang-Yu; Song Duan; Fu Hao

    2013-01-01

    In this paper, we present a new method to obtain the Lie symmetries and conserved quantities of the discrete wave equation with the Ablowitz—Ladik—Lattice equations. Firstly, the wave equation is transformed into a simple difference equation with the Ablowitz—Ladik—Lattice method. Secondly, according to the invariance of the discrete wave equation and the Ablowitz—Ladik—Lattice equations under infinitesimal transformation of dependent and independent variables, we derive the discrete determining equation and the discrete restricted equations. Thirdly, a series of the discrete analogs of conserved quantities, the discrete analogs of Lie groups, and the characteristic equations are obtained for the wave equation. Finally, we study a model of a biological macromolecule chain of mechanical behaviors, the Lie symmetry theory of discrete wave equation with the Ablowitz—Ladik—Lattice method is verified. (general)

  13. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    Science.gov (United States)

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  14. Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance

    International Nuclear Information System (INIS)

    Hsiang, J.-T.; Hu, B.L.

    2015-01-01

    The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the

  15. FEQinput—An editor for the full equations (FEQ) hydraulic modeling system

    Science.gov (United States)

    Ancalle, David S.; Ancalle, Pablo J.; Domanski, Marian M.

    2017-10-30

    IntroductionThe Full Equations Model (FEQ) is a computer program that solves the full, dynamic equations of motion for one-dimensional unsteady hydraulic flow in open channels and through control structures. As a result, hydrologists have used FEQ to design and operate flood-control structures, delineate inundation maps, and analyze peak-flow impacts. To aid in fighting floods, hydrologists are using the software to develop a system that uses flood-plain models to simulate real-time streamflow.Input files for FEQ are composed of text files that contain large amounts of parameters, data, and instructions that are written in a format exclusive to FEQ. Although documentation exists that can aid in the creation and editing of these input files, new users face a steep learning curve in order to understand the specific format and language of the files.FEQinput provides a set of tools to help a new user overcome the steep learning curve associated with creating and modifying input files for the FEQ hydraulic model and the related utility tool, Full Equations Utilities (FEQUTL).

  16. Empirical Radiometric Normalization of Road Points from Terrestrial Mobile Lidar System

    Directory of Open Access Journals (Sweden)

    Tee-Ann Teo

    2015-05-01

    Full Text Available Lidar data provide both geometric and radiometric information. Radiometric information is influenced by sensor and target factors and should be calibrated to obtain consistent energy responses. The radiometric correction of airborne lidar system (ALS converts the amplitude into a backscatter cross-section with physical meaning value by applying a model-driven approach. The radiometric correction of terrestrial mobile lidar system (MLS is a challenging task because it does not completely follow the inverse square range function at near-range. This study proposed a radiometric normalization workflow for MLS using a data-driven approach. The scope of this study is to normalize amplitude of road points for road surface classification, assuming that road points from different scanners or strips should have similar responses in overlapped areas. The normalization parameters for range effect were obtained from crossroads. The experiment showed that the amplitude difference between scanners and strips decreased after radiometric normalization and improved the accuracy of road surface classification.

  17. Normalization of NDVI from Different Sensor System using MODIS Products as Reference

    International Nuclear Information System (INIS)

    Wenxia, Gan; Liangpei, Zhang; Wei, Gong; Huanfeng, Shen

    2014-01-01

    Medium Resolution NDVI(Normalized Difference Vegetation Index) from different sensor systems such as Landsat, SPOT, ASTER, CBERS and HJ-1A/1B satellites provide detailed spatial information for studies of ecosystems, vegetation biophysics, and land cover. Limitation of sensor designs, cloud contamination, and sensor failure highlighted the need to normalize and integrate NDVI from multiple sensor system in order to create a consistent, long-term NDVI data set. In this paper, we used a reference-based method for NDVI normalization. And present an application of this approach which covert Landsat ETM+ NDVI calculated by digital number (NDVI DN ) to NDVI calculated by surface reflectance (NDVI SR ) using MODIS products as reference, and different cluster was treated differently. Result shows that this approach can produce NDVI with highly agreement to NDVI calculated by surface reflectance from physical approaches based on 6S (Second Simulation of the satellite Signal in the Solar Spectrum). Although some variability exists, the cluster specified reference based approach shows considerable potential for NDVI normalization. Therefore, NDVI products in MODIS era from different sources can be combined for time-series analysis, biophysical parameter retrievals, and other downstream analysis

  18. Converting differential-equation models of biological systems to membrane computing.

    Science.gov (United States)

    Muniyandi, Ravie Chandren; Zin, Abdullah Mohd; Sanders, J W

    2013-12-01

    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic.

    Science.gov (United States)

    Safonov, Leonid A.; Tomer, Elad; Strygin, Vadim V.; Ashkenazy, Yosef; Havlin, Shlomo

    2002-12-01

    We study a system of delay-differential equations modeling single-lane road traffic. The cars move in a closed circuit and the system's variables are each car's velocity and the distance to the car ahead. For low and high values of traffic density the system has a stable equilibrium solution, corresponding to the uniform flow. Gradually decreasing the density from high to intermediate values we observe a sequence of supercritical Hopf bifurcations forming multistable limit cycles, corresponding to flow regimes with periodically moving traffic jams. Using an asymptotic technique we find approximately small limit cycles born at Hopf bifurcations and numerically preform their global continuations with decreasing density. For sufficiently large delay the system passes to chaos following the Ruelle-Takens-Newhouse scenario (limit cycles-two-tori-three-tori-chaotic attractors). We find that chaotic and nonchaotic attractors coexist for the same parameter values and that chaotic attractors have a broad multifractal spectrum. (c) 2002 American Institute of Physics.

  20. Modeling real-time balancing power demands in wind power systems using stochastic differential equations

    International Nuclear Information System (INIS)

    Olsson, Magnus; Perninge, Magnus; Soeder, Lennart

    2010-01-01

    The inclusion of wind power into power systems has a significant impact on the demand for real-time balancing power due to the stochastic nature of wind power production. The overall aim of this paper is to present probabilistic models of the impact of large-scale integration of wind power on the continuous demand in MW for real-time balancing power. This is important not only for system operators, but also for producers and consumers since they in most systems through various market solutions provide balancing power. Since there can occur situations where the wind power variations cancel out other types of deviations in the system, models on an hourly basis are not sufficient. Therefore the developed model is in continuous time and is based on stochastic differential equations (SDE). The model can be used within an analytical framework or in Monte Carlo simulations. (author)

  1. Classification of Normal Subjects and Pulmonary Function Disease Patients using Tracheal Respiratory Sound Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Im, Jae Joong; Yi, Young Ju; Jeon, Young Ju [Chonbuk National University (Korea)

    2000-04-01

    A new auscultation system for the detection of breath sound from trachea was developed in house. Small size microphone(panasonic pin microphone) was encapsuled in a housing for resonant effect, and hardware for the sound detection was fabricated. Pulmonary function test results were compared with the parameters extracted from frequency spectrum of breath sound obtained from the developed system. Results showed that the peak frequency and relative ratio of integral values between low(80-400Hz) and high(400-800Hz) frequency ranges revealed the significant differences. Developed system could be used for distinguishing normal subject and the patients who have pulmonary disease. (author). 13 refs., 9 figs.

  2. Log-Normal Distribution in a Growing System with Weighted and Multiplicatively Interacting Particles

    Science.gov (United States)

    Fujihara, Akihiro; Tanimoto, Satoshi; Yamamoto, Hiroshi; Ohtsuki, Toshiya

    2018-03-01

    A growing system with weighted and multiplicatively interacting particles is investigated. Each particle has a quantity that changes multiplicatively after a binary interaction, with its growth rate controlled by a weight parameter in a homogeneous symmetric kernel. We consider the system using moment inequalities and analytically derive the log-normal-type tail in the probability distribution function of quantities when the parameter is negative, which is different from the result for single-body multiplicative processes. We also find that the system approaches a winner-take-all state when the parameter is positive.

  3. The Association of Nailfold Capillaroscopy with Systemic Matrix Metalloproteinase-9 Concentration in Normal-Tension Glaucoma.

    Science.gov (United States)

    Lee, Na Young; Park, Hae-Young Lopilly; Park, Sung-Hwan; Park, Chan Kee

    2015-01-01

    To investigate the association of nailfold capillaroscopy, heart rate variability (HRV), and clinical characteristics of glaucoma with the plasma matrix metalloproteinase-9 (MMP-9) level in normal-tension glaucoma (NTG). We conducted a prospective, cross-sectional study on 25 patients with NTG. Subjects with systemic diseases were excluded. The patients underwent a complete ophthalmic examination and were referred to the Rheumatology Department, where nailfold capillaroscopy and HRV assessment were performed. The patients were assigned to the lowest and highest HRV groups according to the standard deviation value of the qualified normal-to-normal intervals of the HRV assessment. Blood samples from all the subjects were assayed for MMP-9 concentrations. The systemic MMP-9 level was significantly associated with the nailfold capillaroscopy result (ρ = 0.439, p = 0.032). Of the 25 patients, seven had optic disc hemorrhage (ODH). The mean MMP-9 concentration was 4375.6 ± 2923.2 pg/ml in ODH patients and 5932.1 ± 1265.4 pg/ml in patients without ODH. However, there was no significant association of HRV parameters or disc hemorrhage with the systemic MMP-9 level. The systemic MMP-9 level was associated with the nailfold capillaroscopy results in patients with NTG but had no direct association with ODH.

  4. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients.

    Science.gov (United States)

    Kanadani, Fabio N; Figueiredo, Carlos R; Miranda, Rafaela Morais; Cunha, Patricia Lt; M Kanadani, Tereza Cristina; Dorairaj, Syril

    2015-01-01

    Glaucomatous neuropathy can be a consequence of insufficient blood supply, increase in intraocular pressure (IOP), or other risk factors that diminish the ocular blood flow. To determine the ocular perfusion pressure (OPP) in normal and systemic hypertensive patients. One hundred and twenty-one patients were enrolled in this prospective and comparative study and underwent a complete ophthalmologic examination including slit lamp examination, Goldmann applanation tonometry, stereoscopic fundus examination, and pulsatile ocular blood flow (POBF) measurements. The OPP was calculated as being the medium systemic arterial pressure (MAP) less the IOP. Only right eye values were considered for calculations using Student's t-test. The mean age of the patients was 57.5 years (36-78), and 68.5% were women. There was a statistically significant difference in the OPP of the normal and systemic hypertensive patients (p cite this article: Kanadani FN, Figueiredo CR, Miranda RM, Cunha PLT, Kanadani TCM, Dorairaj S. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients. J Curr Glaucoma Pract 2015;9(1):16-19.

  5. Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies

    International Nuclear Information System (INIS)

    Racine, Etienne; Flanagan, Eanna E.

    2005-01-01

    We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body's current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived

  6. Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies

    Science.gov (United States)

    Racine, Étienne; Flanagan, Éanna É.

    2005-02-01

    We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body’s current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived.

  7. Towards a General Equation for the Survival of Microbes Transferred between Solar System Bodies

    Science.gov (United States)

    Fries, M.; Steele, A.

    2014-01-01

    It should be possible to construct a general equation describing the survival of microbes transferred between Solar System bodies. Such an equation will be useful for constraining the likelihood of transfer of viable organisms between bodies throughout the lifetime of the Solar System, and for refining Planetary Protection constraints placed on future missions. We will discuss the construction of such an equation, present a plan for definition of pertinent factors, and will describe what research will be necessary to quantify those factors. Description: We will examine the case of microbes transferred between Solar System bodies as residents in meteorite material ejected from one body (the "intial body") and deposited on another (the "target body"). Any microbes transferred in this fashion will experience four distinct phases between their initial state on the initial body, up to the point where they colonize the target body. Each of these phases features phenomena capable of reducing or exterminating the initial microbial population. They are: 1) Ejection: Material is ejected from the initial body, imparting shock followed by rapid desiccation and cooling. 2) Transport: Material travels through interplanetary space to the target body, exposing a hypothetical microbial population to extended desiccation, irradiation, and temperature extremes. 3) Infall: Material is deposited on the target body, diminishing the microbial population through shock, mass loss, and heating. 4) Adaptation: Any microbes which survive the previous three phases must then adapt to new chemophysical conditions of the target body. Differences in habitability between the initial and target bodies dominate this phase. A suitable general-form equation can be assembled from the above factors by defining the initial number of microbes in an ejected mass and applying multiplicitive factors based on the physical phenomena inherent to each phase. It should be possible to present the resulting equation

  8. Research on the optimal dynamical systems of three-dimensional Navier-Stokes equations based on weighted residual

    Science.gov (United States)

    Peng, NaiFu; Guan, Hui; Wu, ChuiJie

    2016-04-01

    In this paper, the theory of constructing optimal dynamical systems based on weighted residual presented by Wu & Sha is applied to three-dimensional Navier-Stokes equations, and the optimal dynamical system modeling equations are derived. Then the multiscale global optimization method based on coarse graining analysis is presented, by which a set of approximate global optimal bases is directly obtained from Navier-Stokes equations and the construction of optimal dynamical systems is realized. The optimal bases show good properties, such as showing the physical properties of complex flows and the turbulent vortex structures, being intrinsic to real physical problem and dynamical systems, and having scaling symmetry in mathematics, etc.. In conclusion, using fewer terms of optimal bases will approach the exact solutions of Navier-Stokes equations, and the dynamical systems based on them show the most optimal behavior.

  9. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    International Nuclear Information System (INIS)

    Mikhlin, Yu V; Perepelkin, N V; Klimenko, A A; Harutyunyan, E

    2012-01-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  10. A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations

    KAUST Repository

    Bagci, Hakan

    2014-11-11

    We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off-diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner.

  11. The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Shakourifar, Mohammad; Hamidi, Asgar

    2009-01-01

    The purpose of this study is to implement Adomian-Pade (Modified Adomian-Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian-Pade (Modified Adomian-Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM-PADE (MADM-PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).

  12. A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations

    KAUST Repository

    Bagci, Hakan; Pasciak, Joseph E.; Sirenko, Kostyantyn

    2014-01-01

    We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off-diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner.

  13. The Split Coefficient Matrix method for hyperbolic systems of gasdynamic equations

    Science.gov (United States)

    Chakravarthy, S. R.; Anderson, D. A.; Salas, M. D.

    1980-01-01

    The Split Coefficient Matrix (SCM) finite difference method for solving hyperbolic systems of equations is presented. This new method is based on the mathematical theory of characteristics. The development of the method from characteristic theory is presented. Boundary point calculation procedures consistent with the SCM method used at interior points are explained. The split coefficient matrices that define the method for steady supersonic and unsteady inviscid flows are given for several examples. The SCM method is used to compute several flow fields to demonstrate its accuracy and versatility. The similarities and differences between the SCM method and the lambda-scheme are discussed.

  14. Splitting of the rate matrix as a definition of time reversal in master equation systems

    International Nuclear Information System (INIS)

    Liu Fei; Le, Hong

    2012-01-01

    Motivated by recent progress in nonequilibrium fluctuation relations, we present a generalized time reversal for stochastic master equation systems with discrete states, which is defined as a splitting of the rate matrix into irreversible and reversible parts. An immediate advantage of this definition is that a variety of fluctuation relations can be attributed to different matrix splittings. Additionally, we find that the accustomed total entropy production formula and conditions of the detailed balance must be modified appropriately to account for the reversible rate part, which was previously ignored. (paper)

  15. Trade-FDI Linkages in a System of Gravity Equations for German Regional Data

    DEFF Research Database (Denmark)

    Mitze, Timo; Alecke, Björn; Untiedt, Gerhard

    We analyse the nature of German trade-FDI linkages within the EU27 based on a simultaneous equation gravity approach for imports, exports, in- and outward FDI stocks.We adopt both a Hausman-Taylor (1981) IV approach (3SLS-GMM) and rival non-IV estimation (the system extension to the Fixed Effects...... substitutive links between trade flows and outward FDI in line with earlier empirical evidence for Germany. Building upon German state level data we are also able to analyse the sensitivity of the results for regional sub-samples. The latter disaggregation hints at structural differences among the trade...

  16. 4th International Conference on Particle Systems and Partial Differential Equations

    CERN Document Server

    Soares, Ana

    2017-01-01

    'This book addresses mathematical problems motivated by various applications in physics, engineering, chemistry and biology. It gathers the lecture notes from the mini-course presented by Jean-Christophe Mourrat on the construction of the various stochastic “basic” terms involved in the formulation of the dynamic Ö4  theory in three space dimensions, as well as selected contributions presented at the fourth meeting on Particle Systems and PDEs, which was held at the University of Minho’s Centre of Mathematics in December 2015. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, offering them a forum to present their recent results and discuss their topics of expertise. The meeting was also intended to present to a vast and varied public, including young researchers, the area of interacting particle systems, its underlying motivation, and its relation to partial differential equations.  The book w...

  17. A matrix formalism to solve interface condition equations in a reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1970-05-15

    When a nuclear reactor or a reactor lattice cell is treated by an approximate procedure to solve the neutron transport equation, as the last computational step often appears a problem of solving systems of algebraic equations stating the interface and boundary conditions for the neutron flux moments. These systems have usually the coefficient matrices of the block-bi diagonal type, containing thus a large number of zero elements. In the present report it is shown how such a system can be solved efficiently accounting for all the zero elements both in the coefficient matrix and in the free term vector. The procedure is presented here for the case of multigroup P{sub 3} calculation of neutron flux distribution in a cylindrical reactor lattice cell. Compared with the standard gaussian elimination method, this procedure is more advantageous both in respect to the number of operations needed to solve a given problem and in respect to the computer memory storage requirements. A similar formalism can also be applied for other approximate methods, for instance for multigroup diffusion treatment of a multi zone reactor. (author)

  18. Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems

    Science.gov (United States)

    Stella, L.; Lorenz, C. D.; Kantorovich, L.

    2014-04-01

    The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e.g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.

  19. LSODE, 1. Order Stiff or Non-Stiff Ordinary Differential Equations System Initial Value Problems

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    1 - Description of program or function: LSODE (Livermore Solver for Ordinary Differential Equations) solves stiff and non-stiff systems of the form dy/dt = f. In the stiff case, it treats the Jacobian matrix df/dy as either a dense (full) or a banded matrix, and as either user-supplied or internally approximated by difference quotients. It uses Adams methods (predictor-corrector) in the non-stiff case, and Backward Differentiation Formula (BDF) methods (the Gear methods) in the stiff case. The linear systems that arise are solved by direct methods (LU factor/solve). The LSODE source is commented extensively to facilitate modification. Both a single-precision version and a double-precision version are available. 2 - Methods: It is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. LSODE contains two variable-order, variable- step (with interpolatory step-changing) integration methods. The first is the implicit Adams or non-stiff method, of orders one through twelve. The second is the backward differentiation or stiff method (or BDF method, or Gear's method), of orders one through five. 3 - Restrictions on the complexity of the problem: The differential equations must be given in explicit form, i.e., dy/dt = f(y,t). Problems with intermittent high-speed transients may cause inefficient or unstable performance

  20. Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)

    1996-12-31

    In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.

  1. Utilization of the thickness as the third equation in D.X.A. systems; Utilisation de la longueur comme troisieme equation dans les systemes DXA

    Energy Technology Data Exchange (ETDEWEB)

    Herve, L.; Robert-Courant, C.; Dinten, J.M

    2003-07-01

    Bone mineral density (BMD) and body composition estimates are commonly obtained by dual-energy X-ray absorptiometry measurements (DXA). From the point of view of X-ray attenuation, a 3 components model of the human body: bone mineral, muscle (or lean tissue), and fat is generally assumed. DXA systems use dual-energy radiographic measurements to calculate BMD, lean mass and fat mass. The calculation is based on the difference in attenuation of these tissues for a low-energy of about 50 KeV and a high-energy of about 80-100 KeV. BMD measurement is widely recognized as an indicator of bone strength, and is used in diagnosis and follow-up of osteoporosis. Body composition measurements have a large number of applications in the nutrition area but also in the monitoring of many diseases. Since multiple energy measurements provide one equation per energy and three unknown parameters must be estimated, it has been suggested to use three-energy measurements instead of dual-energy. However, principle components analysis (PCA) of attenuation functions have shown that the number of parameters that can be extracted from attenuation measurements is no more than two, whatever the number of energies is used. This limitation is due to the physics of X-rays interaction, since essentially two effects (photoelectric and Compton) take place in the diagnostic energy range. As a consequence, the three-energies system is an ill-conditioned system and is numerically difficult to solve. In order to overcome the problem of the third material, commercially available DXA systems use a resolution based on a a priori hypothesis on the distribution of the three components. Images are first segmented into a 'bone area' and a 'non-bone area'. In the non-bone area, dual-energy equations allow to estimate two components which are the lean mass and the fat mass. The fat ratio in the soft tissues is then extrapolated to the bone area in order to compute BMD. This is called the &apos

  2. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  3. 2-regularity and 2-normality conditions for systems with impulsive controls

    Directory of Open Access Journals (Sweden)

    Pavlova Natal'ya

    2007-01-01

    Full Text Available In this paper a controlled system with impulsive controls in the neighborhood of an abnormal point is investigated. The set of pairs (u,μ is considered as a class of admissible controls, where u is a measurable essentially bounded function and μ is a finite-dimensional Borel measure, such that for any Borel set B, μ(B is a subset of the given convex closed pointed cone. In this article the concepts of 2-regularity and 2-normality for the abstract mapping Ф, operating from the given Banach space into a finite-dimensional space, are introduced. The concepts of 2-regularity and 2-normality play a great role in the course of derivation of the first and the second order necessary conditions for the optimal control problem, consisting of the minimization of a certain functional on the set of the admissible processes. These concepts are also important for obtaining the sufficient conditions for the local controllability of the nonlinear systems. The convenient criterion for 2-regularity along the prescribed direction and necessary conditions for 2-normality of systems, linear in control, are introduced in this article as well.

  4. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  5. MOOSE: A parallel computational framework for coupled systems of nonlinear equations

    International Nuclear Information System (INIS)

    Gaston, Derek; Newman, Chris; Hansen, Glen; Lebrun-Grandie, Damien

    2009-01-01

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics expressions are modularized into 'Kernels,' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics-based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.

  6. Contribution to the minimization of time for the solution of algebraic differential equations system

    International Nuclear Information System (INIS)

    Michael, Samir.

    1982-11-01

    This note deals with the solution of large algebraic-differential systems involved in physical sciences specially in electronics and nuclear physics. The theoretical aspects for the stability of multistep methods is presented in detail. The stability condition is developed and we present our own conditions of stability. These conditions give rise to many new formulae that have very small truncation error. However for a real time simulation, it is necessary to obtain a very high computation speed. For this purpose, we have considered a multiprocessor machine and we have investigated the parallelization of the algorithm of generalized GEAR method. For a linear system, the method of GAUSS-JORDAN is used with some modifications. A new algorithm is presented for parallel matrix multiplication. This research work has been applied to the resolution of a system of equations corresponding to an experiment of gamma thermometry in a nuclear reactor (four thermometers in this case) [fr

  7. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    International Nuclear Information System (INIS)

    Gene Golub; Kwok Ko

    2009-01-01

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  8. Boundary Equations and Regularity Theory for Geometric Variational Systems with Neumann Data

    Science.gov (United States)

    Schikorra, Armin

    2018-02-01

    We study boundary regularity of maps from two-dimensional domains into manifolds which are critical with respect to a generic conformally invariant variational functional and which, at the boundary, intersect perpendicularly with a support manifold. For example, harmonic maps, or H-surfaces, with a partially free boundary condition. In the interior it is known, by the celebrated work of Rivière, that these maps satisfy a system with an antisymmetric potential, from which one can derive the interior regularity of the solution. Avoiding a reflection argument, we show that these maps satisfy along the boundary a system of equations which also exhibits a (nonlocal) antisymmetric potential that combines information from the interior potential and the geometric Neumann boundary condition. We then proceed to show boundary regularity for solutions to such systems.

  9. Principal Typings in a Restricted Intersection Type System for Beta Normal Forms with De Bruijn Indices

    Directory of Open Access Journals (Sweden)

    Daniel Ventura

    2010-01-01

    Full Text Available The lambda-calculus with de Bruijn indices assembles each alpha-class of lambda-terms in a unique term, using indices instead of variable names. Intersection types provide finitary type polymorphism and can characterise normalisable lambda-terms through the property that a term is normalisable if and only if it is typeable. To be closer to computations and to simplify the formalisation of the atomic operations involved in beta-contractions, several calculi of explicit substitution were developed mostly with de Bruijn indices. Versions of explicit substitutions calculi without types and with simple type systems are well investigated in contrast to versions with more elaborate type systems such as intersection types. In previous work, we introduced a de Bruijn version of the lambda-calculus with an intersection type system and proved that it preserves subject reduction, a basic property of type systems. In this paper a version with de Bruijn indices of an intersection type system originally introduced to characterise principal typings for beta-normal forms is presented. We present the characterisation in this new system and the corresponding versions for the type inference and the reconstruction of normal forms from principal typings algorithms. We briefly discuss the failure of the subject reduction property and some possible solutions for it.

  10. Birkhoff normalization

    NARCIS (Netherlands)

    Broer, H.; Hoveijn, I.; Lunter, G.; Vegter, G.

    2003-01-01

    The Birkhoff normal form procedure is a widely used tool for approximating a Hamiltonian systems by a simpler one. This chapter starts out with an introduction to Hamiltonian mechanics, followed by an explanation of the Birkhoff normal form procedure. Finally we discuss several algorithms for

  11. Transarterial Embolization of Anomalous Systemic Arterial Supply to Normal Basal Segments of the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Sen, E-mail: jasfly77@vip.163.com; Yu, Dong; Jie, Bing [Tongji University School of Medicine, Department of Radiology, Shanghai Pulmonary Hospital (China)

    2016-09-15

    PurposeTo evaluate transarterial embolization (TAE) for the management of anomalous systemic arterial (ASA) supply to normal basal segments of the lung.MethodsThirteen patients with ASA supply to normal basal segments of the lung underwent TAE. All patients presented with hemoptysis and had complete-type anomalies on pre-TAE or post-TAE computed tomography (CT). The anomaly was unilateral in all patients; 11 lesions were located in the left lung and 2 in the right. All patients underwent embolization with coils (n = 10) or a vascular plug (n = 3). Procedural success, clinical efficacy, and complications were assessed. Mean post-TAE CT and clinical follow-up was 25.4 and 42.1 months, respectively.ResultsTechnical success was achieved in 100 % of cases. Several changes were noted on follow-up CT: complete obstruction of the ASA in all cases, normal (n = 11) or decreased (n = 2) density of the affected lung parenchyma, reduction of the primary enlarged inferior pulmonary vein in all cases, and pulmonary infarction and thickening of the corresponding bronchial artery (n = 4). The main complication was pulmonary infarction in four cases.ConclusionTAE is a safe, effective, and minimally invasive therapeutic option for patients with ASA supply to normal basal segments of the lung.

  12. Financing options and economic impact: distributed generation using solar photovoltaic systems in Normal, Illinois

    Directory of Open Access Journals (Sweden)

    Jin H. Jo

    2016-04-01

    Full Text Available Due to increasing price volatility in fossil-fuel-produced energy, the demand for clean, renewable, and abundant energy is more prevalent than in past years. Solar photovoltaic (PV systems have been well documented for their ability to produce electrical energy while at the same time offering support to mitigate the negative externalities associated with fossil fuel combustion. Prices for PV systems have decreased over the past few years, however residential and commercial owners may still opt out of purchasing a system due to the overall price required for a PV system installation. Therefore, determining optimal financing options for residential and small-scale purchasers is a necessity. We report on payment methods currently used for distributed community solar projects throughout the US and suggest appropriate options for purchasers in Normal, Illinois given their economic status. We also examine the jobs and total economic impact of a PV system implementation in the case study area.

  13. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  14. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Science.gov (United States)

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  15. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  16. The Normalization of Party Systems and Voting Behaviour in Eastern Europe

    DEFF Research Database (Denmark)

    Bochsler, Daniel

    2010-01-01

    and to adjust their behaviour to the new electoral systems. A novel database on electoral results on the district level that I constructed allows me to test those hypotheses by measuring "party nationalisation" and "wasted votes" for the first time for Eastern Europe. Both indicators are calculated...... with innovating measures for Russia, Estonia, Latvia, Moldova and Romania. Even if the countries (in contrast for instance to Central Europe) have few democratic experience, four of those party systems after one and a half decades reached almost "normal" values. But Russia still lacks a well institutionalised...

  17. Control Systems with Normalized and Covariance Adaptation by Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Burken, John J. (Inventor); Hanson, Curtis E. (Inventor)

    2016-01-01

    Disclosed is a novel adaptive control method and system called optimal control modification with normalization and covariance adjustment. The invention addresses specifically to current challenges with adaptive control in these areas: 1) persistent excitation, 2) complex nonlinear input-output mapping, 3) large inputs and persistent learning, and 4) the lack of stability analysis tools for certification. The invention has been subject to many simulations and flight testing. The results substantiate the effectiveness of the invention and demonstrate the technical feasibility for use in modern aircraft flight control systems.

  18. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  19. On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion

    International Nuclear Information System (INIS)

    Iyiola, O.S.; Tasbozan, O.; Kurt, A.; Çenesiz, Y.

    2017-01-01

    In this paper, we consider the system of conformable time-fractional Robertson equations with one-dimensional diffusion having widely varying diffusion coefficients. Due to the mismatched nature of the initial and boundary conditions associated with Robertson equation, there are spurious oscillations appearing in many computational algorithms. Our goal is to obtain an approximate solutions of this system of equations using the q-homotopy analysis method (q-HAM) and examine the widely varying diffusion coefficients and the fractional order of the derivative.

  20. Nonlinear dynamics exploration through normal forms

    CERN Document Server

    Kahn, Peter B

    2014-01-01

    Geared toward advanced undergraduates and graduate students, this exposition covers the method of normal forms and its application to ordinary differential equations through perturbation analysis. In addition to its emphasis on the freedom inherent in the normal form expansion, the text features numerous examples of equations, the kind of which are encountered in many areas of science and engineering. The treatment begins with an introduction to the basic concepts underlying the normal forms. Coverage then shifts to an investigation of systems with one degree of freedom that model oscillations

  1. A Correction Equation for Jump Height Measured Using the Just Jump System.

    Science.gov (United States)

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  2. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    Science.gov (United States)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  3. Strongly increasing solutions of cyclic systems of second order differential equations with power-type nonlinearities

    Directory of Open Access Journals (Sweden)

    Jaroslav Jaroš

    2015-01-01

    Full Text Available We consider \\(n\\-dimensional cyclic systems of second order differential equations \\[(p_i(t|x_{i}'|^{\\alpha_i -1}x_{i}'' = q_{i}(t|x_{i+1}|^{\\beta_i-1}x_{i+1},\\] \\[\\quad i = 1,\\ldots,n, \\quad (x_{n+1} = x_1 \\tag{\\(\\ast\\}\\] under the assumption that the positive constants \\(\\alpha_i\\ and \\(\\beta_i\\ satisfy \\(\\alpha_1{\\ldots}\\alpha_n \\gt \\beta_1{\\ldots}\\beta_n\\ and \\(p_i(t\\ and \\(q_i(t\\ are regularly varying functions, and analyze positive strongly increasing solutions of system (\\(\\ast\\ in the framework of regular variation. We show that the situation for the existence of regularly varying solutions of positive indices for (\\(\\ast\\ can be characterized completely, and moreover that the asymptotic behavior of such solutions is governed by the unique formula describing their order of growth precisely. We give examples demonstrating that the main results for (\\(\\ast\\ can be applied to some classes of partial differential equations with radial symmetry to acquire accurate information about the existence and the asymptotic behavior of their radial positive strongly increasing solutions.

  4. The Use of BBC (Box, Board, and Comics Media in The Systems of Linear Equation

    Directory of Open Access Journals (Sweden)

    P D Widyastuti

    2017-12-01

    Full Text Available Mathematics is one of the lessons in school. Starting from elementary school, junior high school, senior high school, even college. Mathematics is abstract and identic with numbers, so the author guessed that maybe this is the reason why students consider that mathematics is a difficult lesson. In fact, the learners deliver the material step by step. First, the teacher introduced something concrete to the students (related to the surrounding environment. After that, teacher introduced something more abstract to the students. Sometimes, the transition from concrete to abstract become the problem in the learning process. One of the materials that convert concrete to abstract is systems of linear equations in 8th grade because in this stage students are introduced to more coefficients and variables. This article will discuss how to use media in the form of BBC (Box, Board, and Comics on systems of linear equations. This research is about Research and Development (R &D. The procedures of comics followed the ADDIE model which included analysis, design, development, implementation, and evaluation. This research aims to create a valid media based on the validation by the and students’ responses which can be proven that BBC (Box, Board, and Comics media are interesting and worthy to use in the classroom.

  5. Radioactivities evaluation code system for high temperature gas cooled reactors during normal operation

    International Nuclear Information System (INIS)

    Ogura, Kenji; Morimoto, Toshio; Suzuki, Katsuo.

    1979-01-01

    A radioactivity evaluation code system for high temperature gas-cooled reactors during normal operation was developed to study the behavior of fission products (FP) in the plants. The system consists of a code for the calculation of diffusion of FPs in fuel (FIPERX), a code for the deposition of FPs in primary cooling system (PLATO), a code for the transfer and emission of FPs in nuclear power plants (FIPPI-2), and a code for the exposure dose due to emitted FPs (FEDOSE). The FIPERX code can calculate the changes in the course of time FP of the distribution of FP concentration, the distribution of FP flow, the distribution of FP partial pressure, and the emission rate of FP into coolant. The amount of deposition of FPs and their distribution in primary cooling system can be evaluated by the PLATO code. The FIPPI-2 code can be used for the estimation of the amount of FPs in nuclear power plants and the amount of emitted FPs from the plants. The exposure dose of residents around nuclear power plants in case of the operation of the plants is calculated by the FEDOSE code. This code evaluates the dose due to the external exposure in the normal operation and in the accident, and the internal dose by the inhalation of radioactive plume and foods. Further studies of this code system by the comparison with the experimental data are considered. (Kato, T.)

  6. Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki; Wolf, Thomas

    2005-01-01

    We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made

  7. Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Takayuki [Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Wolf, Thomas [Department of Mathematics, Brock University, St Catharines, ON L2S 3A1 (Canada)

    2005-09-02

    We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made.

  8. ALERT. Adverse late effects of cancer treatment. Vol. 2. Normal tissue specific sites and systems

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Philip; Constine, Louis S. [Univ. Rochester Medical Center, NY (United States). Dept. of Radiation Oncology; Marks, Lawrence B. (ed.) [Univ. North Carolina and Lineberger, Comprehensive Cancer Center, Chapel Hill, NC (United States). Dept. of Radiation Oncology

    2014-09-01

    Comprehensively documents potential late effects in all the normal tissue sites in the human body. Considers in detail the detection, diagnosis, management and prevention of effects and discusses prognostic outcomes. Clearly presents radiation risk factors and interactions with chemotherapy effects. Provides the most current evidence-based medicine for cancer care survivorship guidelines. The literature on the late effects of cancer treatment is widely scattered in different journals since all major organ systems are affected and management is based on a variety of medical and surgical treatments. The aim of ALERT - Adverse Late Effects of Cancer Treatment is to offer a coherent multidisciplinary approach to the care of cancer survivors. The central paradigm is that cytotoxic multimodal therapy results in a perpetual cascade of events that affects each major organ system differently and is expressed continually over time. Essentially, radiation and chemotherapy are intense biologic modifiers that allow for cancer cure and cancer survivorship but accelerate senescence of normal tissues and increase the incidence of age-related diseases and second malignant tumors. Volume 2 of this two-volume work comprehensively documents potential late effects in all the normal tissue anatomic sites in the human body. The detection, diagnosis, management and prevention of effects are all considered in detail, and prognostic outcomes are discussed. Radiation risk factors and interactions with chemotherapy effects are clearly presented. The text is accompanied by numerous supportive illustrations and tables.

  9. A Solution Space for a System of Null-State Partial Differential Equations: Part 2

    Science.gov (United States)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the second of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). The system comprises 2 N null-state equations and three conformal Ward identities which govern CFT correlation functions of 2 N one-leg boundary operators. In the first article (Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. The analysis of that article is complete except for the proof of a lemma that it invokes. The purpose of this article is to provide that proof. The lemma states that if every interval among ( x 2, x 3), ( x 3, x 4),…,( x 2 N-1, x 2 N ) is a two-leg interval of (defined in Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), then F vanishes. Proving this lemma by contradiction, we show that the existence of such a nonzero function implies the existence of a non-vanishing CFT two-point function involving primary operators with different conformal weights, an impossibility. This proof (which is rigorous in spite of our occasional reference to CFT) involves two different types of estimates, those that give the asymptotic behavior of F as the length of one interval vanishes, and those that give this behavior as the lengths of two intervals vanish simultaneously. We derive these estimates by using Green functions to rewrite certain null-state PDEs as integral equations, combining other null-state PDEs to obtain Schauder interior estimates, and then repeatedly integrating the integral equations with these estimates until we obtain optimal bounds. Estimates in which two interval lengths vanish simultaneously divide into two cases: two adjacent intervals and two non-adjacent intervals. The analysis of the latter case is similar to that for one vanishing

  10. Hospital and Pre-Hospital Triage Systems in Disaster and Normal Conditions; a Review Article

    Directory of Open Access Journals (Sweden)

    Saeed Safari

    2015-02-01

    Full Text Available Triage is a priority classification system based on the severity of problem to do the best therapeutic proceedings for patients in the less time. A triage system should be performed in a way which can make a decision with high accuracy and in the least time for each patient. Simplicity and reliability of the performance are the most important features of a standard triage system. An appropriate triage causes to increase the quality of health care services and patients’ satisfaction rate, decrease the waiting time as well as mortality rate, and increase the yield and efficiency of emergency wards along with reducing the related expenses. Considering to the above statements, in the present study the history of triage formation was evaluated and categorizing of all triage systems regarding prehospital and hospital as well as triage in normal and critical conditions were assessed, too.

  11. Technical Note: The normal quantile transformation and its application in a flood forecasting system

    Directory of Open Access Journals (Sweden)

    K. Bogner

    2012-04-01

    Full Text Available The Normal Quantile Transform (NQT has been used in many hydrological and meteorological applications in order to make the Cumulated Distribution Function (CDF of the observed, simulated and forecast river discharge, water level or precipitation data Gaussian. It is also the heart of the meta-Gaussian model for assessing the total predictive uncertainty of the Hydrological Uncertainty Processor (HUP developed by Krzysztofowicz. In the field of geo-statistics this transformation is better known as the Normal-Score Transform. In this paper some possible problems caused by small sample sizes when applying the NQT in flood forecasting systems will be discussed and a novel way to solve the problem will be outlined by combining extreme value analysis and non-parametric regression methods. The method will be illustrated by examples of hydrological stream-flow forecasts.

  12. Normalized noise power spectrum of full field digital mammography detector system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    Full text: A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through de trending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (author)

  13. A nearly orthogonal 2D grid system in solving the shallow water equations in the head bay of Bengal

    International Nuclear Information System (INIS)

    Roy, G.D. . E.mail: roy_gd@hotmail.com; Hussain, Farzana . E.mail: farzana@sust.edu

    2001-11-01

    A typical nearly orthogonal grid system is considered to solve the shallow water equations along the head bay of Bengal. A pencil of straight lines at uniform angular distance through a suitable origin, O at the mean sea level (MSL), are considered as a system of grid lines. A system of concentric and uniformly distributed ellipses with center at O is considered as the other system of grid lines. In order to solve the shallow water equations numerically, a system of transformations is applied so that the grid system in the transformed domain becomes a rectangular one. Shallow water equations are solved using appropriate initial and boundary conditions to estimate the water level due to tide and surge. The typical grid system is found to be suitable in incorporating the bending of the coastline and the island boundaries accurately in the numerical scheme along the coast of Bangladesh. (author)

  14. On the properties of a variant of the Riccati system of equations

    International Nuclear Information System (INIS)

    Sarkar, Amartya; Guha, Partha; Bhattacharjee, J K; Mallik, A K; Ghose-Choudhury, Anindya; Leach, P G L

    2012-01-01

    A variant of the generalized Riccati system of equations is considered. It is shown that for α = 2n + 3 the system admits a bilagrangian description and the dynamics has a node at the origin, whereas for α much smaller than a critical value the dynamics is periodic, the origin being a centre. It is found that the solution changes from being periodic to aperiodic at a critical point, α c = 2√(2(n+1)), which is independent of the initial conditions. This behaviour is explained by finding a scaling argument via which the phase trajectories corresponding to different initial conditions collapse onto a single universal orbit. Numerical evidence for the transition is shown. Further, using a perturbative renormalization group argument, it is conjectured that the oscillator exhibits isochronous oscillations. The correctness of the conjecture is established numerically. (paper)

  15. On a Third-Order System of Difference Equations with Variable Coefficients

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2012-01-01

    Full Text Available We show that the system of three difference equations xn+1=an(1xn-2/(bn(1ynzn-1xn-2+cn(1, yn+1=an(2yn-2/(bn(2znxn-1yn-2+cn(2, and zn+1=an(3zn-2/(bn(3xnyn-1zn-2+cn(3, n∈N0, where all elements of the sequences an(i, bn(i, cn(i, n∈N0, i∈{1,2,3}, and initial values x-j, y-j, z-j, j∈{0,1,2}, are real numbers, can be solved. Explicit formulae for solutions of the system are derived, and some consequences on asymptotic behavior of solutions for the case when coefficients are periodic with period three are deduced.

  16. A Coupled System of Integrodifferential Equations Arising in Liquidity Risk Model

    International Nuclear Information System (INIS)

    Pham, Huyen; Tankov, Peter

    2009-01-01

    We study the mathematical aspects of the portfolio/consumption choice problem in a market model with liquidity risk introduced in (Pham and Tankov, Math. Finance, 2006, to appear). In this model, the investor can trade and observe stock prices only at exogenous Poisson arrival times. He may also consume continuously from his cash holdings, and his goal is to maximize his expected utility from consumption. This is a mixed discrete/continuous time stochastic control problem, nonstandard in the literature. We show how the dynamic programming principle leads to a coupled system of Integro-Differential Equations (IDE), and we prove an analytic characterization of this control problem by adapting the concept of viscosity solutions. This coupled system of IDE may be numerically solved by a decoupling algorithm, and this is the topic of a companion paper (Pham and Tankov, Math. Finance, 2006, to appear)

  17. Electrodynamics of finite width guideway maglev systems in an integral equation formulation

    Energy Technology Data Exchange (ETDEWEB)

    Urankar, L [Siemens A.G., Erlangen (Germany, F.R.). Forschungslaboratorium

    1979-01-01

    A completely general, system-independent integral equation for the eddy current density is used to study the electrodynamics of finite guideway repulsive magleydsymaglev systems. For the first time a comparison of the transverse force measurements on a large-scale prototype vehicle (EET) with the theory is presented. The lateral displacement of the excitation magnet produces destabilizing transverse forces. The finite width of the guideway reduces the lift and increases the specific losses. The consequence is that for a given magnet width an adequate guideway overhang beyond the magnet width must be provided, so as not to suffer loss in the lift due to transverse edge effects and keep the lateral destabilizing force small.

  18. H∞ Channel Estimation for DS-CDMA Systems: A Partial Difference Equation Approach

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-01-01

    Full Text Available In the communications literature, a number of different algorithms have been proposed for channel estimation problems with the statistics of the channel noise and observation noise exactly known. In practical systems, however, the channel parameters are often estimated using training sequences which lead to the statistics of the channel noise difficult to obtain. Moreover, the received signals are corrupted not only by the ambient noises but also by multiple-access interferences, so the statistics of observation noises is also difficult to obtain. In this paper, we will investigate the H∞ channel estimation problem for direct-sequence code-division multiple-access (DS-CDMA communication systems with time-varying multipath fading channels. The channel estimator is designed by applying a partial difference equation approach together with the innovation analysis theory. This method can give a sufficient and necessary condition for the existence of an H∞ channel estimator.

  19. Effect of mesoscopic fluctuations on equation of state in cluster-forming systems

    Directory of Open Access Journals (Sweden)

    A. Ciach

    2012-06-01

    Full Text Available Equation of state for systems with particles self-assembling into aggregates is derived within a mesoscopic theory combining density functional and field-theoretic approaches. We focus on the effect of mesoscopic fluctuations in the disordered phase. The pressure - volume fraction isotherms are calculated explicitly for two forms of the short-range attraction long-range repulsion potential. Mesoscopic fluctuations lead to an increased pressure in each case, except for very small volume fractions. When large clusters are formed, the mechanical instability of the system is present at much higher temperature than found in mean-field approximation. In this case phase separation competes with the formation of periodic phases (colloidal crystals. In the case of small clusters, no mechanical instability associated with separation into dilute and dense phases appears.

  20. Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations

    Science.gov (United States)

    Mamat, Mustafa; Dauda, M. K.; Waziri, M. Y.; Ahmad, Fadhilah; Mohamad, Fatma Susilawati

    2016-10-01

    The Newton method has some shortcomings which includes computation of the Jacobian matrix which may be difficult or even impossible to compute and solving the Newton system in every iteration. Also, the common setback with some quasi-Newton methods is that they need to compute and store an n × n matrix at each iteration, this is computationally costly for large scale problems. To overcome such drawbacks, an improved Method for solving systems of nonlinear equations via PSB (Powell-Symmetric-Broyden) update is proposed. In the proposed method, the approximate Jacobian inverse Hk of PSB is updated and its efficiency has improved thereby require low memory storage, hence the main aim of this paper. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.