WorldWideScience

Sample records for normal chow diet

  1. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    Science.gov (United States)

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  2. Rats eat a cafeteria-style diet to excess but eat smaller amounts and less frequently when tested with chow.

    Directory of Open Access Journals (Sweden)

    Timothy South

    Full Text Available BACKGROUND: Obesity is associated with excessive consumption of palatable, energy dense foods. The present study used an animal model to examine feeding patterns during exposure to and withdrawal from these foods. METHODS: Male Sprague Dawley rats were exposed to standard lab chow only (Chow rats or a range of cafeteria-style foods eaten by people (Caf rats. After 1, 4, 7 and 10 weeks of diet in their home cage, rats were subjected to 24-hour test sessions in a Comprehensive Lab Animal Monitoring System (CLAMS. In the first two test sessions, Chow rats were exposed to standard lab chow only while Caf rats were exposed to a biscuit and high-fat chow diet. In the final two test sessions, half the rats in each group were switched to the opposing diet. In each session we recorded numbers of bouts, energy consumed per bout, and intervals between bouts across the entire 24 hours. RESULTS: Relative to Chow rats, Caf rats initiated fewer bouts but consumed more energy per bout; however, their motivation to feed in the CLAMS declined over time, which was attributed to reduced variety of foods relative to their home cage diet. This decline in motivation was especially pronounced among Caf rats switched from the palatable CLAMS diet to standard lab chow only: the reduced energy intake in this group was due to a modest decline in bout frequency and a dramatic decline in bout size. CONCLUSIONS: Exposure to a cafeteria-diet, rich in variety, altered feeding patterns, reduced rats' motivation to consume palatable foods in the absence of variety, and further diminished motivation to feed when palatable foods were withdrawn and replaced with chow. Hence, variety is a key factor in driving excessive consumption of energy dense foods, and therefore, excessive weight gain.

  3. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    Science.gov (United States)

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. © 2014 The authors.

  4. Evaluation of Chemotherapeutic Agents Against Malaria, Drugs, Diet, and Biological Response Modifiers.

    Science.gov (United States)

    1991-10-29

    The oils, MCT and Miglyol , were found to be suitable placebos for fish oil. A normal chow diet (with adequate vitamin E levels) supplemented with 20...year. Co-enzyme Q10 did not act as an antioxidant like vitamin E during a malarial infection. Two oils, MCT and Miglyol , were found to be suitable...manipulation. In experiment 84 miglyol was added to a standard rodent chow diet with normal levels of vitamin E to see whether it whould interfere with the

  5. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    Science.gov (United States)

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  6. Effects of diets containing unripe plantain diet on brain serotonin in ...

    African Journals Online (AJOL)

    In this study, the effect of plantain-containing mouse diet on brain serotonin mice was investigated in mice. Thirty adult Swiss mice were divided into three groups of ten each and fed normal rodent chow containing 0%, 50% and 100% unripe plantain. After thirty days, the brain levels of 5-HT and 5-HTP were measured using ...

  7. Effects of Simulated Hypogravity and Diet on Estrous Cycling in Rats

    Science.gov (United States)

    Tou, Janet C.; Grindeland, Richard E.; Baer, Lisa A.; Wade, Charles E.

    2003-01-01

    Environmental factors can disrupt ovulatory cycles. The study objective was to determine the effect of diet and simulated hypogravity on rat estrous cycles. Age 50 d Sprague-Dawley rats were randomly assigned to he fed either a purified or chow diet. Only normal cycling rats were used. Experimental rats (n=9-10/group) were kept as ambulatory controls (AC) or subjected to 40 d simulated hypogravity using a disuse atrophy hindlimb suspension (HLS) model. There was no effect on estrous cycles of AC fed either diet. At day 18, HLS rats fed either diet, had lengthened estrous cycles due to prolonged diestrus. HLS rats fed purified diet also had reduced time in estrus. Plasma estradiol was reduced in HLS rats fed purified diet but there was no effect on progesterone. This may have occurred because blood was collected from rats in estrus. Urinary progesterone collected during initial HLS was elevated in rats fed purified diet. In AC, corticosterone was elevated in chow vs purified diet fed rats. Differences were particularly striking following the application of a stressor with HLS/chow-fed rats displaying an enhanced stress response. Results emphasize the importance of diet selection when measuring endocrine-sensitive endpoints. HLS is a useful model for investigating the effects of environment on reproduction and providing insight about the impact extreme environment such as spaceflight on female reproductive health.

  8. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    , namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization......, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents....

  9. Maternal Western diet increases adiposity even in male offspring of obesity-resistant rat dams: early endocrine risk markers.

    Science.gov (United States)

    Frihauf, Jennifer B; Fekete, Éva M; Nagy, Tim R; Levin, Barry E; Zorrilla, Eric P

    2016-12-01

    Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. Copyright © 2016 Frihauf et al.

  10. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    Science.gov (United States)

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  11. Antioxidant and anti-atherogenic activities of three Piper species on atherogenic diet fed hamsters.

    Science.gov (United States)

    Agbor, Gabriel A; Vinson, Joe A; Sortino, Julianne; Johnson, Robert

    2012-05-01

    Atherogenic diet is known to induce high plasma lipid concentration, oxidative stress and early atherosclerosis. Antioxidants have potentials to counter the effect of atherogenic diet. The present research aims at evaluating the antioxidant and anti-atherosclerotic activities of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) on atherogenic diet fed hamsters. Hamsters divided into 8 groups: normal control, atherosclerotic control and six test groups. The normal animals fed normal rodent chow, the atherosclerotic control animals fed the same rodent chow supplemented with 0.2% cholesterol and 10% coconut oil (high cholesterol diet). The 6 test groups' animals fed same diet as the atherosclerotic control group but with additional supplementation of 2 graded doses (1 and 0.25 mg/kg body weight, o.p.) of plant extracts for 12 weeks. The atherogenic diet induced a collapse of the erythrocyte antioxidant defense system (significant decrease in superoxide dismutase, catalase and glutathione peroxidase activities). Atherogenic diet also induced an increase in plasma total cholesterol, triglyceride, thiobarbituric acid reactive substances (TBARS), oxidation of low density lipoprotein cholesterol (LDL) and accumulation of foam cells in the aorta a hall mark for atherosclerosis. Administration of the Piper species prevented the collapse of the antioxidant system and the increase of plasma parameters maintaining them towards normality. The Piper species also prevented LDL oxidation by increasing the time (lag time) for its oxidation. The results suggest that these Piper species have significant antioxidant and anti-atherogenic effect against atherogenic diet intoxication. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. High-NaCl Diet Aggravates Cardiac Injury in Rats with Adenine-Induced Chronic Renal Failure and Increases Serum Troponin T Levels

    DEFF Research Database (Denmark)

    Kashioulis, Pavlos; Hammarsten, Ola; Marcussen, Niels

    2016-01-01

    AIMS: To examine the effects of 2 weeks of high-NaCl diet on left ventricular (LV) morphology and serum levels of cardiac troponin T (cTnT) in rats with adenine-induced chronic renal failure (ACRF). METHODS: Male Sprague-Dawley rats either received chow containing adenine or were pair......-fed an identical diet without adenine [controls (C)]. Approximately 10 weeks after the beginning of the study, the rats were randomized to either remain on a normal NaCl diet (NNa; 0.6%) or to be switched to high-NaCl chow (HNa; 4%) for 2 weeks, after which acute experiments were performed. RESULTS: Rats with ACRF...... showed statistically significant increases (p rats (p

  13. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    Science.gov (United States)

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity

    OpenAIRE

    Rauckhorst, Adam J.; Gray, Lawrence R.; Sheldon, Ryan D.; Fu, Xiaorong; Pewa, Alvin D.; Feddersen, Charlotte R.; Dupuy, Adam J.; Gibson-Corley, Katherine N.; Cox, James E.; Burgess, Shawn C.; Taylor, Eric B.

    2017-01-01

    Objective: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. T...

  15. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  16. Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance.

    Science.gov (United States)

    Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei

    2012-01-01

    Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  17. Pentoxifylline Attenuates Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis by Suppressing TNF-α Expression and Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Min Kyung Chae

    2012-01-01

    Full Text Available Background. Pentoxifylline (PTX anti-TNF properties are known to exert hepatoprotective effects in various liver injury models. The aim of this study was to investigate whether PTX has beneficial roles in the development of methionine- and choline-deficient-(MCD- diet-induced NAFLD SD rats in vivo and TNF-α-induced Hep3B cells in vitro. Methods. SD Rats were classified according to diet (chow or MCD diet and treatment (normal saline or PTX injection over a period of 4 weeks: group I (chow + saline, n=4, group II (chow + PTX, group III (MCD + saline, and group IV (MCD + PTX. Hep3B cells were treated with 100 ng/ml TNF-α (24 h in the absence or presence of PTX (1 mM. Results. PTX attenuated MCD-diet-induced serum ALT levels and hepatic steatosis. In real-time PCR and western blotting analysis, PTX decreased MCD-diet-induced TNF-alpha mRNA expression and proapoptotic unfolded protein response by ER stress (GRP78, p-eIF2, ATF4, IRE1α, CHOP, and p-JNK activation in vivo. PTX (1 mM reduced TNF-α-induced activation of GRP78, p-eIF2, ATF4, IRE1α, and CHOP in vitro. Conclusion. PTX has beneficial roles in the development of MCD-diet-induced steatohepatitis through partial suppression of TNF-α and ER stress.

  18. Spontaneous motor activity during the development and maintenance of diet-induced obesity in the rat.

    Science.gov (United States)

    Levin, B E

    1991-09-01

    More than 80% of most daily spontaneous activities (assessed in an Omnitech activity monitor) occurred during the last hour of light and 12 h of the dark phase in 8 chow-fed male Sprague-Dawley rats. Thirty additional rats were, therefore, monitored over this 13-h period to assess the relationship of activity to the development and maintenance of diet-induced obesity (DIO) on a diet high in energy, fat and sucrose (CM diet). Nine of 20 rats became obese after 3 months on the CM diet, with 71% greater weight gain than 10 chow-fed controls. Eleven of 20 rats were diet resistant (DR), gaining the same amount of weight as chow-fed rats. Neither initial activity levels nor initial body weights on chow (Period I) differed significantly across retrospectively identified groups. After 3 months on CM diet or chow (Period II), as well as after an additional 3 months after CM diet-fed rats returned to chow (Period III), there were significant inverse correlations (r = -.606 to -.370) between body weight at the time of testing and various measures of movement in the horizontal plane. There was no relationship to dietary content nor consistent correlations of body weight or diet group to vertical movements, an indirect measure of ingestive behavior. Patterns of time spent in the vertical position were significantly different for DIO vs. DR rats in Period III, however. Thus, differences in food intake and metabolic efficiency, rather than differences in nocturnal activity, are probably responsible for the greater weight gain in DIO-prone rats placed on CM diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats.

    Science.gov (United States)

    Steele, Catherine C; Pirkle, Jesseca R A; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice.

  20. Switching adolescent high-fat diet to adult control diet restores neurocognitive alterations

    Directory of Open Access Journals (Sweden)

    Chloe Boitard

    2016-11-01

    Full Text Available In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence in adolescents is particularly alarming since this is a period of ongoing maturation for brain structures (including the hippocampus and amygdala and for the hypothalamic-pituitary-adrenal (HPA stress axis, which is required for cognitive and emotional processing. We recently demonstrated that adolescent, but not adult, high-fat diet (HF exposure leads to impaired hippocampal function and enhanced amygdala function through HPA axis alteration (Boitard et al., 2014; Boitard et al., 2012; Boitard et al., 2015. Here, we assessed whether the effects of adolescent HF consumption on brain function are permanent or reversible. After adolescent exposure to HF, switching to a standard chow diet restored levels of hippocampal neurogenesis and normalized enhanced HPA axis reactivity, amygdala activity and avoidance memory. Therefore, while the adolescent period is highly vulnerable to the deleterious effects of diet-induced obesity, adult exposure to a standard diet appears sufficient to reverse alterations of brain function.

  1. Modified High-Sucrose Diet-Induced Abdominally Obese and Normal-Weight Rats Developed High Plasma Free Fatty Acid and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Li Cao

    2012-01-01

    Full Text Available Introduction. Metabolically obese but normal-weight (MONW individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW rat model. Methods and Results. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. Conclusion. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  2. Food intake in laboratory rats provided standard and fenbendazole-supplemented diets.

    Science.gov (United States)

    Vento, Peter J; Swartz, Megan E; Martin, Lisa Be; Daniels, Derek

    2008-11-01

    The benzimidazole anthelmintic fenbendazole (FBZ) is a common and effective treatment for pinworm infestation in laboratory animal colonies. Although many investigators have examined the potential for deleterious biologic effects of FBZ, more subtle aspects of the treatment remain untested. Accordingly, we evaluated differences in food intake when healthy male Sprague-Dawley rats were provided a standard nonmedicated laboratory rodent chow or the same chow supplemented with FBZ. We also tested for a preference for either food type when subjects were provided a choice of the 2 diets. Data from these experiments showed no differences in food intake or body weight when rats were maintained on either standard or FBZ-supplemented chow. When the rats were given access to both the standard and FBZ-supplemented diets, they showed a clear preference for the standard diet. The preference for the standard diet indicates that the rats can discriminate between the 2 foods and may avoid the FBZ-supplemented chow when possible. Investigators conducting experiments during treatment with FBZ in which differences in food preference are relevant should be aware of these data and plan their studies accordingly.

  3. Inter-relationships among diet, obesity and hippocampal-dependent cognitive function.

    Science.gov (United States)

    Davidson, T L; Hargrave, S L; Swithers, S E; Sample, C H; Fu, X; Kinzig, K P; Zheng, W

    2013-12-03

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD, on ketogenic (KETO) diet, which is high in saturated fat and low in sugar and other carbohydrates, or continued maintenance on chow (CHOW). Confirming and extending previous findings, diet-induced obese (DIO) rats fed WD showed impaired FN performance, increased blood-brain barrier (BBB) permeability, and increased fasting blood glucose levels compared to CHOW controls and to diet-resistant (DR) rats that did not become obese when maintained on WD. For rats fed the KETO diet, FN performance and BBB integrity were more closely associated with level of circulating ketone bodies than with obesity phenotype (DR or DIO), with higher levels of ketones appearing to provide a protective effect. The evidence also indicated that FN deficits preceded and predicted increased body weight and adiposity. This research (a) further substantiates previous findings of WD-induced deficits in hippocampal-dependent FN discriminations, (b) suggests that ketones may be protective against diet-induced cognitive impairment, and (c) provides evidence that diet-induced cognitive impairment precedes weight gain and obesity. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Diet-induced obesity causes ghrelin resistance in reward processing tasks.

    Science.gov (United States)

    Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B

    2015-12-01

    Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure.

    Science.gov (United States)

    Treesukosol, Yada; Sun, Bo; Moghadam, Alexander A; Liang, Nu-Chu; Tamashiro, Kellie L; Moran, Timothy H

    2014-04-01

    Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.

  6. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  7. Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study.

    Science.gov (United States)

    Berkseth, Kathryn E; Guyenet, Stephan J; Melhorn, Susan J; Lee, Donghoon; Thaler, Joshua P; Schur, Ellen A; Schwartz, Michael W

    2014-08-01

    Gliosis, the activation of astrocyte and microglial cell populations, is a hallmark of central nervous system injury and is detectable using either immunohistochemistry or in vivo magnetic resonance imaging (MRI). Obesity in rodents and humans is associated with gliosis of the arcuate nucleus, a key hypothalamic region for the regulation of energy homeostasis and adiposity, but whether this response is permanent or reversible is unknown. Here we combine terminal immunohistochemistry analysis with serial, noninvasive MRI to characterize the progression and reversibility of hypothalamic gliosis in high-fat diet (HFD)-fed mice. The effects of HFD feeding for 16 weeks to increase body weight and adiposity relative to chow were nearly normalized after the return to chow feeding for an additional 4 weeks in the diet-reversal group. Mice maintained on the HFD for the full 20-week study period experienced continued weight gain associated with the expected increases of astrocyte and microglial activation in the arcuate nucleus, but these changes were not observed in the diet-reversal group. The proopiomelanocortin neuron number did not differ between groups. Although MRI demonstrated a positive correlation between body weight, adiposity, and the gliosis-associated T2 signal in the mediobasal hypothalamus, it did not detect the reversal of gliosis among the HFD-fed mice after the return to chow diet. We conclude that hypothalamic gliosis associated with 16-week HFD feeding is largely reversible in rodents, consistent with the reversal of the HFD-induced obesity phenotype, and extend published evidence regarding the utility of MRI as a tool for studying obesity-associated hypothalamic gliosis in vivo.

  8. Brain and behavioral perturbations in rats following Western diet access.

    Science.gov (United States)

    Hargrave, Sara L; Davidson, Terry L; Lee, Tien-Jui; Kinzig, Kimberly P

    2015-10-01

    Energy dense "Western" diets (WD) are known to cause obesity as well as learning and memory impairments, blood-brain barrier damage, and psychological disturbances. Impaired glucose (GLUT1) and monocarboxylate (MCT1) transport may play a role in diet-induced dementia development. In contrast, ketogenic diets (KD) have been shown to be neuroprotective. We assessed the effect of 10, 40 and 90 days WD, KD and Chow maintenance on spontaneous alternation (SA) and vicarious trial and error (VTE) behaviors in male rats, then analyzed blood glucose, insulin, and ketone levels; and hippocampal GLUT1 and MCT1 mRNA. Compared to Chow and KD, rats fed WD had increased 90 day insulin levels. SA was decreased in WD rats at 10, but not 40 or 90 days. VTE was perturbed in WD-fed rats, particularly at 10 and 90 days, indicating hippocampal deficits. WD rats had lower hippocampal GLUT1 and MCT1 expression compared to Chow and KD, and KD rats had increased 90 day MCT1 expression compared to Chow and WD. These data suggest that WD reduces glucose and monocarboxylate transport at the hippocampus, which may result in learning and memory deficits. Further, KD consumption may be useful for MCT1 transporter recovery, which may benefit cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A high-fat high-sugar diet-induced impairment in place-recognition memory is reversible and training-dependent.

    Science.gov (United States)

    Tran, Dominic M D; Westbrook, R Frederick

    2017-03-01

    A high-fat high-sugar (HFHS) diet is associated with cognitive deficits in people and produces spatial learning and memory deficits in rodents. Notable, such diets rapidly impair place-, but not object-recognition memory in rats within one week of exposure. Three experiments examined whether this impairment was reversed by removal of the diet, or prevented by pre-diet training. Experiment 1 showed that rats switched from HFHS to chow recovered from the place-recognition impairment that they displayed while on HFHS. Experiment 2 showed that control rats ("Untrained") who were exposed to an empty testing arena while on chow, were impaired in place-recognition when switched to HFHS and tested for the first time. However, rats tested ("Trained") on the place and object task while on chow, were protected from the diet-induce deficit and maintained good place-recognition when switched to HFHS. Experiment 3 examined the conditions of this protection effect by training rats in a square arena while on chow, and testing them in a rectangular arena while on HFHS. We have previously demonstrated that chow rats, but not HFHS rats, show geometry-based reorientation on a rectangular arena place-recognition task (Tran & Westbrook, 2015). Experiment 3 assessed whether rats switched to the HFHS diet after training on the place and object tasks in a square area, would show geometry-based reorientation in a rectangular arena. The protective benefit of training was replicated in the square arena, but both Untrained and Trained HFHS failed to show geometry-based reorientation in the rectangular arena. These findings are discussed in relation to the specificity of the training effect, the role of the hippocampus in diet-induced deficits, and their implications for dietary effects on cognition in people. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nutrient Intake and Digestibility of Cynomolgus Monkey (Macaca fascicularis Fed with High Soluble Carbohydrate Diet: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    DEWI APRI ASTUTI

    2009-12-01

    Full Text Available High carbohydrate as obese diet is not yet available commercially for monkeys. Therefore, this preliminary study was to carry out nutrient intake and digestibility of cynomolgus monkeys (Macaca fascicularis fed with high soluble carbohydrate diet compared to monkey chow. Five adult female macaques (average body weight 2.67 kg were made to consume freshly diet. Commercial monkey chows (contains 3500 cal/g energy and 35% starch were fed to three adult females (average body weight 3.62 kg. Nutrient intakes and digestibility parameters were measured using modified metabolic cages. Result showed that average of protein, fat, starch, and energy intakes in treatment diet were higher than control diet (T-test. Fat intake in the treatment diet was three times higher, while starch and energy intakes were almost two times higher than monkey chow. Digestibility percentage of all nutrients were the same in both diets except for the protein. The study concludes that the freshly prepared high sugar diet was palatable and digestible for the cynomolgus monkeys. Further studies are in progress to develop obese diet high in energy content based on fat and source of starch treatments.

  11. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    Science.gov (United States)

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  12. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats.

    Science.gov (United States)

    Seyfried, Florian; Miras, Alexander D; Bueter, Marco; Prechtl, Christina G; Spector, Alan C; le Roux, Carel W

    2013-11-01

    The consumption of high fat and sugar diets is decreased after gastric bypass surgery (GB). The mechanisms remain unclear, with tests of motivated behavior toward fat and sugar producing conflicting results in a rat model. These discrepancies may be due to differences in presurgical maintenance diets. The authors used their GB rat model to determine whether the fat content of preoperative maintenance diets affects weight loss, calorie intake, and macronutrient selection after surgery. Male Wistar rats were either low-fat diet fed (LFDF) with normal chow or high-fat diet fed (HFDF) before randomization to GB or sham surgery. In food preference test 1, the animals were offered the choice of a vegetable drink (V8) or a high-calorie liquid (Ensure), and in food preference test 2, they could choose normal chow or a solid high-fat diet. The GB groups did not differ significantly in terms of body weight loss or caloric intake. In food preference test 1, both groups responded similarly by reducing their preference for Ensure and increasing their preference for V8. In food preference test 2, the HFDF-GB rats reduced their preference for a solid high-fat diet gradually compared with the immediate reduction observed in the LFDF-GB rats. The consumption of presurgical maintenance diets with different fat contents did not affect postoperative weight loss outcomes. Both the LFDF-GB and HFDF-GB rats exhibited behaviors consistent with the possible expression of a conditioned taste aversion to a high-fat stimulus. These results suggest that for some physiologic parameters, low-fat-induced obesity models can be used for the study of changes after GB and have relevance to many obese humans who consume high-calorie but low-fat diets.

  13. Different combinations of maternal and postnatal diet are reflected in changes of hepatic parenchyma and hepatic TNF-alpha expression in male rat offspring.

    Science.gov (United States)

    Kačarević, Željka Perić; Grgić, Anđela; Šnajder, Darija; Bijelić, Nikola; Belovari, Tatjana; Cvijanović, Olga; Blažičević, Valerija; Radić, Radivoje

    2017-09-01

    Obesity is related to increased TNF-alpha production in different tissues. TNF-alpha is connected to mitochondrial dysfunction in the liver and also development of fatty infiltration of the liver. Also, postnatal change from normal to high-fat diet causes a significant increase in TNF-alpha serum levels. The aim of this research was to determine how maternal diet and switching male offspring to a different dietary regime after lactation influences rat liver. Ten female Sprague Dawley rats at nine weeks of age were randomly divided in two groups and fed either standard laboratory chow or high-fat diet during six weeks, and then mated with the same male subject. After birth and lactation male offspring from both groups were further divided into four subgroups depending on their subsequent diet. At 22 weeks of age, the animals were weighted, sacrificed and major organs were collected and weighted. Immunohistochemistry for TNF-alpha was performed on liver, and liver samples were analyzed for pathohistological changes. The group in which mothers were fed standard chow and offspring high-fat diet had the most pronounced changes: heaviest liver, poorest histopathological findings and strongest TNF-alpha immunohistochemical staining of liver parenchyma. High-fat diet during pregnancy and lactation and switching to high-fat diet postnatally affects liver weight, histological structure and TNF-alpha expression in male offspring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    Science.gov (United States)

    Kristiansen, Maria Nicoline Baandrup; Veidal, Sanne Skovgård; Rigbolt, Kristoffer Tobias Gustav; Tølbøl, Kirstine Sloth; Roth, Jonathan David; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2016-01-01

    AIM: To characterize development of diet-induced nonalcoholic steatohepatitis (NASH) by performing liver biopsy in wild-type and genetically obese mice. METHODS: Male wild-type C57BL/6J (C57) mice (DIO-NASH) and male Lepob/Lepob (ob/ob) mice (ob/ob-NASH) were maintained on a diet high in trans-fat (40%), fructose (22%) and cholesterol (2%) for 26 and 12 wk, respectively. A normal chow diet served as control in C57 mice (lean chow) and ob/ob mice (ob/ob chow). After the diet-induction period, mice were liver biopsied and a blinded histological assessment of steatosis and fibrosis was conducted. Mice were then stratified into groups counterbalanced for steatosis score and fibrosis stage and continued on diet and to receive daily PO dosing of vehicle for 8 wk. Global gene expression in liver tissue was assessed by RNA sequencing and bioinformatics. Metabolic parameters, plasma liver enzymes and lipids (total cholesterol, triglycerides) as well as hepatic lipids and collagen content were measured by biochemical analysis. Non-alcoholic fatty liver disease activity score (NAS) (steatosis/inflammation/ballooning degeneration) and fibrosis were scored. Steatosis and fibrosis were also quantified using percent fractional area. RESULTS: Diet-induction for 26 and 12 wk in DIO-NASH and ob/ob-NASH mice, respectively, elicited progressive metabolic perturbations characterized by increased adiposity, total cholesterol and elevated plasma liver enzymes. The diet also induced clear histological features of NASH including hepatosteatosis and fibrosis. Overall, the metabolic NASH phenotype was more pronounced in ob/ob-NASH vs DIO-NASH mice. During the eight week repeated vehicle dosing period, the metabolic phenotype was sustained in DIO-NASH and ob/ob-NASH mice in conjunction with hepatomegaly and increased hepatic lipids and collagen accumulation. Histopathological scoring demonstrated significantly increased NAS of DIO-NASH mice (0 vs 4.7 ± 0.4, P NASH mice (2.4 ± 0.3 vs 6.3

  15. The Effects of Reduced Gluten Barley Diet on Humoral and Cell-Mediated Systemic Immune Responses of Gluten-Sensitive Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Karol Sestak

    2015-03-01

    Full Text Available Celiac disease (CD affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS. The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ, tumor necrosis factor (TNF and interleukin-8 (IL-8 by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading—by co-administration of additional treatments.

  16. The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive rhesus macaques.

    Science.gov (United States)

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P; Liu, David X; Moehs, Charles P

    2015-03-06

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading-by co-administration of additional treatments.

  17. A reciprocal interaction between food-motivated behavior and diet-induced obesity

    NARCIS (Netherlands)

    La Fleur, S. E.; Vanderschuren, L. J. M. J.; Luijendijk, M. C.; Kloeze, B. M.; Tiesjema, B.; Adan, R. A. H.

    2007-01-01

    OBJECTIVES: One of the main causes of obesity is overconsumption of diets high in fat and sugar. We studied the metabolic changes and food-motivated behavior when rats were subjected to a choice diet with chow, lard and a 30% sucrose solution (high fat high sugar (HFHS)-choice diet). Because rats

  18. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency.

    Science.gov (United States)

    Pliss, Lioudmila; Jatania, Urvi; Patel, Mulchand S

    2016-06-01

    Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  19. Eating high-fat chow enhances sensitization to the effects of methamphetamine on locomotion in rats.

    Science.gov (United States)

    McGuire, Blaine A; Baladi, Michelle G; France, Charles P

    2011-05-11

    Eating high-fat chow can modify the effects of drugs acting directly or indirectly on dopamine systems and repeated intermittent drug administration can markedly increase sensitivity (i.e., sensitization) to the behavioral effects of indirect-acting dopamine receptor agonists (e.g., methamphetamine). This study examined whether eating high-fat chow alters the sensitivity of male Sprague Dawley rats to the locomotor stimulating effects of acute or repeated administration of methamphetamine. The acute effects of methamphetamine on locomotion were not different between rats (n=6/group) eating high-fat or standard chow for 1 or 4 weeks. Sensitivity to the effects of methamphetamine (0.1-10mg/kg, i.p.) increased progressively across 4 once per week tests; this sensitization developed more rapidly and to a greater extent in rats eating high-fat chow as compared with rats eating standard chow. Thus, while eating high-fat chow does not appear to alter sensitivity of rats to acutely-administered methamphetamine, it significantly increases the sensitization that develops to repeated intermittent administration of methamphetamine. These data suggest that eating certain foods influences the development of sensitization to drugs acting on dopamine systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Exposure to maternal obesogenic diet worsens some but not all pre-cancer phenotypes in a murine genetic model of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Theresa Okeyo-Owuor

    Full Text Available Prostate cancer research has been predominantly focused on adult exposures and risk factors. However, because the prostate develops during gestation and early life, exposure to external factors, such as obesity, during development could affect the prostate cancer progression in adults. Our previous work demonstrated that exposure to a high fat/high sugar (HF/HS diet during gestation and until weaning stimulated prostate hyperplasia and altered the Pten/Akt pathway in adult mice fed a normal diet after weaning. Here, we asked whether maternal exposure to HF/HS would worsen prostate phenotypes in mice lacking Pten, a widely accepted driver of prostate cancer. We found that, at six weeks of age, both Chow (control-and HF/HS-exposed Pten knockout mice showed evidence of murine PIN that included ducts with central comedo necrosis but that the HF/HS exposure did not influence murine PIN progression. The Pten knockout mice exposed to HF/HS in utero had significantly more mitotic cells than Pten knockouts exposed to Chow diet. In the Pten null background, the maternal HF/HS diet enhanced proliferation but did not have an additive effect on Akt activation. We observed neuroendocrine differentiation in Pten knockout mice, a phenotype that had not been previously described in this model.

  1. Offspring from rat mothers fed a high-fat/high-sucrose diet during gestation and lactation accumulate free fatty acids in the liver when exposed to high fat diet as adults

    DEFF Research Database (Denmark)

    Hellgren, Lars; Ingvorsen, Camilla

    Introduction: Maternal diet during gestation and lactation has been implicated as a factor that modifies the risk of developing metabolic diseases later in life. Hepatic lipid accumulation is strongly linked to development of metabolic diseases. Free fatty acids induce ER stress, mitochondrial...... in adult life. In this poster, we report data on hepatic lipid content. Methods: Rat dams were fed a 60 E% fat diet and given 15% sucrose (HFHS) in the drinking water or chow and pure water (C) six weeks before mating as well as during gestation and lactation. After birth, male pups was cross......-fostered by the dams, so that half of the pups born by HFHS mothers was lactated by C dams and vice versa, generating four groups; CC, CH, HC and HH (first letter maternal diet during pregnancy and the second diet during lactation). At weaning all pups were transferred to chow-diet and kept on this diet until the age...

  2. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction.

    Science.gov (United States)

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-12-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems.

  3. The effects of dietary fish oil on inflammation, fibrosis and oxidative stress associated with obstructive renal injury in rats.

    Science.gov (United States)

    Peake, Jonathan M; Gobe, Glenda C; Fassett, Robert G; Coombes, Jeff S

    2011-03-01

    We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Three groups of Sprague-Dawley rats (n=16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n=4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-β expression, apoptosis, and tissue levels of arachidonic acid, MIP-1α, IL-1β, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Altered feeding patterns in rats exposed to a palatable cafeteria diet: increased snacking and its implications for development of obesity.

    Directory of Open Access Journals (Sweden)

    Sarah I Martire

    Full Text Available BACKGROUND: Rats prefer energy-rich foods over chow and eat them to excess. The pattern of eating elicited by this diet is unknown. We used the behavioral satiety sequence to classify an eating bout as a meal or snack and compared the eating patterns of rats fed an energy rich cafeteria diet or chow. METHODS: Eight week old male Sprague Dawley rats were exposed to lab chow or an energy-rich cafeteria diet (plus chow for 16 weeks. After 5, 10 and 15 weeks, home-cage overnight feeding behavior was recorded. Eating followed by grooming then resting or sleeping was classified as a meal; whereas eating not followed by the full sequence was classified as a snack. Numbers of meals and snacks, their duration, and waiting times between feeding bouts were compared between the two conditions. RESULTS: Cafeteria-fed rats ate more protein, fat and carbohydrate, consistently ingesting double the energy of chow-fed rats, and were significantly heavier by week 4. Cafeteria-fed rats tended to take multiple snacks between meals and ate fewer meals than chow-fed rats. They also ate more snacks at 5 weeks, were less effective at compensating for snacking by reducing meals, and the number of snacks in the majority of the cafeteria-fed rats was positively related to terminal body weights. CONCLUSIONS: Exposure to a palatable diet had long-term effects on feeding patterns. Rats became overweight because they initially ate more frequently and ultimately ate more of foods with higher energy density. The early increased snacking in young cafeteria-fed rats may represent the establishment of eating habits that promote weight gain.

  5. Studies in mice fed a diet containing irradiated fish

    International Nuclear Information System (INIS)

    1979-01-01

    Three groups of mice were observed in utero and for eighty (80) weeks thereafter to study growth, food consumption, hematology, blood chemistry and survival with particular interest in carcinogenic potential. Group I received only Purina Mouse Chow, Group II received a diet composed of 45% non-irradiated fish and 55% Purina Mouse Chow, and Group III received a diet composed of 45% gamma irradiated fish and 55% Purina Mouse Chow. Differences observed in body weights between control and fish treated diets were due to the incorporation of fish into the diet and not the results of fish being treated with gamma irradiation. Differences observed in food consumption between control and fish treated diets were due to the incorporation of fish into the diet and not the result of fish being treated with gamma irradiation. No daily observations were made which could be attributed to the treatment of fish with gamma irradiation. No observations were made at any time interval for hematology which could be attributed to the treatment of fish with gamma irradiation. No observations were made at any time interval for clinical chemistry which could be attributed to the treatment of fish with gamma irradiation. Palpable mass data did not reveal any trends which could be related to the treatment of fish with gamma irradiation. Gross observations at necropsy were limited to spontaneously occurring lesions or artifacts of necropsy technique commonly associated with animals of this species and age. Organ weight data did not reveal any trends which could be related to the treatment of fish with gamma irradiation. Pathological findings were limited to spontaneously occurring lesions or artifacts of necropsy technique commonly associated with animals of this species and age. (orig.)

  6. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    Science.gov (United States)

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  7. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Jensen, Majbrit M; Overgaard, Agnete

    2013-01-01

    is not clarified. Tesofensine effectively induces appetite suppression in the diet-induced obese (DIO) rat partially being ascribed to an indirect stimulation of central dopamine receptor function subsequent to blocked dopamine transporter activity. This is interesting, as obese patients have reduced central......Tesofensine is a triple monoamine reuptake inhibitor which inhibits noradrenaline, 5-HT and dopamine reuptake. Tesofensine is currently in clinical development for the treatment of obesity, however, the pharmacological basis for its strong and sustained effects in obesity management...... as compared to age-matched chow-fed rats. DIO rats also exhibited a marked reduction in baseline extracellular dopamine levels in the nucleus accumbens (NAcc) and prefrontal cortex (PFC), as compared to chow-fed rats using microdialysis. While acute administration of tesofensine (2.0mg/kg) normalized accumbal...

  8. Peripherally Administered Y2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice.

    Science.gov (United States)

    Ailanen, Liisa; Vähätalo, Laura H; Salomäki-Myftari, Henriikka; Mäkelä, Satu; Orpana, Wendy; Ruohonen, Suvi T; Savontaus, Eriika

    2018-01-01

    Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y 2 -receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y 2 -receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y 2 -receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPY DβH ) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y 2 -receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPY DβH and WT mice feeding on chow or Western diet. Treatment with Y 2 -receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y 2 -receptors induced obesity in WT mice, whereas OE-NPY DβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y 2 -receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y 2 -receptor antagonism has beneficial effects on metabolic status.

  9. The effects of glutamine-supplemented diet on the intestinal mucosa of the malnourished growing rat Os efeitos de dieta com suplementação de glutamina sobre a mucosa intestinal do rato desnutrido em crescimento

    Directory of Open Access Journals (Sweden)

    Uenis Tannuri

    2000-06-01

    types of chow-based diet. The glutamine-enriched diet resulted in the greatest reduction of crypt depth, and this reduction was also statistically significant when compared with control animals. CONCLUSIONS: Enteral glutamine has some positive effects on body weight gain and trophism of the jejunal mucosa in the malnourished growing rat.A glutamina é o aminoácido mais abundante no sangue e exerce papel importante na resposta do intestino delgado às agressões sistêmicas. Atrofia da mucosa intestinal ocorre em algumas afecções clínicas como desnutrição grave. Foi demonstrado que a glutamina tem ação trófica em situações como período p��s-operatório de ressecção ou transplante intestinal, radioterapia, trauma cirúrgico, isquemia intestinal ou administração de drogas citotóxicas. Tais estudos não foram realizados em animais desnutridos em fase de crescimento. Desta forma, no presente trabalho verificamos se a glutamina exerce ação trófica sobre a mucosa intestinal do rato desnutrido em fase de crescimento. Foram utilizadas 35 ratas com 21 dias de idade, e divididas em 4 grupos: controle - dieta normal; desnutrição - provocada por diarréia induzida pela administração de dieta rica em lactose durante 15 dias; desnutrição+dieta normal durante os 15 dias subseqüentes; desnutrição + dieta rica em glutamina (2%. Após 30 dias de experimento os animais foram pesados, mortos e um segmento de jejuno foi colhido para estudos histológicos e histomorfométricos. Os grupos de animais apresentaram médias de pesos semelhantes no primeiro dia de estudo, sendo que a alimentação com dieta rica em lactose (grupo desnutrido provocou significativa queda de peso em relação aos controles. A re-alimentação com ambos os tipos de dieta promoveu ganho significativo de peso corpóreo, embora a dieta rica em glutamina tenha sido mais eficaz. Os estudos histológicos e histomorfométricos demonstraram que a desnutrição provocou significativa redu

  10. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  11. Relationships between diet-related changes in the gut microbiome and cognitive flexibility.

    Science.gov (United States)

    Magnusson, K R; Hauck, L; Jeffrey, B M; Elias, V; Humphrey, A; Nath, R; Perrone, A; Bermudez, L E

    2015-08-06

    Western diets are high in fat and sucrose and can influence behavior and gut microbiota. There is growing evidence that altering the microbiome can influence the brain and behavior. This study was designed to determine whether diet-induced changes in the gut microbiota could contribute to alterations in anxiety, memory or cognitive flexibility. Two-month-old, male C57BL/6 mice were randomly assigned high-fat (42% fat, 43% carbohydrate (CHO), high-sucrose (12% fat, 70% CHO (primarily sucrose) or normal chow (13% kcal fat, 62% CHO) diets. Fecal microbiome analysis, step-down latency, novel object and novel location tasks were performed prior to and 2weeks after diet change. Water maze testing for long- and short-term memory and cognitive flexibility was conducted during weeks 5-6 post-diet change. Some similarities in alterations in the microbiome were seen in both the high-fat and high-sucrose diets (e.g., increased Clostridiales), as compared to the normal diet, but the percentage decreases in Bacteroidales were greater in the high-sucrose diet mice. Lactobacillales was only significantly increased in the high-sucrose diet group and Erysipelotrichales was only significantly affected by the high-fat diet. The high-sucrose diet group was significantly impaired in early development of a spatial bias for long-term memory, short-term memory and reversal training, compared to mice on normal diet. An increased focus on the former platform position was seen in both high-sucrose and high-fat groups during the reversal probe trials. There was no significant effect of diet on step-down, exploration or novel recognitions. Higher percentages of Clostridiales and lower expression of Bacteroidales in high-energy diets were related to the poorer cognitive flexibility in the reversal trials. These results suggest that changes in the microbiome may contribute to cognitive changes associated with eating a Western diet. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights

  12. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    Science.gov (United States)

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  fructose + high salt group (2139 ± 178  μ mol /24 hrs P  fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Immunologic and metabolic effects of high-refined carbohydrate-containing diet in food allergic mice.

    Science.gov (United States)

    Yamada, Letícia Tamie Paiva; de Oliveira, Marina Chaves; Batista, Nathália Vieira; Fonseca, Roberta Cristelli; Pereira, Rafaela Vaz Sousa; Perez, Denise Alves; Teixeira, Mauro Martins; Cara, Denise Carmona; Ferreira, Adaliene Versiani Matos

    2016-02-01

    Allergic mice show a reduction in body weight and adiposity with a higher inflammatory response in the adipose tissue similar to obese fat tissue. This study aimed to evaluate whether the low-grade inflammatory milieu of mice with diet-induced mild obesity interferes with the allergic response induced by ovalbumin (OVA). BALB/c mice were divided into four groups: 1) non-allergic (OVA-) mice fed chow diet, 2) allergic (OVA+) mice fed chow diet, 3) OVA- mice fed high-refined carbohydrate-containing (HC) diet, and 4) OVA+ mice fed HC diet. After 5 wk, allergic groups were sensitized with OVA and received a booster 14 d later. All groups received an oral OVA challenge 7 d after the booster. Allergic groups showed increased serum levels of total IgE, anti-OVA IgE, and IgG1; a high disease activity index score; aversion to OVA; and increased intestinal eosinophil infiltration. Non-allergic mild-obese mice also showed aversion to OVA and an increased number of eosinophils in the proximal jejunum. After the allergic challenge, OVA+ mice fed chow diet showed weight loss and lower adiposity in several adipose tissue depots. OVA+ mice fed HC diet showed a loss of fat mass only in the mesenteric adipose tissue. Furthermore, increased levels of TNF, IL-6, and IL-10 were observed in this tissue. Our data show that mild-obese allergic mice do not present severe pathologic features of food allergy similar to those exhibited by lean allergic mice. Mild obesity promoted by HC diet ingestion causes important intestinal disorders that appear to modulate the inflammatory response during the antigen challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of praziquantel administration on hepatic stereology of mice infected with Schistosoma mansoni and fed a low-protein diet

    Directory of Open Access Journals (Sweden)

    L.A. Barros

    2009-09-01

    Full Text Available A study was undertaken to investigate the effect of administering praziquantel (PZQ, focusing on the liver stereological findings of malnourished mice infected with Schistosoma mansoni. Thirty female Swiss Webster mice (age: 21 days; weight: 8-14 g were fed either a low-protein diet (8% or standard chow (22% protein for 15 days. Five mice in each group were infected with 50 cercariae each of the BH strain (Brazil. PZQ therapy (80 mg/kg body weight, per day was started on the 50th day of infection and consisted of daily administration for 5 days. Volume density (hepatocytes, sinusoids and hepatic fibrosis was determined by stereology using a light microscope. Body weight gain and total serum albumin levels were always lower in undernourished mice. Our stereological study demonstrated that treatment increased both volume density of hepatocytes in mice fed standard chow (47.56%, treated group and 12.06%, control and low-protein chow (30.98%, treated group and 21.44%, control, and hepatic sinusoids [standard chow (12.52%, treated group and 9.06%, control, low-protein chow (14.42%, treated group and 8.46%, control], while hepatic fibrosis was reduced [standard chow (39.92%, treated group and 78.88%, control and low-protein chow (54.60%, treated group and 70.10%, control]. On the other hand, mice fed low-protein chow decreased density volume of hepatocytes and hepatic fibrosis. In conclusion, our findings indicate that treatment with PZQ ameliorates hepatic schistosomiasis pathology even in mice fed a low-protein diet.

  15. A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Le, Vivian; Morris, Margaret J

    2016-06-01

    Stress exposure during early development is known to produce long-term mental health deficits. Stress promotes poor lifestyle choices such as poor diet. Early life adversity and diets high in fat and sugar (HFHS) are known to affect anxiety and memory. However additive effects of HFHS and stress during early development are less explored. Here, we examined whether early life stress (ELS) simulated by limited nesting (LN) induces anxiety-like behaviour and cognitive deficits that are modulated by HFHS diet. We examined key hippocampal markers involved in anxiety and cognition, testing the hypothesis that post-weaning HFHS following ELS would ameliorate anxiety-like behaviour but worsen memory and associated hippocampal changes. Sprague-Dawley rats were exposed to LN, postnatal days 2-9, and at weaning, male siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, LN-HFHS, n=11-15/group). Anxiety-like behaviour was assessed by Elevated Plus Maze (EPM) at 10 weeks and spatial and object recognition tested at 11 weeks of age. Rats were culled at 13 weeks. Hippocampal mRNA expression was measured using TaqMan(®) Array Micro Fluidic cards (Life Technologies). As expected HFHS diet increased body weight; LN and control rats had similar weights at 13 weeks, energy intake was also similar across groups. LN-Chow rats showed increased anxiety-like behaviour relative to control rats, but this was reversed by HFHS diet. Spatial and object recognition memory were unaltered by LN exposure or consumption of HFHS diet. Hippocampal glucocorticoid receptor (GR) protein was not affected by LN exposure in chow rats, but was increased by 45% in HFHS rats relative to controls. Hippocampal genes involved in plasticity and mood regulation, GSKα and GSKβ were affected, with reductions in GSKβ under both diet conditions, and reduced GSKα only in LN-HFHS versus Con-HFHS. Interestingly, HFHS diet and LN exposure independently reduced expression of

  16. Sensitivity to apomorphine-induced yawning and hypothermia in rats eating standard or high-fat chow.

    Science.gov (United States)

    Baladi, Michelle G; Thomas, Yvonne M; France, Charles P

    2012-07-01

    Feeding conditions modify sensitivity to indirect- and direct-acting dopamine receptor agonists as well as the development of sensitization to these drugs. This study examined whether feeding condition affects acute sensitivity to apomorphine-induced yawning or changes in sensitivity that occur over repeated drug administration. Quinpirole-induced yawning was also evaluated to see whether sensitization to apomorphine confers cross-sensitization to quinpirole. Drug-induced yawning was measured in different groups of male Sprague Dawley rats (n = 6/group) eating high (34.3%) fat or standard (5.7% fat) chow. Five weeks of eating high-fat chow rendered otherwise drug-naïve rats more sensitive to apomorphine- (0.01-1.0 mg/kg, i.p.) and quinpirole- (0.0032-0.32 mg/kg, i.p.) induced yawning, compared with rats eating standard chow. In other rats, tested weekly with apomorphine, sensitivity to apomorphine-induced yawning increased (sensitization) similarly in rats with free access to standard or high-fat chow; conditioning to the testing environment appeared to contribute to increased yawning in both groups of rats. Food restriction decreased sensitivity to apomorphine-induced yawning across five weekly tests. Rats with free access to standard or high-fat chow and sensitized to apomorphine were cross-sensitized to quinpirole-induced yawning. The hypothermic effects of apomorphine and quinpirole were not different regardless of drug history or feeding condition. Eating high-fat chow or restricting access to food alters sensitivity to direct-acting dopamine receptor agonists (apomorphine, quinpirole), although the relative contribution of drug history and dietary conditions to sensitivity changes appears to vary among agonists.

  17. Dietary obesity caused by a specific circadian eating pattern.

    Science.gov (United States)

    Hariri, Niloofar; Thibault, Louise

    2011-04-01

    The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.

  18. A bioenergetics systems evaluation of ketogenic diet liver effects.

    Science.gov (United States)

    Hutfles, Lewis J; Wilkins, Heather M; Koppel, Scott J; Weidling, Ian W; Selfridge, J Eva; Tan, Eephie; Thyfault, John P; Slawson, Chad; Fenton, Aron W; Zhu, Hao; Swerdlow, Russell H

    2017-09-01

    Ketogenic diets induce hepatocyte fatty acid oxidation and ketone body production. To further evaluate how ketogenic diets affect hepatocyte bioenergetic infrastructure, we analyzed livers from C57Bl/6J male mice maintained for 1 month on a ketogenic or standard chow diet. Compared with the standard diet, the ketogenic diet increased cytosolic and mitochondrial protein acetylation and also altered protein succinylation patterns. SIRT3 protein decreased while SIRT5 protein increased, and gluconeogenesis, oxidative phosphorylation, and mitochondrial biogenesis pathway proteins were variably and likely strategically altered. The pattern of changes observed can be used to inform a broader systems overview of how ketogenic diets affect liver bioenergetics.

  19. Dietary supplementation with fish oil prevents high fat diet-induced enhancement of sensitivity to the locomotor stimulating effects of cocaine in adolescent female rats.

    Science.gov (United States)

    Serafine, Katherine M; Labay, Caitlin; France, Charles P

    2016-08-01

    Eating a diet high in fat can lead to obesity, chronic metabolic disease, and increased inflammation in both the central and peripheral nervous systems. Dietary supplements that are high in omega-3 polyunsaturated fatty acids can reduce or prevent these negative health consequences in rats. Eating high fat chow also increases the sensitivity of rats to behavioral effects of drugs acting on dopamine systems (e.g., cocaine), and this effect is greatest in adolescent females. The present experiment tested the hypothesis that dietary supplementation with fish oil prevents high fat chow induced increases in sensitivity to cocaine in adolescent female rats. Female Sprague-Dawley rats (post-natal day 25-27) ate standard laboratory chow (5.7% fat), high fat chow (34.4% fat), or high fat chow supplemented with fish oil (20% w/w). Cocaine dose dependently (1-17.8mg/kg) increased locomotion and induced sensitization across 6 weeks of once-weekly testing in all rats; however, these effects were greatest in rats eating high fat chow. Dietary supplementation with fish oil prevented enhanced locomotion and sensitization in rats eating high fat chow. There were no differences in inflammatory markers in plasma or the hypothalamus among dietary conditions. These results demonstrate that dietary supplementation with fish oil can prevent high fat diet-induced sensitization to cocaine, but they fail to support the view that these effects are due to changes in proinflammatory cytokines. These data add to a growing literature on the relationship between diet and drug abuse and extend the potential health benefits of fish oil to stimulant drug abuse prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Actuator Disc Model Using a Modified Rhie-Chow/SIMPLE Pressure Correction Algorithm

    DEFF Research Database (Denmark)

    Rethore, Pierre-Elouan; Sørensen, Niels

    2008-01-01

    An actuator disc model for the flow solver EllipSys (2D&3D) is proposed. It is based on a correction of the Rhie-Chow algorithm for using discreet body forces in collocated variable finite volume CFD code. It is compared with three cases where an analytical solution is known.......An actuator disc model for the flow solver EllipSys (2D&3D) is proposed. It is based on a correction of the Rhie-Chow algorithm for using discreet body forces in collocated variable finite volume CFD code. It is compared with three cases where an analytical solution is known....

  1. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    OpenAIRE

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel...

  2. Rho kinase inhibitor fasudil mitigates high-cholesterol diet-induced hypercholesterolemia and vascular damage.

    Science.gov (United States)

    Abdali, Nibrass Taher; Yaseen, Awny H; Said, Eman; Ibrahim, Tarek M

    2017-04-01

    The current study was designed to investigate the potential beneficial therapeutic outcome of Rho kinase inhibitor (fasudil) against hypercholesterolemia-induced myocardial and vascular injury in rabbits together with diet modification. Sixteen male rabbits were randomly divided into four groups: normal control group which received standard rabbit chow, hypercholesterolemic control group, and treated groups which received cholesterol-rich rabbit chow (1.5% cholesterol) for 8 weeks. Treated groups received either fasudil (100 mg/kg/day) or rosuvastatin (2.5 mg/kg/day) starting from the ninth week for further 4 weeks with interruption of the cholesterol-rich chow. Biochemical assessment of serum cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and myocardial oxidative/antioxidant biomarkers malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH), besides biochemical assessment of serum nitric oxide (NO), creatine kinase (CK), and lactate dehydrogenase (LDH) activities and serum total antioxidant capacity (TAC), was conducted. Serum vascular cell adhesion molecule 1 (VCAM-1) and serum Rho-associated protein kinase 1 (ROCK-1) were also evaluated along with histopathological examination of aorta specimens. Fasudil administration significantly decreased serum cholesterol, triglyceride (TG), and LDL and significantly increased serum HDL, with concomitant decrease in serum CK and LDH activities, NO, and restoration of serum TAC. Myocardial MDA significantly declined; SOD activity and GSH contents were restored. Serum ROCK-1 and VCAM-1 levels significantly declined as well. Vascular improvement was confirmed with histopathological examination, which revealed normal aortic intema with the absence of atheromas. Fasudil has promising anti-atherogenic activity mediated primarily via alleviation of hypercholesterolemia-induced oxidative stress and modulation of inflammatory response.

  3. Post-weaning high-fat diet results in growth cartilage lesions in young male rats.

    Directory of Open Access Journals (Sweden)

    Samuel S Haysom

    Full Text Available To determine if a high-fat diet (HF from weaning would result in a pro-inflammatory state and affect joint cartilage, we fed male rats either HF or Chow diet post-weaning, and voluntary wheel exercise (EX or cage only activity (SED after 9 weeks of age. At 17 weeks body composition, plasma biomarkers and histomorphology scores of femoro-tibial cartilages of HF-SED, HF-EX, Chow-SED and Chow-EX groups were compared. Food intake and activity were not significantly different between groups. HF diet resulted in significantly higher weight gain, %fat, fat:lean ratio, and plasma leptin, insulin and TNFα concentrations, with significant interactions between diet and exercise. No abnormal features were detected in the hyaline articular cartilage or in the metaphyseal growth plate in all four groups. However, collagen type X- positive regions of retained epiphyseal growth cartilage (EGC was present in all HF-fed animals and significantly greater than that observed in Chow-fed sedentary rats. Most lesions were located in the lateral posterior aspect of the tibia and/or femur. The severity of lesions was greater in HF-fed animals. Although exercise had a significantly greater effect in reducing adiposity and associated systemic inflammation in HF-fed rats, it had no effect on lesion incidence or severity. Lesion incidence was also significantly associated with indices of obesity and plasma markers of chronic inflammation. Clinically, EGC lesions induced by HF feeding in rats from very early in life, and possibly by insufficient activity, is typical of osteochondrosis in animals. Such lesions may be the precursor of juvenile osteochondritis dissecans requiring surgery in children/adolescents, conservative management of which could benefit from improved understanding of early changes in cellular and gene expression.

  4. Chronic suppression of μ-opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats.

    Science.gov (United States)

    Lenard, N R; Zheng, H; Berthoud, H-R

    2010-06-01

    To test the hypothesis that micro-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic micro-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. Chronic blockade of micro-opioid receptor signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4-5 days) of the irreversible receptor antagonist beta-funaltrexamine (BFNA) over 3-5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure and regular chow (each nutritionally complete) or regular chow only. Intake of each food item, body weight and body fat mass were monitored throughout the study. The BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain and fat accretion, compared with vehicle control injections. The injection of BFNA in the core did not significantly change these parameters in chow-fed control rats. The injection of BFNA in the core and shell differentially affected intake of the two palatable food items: in the core, BFNA significantly reduced the intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced the intake of Ensure, but not of high-fat, compared with vehicle treatment. Endogenous micro-opioid receptor signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.

  5. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats.

    Science.gov (United States)

    Mitra, Anaya; Alvers, Kristin M; Crump, Erica M; Rowland, Neil E

    2009-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet condition. Female offspring were weaned on either control or "junk food" diets until about 6 mo of age. Rats fed the high-fat junk food diet were hyperphagic relative to their chow-fed controls. The junk food-fed rats were significantly heavier and had greater fat pad mass than those rats maintained on chow alone. Importantly, those rats suckled by high-fat dams had heavier fat pads than those suckled by control diet dams. Fasting serum leptin and insulin levels differed as a function of the gestational, lactational, and postweaning diet histories. Rats gestated in, or suckled by high-fat dams, or maintained on the junk food diet were hyperleptinemic compared with their respective controls. Indirect blood pressure did not differ as a function of postweaning diet, but rats gestated in the high-fat dams had lower mean arterial blood pressures than those gestated in the control diet dams. The postweaning dietary history affected food-motivated behavior; junk food-fed rats earned less food pellets on fixed (FR) and progressive (PR) ratio cost schedules than chow-fed controls. In conclusion, the effects of maternal high-fat diet during gestation or lactation were mostly small and transient. The postweaning effects of junk food diet were evident on the majority of the parameters measured, including body weight, fat pad mass, serum leptin and insulin levels, and operant performance.

  6. Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation.

    Science.gov (United States)

    Beilharz, J E; Maniam, J; Morris, M J

    2016-06-01

    Chronic high-energy diets are known to induce obesity and impair memory; these changes have been associated with inflammation in brain areas crucial for memory. In this study, we investigated whether inflammation could also be related to diet-induced memory deficits, prior to obesity. We exposed rats to chow, chow supplemented with a 10% sucrose solution (Sugar) or a diet high in fat and sugar (Caf+Sugar) and assessed hippocampal-dependent and perirhinal-dependent memory at 1 week. Both high-energy diet groups displayed similar, selective hippocampal-dependent memory deficits despite the Caf+Sugar rats consuming 4-5 times more energy, and weighing significantly more than the other groups. Extreme weight gain and excessive energy intake are therefore not necessary for deficits in memory. Weight gain across the diet period however, was correlated with the memory deficits, even in the Chow rats. The Sugar rats had elevated expression of a number of inflammatory genes in the hippocampus and WAT compared to Chow and Caf+Sugar rats but not in the perirhinal cortex or hypothalamus. Blood glucose concentrations were also elevated in the Sugar rats, and were correlated with the hippocampal inflammatory markers. Together, these results indicate that liquid sugar can rapidly elevate markers of central and peripheral inflammation, in association with hyperglycemia, and this may be related to the memory deficits in the Sugar rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rats Fed a Diet Rich in Fats and Sugars Are Impaired in the Use of Spatial Geometry.

    Science.gov (United States)

    Tran, Dominic M D; Westbrook, R Frederick

    2015-12-01

    A diet rich in fats and sugars is associated with cognitive deficits in people, and rodent models have shown that such a diet produces deficits on tasks assessing spatial learning and memory. Spatial navigation is guided by two distinct types of information: geometrical, such as distance and direction, and featural, such as luminance and pattern. To clarify the nature of diet-induced spatial impairments, we provided rats with standard chow supplemented with sugar water and a range of energy-rich foods eaten by people, and then we assessed their place- and object-recognition memory. Rats exposed to this diet performed comparably with control rats fed only chow on object recognition but worse on place recognition. This impairment on the place-recognition task was present after only a few days on the diet and persisted across tests. Critically, this spatial impairment was specific to the processing of distance and direction. © The Author(s) 2015.

  8. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2015-12-01

    Full Text Available The choline-deficient, ethionine-supplemented (CDE dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet. Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100% for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality.

  9. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks

    Directory of Open Access Journals (Sweden)

    Paul de Goede

    2018-01-01

    Full Text Available The effects of feeding behavior and diet composition, as well as their possible interactions, on daily (clock gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue (WAT, but hardly in other metabolic tissues such as skeletal muscle (SM and brown adipose tissues (BAT. We therefore subjected male Wistar rats to a regular chow or free choice high-fat-high sugar (fcHFHS diet in combination with time restricted feeding (TRF to either the light or dark phase. In SM, all tested clock genes lost their rhythmic expression in the chow light fed group. In the fcHFHS light fed group rhythmic expression for some, but not all, clock genes was maintained, but shifted by several hours. In BAT the daily rhythmicity of clock genes was maintained for the light fed groups, but expression patterns were shifted as compared with ad libitum and dark fed groups, whilst the fcHFHS diet made the rhythmicity of clock genes become more pronounced. Most of the metabolic genes in BAT tissue tested did not show any rhythmic expression in either the chow or fcHFHS groups. In SM Pdk4 and Ucp3 were phase-shifted, but remained rhythmically expressed in the chow light fed groups. Rhythmic expression was lost for Ucp3 whilst on the fcHFHS diet during the light phase. In summary, both feeding at the wrong time of day and diet composition disturb the peripheral clocks in SM and BAT, but to different degrees and thereby result in a further desynchronization between metabolically active tissues such as SM, BAT, WAT and liver.

  10. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. The role of artichoke leaf tincture (Cynara scolymus) in the suppression of DNA damage and atherosclerosis in rats fed an atherogenic diet.

    Science.gov (United States)

    Bogavac-Stanojevic, Natasa; Kotur Stevuljevic, Jelena; Cerne, Darko; Zupan, Janja; Marc, Janja; Vujic, Zorica; Crevar-Sakac, Milkica; Sopic, Miron; Munjas, Jelena; Radenkovic, Miroslav; Jelic-Ivanovic, Zorana

    2018-12-01

    Polyphenols and flavonoids in artichoke leaf tincture (ALT) protect cells against oxidative damage. We examined ALT effects on deoxyribonucleic acid (DNA) damage and lipid profiles in rat plasma and gene expression in rat aorta [haemeoxygenase-1 (HO1), haemeoxygenase-2 (HO2), NADPH oxidase 4 (NOX-4), monocyte chemoattractant protein-1 (MCP-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. Eighteen male Wistar albino rats were divided into three groups (n = 6/group): The control group (CG) was fed with standard pellet chow for 11 weeks; the AD group was fed for a similar period of time with pellet chow supplemented with 2% cholesterol, 3% sunflower oil and 1% sodium cholate. The ADA group was fed with pellet chow (for 1 week), the atherogenic diet (see above) for the following 4 weeks and then with ALT (0.1 mL/kg body weight) and atherogenic diet for 6 weeks. According to HPLC analysis, the isolated main compounds in ALT were chlorogenic acid, caffeic acid, isoquercitrin and rutin. Normalized HO-1 [0.11 (0.04-0.24)] and MCP-1 [0.29 (0.21-0.47)] mRNA levels and DNA scores [12.50 (4.50-36.50)] were significantly lower in the ADA group than in the AD group [0.84 (0.35-2.51)], p = 0.021 for HO-1 [0.85 (0.61-3.45)], p = 0.047 for MCP-1 and [176.5 (66.50-221.25)], p = 0.020 for DNA scores. HO-1 mRNA was lower in the ADA group than in the CG group [0.30 (0.21-0.71), p = 0.049]. Supplementation with ALT limited the effects of the atherogenic diet through reduced MCP-1 expression, thereby preventing oxidative damage.

  12. Activation of hindbrain neurons in response to gastrointestinal lipid is attenuated by high fat, high energy diets in mice prone to diet-induced obesity.

    Science.gov (United States)

    Donovan, Michael J; Paulino, Gabriel; Raybould, Helen E

    2009-01-12

    Food intake is controlled by peripheral signals from the gastrointestinal tract and adipocytes, which are integrated within the central nervous system. There is evidence that signals from the GI tract are modulated by long term changes in diet, possibly leading to hyperphagia and increased body weight. We tested the hypothesis that diet-induced obese-prone (DIO-P) and obese-resistant (DIO-R) mice strains differ in the long term adaptive response of the gut-brain pathway to a high fat diet. Immunochemical detection of Fos protein was used as a measure of neuronal activation in the nucleus of the solitary tract (NTS) in response to intragastric administration of lipid in DIO-P (C57Bl6) and DIO-R (129sv) mouse strains maintained on chow or high fat, high energy diets (45% or 60% kcal from fat). Intragastric lipid administration activated neurons in the NTS in both DIO-P and DIO-R mice; the number of activated neurons was significantly greater in DIO-P than in DIO-R mice (Pdiet, for 4 or 8 weeks, compared to chow fed controls (Pdiet (45% or 60%) had no effect on lipid-induced activation of NTS neurons. These results demonstrate that DIO-P and DIO-R mice strains differ in the adaptation of the pathway to long term ingestion of high fat diets, which may contribute to decrease satiation and increased food intake.

  13. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  14. The effects of diet-induced obesity on hepatocyte insulin signaling pathways and induction of non-alcoholic liver damage

    Directory of Open Access Journals (Sweden)

    Sameer Fatani

    2011-03-01

    Full Text Available Sameer Fatani1, Imose Itua2, Paul Clark3, Christopher Wong3, Ebrahim K Naderali21Obesity Biology Unit, School of Clinical Sciences, University of Liverpool, Liverpool, UK; 2Department of Health and Applied Social Sciences, Liverpool Hope University, Hope Park, Liverpool UK; 3Aintree University Hospital NHS Foundation Trust, Longmoor Lane, Liverpool, UKAbstract: The prevalence of diet-induced obesity is increasing amongst adults and children worldwide, predisposing millions of people to an array of health problems that include metabolic syndrome, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. In this study we used experimental animals to investigate the effects of dietary obesity on markers of hepatic insulin signaling as well as structural changes in hepatocytes. Adult male Wistar rats were randomized and assigned to either a control group or a test group. Controls were fed standard laboratory pelleted diet (chow-fed, while the test group had free access to a highly-palatable diet (HPD. After eight weeks, the HPD-fed animals were subdivided into three subgroups and their diets altered as follows: HPD-to-chow, HPD with the addition of fenofibrate given by oral gavage for a further seven weeks, or HPD with vehicle (1% carboxymethylcellulose at 1 mL/kg body weight given by oral gavage for a further seven weeks, respectively. Untreated diet-fed animals had significantly higher body weight, liver weight, and all measured metabolic profiles compared with chow-fed and treated diet-fed groups. Expression of kinases IRβ, IRS-1, AKt, eNOS, Shc and ERK1/2 were unaffected by obesity, while IRS-2 and P I3 kinase levels were significantly reduced in untreated HPD animals. Compared with chow-fed animals, steatosis and steatohepatitis were almost doubled in animals from untreated HPD, while removal of HPD and fenofibrate-treatment reduced steatosis by 40% and 80% respectively. These data suggest that diet-induced obesity affects

  15. Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic KKAy-mice after feeding with a soy bean protein rich diet high in isoflavone content.

    Science.gov (United States)

    Nordentoft, I; Jeppesen, P B; Hong, J; Abudula, R; Hermansen, K

    2008-06-25

    High content isoflavone soy protein (SBP) (Abalon) has been found in animal studies to possess beneficial effects on a number of the characteristic features of the insulin resistance syndrome. The aim of this study was to investigate whether SBP exerts beneficial effects on metabolism in the diabetic KKAy-mouse. Furthermore, we investigated the long-term in vivo effect of SBP on the expression profile in islets of key insulin regulatory genes. Twenty KKAy-mice, aged 5 weeks, were divided into 2 groups and treated for 9 weeks with either (A) standard chow diet (control) or (B) chow + 50% SBP. Twenty normal C57BL-mice fed with standard chow diet served as nondiabetic controls (C). Blood samples were collected and analyzed before and after intervention. Gene expression was determined in islets by quantitative real-time RT-PCR and Affymetrix microarray. It was demonstrated that long-term treatment with SBP improves glucose homeostasis, increases insulin sensitivity, and lowers plasma triglycerides in diabetic KKAy-mice. SBP reduces fasting plasma glucose, insulin, triglycerides, and total cholesterol. Furthermore, SBP markedly changes the gene expression profile of key insulin regulatory genes GLUT2, GLUT3, Ins1, Ins2, IGF1, Beta2/Neurod1, cholecystokinin, and LDLr, and proliferative genes in islets isolated from KKAy-mice. After 9 weeks of treatment with SBP, plasma glucose and insulin homeostasis was normalized compared to start levels. The results indicate that SBP improves glucose and insulin sensitivity and up-regulates the expression of key insulin regulatory genes.

  16. Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Regan Roat

    Full Text Available The reduction of functional β cell mass is a key feature of type 2 diabetes. Here, we studied metabolic functions and islet gene expression profiles of C57BL/6J mice with naturally occurring nicotinamide nucleotide transhydrogenase (NNT deletion mutation, a widely used model of diet-induced obesity and diabetes. On high fat diet (HF, the mice developed obesity and hyperinsulinemia, while blood glucose levels were only mildly elevated indicating a substantial capacity to compensate for insulin resistance. The basal serum insulin levels were elevated in HF mice, but insulin secretion in response to glucose load was significantly blunted. Hyperinsulinemia in HF fed mice was associated with an increase in islet mass and size along with higher BrdU incorporation to β cells. The temporal profiles of glucose-stimulated insulin secretion (GSIS of isolated islets were comparable in HF and normal chow fed mice. Islets isolated from HF fed mice had elevated basal oxygen consumption per islet but failed to increase oxygen consumption further in response to glucose or carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP. To obtain an unbiased assessment of metabolic pathways in islets, we performed microarray analysis comparing gene expression in islets from HF to normal chow-fed mice. A few genes, for example, those genes involved in the protection against oxidative stress (hypoxia upregulated protein 1 and Pgc1α were up-regulated in HF islets. In contrast, several genes in extracellular matrix and other pathways were suppressed in HF islets. These results indicate that islets from C57BL/6J mice with NNT deletion mutation develop structural, metabolic and gene expression features consistent with compensation and decompensation in response to HF diet.

  17. Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Cláudio A. Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water; CG (chow diet and water + green tea extract; HW (high-fat diet and water; HG (high-fat diet and water + green tea extract. The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.. The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  18. Tissue inhibitor of matrix metalloproteinase-1 is required for high-fat diet-induced glucose intolerance and hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Fjære, Even; Andersen, Charlotte; Myrmel, Lene Secher

    2015-01-01

    -induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy...... and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation....... CONCLUSION: Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target....

  19. Effects of a free-choice high-fat high-sugar diet on brain PER2 and BMAL1 protein expression in mice.

    Science.gov (United States)

    Blancas-Velazquez, Aurea; la Fleur, Susanne E; Mendoza, Jorge

    2017-10-01

    The suprachiasmatic nucleus (SCN) times the daily rhythms of behavioral processes including feeding. Beyond the SCN, the hypothalamic arcuate nucleus (ARC), involved in feeding regulation and metabolism, and the epithalamic lateral habenula (LHb), implicated in reward processing, show circadian rhythmic activity. These brain oscillators are functionally coupled to coordinate the daily rhythm of food intake. In rats, a free choice high-fat high-sugar (fcHFHS) diet leads to a rapid increase of calorie intake and body weight gain. Interestingly, under a fcHFHS condition, rats ingest a similar amount of sugar during day time (rest phase) as during night time (active phase), but keep the rhythmic intake of regular chow-food. The out of phase between feeding patterns of regular (chow) and highly rewarding food (sugar) may involve alterations of brain circadian oscillators regulating feeding. Here, we report that the fcHFHS diet is a successful model to induce calorie intake, body weight gain and fat tissue accumulation in mice, extending its effectiveness as previously reported in rats. Moreover, we observed that whereas in the SCN the day-night difference in the PER2 clock protein expression was similar between chow-fed and fcHFHS-fed animals, in the LHb, this day-night difference was altered in fcHFHS-exposed animals compared to control chow mice. These findings confirm previous observations in rats showing disrupted daily patterns of feeding behavior under a fcHFHS diet exposure, and extend our insights on the effects of the diet on circadian gene expression in brain clocks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice.

    Science.gov (United States)

    Passman, Adam M; Strauss, Robyn P; McSpadden, Sarah B; Finch-Edmondson, Megan L; Woo, Ken H; Diepeveen, Luke A; London, Roslyn; Callus, Bernard A; Yeoh, George C

    2015-12-01

    The choline-deficient, ethionine-supplemented (CDE) dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC)-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet). Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100%) for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality. © 2015. Published by The Company of Biologists Ltd.

  1. Diet composition determines course of hyperphagia in developing Zucker obese rats.

    Science.gov (United States)

    Vasselli, J R; Maggio, C A

    1990-12-01

    Previous observations from this laboratory indicate that, during growth, the hyperphagia of the male genetically obese Zucker rat reaches a peak or "breakpoint" and then declines. To examine the effect of dietary macronutrient content on the course of hyperphagia, groups of male lean and obese rats were maintained from 5-28 weeks of age on powdered chow, or isocaloric diets (3.6 kcal/g) containing 72% of calories as corn oil, dextrose, or soy isolate protein (n = 5 lean and obese rats/diet). On chow, hyperphagia was maintained at a level of 7-8 g above lean control intake until a "breakpoint" was reached at 17 weeks, and obese intake declined to lean control level. On the fat diet, hyperphagia was increased to 10 g/day when a breakpoint was reached at 8 weeks. On the dextrose and protein diets, hyperphagia at a level of 3-4 g/day reached breakpoints at weeks 18 and 16, respectively. On all diets, the intakes of obese rats were precisely equal to the intakes of lean control rats by weeks 19-20. These data show that the magnitude and duration of hyperphagia in the developing obese rat are influenced by diet composition. Previously, we have proposed that the obese rat's hyperphagia arises from rapid adipocyte filling. Since high-fat diets facilitate adipocyte enlargement, the early "breakpoint" of hyperphagia seen with the high-fat diet may indicate that this feeding stimulation decreases as the fat cells of the obese rat approach maximal size.

  2. Diet composition alters the satiety effect of cholecystokinin in lean and obese Zucker rats.

    Science.gov (United States)

    Maggio, C A; Haraczkiewicz, E; Vasselli, J R

    1988-01-01

    Although exogenous administration of the peptide cholecystokinin (CCK) has been shown to reduce food intake in a variety of experimental situations, few studies have examined the influence of dietary content upon CCK's effectiveness, particularly in obese states. To evaluate the effectiveness of CCK administration in animals consuming high fat diets, groups of obese and lean Zucker rats were maintained on laboratory chow (CH), a high fat diet isocaloric to chow (IF), or a hypercaloric fat diet (HF). After a 17 hr fast, rats were given intraperitoneal injections of saline or ascending doses of 0.06 to 2.0 micrograms/kg of the synthetic octapeptide of CCK. On all diets, obese rats required higher doses of CCK to significantly reduce feeding and showed smaller intake reductions than lean rats (p less than 0.001). Despite higher baseline caloric intakes (p less than 0.001), rats of both genotypes maintained on HF displayed larger reductions of intake than those fed IF or CH (p less than 0.001). Intake reductions by either genotype maintained on IF or CH were not reliably different. The manner in which the satiety effect of CCK was enhanced in rats consuming the calorically dense, palatable HF diet is unclear but may be related to orosensory and/or postingestive attributes of the diet.

  3. High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating.

    Science.gov (United States)

    Boggiano, M M; Artiga, A I; Pritchett, C E; Chandler-Laney, P C; Smith, M L; Eldridge, A J

    2007-09-01

    To determine the stability of individual differences in non-nutritive 'junk' palatable food (PF) intake in rats; assess the relationship of these differences to binge-eating characteristics and susceptibility to obesity; and evaluate the practicality of using these differences to model binge-eating and obesity. Binge-eating prone (BEP) and resistant (BER) groups were identified. Differential responses to stress, hunger, macronutrient-varied PFs, a diet-induced obesity (DIO) regimen and daily vs intermittent access to a PF+chow diet, were assessed. One hundred and twenty female Sprague-Dawley rats. Reliability of intake patterns within rats; food intake and body weight after various challenges over acute (1, 2, 4 h), 24-h and 2-week periods. Although BEP and BER rats did not differ in amount of chow consumed, BEPs consumed >50% more intermittent PF than BERs (PBEPs suppressed chow but not PF intake when stressed, and ate as much when sated as when hungry. Conversely, BERs were more affected by stress and ate less PF, not chow, when stressed and were normally hyperphagic to energy deficit. BEP overeating generalized to other PFs varying in sucrose, fat and nutrition content. Half the rats in each group proved to be obesity prone after a no-choice high fat diet (DIO diet) but a continuous diet of PF+chow normalized the BEPs high drive for PF. Greater intermittent intake of PF predicts binge-eating independent of susceptibility to weight gain. Daily fat consumption in a nutritious source (DIO-diet; analogous to a fatty meal) promoted overeating and weight gain but limiting fat to daily non-nutritive food (PF+chow; analogous to a snack with a low fat meal), did not. The data offer an animal model of lean and obese binge-eating, and obesity with and without binge-eating that can be used to identify the unique physiology of these groups and henceforth suggest more specifically targeted treatments for binge-eating and obesity.

  4. Acute and perinatal-programming effects of a fat-rich diet on rat muscle mitochondrial function and hepatic lipid accumulation

    DEFF Research Database (Denmark)

    Hellgren, Lars; Jensen, Runa I.; Waterstradt, Michelle S. G.

    2014-01-01

    respiratory control ratio with pyruvate, increased post weaning (p hepatic steatosis......Objective. Maternal high-fat intake during pregnancy may have long-term consequences in the offspring. Since this might relate to the capacity of mitochondrial metabolic adaptation and hepatic lipid metabolism, we investigated how maternal high-fat intake affected mitochondrial function and hepatic...... steatosis in the offspring. Design. Sprague–Dawley rats were fed a high-fat (20% w/w) or a control diet (chow, C) from 10 days before pregnancy and throughout lactation. At weaning the litters were split into two groups; one was continued on the maternal diet and the other was fed low-fat chow. Sample...

  5. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Navas

    2016-08-01

    Full Text Available Objective: In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Methods: Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Results: Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Conclusions: Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD. Keywords: Obesity, N43, Palmitic acid, Linoleic acid, Central nervous system, Western diet, ω6-fatty acids

  6. Effect of tocopherol on atherosclerosis, vascular function, and inflammation in apolipoprotein E knockout mice with subtotal nephrectomy.

    Science.gov (United States)

    Shing, Cecilia M; Fassett, Robert G; Peake, Jonathan M; Coombes, Jeff S

    2014-12-01

    Inflammation and endothelial dysfunction contribute to cardiovascular disease, prevalent in chronic kidney disease (CKD). Antioxidant supplements such as tocopherols may reduce inflammation and atherosclerosis. This study aimed to investigate the effect of tocopherol supplementation on vascular function, aortic plaque formation, and inflammation in apolipoprotein E(-/-) mice with 5/6 nephrectomy as a model of combined cardiovascular and kidney disease. Nephrectomized mice were assigned to a normal chow diet group (normal chow), a group receiving 1000 mg/kg diet of α-tocopherol supplementation or a group receiving 1000 mg/kg diet mixed-tocopherol (60% γ-tocopherol). Following 12 weeks, in vitro aortic endothelial-independent relaxation was enhanced with both α-tocopherol and mixed-tocopherol (P tocopherol enhanced aortic contraction at noradrenaline concentrations of 3 × 10(-7) M to 3 × 10(-5) M (P tocopherol reduced systemic concentrations of IL-6 (P tocopherol also reduced MCP-1 (P tocopherol supplementation when compared to normal chow (P Tocopherol supplementation favorably influenced vascular function and cytokine profile, while it was also effective in reducing atherosclerosis in the apolipoprotein E(-/-) mouse with CKD. © 2014 John Wiley & Sons Ltd.

  7. Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring.

    Science.gov (United States)

    Sellayah, Dyan; Dib, Lea; Anthony, Frederick W; Watkins, Adam J; Fleming, Tom P; Hanson, Mark A; Cagampang, Felino R

    2014-10-01

    Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Female MF-1 mice were fed a normal protein (NP, 18% casein) or a protein-restricted (PR, 9% casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45% kcal fat) or standard chow (C, 7% kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.

  8. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  9. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet.

    Science.gov (United States)

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas; Chapman, Karen E

    2017-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched 'Western' diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae Our results demonstrate that (i) genetic effects on host-microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. © 2017 The authors.

  10. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis

    Directory of Open Access Journals (Sweden)

    Svenja Sydor

    2017-05-01

    Full Text Available Objective: Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD. Acid sphingomyelinase (ASM converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1−/− genotype affects diet-induced NAFLD. Methods: Smpd1−/− mice and wild type controls were fed either a standard or Western diet (WD for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Results: Although Smpd1−/− mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1−/−, we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1−/− mice indicated a reduction in Rictor (mTORC2 activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. Conclusion: These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation. Keywords: Ceramide, NAFLD, Rictor, Western diet

  11. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without...... arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous...... adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic...

  12. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    Science.gov (United States)

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  13. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    Science.gov (United States)

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  14. Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats.

    Science.gov (United States)

    Masarwi, Majdi; Solnik, Hadas Isaac; Phillip, Moshe; Yaron, Sima; Shamir, Raanan; Pasmanic-Chor, Metsada; Gat-Yablonski, Galia

    2018-01-01

    Researchers are gaining an increasing understanding of host-gut microbiota interactions, but studies of the role of gut microbiota in linear growth are scarce. The aim of this study was to investigate the effect of food restriction and refeeding with different diets on gut microbiota composition in fast-growing rats. Young male Sprague-Dawley rats were fed regular rat chow ad libitum (control group) or subjected to 40% food restriction for 36 days followed by continued restriction or ad libitum refeeding for 24 days. Three different diets were used for refeeding: regular vegetarian protein chow or chow in which the sole source of protein was casein or whey. In the control group, the composition of the microbiota remained stable. Food restriction for 60 days led to a significant change in the gut microbiota at the phylum level, with a reduction in the abundance of Firmicutes and an increase in Bacteroidetes and Proteobacteria. Rats refed with the vegetarian protein diet had a different microbiota composition than rats refed the casein- or whey-based diet. Similarities in the bacterial population were found between rats refed vegetarian protein or a whey-based diet and control rats, and between rats refed a casein-based diet and rats on continued restriction. There was a significant strong correlation between the gut microbiota and growth parameters: humerus length, epiphyseal growth plate height, and levels of insulin-like growth factor 1 and leptin. In conclusion, the type of protein in the diet significantly affects the gut microbiota and, thereby, may affect animal's health. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    Science.gov (United States)

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  16. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    OpenAIRE

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission el...

  17. High calcium diet improves the liver oxidative stress and microsteatosis in adult obese rats that were overfed during lactation.

    Science.gov (United States)

    Conceição, E P S; Moura, E G; Soares, P N; Ai, X X; Figueiredo, M S; Oliveira, E; Lisboa, P C

    2016-06-01

    Obesity is related to diabetes, higher oxidative stress and nonalcoholic fatty liver disease, and dietetic therapies, for instance calcium-rich diet, can improve these dysfunctions. Rats raised in small litters (SL) had increased fat depots and insulin resistance at adulthood associated with higher liver oxidative stress and microsteatosis. Thus, we evaluated if dietary calcium can improve these changes. In PN3, litter size was adjusted to 3 pups (SL group) to induce overfeeding, while controls had 10 pups until weaning. At PN120, SL group was randomly divided into: rats fed with standard chow or fed with calcium supplementation (SL-Ca group, 10 g/kg chow) for 60 days. At PN180, dietary calcium normalized food consumption, visceral fat, plasma aspartate aminotransferase (AST) and glycaemia. Concerning oxidative balance, calcium restored both higher hepatic lipid peroxidation and protein carbonylation as well as higher plasma lipid peroxidation. Higher fatty acid synthase (FAS) content, steatosis and lower protein kinase B (Akt) in SL group were normalized by dietary calcium and SL-Ca rats had lower hepatic cholesterol. Thus, calcium supplementation improved the insulin sensitivity, redox balance and steatosis in the liver. Therefore, dietary calcium can be a promising therapy for liver disease in the metabolic syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Eating high-fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-10-01

    Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.

  19. Eating high fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-01-01

    Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718

  20. Soybean diet breast tumor incidence in irradiated rats

    International Nuclear Information System (INIS)

    Troll, W.; Wiesner, R.

    1980-01-01

    The relationship between feeding a diet rich in protease inhibitors and the reduction of mammary cancer induced by x-irradiation in Sprague-Dawley rats was examined. Of a total of 145 irradiated animals, 44% of the 45 rats fed a raw soybean diet containing a high concentration of protease inhibitor developed mammary tumors as compared to 74% of 50 rats fed a casein diet containing no protease inhibitor. Animals fed Purina rat chow which contained low levels of protease inhibitor exhibited a 70% mammary tumor incidence. No spontaneous neoplasms were found in any of the non-irradiated animals on the raw soybean diet whereas about 10% of the animals on the protease-free diet developed tumors. Thus, soybeans which are rich in protease inhibitors reduced the induction of mammary cancer in x-irradiated rats. This suggested that diets rich in protease inhibitors may contribute to reducing cancer incidence in man. (author)

  1. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  2. The Japanese diet from 1975 delays senescence and prolongs life span in SAMP8 mice.

    Science.gov (United States)

    Yamamoto, Kazushi; E, Shuang; Hatakeyama, Yu; Sakamoto, Yu; Honma, Taro; Jibu, Yuri; Kawakami, Yuki; Tsuduki, Tsuyoshi

    2016-01-01

    Life expectancy in Japan is high, suggesting that the Japanese diet, Nihon shoku (Japanese food), has significant health benefits. However, these benefits have been called into question over the past 50 y, during which time the Japanese diet has become increasingly Westernized. The aim of the present study was to focus on senescence delay and to examine the effects of Japanese diets from different years to identify which Japanese diet is most effective in enhancing life expectancy and delaying senescence. Weekly menus from the years 1960, 1975, 1990, and 2005 were reproduced based on the National Health and Nutrition Survey in Japan and prepared as powdered foods. The senescence-accelerated mouse prone 8 (SAMP8) mice were fed standard laboratory chow supplemented with a 30% mix of Japanese meals from various years ad libitum throughout their lifetime. Additionally, the control group was given standard laboratory chow only, to examine the development of mice reared under standard conditions. In the group that ingested the traditional 1975 Japanese diet, life span was prolonged, senescence was delayed, and learning and memory capacities were maintained compared with the group fed the 2005 Japanese diet. The life span of the group that ingested the 1990 Japanese diet showed a tendency to be longer than SAMP8 mice fed the 2005 diet. The results of the present study suggested that the traditional Japanese diet is more effective in enhancing life expectancy and delaying senescence than the current Japanese diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Addition of arginine and leucine to low or normal protein diets: performance, carcass characteristics and intramuscular fat of finishing pigs

    Energy Technology Data Exchange (ETDEWEB)

    Tous, N.; Lizardo, R.; Vilà, B.; Gispert, M.; Font-i-Furnols, M.; Esteve-Garcia, E.

    2016-07-01

    The effect of dietary crude protein (CP) reduction, supplementation with arginine or leucine on intramuscular fat (IMF) content was evaluated in (Landrace × Duroc) × Pietrain pigs. One-hundred and eight barrows (67 ± 4 kg) were assigned to six diets (n=6 pens of 3 pigs each): four normal CP diets containing 16% CP from 60 to 90 kg and 13% CP from 90 to 115 kg live weight (normal protein; normal protein high Arg, normal protein high Leu or normal protein high Arg and Leu) and two low CP diets containing 14% CP from 60 to 90 kg and 11.8% CP from 90 to 115 kg live weight (with or without supplementation of both amino acids). The high Leu and Arg diets were supplemented to obtain ratios of standard ileal digestible Leu/Lys and Arg/Lys of 4 and 2, respectively. While feed to gain ratio tended to increase (p<0.05), final weight (p<0.01), average daily feed intake (ADFI) (p<0.05) and average daily gain (ADG) (p<0.01) were reduced in animals fed low-protein diets supplemented with Arg and Leu compared to the ones fed low-protein diet unsupplemented. Marbling and IMF content in loin were reduced when Arg was supplemented (p<0.05) in normal protein diets. Supplementing these diets with Arg also reduced belly weight (p<0.01) and increased lean meat percentage (p<0.05). Contrary to the initial hypothesis, reduction of CP or dietary supplementation with Leu had no effect on IMF content and supplementation with Arg reduced it.

  4. Addition of arginine and leucine to low or normal protein diets: performance, carcass characteristics and intramuscular fat of finishing pigs

    International Nuclear Information System (INIS)

    Tous, N.; Lizardo, R.; Vilà, B.; Gispert, M.; Font-i-Furnols, M.; Esteve-Garcia, E.

    2016-01-01

    The effect of dietary crude protein (CP) reduction, supplementation with arginine or leucine on intramuscular fat (IMF) content was evaluated in (Landrace × Duroc) × Pietrain pigs. One-hundred and eight barrows (67 ± 4 kg) were assigned to six diets (n=6 pens of 3 pigs each): four normal CP diets containing 16% CP from 60 to 90 kg and 13% CP from 90 to 115 kg live weight (normal protein; normal protein high Arg, normal protein high Leu or normal protein high Arg and Leu) and two low CP diets containing 14% CP from 60 to 90 kg and 11.8% CP from 90 to 115 kg live weight (with or without supplementation of both amino acids). The high Leu and Arg diets were supplemented to obtain ratios of standard ileal digestible Leu/Lys and Arg/Lys of 4 and 2, respectively. While feed to gain ratio tended to increase (p<0.05), final weight (p<0.01), average daily feed intake (ADFI) (p<0.05) and average daily gain (ADG) (p<0.01) were reduced in animals fed low-protein diets supplemented with Arg and Leu compared to the ones fed low-protein diet unsupplemented. Marbling and IMF content in loin were reduced when Arg was supplemented (p<0.05) in normal protein diets. Supplementing these diets with Arg also reduced belly weight (p<0.01) and increased lean meat percentage (p<0.05). Contrary to the initial hypothesis, reduction of CP or dietary supplementation with Leu had no effect on IMF content and supplementation with Arg reduced it.

  5. The effect of depurinized milk draught diet on rat serum uric acid, lipid status and haematological parameters.

    Science.gov (United States)

    Kocic, G; Pavlovic, R; Nikolic, G; Stojanovic, D; Jevtovic, T; Sokolovic, D; Cencic, A; Stojanovic, S; Jelic, M; Zivanovic, S

    2012-08-01

    Hyperuricaemia and gout are closely related, but hyperuricaemia is an independent risk factor for endothelial damage, autoinflammation and haemodynamic abnormalities. Milk, generally known as a 'purine-free diet', is an essential protein source for patients suffering from hyperuricaemia and gout. As milk still contains different purine ribonucleotides, the new product, depurinized milk, almost free of purine nucleotides and uric acid, was produced. The potential effect of depurinized milk diet on serum uric acid (SUA) level, lipid parameters and blood haematological parameters was explored in rats after 72 h and 15 days, in relation to standard laboratory chow or the untreated milk diet. The beneficial effect on SUA was achieved when depurinized milk draught was given instead of standard chow for 72 h [28.39 ± 4.76 μm; p draughts enhanced haemoglobin concentration (p draught may meet the demand of healthy dairy product for population under hyperuricaemic risk. © 2011 Blackwell Verlag GmbH.

  6. Regulation of hypothalamic NPY by diet and smoking.

    Science.gov (United States)

    Chen, Hui; Hansen, Michelle J; Jones, Jessica E; Vlahos, Ross; Bozinovski, Steve; Anderson, Gary P; Morris, Margaret J

    2007-02-01

    Appetite is regulated by a number of hypothalamic neuropeptides including neuropeptide Y (NPY), a powerful feeding stimulator that responds to feeding status, and drugs such as nicotine and cannabis. There is debate regarding the extent of the influence of obesity on hypothalamic NPY. We measured hypothalamic NPY in male Sprague-Dawley rats after short or long term exposure to cafeteria-style high fat diet (32% energy as fat) or laboratory chow (12% fat). Caloric intake and body weight were increased in the high fat diet group, and brown fat and white fat masses were significantly increased after 2 weeks. Hypothalamic NPY concentration was only significantly decreased after long term consumption of the high fat diet. Nicotine decreases food intake and body weight, with conflicting effects on hypothalamic NPY reported. Body weight, plasma hormones and brain NPY were investigated in male Balb/c mice exposed to cigarette smoke for 4 days, 4 and 12 weeks. Food intake was significantly decreased by smoke exposure (2.32+/-0.03g/24h versus 2.71+/-0.04g/24h in control mice (non-smoke exposed) at 12 weeks). Relative to control mice, smoke exposure led to greater weight loss, while pair-feeding the equivalent amount of chow caused an intermediate weight loss. Chronic smoke exposure, but not pair-feeding, was associated with decreased hypothalamic NPY concentration, suggesting an inhibitory effect of cigarette smoking on brain NPY levels. Thus, consumption of a high fat diet and smoke exposure reprogram hypothalamic NPY. Reduced NPY may contribute to the anorexic effect of smoke exposure.

  7. Hypercaloric diet prevents sexual impairment induced by maternal food restriction.

    Science.gov (United States)

    Bernardi, M M; Macrini, D J; Teodorov, E; Bonamin, L V; Dalboni, L C; Coelho, C P; Chaves-Kirsten, G P; Florio, J C; Queiroz-Hazarbassanov, N; Bondan, E F; Kirsten, T B

    2017-05-01

    Prenatal undernutrition impairs copulatory behavior and increases the tendency to become obese/overweight, which also reduces sexual behavior. Re-feeding rats prenatally undernourished with a normocaloric diet can restore their physiological conditions and copulatory behavior. Thus, the present study investigated whether a hypercaloric diet that is administered in rats during the juvenile period prevents sexual impairments that are caused by maternal food restriction and the tendency to become overweight/obese. Female rats were prenatally fed a 40% restricted diet from gestational day 2 to 18. The pups received a hypercaloric diet from postnatal day (PND) 23 to PND65 (food restricted hypercaloric [FRH] group) or laboratory chow (food restricted control [FRC] group). Pups from non-food-restricted dams received laboratory chow during the entire experiment (non-food-restricted [NFR] group). During the juvenile period and adulthood, body weight gain was evaluated weekly. The day of balanopreputial separation, sexual behavior, sexual organ weight, hypodermal adiposity, striatal dopamine and serotonin, serum testosterone, and tumor necrosis factor α (TNF-α) were evaluated. The FRH group exhibited an increase in body weight on PND58 and PND65. The FRC group exhibited an increase in the latency to the first mount and intromission and an increase in serum TNF-α levels but a reduction of dopaminergic activity. The hypercaloric diet reversed all of these effects but increased adiposity. We concluded that the hypercaloric diet administered during the juvenile period attenuated reproductive impairments that were induced by maternal food restriction through increases in the energy expenditure but not the tendency to become overweight/obese. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  9. Diet Change After Sleeve Gastrectomy Is More Effective for Weight Loss Than Surgery Only.

    Science.gov (United States)

    Rossell, Joana; González, Marta; Mestres, Núria; Pardina, Eva; Ricart-Jané, David; Peinado-Onsurbe, Julia; Baena-Fustegueras, Juan Antonio

    2017-10-01

    Bariatric surgery with or without diet change has become one of the most effective treatments for obesity. The objective of this study was to observe the effects of vertical sleeve gastrectomy (VSG) and diet change in Sprague-Dawley rats on both body and tissue weights. Eighteen rats were fed with a standard chow diet (SCD) (C group), and 36 rats were fed with a high-fat diet (HFD) (diet-induced obesity (DIO) group). After 8 weeks, the animals underwent VSG, sham surgery or no surgery (NS). After surgery, a third of the rats fed with the HFD changed to the SCD (DIO + C group). Body weight, food and energy intake were recorded daily during the experiment (12 weeks). Food efficiency (%) (FE) was determined from weekly weight gain and weekly kilocalorie consumed measurements. The DIO group had higher and significant weight gain than the C group at the time of surgery (p weight loss (WL) was observed in the DIO + C-VSG group, during the 4 weeks after surgery. Adipose tissues in the DIO + C-VSG group were drastically reduced and had a weight similar to those in the C-VSG group. VSG and the diet change combination led to a greater WL, which was maintained during the 4 weeks post-surgery, leading to a normalization of body weight. VSG and diet change also affected most of the tissues, not only adipose, showing a global change in whole body composition.

  10. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Bojanowska, E

    2014-08-01

    High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food.

  11. Effects of high-fat diets with different carbohydrate-to-protein ratios on energy homeostasis in rats with impaired brain melanocortin receptor activity

    NARCIS (Netherlands)

    Morens, C.; Keijzer, M.; de Vries, K.; Scheurink, A; van Dijk, G

    Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high

  12. Consumption of a High-Fat Diet Induces Central Insulin Resistance Independent of Adiposity

    Science.gov (United States)

    Clegg, Deborah J.; Gotoh, Koro; Kemp, Christopher; Wortman, Matthew D.; Benoit, Stephen C.; Brown, Lynda M.; D’Alessio, David; Tso, Patrick; Seeley, Randy J.; Woods, Stephen C.

    2011-01-01

    Plasma insulin enters the CNS where it interacts with insulin receptors in areas that are related to energy homeostasis and elicits a decrease of food intake and body weight. Here, we demonstrate that consumption of a high-fat (HF) diet impairs the central actions of insulin. Male Long-Evans rats were given chronic (70-day) or acute (3-day) ad libitum access to HF, low-fat (LF), or chow diets. Insulin administered into the 3rd-cerebral ventricle (i3vt) decreased food intake and body weight of LF and chow rats but had no effect on HF rats in either the chronic or the acute experiment. Rats chronically pair-fed the HF diet to match the caloric intake of LF rats, and with body weights and adiposity levels comparable to those of LF rats, were also unresponsive to i3vt insulin when returned to ad lib food whereas rats pair-fed the LF diet had reduced food intake and body weight when administered i3vt insulin. Insulin’s inability to reduce food intake in the presence of the high-fat diet was associated with a reduced ability of insulin to activate its signaling cascade, as measured by pAKT. Finally, i3vt administration of insulin increased hypothalamic expression of POMC mRNA in the LF-but not the HF-fed rats. We conclude that consumption of a HF diet leads to central insulin resistance following short exposure to the diet, and as demonstrated by reductions in insulin signaling and insulin-induced hypothalamic expression of POMC mRNA. PMID:21241723

  13. Addition of arginine and leucine to low or normal protein diets: performance, carcass characteristics and intramuscular fat of finishing pigs

    Directory of Open Access Journals (Sweden)

    Núria Tous

    2016-12-01

    Full Text Available The effect of dietary crude protein (CP reduction, supplementation with arginine or leucine on intramuscular fat (IMF content was evaluated in (Landrace × Duroc × Pietrain pigs. One-hundred and eight barrows (67 ± 4 kg were assigned to six diets (n=6 pens of 3 pigs each: four normal CP diets containing 16% CP from 60 to 90 kg and 13% CP from 90 to 115 kg live weight (normal protein; normal protein high Arg, normal protein high Leu or normal protein high Arg and Leu and two low CP diets containing 14% CP from 60 to 90 kg and 11.8% CP from 90 to 115 kg live weight (with or without supplementation of both amino acids. The high Leu and Arg diets were supplemented to obtain ratios of standard ileal digestible Leu/Lys and Arg/Lys of 4 and 2, respectively. While feed to gain ratio tended to increase (p<0.05, final weight (p<0.01, average daily feed intake (ADFI (p<0.05 and average daily gain (ADG (p<0.01 were reduced in animals fed low-protein diets supplemented with Arg and Leu compared to the ones fed low-protein diet unsupplemented. Marbling and IMF content in loin were reduced when Arg was supplemented (p<0.05 in normal protein diets. Supplementing these diets with Arg also reduced belly weight (p<0.01 and increased lean meat percentage (p<0.05. Contrary to the initial hypothesis, reduction of CP or dietary supplementation with Leu had no effect on IMF content and supplementation with Arg reduced it.

  14. Effects of obesogenic diet and estradiol on dorsal raphe gene expression in old female macaques.

    Directory of Open Access Journals (Sweden)

    Cynthia L Bethea

    Full Text Available The beneficial effects of bioidentical ovarian steroid hormone therapy (HT during the perimenopause are gaining recognition. However, the positive effects of estrogen (E plus or minus progesterone (P administration to ovariectomized (Ovx lab animals were recognized in multiple systems for years before clinical trials could adequately duplicate the results. Moreover, very large numbers of women are often needed to find statistically significant results in clinical trials of HT; and there are still opposing results being published, especially in neural and cardiovascular systems. One of the obvious differences between human and animal studies is diet. Laboratory animals are fed a diet that is low in fat and refined sugar, but high in micronutrients. In the US, a large portion of the population eats what is known as a "western style diet" or WSD that provides calories from 36% fat, 44% carbohydrates (includes 18.5% sugars and 18% protein. Unfortunately, obesity and diabetes have reached epidemic proportions and the percentage of obese women in clinical trials may be overlooked. We questioned whether WSD and obesity could decrease the positive neural effects of estradiol (E in the serotonin system of old macaques that were surgically menopausal. Old ovo-hysterectomized female monkeys were fed WSD for 2.5 years, and treated with placebo, Immediate E (ImE or Delayed E (DE. Compared to old Ovx macaques on primate chow and treated with placebo or E, the WSD-fed monkeys exhibited greater individual variance and blunted responses to E-treatment in the expression of genes related to serotonin neurotransmission, CRH components in the midbrain, synapse assembly, DNA repair, protein folding, ubiquitylation, transport and neurodegeneration. For many of the genes examined, transcript abundance was lower in WSD-fed than chow-fed monkeys. In summary, an obesogenic diet for 2.5 years in old surgically menopausal macaques blunted or increased variability in E

  15. Diet matters: Glucocorticoid-related neuroadaptations associated with calorie intake in female rhesus monkeys.

    Science.gov (United States)

    Godfrey, Jodi R; Diaz, Maylen Perez; Pincus, Melanie; Kovacs-Balint, Zsofia; Feczko, Eric; Earl, Eric; Miranda-Dominguez, Oscar; Fair, Damien; Sanchez, Mar M; Wilson, Mark E; Michopoulos, Vasiliki

    2018-05-01

    Exposure to psychosocial stressors increases consumption of palatable, calorically dense diets (CDD) and the risk for obesity, especially in females. While consumption of an obesogenic diet and chronic stress have both been shown to decrease dopamine 2 receptor (D2R) binding and alter functional connectivity (FC) within the prefrontal cortex (PFC) and the nucleus accumbens (NAcc), it remains uncertain how social experience and dietary environment interact to affect reward pathways critical for the regulation of motivated behavior. Using positron emission tomography (PET) and resting state functional connectivity magnetic resonance neuroimaging (rs-fMRI), in female rhesus monkeys maintained in a low calorie chow (n = 18) or a dietary choice condition (chow and a CDD; n = 16) for 12 months, the current study tested the overarching hypothesis that the adverse social experience resulting from subordinate social status would interact with consumption of an obesogenic diet to increase caloric intake that would be predicted by greater cortisol, lower prefrontal D2R binding potential (D2R-BP) and lower PFC-NAcc FC. Results showed that the consequences of adverse social experience imposed by chronic social subordination vary significantly depending on the dietary environment and are associated with alterations in prefrontal D2R-BP and FC in NAcc-PFC sub-regions that predict differences in caloric intake, body weight gain, and fat accumulation. Higher levels of cortisol in the chow-only condition were associated with mild inappetence, as well as increased orbitofrontal (OFC) D2R-BP and greater FC between the NAcc and the dorsolateral PFC (dlPFC) and ventromedial PFC (vmPFC). However, increased cortisol release in females in the dietary choice condition was associated with reduced prefrontal D2R-BP, and opposite FC between the NAcc and the vmPFC and dlPFC observed in the chow-only females. Importantly, the degree of these glucocorticoid-related neuroadaptations

  16. A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a Western-style diet.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Kreider, Jaclynn M; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; DaSilva, Marissa; Zernicke, Ronald F; Goldstein, Steven A; Varani, James

    2010-04-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT.

  17. The distorting effect of varying diets on fecal glucocorticoid measurements as indicators of stress

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Teilmann, A. Charlotte; Abelson, Klas S. P.

    2015-01-01

    The physiological stress response is frequently gauged in animals, non-invasively, through measuring glucocorticoids in excreta. A concern with this method is, however, the unknown effect of variations in diets on the measurements. With an energy dense diet, leading to reduced defecation, will low...... concentrations of glucocorticoids be artificially inflated? Can this effect be overcome by measuring the total output of glucocorticoids in excreta? In a controlled laboratory setting we explored the effect in mice. When standard mouse chow – high in dietary fiber – was replaced with a 17% more energy-dense diet...

  18. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2017-09-01

    Full Text Available Background Food selection and ingestion both in humans and rodents, often is a critical factor in determining excess energy intake and its related disorders. Methods Two different concepts of high-fat diets were tested for their obesogenic effects in rats; in both cases, lipids constituted about 40% of their energy intake. The main difference with controls fed standard lab chow, was, precisely, the lipid content. Cafeteria diets (K were self-selected diets devised to be desirable to the rats, mainly because of its diverse mix of tastes, particularly salty and sweet. This diet was compared with another, more classical high-fat (HF diet, devised not to be as tasty as K, and prepared by supplementing standard chow pellets with fat. We also analysed the influence of sex on the effects of the diets. Results K rats grew faster because of a high lipid, sugar and protein intake, especially the males, while females showed lower weight but higher proportion of body lipid. In contrast, the weight of HF groups were not different from controls. Individual nutrient’s intake were analysed, and we found that K rats ingested large amounts of both disaccharides and salt, with scant differences of other nutrients’ proportion between the three groups. The results suggest that the key differential factor of the diet eliciting excess energy intake was the massive presence of sweet and salty tasting food. Conclusions The significant presence of sugar and salt appears as a powerful inducer of excess food intake, more effective than a simple (albeit large increase in the diet’s lipid content. These effects appeared already after a relatively short treatment. The differential effects of sex agree with their different hedonic and obesogenic response to diet.

  19. Ultraviolet-Visible and Fluorescence Spectroscopy Techniques Are Important Diagnostic Tools during the Progression of Atherosclerosis: Diet Zinc Supplementation Retarded or Delayed Atherosclerosis

    Science.gov (United States)

    Abdelhalim, Mohamed Anwar K.; Moussa, Sherif A. Abdelmottaleb; AL-Mohy, Yanallah Hussain

    2013-01-01

    Background. In this study, we examined whether UV-visible and fluorescence spectroscopy techniques detect the progression of atherosclerosis in serum of rabbits fed on high-cholesterol diet (HCD) and HCD supplemented with zinc (HCD + Zn) compared with the control. Methods. The control rabbits group was fed on 100 g/day of normal diet. The HCD group was fed on Purina Certified Rabbit Chow supplemented with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for the same period. The HCD + Zn group was fed on normal Purina Certified Rabbit Chow plus 1.0% cholesterol and 1.0% olive oil supplemented with 470 ppm Zn for the same feeding period. UV-visible and fluorescence spectroscopy and biochemistry in Rabbit's blood serum and blood hematology were measured in Rabbit's blood. Results. We found that the fluorescent peak of HCD shifted toward UV-visible wavelength compared with the control using fluorescent excitation of serum at 192 nm. In addition, they showed that supplementation of zinc (350 ppm) restored the fluorescent peak closely to the control. By using UV-visible spectroscopy approach, we found that the peak absorbance of HCD (about 280 nm) was higher than that of control and that zinc supplementation seemed to decrease the absorbance. Conclusions. This study demonstrates that ultraviolet-visible and fluorescence spectroscopy techniques can be applied as noninvasive techniques on a sample blood serum for diagnosing or detecting the progression of atherosclerosis. The Zn supplementation to rabbits fed on HCD delays or retards the progression of atherosclerosis. Inducing anemia in rabbits fed on HCD delays the progression of atherosclerosis. PMID:24350281

  20. Nicotine and ethanol co-use in Long-Evans rats: Stimulatory effects of perinatal exposure to a fat-rich diet

    Science.gov (United States)

    Karatayev, Olga; Lukatskaya, Olga; Moon, Sang-Ho; Guo, Wei-Ran; Chen, Dan; Algava, Diane; Abedi, Susan; Leibowitz, Sarah F.

    2015-01-01

    Clinical studies demonstrate frequent co-existence of nicotine and alcohol abuse and suggest that this may result, in part, from the ready access to and intake of fat-rich diets. Whereas animal studies show that high-fat diet intake in adults can enhance the consumption of either nicotine or ethanol and that maternal consumption of a fat-rich diet during pregnancy increases operant responding for nicotine in offspring, little is known about the impact of dietary fat on the co-abuse of these two drugs. The goal of this study was to test in Long-Evans rats the effects of perinatal exposure to fat on the co-use of nicotine and ethanol, using a novel paradigm that involves simultaneous intravenous (IV) self-administration of these two drugs. Fat- vs. chow-exposed offspring were characterized and compared, first in terms of their nicotine self-administration behavior, then in terms of their nicotine/ethanol self-administration behavior, and lastly in terms of their self-administration of ethanol in the absence of nicotine. The results demonstrate that maternal consumption of fat compared to low-fat chow during gestation and lactation significantly stimulates nicotine self-administration during fixed-ratio testing. It also increases nicotine/ethanol self-administration during fixed-ratio and dose-response testing, with BEC elevated to 120 mg/dL, and causes an increase in breakpoint during progressive ratio testing. Of particular note is the finding that rats perinatally exposed to fat self-administer significantly more of the nicotine/ethanol mixture as compared to nicotine alone, an effect not evident in the chow-control rats. After removal of nicotine from the nicotine/ethanol mixture, this difference between the fat- and chow-exposed rats was lost, with both groups failing to acquire the self-administration of ethanol alone. Together, these findings suggest that perinatal exposure to a fat-rich diet, in addition to stimulating self-administration of nicotine, causes

  1. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats.

    Science.gov (United States)

    Beilharz, Jessica E; Maniam, Jayanthi; Morris, Margaret J

    2014-03-01

    High energy diets have been shown to impair cognition however, the rapidity of these effects, and the dietary component/s responsible are currently unclear. We conducted two experiments in rats to examine the effects of short-term exposure to a diet rich in sugar and fat or rich in sugar on object (perirhinal-dependent) and place (hippocampal-dependent) recognition memory, and the role of inflammatory mediators in these responses. In Experiment 1, rats fed a cafeteria style diet containing chow supplemented with lard, cakes, biscuits, and a 10% sucrose solution performed worse on the place, but not the object recognition task, than chow fed control rats when tested after 5, 11, and 20 days. In Experiment 2, rats fed the cafeteria style diet either with or without sucrose and rats fed chow supplemented with sucrose also performed worse on the place, but not the object recognition task when tested after 5, 11, and 20 days. Rats fed the cafeteria diets consumed five times more energy than control rats and exhibited increased plasma leptin, insulin and triglyceride concentrations; these were not affected in the sucrose only rats. Rats exposed to sucrose exhibited both increased hippocampal inflammation (TNF-α and IL-1β mRNA) and oxidative stress, as indicated by an upregulation of NRF1 mRNA compared to control rats. In contrast, these markers were not significantly elevated in rats that received the cafeteria diet without added sucrose. Hippocampal BDNF and neuritin mRNA were similar across all groups. These results show that relatively short exposures to diets rich in both fat and sugar or rich in sugar, impair hippocampal-dependent place recognition memory prior to the emergence of weight differences, and suggest a role for oxidative stress and neuroinflammation in this impairment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  2. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  3. Effects of fetal exposure to high-fat diet or maternal hyperglycemia on L-arginine and nitric oxide metabolism in lung.

    Science.gov (United States)

    Grasemann, C; Herrmann, R; Starschinova, J; Gertsen, M; Palmert, M R; Grasemann, H

    2017-02-20

    Alterations in the L-arginine/nitric oxide (NO) metabolism contribute to diseases such as obesity, metabolic syndrome and airway dysfunction. The impact of early-life exposures on the L-arginine/NO metabolism in lung later in life is not well understood. The objective of this work was to study the effects of intrauterine exposures to maternal hyperglycemia and high-fat diet (HFD) on pulmonary L-arginine/NO metabolism in mice. We used two murine models of intrauterine exposures to maternal (a) hyperglycemia and (b) HFD to study the effects of these exposures on the L-arginine/NO metabolism in lung in normal chow-fed offspring. Both intrauterine exposures resulted in NO deficiency in the lung of the offspring at 6 weeks of age. However, each of the exposures leading to different metabolic phenotypes caused a distinct alteration in the L-arginine/NO metabolism. Maternal hyperglycemia leading to impaired glucose tolerance but no obesity in the offspring resulted in increased levels of asymmetric dimethylarginine and impairment of NO synthases. Although maternal HFD led to obesity without impairment in glucose tolerance in the offspring, it resulted in increased expression and activity of arginase in the lung of the normal chow-fed offspring. These data suggest that maternal hyperglycemia and HFD can cause alterations in the pulmonary L-arginine/NO metabolism in offspring.

  4. The VMAT-2 inhibitor tetrabenazine affects effort-related decision making in a progressive ratio/chow feeding choice task: reversal with antidepressant drugs.

    Directory of Open Access Journals (Sweden)

    Patrick A Randall

    Full Text Available Behavioral activation is a fundamental feature of motivation, and organisms frequently make effort-related decisions based upon evaluations of reinforcement value and response costs. Furthermore, people with major depression and other disorders often show anergia, psychomotor retardation, fatigue, and alterations in effort-related decision making. Tasks measuring effort-based decision making can be used as animal models of the motivational symptoms of depression, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2 inhibitor tetrabenazine. Tetrabenazine induces depressive symptoms in humans, and also preferentially depletes dopamine (DA. Rats were assessed using a concurrent progressive ratio (PROG/chow feeding task, in which they can either lever press on a PROG schedule for preferred high-carbohydrate food, or approach and consume a less-preferred lab chow that is freely available in the chamber. Previous work has shown that the DA antagonist haloperidol reduced PROG work output on this task, but did not reduce chow intake, effects that differed substantially from those of reinforcer devaluation or appetite suppressant drugs. The present work demonstrated that tetrabenazine produced an effort-related shift in responding on the PROG/chow procedure, reducing lever presses, highest ratio achieved and time spent responding, but not reducing chow intake. Similar effects were produced by administration of the subtype selective DA antagonists ecopipam (D1 and eticlopride (D2, but not by the cannabinoid CB1 receptor neutral antagonist and putative appetite suppressant AM 4413, which suppressed both lever pressing and chow intake. The adenosine A2A antagonist MSX-3, the antidepressant and catecholamine uptake inhibitor bupropion, and the MAO-B inhibitor deprenyl, all reversed the impairments induced by tetrabenazine. This work demonstrates the potential utility of the PROG/chow procedure as a

  5. Response of C57Bl/6 mice to a carbohydrate-free diet

    Directory of Open Access Journals (Sweden)

    Borghjid Saihan

    2012-07-01

    Full Text Available Abstract High fat feeding in rodents generally leads to obesity and insulin resistance whereas in humans this is only seen if dietary carbohydrate is also high, the result of the anabolic effect of poor regulation of glucose and insulin. A previous study of C57Bl/6 mice (Kennedy AR, et al.: Am J Physiol Endocrinol Metab (2007 262 E1724-1739 appeared to show the kind of beneficial effects of calorie restriction that is seen in humans but that diet was unusually low in protein (5%. In the current study, we tested a zero-carbohydrate diet that had a higher protein content (20%. Mice on the zero-carbohydrate diet, despite similar caloric intake, consistently gained more weight than animals consuming standard chow, attaining a dramatic difference by week 16 (46.1 ± 1.38 g vs. 30.4 ± 1.00 g for the chow group. Consistent with the obese phenotype, experimental mice had fatty livers and hearts as well as large fat deposits in the abdomino-pelvic cavity, and showed impaired glucose clearance after intraperitoneal injection. In sum, the response of mice to a carbohydrate-free diet was greater weight gain and metabolic disruptions in distinction to the response in humans where low carbohydrate diets cause greater weight loss than isocaloric controls. The results suggest that rodent models of obesity may be most valuable in the understanding of how metabolic mechanisms can work in ways different from the effect in humans.

  6. Conditional deletion of Hdac3 in osteoprogenitor cells attenuates diet-induced systemic metabolic dysfunction

    Science.gov (United States)

    McGee-Lawrence, Meghan E.; White, Thomas A.; LeBrasseur, Nathan K.; Westendorf, Jennifer J.

    2015-01-01

    Obesity is a major health epidemic in the United States and a leading cause of preventable diseases including type 2 diabetes. A growing body of evidence indicates that the skeleton influences whole body metabolism and suggests a new avenue for developing novel therapeutic agents, but the underlying mechanisms are not well understood. Here, it is demonstrated that conditional deletion of an epigenetic regulator, Hdac3, in osteoblast progenitor cells abrogates high fat diet-induced insulin resistance and hepatic steatosis. These Hdac3-deficient mice have reduced bone formation and lower circulating levels of total and undercarboxylated osteocalcin, coupled with decreased bone resorption activity. They also maintain lower body fat and fasting glucose levels on normal and high fat chow diets. The mechanisms by which Hdac3 controls systemic energy homeostasis from within osteoblasts have not yet been fully realized, but the current study suggests that it does not involve elevated levels of circulating osteocalcin. Thus, Hdac3 is a new player in the emerging paradigm that the skeleton influences systemic energy metabolism. PMID:25666992

  7. Influence of body weight and type of chow on the sensitivity of rats to the behavioral effects of the direct-acting dopamine-receptor agonist quinpirole.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2011-10-01

    Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high-fat (34.3%) chow. In rats gaining weight with restricted or free access to high-fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032-0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high-fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within 1 week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high-fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high-fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high-fat chow also developed insulin resistance. These results show that amount and type of chow alter sensitivity to a direct-acting dopamine-receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems.

  8. Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Radhika V Seimon

    Full Text Available Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled.Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change ÷ [(total energy intake of mice on CD or ID-(total average energy intake of controls]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding.Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05. There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01. Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups.Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative

  9. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice.

    Science.gov (United States)

    Cheon, Eric C; Strouch, Matthew J; Barron, Morgan R; Ding, Yongzeng; Melstrom, Laleh G; Krantz, Seth B; Mullapudi, Bhargava; Adrian, Kevin; Rao, Sambasiva; Adrian, Thomas E; Bentrem, David J; Grippo, Paul J

    2011-06-15

    Diets containing omega-6 (ω-6) fat have been associated with increased tumor development in carcinogen-induced pancreatic cancer models. However, the effects of ω-6 fatty acids and background strain on the development of genetically-induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω-6 fat on the development of pancreatic neoplasia in elastase (EL)-Kras(G12D) (EL-Kras) mice in two different backgrounds. EL-Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL-Kras FVB6 F1 (or EL-Kras F1) and EL-Kras B6 congenic mice. Age-matched EL-Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL-Kras FVB and EL-Kras F1 mice were fed a 23% corn oil diet and compared to age-matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL-Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL-Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL-Kras F1 mice were increased in mice fed a high ω-6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL-Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL-Kras F1 mice. The phenotype in EL-Kras F1 and FVB mice is promoted by a diet rich in ω-6 fatty acid. Copyright © 2010 UICC.

  10. Lyplal1 is dispensable for normal fat deposition in mice

    Directory of Open Access Journals (Sweden)

    Rachel A. Watson

    2017-12-01

    Full Text Available Genome-wide association studies (GWAS have detected association between variants in or near the Lysophospholipase-like 1 (LYPLAL1 locus and metabolic traits, including central obesity, fatty liver and waist-to-hip ratio. LYPLAL1 is also known to be upregulated in the adipose tissue of obese patients. However, the physiological role of LYPLAL1 is not understood. To investigate the function of Lyplal1 in vivo we investigated the phenotype of the Lyplal1tm1a(KOMPWtsi homozygous mouse. Body composition was unaltered in Lyplal1 knockout mice as assessed by dual-energy X-ray absorptiometry (DEXA scanning, both on normal chow and on a high-fat diet. Adipose tissue distribution between visceral and subcutaneous fat depots was unaltered, with no change in adipocyte cell size. The response to both insulin and glucose dosing was normal in Lyplal1tm1a(KOMPWtsi homozygous mice, with normal fasting blood glucose concentrations. RNAseq analysis of liver, muscle and adipose tissue confirmed that Lyplal1 expression was ablated with minimal additional changes in gene expression. These results suggest that Lyplal1 is dispensable for normal mouse metabolic physiology and that despite having been maintained through evolution Lyplal1 is not an essential gene, suggesting possible functional redundancy. Further studies will be required to clarify its physiological role.

  11. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  12. Dipeptidyl peptidase 4 inhibitor attenuates obesity-induced myocardial fibrosis by inhibiting transforming growth factor-βl and Smad2/3 pathways in high-fat diet-induced obesity rat model.

    Science.gov (United States)

    Hong, Seul-Ki; Choo, Eun-Ho; Ihm, Sang-Hyun; Chang, Kiyuk; Seung, Ki-Bae

    2017-11-01

    Obesity-induced myocardial fibrosis may lead to diastolic dysfunction and ultimately heart failure. Activation of the transforming growth factor (TGF)-βl and its downstream Smad2/3 pathways may play a pivotal role in the pathogenesis of obesity-induced myocardial fibrosis, and the antidiabetic dipeptidyl peptidase 4 inhibitors (DPP4i) might affect these pathways. We investigated whether DPP4i reduces myocardial fibrosis by inhibiting the TGF-β1 and Smad2/3 pathways in the myocardium of a diet-induced obesity (DIO) rat model. Eight-week-old male spontaneously hypertensive rats (SHRs) were fed either a normal fat diet (chow) or a high-fat diet (HFD) and then the HFD-fed SHRs were randomized to either the DPP4i (MK-0626) or control (distilled water) groups for 12weeks. At 20weeks old, all the rats underwent hemodynamic and metabolic studies and Doppler echocardiography. Compared with the normal fat diet (chow)-fed SHRs, the HFD-fed SHRs developed a more intense degree of hyperglycemia and dyslipidemia and showed a constellation of left ventricular (LV) diastolic dysfunction, and exacerbated myocardial fibrosis, as well as activation of the TGF-β1 and Smad2/3 pathways. DPP4i significantly improved the metabolic and hemodynamic parameters. The echocardiogram showed that DPP4i improved the LV diastolic dysfunction (early to late ventricular filling velocity [E/A] ratio, 1.49±0.21 vs. 1.77±0.09, p<0.05). Furthermore, DPP4i significantly reduced myocardial fibrosis and collagen production by the myocardium and suppressed TGF-β1 and phosphorylation of Smad2/3 in the heart. In addition, DPP4i decreased TGF-β1-induced collagen production and TGF-β1-mediated phosphorylation and nuclear translocation of Smad2/3 in rat cardiac fibroblasts. In conclusion, DPP4 inhibition attenuated myocardial fibrosis and improved LV diastolic dysfunction in a DIO rat model by modulating the TGF-β1 and Smad2/3 pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Differential vascular dysfunction in response to diets of differing macronutrient composition: a phenomenonological study

    Directory of Open Access Journals (Sweden)

    Cassidy Roslyn

    2007-06-01

    Full Text Available Abstract Background Vascular dysfunction can develop from consumption of an energy-rich diet, even prior to the onset of obesity. However, the roles played by different dietary components remain uncertain. While attempting to develop models of obesity in a separate study, we observed that two high-energy diets of differing macronutrient compositions affected vascular function differently in overweight rats. Methods Male Wistar rats (n = 6/group were fed diets providing varying percentages of energy from fat and carbohydrate (CHO. For 10 weeks, they were fed either chow, as control diet (10% of energy from fat; 63% from CHO, chow supplemented with chocolate biscuit (30% fat; 56% CHO or a high-fat diet (45% fat; 35% CHO. Blood concentrations of biochemical markers of obesity were measured, and epididymal fat pads weighed as a measure of adiposity. Mesenteric arteries were dissected and their contractile and relaxant properties analysed myographically. Data were tested by analysis of variance (ANOVA. Results Weight gain and plasma concentrations of glucose, insulin and leptin were similar in all groups. However, biscuit-fed animals showed increased food intake (+27%; p p p p p Conclusion Vascular dysfunction resulting from consumption of a high-fat or combined relatively high-fat/high-CHO diet occurs through different physiological processes, which may be attributable to their differing macronutrient compositions. Combining potentially atherogenic macronutrients induces more extensive vascular impairment than that of high-fat alone, and may be attributable to the more marked dyslipidaemia observed with such a diet. Thus, these findings help clarify the role of dietary components in vascular impairment, which has implications for clinical approaches to preventing cardiovascular disease.

  14. Influence of body weight and type of chow on the sensitivity of rats to the behavioral effects of the direct-acting dopamine receptor agonist quinpirole

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2013-01-01

    Rationale Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. Objectives This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Methods Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high fat (34.3%) chow. Results In rats gaining weight with restricted or free access to high fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032–0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within one week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high fat chow also developed insulin resistance. Conclusions These results show that amount and type of chow alter sensitivity to a direct-acting dopamine receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems. PMID:21544521

  15. A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study.

    Science.gov (United States)

    Calderón, Naima; Betancourt, Luis; Hernández, Luis; Rada, Pedro

    2017-03-06

    The ketogenic diet (KD) is acknowledged as an unconventional option in the treatment of epilepsy. Several lines of investigation point to a possible role of glutamate and gamma-aminobutyric acid (GABA) as main contributors in this protective effect. Other biomolecules could also be involved in the beneficial consequence of the KD, for example, the diamine agmatine has been suggested to block imidazole and glutamate NMDA receptor and serves as an endogenous anticonvulsant in different animal models of epilepsy. In the present report, we have used microdialysis coupled to capillary electrophoresis to monitor microdialysate levels of GABA, glutamate and agmatine in the hippocampus of rats submitted to a KD for 15days compared to rats on a normal rat chow diet. A significant increase in GABA and agmatine levels while no change in glutamate levels was observed. These results support the notion that the KD modifies different transmitters favoring inhibitory over excitatory neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    Science.gov (United States)

    Litwak, Sara A.; Loh, Kim; Stanley, William J.; Pappas, Evan G.; Wali, Jibran A.; Selck, Claudia; Strasser, Andreas; Thomas, Helen E.; Gurzov, Esteban N.

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14–17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  17. Energy balance and hypothalamic effects of a high-protein/low-carbohydrate diet

    OpenAIRE

    Kinzig, Kimberly P.; Hargrave, Sara L.; Hyun, Jayson; Moran, Timothy H.

    2007-01-01

    Diets high in fat or protein and extremely low in carbohydrate are frequently reported to result in weight loss in humans. We previously reported that rats maintained on a low carbohydrate-high fat diet (LC-HF) consumed similar kcals/day as chow (CH)-fed rats and did not differ in body weight after 7 weeks. LC-HF rats had a 45% decrease in POMC expression in the ARC, decreased plasma insulin, and increased plasma leptin and ghrelin. In the present study we assessed the effects of a low carboh...

  18. Effects of α-Galactooligosaccharides from Chickpeas on High-Fat-Diet-Induced Metabolic Syndrome in Mice.

    Science.gov (United States)

    Dai, Zhuqing; Lyu, Wanyong; Xie, Minhao; Yuan, Qingxia; Ye, Hong; Hu, Bing; Zhou, Li; Zeng, Xiaoxiong

    2017-04-19

    The gut microbiota has the ability to modulate host energy homeostasis, which may regulate metabolic disorders. Functional oligosaccharide may positively regulate the intestinal microbiota. Therefore, effects of α-galactooligosaccharides (α-GOS) from chickpea on high-fat-diet (HFD)-induced metabolic syndrome and gut bacterial dysbiosis were investigated. After 6 weeks of intervention, HFD led to significant increases in levels of blood glucose, total cholesterol, triglyceride, glycated serum protein, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol of mice compared to normal-chow-fed mice. Meanwhile, all of the α-GOS-treated groups significantly decreased above parameters compared to the HFD group. HFD could significantly decrease the content of all bacteria, especially Bacteroides (9.82 ± 0.09 versus 10.3 ± 0.10; p bacterial ecosystem in a positive way.

  19. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension.

    Science.gov (United States)

    Durgan, David J; Ganesh, Bhanu P; Cope, Julia L; Ajami, Nadim J; Phillips, Sharon C; Petrosino, Joseph F; Hollister, Emily B; Bryan, Robert M

    2016-02-01

    Individuals suffering from obstructive sleep apnea (OSA) are at increased risk for systemic hypertension. The importance of a healthy gut microbiota, and detriment of a dysbiotic microbiota, on host physiology is becoming increasingly evident. We tested the hypothesis that gut dysbiosis contributes to hypertension observed with OSA. OSA was modeled in rats by inflating a tracheal balloon during the sleep cycle (10-s inflations, 60 per hour). On normal chow diet, OSA had no effect on blood pressure; however, in rats fed a high-fat diet, blood pressure increased 24 and 29 mm Hg after 7 and 14 days of OSA, respectively (Phypertensive OSA rats on high-fat diet into OSA recipient rats on normal chow diet (shown to be normotensive) resulted in hypertension similar to that of the donor (increased 14 and 32 mm Hg after 7 and 14 days of OSA, respectively; Phypertension, and suggest that manipulation of the microbiota may be a viable treatment for OSA-induced, and possibly other forms of, hypertension. © 2015 American Heart Association, Inc.

  20. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  1. A High Fat Diet During Pregnancy and Lactation Induces Cardiac and Renal Abnormalities in GLUT4 +/- Male Mice

    Directory of Open Access Journals (Sweden)

    Michael Kruse

    2017-07-01

    Full Text Available Background/Aims: Altered nutrients during the in utero (IU and/or lactation (L period predispose offspring to cardio-renal diseases in adulthood. This study investigates the effect of a high fat diet (HFD fed to female mice during IU/L on gene expression patterns associated with heart and kidney failure and hypertension in male offspring. Methods: Female wild type (WT mice were fed either a HFD or control chow (C prior to mating with males with a genetic heterozygous deletion of GLUT4 (G4+/-, a model of peripheral insulin resistance and hypertension and throughout IU/L. After weaning male offspring were placed on a standard rodent chow until 24 weeks of age. Results: All offspring exposed to a maternal HFD showed increased heart and kidney weight and reduced cardiac insulin responsiveness. G4+/- offspring on a HFD displayed early hypertension associated with increased renal gene expression of renin and the AT1- receptors compared to G4+/- on a C diet. This group showed decreased cardiac expression of key genes involved in fatty acid oxidation compared to WT on a C diet. Conclusions: These results indicate an interaction between a HFD diet and genotype during early life development that can enhance susceptibility to cardio-renal diseases later in life.

  2. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet

    Science.gov (United States)

    Glastras, Sarah J.; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T.; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A.; Saad, Sonia

    2017-01-01

    Aims/Hypothesis Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Methods Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. Results HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Conclusion Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity. PMID:28225809

  3. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet.

    Directory of Open Access Journals (Sweden)

    Sarah J Glastras

    Full Text Available Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease.Female C57BL/6 mice were fed high-fat diet (HFD for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p. or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32.HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity.Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity.

  4. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.

    Science.gov (United States)

    Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D

    2017-06-01

    Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.

  5. Diet choice patterns in rodents depend on novelty of the diet, exercise, species, and sex.

    Science.gov (United States)

    Yang, Tiffany; Xu, Wei-Jie; York, Haley; Liang, Nu-Chu

    2017-07-01

    Prolonged consumption of a palatable, high fat (HF) diet paired with a lack of physical activity can exacerbate the development of obesity. Exercise can facilitate the maintenance of a healthy body weight, possibly though mediating changes in diet preference. Using a two-diet choice and wheel running (WR) paradigm, our laboratory previously demonstrated that WR induces HF diet avoidance with different persistency in male and female rats when HF diet and WR are introduced simultaneously. The aims of this study were to examine whether this behavior is species dependent and to what extent the novelty of the diet affects WR induced HF diet avoidance. Experiment 1 utilized male C57BL6 mice in a two-diet choice and WR paradigm. Results show that all mice preferred HF to chow diet regardless of exercise and the order in which exercise and HF diet were presented. Experiment 2A (diet novelty) utilized Sprague-Dawley rats that were first habituated to a 45% HF diet prior to the simultaneous introduction of WR and a novel high-carbohydrate, low-fat (DK) diet. All rats avoided the novel high-carbohydrate diet and neither male nor female wheel running rats exhibited reduction in HF diet intake or HF diet avoidance. After all rats were returned to a sedentary condition, female rats consumed significantly more of the DK diet than the male rats. In Experiment 2B (diet familiarity), rats remained sedentary and were re-habituated to the DK diet until intake stabilized. Subsequently, a 60% HF diet was introduced for all rats and for running rats, access to the running wheels were provided simultaneously. Consistent with our previous findings, HF diet intake and preference was significantly reduced in all wheel running rats. These data suggest that exercise induced HF diet avoidance is affected by species and the novelty of the diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of Dietary Cocoa Tea (Camellia ptilophylla Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Rong Yang

    2013-01-01

    Full Text Available Recent studies suggested that green tea has the potential to protect against diet-induced obesity. The presence of caffeine within green tea has caused limitations. Cocoa tea (Camellia ptilophylla is a naturally decaffeinated tea plant. To determine whether cocoa tea supplementation results in an improvement in high-fat diet-induced obesity, hyperlipidemia and hepatic steatosis, and whether such effects would be comparable to those of green tea extract, we studied six groups of C57BL/6 mice that were fed with (1 normal chow (N; (2 high-fat diet (21% butterfat + 0.15% cholesterol, wt/wt (HF; (3 a high-fat diet supplemented with 2% green tea extract (HFLG; (4 a high-fat diet supplemented with 4% green tea extract (HFHG; (5 a high-fat diet supplemented with 2% cocoa tea extract (HFLC; and (6 a high-fat diet supplemented with 4% cocoa tea extract (HFHC. From the results, 2% and 4% dietary cocoa tea supplementation caused a dose-dependent decrease in (a body weight, (b fat pad mass, (c liver weight, (d total liver lipid, (e liver triglyceride and cholesterol, and (f plasma lipids (triglyceride and cholesterol. These data indicate that dietary cocoa tea, being naturally decaffeinated, has a beneficial effect on high-fat diet-induced obesity, hepatomegaly, hepatic steatosis, and elevated plasma lipid levels in mice, which are comparable to green tea. The present findings have provided the proof of concept that dietary cocoa tea might be of therapeutic value and could therefore provide a safer and cost effective option for patients with diet-induced metabolic syndrome.

  8. Neonatal overfeeding attenuates acute central pro-inflammatory effects of short-term high fat diet

    Directory of Open Access Journals (Sweden)

    Guohui eCai

    2015-01-01

    Full Text Available Neonatal obesity predisposes individuals to obesity throughout life. In rats, neonatal overfeeding also leads to early accelerated weight gain that persists into adulthood. The phenotype is associated with dysfunction in a number of systems including paraventricular nucleus of the hypothalamus (PVN responses to psychological and immune stressors. However, in many cases weight gain in neonatally overfed rats stabilizes in early adulthood so the animal does not become more obese as it ages. Here we examined if neonatal overfeeding by suckling rats in small litters predisposes them to exacerbated metabolic and central inflammatory disturbances if they are also given a high fat diet in later life. In adulthood we gave the rats normal chow, 3 days, or 3 weeks high fat diet (45% kcal from fat and measured peripheral indices of metabolic disturbance. We also investigated hypothalamic microglial changes, as an index of central inflammation, as well as PVN responses to lipopolysaccharide (LPS. Surprisingly, neonatal overfeeding did not predispose rats to the metabolic effects of a high fat diet. Weight changes and glucose metabolism were unaffected by the early life experience. However, short term (3 day high fat diet was associated with more microglia in the hypothalamus and a markedly exacerbated PVN response to LPS in control rats; effects not seen in the neonatally overfed. Our findings indicate neonatally overfed animals are not more susceptible to the adverse metabolic effects of a short-term high fat diet but may be less able to respond to the central effects.

  9. Induction of IL-17A precedes development of airway hyperresponsiveness during diet induced obesity and correlates with complement factor D

    Directory of Open Access Journals (Sweden)

    Joel A. Mathews, Phd

    2014-09-01

    Full Text Available Obesity is a risk factor for the development of asthma. Obese mice exhibit innate airway hyperresponsiveness (AHR, a characteristic feature of asthma, and IL-17A is required for development of AHR in obese mice. The purpose of this study was to examine the temporal association between the onset of AHR and changes in IL-17A during the development of obesity by high fat feeding in mice. At weaning, C57BL/6J mice were placed either on mouse chow or on a high fat diet (HFD and examined 9, 12, 15, 18, or 24 weeks later. Airway responsiveness to aerosolized methacholine (assessed via the forced oscillation technique was greater in mice fed HFD versus chow for 24 weeks, but not at earlier time points. Bronchoalveolar lavage and serum IL-17A were not affected by either the type or duration of diet, but increased pulmonary IL17a mRNA abundance was observed in HFD versus chow fed mice after both 18 and 24 weeks. Flow cytometry also confirmed an increase in IL-17A+ gd T cells and IL-17A+ CD4+ T (Th17 cells in lungs of HFD versus chow fed mice. Pulmonary expression of Cfd (complement factor D, adipsin, a gene whose expression can be reduced by IL-17A, decreased after both 18 and 24 weeks in HFD versus chow fed mice. Furthermore, pulmonary Cfd mRNA abundance correlated with elevations in pulmonary Il17a mRNA expression and with AHR. Serum levels of TNFa, MIP-1a and MIP-1b, classical markers of systemic inflammation of obesity, were significantly greater in HFD than chow fed mice after 24 weeks, but not earlier. In conclusion, our data indicate that pulmonary rather than systemic IL-17A is important for obesity-related AHR and suggest that changes in pulmonary Cfd expression contribute to these effects of IL-17A. Further, the observation that increases in Il17a preceded the development of AHR by several weeks suggests that IL-17A interacts with other factors to promote AHR. The observation that the onset of the systemic inflammation of obesity coincided

  10. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring.

    Science.gov (United States)

    Watkins, Adam J; Wilkins, Adrian; Cunningham, Colm; Perry, V Hugh; Seet, Meei J; Osmond, Clive; Eckert, Judith J; Torrens, Christopher; Cagampang, Felino R A; Cleal, Jane; Gray, William P; Hanson, Mark A; Fleming, Tom P

    2008-04-15

    Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P size or nephron number was altered by diet treatment (P < 0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome.

  11. Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes

    Directory of Open Access Journals (Sweden)

    Hualin Wang

    2018-04-01

    Full Text Available The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON, a high-fat diet (HFD group or a HFD supplemented with fish oil (FO group for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes’ expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.

  12. [Behavior of circadian rhythm of ACTH and cortisol in 16 normal subjects after a balanced normocaloric diet and after a high protein diet (Cosinor mean method)].

    Science.gov (United States)

    Sellini, M; Giovannini, C; Manzo, G; Barletta, C; Borboni, P

    1983-01-31

    In 16 normal subjects the circadian rhythm of ACTH has been studied during normal calories diet and after a 15 days period of high protein content diet (2 g/Kg body weight). The statistical study, according Cosinor method, has shown a significant increase of the mesor and of the amplitude, but has not shown any change of the ACTH and Cortisol rhythm, after hyperproteic diet. Data advise the increase of the tonic and fasic secretion of both hormones and shown the mantained acrophase. The action of the protein on the ACTH and Cortisol secretion does not seem related to mechanism like stress, neither to the probable mediation of intestinal like-ACTH messengers. On the contrary it seems related to a direct stimulus on the diencephalo-pituitary axis; it is possible that some amino-acids (tryptophan, arginine) act as a mediator, even if data concern just the effect of the over mentioned amino-acid in large doses.

  13. Effect of Maternal Intake of Organically or Conventionally Produced Feed on Oral Tolerance Development in Offspring Rats

    DEFF Research Database (Denmark)

    Melballe Jensen, Maja; Halekoh, Ulrich; Stokes, Christopher

    2013-01-01

    (organic or conventional) or a chow. Second-generation rats were exposed to ovalbumin (OVA) via their mother’s milk and subsequently challenged with OVA after weaning onto the chow diet. In the chow diet group feeding the dams OVA resulted in suppression of the pups’ anti-OVA antibody response to the OVA...... challenge (total OVA-specific IgG was 197 for the OVA-treated chow diet group and 823 for the control chow diet group (arbitrary ELISA units)). In contrast, OVA exposure of the dams from the plant-based dietary groups did not result in a similar suppression. Cultivation system had no effect...... on the immunological biomarkers, except for a higher spleen prostaglandin E2 (PGE2) concentration in pups originating from dams fed the conventional plant-based diet (223 ng/L) than from those fed the organic plant-based diet (189 ng/L)....

  14. Long-term excess fat and/or fructose ingestion causes changes in small artery K+ transporter expression and function with effects on blood pressure

    DEFF Research Database (Denmark)

    Olsen, A. K.; Salomonsson, M.; Sørensen, C. M.

    + channels, Na/K-ATPase, and voltage-gated Ca2+ channels are crucial determinants of resistance artery tone. Only scarce information is available on the role of K+ transporters in pathophysiological mechanisms induced by long-term feeding of laboratory rats with either high-fat, high-fructose or high-fat/high-fructose...... diet. HYPOTHESIS: A 28-week diet consisting of high-fat or high-fructose, or both, will lead to changes in K+ transporter expression and function, which will be linked with changes in blood pressure, arterial smooth muscle function, endothelial function and passive structural/mechanical properties....... METHODS: Male Sprague Dawley rats (4 weeks) were randomized into 4 diet groups receiving a diet with normal chow (CTR, N=19), high-fat chow (60% saturated fat, FAT, N=18), high-fructose (10% in drinking water; FRUC, N=15), or a combination of fat/fructose (FAT/FRUC, N=15) for 28 weeks. Systolic blood...

  15. Effect of Nine Diets on Xenobiotic Transporters in Livers of Mice

    Science.gov (United States)

    Guo, Ying; Cui, Julia Yue; Lu, Hong; Klaassen, Curtis D.

    2017-01-01

    1. Lifestyle diseases are often caused by inappropriate nutrition habits and attempted to be treated by polypharmacotherapy. Therefore, it is important to determine whether differences in diet affect the disposition of drugs. Xenobiotic transporters in the liver are essential in drug disposition. 2. In the current study, mice were fed one of 9 diets for 3 weeks. The mRNAs of 23 known xenobiotic transporters in livers of mice were quantified by microarray analysis, and validated by branched DNA assay. The mRNAs of 15 transporters were altered by at least one diet. Diet-restriction (10) and the atherogenic diet (10) altered the expression of the most number of transporters, followed by western diet (8), high-fat diet (4), lab chow (2), high-fructose diet (2) and EFA-deficient diet (2), whereas the low n-3 FA diet had no effect on these transporters. Seven of the 11 xenobiotic transporters in the Slc family, three of 4 in the Abcb family, two of 4 in the Abcc family and all 3 in the Abcg family were changed significantly. 3. This first comprehensive study indicates that xenobiotic transporters are altered by diet, and suggests there are likely diet-drug interactions due to changes in the expression of drug transporters. PMID:25566878

  16. Influence of maternal hypercholesterolemia and phytosterol intervention during gestation and lactation on dyslipidemia and hepatic lipid metabolism in offspring of Syrian golden hamsters.

    Science.gov (United States)

    Liu, Jie; Iqbal, Aadil; Raslawsky, Amy; Browne, Richard W; Patel, Mulchand S; Rideout, Todd C

    2016-10-01

    Although there is a normal physiological rise in maternal lipids during pregnancy, excessive maternal hyperlipidemia during pregnancy increases cardiovascular disease risk for both the mother and offspring. There are limited safe lipid-lowering treatment options for use during pregnancy, therefore, we evaluated the influence of maternal phytosterol (PS) supplementation on lipid and lipoprotein metabolism in mothers and progeny. Female Syrian golden hamsters were randomly assigned to three diets throughout prepregnancy, gestation, and lactation (n = 6/group): (i) Chow (Chow), (ii) chow with 0.5% cholesterol (CH), and (iii) chow with 0.5% CH and 2% PS (CH/PS). Compared with newly weaned pups from Chow dams, pups from dams fed the CH-enriched diet demonstrated increases (p < 0.05) in total-C, LDL-C, HDL-C, and total LDL and VLDL particle number. Pups from CH-fed mothers also exhibited higher hepatic CH concentration and differential mRNA expression pattern of CH regulatory genes. Pups from PS-supplemented dams demonstrated reductions (p < 0.05) in serum total-C, non-HDL-C, and LDL-C but also increased triglycerides compared with pups from CH-fed dams. Maternal PS supplementation reduced (p < 0.05) hepatic CH and increased the abundance of HMG-CoAr and LDLr protein in newly weaned pups compared with the CH group. Results suggest that maternal PS supplementation is largely effective in normalizing CH in pups born to mothers with hypercholesterolemia, however, the cause and long-term influence of increased triglyceride is not known. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Van Leuven Fred

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results Starting at three months of age, two groups of female transgenic mice carrying the "London" APP mutation (APP/V717I were fed either, a standard diet (SD composed of high carbohydrate/low fat chow, or a ketogenic diet (KD composed of very low carbohydrate/high saturated fat chow for 43 days. Animals fed the KD exhibited greatly elevated serum ketone body levels, as measured by β-hydroxybutyrate (3.85 ± 2.6 mM, compared to SD fed animals (0.29 ± 0.06 mM. In addition, animals fed the KD lost body weight (SD 22.2 ± 0.6 g vs. KD 17.5 ± 1.4 g, p = 0.0067. In contrast to earlier studies, the brief KD feeding regime significantly reduced total brain Aβ levels by approximately 25%. Despite changes in ketone levels, body weight, and Aβ levels, the KD diet did not alter behavioral measures. Conclusion Previous studies have suggested that diets rich in cholesterol and saturated fats increased the deposition of Aβ and the risk of developing AD. Here we demonstrate that a diet rich in saturated fats and low in carbohydrates can actually reduce levels of Aβ. Therefore, dietary strategies aimed at reducing Aβ levels should take into account interactions of dietary components and the metabolic outcomes, in particular, levels of carbohydrates, total calories, and presence of ketone bodies should be considered.

  18. Inter-relationships among Diet, Obesity and Hippocampal-dependent Cognitive Function

    OpenAIRE

    Davidson, Terry L.; Hargrave, Sara L.; Swithers, Susan E.; Sample, Camille H.; Fu, Xue; Kinzig, Kimberly P.; Zheng, Wei

    2013-01-01

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD...

  19. Fatty acid and lipidomic data in normal and tumor colon tissues of rats fed diets with and without fish oil

    Directory of Open Access Journals (Sweden)

    Zora Djuric

    2017-08-01

    Full Text Available Data is provided to show the detailed fatty acid and lipidomic composition of normal and tumor rat colon tissues. Rats were fed either a Western fat diet or a fish oil diet, and half the rats from each diet group were treated with chemical carcinogens that induce colon cancer (azoxymethane and dextran sodium sulfate. The data show total fatty acid profiles of sera and of all the colon tissues, namely normal tissue from control rats and both normal and tumor tissues from carcinogen-treated rats, as obtained by gas chromatography with mass spectral detection. Data from lipidomic analyses of a representative subset of the colon tissue samples is also shown in heat maps generated from hierarchical cluster analysis. These data display the utility lipidomic analyses to enhance the interpretation of dietary feeding studies aimed at cancer prevention and support the findings published in the companion paper (Effects of fish oil supplementation on prostaglandins in normal and tumor colon tissue: modulation by the lipogenic phenotype of colon tumors, Djuric et al., 2017 [1].

  20. Hypercaloric diet modulates effects of chronic stress: a behavioral and biometric study on rats.

    Science.gov (United States)

    Oliveira, Carla de; Oliveira, Cleverson Moraes de; de Macedo, Isabel Cristina; Quevedo, Alexandre S; Filho, Paulo Ricardo Marques; Silva, Fernanda Ribeiro da; Vercelino, Rafael; de Souza, Izabel C Custodio; Caumo, Wolnei; Torres, Iraci L S

    2015-01-01

    Obesity is a chronic disease that has been associated with chronic stress and hypercaloric diet (HD) consumption. Increased ingestion of food containing sugar and fat ingredients (comfort food) is proposed to "compensate" chronic stress effects. However, this eating habit may increase body fat depositions leading to obesity. This study evaluated behavioral/physiological parameters seeking to establish whether there is an association between the effects of HD intake and stress, and to test the hypothesis that the development of anxious behavior and obesity during chronic stress periods depends on the type of diet. Sixty-day-old male Wistar rats (n = 100) were divided into four groups: standard chow, hypercaloric diet, chronic stress/standard chow and chronic stress/hypercaloric diet. Chronic stress was induced by restraint stress exposure for 1 h/day, for 80 d. At the end of this period, rat behavior was evaluated using open-field and plus-maze tests. The results showed that HD alone increased weight gain and adipose deposition in subcutaneous and mesenteric areas. However, stress reduced weight gain and adipose tissue in these areas. HD also increased naso-anal length and concurrent stress prevented this. Behavioral data indicated that stress increased anxiety-like behaviors and comfort food reduced these anxiogenic effects; locomotor activity increased in rats fed with HD. Furthermore, HD decreased corticosterone levels and stress increased adrenal weight. The data indicate that when rats are given HD and experience chronic stress this association reduces the pro-obesogenic effects of HD, and decreases adrenocortical activity.

  1. 9 CFR 319.311 - Chow mein vegetables with meat, and chop suey vegetables with meat.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Chow mein vegetables with meat, and chop suey vegetables with meat. 319.311 Section 319.311 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY...

  2. A maternal "junk food" diet in pregnancy and lactation promotes nonalcoholic Fatty liver disease in rat offspring.

    Science.gov (United States)

    Bayol, Stéphanie A; Simbi, Bigboy H; Fowkes, Robert C; Stickland, Neil C

    2010-04-01

    With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring.

  3. Microbial reprogramming inhibits Western diet-associated obesity.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available A recent epidemiological study showed that eating 'fast food' items such as potato chips increased likelihood of obesity, whereas eating yogurt prevented age-associated weight gain in humans. It was demonstrated previously in animal models of obesity that the immune system plays a critical role in this process. Here we examined human subjects and mouse models consuming Westernized 'fast food' diet, and found CD4(+ T helper (Th17-biased immunity and changes in microbial communities and abdominal fat with obesity after eating the Western chow. In striking contrast, eating probiotic yogurt together with Western chow inhibited age-associated weight gain. We went on to test whether a bacteria found in yogurt may serve to lessen fat pathology by using purified Lactobacillus reuteri ATCC 6475 in drinking water. Surprisingly, we discovered that oral L. reuteri therapy alone was sufficient to change the pro-inflammatory immune cell profile and prevent abdominal fat pathology and age-associated weight gain in mice regardless of their baseline diet. These beneficial microbe effects were transferable into naïve recipient animals by purified CD4(+ T cells alone. Specifically, bacterial effects depended upon active immune tolerance by induction of Foxp3(+ regulatory T cells (Treg and interleukin (Il-10, without significantly changing the gut microbial ecology or reducing ad libitum caloric intake. Our finding that microbial targeting restored CD4(+ T cell balance and yielded significantly leaner animals regardless of their dietary 'fast food' indiscretions suggests population-based approaches for weight management and enhancing public health in industrialized societies.

  4. Offspring from mothers fed a 'junk food' diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females.

    Science.gov (United States)

    Bayol, S A; Simbi, B H; Bertrand, J A; Stickland, N C

    2008-07-01

    We have shown previously that a maternal junk food diet during pregnancy and lactation plays a role in predisposing offspring to obesity. Here we show that rat offspring born to mothers fed the same junk food diet rich in fat, sugar and salt develop exacerbated adiposity accompanied by raised circulating glucose, insulin, triglyceride and/or cholesterol by the end of adolescence (10 weeks postpartum) compared with offspring also given free access to junk food from weaning but whose mothers were exclusively fed a balanced chow diet in pregnancy and lactation. Results also showed that offspring from mothers fed the junk food diet in pregnancy and lactation, and which were then switched to a balanced chow diet from weaning, exhibited increased perirenal fat pad mass relative to body weight and adipocyte hypertrophy compared with offspring which were never exposed to the junk food diet. This study shows that the increased adiposity was more enhanced in female than male offspring and gene expression analyses showed raised insulin-like growth factor-1 (IGF-1), insulin receptor substrate (IRS)-1, vascular endothelial growth factor (VEGF)-A, peroxisome proliferator-activated receptor-gamma (PPARgamma), leptin, adiponectin, adipsin, lipoprotein lipase (LPL), Glut 1, Glut 3, but not Glut 4 mRNA expression in females fed the junk food diet throughout the study compared with females never given access to junk food. Changes in gene expression were not as marked in male offspring with only IRS-1, VEGF-A, Glut 4 and LPL being up-regulated in those fed the junk food diet throughout the study compared with males never given access to junk food. This study therefore shows that a maternal junk food diet promotes adiposity in offspring and the earlier onset of hyperglycemia, hyperinsulinemia and/or hyperlipidemia. Male and female offspring also display a different metabolic, cellular and molecular response to junk-food-diet-induced adiposity.

  5. β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Darimont Christian

    2004-08-01

    Full Text Available Abstract Background Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114 could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. Methods Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. Results In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG and diacylglycerol (DAG accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. Conclusions These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation.

  6. Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) non-commutative motives

    Science.gov (United States)

    Bernardara, M.; Tabuada, G.

    2016-06-01

    Conjectures of Beilinson-Bloch type predict that the low-degree rational Chow groups of intersections of quadrics are one-dimensional. This conjecture was proved by Otwinowska in [20]. By making use of homological projective duality and the recent theory of (Jacobians of) non-commutative motives, we give an alternative proof of this conjecture in the case of a complete intersection of either two quadrics or three odd-dimensional quadrics. Moreover, we prove that in these cases the unique non-trivial algebraic Jacobian is the middle one. As an application, we make use of Vial's work [26], [27] to describe the rational Chow motives of these complete intersections and show that smooth fibrations into such complete intersections over bases S of small dimension satisfy Murre's conjecture (when \\dim (S)≤ 1), Grothendieck's standard conjecture of Lefschetz type (when \\dim (S)≤ 2), and Hodge's conjecture (when \\dim(S)≤ 3).

  7. The biochemical changes in hippocampal formation occurring in normal and seizure experiencing rats as a result of a ketogenic diet.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Janeczko, Krzysztof; Kutorasinska, Justyna; Matusiak, Katarzyna; Figiel, Henryk; Dumas, Paul; Sandt, Christophe; Setkowicz, Zuzanna

    2015-04-07

    In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared. Four groups of rats were analyzed, namely seizure experiencing animals and normal rats previously fed with ketogenic (KSE and K groups respectively) or standard laboratory diet (NSE and N groups respectively). Synchrotron radiation based Fourier-transform infrared microspectroscopy was used for the analysis of distributions of the main organic components (proteins, lipids, compounds containing phosphate group(s)) and their structural modifications as well as anomalies in creatine accumulation with micrometer spatial resolution. Infrared spectra recorded in the molecular layers of the dentate gyrus (DG) areas of normal rats on a ketogenic diet (K) presented increased intensity of the 1740 cm(-1) absorption band. This originates from the stretching vibrations of carbonyl groups and probably reflects increased accumulation of ketone bodies occurring in animals on a high fat diet compared to those fed with a standard laboratory diet (N). The comparison of K and N groups showed, moreover, elevated ratios of absorbance at 1634 and 1658 cm(-1) for DG internal layers and increased accumulation of creatine deposits in sector 3 of the Ammon's horn (CA3) hippocampal area of ketogenic diet fed rats. In multiform and internal layers of CA3, seizure experiencing animals on ketogenic diet (KSE) presented a lower ratio of absorbance at 1634 and 1658 cm(-1) compared to rats on standard laboratory diet (NSE). Moreover, in some of the examined cellular layers, the increased intensity of the 2924 cm(-1) lipid band as well as the massifs of 2800-3000 cm(-1) and 1360-1480 cm(-1), was found in KSE compared to NSE animals. The intensity of the 1740 cm(-1) band was diminished in DG molecular layers of KSE rats. The ketogenic diet did not modify the seizure induced anomalies in the unsaturation level of lipids or the number of creatine deposits.

  8. One-year high fat diet affects muscle-but not brain mitochondria

    DEFF Research Database (Denmark)

    Joergensen, Tenna; Grunnet, Niels; Quistorff, Bjørn

    2015-01-01

    It is well known that few weeks of high fat (HF) diet may induce metabolic disturbances and mitochondrial dysfunction in skeletalmuscle. However, little is known about the effects of long-term HF exposure and effects on brain mitochondria are unknown. Wistarrats were fed either chow (13E% fat......) or HF diet (60E% fat) for 1 year. The HF animals developed obesity, dyslipidemia, insulinresistance, and dysfunction of isolated skeletal muscle mitochondria: state 3 and state 4 were 30% to 50% increased (P .... Adding also succinate in state 3 resulted in ahigher substrate control ratio (SCR) with PC, but a lower SCR with pyruvate (P mitochondria from the same animal showed no changes with the substrates relevant...

  9. Continuous glucose profiles in obese and normal-weight pregnant women on a controlled diet: metabolic determinants of fetal growth.

    Science.gov (United States)

    Harmon, Kristin A; Gerard, Lori; Jensen, Dalan R; Kealey, Elizabeth H; Hernandez, Teri L; Reece, Melanie S; Barbour, Linda A; Bessesen, Daniel H

    2011-10-01

    We sought to define 24-h glycemia in normal-weight and obese pregnant women using continuous glucose monitoring (CGM) while they consumed a habitual and controlled diet both early and late in pregnancy. Glycemia was prospectively measured in early (15.7 ± 2.0 weeks' gestation) and late (27.7 ± 1.7 weeks' gestation) pregnancy in normal-weight (n = 22) and obese (n = 16) pregnant women on an ad libitum and controlled diet. Fasting glucose, triglycerides (early pregnancy only), nonesterified fatty acids (FFAs), and insulin also were measured. The 24-h glucose area under the curve was higher in obese women than in normal-weight women both early and late in pregnancy despite controlled diets. Nearly all fasting and postprandial glycemic parameters were higher in the obese women later in pregnancy, as were fasting insulin, triglycerides, and FFAs. Infants born to obese mothers had greater adiposity. Maternal BMI (r = 0.54, P = 0.01), late average daytime glucose (r = 0.48, P fasting insulin (r = 0.49, P fasting triglycerides (r = 0.67, P fasting FFAs (r = 0.54, P obese women without diabetes have higher daytime and nocturnal glucose profiles than normal-weight women despite a controlled diet both early and late in gestation. Body fat in infants, not birth weight, was related to maternal BMI, glucose, insulin, and FFAs, but triglycerides were the strongest predictor. These metabolic findings may explain higher rates of infant macrosomia in obese women, which might be targeted in trials to prevent excess fetal growth.

  10. A Maternal “Junk Food” Diet in Pregnancy and Lactation Promotes Nonalcoholic Fatty Liver Disease in Rat Offspring

    Science.gov (United States)

    Bayol, Stéphanie A.; Simbi, Bigboy H.; Fowkes, Robert C.; Stickland, Neil C.

    2010-01-01

    With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring. PMID:20207831

  11. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G; Steinberg, Gregory R; Schertzer, Jonathan D

    2016-06-01

    Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. Copyright © 2016 the American Physiological Society.

  12. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats.

    Science.gov (United States)

    Antunes, Luciana C; Elkfury, Jessica L; Jornada, Manoela N; Foletto, Kelly C; Bertoluci, Marcello C

    2016-04-01

    Objective The present study aimed to validate homeostasis model assessment of insulin resistance (HOMA-IR) in relation to the insulin tolerance test (ITT) in a model of insulin-resistance in Wistar rats induced by a 19-week high-fat diet. Materials and methods A total of 30 male Wistar rats weighing 200-300 g were allocated into a high-fat diet group (HFD) (55% fat-enriched chow, ad lib, n = 15) and a standard-diet group (CD) standard chow, ad lib, n = 15), for 19 weeks. ITT was determined at baseline and in the 19th week. HOMA-IR was determined between the 18-19th week in three different days and the mean was considered for analysis. Area under the curve (AUC-ITT) of the blood glucose excursion along 120 minutes after intra-peritoneal insulin injection was determined and correlated with the corresponding fasting values for HOMA-IR. Results AUC-ITT and HOMA-IR were significantly greater after 19th week in HFD compared to CD (p HOMA-IR was strongly correlated (Pearson's) with AUC-ITT r = 0.637; p HOMA-IR and AUC-ITT showed similar sensitivity and specificity. Conclusion HOMA-IR is a valid measure to determine insulin-resistance in Wistar rats. Arch Endocrinol Metab. 2016;60(2):138-42.

  13. Extended vs. brief intermittent access to palatable food differently promote binge-like intake, rejection of less preferred food, and weight cycling in female rats.

    Science.gov (United States)

    Kreisler, A D; Garcia, M G; Spierling, S R; Hui, B E; Zorrilla, E P

    2017-08-01

    Palatable food access promotes obesity leading some to diet. Here, we modeled the roles of duration, intermittency and choice of access in bingeing, escalation of daily intake, and underacceptance of alternatives. Female rats with ("Choice") or without continuous chow access, received chow or continuous (Chocolate), intermittent (MWF) long (24h, Int-Long), or intermittent short (30min, Int-Short) access to a sucrose-rich, chocolate-flavored diet (CHOC). Int-Long rats showed cycling body weight; they overate CHOC, had increased feed efficiency on access days and underate chow and lost weight on non-access days, the latter correlating with their reduced brown fat. Int-Short rats had the greatest 30-min intake upon CHOC access, but did not underaccept chow or weight cycle. Individual vulnerability for intermittent access-induced feeding adaptations was seen. Continuous access rats gained fat disproportionate, but in direct relation, to their normalized energy intake and persistently underaccepted chow despite abstinence and return to normal weight. Abstinence reduced the binge-like CHOC intake of Int-Short rats and increased that of continuous access rats, but not to levels associated with intermittent access history. Choice increased daily CHOC intake under Continuous access and binge-like intake under Int-Short access. Intermittency and duration of past access to palatable food have dissociable, individually-vulnerable influences on its intake and that of alternatives. With extended access, daily intake reflects the palatability of available food, rather than metabolic need. Ongoing restrictedness of access or a history of intermittency each drive binge-like intake. Aspects of palatable food availability, similar and different to drug availability, promote disordered eating. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Thyroid function in post-weaning rats whose dams were fed a low-protein diet during suckling

    Directory of Open Access Journals (Sweden)

    Ramos C.F.

    1997-01-01

    Full Text Available This study was designed to evaluate the thyroid and pituitary hormone levels in post-weaning rats whose dams were fed a low-protein diet during suckling (21 days. The dams and pups were divided into 2 groups: a control group fed a diet containing 22% protein that supplies the necessary amount of protein for the rat and is the usual content of protein in most commercial rat chow, and a diet group fed a low-protein (8% diet in which the protein was substituted by an isocaloric amount of starch. After weaning all dams and pups received the 22% protein diet. Two hours before sacrifice of pups aged 21, 30 and 60 days, a tracer dose (0.6 µCi of 125I was injected (ip into each animal. Blood and thyroid glands of pups were collected for the determination of serum T4, T3 and TSH and radioiodine uptake. Low protein diet caused a slight decrease in radioiodine uptake at 21 days, and a significant decrease in T3 levels (128 ± 14 vs 74 ± 9 ng/dl, P<0.05, while T4 levels did not change and TSH was increased slightly. At 30 days, T3 and TSH did not change while there was a significant increase in both T4 levels (4.8 ± 0.3 vs 6.1 ± 0.2 µg/dl, P<0.05 and in radioiodine uptake levels (0.34 ± 0.02 vs 0.50 ± 0.03%/mg thyroid, P<0.05. At 60 days serum T3, T4 and TSH levels were normal, but radioiodine uptake was still significantly increased (0.33 ± 0.02 vs 0.41 ± 0.03%/mg thyroid, P<0.05. Thus, it seems that protein malnutrition of the dams during suckling causes hypothyroidism in the pups at 21 days that has a compensatory mechanism increasing thyroid function after refeeding with a 22% protein diet. The radioiodine uptake still remained altered at 60 days, when all the hormonal serum levels returned to the normal values, suggesting a permanent change in the thyroid function

  15. Impact of taurine depletion on glucose control and insulin secretion in mice.

    Science.gov (United States)

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. A maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring.

    Science.gov (United States)

    Bayol, Stéphanie A; Farrington, Samantha J; Stickland, Neil C

    2007-10-01

    Obesity is generally associated with high intake of junk foods rich in energy, fat, sugar and salt combined with a dysfunctional control of appetite and lack of exercise. There is some evidence to suggest that appetite and body mass can be influenced by maternal food intake during the fetal and suckling life of an individual. However, the influence of a maternal junk food diet during pregnancy and lactation on the feeding behaviour and weight gain of the offspring remains largely uncharacterised. In this study, six groups of rats were fed either rodent chow alone or with a junk food diet during gestation, lactation and/or post-weaning. The daily food intakes and body mass were measured in forty-two pregnant and lactating mothers as well as in 216 offspring from weaning up to 10 weeks of age. Results showed that 10 week-old rats born to mothers fed the junk food diet during gestation and lactation developed an exacerbated preference for fatty, sugary and salty foods at the expense of protein-rich foods when compared with offspring fed a balanced chow diet prior to weaning or during lactation alone. Male and female offspring exposed to the junk food diet throughout the study also exhibited increased body weight and BMI compared with all other offspring. This study shows that a maternal junk food diet during pregnancy and lactation may be an important contributing factor in the development of obesity.

  17. Dietary Flaxseed Oil Prevents Western-Type Diet-Induced Nonalcoholic Fatty Liver Disease in Apolipoprotein-E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Hao Han

    2017-01-01

    Full Text Available The prevalence of nonalcoholic fatty liver disease (NAFLD has dramatically increased globally during recent decades. Intake of n-3 polyunsaturated fatty acids (PUFAs, mainly eicosapentaenoic acid (EPA, C20:5n-3 and docosahexaenoic acid (DHA, C22:6n-3, is believed to be beneficial to the development of NAFLD. However, little information is available with regard to the effect of flaxseed oil rich in α-linolenic acid (ALA, C18:3n-3, a plant-derived n-3 PUFA, in improving NAFLD. This study was to gain the effect of flaxseed oil on NAFLD and further investigate the underlying mechanisms. Apolipoprotein-E knockout (apoE-KO mice were given a normal chow diet, a western-type high-fat and high-cholesterol diet (WTD, or a WTD diet containing 10% flaxseed oil (WTD + FO for 12 weeks. Our data showed that consumption of flaxseed oil significantly improved WTD-induced NAFLD, as well as ameliorated impaired lipid homeostasis, attenuated oxidative stress, and inhibited inflammation. These data were associated with the modification effects on expression levels of genes involved in de novo fat synthesis (SREBP-1c, ACC, triacylglycerol catabolism (PPARα, CPT1A, and ACOX1, inflammation (NF-κB, IL-6, TNF-α, and MCP-1, and oxidative stress (ROS, MDA, GSH, and SOD.

  18. Wheel running decreases palatable diet preference in Sprague-Dawley rats.

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P; Moran, Timothy H; Liang, Nu-Chu

    2015-10-15

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague-Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. Published by Elsevier Inc.

  19. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. PMID:25791204

  20. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Per2 Gene Expression in Reward-Related Brain Areas in Rats.

    Science.gov (United States)

    Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E

    2018-01-01

    Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.

  1. High fat diet and food restriction differentially modify the behavioral effects of quinpirole and raclopride in rats.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2009-05-21

    Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.

  2. Leptin ameliorates ischemic necrosis of the femoral head in rats with obesity induced by a high-fat diet.

    Science.gov (United States)

    Zhou, Lu; Jang, Kyu Yun; Moon, Young Jae; Wagle, Sajeev; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Kim, Jung Ryul

    2015-03-23

    Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH.

  3. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    Science.gov (United States)

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  4. Hepatic NADlevels and NAMPT abundance are unaffected during prolonged high-fat diet consumption in C57BL/6JBomTac mice

    DEFF Research Database (Denmark)

    Dall, Morten; Penke, Melanie; Sulek, Karolina

    2018-01-01

    +have been reported to be dependent on age and body composition. The aim of the present study was to identify time course-dependent changes in hepatic NAD content and NAD+salvage capacity in mice challenged with a high-fat diet (HFD). We fed 7-week-old C57BL/6JBomTac male mice either regular chow or a 60...... regardless of diet. NAMPT protein abundance did not change with age or diet. HFD consumption caused a severe decrease in protein lysine malonylation after six weeks, which persisted throughout the experiment. This decrease was not associated with changes in SIRT5 abundance. In conclusion, hepatic NAD...

  5. Diet and sex modify exercise and cardiac adaptation in the mouse.

    Science.gov (United States)

    Konhilas, John P; Chen, Hao; Luczak, Elizabeth; McKee, Laurel A; Regan, Jessica; Watson, Peter A; Stauffer, Brian L; Khalpey, Zain I; Mckinsey, Timothy A; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A

    2015-01-15

    The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex.

  6. Diet and sex modify exercise and cardiac adaptation in the mouse

    Science.gov (United States)

    Chen, Hao; Luczak, Elizabeth; McKee, Laurel A.; Regan, Jessica; Watson, Peter A.; Stauffer, Brian L.; Khalpey, Zain I; Mckinsey, Timothy A.; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A.

    2014-01-01

    The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex. PMID:25398983

  7. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  8. The effect of early-life stress and chronic high-sucrose diet on metabolic outcomes in female rats.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Morris, Margaret J

    2015-01-01

    Early-life stress affects metabolic outcomes and choice of diet influences the development of metabolic disease. Here we tested the hypothesis that chronic sugar intake exacerbates metabolic deficits induced by early-life stress. Early-life stress was induced in Sprague-Dawley rats using limited nesting material in early lactation (LN, postnatal days 2-9), and siblings were given chow alone or with additional sucrose post weaning (n = 9-17 per group). Female control and LN siblings had unlimited access to either chow plus water, or chow and water plus 25% sucrose solution (Sucrose), from 3-15 weeks of age. Weekly body weight and food intake were measured. Glucose and insulin tolerance were tested at 13 and 14 weeks of age, respectively. Rats were killed at 15 weeks. Hepatic triglyceride and markers of lipid synthesis - fatty acid synthase, acetyl-CoA carboxylase alpha and oxidation - and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) were examined. Mediators of hepatic glucocorticoid metabolism, specifically 11-beta hydroxysteroid dehydrogenase-1 (11βHSD-1), 5-α reductase, and glucocorticoid and mineralocorticoid receptor mRNAs were also measured. Sucrose increased caloric intake in both groups, but overall energy intake was not altered by LN exposure. LN exposure had no further impact on sucrose-induced glucose intolerance and increased plasma and liver triglycerides. Hepatic markers of fat synthesis and oxidation were concomitantly activated and 11βHSD-1 mRNA expression was increased by 53% in LN-Sucrose versus Con-Sucrose rats. Adiposity was increased by 26% in LN-Sucrose versus Con-Sucrose rats. Thus, LN exposure had minimal adverse metabolic effects despite high-sugar diet postweaning.

  9. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet.

    Science.gov (United States)

    Sampey, Brante P; Vanhoose, Amanda M; Winfield, Helena M; Freemerman, Alex J; Muehlbauer, Michael J; Fueger, Patrick T; Newgard, Christopher B; Makowski, Liza

    2011-06-01

    Obesity has reached epidemic proportions worldwide and reports estimate that American children consume up to 25% of calories from snacks. Several animal models of obesity exist, but studies are lacking that compare high-fat diets (HFD) traditionally used in rodent models of diet-induced obesity (DIO) to diets consisting of food regularly consumed by humans, including high-salt, high-fat, low-fiber, energy dense foods such as cookies, chips, and processed meats. To investigate the obesogenic and inflammatory consequences of a cafeteria diet (CAF) compared to a lard-based 45% HFD in rodent models, male Wistar rats were fed HFD, CAF or chow control diets for 15 weeks. Body weight increased dramatically and remained significantly elevated in CAF-fed rats compared to all other diets. Glucose- and insulin-tolerance tests revealed that hyperinsulinemia, hyperglycemia, and glucose intolerance were exaggerated in the CAF-fed rats compared to controls and HFD-fed rats. It is well-established that macrophages infiltrate metabolic tissues at the onset of weight gain and directly contribute to inflammation, insulin resistance, and obesity. Although both high fat diets resulted in increased adiposity and hepatosteatosis, CAF-fed rats displayed remarkable inflammation in white fat, brown fat and liver compared to HFD and controls. In sum, the CAF provided a robust model of human metabolic syndrome compared to traditional lard-based HFD, creating a phenotype of exaggerated obesity with glucose intolerance and inflammation. This model provides a unique platform to study the biochemical, genomic and physiological mechanisms of obesity and obesity-related disease states that are pandemic in western civilization today.

  10. Effect of supplemental vitamin A on colon anastomotic healing in rats given preoperative irradiation

    International Nuclear Information System (INIS)

    Winsey, K.; Simon, R.J.; Levenson, S.M.; Seifter, E.; Demetriou, A.A.

    1987-01-01

    We studied the effect of dietary supplementation with vitamin A on the healing of colon anastomoses in irradiated bowel. Rats were divided into two groups. Those in the first group were fed a standard chow diet and those in the second group were fed the same diet supplemented with 150 IU vitamin A/g of chow. The rats were maintained on their respective diets throughout the experiment. After 7 days, half the rats in each group underwent abdominal irradiation (200 rads). Seven days later, all of the rats underwent distal colon division and anastomosis under pentobarbital anesthesia. All rats were killed 7 days postoperatively, the colons excised, and bursting strength and hydroxyproline determinations performed on both the anastomotic segment and a normal proximal segment of adjacent colon. There was a significant decrease in the bursting strength at the colon anastomosis (p less than 0.02) and in the collagen content (p less than 0.02) after preoperative irradiation. This effect was mitigated by dietary vitamin A supplementation

  11. Metabolic Syndrome Is Associated with Increased Oxo-Nitrative Stress and Asthma-Like Changes in Lungs.

    Directory of Open Access Journals (Sweden)

    Vijay Pal Singh

    Full Text Available Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR. However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS. Altered L-arginine and nitric oxide (NO metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.

  12. Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females

    Science.gov (United States)

    Bayol, S A; Simbi, B H; Bertrand, J A; Stickland, N C

    2008-01-01

    We have shown previously that a maternal junk food diet during pregnancy and lactation plays a role in predisposing offspring to obesity. Here we show that rat offspring born to mothers fed the same junk food diet rich in fat, sugar and salt develop exacerbated adiposity accompanied by raised circulating glucose, insulin, triglyceride and/or cholesterol by the end of adolescence (10 weeks postpartum) compared with offspring also given free access to junk food from weaning but whose mothers were exclusively fed a balanced chow diet in pregnancy and lactation. Results also showed that offspring from mothers fed the junk food diet in pregnancy and lactation, and which were then switched to a balanced chow diet from weaning, exhibited increased perirenal fat pad mass relative to body weight and adipocyte hypertrophy compared with offspring which were never exposed to the junk food diet. This study shows that the increased adiposity was more enhanced in female than male offspring and gene expression analyses showed raised insulin-like growth factor-1 (IGF-1), insulin receptor substrate (IRS)-1, vascular endothelial growth factor (VEGF)-A, peroxisome proliferator-activated receptor-γ (PPARγ), leptin, adiponectin, adipsin, lipoprotein lipase (LPL), Glut 1, Glut 3, but not Glut 4 mRNA expression in females fed the junk food diet throughout the study compared with females never given access to junk food. Changes in gene expression were not as marked in male offspring with only IRS-1, VEGF-A, Glut 4 and LPL being up-regulated in those fed the junk food diet throughout the study compared with males never given access to junk food. This study therefore shows that a maternal junk food diet promotes adiposity in offspring and the earlier onset of hyperglycemia, hyperinsulinemia and/or hyperlipidemia. Male and female offspring also display a different metabolic, cellular and molecular response to junk-food-diet-induced adiposity. PMID:18467362

  13. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  14. High-intensity interval training beneficial effects on body mass, blood pressure, and oxidative stress in diet-induced obesity in ovariectomized mice.

    Science.gov (United States)

    Pimenta, Marcel; Bringhenti, Isabele; Souza-Mello, Vanessa; Dos Santos Mendes, Iara Karise; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A

    2015-10-15

    To investigate the possible beneficial effect of high-intensity interval training (HIIT) on skeletal muscle oxidative stress, body mass (BM) and systolic blood pressure (SBP) in ovariectomized mice fed or not fed a high-fat diet. Three-month-old female C57BL/6 mice were bilaterally ovariectomized (OVX group) or submitted to surgical stress without ovariectomy (SHAM group) and separated into standard chow (SHAM-SC; OVX-SC) and high-fat diet (SHAM-HF; OVX-HF) groups. After 13 weeks, an HIIT program (swimming) was carried out for 8 weeks in non-trained (NT) and trained (T) groups. The significant reduction of uterine mass and the cytological examination of vaginal smears in the OVX group confirmed that ovariectomy was successful. Before the HIIT protocol, the ovariectomized groups showed a greater BM than the SHAM group, irrespective of the diet they received. The HIIT minimized BM gain in animals fed an HF diet and/or ovariectomized. SBP and total cholesterol were increased in the OVX and HF animals compared to their counterparts, and the HIIT efficiently reduced these factors. In the HF and OVX mice, the muscular superoxide dismutase and catalase levels were low while their glutathione peroxidase and glutathione reductase levels were high and the HIIT normalized these parameters. Diet-induced obesity maximizes the deleterious effects of an ovariectomy. The HIIT protocol significantly reduced BM, SBP and oxidative stress in the skeletal muscle indicating that HIIT diminishes the cardiovascular and metabolic risk that is inherent to obesity and menopause. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Protective Effects of Tamarillo (Cyphomandra betacea Extract against High Fat Diet Induced Obesity in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Noor Atiqah Aizan Abdul Kadir

    2015-01-01

    Full Text Available This study aims to investigate the protective effect of Cyphomandra betacea in adult male Sprague-Dawley rats fed with high fat diet. Rats were fed on either normal chow or high fat diet for 10 weeks for obesity induction phase and subsequently received C. betacea extract at low dose (150 mg kg−1, medium dose (200 mg kg−1, or high dose (300 mg kg−1 or placebo via oral gavages for another 7 weeks for treatment phase. Treatment of obese rats with C. betacea extracts led to a significant decrease in total cholesterol and significant increase in HDL-C (p<0.05. Also there was a trend of positive reduction in blood glucose, triglyceride, and LDL-C with positive reduction of body weight detected in medium and high dosage of C. betacea extract. Interestingly, C. betacea treated rats showed positive improvement of superoxide dismutase (SOD activity and glutathione peroxidase (GPx activity along with a significant increase of total antioxidant status (TAS (p<0.05. Further, rats treated with C. betacea show significantly lower in TNF-α and IL-6 activities (p<0.05. This study demonstrates the potential use of Cyphomandra betacea extract for weight maintenance and complimentary therapy to suppress some obesity complication signs.

  16. Voluntary exercise improves murine dermal connective tissue status in high-fat diet-induced obesity.

    Science.gov (United States)

    Lőrincz, Kende; Haluszka, Dóra; Kiss, Norbert; Gyöngyösi, Nóra; Bánvölgyi, András; Szipőcs, Róbert; Wikonkál, Norbert M

    2017-04-01

    Obesity is a risk factor for several cardiovascular and metabolic diseases. Its influence on the skin is less obvious, yet certain negative effects of adipose tissue inflammation on the dermis have been suggested. Excess weight is closely associated with sedentary behavior, so any increase in physical activity is considered beneficial against obesity. To investigate the effects of obesity and physical exercise on the skin, we established a mouse model in which mice were kept either on a high-fat diet or received standard chow. After the two groups achieved a significant weight difference, physical exercise was introduced to both. Animals were given the opportunity to perform voluntary exercise for 40 min daily in a hamster wheel for a period of 8 weeks. We evaluated the status of the dermis at the beginning and at the end of the exercise period by in vivo nonlinear microscopy. Obese mice kept on high-fat diet lost weight steadily after they started to exercise. In the high-fat diet group, we could detect significantly larger adipocytes and a thicker layer of subcutaneous tissue; both changes started to normalize after exercise. Nonlinear microscopy revealed an impaired collagen structure in obese mice that improved considerably after physical activity was introduced. With the ability to detect damage on collagen structure, we set out to address the question whether this process is reversible. With the use of a novel imaging method, we were able to show the reversibility of connective tissue deterioration as a benefit of physical exercise.

  17. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Reduction in fecal excretion of Giardia cysts: effect of cholestasis and diet.

    Science.gov (United States)

    Erlandsen, Stanley

    2005-12-01

    Bile is a major growth factor for the proliferation of Giardia spp. trophozoites in the small intestine and, at high concentrations, stimulates encystment of trophozoites. This report demonstrates that surgical cholestasis to interrupt the flow of bile from liver to intestine or the use of bile-binding resins in the diet can both dramatically decrease the fecal excretion of Giardia muris cysts. Cholestasis produced a 3 log reduction in excretion of G. muris cysts within 24 hr of surgery and a 4 log reduction after 3 days. Sham controls showed no difference in cyst excretion from presurgical control values. Two isocaloric diets were studied: a control diet (N) of Purina mouse chow containing 5% celufil and an experimental diet (CR) containing 5% cholestyramine, a resin that binds bile. Compared with the N diet, the CR diet was associated with reductions in cyst excretion of 3 logs within 1 day. Despite lowered excretion of G. muris cysts in mice fed the cholestyramine diet, the trophozoite recovery from the duodenum was similar with both diets. Cyclic feeding of the CR diet and the N diet at 3-day intervals produced significant oscillations (changes of 3-4 logs) in fecal cyst shedding. The significant reductions in fecal excretion of cysts observed with agents that bind bile suggests that diets capable of binding bile might be a therapeutic means to minimize the fecal excretion of cysts and thereby may help to reduce the risk of spreading giardiasis through fecal-oral contamination.

  19. Effect of Various Diets on the Expression of Phase-I Drug Metabolizing Enzymes in Livers of Mice

    Science.gov (United States)

    Guo, Ying; Cui, Julia Yue; Lu, Hong; Klaassen, Curtis D.

    2017-01-01

    Previous studies have shown that diets can alter the metabolism of drugs; however, it is difficult to compare the effects of multiple diets on drug metabolism among different experimental settings. Phase-I related genes play a major role in the biotransformation of pro-drugs and drugs.In the current study, effects of nine diets on the mRNA expression of phase-I drug-metabolizing enzymes in livers of mice were simultaneously investigated. Compared to the AIN-93M purified diet (control), 73 of the 132 critical phase-I drug metabolizing genes were differentially regulated by at least one diet. Diet restriction produced the most number of changed genes (51), followed by the atherogenic diet (27), high-fat diet (25), standard rodent chow (21), western diet (20), high-fructose diet (5), EFA deficient diet (3), and low n-3 FA diet (1). The mRNAs of the Fmo family changed most, followed by Cyp2b and 4a subfamilies, as well as Por (From 1121 to 21-fold increase of theses mRNAs). There were 59 genes not altered by any of these diets.The present results may improve the interpretation of studies with mice and aid in determining effective and safe doses for individuals with different nutritional diets. PMID:25733028

  20. Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice

    Directory of Open Access Journals (Sweden)

    Nikul K. Soni

    2016-09-01

    Full Text Available Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM. Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD with purified marine fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA (HFD-ED, a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4 protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.

  1. DNA Methylation program in normal and alcohol-induced thinning cortex.

    Science.gov (United States)

    Öztürk, Nail Can; Resendiz, Marisol; Öztürk, Hakan; Zhou, Feng C

    2017-05-01

    While cerebral underdevelopment is a hallmark of fetal alcohol spectrum disorders (FASD), the mechanism(s) guiding the broad cortical neurodevelopmental deficits are not clear. DNA methylation is known to regulate early development and tissue specification through gene regulation. Here, we examined DNA methylation in the onset of alcohol-induced cortical thinning in a mouse model of FASD. C57BL/6 (B6) mice were administered a 4% alcohol (v/v) liquid diet from embryonic (E) days 7-16, and their embryos were harvested at E17, along with isocaloric liquid diet and lab chow controls. Cortical neuroanatomy, neural phenotypes, and epigenetic markers of methylation were assessed using immunohistochemistry, Western blot, and methyl-DNA assays. We report that cortical thickness, neuroepithelial proliferation, and neuronal migration and maturity were found to be deterred by alcohol at E17. Simultaneously, DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxcylmethylcytosine (5hmC), which progresses as an intrinsic program guiding normal embryonic cortical development, was severely affected by in utero alcohol exposure. The intricate relationship between cortical thinning and this DNA methylation program disruption is detailed and illustrated. DNA methylation, dynamic across the multiple cortical layers during the late embryonic stage, is highly disrupted by fetal alcohol exposure; this disruption occurs in tandem with characteristic developmental abnormalities, ranging from structural to molecular. Finally, our findings point to a significant question for future exploration: whether epigenetics guides neurodevelopment or whether developmental conditions dictate epigenetic dynamics in the context of alcohol-induced cortical teratogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences.

    Directory of Open Access Journals (Sweden)

    Patrick A Randall

    Full Text Available Mesolimbic dopamine (DA is involved in behavioral activation and effort-related processes. Rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. In the present study, the effects of several drug treatments were assessed using a progressive ratio (PROG/chow feeding concurrent choice task. With this task, rats can lever press on a PROG schedule reinforced by a preferred high-carbohydrate food pellet, or alternatively approach and consume the less-preferred but concurrently available laboratory chow. Rats pass through each ratio level 15 times, after which the ratio requirement is incremented by one additional response. The DA D(2 antagonist haloperidol (0.025-0.1 mg/kg reduced number of lever presses and highest ratio achieved but did not reduce chow intake. In contrast, the adenosine A(2A antagonist MSX-3 increased lever presses and highest ratio achieved, but decreased chow consumption. The cannabinoid CB1 inverse agonist and putative appetite suppressant AM251 decreased lever presses, highest ratio achieved, and chow intake; this effect was similar to that produced by pre-feeding. Furthermore, DA-related signal transduction activity (pDARPP-32(Thr34 expression was greater in nucleus accumbens core of high responders (rats with high lever pressing output compared to low responders. Thus, the effects of DA antagonism differed greatly from those produced by pre-feeding or reduced CB1 transmission, and it appears unlikely that haloperidol reduces PROG responding because of a general reduction in primary food motivation or the unconditioned reinforcing properties of food. Furthermore, accumbens core signal transduction activity is related to individual differences in work output.

  3. Effects of cocoa-enriched diet on orofacial pain in a murine model.

    Science.gov (United States)

    Bowden, L N; Rohrs, E L; Omoto, K; Durham, P L; Holliday, L S; Morris, A D; Allen, K D; Caudle, R M; Neubert, J K

    2017-06-01

    To investigate and discuss the effects of cocoa on orofacial pain. The Department of Orthodontics at the University of Florida (UF). Male and female hairless rats (N=20/group) were tested. Rats were tested using the Orofacial Pain Assessment Device (OPAD) before and after changing their food from the standard chow to a cocoa-enriched or control-equivalent diet. Male rats fed the cocoa diet had a significantly higher operant pain index when tested at 37°C as compared to control diet-fed animals. Female rats on the cocoa diet had a significantly higher pain index when tested at 18°C and 44°C, as compared to animals fed the control diet. Capsaicin-induced pain was inhibited, with cocoa-diet male rats having a significantly higher pain index than control-diet male rats and cocoa-diet female rats at both 37°C and 44°C. Cocoa-diet female rats had a significantly higher pain index at 44°C than control-diet females. Mechanical sensitivity was affected following capsaicin cream, with a significantly decreased tolerated bottle distance in both cocoa- and control-diet animals, but there was no difference between cocoa- and control-diet groups. Using the OPAD operant system, we demonstrated that a diet rich in cocoa was effective in inhibiting neurogenic inflammatory pain in rats. This has implications for the use of novel alternative therapies such as diet modification for pain control. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Prenatal Metformin Therapy Attenuates Hypertension of Developmental Origin in Male Adult Offspring Exposed to Maternal High-Fructose and Post-Weaning High-Fat Diets

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2018-04-01

    Full Text Available Widespread consumption of a Western diet, comprised of highly refined carbohydrates and fat, may play a role in the epidemic of hypertension. Hypertension can take origin from early life. Metformin is the preferred treatment for type 2 diabetes. We examined whether prenatal metformin therapy can prevent maternal high-fructose plus post-weaning high-fat diets-induced hypertension of developmental origins via regulation of nutrient sensing signals, uric acid, oxidative stress, and the nitric oxide (NO pathway. Gestating Sprague–Dawley rats received regular chow (ND or chow supplemented with 60% fructose diet (HFR throughout pregnancy and lactation. Male offspring were onto either the ND or high-fat diet (HFA from weaning to 12 weeks of age. A total of 40 male offspring were assigned to five groups (n = 8/group: ND/ND, HFR/ND, ND/HFA, HFR/HFA, and HFR/HFA+metformin. Metformin (500 mg/kg/day was administered via gastric gavage for three weeks during the pregnancy period. Combined maternal HFR plus post-weaning HFA induced hypertension in male adult offspring, which prenatal metformin therapy prevented. The protective effects of prenatal metformin therapy on HFR/HFA-induced hypertension, including downregulation of the renin-angiotensin system, decrease in uric acid level, and reduction of oxidative stress. Our results highlighted that the programming effects of metformin administered prenatally might be different from those reported in adults, and that deserves further elucidation.

  5. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    DEFF Research Database (Denmark)

    Brandt, Nina; De Bock, Katrien; Richter, Erik

    2010-01-01

    Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptation are not known, and it is also not known whether exercise training can reverse it. Male Wistar rats were assigned...... to 12-wk intervention groups: chow-fed controls (CON), cafeteria diet (CAF), and cafeteria diet plus swimming exercise during the last 4 wk (CAF(TR)). CAF feeding led to increased body weight (16%, P ...) among the groups. In conclusion, surplus energy intake of a palatable but low-fat cafeteria diet resulted in obesity and insulin resistance that was rescued by exercise training. Interestingly, insulin resistance was not accompanied by major defects in the insulin-signaling cascade or in altered AMPK...

  6. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome.

    Science.gov (United States)

    Marietta, Eric V; Gomez, Andres M; Yeoman, Carl; Tilahun, Ashenafi Y; Clark, Chad R; Luckey, David H; Murray, Joseph A; White, Bryan A; Kudva, Yogish C; Rajagopalan, Govindarajan

    2013-01-01

    Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of

  7. A Hamster Model of Diet-Induced Obesity for Preclinical Evaluation of Anti-Obesity, Anti-Diabetic and Lipid Modulating Agents.

    Directory of Open Access Journals (Sweden)

    Louise S Dalbøge

    Full Text Available Unlike rats and mice, hamsters develop hypercholesterolemia, and hypertriglyceridemia when fed a cholesterol-rich diet. Because hyperlipidemia is a hallmark of human obesity, we aimed to develop and characterize a novel diet-induced obesity (DIO and hypercholesterolemia Golden Syrian hamster model.Hamsters fed a highly palatable fat- and sugar-rich diet (HPFS for 12 weeks showed significant body weight gain, body fat accumulation and impaired glucose tolerance. Cholesterol supplementation to the diet evoked additional hypercholesterolemia. Chronic treatment with the GLP-1 analogue, liraglutide (0.2 mg/kg, SC, BID, 27 days, normalized body weight and glucose tolerance, and lowered blood lipids in the DIO-hamster. The dipeptidyl peptidase-4 (DPP-4 inhibitor, linagliptin (3.0 mg/kg, PO, QD also improved glucose tolerance. Treatment with peptide YY3-36 (PYY3-36, 1.0 mg/kg/day or neuromedin U (NMU, 1.5 mg/kg/day, continuously infused via a subcutaneous osmotic minipump for 14 days, reduced body weight and energy intake and changed food preference from HPFS diet towards chow. Co-treatment with liraglutide and PYY3-36 evoked a pronounced synergistic decrease in body weight and food intake with no lower plateau established. Treatment with the cholesterol uptake inhibitor ezetimibe (10 mg/kg, PO, QD for 14 days lowered plasma total cholesterol with a more marked reduction of LDL levels, as compared to HDL, indicating additional sensitivity to cholesterol modulating drugs in the hyperlipidemic DIO-hamster. In conclusion, the features of combined obesity, impaired glucose tolerance and hypercholesterolemia in the DIO-hamster make this animal model useful for preclinical evaluation of novel anti-obesity, anti-diabetic and lipid modulating agents.

  8. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice

    Directory of Open Access Journals (Sweden)

    Farias JM

    2012-10-01

    Full Text Available Abstract Background The aim of the present study was to evaluate the protective effect of concurrent exercise in the degree of the insulin resistance in mice fed with a high-fat diet, and assess adiponectin receptors (ADIPOR1 and ADIPOR2 and endosomal adaptor protein APPL1 in different tissues. Methods Twenty-four mice were randomized into four groups (n = 6: chow standard diet and sedentary (C; chow standard diet and simultaneous exercise training (C-T; fed on a high-fat diet and sedentary (DIO; and fed on a high-fat diet and simultaneous exercise training (DIO-T. Simultaneously to starting high-fat diet feeding, the mice were submitted to a swimming exercise training protocol (2 x 30 minutes, with 5 minutes of interval/day, five days per week, for twelve weeks (90 days. Animals were then euthanized 48 hours after the last exercise training session, and adipose, liver, and skeletal muscle tissue were extracted for an immunoblotting analysis. Results IR, IRs, and Akt phosphorylation decreased in the DIO group in the three analyzed tissues. In addition, the DIO group exhibited ADIPOR1 (skeletal muscle and adipose tissue, ADIPOR2 (liver, and APPL1 reduced when compared with the C group. However, it was reverted when exercise training was simultaneously performed. In parallel, ADIPOR1 and 2 and APPL1 protein levels significantly increase in exercised mice. Conclusions Our findings demonstrate that exercise training performed concomitantly to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in the hepatic, adipose, and skeletal muscle tissue.

  9. Effects of kiwi consumption on plasma lipids, fibrinogen and insulin resistance in the context of a normal diet.

    Science.gov (United States)

    Recio-Rodriguez, Jose I; Gomez-Marcos, Manuel A; Patino-Alonso, Maria C; Puigdomenech, Elisa; Notario-Pacheco, Blanca; Mendizabal-Gallastegui, Nere; de la Fuente, Aventina de la Cal; Otegui-Ilarduya, Luis; Maderuelo-Fernandez, Jose A; de Cabo Laso, Angela; Agudo-Conde, Cristina; Garcia-Ortiz, Luis

    2015-09-15

    Among fruits, kiwi is one of the richest in vitamins and polyphenols and has strong anti-oxidant effects. We aimed to analyze the relationship between the consumption of kiwi and plasma lipid values, fibrinogen, and insulin resistance in adults within the context of a normal diet and physical-activity. Cross-sectional study. Participants (N = 1469), who were free of cardiovascular diseases, completed a visit, which included the collection of information concerning the participant's usual diet and kiwi consumption using a previously validated, semi-quantitative, 137-item food-frequency-questionnaire. Fasting laboratory determinations included plasma lipids, fibrinogen and insulin resistance. Regular physical-activity was determined using accelerometry. Consumers of at least 1 kiwi/week presented higher plasma values of HDL-cholesterol (mean difference 4.50 [95% CI: 2.63 to 6.36]) and lower triglyceride values (mean difference -20.03 [95% CI: -6.77 to -33.29]), fibrinogen values (mean difference -13.22 [95% CI: -2.18 to -24.26]) and HOMAir values (mean difference -0.30 [95% CI: -0.09 to -0.50]) (p Consumption of at least one kiwi/week is associated with lower plasma concentrations of fibrinogen and improved plasma lipid profile in the context of a normal diet and regular exercise.

  10. Impact of a western diet on the ovarian and serum metabolome.

    Science.gov (United States)

    Dhungana, Suraj; Carlson, James E; Pathmasiri, Wimal; McRitchie, Susan; Davis, Matt; Sumner, Susan; Appt, Susan E

    2016-10-01

    The objective of this investigation was to determine differences in the profiles of endogenous metabolites (metabolomics) among ovaries and serum derived from Old World nonhuman primates fed prudent or Western diets. A retrospective, observational study was done using archived ovarian tissue and serum from midlife cynomolgus monkeys (Macaca fasicularis). Targeted and broad spectrum metabolomics analysis was used to compare ovarian tissue and serum from monkeys that had been exposed to a prudent diet or a Western diet. Monkeys in the prudent diet group (n=13) were research naïve and had been exposed only to a commercial monkey chow diet (low in cholesterol and saturated fats, high in complex carbohydrates). Western diet monkeys (n=8) had consumed a diet that was high in cholesterol, saturated animal fats and soluble carbohydrates for 2 years prior to ovarian tissue and serum collection. Metabolomic analyses were done on extracts of homogenized ovary tissue samples, and extracts of serum. Targeted analysis was conducted using the Biocrates p180 kit and broad spectrum analysis was conducted using UPLC-TOF-MS, resulting in the detection of 3500 compound ions. Using metabolomics methods, which capture thousands of signals for metabolites, 64 metabolites were identified in serum and 47 metabolites were identified in ovarian tissue that differed by diet. Quantitative targeted analysis revealed 13 amino acids, 6 acrylcarnitines, and 2 biogenic amines that were significantly (pmetabolome, and demonstrated perturbation in carnitine, lipids/fatty acid, and amino acid metabolic pathways. Published by Elsevier Ireland Ltd.

  11. Modern 'junk food' and minimally-processed 'natural food' cafeteria diets alter the response to sweet taste but do not impair flavor-nutrient learning in rats.

    Science.gov (United States)

    Palframan, Kristen M; Myers, Kevin P

    2016-04-01

    Animals learn to prefer and increase consumption of flavors paired with postingestive nutrient sensing. Analogous effects have been difficult to observe in human studies. One possibility is experience with the modern, processed diet impairs learning. Food processing manipulates flavor, texture, sweetness, and nutrition, obscuring ordinary correspondences between sensory cues and postingestive consequences. Over time, a diet of these processed 'junk' foods may impair flavor-nutrient learning. This 'flavor-confusion' hypothesis was tested by providing rats long-term exposure to cafeteria diets of unusual breadth (2 or 3 foods per day, 96 different foods over 3 months, plus ad libitum chow). One group was fed processed foods (PF) with added sugars/fats and manipulated flavors, to mimic the sensory-nutrient properties of the modern processed diet. Another group was fed only 'natural' foods (NF) meaning minimally-processed foods without manipulated flavors or added sugars/fats (e.g., fresh fruits, vegetables, whole grains) ostensibly preserving the ordinary correspondence between flavors and nutrition. A CON group was fed chow only. In subsequent tests of flavor-nutrient learning, PF and NF rats consistently acquired strong preferences for novel nutrient-paired flavors and PF rats exhibited enhanced learned acceptance, contradicting the 'flavor-confusion' hypothesis. An unexpected finding was PF and NF diets both caused lasting reduction in ad lib sweet solution intake. Groups did not differ in reinforcing value of sugar in a progressive ratio task. In lick microstructure analysis the NF group paradoxically showed increased sucrose palatability relative to PF and CON, suggesting the diets have different effects on sweet taste evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [High-density lipoproteins (HDL) size and composition are modified in the rat by a diet supplemented with "Hass" avocado (Persea americana Miller)].

    Science.gov (United States)

    Pérez Méndez, Oscar; García Hernández, Lizbeth

    2007-01-01

    To determine the effects of dietary avocado on HDL structure and their associated enzyme, paraoxonase 1 (PON1). Fifteen Wistar male rats received avocado as part of their daily meal (5 g by 17.5 g chow diet), keeping the caloric intake similar to the control group (n=15) that received their usual chow diet. After 5 weeks, HDL were isolated by sequential ultracentrifugation and their size and chemical composition were analyzed. PON1 was determined in serum spectrophotometrically using phenylacetate as substrate. Rats that received avocado had about 27% lower triglycerides plasma levels whereas their HDL-cholesterol was 17% higher as compared to control group. The mean HDL Stokes diameter was significantly lower in avocado group (11.71 +/- 0.8 vs. 12.27 +/- 0.26 nm, in control group, p avocado group. HDL structural modifications induced by avocado were not related to modifications of LCAT and PLTP activities, but occurred in parallel with higher serum levels of PON1 activity when compared to the controls (57.4 +/- 8.9 vs. 43.0 +/- 5.6 micromol/min/mL serum, p avocado in the diet decreased plasma triglycerides, increased HDL-cholesterol plasma levels and modified HDL structure. The latter effect may enhance the antiatherogenic properties of HDL since PON1 activity also increased as a consequence of avocado.

  13. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    DEFF Research Database (Denmark)

    de Castro Barbosa, Thais; Ingerslev, Lars R; Alm, Petter S

    2016-01-01

    OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet......1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. CONCLUSION: Our results provide insight...... into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations....

  14. Consuming a low-fat diet from weaning to adulthood reverses the programming of food preferences in male, but not in female, offspring of 'junk food'-fed rat dams.

    Science.gov (United States)

    Ong, Z Y; Muhlhausler, B S

    2014-01-01

    This study aimed to determine whether the negative effects of maternal 'junk food' feeding on food preferences and gene expression in the mesolimbic reward system could be reversed by weaning the offspring onto a low-fat diet. Offspring of control (n = 11) and junk food-fed (JF, n = 12) dams were weaned onto a standard rodent chow until 6 weeks (juvenile) or 3 months (adult). They were then given free access to both chow and junk food for 3 weeks and food preferences determined. mRNA expression of key components of the mesolimbic reward system was determined by qRT-PCR at 6 weeks, 3 and 6 months of age. In the juvenile group, both male and female JF offspring consumed more energy and carbohydrate during the junk food exposure at 6 weeks of age and had a higher body fat mass at 3 months (P junk food; however, female JF offspring had a higher body fat mass at 6 months (P junk food exposure on food preferences and fat mass can be reversed by consuming a low-fat diet from weaning to adulthood in males. Females, however, retain a higher propensity for diet-induced obesity even after consuming a low-fat diet for an extended period after weaning. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice.

    Science.gov (United States)

    Park, Hee-Sook; Hur, Haeng Jeon; Kim, Soon-Hee; Park, Su-Jin; Hong, Moon Ju; Sung, Mi Jeong; Kwon, Dae Young; Kim, Myung-Sunny

    2016-09-01

    Natural compounds that regulate peroxisome proliferator-activated receptor alpha (PPARα) have been reported to have beneficial effects in obesity-mediated metabolic disorders. In this study, we demonstrated that biochanin A (BA), an agonist of PPAR-α, improved hepatic steatosis and insulin resistance by regulating hepatic lipid and glucose metabolism. C57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), and an HFD supplemented with 0.05% BA for 12 weeks. Histological and biochemical examinations indicated that BA prevented obesity-induced hepatic steatosis and insulin resistance in HFD-fed mice. BA stimulated the transcriptional activation of PPAR-α in vitro and increased the expression of PPAR-α and its regulatory proteins in the liver. CE-TOF/MS analyses indicated that BA administration promoted the recovery of metabolites involved in phosphatidylcholine synthesis, lipogenesis, and beta-oxidation in the livers of obese mice. BA also suppressed the levels of gluconeogenesis-related metabolites and the expression of the associated enzymes, glucose 6-phosphatase and pyruvate kinase. Taken together, these results showed that BA ameliorated metabolic disorders such as hepatic steatosis and insulin resistance by modulating lipid and glucose metabolism in diet-induced obesity. Thus, BA may be a potential therapeutic agent for the prevention of obesity-mediated hepatic steatosis and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Physiological covalent regulation of rat liver branched-chain alpha-ketoacid dehydrogenase

    International Nuclear Information System (INIS)

    Harris, R.A.; Powell, S.M.; Paxton, R.; Gillim, S.E.; Nagae, H.

    1985-01-01

    A radiochemical assay was developed for measuring branched-chain alpha-ketoacid dehydrogenase activity of Triton X-100 extracts of freeze-clamped rat liver. The proportion of active (dephosphorylated) enzyme was determined by measuring enzyme activities before and after activation of the complex with a broad-specificity phosphoprotein phosphatase. Hepatic branched-chain alpha-ketoacid dehydrogenase activity in normal male Wistar rats was 97% active but decreased to 33% active after 2 days on low-protein (8%) diet and to 13% active after 4 days on the same diet. Restricting protein intake of lean and obese female Zucker rats also caused inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex. Essentially all of the enzyme was in the active state in rats maintained for 14 days on either 30 or 50% protein diets. This was also the case for rats maintained on a commercial chow diet (minimum 23% protein). However, maintaining rats on 20, 8, and 0% protein diets decreased the percentage of the active form of the enzyme to 58, 10, and 7% of the total, respectively. Fasting of chow-fed rats for 48 h had no effect on the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase, i.e., 93% of the enzyme remained in the active state compared to 97% for chow-fed rats. However, hepatic enzyme of rats maintained on 8% protein diet was 10% active before starvation and 83% active after 2 days of starvation. Thus, dietary protein deficiency results in inactivation of hepatic branched-chain alpha-ketoacid dehydrogenase complex, presumably as a consequence of low hepatic levels of branched-chain alpha-ketoacids

  17. Prenatal stress increases the obesogenic effects of a high-fat-sucrose diet in adult rats in a sex-specific manner.

    Science.gov (United States)

    Paternain, L; de la Garza, A L; Batlle, M A; Milagro, F I; Martínez, J A; Campión, J

    2013-03-01

    Stress during pregnancy can induce metabolic disorders in adult offspring. To analyze the possible differential response to a high-fat-sucrose (HFS) diet in offspring affected by prenatal stress (PNS) or not, pregnant Wistar rats (n = 11) were exposed to a chronic mild stress during the third week of gestation. The aim of this study was to model a chronic depressive-like state that develops over time in response to exposure of rats to a series of mild and unpredictable stressors. Control dams (n = 11) remained undisturbed. Adult offspring were fed chow or HFS diet (20% protein, 35% carbohydrate, 45% fat) for 10 weeks. Changes in adiposity, biochemical profile, and retroperitoneal adipose tissue gene expression by real-time polymerase chain reaction were analyzed. An interaction was observed between HFS and PNS concerning visceral adiposity, with higher fat mass in HFS-fed stressed rats, statistically significant only in females. HFS modified lipid profile and increased insulin resistance biomarkers, while PNS reduced insulin concentrations and the homeostasis model assessment index. HFS diet increased gene (mRNA) expression for leptin and apelin and decreased cyclin-dependent kinase inhibitor 1A and fatty acid synthase (Fasn), whereas PNS increased Fasn and stearoyl-CoA desaturase1. An interaction between diet and PNS was observed for adiponutrin (Adpn) and peroxisome proliferator-activated receptor-γ coactivator1-α (Ppargc1a) gene expression: Adpn was increased by the PNS only in HFS-fed rats, whereas Ppargc1a was increased by the PNS only in chow-fed rats. From these results, it can be concluded that experience of maternal stress during intrauterine development can enhance predisposition to obesity induced by a HFS diet intake.

  18. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink.

    Science.gov (United States)

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-16

    Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. As expected, adult offspring fed the S diet post weaning became obese (body weight: Peffect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling.

  19. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults.

    Science.gov (United States)

    Taylor, Matthew K; Sullivan, Debra K; Swerdlow, Russell H; Vidoni, Eric D; Morris, Jill K; Mahnken, Jonathan D; Burns, Jeffrey M

    2017-12-01

    Background: Little is known about the relation between dietary intake and cerebral amyloid accumulation in aging. Objective: We assessed the association of dietary glycemic measures with cerebral amyloid burden and cognitive performance in cognitively normal older adults. Design: We performed cross-sectional analyses relating dietary glycemic measures [adherence to a high-glycemic-load diet (HGLDiet) pattern, intakes of sugar and carbohydrates, and glycemic load] with cerebral amyloid burden (measured by florbetapir F-18 positron emission tomography) and cognitive performance in 128 cognitively normal older adults who provided eligibility screening data for the University of Kansas's Alzheimer's Prevention through Exercise (APEX) Study. The study began in November 2013 and is currently ongoing. Results: Amyloid was elevated in 26% ( n = 33) of participants. HGLDiet pattern adherence ( P = 0.01), sugar intake ( P = 0.03), and carbohydrate intake ( P = 0.05) were significantly higher in participants with elevated amyloid burden. The HGLDiet pattern was positively associated with amyloid burden both globally and in all regions of interest independently of age, sex, and education (all P ≤ 0.001). Individual dietary glycemic measures (sugar intake, carbohydrate intake, and glycemic load) were also positively associated with global amyloid load and nearly all regions of interest independently of age, sex, and educational level ( P ≤ 0.05). Cognitive performance was associated only with daily sugar intake, with higher sugar consumption associated with poorer global cognitive performance (global composite measure and Mini-Mental State Examination) and performance on subtests of Digit Symbol, Trail Making Test B, and Block Design, controlling for age, sex, and education. Conclusion: A high-glycemic diet was associated with greater cerebral amyloid burden, which suggests diet as a potential modifiable behavior for cerebral amyloid accumulation and subsequent Alzheimer

  20. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice.

    Science.gov (United States)

    Chan, Yee Kwan; Brar, Manreetpal Singh; Kirjavainen, Pirkka V; Chen, Yan; Peng, Jiao; Li, Daxu; Leung, Frederick Chi-Ching; El-Nezami, Hani

    2016-11-08

    Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE -/- ) mice. LGG or TLM supplementation to HF diet was studied. Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.

  1. Testicular damage in rats fed on irradiated diets

    International Nuclear Information System (INIS)

    Kushwaha, A.K.S.; Hasan, S.S.

    1986-01-01

    Feeding effect of irradiated diets was studied on the pups born to mother fed either on irradiated normal diet or irradiated low protein diet. The study indicated that pups born to mother fed on the irradiated low protein diet had fewer spermatogonial cells in the testes than those given irradiated normal diet and unirradiated low protein diet. Similarly, pups maintained on the irradiated low protein diet showed marked decrease in alkaline phosphatase and cholesterol contents in the testes rather than in the pups fed irradiated normal as well as unirradiated low protein diets. The irradiated low protein diet fed pups showed increased depletion and vacuolization of adrenocortical and medullary cells. 13 refs., 15 figures. (author)

  2. Testicular damage in rats fed on irradiated diets

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, A K.S.; Hasan, S S

    1986-12-01

    Feeding effect of irradiated diets was studied on the pups born to mother fed either on irradiated normal diet or irradiated low protein diet. The study indicated that pups born to mother fed on the irradiated low protein diet had fewer spermatogonial cells in the testes than those given irradiated normal diet and unirradiated low protein diet. Similarly, pups maintained on the irradiated low protein diet showed marked decrease in alkaline phosphatase and cholesterol contents in the testes rather than in the pups fed irradiated normal as well as unirradiated low protein diets. The irradiated low protein diet fed pups showed increased depletion and vacuolization of adrenocortical and medullary cells. 13 refs., 15 figures.

  3. Comparative alteration in atherogenic indices and hypocholesteremic effect of palm oil and palm oil mill effluent in normal albino rats.

    Science.gov (United States)

    Ajiboye, John A; Erukainure, Ochuko L; Lawal, Babatunde A; Nwachukwu, Viola A; Tugbobo-Amisu, Adesewa O; Okafor, Ebelechukwu N

    2015-09-01

    The comparative hypocholesteremic effect of feeding palm oil and palm oil mill effluent (POME) was investigated in male albino rats. Diets were prepared and designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein. Groups of six rats were each fed one of these diets, while a group was fed pelletized mouse chow which served as the control. Feeding on palm oil and POME led to a significant increase (p palm oil fed rats compared to POME. These results indicate the protective potentials of palm oil against cardiovascular disease, as well as hyperlipidemia that characterize obesity and hypertension; as compared to its effluent.

  4. Effect of 60Co-irradiation on normal and low protein diet fed rat brain

    International Nuclear Information System (INIS)

    Hasan, S.S.; Habibullah, M.

    1980-01-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain. (orig.) [de

  5. Elemental concentrations in kidney and liver of mice fed with cafeteria or standard diet determined by particle induced X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Dimer Leffa, Daniela [Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC (Brazil); Iochims dos Santos, Carla Eliete; Debastiani, Rafaela; Amaral, Livio; Yoneama, Maria Lucia; Ferraz Dias, Johnny [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Porto Alegre (Brazil); Moraes Andrade, Vanessa, E-mail: vmoraesdeandrade@yahoo.com.br [Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC (Brazil)

    2014-01-01

    The importance of trace elements in human health is well known and their main source is daily diet. Nowadays, one of the biggest issues is the presence of these micronutrients in levels much higher than required, leading to potential toxic effects. The aim of this work was to investigate the elemental content in organs of mice fed with cafeteria or standard diet using PIXE. Twelve male Swiss mice were divided into two groups: control group (standard chow) and cafeteria group (high-caloric diet). After 17 weeks, samples of different organs (kidney and liver) were collected and prepared for PIXE analysis. The Fe concentration in kidney and liver was statistically higher in animals that received the cafeteria diet (p < 0.001). The Al and Si kidney contents were significantly higher for cafeteria diet in relation to standard diet (p < 0.05). Moreover, the standard diet showed significant differences for Cl and K (p < 0.05) in comparison to cafeteria diet in kidney, and for P, S and Zn (p < 0.005) in liver.

  6. Elemental concentrations in kidney and liver of mice fed with cafeteria or standard diet determined by particle induced X-ray emission

    International Nuclear Information System (INIS)

    Dimer Leffa, Daniela; Iochims dos Santos, Carla Eliete; Debastiani, Rafaela; Amaral, Livio; Yoneama, Maria Lucia; Ferraz Dias, Johnny; Moraes Andrade, Vanessa

    2014-01-01

    The importance of trace elements in human health is well known and their main source is daily diet. Nowadays, one of the biggest issues is the presence of these micronutrients in levels much higher than required, leading to potential toxic effects. The aim of this work was to investigate the elemental content in organs of mice fed with cafeteria or standard diet using PIXE. Twelve male Swiss mice were divided into two groups: control group (standard chow) and cafeteria group (high-caloric diet). After 17 weeks, samples of different organs (kidney and liver) were collected and prepared for PIXE analysis. The Fe concentration in kidney and liver was statistically higher in animals that received the cafeteria diet (p < 0.001). The Al and Si kidney contents were significantly higher for cafeteria diet in relation to standard diet (p < 0.05). Moreover, the standard diet showed significant differences for Cl and K (p < 0.05) in comparison to cafeteria diet in kidney, and for P, S and Zn (p < 0.005) in liver

  7. Assessment of epoxidized soy bean oil (ESBO) migrating into foods: comparison with ESBO-like epoxy fatty acids in our normal diet.

    Science.gov (United States)

    Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni

    2006-08-01

    Epoxidized soy bean oil (ESBO) was found to be toxic for rats, but the toxic constituent is unknown. It became an issue as the migration from the gaskets in the lids for jars into oily foods regularly far exceeds the European legal limit (overall migration limit and specific migration limit derived from the tolerable daily intake (TDI)). In the context of risk management it was of interest to determine the epoxidized fatty acids of ESBO in those foods of our normal diet which are expected to contain the highest concentrations, i.e., oxidized edible oils (including degraded frying oils), fried foods, bakery ware and roasted meat. The contribution of epoxy oleic acid from ESBO to our diet turned out to be negligible. If this acid were the toxic component in ESBO, the toxicological assessment would primarily be a warning regarding oxidized fats and oils. The contribution of diepoxy linoleic acid from ESBO might be similar to the exposure from oxidized fats and oils of our diet, whereas the intake of triepoxy linolenic acid from ESBO exceeds that from normal food by around two orders of magnitude. Hence use of an epoxidized edible oil virtually free of linolenic acid would be inconspicuous in our diet.

  8. RELATIONSHIP BETWEEN FRUCTOSE CONTENT OF A NORMAL KUWAITI DIET AND THE OBESITY EPIDEMIC

    Directory of Open Access Journals (Sweden)

    Dana Al-Salem

    2012-06-01

    Full Text Available This project investigates the prevalence of fructose intake in a normal Kuwaiti diet. The prevalence of metabolic syndrome and obesity in Kuwait has been on the rise in the last 2 decades; at the moment just over 74 percent of the population is overweight or obese, according to the World Health Organization. Fructose intake has recently received considerable negative media attention, as the use of high fructose corn syrups has become more widely used. Fructose intake has been believed to be linked with a rise in Metabolic Syndrome and an increase in obesity. It has been considered that moderate fructose consumption of ≤50g/day or ∼10% of total energy has no harmful effect on lipids and of ≤100g/day does not influence body weight. In this study 60 adult participants filled out a two day detailed food diary including quantities. The diaries were then analyzed by a dietitian using the USDA nutrient database and the Food Processor program version 9.9.0, and the total fructose intake per day of the normal Kuwaiti diet was calculated. In addition a 24- hour urine collection for fructose was measured to correlate the results with the food diaries. Once the results were tabulated and verified, a mean fructose intake of 27.9 grams was calculated, ranging in daily fructose intakes from 2.8 g to 101.6g per day. In conclusion the results showed an average daily intake of 27.9 grams of fructose, which is lower than the estimated moderate intake therefore, cannot be the major cause of metabolic syndrome or obesity in Kuwait.

  9. Metabolic adaptation to the aqueous leaf extract of Moringa oleifera Lam.-supplemented diet is related to the modulation of gut microbiota in mice.

    Science.gov (United States)

    Gao, Xiaoyu; Xie, Qiuhong; Liu, Ling; Kong, Ping; Sheng, Jun; Xiang, Hongyu

    2017-06-01

    The aqueous leaf extract of Moringa oleifera Lam. (LM-A) is reported to have many health beneficial bioactivities and no obvious toxicity, but have mild adverse effects. Little is known about the mechanism of these reported adverse effects. Notably, there has been no report about the influence of LM-A on intestinal microecology. In this study, animal experiments were performed to explore the relationships between metabolic adaptation to an LM-A-supplemented diet and gut microbiota changes. After 8-week feeding with normal chow diet, the body weight of mice entered a stable period, and one of the group received daily doses of 750-mg/kg body weight LM-A by gavage for 4 weeks (assigned as LM); the other group received the vehicle (assigned as NCD). The liver weight to body weight ratio was enhanced, and the ceca were enlarged in the LM group compared with the NCD group. LM-A-supplemented-diet mice elicited a uniform metabolic adaptation, including slightly influenced fasting glucose and blood lipid profiles, significantly reduced liver triglycerides content, enhanced serum lipopolysaccharide level, activated inflammatory responses in the intestine and liver, compromised gut barrier function, and broken intestinal homeostasis. Many metabolic changes in mice were significantly correlated with altered specific gut bacteria. Changes in Firmicutes, Eubacterium rectale/Clostridium coccoides group, Faecalibacterium prausnitzii, Akkermansia muciniphila, segmented filamentous bacteria, Enterococcus spp., and Sutterella spp. may play an important role in the process of host metabolic adaptation to LM-A administration. Our research provides an explanation of the adverse effects of LM-A administration on normal adult individuals in the perspective of microecology.

  10. Intraventricular Injection of LKB1 Inhibits the Formation of Diet-Induced Obesity in Rats by Activating the AMPK-POMC Neurons-Sympathetic Nervous System Axis

    Directory of Open Access Journals (Sweden)

    Pengjiao Xi

    2018-05-01

    Full Text Available Background/Aims: Obesity is increasingly becoming a major public health problem worldwide. Peripheral LKB1 inhibits white fat generation, but the effect of central LKB1 on diet-induced obesity (DIO is unknown. Therefore, we examined whether LKB1 over-expression in the hypothalamus can inhibit the development of obesity. Methods: Adult male Sprague-Dawley rats were anesthetized and placed in a stereotaxic apparatus. LKB1-AAV-EGFP (2.0 × 108 or 2.0 × 1010 vector genomes or Control-AAV-EGFP (2.0 × 108 vector genomes was injected into the third ventricle. After administration, the rats were fed a high-fat diet (HFD for 9 weeks to induce obesity. Rats fed a chow fat diet were used as normal controls. Results: LKB1 delivery decreased body weight, energy intake, fat mass, and serum lipid levels. LKB1 also improved HFD-induced hepatic fatty degeneration. Interestingly, LKB1 over-expression in the hypothalamus activated the AMPK-POMC neurons-sympathetic nervous system (SNS axis, which can release epinephrine to promote white fat browning. Conversely, the elevated expression of MC3R/MC4R inhibited food intake. These two factors worked together to inhibit the development of obesity. Conclusions: LKB1 in the hypothalamus may have therapeutic potential for DIO through the activation of the AMPK-POMC neurons-SNS axis.

  11. Intraventricular Injection of LKB1 Inhibits the Formation of Diet-Induced Obesity in Rats by Activating the AMPK-POMC Neurons-Sympathetic Nervous System Axis.

    Science.gov (United States)

    Xi, Pengjiao; Du, Jianying; Liang, Huimin; Han, Jie; Wu, Zhaoxia; Wang, Haomin; He, Lu; Wang, Qiming; Ge, Haize; Li, Yongmei; Xue, Jie; Tian, Derun

    2018-01-01

    Obesity is increasingly becoming a major public health problem worldwide. Peripheral LKB1 inhibits white fat generation, but the effect of central LKB1 on diet-induced obesity (DIO) is unknown. Therefore, we examined whether LKB1 over-expression in the hypothalamus can inhibit the development of obesity. Adult male Sprague-Dawley rats were anesthetized and placed in a stereotaxic apparatus. LKB1-AAV-EGFP (2.0 × 108 or 2.0 × 1010 vector genomes) or Control-AAV-EGFP (2.0 × 108 vector genomes) was injected into the third ventricle. After administration, the rats were fed a high-fat diet (HFD) for 9 weeks to induce obesity. Rats fed a chow fat diet were used as normal controls. LKB1 delivery decreased body weight, energy intake, fat mass, and serum lipid levels. LKB1 also improved HFD-induced hepatic fatty degeneration. Interestingly, LKB1 over-expression in the hypothalamus activated the AMPK-POMC neurons-sympathetic nervous system (SNS) axis, which can release epinephrine to promote white fat browning. Conversely, the elevated expression of MC3R/MC4R inhibited food intake. These two factors worked together to inhibit the development of obesity. LKB1 in the hypothalamus may have therapeutic potential for DIO through the activation of the AMPK-POMC neurons-SNS axis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Pattern of access determines influence of junk food diet on cue sensitivity and palatability.

    Science.gov (United States)

    Kosheleff, Alisa R; Araki, Jingwen; Hsueh, Jennifer; Le, Andrew; Quizon, Kevin; Ostlund, Sean B; Maidment, Nigel T; Murphy, Niall P

    2018-04-01

    Like drug addiction, cues associated with palatable foods can trigger food-seeking, even when sated. However, whether susceptibility to the motivating influence of food-related cues is a predisposing factor in overeating or a consequence of poor diet is difficult to determine in humans. Using a rodent model, we explored whether a highly palatable 'junk food' diet impacts responses to reward-paired cues in a Pavlovian-to-instrumental transfer test, using sweetened condensed milk (SCM) as the reward. The hedonic impact of SCM consumption was also assessed by analyzing licking microstructure. To probe the effects of pattern and duration of junk food exposure, we provided rats with either regular chow ad libitum (controls) or chow plus access to junk food for either 2 or 24 h per day for 1, 3, or 6 weeks. We also examined how individual susceptibility to weight gain related to these measures. Rats provided 24 h access to the junk food diet were insensitive to the motivational effects of a SCM-paired cue when tested sated even though their hedonic experience upon reward consumption was similar to controls. In contrast, rats provided restricted, 2 h access to junk food exhibited a cue generalization phenotype under sated conditions, lever-pressing with increased vigor in response to both a SCM-paired cue, and a cue not previously paired with reward. Hedonic response was also significantly higher in these animals relative to controls. These data demonstrate that the pattern of junk food exposure differentially alters the hedonic impact of palatable foods and susceptibility to the motivating influence of cues in the environment to promote food-seeking actions when sated, which may be consequential for understanding overeating and obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome.

    Science.gov (United States)

    Steiner, Michel A; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS). Rats were fed either standard chow (SC) or a cafeteria (CAF) diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S) diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks) and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure) were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% vs. controls) and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG) plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this model.

  14. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Michel Alexander Steiner

    2013-12-01

    Full Text Available The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1 in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO associated with metabolic syndrome (MetS. Rats were fed either standard chow (SC or a cafeteria (CAF diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% versus controls and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this

  15. Mouse Models of Diet-Induced Nonalcoholic Steatohepatitis Reproduce the Heterogeneity of the Human Disease

    Science.gov (United States)

    Machado, Mariana Verdelho; Michelotti, Gregory Alexander; Xie, Guanhua; de Almeida, Thiago Pereira; Boursier, Jerome; Bohnic, Brittany; Guy, Cynthia D.; Diehl, Anna Mae

    2015-01-01

    Background and aims Non-alcoholic steatohepatitis (NASH), the potentially progressive form of nonalcoholic fatty liver disease (NAFLD), is the pandemic liver disease of our time. Although there are several animal models of NASH, consensus regarding the optimal model is lacking. We aimed to compare features of NASH in the two most widely-used mouse models: methionine-choline deficient (MCD) diet and Western diet. Methods Mice were fed standard chow, MCD diet for 8 weeks, or Western diet (45% energy from fat, predominantly saturated fat, with 0.2% cholesterol, plus drinking water supplemented with fructose and glucose) for 16 weeks. Liver pathology and metabolic profile were compared. Results The metabolic profile associated with human NASH was better mimicked by Western diet. Although hepatic steatosis (i.e., triglyceride accumulation) was also more severe, liver non-esterified fatty acid content was lower than in the MCD diet group. NASH was also less severe and less reproducible in the Western diet model, as evidenced by less liver cell death/apoptosis, inflammation, ductular reaction, and fibrosis. Various mechanisms implicated in human NASH pathogenesis/progression were also less robust in the Western diet model, including oxidative stress, ER stress, autophagy deregulation, and hedgehog pathway activation. Conclusion Feeding mice a Western diet models metabolic perturbations that are common in humans with mild NASH, whereas administration of a MCD diet better models the pathobiological mechanisms that cause human NAFLD to progress to advanced NASH. PMID:26017539

  16. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease.

    Directory of Open Access Journals (Sweden)

    Mariana Verdelho Machado

    Full Text Available Non-alcoholic steatohepatitis (NASH, the potentially progressive form of nonalcoholic fatty liver disease (NAFLD, is the pandemic liver disease of our time. Although there are several animal models of NASH, consensus regarding the optimal model is lacking. We aimed to compare features of NASH in the two most widely-used mouse models: methionine-choline deficient (MCD diet and Western diet.Mice were fed standard chow, MCD diet for 8 weeks, or Western diet (45% energy from fat, predominantly saturated fat, with 0.2% cholesterol, plus drinking water supplemented with fructose and glucose for 16 weeks. Liver pathology and metabolic profile were compared.The metabolic profile associated with human NASH was better mimicked by Western diet. Although hepatic steatosis (i.e., triglyceride accumulation was also more severe, liver non-esterified fatty acid content was lower than in the MCD diet group. NASH was also less severe and less reproducible in the Western diet model, as evidenced by less liver cell death/apoptosis, inflammation, ductular reaction, and fibrosis. Various mechanisms implicated in human NASH pathogenesis/progression were also less robust in the Western diet model, including oxidative stress, ER stress, autophagy deregulation, and hedgehog pathway activation.Feeding mice a Western diet models metabolic perturbations that are common in humans with mild NASH, whereas administration of a MCD diet better models the pathobiological mechanisms that cause human NAFLD to progress to advanced NASH.

  17. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

    Science.gov (United States)

    Lecomte, Virginie; Kaakoush, Nadeem O; Maloney, Christopher A; Raipuria, Mukesh; Huinao, Karina D; Mitchell, Hazel M; Morris, Margaret J

    2015-01-01

    The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (Pdevelopment of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.

  18. Development of hepatocellular carcinoma in a murine model of nonalcoholic steatohepatitis induced by use of a high-fat/fructose diet and sedentary lifestyle.

    Science.gov (United States)

    Dowman, Joanna K; Hopkins, Laurence J; Reynolds, Gary M; Nikolaou, Nikolaos; Armstrong, Matthew J; Shaw, Jean C; Houlihan, Diarmaid D; Lalor, Patricia F; Tomlinson, Jeremy W; Hübscher, Stefan G; Newsome, Philip N

    2014-05-01

    Obesity is increasingly prevalent, strongly associated with nonalcoholic liver disease, and a risk factor for numerous cancers. Here, we describe the liver-related consequences of long-term diet-induced obesity. Mice were exposed to an extended obesity model comprising a diet high in trans-fats and fructose corn syrup concurrent with a sedentary lifestyle. Livers were assessed histologically using the nonalcoholic fatty liver disease (NAFLD) activity score (Kleiner system). Mice in the American Lifestyle-Induced Obesity Syndrome (ALIOS) model developed features of early nonalcoholic steatohepatitis at 6 months (mean NAFLD activity score = 2.4) and features of more advanced nonalcoholic steatohepatitis at 12 months, including liver inflammation and bridging fibrosis (mean NAFLD activity score = 5.0). Hepatic expression of lipid metabolism and insulin signaling genes were increased in ALIOS mice compared with normal chow-fed mice. Progressive activation of the mouse hepatic stem cell niche in response to ALIOS correlated with steatosis, fibrosis, and inflammation. Hepatocellular neoplasms were observed in 6 of 10 ALIOS mice after 12 months. Tumors displayed cytological atypia, absence of biliary epithelia, loss of reticulin, alteration of normal perivenular glutamine synthetase staining (absent or diffuse), and variable α-fetoprotein expression. Notably, perivascular tumor cells expressed hepatic stem cell markers. These studies indicate an adipogenic lifestyle alone is sufficient for the development of nonalcoholic steatohepatitis, hepatic stem cell activation, and hepatocarcinogenesis in wild-type mice. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Metabolic Effects of Ketogenic Diets

    OpenAIRE

    J Gordon Millichap

    1989-01-01

    The results of 24 metabolic profiles performed on 55 epileptic children receiving the classical ketogenic diet, the MCT diet, a modified MCT diet, and normal diets are reported from the University Department of Paediatrics, John Radcliffe Hospital, Oxford, England.

  20. DETERMINATION OF QUALITY PROPERTIES OF DIET ACIDOPHILUS BIFIDUS YOGHURT AND DIET YOGHURT

    Directory of Open Access Journals (Sweden)

    Oğuz GÜRSOY

    1999-03-01

    Full Text Available Diet yoghurt and diet Asidophilus bifidus yoghurt were produced from cow milk and fat ratio was decreased below 1 %. In production of diet Asidophilus bifidus yoghurt, freeze dried DVS culture which contains normal yoghurt bacteria (Streptococcus thermophilus ve Lactobacillus delbrueckii subsp. bulgaricus and therapeutic lactic acid bacteria (Lactobacillus acidophilus and Bifidobacteria was used. In production of diet yoghurt, normal yoghurt bacteria were used. Chemical, microbiological and sensory properties of these products were determined and compared. Generally, except the consistency sensed in mouth, chemical, microbiological and sensory properties were approximately same. Finally, these products were healthier than other yoghurt products, because of the amount of low fat and containing therapeutic bacteria.

  1. Identifying and managing an adverse food reaction in a polar bear (Ursus maritimus) by an elimination diet trial.

    Science.gov (United States)

    Monson, Sara; Minter, Larry J; Krouse, Marissa; De Voe, Ryan S

    2014-06-01

    A 16-yr-old polar bear (Ursus maritimus) presented with severe diarrhea shortly following transfer to the North Carolina Zoological Park. Multiple diagnostic procedures were performed over several months and the cause of the chronic diarrhea was inconclusive. Histologically, colonic mucosal biopsies were consistent with severe chronic eosinophilic and lymphoplasmacytic colitis with no evidence of etiologic agents present. A dietary elimination trial was conducted and an adverse food reaction to the dog chow in the diet was confirmed.

  2. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance.

    Directory of Open Access Journals (Sweden)

    Angela Pizzolla

    Full Text Available The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a 'western' diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND. Respiratory tolerance was induced by repeated intranasal (i.n. administration of ovalbumin (OVA, prior to induction of allergic airway inflammation (AAI by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation.

  3. Histochemical responses of rats exercised in two weekly frequencies and ingesting standard or hypercaloric diet

    Directory of Open Access Journals (Sweden)

    FI Freitas

    2009-07-01

    Full Text Available This study investigated if overfed rats present morphological and histochemical muscle adaptation similar to normally fed, both submitted to two different weekly frequencies of training. Thirty male Wistar rats were fed either with standard chow (SCØ or with hypercaloric diet (HCØ. They were subdivided into six subgroups: sedentary (SCØ and HCØ, trained twice/week (SC2 and HC2 and trained five times/week (SC5 and HC5. The trained groups swam 60 min/day, during 10 weeks. Twenty four hours after the last training, samples of Gastrocnemius were excised and stained with HE, NADH-TR and m-ATPase, and the capillary density was calculated. Total heart mass (HM and the mass of atrium (AM, left (LV and right (RV ventricles were excised and weighted. The comparisons were made by ANOVA and by Covariance analysis, adjusting the variables by body weight. The results showed that the HCØ achieved higher BM, however, absolute HM did not differ post training. Irrespective of the diet, rats that were trained twice a week presented significantly greater increase in the AM. In general, the SC5 and HC5 groups showed higher HM, LV, RV, proportion of oxidative fibres and capillary density, compared to the sedentary and twice week trained groups. A higher proportion of injuries (splitting was noted in the HC2 and HC5 compared to SC2 and SC5. These results indicate that the frequency of training influenced the skeletal and heart adaptation and larger changes were observed in the 5x/week group, which ingested the standard diet. The 5x/week training groups also presented large amount of muscle fibres damage.

  4. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration.

    Science.gov (United States)

    Du, Mei; Phelps, Eric; Balangue, Michael J; Dockins, Aaron; Moiseyev, Gennadiy; Shin, Younghwa; Kane, Shelley; Otalora, Laura; Ma, Jian-Xing; Farjo, Rafal; Farjo, Krysten M

    2017-08-01

    Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.

  5. Is splenectomy a dyslipidemic intervention? Experimental response of serum lipids to different diets and operations.

    Science.gov (United States)

    Paulo, Danilo N S; Paulo, Isabel Cal; Morais, Alvaro A C; Kalil, Mitre; Guerra, Alvino J; Colnago, Geraldo L; Faintuch, Joel

    2009-01-01

    Spleen removal may be recommended during organ transplantation in ABO-incompatible recipients as well as for hypoperfusion of the grafted liver, besides conventional surgical indications, but elevation of serum lipids has been observed in certain contexts. Aiming to analyze the influence of two dietary regimens on lipid profile, an experimental study was conducted. Male Wistar rats (n = 86, 333.0 +/- 32.2 g) were divided in four groups: group 1: controls; group 2: sham operation; group 3: total splenectomy; group 4: subtotal splenectomy with upper pole preservation; subgroups A (cholesterol reducing chow) and B (cholesterol-rich mixture) were established, and diet was given during 90 days. Total cholesterol (Tchol), high-density lipoprotein (HDL), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), and triglycerides were documented. After total splenectomy, hyperlipidemia ensued with cholesterol-reducing chow. Tchol, LDL, VLDL, triglycerides, and HDL changed from 56.4 +/- 9.2, 24.6 +/- 4.7, 9.7 +/- 2.2, 48.6 +/- 11.1, and 22.4 +/- 4.3 mg/dL to 66.9 +/- 11.4, 29.9 +/- 5.9, 10.9 +/- 2.3, 54.3 +/- 11.4, and 26.1 +/- 5.1 mg/dL, respectively. Upper pole preservation inhibited abnormalities of Tchol, HDL, VLDL, and triglycerides, and LDL decreased (23.6 +/- 4.9 vs. 22.1 +/- 5.1, P = 0.002). Higher concentrations were triggered by splenectomy and cholesterol-enriched diet (Tchol 59.4 +/- 10.1 vs. 83.9 +/- 14.3 mg/dL, P = 0.000), and upper-pole preservation diminished without abolishing hyperlipidemia (Tchol 55.9 +/- 10.0 vs. 62.3 +/- 7.8, P = 0.002). After splenectomy, hyperlipidemia occurred with both diets. Preservation of the upper pole tended to correct dyslipidemia in modality A and to attenuate it in subgroup B. (c) 2008 Wiley-Liss, Inc.

  6. Diet-induced dyslipidemia leads to nonalcoholic fatty liver disease and oxidative stress in guinea pigs

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille; Birck, Malene Muusfeldt; Ipsen, David Højland

    2016-01-01

    Chronic dyslipidemia imposed by a high-fat and high-caloric dietary regime leads to debilitating disorders such as obesity, nonalcoholic fatty liver disease (NAFLD), and insulin resistance. As disease rates surge, so does the need for high validity animal models to effectively study the causal...... and either 15% or 20% sucrose) compared with isocaloric standard chow in adult guinea pigs. Biochemical markers confirmed dyslipidemia in agreement with dietary regimens; however, both high-fat groups displayed a decreased tissue fat percentage compared with controls. Macroscopic appearance, histopathologic....... Evaluation of glucose tolerance showed no indication of insulin resistance. The 5% increase in sucrose between the 2 high-fat diets did not lead to significant differences between groups. In conclusion, we find the dyslipidemic guinea pig to be a valid model of diet imposed dyslipidemia, particularly...

  7. Effect of Seyoeum on Obesity, Insulin Resistance, and Nonalcoholic Fatty Liver Disease of High-Fat Diet-Fed C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Hyun-Young Na

    2017-01-01

    Full Text Available Background. This study was performed to evaluate the effect of Seyoeum (SYE, a novel herbal meal replacement, on insulin resistance and nonalcoholic fatty liver disease (NAFLD in obese mice fed with a high-fat diet (HFD. Methods. SYE contained six kinds of herbal powder such as Coix lacryma-jobi, Oryza sativa, Sesamum indicum, Glycine max, Liriope platyphylla, and Dioscorea batatas. Male C57BL/6 mice were divided into four groups: normal chow (NC, HFD, SYE, and HFD plus SYE (HFD + SYE. The mice in groups other than NC were fed HFD for 9 weeks to induce obesity and then were fed each diet for 6 weeks. Clinical markers related to obesity, diabetes, and NAFLD were examined and gene expressions related to inflammation and insulin receptor were determined. Results. Compared with HFD group, body weight, serum glucose, serum insulin, HOMA-IR, total cholesterol, triglyceride, epididymal fat pad weight, liver weight, and inflammatory gene expression were significantly reduced in SYE group. Insulin receptor gene expression increased in SYE group. Conclusions. Based on these results, we conclude that SYE improved obesity and insulin resistance in high-fat fed obese mice. Our findings suggest that SYE could be a beneficial meal replacement through these antiobesity and anti-insulin resistance effects.

  8. Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice.

    Science.gov (United States)

    Dalby, Matthew J; Ross, Alexander W; Walker, Alan W; Morgan, Peter J

    2017-11-07

    Evidence suggests that altered gut microbiota composition may be involved in the development of obesity. Studies using mice made obese with refined high-fat diets have supported this; however, these have commonly used chow as a control diet, introducing confounding factors from differences in dietary composition that have a key role in shaping microbiota composition. We compared the effects of feeding a refined high-fat diet with those of feeding either a refined low-fat diet or a chow diet on gut microbiota composition and host physiology. Feeding both refined low- or high-fat diets resulted in large alterations in the gut microbiota composition, intestinal fermentation, and gut morphology, compared to a chow diet. However, body weight, body fat, and glucose intolerance only increased in mice fed the refined high-fat diet. The choice of control diet can dissociate broad changes in microbiota composition from obesity, raising questions about the previously proposed relationship between gut microbiota and obesity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis.

    Science.gov (United States)

    Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran

    2018-01-01

    Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. C5a receptor deficiency alters energy utilization and fat storage.

    Directory of Open Access Journals (Sweden)

    Christian Roy

    Full Text Available To investigate the impact of whole body C5a receptor (C5aR deficiency on energy metabolism and fat storage.Male wildtype (WT and C5aR knockout (C5aRKO mice were fed a low fat (CHOW or a high fat high sucrose diet-induced obesity (DIO diet for 14 weeks. Body weight and food intake were measured weekly. Indirect calorimetry, dietary fatload clearance, insulin and glucose tolerance tests were also evaluated. Liver, muscle and adipose tissue mRNA gene expression were measured by RT-PCR.At week one and 12, C5aRKO mice on DIO had increased oxygen consumption. After 12 weeks, although food intake was comparable, C5aRKO mice had lower body weight (-7% CHOW, -12% DIO as well as smaller gonadal (-38% CHOW, -36% DIO and inguinal (-29% CHOW, -30% DIO fat pads than their WT counterparts. Conversely, in WT mice, C5aR was upregulated in DIO vs CHOW diets in gonadal adipose tissue, muscle and liver, while C5L2 mRNA expression was lower in C5aRKO on both diet. Furthermore, blood analysis showed lower plasma triglyceride and non-esterified fatty acid levels in both C5aRKO groups, with faster postprandial triglyceride clearance after a fatload. Additionally, C5aRKO mice showed lower CD36 expression in gonadal and muscle on both diets, while DGAT1 expression was higher in gonadal (CHOW and liver (CHOW and DIO and PPARγ was increased in muscle and liver.These observations point towards a role (either direct or indirect for C5aR in energy expenditure and fat storage, suggesting a dual role for C5aR in metabolism as well as in immunity.

  11. Inclusion of Almonds in a Cholesterol-Lowering Diet Improves Plasma HDL Subspecies and Cholesterol Efflux to Serum in Normal-Weight Individuals with Elevated LDL Cholesterol.

    Science.gov (United States)

    Berryman, Claire E; Fleming, Jennifer A; Kris-Etherton, Penny M

    2017-08-01

    Background : Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function. Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes. Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants ( n = 48) and in normal-weight (body mass index: almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL ( P almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable circulating HDL subpopulation distribution and improve cholesterol efflux in normal-weight individuals with elevated LDL cholesterol. This trial was registered at clinicaltrials.gov as NCT01101230. © 2017

  12. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Effect of /sup 60/Co-irradiation on normal and low protein diet fed rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S S [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Zoology; Habibullah, M [Jawaharlal Nehru Univ., New Delhi (India). Neurobiology Lab.

    1980-06-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain.

  14. Characterization of attenuated food motivation in high-fat diet-induced obesity: Critical roles for time on diet and reinforcer familiarity.

    Science.gov (United States)

    Tracy, Andrea L; Wee, Colin J M; Hazeltine, Grace E; Carter, Rebecca A

    2015-03-15

    Prior work using animal models to study the effects of obesogenic diets on food motivation have generated inconsistent results, with some reporting increases and others reporting decreases in responding on food-reinforced tasks. Here, we identified two specific variables that may account for these discrepant outcomes - the length of time on the obesigenic diet and the familiarity of the food reinforcer - and examined the independent roles of these factors. Time on diet was found to be inversely related to food motivation, as rats consuming a 40% high-fat diet (HFD) for only 3weeks did not differ from chow-fed rats when responding for a sucrose reinforcer on a progressive ratio (PR) schedule, but responding was suppressed after 6weeks of ad lib HFD consumption. Explicitly manipulating experience with the sucrose reinforcer by pre-exposing half the rats prior to 10weeks of HFD consumption attenuated the motivational deficit seen in the absence of this familiarity, resulting in obese rats performing at the same level as lean rats. Finally, after 8weeks on a HFD, rats did not express a conditioned place preference for sucrose, indicating a decrement in reward value independent of motivation. These findings are consistent with prior literature showing an increase in food motivation for rats with a shorter time consuming the obesigenic diet, and for those with more prior experience with the reinforcer. This account also helps reconcile these findings with increased food motivation in obese humans due to extensive experience with palatable food and suggests that researchers engaging in non-human animal studies of obesity would better model the conditions under which human obesity develops by using a varied, cafeteria-style diet to increase the breadth of food experiences. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet-Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits.

    Science.gov (United States)

    Wang, Chuan; Nishijima, Kazutoshi; Kitajima, Shuji; Niimi, Manabu; Yan, Haizhao; Chen, Yajie; Ning, Bo; Matsuhisa, Fumikazu; Liu, Enqi; Zhang, Jifeng; Chen, Y Eugene; Fan, Jianglin

    2017-07-01

    Endothelial lipase (EL) is a key determinant in plasma high-density lipoprotein-cholesterol. However, functional roles of EL on the development of atherosclerosis have not been clarified. We investigated whether hepatic expression of EL affects plasma lipoprotein metabolism and cholesterol diet-induced atherosclerosis. We generated transgenic (Tg) rabbits expressing the human EL gene in the liver and then examined the effects of EL expression on plasma lipids and lipoproteins and compared the susceptibility of Tg rabbits with cholesterol diet-induced atherosclerosis with non-Tg littermates. On a chow diet, hepatic expression of human EL in Tg rabbits led to remarkable reductions in plasma levels of total cholesterol, phospholipids, and high-density lipoprotein-cholesterol compared with non-Tg controls. On a cholesterol-rich diet for 16 weeks, Tg rabbits exhibited significantly lower hypercholesterolemia and less atherosclerosis than non-Tg littermates. In Tg rabbits, gross lesion area of aortic atherosclerosis was reduced by 52%, and the lesions were characterized by fewer macrophages and smooth muscle cells compared with non-Tg littermates. Increased hepatic expression of EL attenuates cholesterol diet-induced hypercholesterolemia and protects against atherosclerosis. © 2017 American Heart Association, Inc.

  16. Investigation of the effects of oleuropein rich diet on rat enteric bacterial flora.

    Science.gov (United States)

    Kiraz, A; Simsek, T; Tekin, S Z; Elmas, S; Tekin, M; Sahin, H; Altinisik, H B; Pala, C

    2016-01-01

    Oleuropein is a phenolic compound of olive leaves. Enteric bacterial flora is very important for human health and diet is a directly affecting factor of enteric bacterial flora composition. In this study, it was hypothesized that oleuropein could reduce total aerobic bacterial count in rat caecal flora. Twenty adult, male, Wistar albino rats were randomly divided into two groups. Group C (n=10) was fed with standard rat chow and water for 30 days. Group O (n=10) received olive leaf extract 20 mg/kg/day by intragastric gavage in addition to standard rat chow and water for 30 days. One gram of caecal content was collected from each rat and then consecutive 10-fold serial dilutions were prepared with a final concentration of 10-8. Then 0.1 ml of each dilution were spread onto the surfaces of Plate Count Agar and Violet Red Bile Glucose Agar to enumerate the aerobic enteric bacteria. Total aerobic bacterial counts of Group O were significantly lower than of Group C in all agar plates inoculated with ceacal samples for every dilution (pbacterial translocation by reducing enteric bacterial counts (Tab. 1, Ref. 32).

  17. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet.

    Directory of Open Access Journals (Sweden)

    David N Ruskin

    2009-12-01

    Full Text Available The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow or ketogenic diet (79% fat ad libitum for 3-4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund's adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults.

  18. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.

    Science.gov (United States)

    Madan, Monika; Amar, Salomon

    2008-09-12

    Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE(+/-) mice. To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE(+/-)-TLR2(+/+), ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 microl live Porphyromonas gingivalis (P.g) (10(7) CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE(+/-)-TLR2(+/+) mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE(+/-)-TLR2(+/+) mice were significantly higher than from ApoE(+/-)-TLR2(+/-) and ApoE(+/-)-TLR2(-/-) mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE(+/-)-TLR2(+/+) mice compared to ApoE(+/-)-TLR2(+/-) and TLR2(-/-) mice, irrespective of diet or bacterial challenge. ApoE(+/-)-TLR2(+/+) mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE(+/-)-TLR2(-/-) mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimensional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE(+/-)-TLR2(+/+) mice

  19. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings.

    Directory of Open Access Journals (Sweden)

    Monika Madan

    2008-09-01

    Full Text Available Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE(+/- mice.To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE(+/--TLR2(+/+, ApoE(+/--TLR2(+/- and ApoE(+/--TLR2(-/- mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 microl live Porphyromonas gingivalis (P.g (10(7 CFU or vehicle (normal saline. Animals were euthanized 24 weeks after the first inoculation. ApoE(+/--TLR2(+/+ mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE(+/--TLR2(+/- and ApoE(+/--TLR2(-/- mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE(+/--TLR2(+/+ mice were significantly higher than from ApoE(+/--TLR2(+/- and ApoE(+/--TLR2(-/- mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE(+/--TLR2(+/+ mice compared to ApoE(+/--TLR2(+/- and TLR2(-/- mice, irrespective of diet or bacterial challenge. ApoE(+/--TLR2(+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE(+/--TLR2(-/- mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS of aortic samples analyzed by 2-dimensional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE(+/--TLR2(+/+ mice fed the high fat

  20. Life-long Maternal Cafeteria Diet Promotes Tissue-Specific Morphological Changes in Male Offspring Adult Rats

    Directory of Open Access Journals (Sweden)

    CAROLYNE D.S. SANTOS

    Full Text Available ABSTRACT Here, we evaluated whether the exposure of rats to a cafeteria diet pre- and/or post-weaning, alters histological characteristics in the White Adipose Tissue (WAT, Brown Adipose Tissue (BAT, and liver of adult male offspring. Female Wistar rats were divided into Control (CTL; fed on standard rodent chow and Cafeteria (CAF; fed with the cafeteria diet throughout life, including pregnancy and lactation. After birth, only male offspring (F1 were maintained and received the CTL or CAF diets; originating four experimental groups: CTL-CTLF1; CTL-CAFF1; CAF-CTLF1; CAF-CAFF1. Data of biometrics, metabolic parameters, liver, BAT and WAT histology were assessed and integrated using the Principal Component Analysis (PCA. According to PCA analysis worse metabolic and biometric characteristics in adulthood are associated with the post-weaning CAF diet compared to pre and post weaning CAF diet. Thus, the CTL-CAFF1 group showed obesity, higher deposition of fat in the liver and BAT and high fasting plasma levels of glucose, triglycerides and cholesterol. Interestingly, the association between pre and post-weaning CAF diet attenuated the obesity and improved the plasma levels of glucose and triglycerides compared to CTL-CAFF1 without avoiding the higher lipid accumulation in BAT and in liver, suggesting that the impact of maternal CAF diet is tissue-specific.

  1. Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young.

    Directory of Open Access Journals (Sweden)

    Helge Ræder

    Full Text Available CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL. The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas.We established a monotransgenic floxed (flanking LOX sequences mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL. Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD as well as the effects of short-term and long-term cerulein exposure.Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation.In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.

  2. Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young).

    Science.gov (United States)

    Ræder, Helge; Vesterhus, Mette; El Ouaamari, Abdelfattah; Paulo, Joao A; McAllister, Fiona E; Liew, Chong Wee; Hu, Jiang; Kawamori, Dan; Molven, Anders; Gygi, Steven P; Njølstad, Pål R; Kahn, C Ronald; Kulkarni, Rohit N

    2013-01-01

    CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas. We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure. Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation. In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.

  3. Relationship between pickiness and subsequent development in body mass index and diet intake in obesity prone normal weight preschool children

    DEFF Research Database (Denmark)

    Rohde, Jeanett Friis; Händel, Mina Nicole; Stougaard, Maria

    2017-01-01

    the consequence of pickiness on subsequent changes in diet intake and weight are limited. Objectives: To examine whether pickiness influences body mass index as well as diet intake over subsequent 15 months among obesity prone normal weight children aged 2–6 years. Methods: Data was obtained from the “Healthy...... Start” intervention study which included 271 children aged 2–6 years susceptible to overweight later in life. Information on pickiness was obtained from a parental questionnaire. Dietary habits were collected by 4-day dietary records filled in by the parents and height and weight were measured...

  4. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein.

    Science.gov (United States)

    Bielohuby, Maximilian; Menhofer, Dominik; Kirchner, Henriette; Stoehr, Barbara J M; Müller, Timo D; Stock, Peggy; Hempel, Madlen; Stemmer, Kerstin; Pfluger, Paul T; Kienzle, Ellen; Christ, Bruno; Tschöp, Matthias H; Bidlingmaier, Martin

    2011-01-01

    Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.

  5. Tempol improves lipid profile and prevents left ventricular hypertrophy in LDL receptor gene knockout (LDLr-/-) mice on a high-fat diet.

    Science.gov (United States)

    Viana Gonçalves, Igor Cândido; Cerdeira, Cláudio Daniel; Poletti Camara, Eduardo; Dias Garcia, José Antônio; Ribeiro Pereira Lima Brigagão, Maísa; Bessa Veloso Silva, Roberta; Bitencourt Dos Santos, Gérsika

    2017-09-01

    Dyslipidemia is associated with increased risk of cardiovascular disease and atherosclerosis, and hence with high morbidity and mortality. This study investigated the effects of the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) on lipid profile and cardiac morphology in low-density lipoprotein (LDL) receptor gene knockout (LDLr-/-) mice. Male LDLr-/- mice (three months old, approximately 22 g weight) were divided into the following groups: controls, including (1) standard chow (SC, n=8) and (2) high-fat diet (HFD, n=8); and treatment, including (3) standard chow + Tempol (SC+T, n=8) (30 mg/kg administered by gavage, once daily) and (4) high-fat diet + Tempol (HFD+T, n=8) (30 mg/kg). After 30 days of the diet/treatment, whole blood was collected for analysis of biochemical parameters (total cholesterol, triglycerides [TG], high-density lipoprotein [HDL], LDL, and very low-density lipoprotein [VLDL]). The heart was removed through thoracotomy and histological analysis of the left ventricle was performed. A significant increase in TG, LDL, and VLDL and marked left ventricular hypertrophy (LVH) were demonstrated in the HFD group relative to the SC group (p<0.05), while Tempol treatment (HFD+T group) significantly (p<0.05) prevented increases in the levels of these lipid profile markers and attenuated LVH compared with the HFD group. In this study, Tempol showed potential for the prevention of events related to serious diseases of the cardiovascular system. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Leucine supplementation improves acquired growth hormone resistance in rats with protein-energy malnutrition.

    Science.gov (United States)

    Gao, Xuejin; Tian, Feng; Wang, Xinying; Zhao, Jie; Wan, Xiao; Zhang, Li; Wu, Chao; Li, Ning; Li, Jieshou

    2015-01-01

    Protein-energy malnutrition (PEM) can lead to growth hormone (GH) resistance. Leucine supplementation diets have been shown to increase protein synthesis in muscles. Our study aimed at investigating if long-term leucine supplementation could modulate GH-insulin-like growth factor (IGF)-1 system function and mammalian target of rapamycin (mTOR)-related signal transduction in skeletal muscles in a rat model of severe malnutrition. Male Sprague-Dawley rats (n = 50; weight, 302 ± 5 g) were divided into 5 treatment groups, including 2 control groups (a normal control group that was fed chow and ad libitum water [CON, n = 10] and a malnourished control group [MC, n = 10] that was fed a 50% chow diet). After undergoing a weight loss stage for 4 weeks, rats received either the chow diet (MC-CON, n = 10), the chow diet supplemented with low-dose leucine (MC-L, n = 10), or the chow diet supplemented with high-dose leucine (MC-H, n = 10) for 2 weeks. The muscle masses of the gastrocnemius, soleus, and extensor digitorum longus were significantly reduced in the MC group. Re-feeding increased muscle mass, especially in the MC-L and MC-H groups. In the MC group, serum IGF-1, IGF-binding protein (IGFBP)-3, and hepatic growth hormone receptor (GHR) levels were significantly decreased and phosphorylation of the downstream anabolic signaling effectors protein kinase B (Akt), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were significantly lower than in other groups. However, serum IGF-1 and IGF binding protein (IGFBP)-3 concentrations and hepatic growth hormone receptor (GHR) levels were significantly higher in the MC-L and MC-H groups than in the MC-CON group, and serum IGFBP-1 levels was significantly reduced in the MC-L and MC-H groups. These changes were consistent with those observed for hepatic mRNA expression levels. Phosphorylation of the downstream anabolic signaling effectors Akt, mTOR, and S6K1 were also significantly higher in the MC-L and MC-H groups than in the MC

  7. Serum Fetuin-A Levels Related with Microalbuminuria in Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2013-01-01

    Full Text Available The aim of the study was to investigate the association between elevated serum fetuin-A and increased urine albumin excretion in obese rats, and whether increased urine albumin excretion was modified by improving hepatic steatosis and lipid metabolism disorder. Male Wistar rats 4 weeks in age were randomly divided into three groups and fed with normal chow (control group, high-fat chow (obesity group, or high-fat chow plus fenofibrate (fenofibrate group. After 24 weeks, both body weight and visceral fat/body weight ratio in obese rats were higher than in controls. A difference in serology markers and pathology associated with hepatic steatosis was also found among the three groups. Serum fetuin-A and the expression of NF-κB in the liver were increased, while serum adiponectin was decreased in obese rats in comparison to controls (. Urinary albumin/creatinine ratio (ACR was increased in the obesity group compared to controls (. The fenofibrate intervention reduced serum fetuin-A and NF-κB expression in the liver and increased serum adiponectin compared to obese rats and was accompanied by decrease in ACR. A positive correlation was found between ACR and fetuin-A (, , and a negative correlation was found between ACR and adiponectin (, . We conclude that elevated fetuin-A levels are associated with microalbuminuria in obese rats, and abnormal albuminuria is reversible by improving hepatic steatosis.

  8. Kinetic Assessment and Therapeutic Modulation of Metabolic and Inflammatory Profiles in Mice on a High-Fat and Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Laura W. Engstrom

    2010-01-01

    Full Text Available The kinetics of metabolic and inflammatory parameters associated with obesity were evaluated in a murine diet-induced obesity (DIO model using a diet high in fat and cholesterol. Cellular infiltration and mediator production were assessed and shown to be therapeutically modulated by the PPARgamma agonist rosiglitazone. C57BL/6 mice were maintained on a 45% fat/0.12% cholesterol (HF/CH or Chow diet for 3, 6, 16, or 27 weeks. Flow cytometry was employed to monitor peripheral blood monocytes and adipose tissue macrophages (ATM. Gene expression and protein analysis methods were used to evaluate mediator production from total epididymal fat (EF, stromal vascular fraction (SVF, and sorted SVF cells. To investigate therapeutic intervention, mice were fed a HF/CH diet for 12 weeks and then a diet formulated with rosiglitazone (5 mg/kg for an additional 6 weeks. A HF/CH diet correlated with obesity and a dramatic proinflammatory state. Therapeutic intervention with rosiglitazone attenuated the HF/CH induced inflammation. In addition, a novel population was found that expressed the highest levels of the pro-inflammatory mediators CCL2 and IL-6.

  9. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  10. Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Chenyang Lu

    2017-05-01

    Full Text Available Multiple lines of evidence suggest that the gut microbiota plays vital roles in metabolic diseases such as hyperlipidemia. Previous studies have confirmed that krill oil can alleviate hyperlipidemia, but the underlying mechanism remains unclear. To discern whether krill oil changes the structure of the gut microbiota during the hyperlipidemia treatment, 72 mice were acclimatized with a standard chow diet for 2 weeks and then randomly allocated to receive a standard chow diet (control group, n = 12 or a high-sugar-high-fat (HSHF diet supplemented with a low (100 μg/g·d, HSHF+LD group, n = 12, moderate (200 μg/g·d, HSHF+MD group, n = 12 or high dosage of krill oil (600 μg/g·d, HSHF+HD group, n = 12, simvastatin (HSHF+S group, n = 12 or saline (HSHF group, n = 12 continuously for 12 weeks. The resulting weight gains were attenuated, the liver index and the low-density lipoprotein, total cholesterol and triglyceride concentrations showed a stepwise reduction in the treated groups compared with those of the control group. A dose-dependent modulation of the gut microbiota was observed after treatment with krill oil. Low- and moderate- doses of krill oil increased the similarity between the composition of the HSHF diet-induced gut microbiota and that of the control, whereas the mice fed the high-dose exhibited a unique gut microbiota structure that was different from that of the control and HSHF groups. Sixty-five key operational taxonomic units (OTUs that responded to the krill oil treatment were identified using redundancy analysis, of which 26 OTUs were increased and 39 OTUs were decreased compared with those of the HSHF group. In conclusion, the results obtained in this study suggest that the structural alterations in the gut microbiota induced by krill oil treatment were dose-dependent and associated with the alleviation of hyperlipidemia. Additionally, the high-dose krill oil treatment showed combined effects on the alleviation of

  11. High-fat diet determines the composition of the murine gut microbiome independently of obesity.

    Science.gov (United States)

    Hildebrandt, Marie A; Hoffmann, Christian; Sherrill-Mix, Scott A; Keilbaugh, Sue A; Hamady, Micah; Chen, Ying-Yu; Knight, Rob; Ahima, Rexford S; Bushman, Frederic; Wu, Gary D

    2009-11-01

    The composition of the gut microbiome is affected by host phenotype, genotype, immune function, and diet. Here, we used the phenotype of RELMbeta knockout (KO) mice to assess the influence of these factors. Both wild-type and RELMbeta KO mice were lean on a standard chow diet, but, upon switching to a high-fat diet, wild-type mice became obese, whereas RELMbeta KO mice remained comparatively lean. To investigate the influence of diet, genotype, and obesity on microbiome composition, we used deep sequencing to characterize 25,790 16S rDNA sequences from uncultured bacterial communities from both genotypes on both diets. We found large alterations associated with switching to the high-fat diet, including a decrease in Bacteroidetes and an increase in both Firmicutes and Proteobacteria. This was seen for both genotypes (ie, in the presence and absence of obesity), indicating that the high-fat diet itself, and not the obese state, mainly accounted for the observed changes in the gut microbiota. The RELMbeta genotype also modestly influenced microbiome composition independently of diet. Metagenomic analysis of 537,604 sequence reads documented extensive changes in gene content because of a high-fat diet, including an increase in transporters and 2-component sensor responders as well as a general decrease in metabolic genes. Unexpectedly, we found a substantial amount of murine DNA in our samples that increased in proportion on a high-fat diet. These results demonstrate the importance of diet as a determinant of gut microbiome composition and suggest the need to control for dietary variation when evaluating the composition of the human gut microbiome.

  12. Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring.

    Directory of Open Access Journals (Sweden)

    Chantal Anne Pileggi

    2016-11-01

    Full Text Available A maternal high-fat (HF diet during pregnancy can lead to metabolic compromise such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat or a high fat diet (HFD; 45% kcal from fat for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1 and mitochondrial transcription factor A (mtTFA were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS respiratory complex subunits were supressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%, which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%. Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle.

  13. Effect of Irradiation Maternal Diets on the Post-natal Development of Brain Rat Pups

    International Nuclear Information System (INIS)

    Hasan, S.S.

    2005-09-01

    Full text: Effect of Protein-calorie malnutrition was studied on the pups born to mothers receiving either irradiated normal diet (consisted equal parts of gram and wheat) or irradiation low protein diet (consisted one part of normal diet and three parts of heat). Level of DNA, RNA and protein content were found markedly reduced in the brain of irradiated low protein diet fed pups than in the pups fed on the irradiated normal diet. Glucose 6-phosphate dehydrogenase activity was found lower while catalase and lipid peroxidation activity were higher in the pups given irradiated low protein diet, compared whit the pups fed irradiated normal diet. On the whole both the irradiated low protein diet as well as irradiated normal diet fed pups showed higher index of biochemical changes than in the unirradiated low protein diet fed pups. Post-natal mortality was 60% in the pups given irradiated low protein diet, whereas the pups fed on the irradiated normal diet and unirradiated low protein diet did not show any death. The study given evidence that feeding of the irradiated low protein diet interferes more with the development of brain compared with the pups fed on irradiated normal diet

  14. Use of fenbendazole-containing therapeutic diets for mice in experimental cancer therapy studies.

    Science.gov (United States)

    Duan, Qiwen; Liu, Yanfeng; Booth, Carmen J; Rockwell, Sara

    2012-03-01

    Pinworm infection (oxyuriasis) is a common problem in rodent colonies. Facility-wide prophylactic treatment of all mice with a diet containing therapeutic levels of fenbendazole for several weeks is often used to control pinworm outbreaks. We examined the effect of feeding a therapeutic diet containing 150 ppm fenbendazole on the growth of EMT6 mouse mammary tumors implanted into BALB/c Rw mice. Mice were randomized to receive either a fenbendazole-containing or control diet for 1 wk before tumor cells were injected intradermally in the flanks and throughout tumor growth. Tumor growth was monitored by serial measurements of tumor diameters from the time tumors became palpable until they reached 1000 mm3. The medicated diet did not alter tumor growth, invasion, or metastasis. When tumors reached volumes of approximately 100 mm3, some were irradiated locally with 10 Gy of X-rays. Irradiation significantly delayed tumor growth; fenbendazole did not alter the radiation-induced growth delay. However, cell culture studies showed that fenbendazole concentrations not far above those expected in the tissues of mice on this diet altered the growth of the tumor cells in culture. Recent data from other laboratories also have demonstrated effects of fenbendazole that could complicate experiments. Care should therefore be exercised in deciding whether chow containing fenbendazole should be administered to mouse colonies being used in cancer research.

  15. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Science.gov (United States)

    Tan, Si; Li, Mingxia; Ding, Xiaobo; Fan, Shengjie; Guo, Lu; Gu, Ming; Zhang, Yu; Feng, Li; Jiang, Dong; Li, Yiming; Xi, Wanpeng; Huang, Cheng; Zhou, Zhiqin

    2014-01-01

    Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  16. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Si Tan

    Full Text Available INTRODUCTION: Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle fruit extract (FME on high-fat diet-induced C57BL/6 obese mice. METHODS: The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow, high-fat diet (HF, and high-fat diet with 1% (w/w extract of kumquat (HF+FME for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. RESULTS: In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC, serum low density lipoprotein cholesterol (LDL-c levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG, serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. CONCLUSION: Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  17. Beneficial effect of an omega-6 PUFA-rich diet in non-steroidal anti-inflammatory drug-induced mucosal damage in the murine small intestine.

    Science.gov (United States)

    Ueda, Toshihide; Hokari, Ryota; Higashiyama, Masaaki; Yasutake, Yuichi; Maruta, Koji; Kurihara, Chie; Tomita, Kengo; Komoto, Shunsuke; Okada, Yoshikiyo; Watanabe, Chikako; Usui, Shingo; Nagao, Shigeaki; Miura, Soichiro

    2015-01-07

    To investigate the effect of a fat rich diet on non-steroidal anti-inflammatory drug (NSAID)-induced mucosal damage in the murine small intestine. C57BL6 mice were fed 4 types of diets with or without indomethacin. One group was fed standard laboratory chow. The other groups were fed a fat diet consisting of 8% w/w fat, beef tallow (rich in SFA), fish oil, (rich in omega-3 PUFA), or safflower oil (rich in omega-6 PUFA). Indomethacin (3 mg/kg) was injected intraperitoneally from day 8 to day 10. On day 11, intestines and adhesions to submucosal microvessels were examined. In the indomethacin-treated groups, mucosal damage was exacerbated by diets containing beef tallow and fish oil, and was accompanied by leukocyte infiltration (P safflower oil diet than in mice fed the beef tallow or fish oil diet (P safflower oil significantly decreased monocyte and platelet recruitment (P < 0.05). A diet rich in SFA and omega-3 PUFA exacerbated NSAID-induced small intestinal damage via increased leukocyte infiltration. Importantly, a diet rich in omega-6-PUFA did not aggravate inflammation as monocyte migration was blocked.

  18. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Joung, Hyunchae; Kim, Bobae; Park, Hyunjoon; Lee, Kyuyeon; Kim, Hee-Hoon; Sim, Ho-Cheol; Do, Hyun-Jin; Hyun, Chang-Kee; Do, Myoung-Sool

    2017-05-01

    Metabolic diseases, such as glucose intolerance and nonalcoholic fatty-liver disease (NAFLD), are primary risk factors for life-threatening conditions such as diabetes, heart attack, stroke, and hepatic cancer. Extracts from the tropical tree Moringa oleifera show antidiabetic, antioxidant, anti-inflammatory, and anticancer effects. Fermentation can further improve the safety and nutritional value of certain foods. We investigated the efficacy of fermented M. oleifera extract (FM) against high-fat diet (HFD)-induced glucose intolerance and hepatic lipid accumulation and investigated the underlying mechanisms by analyzing expression of proteins and genes involved in glucose and lipid regulation. C57BL/6 mice were fed with normal chow diet (ND) or HFD supplemented with distilled water (DW, control), nonfermented M. oleifera extract (NFM), or FM for 10 weeks. Although body weights were similar among HFD-fed treatment groups, liver weight was decreased, and glucose tolerance test (GTT) results improved in the FM group compared with DW and NFM groups. Hepatic lipid accumulation was also lower in the FM group, and expressions of genes involved in liver lipid metabolism were upregulated. In addition, HFD-induced endoplasmic reticulum (ER) stress, oxidative stress, and lipotoxicity in quadriceps muscles were decreased by FM. Finally, proinflammatory cytokine mRNA expression was decreased by FM in the liver, epididymal adipose tissue, and quadriceps of HFD-fed mice. FMs may decrease glucose intolerance and NAFLD under HFD-induced obesity by decreasing ER stress, oxidative stress, and inflammation.

  20. Diet-Induced Ketosis Protects Against Focal Cerebral Ischemia in Mouse.

    Science.gov (United States)

    Xu, Kui; Ye, Lena; Sharma, Katyayini; Jin, Yongming; Harrison, Matthew M; Caldwell, Tylor; Berthiaume, Jessica M; Luo, Yu; LaManna, Joseph C; Puchowicz, Michelle A

    2017-01-01

    Over the past decade we have consistently shown that ketosis is neuroprotective against ischemic insults in rats. We reported that diet-induced ketotic rats had a significant reduction in infarct volume when subjected to middle cerebral artery occlusion (MCAO), and improved survival and recovery after cardiac arrest and resuscitation. The neuroprotective mechanisms of ketosis (via ketogenic diet; KG) include (i) ketones are alternate energy substrates that can restore energy balance when glucose metabolism is deficient and (ii) ketones modulate cell-signalling pathways that are cytoprotective. We investigated the effects of diet-induced ketosis following transient focal cerebral ischemia in mice. The correlation between levels of ketosis and hypoxic inducible factor-1alpha (HIF-1α), AKT (also known as protein kinase B or PKB) and 5' AMP-activated protein kinase (AMPK) were determined. Mice were fed with KG diet or standard lab-chow (STD) diet for 4 weeks. For the MCAO group, mice underwent 60 min of MCAO and total brain infarct volumes were evaluated 48 h after reperfusion. In a separate group of mice, brain tissue metabolites, levels of HIF-1α, phosphorylated AKT (pAKT), and AMPK were measured. After feeding a KG diet, levels of blood ketone bodies (beta-hydroxyburyrate, BHB) were increased. There was a proportional decrease in infarct volumes with increased blood BHB levels (KG vs STD; 4.2 ± 0.6 vs 7.8 ± 2.2 mm 3 , mean ± SEM). A positive correlation was also observed with HIF-1α and pAKT relative to blood BHB levels. Our results showed that chronic ketosis can be induced in mice by KG diet and was neuroprotective against focal cerebral ischemia in a concentration dependent manner. Potential mechanisms include upregulation of cytoprotective pathways such as those associated with HIF-1α, pAKT and AMPK.

  1. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings.

    Science.gov (United States)

    Shamseldeen, Asmaa Mohammed; Ali Eshra, Mohammed; Ahmed Rashed, Laila; Fathy Amer, Marwa; Elham Fares, Amal; Samir Kamar, Samaa

    2018-05-09

    Maternal diet composition could influence fetal organogenesis. We investigated effects of high fat diet (HFD) intake alone or combined with omega 3 during pregnancy, lactation and early days of weaning on nephrogenesis of pups and maternal renal function and morphology. Mothers and their pups included in each group were supplied with the same diet composition. Rats were divided into group I, II and III supplied with chow of either 10 kcal%, 45 kcal% or 45 kcal% from fat together with omega-3 respectively. Group II showed increased serum urea and creatinine, renal TNF-α, IL1β. Structural injury was observed in mothers and their pups as Bowman's capsule and tubular dilatation and increased expression of PCNA that were decreased following omega-3 supplementation added to down regulation of Wnt4, Pax2 gene and podocin expression. Omega-3 supplementation improves lipid nephrotoxicity observed in mothers and their pups.

  2. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Directory of Open Access Journals (Sweden)

    Yang Ching-Hsiu

    2008-09-01

    Full Text Available Abstract Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2 and DNA glycosylase (Ogg1, MutY. Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease.

  3. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Science.gov (United States)

    Hsiao, Pi-Jung; Hsieh, Tusty-Jiuan; Kuo, Kung-Kai; Hung, Wei-Wen; Tsai, Kun-Bow; Yang, Ching-Hsiu; Yu, Ming-Lung; Shin, Shyi-Jang

    2008-01-01

    Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2) and DNA glycosylase (Ogg1, MutY). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease. PMID:18822121

  4. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake.

    Science.gov (United States)

    van den Berg, Sjoerd A A; Heemskerk, Mattijs M; Geerling, Janine J; van Klinken, Jan-Bert; Schaap, Frank G; Bijland, Silvia; Berbée, Jimmy F P; van Harmelen, Vanessa J A; Pronk, Amanda C M; Schreurs, Marijke; Havekes, Louis M; Rensen, Patrick C N; van Dijk, Ko Willems

    2013-08-01

    Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, Pcentral regulation of food intake.

  5. PROSPEK PENGEMBANGAN PERBANKAN SYARIAH NASIONAL PASCA UNDANG UNDANG PERBANKAN SYARIAH (ANALISIS DENGAN PENDEKATAN MODEL STATISTIKA CHOW TEST

    Directory of Open Access Journals (Sweden)

    Bismi Khalidin

    2012-06-01

    Full Text Available This article aims to determine the influence of Undang-Undang Perbankan Syariah (UUPS on the growth of Islamic banking industry in Indonesia. The data was analyzed using econometric software, SHAZAM version 10.1. This study employs Ordinary Least Square (OLS, and Chow Test was utilized as a statistical instrument. The findings show that UUPS did not have a significant influence on the growth of Islamic banking in Indonesia. This was indicated by fact that third party fund (DPK, the number of depositors and amount of financing were not growing significantly. In addition, the application of Profit-Loss Sharing (PLS, as the core principle in Islamic banking operation, also did not show any significant change. This was supported by the fact that murabahah product was still dominant within the financing portfolio of Islamic banking in Indonesia. =========================================== Penelitian ini bertujuan untuk mengetahui sejauhmana pengaruh Undang-Undang Perbankan Syariah (UUPS terhadap pertumbuhan industri perbankan syariah nasional. Metode analisis yang dipakai adalah Ordinary Least Square (OLS, dengan instrumen statistik Chow Test. Pengolahan data menggunakan program ekonometrika SHAZAM Versi 10.1. Hasil penelitian menunjukkan bahwa UUPS tidak mempunyai pengaruh yang signifikan terhadap pertumbuhan industri perbankan syariah secara umum. Dana Pihak Ketiga, Jumlah Nasabah dan Pembiayaan tidak mengalami perubahan sama sekali. Disamping itu, penerapan sistem bagi hasil Profit-Loss Sharing (PLS yang merupakan prinsip utama operasional perbankan syariah, juga tidak mengalami perubahan yang signifikan. Ini ditunjukkan dengan pembiayaan produk murabahah masih mendominasi portofolio pembiayaan industri perbankan syariah nasional.

  6. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  7. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  8. Nutritional Evaluation of NASA's Rodent Food Bar Diet

    Science.gov (United States)

    Barrett, Joyce E.; Yu, Diane S.; Dalton, Bonnie P.

    2000-01-01

    Tests are being conducted on NASA's rodent Food Bar in preparation for long-term use as the rat and mouse diet aboard the International Space Station. Nutritional analyses are performed after the bars are manufactured and then repeated periodically to determine nutritional stability. The primary factors analyzed are protein, ash, fat, fiber, moisture, amino acids, fatty acids, and minerals. Nutrient levels are compared to values published in the National Research Council's dietary requirements for rodents, and also to those contained in several commonly used commercial rodent lab diets. The Food Bar is manufactured from a powdered diet to which moisture is added as it is processed through an extruder. The bars are dipped into potassium sorbate, vacuum-sealed, and irradiated. In order to determine nutrient changes during extrusion and irradiation, the powdered diet, the non-irradiated bars, and the irradiated bars are all analyzed. We have observed lower values for some nutrients (iodine, vitamin K, and iron) in the Food Bars compared with NRC requirements. Many nutrients in the Food Bars are contained at a higher level than levels in the NRC requirements. An additional factor we are investigating is the 26% moisture level in the Food Bars, which drops to about 15% within a week, compared to a stable 10% moisture in many standard lab chow diets. In addition to the nutritional analyses, the food bar is being fed to several strains of rats and mice, and feeding study and necropsy results are being observed (Barrett et al, unpublished data). Information from the nutritional analyses and from the rodent studies will enable us to recommend the formulation that will most adequately meet the rodent Food Bar requirements for long-term use aboard the Space Station.

  9. Type of diet modulates the metabolic response to sleep deprivation in rats

    Directory of Open Access Journals (Sweden)

    Martins Paulo JF

    2011-12-01

    Full Text Available Abstract Background Evidence suggests that sleep loss is associated with an increased risk of obesity and diabetes; however, animal models have failed to produce weight gain under sleep deprivation (SD. Previous studies have suggested that this discrepancy could be due to more extreme SD conditions in experimental animals, their higher resting metabolic rate than that of humans, and the decreased opportunity for animals to ingest high-calorie foods. Thus, our objective was to determine whether diets with different textures/compositions could modify feeding behavior and affect the metabolic repercussions in SD in rats. Methods Three groups of male rats were used: one was designated as control, one was sleep deprived for 96 h by the platform technique (SD-96h and one was SD-96h followed by a 24-h recovery (rebound. In the first experiment, the animals were fed chow pellets (CPs; in the second, they received high-fat diet and in the third, they were fed a liquid diet (LD. Results We observed that SD induces energy deficits that were related to changes in feeding behavior and affected by the type of diet consumed. Regardless of the diet consumed, SD consistently increased animals' glucagon levels and decreased their leptin and triacylglycerol levels and liver glycogen stores. However, such changes were mostly avoided in the rats on the liquid diet. SD induces a wide range of metabolic and hormonal changes that are strongly linked to the severity of weight loss. Conclusions The LD, but not the CP or high-fat diets, favored energy intake, consequently lessening the energy deficit induced by SD.

  10. Seroprevalence of HCV and HIV infection among clients of the nation's longest-standing statewide syringe exchange program: A cross-sectional study of Community Health Outreach Work to Prevent AIDS (CHOW).

    Science.gov (United States)

    Salek, Thomas P; Katz, Alan R; Lenze, Stacy M; Lusk, Heather M; Li, Dongmei; Des Jarlais, Don C

    2017-10-01

    The Community Health Outreach Work to Prevent AIDS (CHOW) Project is the first and longest-standing statewide integrated and funded needle and syringe exchange program (SEP) in the US. Initiated on O'ahu in 1990, CHOW expanded statewide in 1993. The purpose of this study is to estimate the prevalences of hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infection, and to characterize risk behaviors associated with infection among clients of a long-standing SEP through the analysis of the 2012 CHOW evaluation data. A cross-sectional sample of 130 CHOW Project clients was selected from January 1, 2012 through December 31, 2012. Questionnaires captured self-reported exposure information. HIV and HCV antibodies were detected via rapid, point-of-care FDA-approved tests. Log-binomial regressions were used to estimate prevalence proportion ratios (PPRs). A piecewise linear log-binomial regression model containing 1 spline knot was used to fit the age-HCV relationship. The estimated seroprevalence of HCV was 67.7% (95% confidence interval [CI]=59.5-75.8%). HIV seroprevalence was 2.3% (95% CI=0-4.9%). Anti-HCV prevalence demonstrated age-specific patterns, ranging from 31.6% through 90.9% in people who inject drugs (PWID) HIV prevalence compared with HCV prevalence reflects differences in transmissibility of these 2 blood-borne pathogens and suggests much greater efficacy of SEP for HIV prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Osbpl8 deficiency in mouse causes an elevation of high-density lipoproteins and gender-specific alterations of lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Olivier Béaslas

    Full Text Available OSBP-related protein 8 (ORP8 encoded by Osbpl8 is an endoplasmic reticulum sterol sensor implicated in cellular lipid metabolism. We generated an Osbpl8(-/- (KO C57Bl/6 mouse strain. Wild-type and Osbpl8KO animals at the age of 13-weeks were fed for 5 weeks either chow or high-fat diet, and their plasma lipids/lipoproteins and hepatic lipids were analyzed. The chow-fed Osbpl8KO male mice showed a marked elevation of high-density lipoprotein (HDL cholesterol (+79% and phospholipids (+35%, while only minor increase of apolipoprotein A-I (apoA-I was detected. In chow-fed female KO mice a less prominent increase of HDL cholesterol (+27% was observed, while on western diet the HDL increment was prominent in both genders. The HDL increase was accompanied by an elevated level of HDL-associated apolipoprotein E in male, but not female KO animals. No differences between genotypes were observed in lecithin:cholesterol acyltransferase (LCAT or hepatic lipase (HL activity, or in the fractional catabolic rate of fluorescently labeled mouse HDL injected in chow-diet fed animals. The Osbpl8KO mice of both genders displayed reduced phospholipid transfer protein (PLTP activity, but only on chow diet. These findings are consistent with a model in which Osbpl8 deficiency results in altered biosynthesis of HDL. Consistent with this hypothesis, ORP8 depleted mouse hepatocytes secreted an increased amount of nascent HDL into the culture medium. In addition to the HDL phenotype, distinct gender-specific alterations in lipid metabolism were detected: Female KO animals on chow diet showed reduced lipoprotein lipase (LPL activity and increased plasma triglycerides, while the male KO mice displayed elevated plasma cholesterol biosynthetic markers cholestenol, desmosterol, and lathosterol. Moreover, modest gender-specific alterations in the hepatic expression of lipid homeostatic genes were observed. In conclusion, we report the first viable OsbplKO mouse model

  12. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

    Directory of Open Access Journals (Sweden)

    Virginie Lecomte

    Full Text Available The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001, this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.

  13. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking.

    Science.gov (United States)

    Cook, Jason B; Hendrickson, Linzy M; Garwood, Grant M; Toungate, Kelsey M; Nania, Christina V; Morikawa, Hitoshi

    2017-01-01

    Similar to drugs of abuse, the hedonic value of food is mediated, at least in part, by the mesostriatal dopamine (DA) system. Prolonged intake of either high calorie diets or drugs of abuse both lead to a blunting of the DA system. Most studies have focused on DAergic alterations in the striatum, but little is known about the effects of high calorie diets on ventral tegmental area (VTA) DA neurons. Since high calorie diets produce addictive-like DAergic adaptations, it is possible these diets may increase addiction susceptibility. However, high calorie diets consistently reduce psychostimulant intake and conditioned place preference in rodents. In contrast, high calorie diets can increase or decrease ethanol drinking, but it is not known how a junk food diet (cafeteria diet) affects ethanol drinking. In the current study, we administered a cafeteria diet consisting of bacon, potato chips, cheesecake, cookies, breakfast cereals, marshmallows, and chocolate candies to male Wistar rats for 3-4 weeks, producing an obese phenotype. Prior cafeteria diet feeding reduced homecage ethanol drinking over 2 weeks of testing, and transiently reduced sucrose and chow intake. Importantly, cafeteria diet had no effect on ethanol metabolism rate or blood ethanol concentrations following 2g/kg ethanol administration. In midbrain slices, we showed that cafeteria diet feeding enhances DA D2 receptor (D2R) autoinhibition in VTA DA neurons. These results show that junk food diet-induced obesity reduces ethanol drinking, and suggest that increased D2R autoinhibition in the VTA may contribute to deficits in DAergic signaling and reward hypofunction observed with obesity.

  14. Zinc deficient diet consequences for pregnancy andoffsprings of Wistar rats

    OpenAIRE

    Solé, Dirceu; Rieckmann, Brigitte; Lippelt, Raquel Mattos Costa; Lippelt, Ronaldo Tadeu Tucci; Amâncio, Olga Maria Silverio; Queiroz, Suzana de Souza; Naspitz, Charles Kirov

    1995-01-01

    Adult female Wistar rats (90 days old; weight 180 to 220 grams) were submitted to different zinc deficient diets (Zn; severe = 2.6 ppm; mild = 9.0 ppm and normal diet = 81.6 ppm), during 6 weeks. After this time they were coupled with normal male Wistar rats. No differences regarding fecundity and sterility were observed between the groups. During pregnancy, part of the animals from severe and mild Zn deficient groups received the same diet and the others received normal diet. The animals fro...

  15. Response of irradiated diet fed rats to whole body X irradiation

    International Nuclear Information System (INIS)

    Hasan, S.S.; Kushwaha, A.K.S.

    1985-01-01

    The response to whole body X irradiation has been studied in the brain of rats fed both on a normal diet (consisting of equal parts of wheat and gram flour) and on a low protein irradiated diet (consisting of a part of normal diet and three parts of wheat). The activity of enzymes related to the glucose metabolism (glucose 6-phosphate dehydrogenase and fructose diphosphate aldolase) is reduced, while that of peroxidant enzymes (catalase and lipid peroxidase) increased in the brain of rats that received a diet poor in proteins and irradiated diets (normal or hypoproteic). DNA and RNA levels and protein content show a significant reduction in the brain of rats with hypoproteic and irradiated diets. The total body irradiation causes serious alterations in the brain in animals with a hypoproteic malnutritions due both to a low protein and an irradiated diet. The brain of rats fed on a low protein and irradiated diet exhibits after whole body irradiation damages more severe than those in rats fed on a normal irradiated diet

  16. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity.

    Science.gov (United States)

    Huang, Ji; Rajapakse, Angana; Xiong, Yuyan; Montani, Jean-Pierre; Verrey, François; Ming, Xiu-Fen; Yang, Zhihong

    2016-01-01

    Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase-II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II -/- ) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II -/- mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II -/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II -/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.

  17. Genetic Targeting of Arginase-II in Mouse Prevents Renal Oxidative Stress and Inflammation in Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Ji Huang

    2016-11-01

    Full Text Available Obesity is associated with development and progression of chronic kidney disease (CKD. Recent evidence demonstrates that enhanced levels of the L-arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I and arginase-II (Arg-II in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS, leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT C57BL/6 mice and mice deficient in Arg-II gene (Arg-II-/- were fed with either a normal chow (NC or a high-fat-diet (HFD for 14 weeks (starting at the age of 7 weeks to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal ROS levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II-/- mice. Moreover, mesangial expansion as analysed by Periodic Acid Schiff (PAS staining and renal expression of vascular adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1 in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg-II-/- mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II-/- mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development.

  18. Effects of semielemental diet containing whey peptides on Peyer's patch lymphocyte number, immunoglobulin A levels, and intestinal morphology in mice.

    Science.gov (United States)

    Moriya, Tomoyuki; Fukatsu, Kazuhiko; Noguchi, Midori; Nishikawa, Makoto; Miyazaki, Hiromi; Saitoh, Daizoh; Ueno, Hideki; Yamamoto, Junji

    2018-02-01

    Enteral nutrition (EN) is the gold standard of nutritional therapy for critically ill or severely injured patients, because EN promotes gut and hepatic immunity, thereby preventing infectious complications as compared with parenteral nutrition. However, there are many EN formulas with different protein and fat contents. Their effects on gut-associated lymphoid tissue remain unclear. Recently, semielemental diets (SEDs) containing whey peptides as a nitrogen source have been found to be beneficial in patients with malabsorption or pancreatitis. Herein, we examined the influences of various dietary formulations on gut immunity to clarify the advantages of SEDs over elemental diets. Forty-four male Institute of Cancer Research mice were randomized to four groups: chow (CH: n = 5), intragastric total parenteral nutrition (IG-TPN: n = 13), elemental diet (ED: n = 13), and SED (n = 13). The CH group received CH diet ad libitum, whereas the IG-TPN, ED (Elental, Ajinomoto, Japan), and SED (Peptino, Terumo, Japan) groups were given their respective diets for 5 day via gastrostomy. After 5 days, the mice were killed to obtain whole small intestines. Peyer's patch (PP) lymphocytes were harvested and counted. Their subpopulations were evaluated by flow cytometry. Immunoglobulin A (IgA) levels in intestinal and respiratory tract washings were measured with enzyme-linked immunosorbent assay. Villous height (VH) and crypt depth in the distal intestine were measured by light microscopy. SED increased the PP cell number and intestinal or respiratory IgA levels to those of CH mice, while ED partially restored these parameters. The IG-TPN group showed the lowest PP cell number and IgA levels among the four groups. VH was significantly greater in the CH than in the other groups. VH in the ED and SED groups also exceeded in the IG-TPN group, while being similar in these two groups. No significant crypt depth differences were observed among the four groups. SED administration

  19. High-fat but not sucrose intake is essential for induction of dyslipidemia and non-alcoholic steatohepatitis in guinea pigs

    DEFF Research Database (Denmark)

    Ipsen, David Højland; Tveden-Nyborg, Pernille; Rolin, Bidda

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) and dyslipidemia are closely related. Diet plays an important role in the progression of these diseases, but the role of specific dietary components is not completely understood. Therefore, we investigated the role of dietary sucrose and fat....../cholesterol on the development of dyslipidemia and NAFLD. Methods Seventy female guinea pigs were block-randomized (based on weight) into five groups and fed a normal chow diet (control: 4 % fat), a very high-sucrose diet (vHS: 4 % fat, 25 % sucrose), a high-fat diet (HF: 20 % fat, 0.35 % cholesterol), a high......-fat/high-sucrose diet (HFHS: 20 % fat, 15 % sucrose, 0.35 % cholesterol) or a high-fat/very high-sucrose diet (HFvHS: 20 % fat, 25 % sucrose, 0.35 % cholesterol) for 16 and 25 weeks. Results All three high-fat diets induced dyslipidemia with increased concentrations of plasma cholesterol (p 

  20. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    Science.gov (United States)

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  1. Hypoglycemic and Hypolipidemic Potential of a High Fiber Diet in Healthy versus Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Raquel Díez

    2013-01-01

    Full Text Available The aim of this study was to investigate potential hypoglycaemic and hypolipidemic effects of Plantago ovata husk included in the diet, in healthy and diabetic rabbits. We also examined the effects of this fiber in other biochemical parameters. Two groups of 18 rabbits were used. The first group was fed with standard chow and the second with chow supplemented with Plantago ovata husk (3.5 mg/kg/day. On day 14 diabetes mellitus was induced by the intravenous administration of alloxan (80 mg/kg. After an oral glucose load (3 g, glucose, insulin, and other biochemical parameters were determined on day 14 (healthy rabbits and on day 28 (diabetic rabbits. In healthy rabbits, fiber did not modify glucose or insulin levels but decreased significantly total cholesterol, LDL-cholesterol, atherogenic index, and glycosylated hemoglobin. In diabetic rabbits, fiber was more beneficial in mild diabetics than in severe diabetics with significant decreases in glucose levels and increases in insulin concentrations. In these animals fiber caused an important reduction in cholesterol, indicating a beneficial effect of Plantago ovata husk in diabetic rabbits. Although further studies in patients are necessary, we think that Plantago ovata husk offers interesting perspectives to be administered to patients with diabetes mellitus.

  2. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.

    Science.gov (United States)

    Umezawa, Masakazu; Nakamura, Masayuki; El-Ghoneimy, Ashraf A; Onoda, Atsuto; Shaheen, Hazem M; Hori, Hiroshi; Shinkai, Yusuke; El-Sayed, Yasser S; El-Far, Ali H; Takeda, Ken

    2018-01-01

    Exposure to diesel exhaust (DE) exacerbates non-alcoholic fatty liver disease, and may systemically affect lipid metabolism. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have anti-inflammatory activity and suppresses hepatic triacylglycerol accumulation, but many daily diets are deficient in this nutrient. Therefore, the effect of DE exposure in mice fed n-3 PUFA-deficient diet was investigated. Mice were fed control chow or n-3 PUFA-deficient diet for 4 weeks, then exposed to clean air or DE by inhalation for further 4 weeks. Liver histology, plasma parameters, and expression of fatty acid synthesis-related genes were evaluated. N-3 PUFA-deficient diet increased hepatic lipid droplets accumulation and expression of genes promoting fatty acid synthesis: Acaca, Acacb, and Scd1. DE further increased the plasma leptin and the expression of fatty acid synthesis-related genes: Acacb, Fasn, and Scd1. N-3 PUFA-deficient diet and DE exposure potentially enhanced hepatic fatty acid synthesis and subsequently accumulation of lipid droplets. The combination of low-dose DE exposure and intake of n-3 PUFA-deficient diet may be an additional risk factor for the incidence of non-alcoholic fatty liver disease. The present study suggests an important mechanism for preventing toxicity of DE on the liver through the incorporation of n-3 PUFAs in the diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring.

    Science.gov (United States)

    Bayol, Stéphanie A; Macharia, Raymond; Farrington, Samantha J; Simbi, Bigboy H; Stickland, Neil C

    2009-02-01

    Obesity is a multi-factorial condition generally attributed to an unbalanced diet and lack of exercise. Recent evidence suggests that maternal malnutrition during pregnancy and lactation can also contribute to the development of obesity in offspring. We have developed an animal model in rats to examine the effects of maternal overeating on a westernized "junk food" diet using palatable processed foods rich in fat, sugar and salt designed for human consumption. Using this model, we have shown that such a maternal diet can promote overeating and a greater preference for junk food in offspring at the end of adolescence. The maternal junk food diet also promoted adiposity and muscle atrophy at weaning. Impaired muscle development may permanently affect the function of this tissue including its ability to generate force. The aim of this study is to determine whether a maternal junk food diet can impair muscle force generation in offspring. Twitch and tetanic tensions were measured in offspring fed either chow alone (C) or with a junk food diet (J) during gestation, lactation and/or post-weaning up to the end of adolescence such that three groups of offspring were used, namely the CCC, JJC and JJJ groups. We show that adult offspring from mothers fed the junk food diet in pregnancy and lactation display reduced muscle force (both specific twitch and tetanic tensions) regardless of the post-weaning diet compared with offspring from mothers fed a balanced diet. Maternal malnutrition can influence muscle force production in offspring which may affect an individual's ability to exercise and thereby combat obesity.

  4. Protein kinase Cα deletion causes hypotension and decreased vascular contractility.

    Science.gov (United States)

    Wynne, Brandi M; McCarthy, Cameron G; Szasz, Theodora; Molina, Patrick A; Chapman, Arlene B; Webb, R Clinton; Klein, Janet D; Hoover, Robert S

    2018-03-01

    Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.

  5. A Simple Diet- and Chemical-Induced Murine NASH Model with Rapid Progression of Steatohepatitis, Fibrosis and Liver Cancer.

    Science.gov (United States)

    Tsuchida, Takuma; Lee, Youngmin A; Fujiwara, Naoto; Ybanez, Maria; Allen, Brittany; Martins, Sebastiao; Fiel, M Isabel; Goossens, Nicolas; Chou, Hsin-I; Hoshida, Yujin; Friedman, Scott L

    2018-03-20

    Although the majority of patients with nonalcoholic fatty liver disease (NAFLD) have only steatosis without progression, a sizable fraction develop non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis and hepatocellular carcinoma (HCC). Many established diet-induced mouse models for NASH require 24-52 weeks, which makes testing for drug response costly and time consuming. We have sought to establish a murine NASH model with rapid progression of extensive fibrosis and HCC by using a western diet (WD), which is high-fat, high-fructose and high-cholesterol, combined with low dose weekly intraperitoneal carbon tetrachloride (CCl 4 ), which served as an accelerator. C57BL/6J mice were fed a normal chow diet (ND) ± CCl 4 or WD ± CCl 4 for 12 and 24 weeks. Addition of CCl 4 exacerbated histological features of NASH, fibrosis, and tumor development induced by WD, which resulted in stage 3 fibrosis at 12 weeks and HCC development at 24 weeks. Furthermore, whole liver transcriptomic analysis indicated that dysregulated molecular pathways in WD/CCl 4 mice and immunologic features were closely similar to those of human NASH. Our mouse NASH model exhibits rapid progression of advanced fibrosis and HCC, and mimics histological, immunological and transcriptomic features of human NASH, suggesting that it will be a useful experimental tool for preclinical drug testing. A carefully characterized model has been developed in mice that recapitulates the progressive stages of human fatty liver disease, from simple steatosis, to inflammation, fibrosis and cancer. The functional pathways of gene expression and immune abnormalities in this model closely resemble human disease. The ease and reproducibility of this model makes it ideal to study disease pathogenesis and test new treatments. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired

  7. High fat diet intake during pre and periadolescence impairs learning of a conditioned place preference in adulthood

    Directory of Open Access Journals (Sweden)

    Sanabria Federico

    2011-06-01

    Full Text Available Abstract Background Brain regions that mediate learning of a conditioned place preference (CPP undergo significant development in pre and periadolescence. Consuming a high fat (HF diet during this developmental period and into adulthood can lead to learning impairments in rodents. The present study tested whether HF diet intake, consumed only in pre and periadolescence, would be sufficient to cause impairments using a CPP procedure. Methods Rats were randomly assigned to consume a HF or a low fat (LF diet during postnatal days (PD 21-40 and were then placed back on a standard lab chow diet. A 20-day CPP procedure, using HF Cheetos® as the unconditioned stimulus (US, began either the next day (PD 41 or 40 days later (PD 81. A separate group of adult rats were given the HF diet for 20 days beginning on PD 61, and then immediately underwent the 20-day CPP procedure beginning on PD 81. Results Pre and periadolescent exposure to a LF diet or adult exposure to a HF diet did not interfere with the development of a HF food-induced CPP, as these groups exhibited robust preferences for the HF Cheetos® food-paired compartment. However, pre and periadolescent exposure to the HF diet impaired the development of a HF food-induced CPP regardless of whether it was assessed immediately or 40 days after the exposure to the HF diet, and despite showing increased consumption of the HF Cheetos® in conditioning. Conclusions Intake of a HF diet, consumed only in pre and periadolescence, has long-lasting effects on learning that persist into adulthood.

  8. Liver protein expression in young pigs in response to a high-fat diet and diet restriction

    DEFF Research Database (Denmark)

    Sejersen, Henrik; Sørensen, Martin Tang; Larsen, Torben

    2013-01-01

    We investigated the liver response in young pigs to a high-fat diet (containing 25% animal fat) and diet restriction (equivalent to 60% of maintenance) using differential proteome analysis. The objective was to investigate whether young pigs can be used to model the liver response in adolescents...... to a high-fat diet and diet restriction-induced BW loss. The high-fat diet increased (P high-fat diet had normal glucose tolerance and liver lipid content despite a general increase (P ...-density lipoprotein decreased (P high-fat diet in young pigs is similar to that of humans in terms of increased fatty acid oxidation whereas the liver response to diet restriction is similar to humans...

  9. Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity

    Science.gov (United States)

    We studied the effects of weight loss induced by either a low-fat normal diet or restriction of high-fat diet on hepatic steatosis, inflammation in the liver and adipose tissue, and blood monocytes of obese mice. In mice with high-fat diet-induced obesity, weight loss was achieved by switching from ...

  10. Dietary variety is associated with larger meals in female rhesus monkeys.

    Science.gov (United States)

    Moore, Carla J; Michopoulos, Vasiliki; Johnson, Zachary P; Toufexis, Donna; Wilson, Mark E

    2013-07-02

    The complex, interacting influences on eating behavior and energy expenditure prevent elucidation of the causal role of any single factor in the current obesity epidemic. However, greater variety in the food supply, particularly in the form of highly palatable, energy-dense foods, has likely made a contribution. This study was undertaken to test the hypothesis that greater dietary variety is associated with greater caloric intake within individual meals consumed by free-feeding, socially-housed female rhesus monkeys. Meal patterns were assessed during two, two-week dietary phases. One phase consisted of a choice between a standard chow diet and a highly palatable diet (HPD). The other phase consisted of access to the chow only. Food intake for each subject was recorded continuously using previously validated, automated feeders, and a meal was defined based on a minimum kilocalorie requirement and a minimum inter-meal interval. During the choice condition, animals electively consumed mixed meals that incorporated both diets as well as other meals that consisted exclusively of a single diet - chow-only or HPD-only. Animals consumed the most calories per meal when the meal was comprised of both the chow and HPD, which differed in caloric density, flavor, and texture. Interestingly, however, there was no significant difference in the amount of calories consumed as HPD-only meals in the choice condition compared to meals in the chow-only, no choice condition, suggesting consumption of a single food during a meal, regardless of palatability, provides a constant sensory experience that may lead to more rapid habituation and subsequent meal cessation. Additionally, during the dietary choice condition, animals consumed fewer calories in the form of chow-only meals. Thus, the present results suggest that limiting dietary variety, regardless of palatability, may be a useful strategy for weight loss in overweight and obese individuals by reducing caloric intake within

  11. Presence or absence of carbohydrates and the proportion of fat in a high-protein diet affect appetite suppression but not energy expenditure in normal-weight human subjects fed in energy balance.

    Science.gov (United States)

    Veldhorst, Margriet A B; Westerterp, Klaas R; van Vught, Anneke J A H; Westerterp-Plantenga, Margriet S

    2010-11-01

    Two types of relatively high-protein diets, with a normal or low proportion of carbohydrates, have been shown effective for weight loss. The objective was to assess the significance of the presence or absence of carbohydrates and the proportion of fat in high-protein diets for affecting appetite suppression, energy expenditure, and fat oxidation in normal-weight subjects in energy balance. Subjects (aged 23 (sd 3) years and BMI 22·0 (sd 1·9) kg/m2) were stratified in two groups. Each was offered two diets in a randomised cross-over design: group 1 (n 22) - normal protein (NP; 10, 60 and 30 % energy (En%) from protein, carbohydrate and fat), high protein (HP; 30, 40 and 30 En%); group 2 (n 23) - normal protein (NP-g; 10, 60 and 30 En%), high protein, carbohydrate-free (HP-0C; 30, 0 and 70 En%) for 2 d; NP-g and HP-0C were preceded by glycogen-lowering exercise (day 1). Appetite was measured throughout day 2 using visual analogue scales (VAS). Energy expenditure (EE) and substrate oxidation (respiratory quotient; RQ) were measured in a respiration chamber (08.00 hours on day 2 until 07.30 hours on day 3). Fasting plasma β-hydroxybutyrate (BHB) concentration was measured (day 3). NP-g and NP did not differ in hunger, EE, RQ and BHB. HP-0C and HP v. NP-g and NP, respectively, were lower in hunger (P fat oxidation were higher on a high-protein diet without than with carbohydrates exchanged for fat. Energy expenditure was not affected by the carbohydrate content of a high-protein diet.

  12. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  13. Maternal perinatal diet induces developmental programming of bone architecture.

    Science.gov (United States)

    Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L

    2013-04-01

    Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (Pbone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (Pbone area was 6% higher at 14 weeks vs. N-N (Pbone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.

  14. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  15. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  16. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  17. Grape juice concentrate modulates p16 expression in high fat diet-induced liver steatosis in Wistar rats.

    Science.gov (United States)

    Ferreira, Andressa Orlandeli; Gollücke, Andréa Pittelli Boiago; Noguti, Juliana; da Silva, Victor Hugo Pereira; Yamamura, Elsa Tiemi Hojo; Ribeiro, Daniel Araki

    2012-04-01

    The goal of this study was to investigate whether subchronic treatment with grape juice concentrate is able to protect the liver from high fat diet injury in rats. The effects of grape juice concentrate treatment on histopathological changes, and immunohistochemistry for p53, p16 and p21 were evaluated. Male Wistar rats (n = 18) were distributed into three groups: group 1: negative control; group 2: cholesterol at 1% (w/w) in their diet, treated during 5 weeks; and group 3: cholesterol at 1% in their chow during 5 weeks, and grape juice concentrate at 222 mg per day in their drinking-water in the last week only. The results pointed out that treatment with grape juice concentrate did not show remarkable differences regarding liver tissue in the cholesterol-exposed group when compared to group 2. However, grape juice concentrate was able to modulate p16 immunoexpression when compared to high fat diet group. p53 and p21 did not show any significant statistical differences among groups. Taken together, our results suggest that subchronic grape juice concentrate administration was able to modulate cell cycle control by downregulation of p16 immunoexpression in high fat diet-induced liver steatosis in rats.

  18. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Directory of Open Access Journals (Sweden)

    Wen-Dee Chiang

    2016-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD-fed aging rats. Design: Twenty-four-month-old SD rats were randomly divided into six groups (n=8: aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day APPH treatment, HFD with moderate (45 mg/kg/day APPH treatment, HFD with high (75 mg/kg/day APPH treatment, and HFD with probucol. Results: APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day, moderate (45 mg/kg/day, and high (75 mg/kg/day doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions: Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  19. Diet enriched with fresh coconut decreases blood glucose levels and body weight in normal adults.

    Science.gov (United States)

    Vijayakumar, Venugopal; Shankar, Nagashree R; Mavathur, Ramesh; Mooventhan, A; Anju, Sood; Manjunath, N K

    2018-02-20

    Background There exist controversies about the health effects of coconut. Fresh coconut consumption on human health has not been studied substantially. Fresh coconut consumption is a regular part of the diet for many people in tropical countries like India, and thus there is an increasing need to understand the effects of fresh coconut on various aspects of health. Aim To compare the effects of increased saturated fatty acid (SFA) and fiber intake, provided by fresh coconut, versus monounsaturated fatty acid (MUFA) and fiber intake, provided by a combination of groundnut oil and groundnuts, on anthropometry, serum insulin, glucose levels and blood pressure in healthy adults. Materials Eighty healthy volunteers, randomized into two groups, were provided with a standardized diet along with either 100 g fresh coconut or an equivalent amount of groundnuts and groundnut oil for a period of 90 days. Assessments such as anthropometric measurements, blood pressure, blood sugar and insulin levels were performed before and after the supplementation period. Results Results of this study showed a significant reduction in fasting blood sugar (FBS) in both the groups. However, a significant reduction in body weight was observed in the coconut group, while a significant increase in diastolic pressure was observed in the groundnut group. Conclusions Results of this study suggest that fresh coconut-added diet helps reduce blood glucose levels and body weight in normal healthy individuals.

  20. Effect of Diet on Metabolism of Laboratory Rats

    Science.gov (United States)

    Harrison, P. C.; Riskowski, G. L.; McKee, J. S.

    1996-01-01

    In previous studies when rats were fed a processed, semipurified, extruded rodent food bar (RFB) developed for space science research, we noted a difference in the appearance of gastrointestinal tissue (GI); therefore the following study evaluated GI characteristics and growth and metabolic rates of rats fed chow (C) or RFB. Two hundred and twenty-four rats (78 g mean body weight) were randomly assigned to 28 cages and provided C or RFB. Each cage was considered the experimental unit and a 95 percent level of significance, indicated by ANOVA, was used for inference. After each 30-, 60-, and 90-day period, eight cages were shifted from the C to RFB diet and housing density was reduced by two rats per cage. The two rats removed from each cage were sacrificed and used for GI evaluation. Metabolic rates of the rats in each cage were determined by indirect calorimetry. No differences in body weight were detected at 0, 30, 60 or 90 days between C and RFB. Heat production (kcal/hr/kg), CO2 production (L/hr/kg) and O2 consumption (L/hr/kg) were different by light:dark and age with no effect of diet. Respiratory quotient was different by age with no effect of light:dark or diet. Rats on the C diet ate less food and drank more water than those on RFB. C rats produced more fecal and waste materials than the RFB. GI lengths increased with age but were less in RFB than C. GI full and empty weights increased with age but weighed less in RFB than C. Gut-associated lymphoid tissue (GALT) numbers increased with age with no effect of diet. No differences in ileum-associated GALT area were detected between C and RFB. Switching C to RFB decreased GI length, GI full and empty weights, with no changes in GALT number or area. We concluded RFB decreased GI mass without affecting metabolic rate or general body growth.

  1. Irradiated diets and its effect on testes and adrenal gland of rats

    International Nuclear Information System (INIS)

    Kushwaha, A.K.S.; Hasan, S.S.

    1988-01-01

    The present investigation was undertaken to study the feeding effects of irradiated normal diet (consisting of equal parts of gram and wheat) and irradiated low protein diet (consisting one part of normal diet and three parts of wheat) on male rats for various periods starting from weaning time. Rats maintained on irradiated low protein diets showed decrease in the activity of androgen sensitive enzymes i.e., alkaline and acid phosphatase while an increase in the cholesterol content of the testes compared with irradiated normal controls. Diminution in androgen sensitive enzymes and accumulation of cholesterol in the rat testes suggest non-conversion of cholesterol into steriod hormones after feeding of irradiated low protein. Besides, rats fed on irradiated low protein diet showed increased cellular activity in the adrenal cortex and medulla as compared to rats fed on the irradiated normal diet. (author). 12 refs., 4 tabs

  2. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoqing Ma

    2018-01-01

    Full Text Available Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD, high fat diet (HFD, and HFD administered with vildagliptin (50 mg/Kg (V-HFD. After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27% and liver triglycerides (314.75% compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  3. Molecular fingerprint of high fat diet induced urinary bladder metabolic dysfunction in a rat model.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available AIMS/HYPOTHESIS: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology. RESULTS: In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain. CONCLUSIONS/INTERPRETATION: Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.

  4. N-Acetyl-Cysteine Alleviates Gut Dysbiosis and Glucose Metabolic Disorder in High-Fat Diet-Induced Mice.

    Science.gov (United States)

    Zheng, Junping; Yuan, Xubing; Zhang, Chen; Jia, Peiyuan; Jiao, Siming; Zhao, Xiaoming; Yin, Heng; Du, Yuguang; Liu, Hongtao

    2018-05-30

    N-acetyl cysteine (NAC), an anti-oxidative reagent for clinical diseases, shows potential application to diabetes and other metabolic diseases. However, it is unknown how NAC modulates the gut microbiota of mice with metabolic syndrome. In present study, we aim to demonstrate the preventive effect of NAC on intestinal dysbiosis and glucose metabolic disorder. C57BL/6J mice were fed with normal chow diet (NCD), NCD plus NAC, high-fat diet (HFD) or HFD plus NAC for five months. After the treatment, the glucose level, circulating endotoxin and metabolism-related key proteins were determined. The fecal samples were analyzed by 16S rRNA sequencing. A novel analysis was carried out to predict the functional changes of gut microbiota. In addition, Spearman's correlation between metabolic biomarkers and bacterial abundance was also assayed. The results show that NAC treatment significantly reversed the glucose intolerance, fasting glucose level, body weight and plasma endotoxin in HFD-fed mice. Further, NAC upregulated the levels of Occludin protein and mucin glycoproteins in proximal colons of HFD-treated mice. Noticeably, NAC promoted the growth of beneficial bacteria such as Akkermansia, Bifidobacterium, Lactobacillus and Allobaculum, and hampered the population of diabetes-related genera including Desulfovibrio and Blautia. Also, NAC may influence the metabolic pathways of intestinal bacteria including lipopolysaccharide biosynthesis, oxidative stress and bacterial motility. Finally, the modified gut microbiota showed close association with the metabolic changes of the NAC treated HFD-fed mice. In summary, NAC may be a potential drug to prevent glucose metabolic disturbance by reshaping the structure of gut microbiota. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. RADIOPROTECTIVE EFFECT OF LYCOPENE IN GAMMA IRRADIATED ALBINO RATS

    International Nuclear Information System (INIS)

    MOHAMED, M.I.; ALI, S.E.; HAGGAG, A.M.

    2007-01-01

    The present study was designed to explore the radioprotective potential of lycopene in gamma irradiated male rats. Four groups, each of sixteen rats, were assigned as follows: the first was untreated (control group), the second fed on chow diet mixed with 300 mg lycopene/kg diet (lycopene group), the third exposed to 6.5 Gy gamma radiation (irradiated group) and the fourth fed on chow mixed with 300 mg lycopene/kg and exposed to 6.5 Gy gamma radiation (irradiated and treated group). Animals exposed to ionizing radiation experienced decline in their body weights, increased ALT and AST enzymes and decreased serum albumin level. The study also showed decline in hemoglobin, total white blood cells count and blood platelets count. Bone marrow examination revealed profound hypoplasis and reduction of the cellular elements. Histological examination of liver, spleen, testis and intestine showed disruption of normal architecture of these organs. Irradiated and treated animals maintained a more or less steady body weight, and improved serum ALT, AST and albumin in comparison with those irradiated. The results also showed increased hemoglobin, total white blood cells, platelets count and partial improvement of bone marrow cellularity. Lycopene was also capable of partial preservation of normal architecture of liver, spleen, intestine and testis in gamma irradiated group.In conclusion, lycopene seems to be a useful radioprotector probably because of its potent antioxidant property

  6. Deepure Tea Improves High Fat Diet-Induced Insulin Resistance and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jing-Na Deng

    2015-01-01

    Full Text Available This study was to explore the protective effects of Deepure tea against insulin resistance and hepatic steatosis and elucidate the potential underlying molecular mechanisms. C57BL/6 mice were fed with a high fat diet (HFD for 8 weeks to induce the metabolic syndrome. In the Deepure tea group, HFD mice were administrated with Deepure tea at 160 mg/kg/day by gavage for 14 days. The mice in HFD group received water in the same way over the same period. The age-matched C57BL/6 mice fed with standard chow were used as normal control. Compared to the mice in HFD group, mice that received Deepure tea showed significantly reduced plasma insulin and improved insulin sensitivity. Deepure tea increased the expression of insulin receptor substrate 2 (IRS-2, which plays an important role in hepatic insulin signaling pathway. Deepure tea also led to a decrease in hepatic fatty acid synthesis and lipid accumulation, which were mediated by the downregulation of sterol regulatory element binding protein 1c (SREBP-1c, fatty acid synthesis (FAS, and acetyl-CoA carboxylase (ACC proteins that are involved in liver lipogenesis. These results suggest that Deepure tea may be effective for protecting against insulin resistance and hepatic steatosis via modulating IRS-2 and downstream signaling SREBP-1c, FAS, and ACC.

  7. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    International Nuclear Information System (INIS)

    Silva, Danielle Cristina Tomaz da; Lima-Leopoldo, Ana Paula; Leopoldo, André Soares; Campos, Dijon Henrique Salomé de; Nascimento, André Ferreira do; Oliveira, Sílvio Assis Junior de; Padovani, Carlos Roberto; Cicogna, Antonio Carlos

    2014-01-01

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C 15 and Ob 15 ) and 30 (C 30 and Ob 30 ) consecutive weeks. Obesity was determined by adiposity index. The Ob 15 group was similar to the C 15 group regarding the expression of myocardial collagen type I; however, expression in the Ob 30 group was less than C 30 group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob 30 when compared with Ob 15 . Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression

  8. Modification of sympathetic neuronal function in the rat tail artery by dietary lipid treatment

    International Nuclear Information System (INIS)

    Panek, R.L.; Dixon, W.R.; Rutledge, C.O.

    1985-01-01

    The effect of dietary lipid treatment on sympathetic neuronal function was examined in isolated perfused tail arteries of adult rats. The hypothesis that dietary manipulations alter the lipid environment of receptor proteins which may result in the perturbation of specific membrane-associated processes that regulate peripheral adrenergic neurotransmission in the vasculature was the basis for this investigation. In the present study, rats were fed semisynthetic diets enriched in either 16% coconut oil (saturated fat) or 16% sunflower oil (unsaturated fat). The field stimulation-evoked release of endogenous norepinephrine and total 3 H was decreased significantly in rats receiving the coconut oil diet when compared to either sunflower oil- or standard lab chow-fed rats. Norepinephrine content in artery segments from coconut oil-treated rats was significantly higher compared to either sunflower oil- or standard lab chow-fed rats. Tail arteries from rats receiving the coconut oil diet displayed significantly lower perfusion pressure responses to nerve stimulation at all frequencies tested when compared to the sunflower oil- or standard lab chow-fed rats. Vasoconstrictor responses of perfused tail arteries exposed to exogenous norepinephrine resulted in an EC50 for norepinephrine that was not changed by the dietary treatment, but adult rats receiving the sunflower oil diet displayed a significantly greater maximum response to exogenous norepinephrine (10(-5) M) compared to arteries from either coconut oil- or standard lab chow-fed rats

  9. Serum growth hormone-binding protein in obesity: effect of a short-term, very low calorie diet and diet-induced weight loss

    DEFF Research Database (Denmark)

    Rasmussen, M H; Ho, K K; Kjems, L

    1996-01-01

    +/-SEM)] before and after an average weight loss of 30.3 +/- 4.6 kg and in 18 age- and sex matched normal subjects (BMI, 23.0 +/- 0.4 kg/m2) and studied the effects of a very low calorie diet over 4 days in 5 normal subjects and a subgroup of obese subjects before (n = 6) and after (n = 5) weight loss...... was positively correlated to insulin as well as proinsulin levels (r = 0.60; P diet-induced massive weight loss, GHBP levels were restored to normal in obese subjects (BMI, 27.8 +/- 1.4 kg/m2). Multiple stepwise regression analysis revealed that changes...... days of a very low calorie diet, although mean insulin levels fell significantly in the normal subgroup as well as in the obese subgroup studied after weight loss. In summary, GHBP levels are elevated in obesity, are restored to normal by massive weight loss, and are unaffected by short term...

  10. Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats

    Directory of Open Access Journals (Sweden)

    Yoon Hee Lee

    2016-10-01

    Full Text Available It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD, high-fat diet (HFD, high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat, high-fat diet with 0.2% HT048 (w/w; HFD + 0.2% HT048, and high-fat diet with 0.6% HT048 (w/w; HFD + 0.6% HT048. It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.

  11. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    Science.gov (United States)

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  12. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    Science.gov (United States)

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice.

    Directory of Open Access Journals (Sweden)

    Danique van Vliet

    Full Text Available Phenylketonuria (PKU was the first disorder in which severe neurocognitive dysfunction could be prevented by dietary treatment. However, despite this effect, neuropsychological outcome in PKU still remains suboptimal and the phenylalanine-restricted diet is very demanding. To improve neuropsychological outcome and relieve the dietary restrictions for PKU patients, supplementation of large neutral amino acids (LNAA is suggested as alternative treatment strategy that might correct all brain biochemical disturbances caused by high blood phenylalanine, and thereby improve neurocognitive functioning.As a proof-of-principle, this study aimed to investigate all hypothesized biochemical treatment objectives of LNAA supplementation (normalizing brain phenylalanine, non-phenylalanine LNAA, and monoaminergic neurotransmitter concentrations in PKU mice.C57Bl/6 Pah-enu2 (PKU mice and wild-type mice received a LNAA supplemented diet, an isonitrogenic/isocaloric high-protein control diet, or normal chow. After six weeks of dietary treatment, blood and brain amino acid and monoaminergic neurotransmitter concentrations were assessed.In PKU mice, the investigated LNAA supplementation regimen significantly reduced blood and brain phenylalanine concentrations by 33% and 26%, respectively, compared to normal chow (p<0.01, while alleviating brain deficiencies of some but not all supplemented LNAA. Moreover, LNAA supplementation in PKU mice significantly increased brain serotonin and norepinephrine concentrations from 35% to 71% and from 57% to 86% of wild-type concentrations (p<0.01, respectively, but not brain dopamine concentrations (p = 0.307.This study shows that LNAA supplementation without dietary phenylalanine restriction in PKU mice improves brain biochemistry through all three hypothesized biochemical mechanisms. Thereby, these data provide proof-of-concept for LNAA supplementation as a valuable alternative dietary treatment strategy in PKU. Based on these

  14. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    Science.gov (United States)

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. NPY/AgRP neurons are not essential for feeding responses to glucoprivation.

    Science.gov (United States)

    Luquet, Serge; Phillips, Colin T; Palmiter, Richard D

    2007-02-01

    Animals respond to hypoglycemia by eating and by stimulating gluconeogenesis. These responses to glucose deprivation are initiated by glucose-sensing neurons in the brain, but the neural circuits that control feeding behavior are not well established. Neurons in the arcuate region of the hypothalamus that express neuropeptide Y (NPY) and agouti-related protein (AgRP) have been implicated in mediating the feeding response to glucoprivation. We devised a method to selectively ablate these neurons in neonatal mice and then tested adult mice for their feeding responses to fasting, mild hypoglycemia, 2-deoxy-d-glucose and a ghrelin receptor agonist. Whereas the feeding response to the ghrelin receptor agonist was completely abrogated, the feeding response to glucoprivation was normal. The feeding response after a fast was attenuated when standard chow was available but normal with more palatable solid or liquid diet. We conclude that NPY/AgRP neurons are not necessary for generating or mediating the orexigenic response to glucose deficiency, but they are essential for the feeding response to ghrelin and refeeding on standard chow after a fast.

  16. Erythrocyte osmotic fragility and general health status of adolescent Sprague Dawley rats supplemented with Hibiscus sabdariffa aqueous calyx extracts as neonates followed by a high-fructose diet post-weaning.

    Science.gov (United States)

    Ibrahim, K G; Lembede, B W; Chivandi, E; Erlwanger, K

    2018-02-01

    High-fructose diets (HFD) can cause oxidative damage to tissues including erythrocyte cell membranes. Hibiscus sabdariffa (HS) has protective antioxidant properties. Rats were used to investigate whether the consumption of HS by neonates would result in long-term effects on their erythrocyte osmotic fragility (EOF) and general health when later fed a high-fructose diet post-weaning through adolescence. Eighty of four-day-old Sprague Dawley rat pups were divided randomly into three treatment groups. The controls (n = 27) received distilled water at 10 ml/kg b. w, while the other groups received either 50 mg/kg (n = 28) or 500 mg/kg (n = 25) of an HS aqueous calyx extract orally till post-natal day 14. The rats in each group were weaned and divided into two subgroups; one continued on normal rat chow, and the other received fructose (20% w/v) in their drinking water for 30 days. Blood was collected in heparinised tubes and added to serially diluted (0.0-0.85%) phosphate-buffered saline to determine the EOF. Clinical markers of health status were determined with an automated chemical analyser. HS extracts did not programme metabolism in the growing rats to alter their general health and EOF in response to the HFD. © 2017 Blackwell Verlag GmbH.

  17. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice

    Science.gov (United States)

    Wang, Jingjing; Tang, Huang; Zhang, Chenhong; Zhao, Yufeng; Derrien, Muriel; Rocher, Emilie; van-Hylckama Vlieg, Johan ET; Strissel, Katherine; Zhao, Liping; Obin, Martin; Shen, Jian

    2015-01-01

    Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice. PMID:24936764

  18. Dietary L-cysteine improves the antioxidative potential and lipid metabolism in rats fed a normal diet.

    Science.gov (United States)

    Lee, Seulki; Han, Kyu-Ho; Nakamura, Yumi; Kawakami, Sakura; Shimada, Ken-ichiro; Hayakawa, Touru; Onoue, Hirotake; Fukushima, Michihiro

    2013-01-01

    L-cysteine works as a precursor of the antioxidant, glutathione. We investigated the effects of L-cysteine (1% and 2%) on lipid metabolism and the antioxidative system in rats fed a normal diet. Administering L-cysteine dependently decreased the food intake, fat mass weight and body weight dose. Dietary L-cysteine also decreased the triglyceride levels in the serum and liver. However, there were no significant differences in the hepatic TBARS and glutathione (GSH) levels among the groups. The activities of catalase and glutathione reductase in the rats receiving 2% L-cysteine were significantly higher (pL-cysteine dose-dependently affected the antioxidative enzyme activities, and the lipid levels in the serum and liver which might be related to the reduced food intake.

  19. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

    Science.gov (United States)

    Rajagopal, Rithwick; Bligard, Gregory W; Zhang, Sheng; Yin, Li; Lukasiewicz, Peter; Semenkovich, Clay F

    2016-04-01

    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Effects of pectin-containing diets on the hepatic macromolecular covalent binding of 2,6-dinitro-[3H]toluene in Fischer-344 rats

    International Nuclear Information System (INIS)

    deBethizy, J.D.; Sherrill, J.M.; Rickert, D.E.; Hamm, T.E. Jr.

    1983-01-01

    The influence of diets varying in pectin content on intestinal microfloral metabolic capacity of rats has been investigated as a possible mechanism for the alteration of toxicity of 2,6-dinitrotoluene (2,6-DNT) produced by these diets. Male F-344 rats were fed a purified diet (AIN-76A), AIN-76A plus 5% or 10% citrus pectin, or either of two cereal-based diets that vary in pectin content, NIH-07 or Purina Chow 5002. After 28 days, rats were given tritium-labeled 2,6-DNT (10 or 75 mg/kg po) and killed 12 hr later. Total hepatic macromolecular covalent binding (CVB) was determined by exhaustive extraction. The CVB of 2,6-DNT was found to be independent of diet at 10 mg/kg. However, at 75 mg/kg CVB was increased 40% by feeding 5% pectin in the purified diet and 90% by feeding 10% pectin in the purified diet. Animals fed Purina 5002 and NIH-07 had 135 and 150% higher CVB, respectively, than animals fed the purified diet alone and significantly greater CVB than animals fed the pectin supplemented diets. Elevated (two- to threefold) beta-glucuronidase and nitroreductase activities, microfloral enzymes proposed to be involved in the activation of 2,6-DNT to a toxicant, were found in the cecal contents of animals fed the pectin-containing diets which correlated with a two- to threefold increase in total number of cecal anaerobes. These results suggest that pectin-induced changes in microflora may enhance hepatoxicity after high doses of 2,6-DNT

  1. Stearoyl-CoA desaturase indexes and n-6/n-3 fatty acids ratio as biomarkers of cardiometabolic risk factors in normal-weight rabbits fed high fat diets.

    Science.gov (United States)

    Alarcón, Gabriela; Roco, Julieta; Medina, Analia; Van Nieuwenhove, Carina; Medina, Mirta; Jerez, Susana

    2016-01-20

    Biomarkers for cardiometabolic risk (CMR) factors would be important tools to maximize the effectiveness of dietary interventions to prevent cardiovascular diseases. Thus, the aim of this work was to analyze stearoyl-CoA desaturase (SCD) indexes and n-6/n-3 fatty acids (FA) ratio as biomarkers of CMR induced by feeding rabbits on high fat diets (HFDs). Rabbits were fed either regular diet or 18 % fat in regular diet (HFD) or 1 % cholesterol diet (HD) or diet containing 1 % cholesterol and 18 % fat (HFD-HD) during 6 weeks. Body weights (BW), blood pressure, visceral abdominal fat (VAF) and glucose tolerance test were determined. Total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglycerides (TG), fasting glucose (FG), and FA levels from plasma were measured. SCD indexes were calculated as product/precursor ratios of individual FA. BW was similar in all diet groups. HD increased TC, LDL-C, HDL-C, and TG. HFD increased TG, VAF and FG, and decreased HDL-C. The addition of HFD to HD joined to dyslipidemia increased VAF and FG. SCD indexes were increased and n-6/n-3 was unchanged in HD. SCD indexes were reduced and n-6/n-3 FA ratio was increased in HFD and HFD-HD. CMR factors were correlated positively with n-6/n-3 FA ratio. Although VAF had a stronger correlation with n-6/n-3 FA ratio than with SCD indexes, VAF was associated independently to both markers. HFD simulating lipid composition of the average Western-style diet induced experimental rabbit models of normal-weight metabolic syndrome (MS). SCD indexes and n-6/n-3 were modified according to the type of dietary fat. Considering that VAF and CMR factors appear to be stronger associated to n-6/n-3 FA ratio than to SCD indexes, n-6/n-3 FA ratio may be a better biomarker of MS and CMR in normal-weight subjects than SCD indexes.

  2. Sex determines effect of physical activity on diet preference: Association of striatal opioids and gut microbiota composition.

    Science.gov (United States)

    Lee, Jenna R; Muckerman, Julie E; Wright, Anna M; Davis, Daniel J; Childs, Tom E; Gillespie, Catherine E; Vieira-Potter, Victoria J; Booth, Frank W; Ericsson, Aaron C; Will, Matthew J

    2017-09-15

    Previous studies suggest an interaction between the level of physical activity and diet preference. However, this relationship has not been well characterized for sex differences that may exist. The present study examined the influence of sex on diet preference in male and female Wistar rats that were housed under either sedentary (no wheel access) (SED) or voluntary wheel running access (RUN) conditions. Following a 1 week acclimation period to these conditions, standard chow was replaced with concurrent ad libitum access to a choice of 3 pelleted diets (high-fat, high-sucrose, and high-corn starch) in the home cage. SED and RUN conditions remained throughout the next 4 week diet preference assessment period. Body weight, running distance, and intake of each diet were measured daily. At the conclusion of the 4 week diet preference test, animals were sacrificed and brains were collected for mRNA analysis. Fecal samples were also collected before and after the 4 week diet preference phase to characterize microbiota composition. Results indicate sex dependent interactions between physical activity and both behavioral and physiological measures. Females in both RUN and SED conditions preferred the high-fat diet, consuming significantly more high-fat diet than either of the other two diets. While male SED rats also preferred the high-fat diet, male RUN rats consumed significantly less high-fat diet than the other groups, instead preferring all three diets equally. There was also a sex dependent influence of physical activity on both reward related opioid mRNA expression in the ventral striatum and the characterization of gut microbiota. The significant sex differences in response to physical activity observed through both behavioral and physiological measures suggest potential motivational or metabolic difference between males and females. The findings highlight the necessity for further exploration between male and female response to physical activity and feeding

  3. High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice.

    Science.gov (United States)

    Maioli, Tatiani Uceli; Gonçalves, Juliana Lauar; Miranda, Mariana Camila Gonçalves; Martins, Vinícius Dantas; Horta, Laila Sampaio; Moreira, Thais Garcias; Godard, Ana Lucia Brunialti; Santiago, Andrezza Fernanda; Faria, Ana Maria Caetano

    2016-02-01

    The purpose of the study was to develop a novel diet based on standard AIN93G diet that would be able to induce experimental obesity and impair immune regulation with high concentrations of both carbohydrate and lipids. To compare the effects of this high sugar and butter (HSB) diet with other modified diets, male C57BL/6 mice were fed either mouse chow, or AIN93G diet, or high sugar (HS) diet, or high-fat (HF) diet, or high sugar and butter (HSB) diet for 11 weeks ad libitum. HSB diet induced higher weight gain. Therefore, control AIN93G and HSB groups were chosen for additional analysis. Regulatory T cells were studied by flow cytometry, and cytokine levels were measured by ELISA. Although HF and HSB diets were able to induce a higher weight gain compatible with obesity in treated mice, HSB-fed mice presented the higher levels of serum glucose after fasting and the lowest frequency of regulatory T cells in adipose tissue. In addition, mice that were fed HSB diet presented higher levels of cholesterol and triglycerides, hyperleptinemia, increased resistin and leptin levels as well as reduced adiponectin serum levels. Importantly, we found increased frequency of CD4(+)CD44(+) effector T cells, reduction of CD4(+)CD25(+)Foxp3(+) and Th3 regulatory T cells as well as decreased levels of IL-10 and TGF-β in adipose tissue of HSB-fed mice. Therefore, HSB represents a novel model of obesity-inducing diet that was efficient in triggering alterations compatible with metabolic syndrome as well as impairment in immune regulatory parameters.

  4. Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption.

    Science.gov (United States)

    Trinko, Joseph R; Land, Benjamin B; Solecki, Wojciech B; Wickham, Robert J; Tellez, Luis A; Maldonado-Aviles, Jaime; de Araujo, Ivan E; Addy, Nii A; DiLeone, Ralph J

    2016-01-01

    The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.

  5. Role of vitamin D3 in modulation of ΔNp63α expression during UVB induced tumor formation in SKH-1 mice.

    Directory of Open Access Journals (Sweden)

    Natasha T Hill

    Full Text Available ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR and phosphatase and tensin homologue deleted on chromosome ten (PTEN. Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.

  6. Therapeutic role of niacin in the prevention and regression of hepatic steatosis in rat model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Ganji, Shobha H; Kukes, Gary D; Lambrecht, Nils; Kashyap, Moti L; Kamanna, Vaijinath S

    2014-02-15

    Nonalcoholic fatty liver disease (NAFLD), a leading cause of liver damage, comprises a spectrum of liver abnormalities including the early fat deposition in the liver (hepatic steatosis) and advanced nonalcoholic steatohepatitis. Niacin decreases plasma triglycerides, but its effect on hepatic steatosis is elusive. To examine the effect of niacin on steatosis, rats were fed either a rodent normal chow, chow containing high fat (HF), or HF containing 0.5% or 1.0% niacin in the diet for 4 wk. For regression studies, rats were first fed the HF diet for 6 wk to induce hepatic steatosis and were then treated with niacin (0.5% in the diet) while on the HF diet for 6 wk. The findings indicated that inclusion of niacin at 0.5% and 1.0% doses in the HF diet significantly decreased liver fat content, liver weight, hepatic oxidative products, and prevented hepatic steatosis. Niacin treatment to rats with preexisting hepatic steatosis induced by the HF diet significantly regressed steatosis. Niacin had no effect on the mRNA expression of fatty acid synthesis or oxidation genes (including sterol-regulatory element-binding protein 1, acetyl-CoA carboxylase 1, fatty acid synthase, and carnitine palmitoyltransferase 1) but significantly inhibited mRNA levels, protein expression, and activity of diacylglycerol acyltrasferase 2, a key enzyme in triglyceride synthesis. These novel findings suggest that niacin effectively prevents and causes the regression of experimental hepatic steatosis. Approved niacin formulation(s) for other indications or niacin analogs may offer a very cost-effective opportunity for the clinical development of niacin for treating NAFLD and fatty liver disease.

  7. Dieta hiperlipídica e capacidade secretória de insulina em ratos High-fat diet and secretory capacity of insulin in rats

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Garcia de Oliveira Duarte

    2006-06-01

    the effects of continuous feeding of rats with a palatable high-fat diet on: body weight gain, adiposity, liver and muscle glycogen content, blood glucose and insulin levels, and pancreatic morphology and insulin secretion by in vitro isolated pancreatic beta cells. METHODS: Male Wistar rats (21 days old were fed with a palatable high-fat diet or a chow diet during 15wk. Body weight and food intake were recorded daily whereas blood glucose and insulin were analyzed weekly. After they were killed, pancreas, liver, gastrocnemius muscle and adipose tissues were removed and weighted. Morphology analysis of pancreatic tissue sections was performed using light microscopy. Serum insulin and the insulin secreted by isolated pancreatic islets, incubated for 90min under different concentrations of glucose, were analyzed by radioimmunoassay. RESULTS: The palatable high-fat diet increased adiposity, body weight gain and liver glycogen content when compared with the animals fed with a chow diet. Blood glucose and insulin levels did not differ between groups. The insulin secretion from isolated islets increased in the high-fat diet group only at physiological concentrations of glucose (G= 8.3mM. The size of the pancreas of rats receiving the high-fat diet decreased, although the number of beta cells increased. In addition, the lumen of pancreatic vessels was narrower compared with control islets. CONCLUSION: The obesity resulting from a high-fat diet did not alter the blood glucose and insulin levels of fasted rats. Despite the morphological alterations of the pancreas, normal blood glucose concentration in rats receiving a high-fat diet remained at physiological range due to a preserved secretory capacity of the pancreatic islets.

  8. Sensory-specific satiety is intact in rats made obese on a high-fat high-sugar choice diet.

    Science.gov (United States)

    Myers, Kevin P

    2017-05-01

    Sensory-specific satiety (SSS) is the temporary decreased pleasantness of a recently eaten food, which inhibits further eating. Evidence is currently mixed whether SSS is weaker in obese people, and whether such difference precedes or follows from the obese state. Animal models allow testing whether diet-induced obesity causes SSS impairment. Female rats (n = 24) were randomly assigned to an obesogenic high-fat, high-sugar choice diet or chow-only control. Tests of SSS involved pre-feeding a single palatable, distinctively-flavored food (cheese- or cocoa-flavored) prior to free choice between both foods. Rats were tested for short-term SSS (2 h pre-feeding immediately followed by 2 h choice) and long-term SSS (3 day pre-feeding prior to choice on day 4). In both short- and long-term tests rats exhibited SSS by shifting preference towards the food not recently eaten. SSS was not impaired in obese rats. On the contrary, in the long-term tests they showed stronger SSS than controls. This demonstrates that neither the obese state nor a history of excess energy consumption fundamentally causes impaired SSS in rats. The putative impaired SSS in obese people may instead reflect a specific predisposition, properties of the obesogenic diet, or history of restrictive dieting and bingeing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and fenofibrate intervention

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yunxia, E-mail: wwwdluyx@sina.com [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032 (China); Cheng, Jingjing [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Chen, Li [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Department of Medical Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230001 (China); Li, Chaofei; Chen, Guanjun [Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032 (China); Gui, Li [The Comprehensive Laboratory, Anhui Medical University, Hefei, Anhui 230032 (China); Shen, Bing [Department of Physiology, Anhui Medical University, Hefei, Anhui 230032 (China); Zhang, Qiu [Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 (China)

    2015-02-27

    Fenofibrate (FF) is widely used to lower blood lipids in clinical practice, but whether its protective effect on endothelium-dependent vasodilatation (EDV) in thoracic aorta is related with endoplasmic reticulum (ER) stress remains unknown. In this study, female Sprauge Dawley rats were divided into standard chow diets (SCD), high-fat diets (HFD) and HFD plus FF treatment group (HFD + FF) randomly. The rats of latter two groups were given HFD feeding for 5 months, then HFD + FF rats were treated with FF (30 mg/kg, once daily) via gavage for another 2 months. The pathological and tensional changes, protein expression of eNOS, and ER stress related genes in thoracic aorta were measured. Then impacts of palmitic acid (PA) and FF on EDV of thoracic aorta from normal female SD rats were observed. Ultimately the expression of ER stress related genes were assessed in primary mouse aortic endothelial cells (MAEC) treated by fenofibric acid (FA) and PA. We found that FF treatment improved serum lipid levels and pathological changes in thoracic aorta, accompanied with decreased ER stress and increased phosphorylation of eNOS. FF pretreatment also improved EDV impaired by different concentrations of PA treatment. The dose- and time-dependent inhibition of cell proliferation by PA were inverted by FA pretreatment. Phosphorylation of eNOS and expression of ER stress related genes were all inverted by FA pretreatment in PA-treated MAEC. Our findings show that fenofibrate recovers damaged EDV by chronic HFD feeding and acute stimulation of PA, this effect is related with decreased ER stress and increased phosphorylation of eNOS. - Highlights: • Fenofibrate treatment improved pathological changes in thoracic aorta by chronic high-fat-diet feeding. • Fenofibrate pretreatment improved endothelium-dependent vasodilation impaired by different concentrations of palmitic acid. • The inhibition of proliferation in endothelial cells by palmitic acid were inverted by fenofibric

  10. Relationship of adipocyte size to hyperphagia in developing male obese Zucker rats.

    Science.gov (United States)

    Vasselli, J R; Fiene, J A; Maggio, C A

    1992-01-01

    In growing male obese Zucker rats, hyperphagia reaches a maximum or "breakpoint" and declines at an earlier age with high fat than with chow-type diets. A serial adipose tissue biopsy technique was used to correlate changes of retroperitoneal adipocyte size and feeding behavior in 5- to 7-wk-old male lean and obese rats fed laboratory chow or a 35% fat diet until 30 wk of age. Although chow-fed groups had significantly greater cumulative intake, fat-fed groups had significantly greater body weight gain, retroperitoneal depot weight, and adipocyte number. Mean adipocyte size increased continuously in chow-fed groups but decreased over weeks 20-30 in fat-fed groups, reflecting increased adipocyte number. In fat-fed obese rats, hyperphagia reached a breakpoint at 11 wk and disappeared by 13 wk. In chow-fed obese rats, hyperphagia reached a breakpoint at 15-16 wk and disappeared by 19 wk. Biopsy samples revealed that adipocyte size of fat-fed obese rats was already close to maximal at 10 wk (1.12 micrograms lipid), while that of chow-fed obese rats only approached maximal at 20 wk (0.81 microgram lipid). At these time points, lipoprotein lipase activity paralleled adipocyte size. These data indicate that the duration of the growing obese rat's hyperphagia coincides with adipocyte filling and suggest the existence of feeding stimulatory and inhibitory signals from adipose tissue.

  11. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats

    Science.gov (United States)

    2013-01-01

    Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning

  12. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Alves de Souza

    2015-06-01

    Full Text Available Alcoholic liver disease is characterized by a wide spectrum of liver damage, which increases when ethanol is associated with high-fat diets (HFD. This work aimed to establish a model of alcoholic hepatic steatosis (AHS by using a combination of 10% ethanol and sunflower seeds as the source of HFD. Male rats received water or 10% ethanol and regular chow diet and/or HFD, which consisted of sunflower seeds. The food consumption, liquid intake and body weight of the rats were monitored for 30 days. After this period, blood was collected for biochemical evaluation, and liver samples were collected for histological, mitochondrial enzyme activity and oxidative stress analyses. Our results indicated that the combination of 10% ethanol and HFD induced micro- and macrosteatosis and hepatocyte tumefaction, decreased the levels of reduced glutathione and glutathione S-transferase activity and increased the level of lipoperoxidation and superoxide dismutase activity. The mitochondrial oxidation of NADH and succinate were partially inhibited. Complexes I and II were the main inhibition sites. Hepatic steatosis was successfully induced after 4 weeks of the diet, and the liver function was modified. The combination of 10% ethanol and sunflower seeds as an HFD produced an inexpensive model to study AHS in rats.

  13. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Danielle Cristina Tomaz da [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Lima-Leopoldo, Ana Paula; Leopoldo, André Soares [Departamento de Esportes, Centro de Educação Física e Desportos da Universidade Federal do Espírito Santo (UFES), Vitória, ES (Brazil); Campos, Dijon Henrique Salomé de; Nascimento, André Ferreira do [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Oliveira, Sílvio Assis Junior de [Escola de Fisioterapia da Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Padovani, Carlos Roberto [Departamento de Bioestatística do Instituto de Ciências Biológicas da Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Cicogna, Antonio Carlos, E-mail: dany.tomaz@gmail.com [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2014-02-15

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C{sub 15} and Ob{sub 15}) and 30 (C{sub 30} and Ob{sub 30}) consecutive weeks. Obesity was determined by adiposity index. The Ob{sub 15} group was similar to the C{sub 15} group regarding the expression of myocardial collagen type I; however, expression in the Ob{sub 30} group was less than C{sub 30} group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob{sub 30} when compared with Ob{sub 15}. Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression.

  14. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N

    2017-09-22

    Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.

  15. Both food restriction and high-fat diet during gestation induce low birth weight and altered physical activity in adult rat offspring: the "Similarities in the Inequalities" model.

    Directory of Open Access Journals (Sweden)

    Fábio da Silva Cunha

    Full Text Available We have previously described a theoretical model in humans, called "Similarities in the Inequalities", in which extremely unequal social backgrounds coexist in a complex scenario promoting similar health outcomes in adulthood. Based on the potential applicability of and to further explore the "similarities in the inequalities" phenomenon, this study used a rat model to investigate the effect of different nutritional backgrounds during gestation on the willingness of offspring to engage in physical activity in adulthood. Sprague-Dawley rats were time mated and randomly allocated to one of three dietary groups: Control (Adlib, receiving standard laboratory chow ad libitum; 50% food restricted (FR, receiving 50% of the ad libitum-fed dam's habitual intake; or high-fat diet (HF, receiving a diet containing 23% fat. The diets were provided from day 10 of pregnancy until weaning. Within 24 hours of birth, pups were cross-fostered to other dams, forming the following groups: Adlib_Adlib, FR_Adlib, and HF_Adlib. Maternal chow consumption and weight gain, and offspring birth weight, growth, physical activity (one week of free exercise in running wheels, abdominal adiposity and biochemical data were evaluated. Western blot was performed to assess D2 receptors in the dorsal striatum. The "similarities in the inequalities" effect was observed on birth weight (both FR and HF groups were smaller than the Adlib group at birth and physical activity (both FR_Adlib and HF_Adlib groups were different from the Adlib_Adlib group, with less active males and more active females. Our findings contribute to the view that health inequalities in fetal life may program the health outcomes manifested in offspring adult life (such as altered physical activity and metabolic parameters, probably through different biological mechanisms.

  16. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Navarro-Xavier RA

    2016-05-01

    Full Text Available Roberta Araujo Navarro-Xavier,1 Karina Vieira de Barros,1 Iracema Senna de Andrade,1 Zaira Palomino,2 Dulce Elena Casarini,2 Vera Lucia Flor Silveira3 1Departamento de Fisiologia, 2Departamento de Medicina, 3Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil Background: The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6 or fish oil (rich in n-3 in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th-2 (interleukin [IL]-4, IL-5 and Th1 (interferon [IFN]-γ, tumor necrosis factor-α cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL or lungs. Methods: Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results: Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion: Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. Keywords: asthma, nitric oxide, n-6 fatty acids, n-3 fatty acids, cytokines

  17. Effects of the cafeteria diet on the salivary glands of trained and sedentary Wistar rats - doi: 10.4025/actascibiolsci.v34i1.7473

    Directory of Open Access Journals (Sweden)

    Maria Raquel Marçal Natali

    2011-11-01

    Full Text Available The objective of this work was to study the effect of the aerobic physical training and the cafeteria diet introduced after weaning of Wistar rats and on the morphology of the main salivary glands (parotid, submandibular, sublingual. Male rats after weaning were subjected to the cafeteria diet or the standard rodent chow, and either performed aerobic physical training in a treadmill for 100 days, or did not performed any physical activity. Analyses were done considering the response in body weight, adipose tissues and salivary glands, and the data were submitted to statistical treatment (p < 0.05. The morphological and morphometric analyses of the salivary glands were performed through histological sections stained with hematoxylin and eosin. Despite the normophagic behavior, the rodents fed with the cafeteria diet became obese, with repercussions on parotid gland weight. However, this obesity and/or physical training did not influence the histological organization of the salivary glands. The morphometric analysis of the submandibular glands pointed out a reduction in the levels of serous acinar cells as an effect of the diet and physical training. In conclusion, the parotid and the submandibular glands alter themselves due to the nature and consistency of food present in the cafeteria diet as well as due to the aerobic physical training.

  18. Short-term mastication after weaning upregulates GABAergic signalling and reduces dendritic spine in thalamus.

    Science.gov (United States)

    Ogawa, Mana; Nagai, Toshitada; Saito, Yoshikazu; Miyaguchi, Hitonari; Kumakura, Kei; Abe, Keiko; Asakura, Tomiko

    2018-04-06

    Mastication enhances brain function and mental health, but little is known about the molecular mechanisms underlying the effects of mastication on neural development in early childhood. Therefore, we analysed the gene expression in juvenile neural circuits in rats fed with a soft or chow diet immediately after weaning. We observed that the gene expression patterns in the thalamus varied depending on the diet. Furthermore, gene ontology analysis revealed that two terms were significantly enhanced: chemical synaptic transmission and positive regulation of dendritic spine morphogenesis. With respect to chemical synaptic transmission, glutamate decarboxylase and GABA receptors were upregulated in the chow diet group. The related genes, including vesicular GABA transporter, were also upregulated, suggesting that mastication activates GABAergic signalling. With respect to dendritic spine morphogenesis, Ingenuity Pathway Analysis predicted fewer extension of neurites and neurons and fewer number of branches in the chow diet group. The numbers of spines in the ventral posterolateral and posteromedial regions were significantly decreased. These results suggest that mastication in the early developing period upregulates GABAergic signalling genes, with a decrease of spines in the thalamus. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis.

    Science.gov (United States)

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart

    2017-07-18

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p coconut oil mice than in standard chow mice. Myocardial capillary density ( p coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  20. Delayed development, death and abnormal thyroglobulin in rats maintained on low-iodine diets

    International Nuclear Information System (INIS)

    Van Middlesworth, L.

    1976-01-01

    Rats weaned on Remington Low Iodine Diet (0.006 to 0.009 μgI/g) grew poorly, were very slow to breed, and 83% of their pups died in the neonatal period. A large iodide supplement (100μgI/d) improved growth of the females to almost normal but did not improve growth of males. With the iodide supplement they bred at an earlier age than rats fed the low iodide Remington diet but still 73% of the pups died before weaning. The addition of a vitamin mixture (biotin, vitamin B 12 , E, patothenic acid, riboflavin, thiamine and pyridoxine) to Remington Diet resulted in delayed pregnancies but 86% survival of offspring. A more nutritious low-iodine diet with a 'complete' mineral and vitamin supplement improved growth and survival, and the litters were delivered at the normal time. However, this more complete diet contained more iodine than the Remington diet. During the neonatal period, all the low iodine diets resulted in offspring that were unable to make T 3 as readily as adults fed the same diet. Pups from dams fed the Remington diet had thyroblobulin with lower sedimentation constants (18S and 12S) than was found in normal newborns. This unfolded and dissociated thyroglobulin may be an inadequate source of thyroid hormones, but it may hydrolyse more rapidly than normal 19S thyroglobulin. It is concluded that rats raised on a diet severely deficient in iodine were unable to litter until they were older than normal rats, and the survival of the offspring was poor unless the diet was supplemented with a vitamin mixture. The synthesis of thyroid hormones in low iodine neonatal rats was more severely impaired than in adults. (author)

  1. Investigation of Effect of Nutritional Drink on Chemotherapy-Induced Mucosal Injury and Tumor Growth in an Established Animal Model

    Directory of Open Access Journals (Sweden)

    Eduardo Schiffrin

    2013-09-01

    Full Text Available Chemotherapy-induced mucositis represents a significant burden to quality of life and healthcare costs, and may be improved through enhanced nutritional status. We first determined the safety of two nutritional drinks (plus placebo, and then potential gut protection in tumor-bearing rats in a model of methotrexate-induced mucositis. In study 1, animals were fed one of two test diets (or placebo or control chow pellets for a total of 60 days and were monitored daily. All diets were found to be safe to administer. In study 2, after seven days of receiving diets, a Dark Agouti Mammary Adenocarcinoma (DAMA was transplanted subcutaneously. Ten days after starting diets, animals had 2 mg/kg intramuscular methotrexate administered on two consecutive days; after this time, all animals were given soaked chow. Animals were monitored daily for changes in bodyweight, tumor burden and general health. Animals were killed 10, 12 and 16 days after initially starting diets, and tissues were collected at necropsy. In study 1, animals receiving diets had gained 0.8% and 10.8% of their starting bodyweight after 60 days, placebo animals 4.4%, and animals fed on standard chow had gained 15.1%. In study 2, there was no significant influence of test diet on bodyweight, organ weight, tumor burden or biochemical parameters. Only animals treated with MTX exhibited diarrhea, although animals receiving Diet A and Diet C showed a non-significant increase in incidence of diarrhea. Administration of these nutritional drinks did not improve symptoms of mucositis.

  2. The big five and self-esteem among overweight dieting and non-dieting women.

    Science.gov (United States)

    Rubinstein, Gidi

    2006-11-01

    Overweight is one of the most frequent phenomena, which poses serious health risks, emotional disturbances and esthetic and social problems in the Western world. This study investigated personality differences between women with normal weight, dieting overweight women and non-dieting overweight women. Thirty women with normal weight (NW), 30 overweight women who participated in diet groups (OWD), and 30 overweight women who did not participate in such groups (OWND) filled in a demographic questionnaire, Costa and McCrae's [Costa, P. T. Jr., & McCrae, R. R. (1992). NEO PI-R: Professional manual. Odessa, FL: Psychological Assessment Resources.] NEO-FFI, and Rosenberg's [Rosenberg, M. (1965). Society and the adolescent self-image. Princeton, NJ: Princeton University Press.] Self-Esteem questionnaire. The results indicate that the OWND are significantly more neurotic and less open, conscientious, agreeable, and extravert than the other two groups. Self-esteem of the OWND is also lower than both OWD and NW. Contrary to hypothesis, OWD and NW do not significantly differ from each other with respect to both the Big Five and self-esteem.

  3. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice.

    Science.gov (United States)

    Hannibal, Tine D; Schmidt-Christensen, Anja; Nilsson, Julia; Fransén-Pettersson, Nina; Hansen, Lisbeth; Holmberg, Dan

    2017-10-01

    Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. Mice lacking the receptor for IFN-α (IFNAR -/- ) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2 fl/fl .Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.

  4. The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts.

    Science.gov (United States)

    Flepisi, T B; Lochner, Amanda; Huisamen, Barbara

    2013-10-01

    Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this. Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca(2+)ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined. DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats. GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.

  5. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR.

    Science.gov (United States)

    Lloyd, Jesse W; Zerfass, Kristy M; Heckstall, Ebony M; Evans, Kristin A

    2015-10-01

    Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p HOMA-IR; 846.5 ± 1723.3%, p HOMA-IR. Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin.

  6. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    Full Text Available High-fat diet (HFD-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group or a HFD (60% of calorie from fat; HFD group for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a a significant decrease of insulin receptor substrate (IRS-1 phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment; this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a an inactivation of the IRS-1 and, consequentially, (b a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c a suppression of the ERK/CREB pathway, and (d a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity. It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  7. Influence of x irradiation and diet on pituitary/thyroid function in the rat

    International Nuclear Information System (INIS)

    Qassar, I.G.

    1979-01-01

    Rats were maintained on low iodine diet or treated with T 4 . A significant increase in thyroid weight was observed in rats on low iodine diet whereas among rats on normal diet with thyroxine injections, the thyroid was lower in weight than thyroids of control animals. Pituitary weight increased significantly in rats on low iodine diet or T 4 treatment. Labelling index was significantly higher in the group on low iodine diet. A significantly lower labelling index was observed after thyroxine treatment. Where PTU was administered to rats pretreated with either normal diet, normal diet plus T 4 , or maintained on low iodine diet and then exposed to radiation (100 to 400R) to the neck, it was not possible to distinguish the effect of such local radiation on body growth. The pre-radiation treatment did not have any effect on thyroid weight during two weeks post-radiation, suggesting that a four week post-radiation period is essential to elicit radiation effects on the thyroid. Contrary to low iodine treatment, administration of PTU did not result in any increase in pituitary weight in rats maintained on normal diet prior to radiation or in rats maintained on low iodine diet prior to radiation. There was, however, a significant increase in pituitary weight in rats injected with thyroxine prior to radiation (250R or 400R). A significant increase in serum TSH was observed two weeks after radiation and PTU treatment. A lower TSH level was observed, however, in the 250R sub-group (normal diet or T 4 injection) and in the 400R sub-group (low iodine diet). There was a significant difference among sham-irradiated and the three x-irradiated sub-groups maintained on low iodine diet. The results of these studies indicate that local x irradiation with 100 to 400R to the neck may influence thyroid/pituitary function in the rat

  8. A mineral-rich red algae extract inhibits polyp formation and inflammation in the gastrointestinal tract of mice on a high-fat diet.

    Science.gov (United States)

    Aslam, Muhammad N; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; Varani, James

    2010-03-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for chemoprevention against colon polyp formation. A total of 60 C57bl/6 mice were divided into 3 groups based on diet. One group received a low-fat, rodent chow diet (AIN76A). The second group received a high-fat "Western-style" diet (HFWD). The third group was fed the same HFWD with the mineral-rich extract included as a dietary supplement. Mice were maintained on the respective diets for 15 months. Autopsies were performed at the time of death or at the completion of the study. To summarize, the cumulative mortality rate was higher in mice on the HFWD during the 15-month period (55%) than in mice from the low-fat diet or the extract-supplemented high-fat diet groups (20% and 30%, respectively; P < .05 with respect to both). Autopsies revealed colon polyps in 20% of the animals on the HFWD and none in animals of the other 2 groups (P < .05). In addition to the grossly visible polyps, areas of hyperplasia in the colonic mucosa and inflammatory foci throughout the gastrointestinal tract were observed histologically in animals on the high-fat diet. Both were significantly reduced in animals on the low-fat diet and animals on the extract-supplemented HFWD.These data suggest that the mineral-rich algae extract may provide a novel approach to chemoprevention in the colon.

  9. The NK1R-/- mouse phenotype suggests that small body size, with a sex- and diet-dependent excess in body mass and fat, are physical biomarkers for a human endophenotype with vulnerability to attention deficit hyperactivity disorder.

    Science.gov (United States)

    Pillidge, Katharine; Heal, David J; Stanford, S Clare

    2016-09-01

    The abnormal behaviour of NK1R-/- mice (locomotor hyperactivity, inattentiveness and impulsivity in the 5-Choice Serial Reaction-Time Test) is arguably analogous to that of patients with attention deficit hyperactivity disorder (ADHD). Evidence suggests that small body size and increased body weight are risk factors for ADHD. Here, we compared the body size, body mass and body composition of male and female NK1R-/- mice and their wildtypes that had been fed either standard laboratory chow or a high-fat (45%: 'Western') diet. Male NK1R-/- mice from both cohorts were approximately 7% shorter than wildtypes. A similar trend was evident in females. Male NK1R-/- mice fed the normal diet weighed less than wildtypes but the 'body mass index' ('mBMI': weight (mg)/length (cm)(2)) of female NK1R-/- mice was higher than wildtypes. When given the high-fat diet, the mBMI of both male and female NK1R-/- mice was higher than wildtypes. There were no consistent genotype or sex differences in protein, ash or water content of mice from the two cohorts. However, the fat content of male NK1R-/- mice on the Western diet was considerably (35%) higher than wildtypes and resembled that of females from both genotypes. We conclude that a lack of functional NK1R is associated with small body size but increases vulnerability to an increase in mBMI and fat content, especially in males. This phenotype could also be evident in ADHD patients with polymorphism(s) of the TACR1 gene (the human equivalent of Nk1r). © The Author(s) 2016.

  10. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice.

    Directory of Open Access Journals (Sweden)

    Katrin Pfuhlmann

    Full Text Available Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK, for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT, compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic

  11. Normal Bone Mineral Density Associates with Duodenal Mucosa Healing in Adult Patients with Celiac Disease on a Gluten-Free Diet.

    Science.gov (United States)

    Larussa, Tiziana; Suraci, Evelina; Imeneo, Maria; Marasco, Raffaella; Luzza, Francesco

    2017-01-31

    Impairment of bone mineral density (BMD) is frequent in celiac disease (CD) patients on a gluten-free diet (GFD). The normalization of intestinal mucosa is still difficult to predict. We aim to investigate the relationship between BMD and duodenal mucosa healing (DMH) in CD patients on a GFD. Sixty-four consecutive CD patients on a GFD were recruited. After a median period of a 6-year GFD (range 2-33 years), patients underwent repeat duodenal biopsy and dual-energy X-ray absorptiometry (DXA) scan. Twenty-four patients (38%) displayed normal and 40 (62%) low BMD, 47 (73%) DMH, and 17 (27%) duodenal mucosa lesions. All patients but one with normal BMD (23 of 24, 96%) showed DMH, while, among those with low BMD, 24 (60%) did and 16 (40%) did not. At multivariate analysis, being older (odds ratio (OR) 1.1, 95% confidence interval (CI) 1.03-1.18) and having diagnosis at an older age (OR 1.09, 95% CI 1.03-1.16) were associated with low BMD; in turn, having normal BMD was the only variable independently associated with DMH (OR 17.5, 95% CI 1.6-192). In older CD patients and with late onset disease, BMD recovery is not guaranteed, despite a GFD. A normal DXA scan identified CD patients with DMH; thus, it is a potential tool in planning endoscopic resampling.

  12. Effect of Partial Sleep Deprivation on Lipid Profile in High Fat Diet-Fed Rats in the Presence and Absence of Vitamin C

    Directory of Open Access Journals (Sweden)

    Hossein Najafzadeh

    2013-07-01

    Full Text Available Background: The daily stress and shift working cause insomnia. In other hands, fatty food consumption increased this disorder. The aim of present study is evaluation additive effect of partial insomnia and high fatty diet with or without vitamin C on serum lipid profile in rats.Materials and Methods: Fifty six rats in 7 groups (8 rats each group were conducted for study during 26 days as: 1: normal diet+normal sleep, 2: high fatty diet+normal sleep, 3: normal diet+insomnia, 4: high fatty diet+insomnia, 5: high fatty diet+normal sleep+vitamin C, 6: high fatty diet+insomnia+vitamin C, 7: normal diet+insomnia+ vitamin C. The lipid profile was examined at end of study. Results: Results shown the high fatty diet+insomnia increased triglyceride, LDL, VLDL level and decreased HDL level with comparison to high fatty diet+normal sleep group. But only insomnia did not change serum lipid profile. High fatty diet increased level of cholesterol (p<0.05. The normal diet increased body weight but high fatty diet decreased it significantly. Liver weight ratio was elevated by high fatty diet+insomnia. The vitamin C decreased cholesterol and increased HDL level in group of rats which received high fatty diet+insomnia. Conclusion: In conclusion, the present study shown the only insomnia did not affect on serum lipid profile while insomnia along with high fatty diet increased lipid high risk factors in blood.

  13. Analisis Diet pada Pasien Pascabedah Sectio Caesarea di RSUD Sidikalang

    OpenAIRE

    Sianturi, Veronika Mayasari

    2012-01-01

    Diet provided to post-surgical of caesarea sectio patients is post-surgery diet and high in calorie and high in protein diet. Post-surgery diet is food given to the patient after surgical in form of diet I, II, III, and IV. Diet with high in calorie and high in protein is contained energy and protein above the normal requirements. Both of these diet are important to support the recovering process of post-surgical of caesarea sectio patients. The main nutrient components of these diet are ener...

  14. Obesogenic diet intake during pregnancy programs aberrant synaptic plasticity and addiction-like behavior to a palatable food in offspring.

    Science.gov (United States)

    Camacho, Alberto; Montalvo-Martinez, Larisa; Cardenas-Perez, Robbi E; Fuentes-Mera, Lizeth; Garza-Ocañas, Lourdes

    2017-07-14

    Contextual food conditioned behaviors require plasticity of glutamatergic neurotransmission in the reward system, involving changes in the expression of including a-amino-3-hydroxy-5-methylisoxazole 4-propionate receptors (AMPA), N-methyl-d-aspartic acid (NMDA) and metabotropic glutamate 2,3 (mGlur 2,3). However, the role of changes in glutamatergic synaptic markers on energy-dense palatable food preference during development has not been described. Here, we determine the effect of nutritional programing during gestation on fat food choices using a conditioned place preference (CPP) test and an operant training response and its effect on glutamatergic markers in the nucleus accumbens (Nac) shell and prefrontal cortex (PFC). Our data showed that rats displayed preference for palatable fat food and an increase in caloric intake when compared to a chow diet. Notably, 74% of rats showing a preference for fat food intake correlate with a positive HFD-paired score whereas 26% failed to get HFD-conditioned. Also, male rats trained under an operant training response schedule (FR1, FR5 and PR) showed high and low responder groups to work for food. Notably, hypercaloric nutritional programing of female rats leads to exacerbation for reinforcers in female offspring compared to offspring from chow diet. Finally, we found that an operant training response to palatable reinforcers correlates with upregulation of mGlur 2,3 in the NAc shell and PFC of male rats and female offspring. Also, we found selective Nr1 upregulation in NAc shell and the PFC of female offspring. Our data suggest that nutritional programing by hypercaloric intake leads to incentive motivation to work for food and synaptic plasticity alteration in the mesolimbic system. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Directory of Open Access Journals (Sweden)

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  16. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR

    Science.gov (United States)

    Lloyd, Jesse W.; Zerfass, Kristy M.; Heckstall, Ebony M.; Evans, Kristin A.

    2015-01-01

    Objectives: Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. Methods: We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Results: Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p diet-induced increases in insulin and HOMA-IR. Conclusion: Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin. PMID:26445641

  17. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder.

    Science.gov (United States)

    Newell, Christopher; Bomhof, Marc R; Reimer, Raylene A; Hittel, Dustin S; Rho, Jong M; Shearer, Jane

    2016-01-01

    Gastrointestinal dysfunction and gut microbial composition disturbances have been widely reported in autism spectrum disorder (ASD). This study examines whether gut microbiome disturbances are present in the BTBR(T + tf/j) (BTBR) mouse model of ASD and if the ketogenic diet, a diet previously shown to elicit therapeutic benefit in this mouse model, is capable of altering the profile. Juvenile male C57BL/6 (B6) and BTBR mice were fed a standard chow (CH, 13 % kcal fat) or ketogenic diet (KD, 75 % kcal fat) for 10-14 days. Following diets, fecal and cecal samples were collected for analysis. Main findings are as follows: (1) gut microbiota compositions of cecal and fecal samples were altered in BTBR compared to control mice, indicating that this model may be of utility in understanding gut-brain interactions in ASD; (2) KD consumption caused an anti-microbial-like effect by significantly decreasing total host bacterial abundance in cecal and fecal matter; (3) specific to BTBR animals, the KD counteracted the common ASD phenotype of a low Firmicutes to Bacteroidetes ratio in both sample types; and (4) the KD reversed elevated Akkermansia muciniphila content in the cecal and fecal matter of BTBR animals. Results indicate that consumption of a KD likely triggers reductions in total gut microbial counts and compositional remodeling in the BTBR mouse. These findings may explain, in part, the ability of a KD to mitigate some of the neurological symptoms associated with ASD in an animal model.

  18. Protection from radiation-induced enteropathy by elemental diet feeding: The role of free radicals

    International Nuclear Information System (INIS)

    McArdle, A.H.; Duong, M.N.

    1991-01-01

    Free radicals have been implicated in intestinal reperfusion injury following ischemia and in epithelial cell damage resulting from ionizing radiation. Elemental diets (ED) have been shown to afford significant prophylaxis to the intestine from these injuries. The purpose of the present study was to investigate whether ED alters the activity of the defense mechanisms necessary for free radical removal. Six female dogs, fed on normal dog chow, had a 30 cm resection of terminal ileum to form Thiry-Vella loops. The main intestine was biopsied and anastomosed. Two weeks later, biopsies were taken from the lips of the loops. Following this, the loops were fed daily with ED another 2 weeks and biopsied again. The dogs were then placed on ED for 3 days before and during 4 days of pelvic irradiation, and the loops also were fed ED daily; after which the animals were again anesthetized, and the loops and main intestine were biopsied. All biopsies were processed for histology, and assayed for xanthine oxidase (XO), superoxide dismutase (SOD), glutathione peroxidase (GSP) and catalase (CAT). The XO and SOD pathway of free oxygen radical generation and scavenging are not affected by radiation. However, ED lowers both XO and SOD activity and may result in a reduced production of peroxides. The significantly increased activity of GSP and CAT when ED is fed improves the scavenging capacity of the free hydroxyl radicals generated by the radiation, and is an important adjunct to an understanding of ED prophylaxis

  19. Effects of Neem (Azadirachta indic and Custard Apple (Annona reticulata Diets on Sterility of House Rat (Rattus rattus

    Directory of Open Access Journals (Sweden)

    Prem Nidhi Sharma

    2015-12-01

    Full Text Available Three different plant products diets – i neem (Azadirachta indic A. Juss oil mixed diet (neem oil mixed @ 80 ml/kg of normal diet, ii neem seed powder mixed diet (neem seed powder mixed @ 80 g/kg of normal diet and iii custard apple (Annona reticulata L. seed powder mixed diet (custard apple seed powder mixed @ 80 g/kg of normal diet were separately fed to mature rats (Rattus rattus with single dose feeding of 80 g per pair in a day on 13th week-age during the experimenting years, 2012/013 and 2013/014. In control group only normal diet without neem and custard apple constituents were fed. Sterility test of rat was conducted up to 38 and 28 weeks-age in first and second year, respectively. The test rats were fed normal diet during whole experimenting periods except the one day when they were fed only the neem or custard apple mixed diet on the age of 13th week. Efficacy of the mixed diets on rat-sterility was determined based on pregnancy and parturition by the rats. The two years' results confirmed that all the tested three mixed diets – neem oil mixed diet, neem seed powder mixed diet, and custard apple seed powder mixed diet were effective to stop pregnancy and parturition in rats during whole experimenting periods up to 38 and 28 weeks-age with single dose feeding of 80 g per pair (40 gm/rat in a day on 13th week-age of the rats; whereas the pregnancy and parturition were observed in the rats that were fed only the normal diet. It is expected, neem and custard apple mixed diets can be utilized in reducing the economically important rodent populations in rice-wheat cropping system in future.

  20. n-3 Fatty acids, Mediterranean diet and cognitive function in normal aging: A systematic review.

    Science.gov (United States)

    Masana, Maria F; Koyanagi, Ai; Haro, Josep Maria; Tyrovolas, Stefanos

    2017-05-01

    Intake of n-3 fatty acids and adherence to the Mediterranean diet (MedDiet) have been shown to slow the progression of age-related cognitive decline, but the results are mixed. We summarized and evaluated the effect of n-3 fatty acids and MedDiet on cognitive outcomes in a cognitively healthy aged population. Relevant published studies from January 2000 to May 2015 were identified by searching three electronic databases: Pubmed, Web of Science/MEDLINE, and CINHAL. Observational studies and randomized controlled trials (RCTs) were considered. Twenty-four studies were included for the systematic review. n-3 fatty acids were associated with better global cognition and some specific cognitive domains though some results were conflicting. Adherence to the MedDiet was also significantly associated with better cognitive performance and less cognitive decline. Finally, better cognitive performance was observed in men compared to women and mixed results were also found for the influence of APOE4 genotype on the association between n-3 fatty acids or MedDiet and cognition. Studies suggest that n-3 fatty acids in the diet and adherence to the MedDiet are beneficial in slowing age-related cognitive decline. However, more high-quality RCTs would be useful to clarify the effect of n-3 fatty acid supplements on cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Maternal obesogenic diet induces endometrial hyperplasia, an early hallmark of endometrial cancer, in a diethylstilbestrol mouse model.

    Science.gov (United States)

    Owuor, Theresa O; Reid, Michaela; Reschke, Lauren; Hagemann, Ian; Greco, Suellen; Modi, Zeel; Moley, Kelle H

    2018-01-01

    Thirty-eight percent of US adult women are obese, meaning that more children are now born of overweight and obese mothers, leading to an increase in predisposition to several adult onset diseases. To explore this phenomenon, we developed a maternal obesity animal model by feeding mice a diet composed of high fat/ high sugar (HF/HS) and assessed both maternal diet and offspring diet on the development of endometrial cancer (ECa). We show that maternal diet by itself did not lead to ECa initiation in wildtype offspring of the C57Bl/6J mouse strain. While offspring fed a HF/HS post-weaning diet resulted in poor metabolic health and decreased uterine weight (regardless of maternal diet), it did not lead to ECa. We also investigated the effects of the maternal obesogenic diet on ECa development in a Diethylstilbestrol (DES) carcinogenesis mouse model. All mice injected with DES had reproductive tract lesions including decreased number of glands, condensed and hyalinized endometrial stroma, and fibrosis and increased collagen deposition that in some mice extended into the myometrium resulting in extensive disruption and loss of the inner and outer muscular layers. Fifty percent of DES mice that were exposed to maternal HF/HS diet developed several features indicative of the initial stages of carcinogenesis including focal glandular and atypical endometrial hyperplasia versus 0% of their Chow counterparts. There was an increase in phospho-Akt expression in DES mice exposed to maternal HF/HS diet, a regulator of persistent proliferation in the endometrium, and no difference in total Akt, phospho-PTEN and total PTEN expression. In summary, maternal HF/HS diet exposure induces endometrial hyperplasia and other precancerous phenotypes in mice treated with DES. This study suggests that maternal obesity alone is not sufficient for the development of ECa, but has an additive effect in the presence of a secondary insult such as DES.

  2. The impact of a diphenyl diselenide-supplemented diet and aerobic exercise on memory of middle-aged rats.

    Science.gov (United States)

    Cechella, José L; Leite, Marlon R; Gai, Rafaela M; Zeni, Gilson

    2014-08-01

    Selenium is an essential trace element for human health and has received attention for its role as a nutrient. The combination of exercise and nutrients has been proposed to promote health. The aim of this study was to determine the effects of a diet supplemented with diphenyl diselenide (PhSe)2 and swimming exercise on memory of middle-aged rats. Male Wistar rats (12months) received standard diet chow supplemented with 1ppm of (PhSe)2 for 4weeks. Rats were submitted to swimming training (20min per day for 4weeks). After 4weeks, memory was evaluated in the object recognition test (ORT) and in the object location test (OLT). The hippocampal levels of phosphorylated cAMP-response element-binding protein (CREB) were determined. The results of the present study demonstrated that the association of (PhSe)2-supplemented diet and swimming exercise improved short-term memory, long-term memory and spatial learning, and this effect was not related to the increase in hippocampal p-CREB levels in middle-age rats. This study also revealed that middle-aged rats in the swimming exercise group had the best performance in short- and long-term memory. In conclusion, we demonstrated that swimming exercise, (PhSe)2-supplemented diet or the association of these factors improved learning and memory functioning. The hippocampal levels of CREB were not directly related to the benefits of swimming exercise and (PhSe)2-supplemented diet association in memory of middle-aged rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. High-intensity interval training (swimming) significantly improves the adverse metabolism and comorbidities in diet-induced obese mice.

    Science.gov (United States)

    Motta, Victor F; Aguila, Marcia B; Mandarim-DE-Lacerda, Carlos A

    2016-05-01

    Controlling obesity and other comorbidities in the population is a challenge in modern society. High-intensity interval training (HIIT) combines short periods of high-intensity exercise with long recovery periods or a low-intensity exercise. The aim was to assess the impact of HIIT in the context of diet-induced obesity in the animal model. C57BL/6 mice were fed one of the two diets: standard chow (lean group [LE]) or a high-fat diet (obese group [OB]). After twelve weeks, the animals were divided into non-trained groups (LE-NT and OB-NT) and trained groups (LE-T and OB-T), and began an exercise protocol. For biochemical analysis of inflammatory and lipid profile, we used a colorimetric enzymatic method and an automatic spectrophotometer. One-way ANOVA was used for statistical analysis of the experimental groups with Holm-Sidak post-hoc Test. Two-way ANOVA analyzed the interactions between diet and HIIT protocol. HIIT leads to significant reductions in body mass, blood glucose, glucose tolerance and hepatic lipid profile in T-groups compared to NT-groups. HIIT was able to reduce plasma levels of inflammatory cytokines. Additionally, HIIT improves the insulin immunodensity in the islets, reduces the adiposity and the hepatic steatosis in the T-groups. HIIT improves beta-oxidation and peroxisome proliferator-activated receptor (PPAR)-alpha and reduces lipogenesis and PPAR-gamma levels in the liver. In skeletal muscle, HIIT improves PPAR-alpha and glucose transporter-4 and reduces PPAR-gamma levels. HIIT leads to attenuate the adverse effects caused by a chronic ingestion of a high-fat diet.

  4. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    Science.gov (United States)

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  5. Impact of a Standard Rodent Chow Diet on Tissue n-6 Fatty Acids, Δ9-Desaturation Index, and Plasmalogen Mass in Rats Fed for One Year.

    Science.gov (United States)

    Pédrono, F; Boulier-Monthéan, N; Catheline, D; Legrand, P

    2015-11-01

    Although many studies focus on senescence mechanisms, few habitually consider age as a biological parameter. Considering the effect of interactions between food and age on metabolism, here we depict the lipid framework of 12 tissues isolated from Sprague-Dawley rats fed standard rodent chow over 1 year, an age below which animals are commonly studied. The aim is to define relevant markers of lipid metabolism influenced by age in performing a fatty acid (FA) and dimethylacetal profile from total lipids. First, our results confirm impregnation of adipose and muscular tissues with medium-chain FA derived from maternal milk during early infancy. Secondly, when animals were switched to standard croquettes, tissues were remarkably enriched in n-6 FA and especially 18:2n-6. This impregnation over time was coupled with a decrease of the desaturation index and correlated with lower activities of hepatic Δ5- and Δ6-desaturases. In parallel, we emphasize the singular status of testis, where 22:5n-6, 24:4n-6, and 24:5n-6 were exceptionally accumulated with growth. Thirdly, 18:1n-7, usually found as a discrete FA, greatly accrued over the course of time, mostly in liver and coupled with Δ9-desaturase expression. Fourthly, skeletal muscle was characterized by a surprising enrichment of 22:6n-3 in adults, which tended to decline in older rats. Finally, plasmalogen-derived dimethylacetals were specifically abundant in brain, erythrocytes, lung, and heart. Most notably, a shift in the fatty aldehyde moiety was observed, especially in brain and erythrocytes, implying that red blood cell analysis could be a good indicator of brain plasmalogens.

  6. Experimental diet based on the foods listed in the Family Budget Survey is more detrimental to growth than to the reflex development of rats

    Directory of Open Access Journals (Sweden)

    Michelle Figueiredo Carvalho

    2013-04-01

    Full Text Available OBJECTIVE: The present study assessed the pregnancy and lactation performances of rats fed an experimental diet based on the foods listed in the Family Budget Survey (Pesquisa de Orçamento Familiar 2002/2003 and the impact of said diet on the growth and development of the pups until weaning. METHODS: Wistar (n=12 rats were randomly divided into two groups: a control group (control group, n=6 fed a commercial chow (Labina®, Brazil and an experimental group (n=6 fed the Family Budget Survey diet during the entire pregnancy and lactation period. All animals had free access to food and water during the entire study period. RESULTS: The Family Budget Survey diet increased the duration of pregnancy (control group=21.00±0.00; POFG=21.57±0.55, p=0.025 and made the dams lose weight during the lactation period (control group=27.92±18.47g; POFG=-15.66±16.90g. The Family Budget Survey group presented low food, energy and nutrient intakes during pregnancy, which became even lower during lactation. Pups from Family Budget Survey dams presented lower body weight at weaning (control group=52.38±4.49g; POFG=39.88±2.78g, p=0.001 and lower nose-to-anus length (control group= 117.37±0.64mm; POFG=125.62±0.96mm, p=0.001. However, some physical milestones and reflexes occurred earlier, such as the placing response reflex [control group= 12.00 (9.00-15.00 days; POFG=9.50 (9.00-14.00 days] aerial righting reflex [control group=18.00 (17.00-20.00 days; POFG=16.00 (13.00-18.00 days] and unfolding of the external ear [control group=3.00 (3.00-3.00 days; POFG=2.00 (2.00-3.00 days]. CONCLUSION: The Family Budget Survey diet seems to be more detrimental to the physical growth of the pups than to their brain growth, according to the assessed reflexes and physical milestones and measures. This may be due to the low protein content of the diet for rat reproduction and growth combined with adequate fat and essential fatty acid contents. Providing an adequate amount of

  7. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    Science.gov (United States)

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  8. Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    D'Angelo Carlo Magliano

    Full Text Available AIM: The aim of the present study was to evaluate whether activation of peroxisome proliferator-activated receptor (PPARalpha and PPARgamma by Bezafibrate (BZ could attenuate hepatic and white adipose tissue (WAT abnormalities in male offspring from diet-induced obese dams. MATERIALS AND METHODS: C57BL/6 female mice were fed a standard chow (SC; 10% lipids diet or a high-fat (HF; 49% lipids diet for 8 weeks before mating and during gestation and lactation periods. Male offspring received SC diet at weaning and were subdivided into four groups: SC, SC/BZ, HF and HF/BZ. Treatment with BZ (100 mg/Kg diet started at 12 weeks of age and was maintained for three weeks. RESULTS: The HF diet resulted in an overweight phenotype and an increase in oral glucose intolerance and fasting glucose of dams. The HF offspring showed increased body mass, higher levels of plasmatic and hepatic triglycerides, higher levels of pro-inflammatory and lower levels of anti-inflammatory adipokines, impairment of glucose metabolism, abnormal fat pad mass distribution, higher number of larger adipocytes, hepatic steatosis, higher expression of lipogenic proteins concomitant to decreased expression of PPARalpha and carnitine palmitoyltransferase I (CPT-1 in liver, and diminished expression of PPARgamma and adiponectin in WAT. Treatment with BZ ameliorated the hepatic and WAT abnormalities generated by diet-induced maternal obesity, with improvements observed in the structural, biochemical and molecular characteristics of the animals' livers and epididymal fat. CONCLUSION: Diet-induced maternal obesity lead to alterations in metabolism, hepatic lipotoxicity and adverse liver and WAT remodeling in the offspring. Targeting PPAR with Bezafibrate has beneficial effects reducing the alterations, mainly through reduction of WAT inflammatory state through PPARgamma activation and enhanced hepatic beta-oxidation due to increased PPARalpha/PPARgamma ratio in liver.

  9. Effects of Mucuna pruriens on Free Fatty Acid Levels and Histopathological Changes in the Brains of Rats Fed a High Fructose Diet.

    Science.gov (United States)

    Akgun, Bekir; Sarı, Aysel; Ozturk, Sait; Erol, Fatih Serhat; Ozercan, Ibrahim Hanifi; Ulu, Ramazan

    2017-01-01

    To investigate free fatty acid levels and histopathological changes in the brain of rats fed a high fructose diet (HFrD) and to evaluate the effects of Mucuna pruriens, known to have antidiabetic activity, on these changes. The study comprised 28 mature female Wistar rats. The rats were divided into 4 groups, each included 7 rats. Group 1: control; group 2: fed an HFrD; group 3: fed normal rat chow and M. pruriens; group 4: fed an HFrD and M. pruriens for 6 weeks. At the end of 6 weeks, the rats were decapitated, blood and brain tissues were obtained. Serum glucose and triglyceride levels were measured. Free fatty acid levels were measured in 1 cerebral hemisphere of each rat and histopathological changes in the other. The Mann-Whitney U test was used to compare quantitative continuous data between 2 independent groups, and the Kruskal-Wallis test was used to compare quantitative continuous data between more than 2 independent groups. Arachidonic acid and docosahexaenoic acid levels were significantly higher in group 2 than in group 1 (p pruriens could have therapeutic effects on free fatty acid metabolism and local inflammatory responses in the brains of rats fed an HFrD. © 2017 The Author(s) Published by S. Karger AG, Basel.

  10. Relationship between pickiness and subsequent development in body mass index and diet intake in obesity prone normal weight preschool children.

    Directory of Open Access Journals (Sweden)

    Jeanett Friis Rohde

    Full Text Available Most children have periods in their life where they reject familiar as well as non-familiar food items and this is often referred to as pickiness. The consequences of pickiness may be malnutrition and, if prolonged, potentially lower body weight. However, studies investigating the consequence of pickiness on subsequent changes in diet intake and weight are limited.To examine whether pickiness influences body mass index as well as diet intake over subsequent 15 months among obesity prone normal weight children aged 2-6 years.Data was obtained from the "Healthy Start" intervention study which included 271 children aged 2-6 years susceptible to overweight later in life. Information on pickiness was obtained from a parental questionnaire. Dietary habits were collected by 4-day dietary records filled in by the parents and height and weight were measured by trained health professionals and both measured twice over a 15 month period. Linear regression models were performed to assess the influence of pickiness on body mass index and diet with adjustments for possible confounders.No differences in mean BMI Z-score were seen between picky/non-picky (P = 0.68 and little picky/non-picky (P = 0.68 children at 15 month follow-up. Picky children had a lower intake of protein (P = 0.01 than non-picky children despite no differences in total energy intake (P = 0.74, or in the other macronutrients, or the intake of fruit and vegetables, though children being a little picky had a lower intake of starch compared to non-picky children (P = 0.05. Results were essentially similar before and after adjustment for key covariates.Our study showed that BMI Z-score after 15 months follow-up was similar for picky and non-picky children. Picky children seemed to develop a lower protein intake despite similar total energy intake and diet composition.

  11. Effects of Fat and Sugar, Either Consumed or Infused toward the Brain, on Hypothalamic ER Stress Markers

    Directory of Open Access Journals (Sweden)

    Evita Belegri

    2017-05-01

    Full Text Available Protein-folding stress at the Endoplasmic Reticulum (ER occurs in the hypothalamus during diet-induced obesity (DIO and is linked to metabolic disease development. ER stress is buffered by the activation of the unfolded protein response (UPR, a controlled network of pathways inducing a set of genes that recovers ER function. However, it is unclear whether hypothalamic ER stress during DIO results from obesity related changes or from direct nutrient effects in the brain. We here investigated mRNA expression of UPR markers in the hypothalamus of rats that were exposed to a free choice high-fat high-sugar (fcHFHS diet for 1 week and then overnight fed ad libitum, or fasted, or fat/sugar deprived (i.e., switched from obesogenic diet to chow. In addition, we determined the direct effects of fat/sugar on mRNA expression of hypothalamus UPR markers by intracarotic infusions of intralipids and/or glucose in chow-fed rats that were fasted overnight. Short term (1 week exposure to fcHFHS diet increased adiposity compared to chow-feeding. Short term exposure to a fcHFHS diet, followed by mild food restriction overnight, induced hypothalamic ER stress in rats as characterized by an increase in spliced to unspliced X-box binding protein 1 mRNA ratio in hypothalamus of fcHFHS fed rats compared to chow fed rats. Moreover, infused lipids toward the brain of overnight fasted rats, were able to induce a similar response. Non-restricted ad libitum fcHFHS-diet fed or totally fasted rats did not show altered ratios. We also observed a clear increase in hypothalamic activating transcription factor 4 mRNA in rats on the fcHFHS diet while being ad libitum fed or when infused with intralipid via the carotic artery compared to vehicle infusions. However, we did not observe induction of downstream targets implying that this effect is a more general stress response and not related to ER stress. Overall, we conclude that the hypothalamic stress response might be a sensitive

  12. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    Science.gov (United States)

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  13. Normal Bone Mineral Density Associates with Duodenal Mucosa Healing in Adult Patients with Celiac Disease on a Gluten-Free Diet

    Directory of Open Access Journals (Sweden)

    Tiziana Larussa

    2017-01-01

    Full Text Available Impairment of bone mineral density (BMD is frequent in celiac disease (CD patients on a gluten-free diet (GFD. The normalization of intestinal mucosa is still difficult to predict. We aim to investigate the relationship between BMD and duodenal mucosa healing (DMH in CD patients on a GFD. Sixty-four consecutive CD patients on a GFD were recruited. After a median period of a 6-year GFD (range 2–33 years, patients underwent repeat duodenal biopsy and dual-energy X-ray absorptiometry (DXA scan. Twenty-four patients (38% displayed normal and 40 (62% low BMD, 47 (73% DMH, and 17 (27% duodenal mucosa lesions. All patients but one with normal BMD (23 of 24, 96% showed DMH, while, among those with low BMD, 24 (60% did and 16 (40% did not. At multivariate analysis, being older (odds ratio (OR 1.1, 95% confidence interval (CI 1.03–1.18 and having diagnosis at an older age (OR 1.09, 95% CI 1.03–1.16 were associated with low BMD; in turn, having normal BMD was the only variable independently associated with DMH (OR 17.5, 95% CI 1.6–192. In older CD patients and with late onset disease, BMD recovery is not guaranteed, despite a GFD. A normal DXA scan identified CD patients with DMH; thus, it is a potential tool in planning endoscopic resampling.

  14. Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    El Akoum Souhad

    2011-12-01

    Full Text Available Abstract Background Adverse effects of high-fat diets (HFD on metabolic homeostasis are linked to adipose tissue dysfunction. The goal of this study was to examine the effect of the HFD nature on adipose tissue activity, metabolic disturbances and glucose homeostasis alterations in male mice compared with female mice. Methods C57BL/6J mice were fed either a chow diet or HFD including vegetal (VD or animal (AD fat. Body weight, plasmatic parameters and adipose tissue mRNA expression levels of key genes were evaluated after 20 weeks of HFD feeding. Results HFD-fed mice were significantly heavier than control at the end of the protocol. Greater abdominal visceral fat accumulation was observed in mice fed with AD compared to those fed a chow diet or VD. Correlated with weight gain, leptin levels in systemic circulation were increased in HFD-fed mice in both sexes with a significant higher level in AD group compared to VD group. Circulating adiponectin levels as well as adipose tissue mRNA expression levels were significantly decreased in HFD-fed male mice. Although its plasma levels remained unchanged in females, adiponectin mRNA levels were significantly reduced in adipose tissue of both HFD-fed groups with a more marked decrease in AD group compared to VD group. Only HFD-fed male mice were diabetic with increased fasting glycaemia. On the other hand, insulin levels were only increased in AD-fed group in both sexes associated with increased resistin levels. VD did not induce any apparent metabolic alteration in females despite the increased weight gain. Peroxisome Proliferator-Activated Receptors gamma-2 (PPARγ2 and estrogen receptor alpha (ERα mRNA expression levels in adipose tissue were decreased up to 70% in HFD-fed mice but were more markedly reduced in male mice as compared with female mice. Conclusions The nature of dietary fat determines the extent of metabolic alterations reflected in adipocytes through modifications in the pattern of

  15. Low-Salt Intake during Mating or Gestation in Rats Is Associated with Low Birth and Survival Rates of Babies

    Directory of Open Access Journals (Sweden)

    Ranna Chou

    2014-01-01

    Full Text Available We investigated the influence of maternal salt restriction during mating or gestation on birth rate and offspring growth in Dahl salt-sensitive rats (DS. DS were divided into 5 groups: DS fed a low-salt (0.3% NaCl, w/w (DS-low or high-salt (4% NaCl, w/w diet (DS-high during mating and DS-high or DS-low during gestation, and DS fed regular chow (0.75% NaCl, w/w (DS-regular throughout mating and gestation. During the unspecified periods, the rats were given regular chow. DS-low during mating delivered fewer infants than high-salt mothers (P<0.05. The birth rate on regular chow was 87%. Six out of 11 DS-low rats during pregnancy produced pups while the rats fed a high-salt diet all delivered pups (P<0.025. The pup survival rate was 67% for high-salt mothers during mating and 54% for mothers on a low-salt diet. The pup survival rate was 95% for mothers on a high-salt diet during pregnancy and 64% for mothers on a low-salt diet (P<0.0001. Seven out of 8 DS-regular rats during mating delivered 59 neonates. However, 66% of the neonates survived. A low-salt diet during mating or pregnancy lowers birth rate and the neonates from low-salt mothers during pregnancy were more likely to die than those from high-salt mothers.

  16. Effect of soy oil, orange (Citrus sinensis) peel oil and their blends on total phospholipid, lipid peroxidation, and antioxidant defense system in brain tissues of normo rats

    Energy Technology Data Exchange (ETDEWEB)

    Erukainure, O.L.; Ajiboye, J.A.; Davis, F.F.; Obabire, K.; Okoro, E.E.; Adenekan, S.O.; Adegbola, M.V.; Awogbemi, B.J.; Odjobo, B.O.; Zaruwa, M.Z.

    2016-07-01

    Soy and orange peel (C. sinensis) oils were fed to albino male rats to determine their effects on malondialdehyde (MDA), total phospholipid (TP) content and oxidative stress biomarkers of brain tissue. Beside mouse chow, four diets were designed to contain 50% of their energy as carbohydrate, 35% as fat, and 15% as protein, and one lipid-free diet which had distilled water substituted for fat. Groups of five rats were each fed one of these diets, while a fifth group was fed pelletized mouse chow. A significant difference (p < 0.05) was observed in the TP of the mouse chow group. The TP was highest (p < 0.05) in those fed the soy and orange peel oil blend as compared to those fed these oils separately. Feeding soy oil led to decreased MDA in brain tissues and influenced the TP content. Significantly lower (p < 0.05) GSH and SOD activities were observed in the groups fed soy oil+orange peel oil, and soy oil diets respectively. Higher significant (p < 0.05) activities were observed in the orange oil fed group. Significantly higher (p < 0.05) catalase activity was observed in the lipid free diet fed group, which was followed by orange peel oil, and soy oil+orange peel oil diets, respectively. A combination of both oils may be useful in the management of certain neurological diseases or illnesses and protect against other oxidative stress complications. (Author)

  17. Behavioral changes induced by cocaine in mice are modified by a hyperlipidic diet or recombinant leptin

    Directory of Open Access Journals (Sweden)

    E. Erhardt

    2006-12-01

    Full Text Available The objective of the present study was to determine if the acute behavioral effects of cocaine acutely administered intraperitoneally (ip at doses of 5, 10 and 20 mg/kg on white male CF1 mice, 90 days of age, would be influenced by leptin acutely administered ip (at doses of 5, 10 and 20 µg/kg or by endogenous leptin production enhanced by a high-fat diet. The acute behavioral effects of cocaine were evaluated in open-field, elevated plus-maze and forced swimming tests. Results were compared between a group of 80 mice consuming a balanced diet and a high-fat diet, and a group of 80 mice fed a commercially available rodent chow formula (Ralston Purina but receiving recombinant leptin (rLeptin or saline ip. Both the high-fat-fed and rLeptin-treated mice showed decreased locomotion in the open-field test, spent more time in the open arms of the elevated plus-maze and showed less immobility time in the forced swimming test (F(1,68 = 7.834, P = 0.007. There was an interaction between diets and cocaine/saline treatments in locomotion (F(3,34 = 3.751, P = 0.020 and exploration (F(3,34 = 3.581, P = 0.024. These results suggest that anxiolytic effects and increased general activity were induced by leptin in cocaine-treated mice and that low leptin levels are associated with behavioral depression. Chronic changes in diet composition producing high leptin levels or rLeptin treatment may result in an altered response to cocaine in ethologic tests that measure degrees of anxiety and depression, which could be attributed to an antagonistic effect of leptin.

  18. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Directory of Open Access Journals (Sweden)

    Hitoshi Watanabe

    Full Text Available There are two independent serotonin (5-HT systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  19. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Science.gov (United States)

    Watanabe, Hitoshi; Nakano, Tatsuya; Saito, Ryo; Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  20. The effects of X-ray radiation on mandibular bone of low-calcium diet rats

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Akihiko (Nippon Dental Univ., Tokyo (Japan))

    1991-08-01

    In an attempt to examine the effects of X-ray on osteoporosis, a single dose of 30 Gy was delivered to the mandible in rats given low-calcium diet. Serum levels of calcium (Ca) and inorganic phosphorus (P) were measured; and changes in bone salt were determined by autoradiography, microradiography, and roentgenography using an electron probe microanalyzer. Body weight was lower in the irradiated group than the non-irradiated group, irrespective of types of diet. The serum Ca levels in the irradiated group given a normal diet were significantly decreased on Days 3, 7, and 14 days after irradiation. When given a low-Ca diet, these levels tended to be lower in the irradiated group than the non-irradiated group on Day 7 or later. The serum levels of inorganic P were significantly lower in the irradiated group given a normal diet than the non-irradiated group on Day 3. Rats given a low-Ca diet had the same levels, irrespective of irradiation. Autoradiography revealed that Ca-45 retention in the whole jaw was slightly greater in the irradiated group than the non-irradiated group On Days 7 and 21. Rats given a low-Ca diet in both irradiated and non-irradiated groups had a greater Ca-45 retention than those given a normal diet. Microradiography revealed that bone formation-like changes, such as flat surface of the periodontal membrane at the intra-alveolar septum, were slightly noticeable in the irradiated group of rats given a normal diet on Day 21. Thinning of the intra-alveolar septum and decrease of the trabecula at the diaphysis were also noticeable in the irradiated group of rats given a low-Ca diet. Variation of X-ray intensity was more marked on Day 7 than on Day 21 in the irradiated group given a normal diet. When given a low-Ca diet, both the irradiated and non-irradiated group had noticeable X-ray intensity variation. (N.K.).

  1. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  2. Göttingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals

    DEFF Research Database (Denmark)

    Ludvigsen, Trine Pagh; Kirk, Rikke Kaae; Christoffersen, Berit Østergaard

    2015-01-01

    in human patients, inclusion of this disease aspect in the characterization of a such model, is highly relevant. The objective of this study was to evaluate the effect of mild streptozotocin-induced diabetes on ex- and in vivo end-points in a diet-induced atherosclerotic minipig model. Castrated male...... Göttingen minipigs were fed standard chow (CD), atherogenic diet alone (HFD) or with superimposed mild streptozotocin-induced diabetes (HFD-D). Circulating markers of inflammation (C-reactive protein (CRP), oxidized low-density lipoprotein (oxLDL), plasminogen activator inhibitor-1, lipid and glucose......From a pharmacological perspective, readily-available, well-characterized animal models of cardiovascular disease, including relevant in vivo markers of atherosclerosis are important for evaluation of novel drug candidates. Furthermore, considering the impact of diabetes mellitus on atherosclerosis...

  3. The Effects of Methionine-Enriched and Vitamins (Folate, Pyridoxine and Cobalamine-Deficient Diet on Exploratory Activity in Rats - A Brief Report

    Directory of Open Access Journals (Sweden)

    Mijailovic Natasa

    2017-12-01

    Full Text Available The aim of this study was to evaluate the impact of increased homocysteine levels induced by methionine nutritional overload (twice as standard and deficiency of the vitamins folate, pyridoxine and cobalamine, which plays an important role in homocysteine metabolism in anxiety-related behaviour, expressed by means of exploratory activity in rats. Twenty-three male Wistar albino rats (4 weeks old, 100±15 g body weight were divided into three groups: control (n=8, methionine-enriched (Meth+, 7.7 g of methionine/kg chow, n=7 and methionine-enriched vitamin-deficient (Meth+Vit-, 7.7 g of methionine/ kg chow, deficient in folate, pyridoxine and cobalamine - 0.08, 0.01 and 0.01 mg/kg, n=8. All animals had free access to food and water for 30 days. Behavioural testing was performed using the elevated plus maze (EPM test. Standard parameters for vertical exploratory activity, the number of rearings and the number of head-dippings, as well as the total exploratory activity (summarizing overall exploratory activity in the EPM were significantly reduced following 30 days of methionine nutritional overload (p<0.05, p<0.05 and p<0.01, respectively. A methionine-enriched diet coupled with a reduction in some B vitamins resulted in a more pronounced decline in exploratory drive observed in the EPM test compared to the control (p<0.01. The decline in total exploratory activity associated with vitamin deficiency was significant compared to the Meth+ group (p<0.05. The results of this study highlight the important role of homocysteine in the modulation of exploratory activity in rats. Decreased exploratory drive induced by both a methionine-enriched and vitamin-deficient diet could be attributed to an anxiogenic effect of hyperhomocysteinemia.

  4. Changed mitochondrial function by pre- and/or postpartum diet alterations in sheep

    DEFF Research Database (Denmark)

    Jørgensen, Wenche; Gam, Christiane Marie Bourgin; Andersen, Jesper Løvind

    2009-01-01

    In a sheep model, we investigated diet effects on skeletal muscle mitochondria to look for fetal programming. During pregnancy, ewes were fed normally (N) or were 50% food restricted (L) during the last trimester, and lambs born to these ewes received a normal (N) or a high-fat diet (H...

  5. Dietary Oleate Has Beneficial Effects on Every Step of Non-Alcoholic Fatty Liver Disease Progression in a Methionine- and Choline-Deficient Diet-Fed Animal Model

    Directory of Open Access Journals (Sweden)

    Ji Young Lee

    2011-10-01

    Full Text Available BackgroundNon-alcoholic fatty liver disease (NAFLD is increasingly recognized as a major cause of liver-related morbidity and mortality. The underlying mechanisms of disease progression remain poorly understood, and primary therapy of NAFLD is not yet established. We investigated the effects of dietary oleate on the development and progression of NAFLD in a methionine- and choline-deficient (MCD diet-fed animal model.MethodsA total of 30 C57BL/6J mice were randomly divided into three groups (n=10 in each group and fed various experimental diets for four weeks: chow, MCD diet, or OMCD (MCD diet with oleate, 0.5 mg/g/day. Liver samples were examined for steatohepatitis and fibrosis parameters and associated genes.ResultsAdditional dietary oleate dramatically reduced MCD diet-induced hepatic steatosis. Hepatic carbohydrate responsive element-binding protein was overexpressed in MCD diet-fed mice, and dietary oleate prevented this overexpression (P<0.001. Dietary oleate partially prevented MCD diet-induced serum level increases in aspartate aminotransferase and alanine aminotransferase (P<0.001, respectively. The mRNA expressions of hepatic monocyte chemoattractant protein 1, tumor necrosis factor-α and matrix metalloproteinase-9 were increased in MCD diet-fed mice, and this overexpression of inflammatory molecules was prevented by dietary oleate (P<0.001. Hepatic pericellular fibrosis was observed in MCD diet-fed mice, and dietary oleate prevented this fibrosis. Altogether, dietary oleate prevented MCD diet-induced hepatic steatosis, inflammation and fibrosis.ConclusionDietary oleate has beneficial effects in every step of NAFLD development and progression and could be a nutritional option for NAFLD prevention and treatment.

  6. High-fat diet feeding differentially affects the development of inflammation in the central nervous system.

    Science.gov (United States)

    Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D; Alhouayek, Mireille; Muccioli, Giulio G

    2016-08-26

    Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids-phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines-as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize

  7. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  8. Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Noeman Saad A

    2011-08-01

    Full Text Available Abstract Background Obesity has become a leading global health problem owing to its strong association with a high incidence of diseases. Aim To induce rat obesity using high fat diet (HFD and to estimate oxidative stress markers in their liver, heart and kidney tissues in order to shed the light on the effect of obesity on these organs. Materials and methods Sixty white albino rats weighing 150-200 g were randomly divided into two equal groups; group I: received high fat diet for 16 weeks, and group II (control group: received only normal diet (rat chow for 16 weeks. Blood samples were taken for measurement of lipid profile, tissue samples from liver, heart and kidney were taken for determination of malondialdehyde (MDA, protein carbonyl (PCO, reduced glutathione (GSH levels, and the activities of glutathione S- transferase (GST glutathione peroxidase (GPx, catalase (CAT and paraoxonase1 (PON1 enzymes. Results Data showed that feeding HFD diet significantly increased final body weight and induced a state of dyslipideamia. Also our results showed a significant increase MDA and PCO levels in the hepatic, heart and renal tissues of obese rats, as well as a significant decrease in the activity of GST, GPx and PON 1 enzymes. On the other hand CAT enzyme activity showed significant decrease only in renal tissues of obese rats with non significant difference in hepatic and heart tissues. GSH levels showed significant decrease in both renal and hepatic tissues of obese animals and significant increase in their heart tissues. Correlation studies in obese animals showed a negative correlation between MDA and PCO tissue levels and the activities of GPx, GST and PON1 in all tissues and also with CAT enzyme activity in renal tissues. Also a negative correlation was detected between MDA & PCO tissues levels and GSH levels in both hepatic and renal tissues. While positive correlation was found between them and GSH levels in heart tissues. Conclusion High fat

  9. Efeitos do exercício crônico sobre a concentração circulante da leptina e grelina em ratos com obesidade induzida por dieta Effects of the chronic exercise on the circulating concentration of leptin and ghrelin in rats With diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Ricardo Eguchi

    2008-06-01

    Full Text Available A obesidade vem se tornando uma das maiores epidemias mundiais, dessa forma, conhecer sua etiologia e mecanismos que regulam seu desenvolvimento é de grande relevância para o seu Tratamento. Portanto, o objetivo do presente estudo foi avaliar os efeitos da obesidade exógena induzida pela dieta de cafeteria e da atividade física crônica em ratos, sobre a adiposidade e a concentração sérica dos hormônios reguladores do balanço energético (leptina e grelina. Foram utilizados 32 ratos Wistar machos, divididos em quatro grupos: Sedentário alimentado com dieta padrão (SN, sedentário alimentado com dieta de cafeteria (SC, treinado alimentado com dieta padrão (TN e treinado alimentado com dieta de cafeteria (TC. A dieta de cafeteria aumentou significativamente a adiposidade central (RET e visceral (EPI (pObesity is becoming one of the biggest worldwide epidemics. Therefore, knowing its etiology and mechanisms that regulate its development is of great relevance for its treatment. Thus, the aim of the present study was to evaluate the effects of obesity induced by the palatable hyperlipidic diet and of the chronic physical activity in rats, on the adiposity and the serum concentration of regulating hormones of the energy balance (leptin and ghrelin. 32 male Wistar rats were divided in four groups: Sedentary fed with chow diet (SN, sedentary fed with cafeteria diet (SC, trained fed with chow diet (TN and trained fed with cafeteria diet (TC. The cafeteria diet led to a significant increase of central (RET and visceral (EPI adiposity (p<0.05. Conversely,the exercise training minimized the effect of the cafeteria diet, diminishing the central and visceral adiposity. Leptin was also increased in the groups fed with the cafeteria diet, suggesting increase of the resistance to the action of this hormone. Chronic physical activity did not hinder the development of hyperleptinemia. Reduction in the serum ghrelin concentration was observed only in

  10. Celecoxib Ameliorates Non-Alcoholic Steatohepatitis in Type 2 Diabetic Rats via Suppression of the Non-Canonical Wnt Signaling Pathway Expression

    Science.gov (United States)

    Tian, Feng; Zhang, Ya Jie; Li, Yu; Xie, Ying

    2014-01-01

    Our aim was to test whether pharmacological inhibition of cycloxygenase-2 (COX-2) reverses non-alcoholic steatohepatitis (NASH) in type 2 diabetes mellitus (T2DM) rats via suppression of the non-canonical Wnt signaling pathway expression. Twenty-four male Sprague-Dawley rats were randomly distributed to two groups and were fed with a high fat and sucrose (HF-HS) diet or a normal chow diet, respectively. After four weeks, rats fed with a HF-HS diet were made diabetic with low-dose streptozotocin. At the 9th week the diabetic rats fed with a HF-HS diet or the non-diabetic rats fed with a normal chow diet were further divided into two subgroups treated with vehicle or celecoxib (a selective COX-2 inhibitor, 10 mg/Kg/day, gavage) for the last 4 weeks, respectively. At the end of the 12th week, rats were anesthetized. NASH was assessed by histology. Related cytokine expression was measured at both the protein and gene levels through immunohistochemistry (IHC), Western blot and real-time PCR. T2DM rats fed with a HF-HS diet developed steatohepatitis and insulin resistance associated with elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), insulin levels and the non-alcoholic fatty liver disease (NAFLD) activity score (NAS). The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 were all significantly increased in the T2DM-NASH group compared with the control and control-cele group. Hepatic injury was improved by celecoxib in T2DM-NASH-Cele group indicated by reduced serum ALT and AST levels and hepatic inflammation was reduced by celecoxib showed by histology and the NAFLD activity score (NAS). Serum related metabolic parameters, HOMA-IR and insulin sensitivity index were all improved by celecoxib. The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 expression were all suppressed by celecoxib in T2DM-NASH-Cele group. The results of the present study indicated that celecoxib ameliorated NASH in T2DM rats via suppression of the non-canonical Wnt

  11. Your mitochondria are what you eat

    DEFF Research Database (Denmark)

    Jørgensen, Wenche; Rud, Kasper Abildgaard; Mortensen, Ole Hartvig

    2017-01-01

    of the mitochondria. Here, we report that rat muscle mitochondria does show the normal Randle‐type fat‐carbohydrate interaction seen in vivo. The mechanism behind this metabolic flexibility at the level of the isolated mitochondria is a regulation of the flux‐ratio: pyruvate dehydrogenase (PDH)/β‐oxidation to suit...... the actual substrate availability, with the PDH flux as the major point of regulation. We further report that this regulatory mechanism of carbohydrate‐fat metabolic interaction surprisingly is lost in mitochondria obtained from animals exposed for 12 weeks to a HF‐ or a HS diet as compared to rats given...... a normal chow diet. The mechanism seems to be a loss of the PDH flux decrease seen in controls, when fatty acid is supplied as substrate in addition to pyruvate, and vice versa for the supply of pyruvate as substrate to mitochondria oxidizing fatty acid. Finally, we report that the calculated TCA flux...

  12. Food quality and motivation: a refined low-fat diet induces obesity and impairs performance on a progressive ratio schedule of instrumental lever pressing in rats.

    Science.gov (United States)

    Blaisdell, Aaron P; Lau, Yan Lam Matthew; Telminova, Ekatherina; Lim, Hwee Cheei; Fan, Boyang; Fast, Cynthia D; Garlick, Dennis; Pendergrass, David C

    2014-04-10

    Purified high-fat diet (HFD) feeding causes deleterious metabolic and cognitive effects when compared with unrefined low-fat diets in rodent models. These effects are often attributed to the diet's high content of fat, while less attention has been paid to other mechanisms associated with the diet's highly refined state. Although the effects of HFD feeding on cognition have been explored, little is known about the impact of refined vs. unrefined food on cognition. We tested the hypothesis that a refined low-fat diet (LFD) increases body weight and adversely affects cognition relative to an unrefined diet. Rats were allowed ad libitum access to unrefined rodent chow (CON, Lab Diets 5001) or a purified low-fat diet (REF, Research Diets D12450B) for 6 months, and body weight and performance on an instrumental lever pressing task were recorded. After six months on their respective diets, group REF gained significantly more weight than group CON. REF rats made significantly fewer lever presses and exhibited dramatically lower breaking points than CON rats for sucrose and water reinforcement, indicating a chronic reduction of motivation for instrumental performance. Switching the rats' diet for 9 days had no effect on these measures. Diet-induced obesity produces a substantial deficit in motivated behavior in rats, independent of dietary fat content. This holds implications for an association between obesity and motivation. Specifically, behavioral traits comorbid with obesity, such as depression and fatigue, may be effects of obesity rather than contributing causes. To the degree that refined foods contribute to obesity, as demonstrated in our study, they may play a significant contributing role to other behavioral and cognitive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. [Hypocaloric diet and normocaloric diet in outpatient treatment in a group of children and adolescents].

    Science.gov (United States)

    Fontana, C; Damonte, C; Pregliasco, P; Roggi, C

    2007-01-01

    The epidemic of obesity, mostly in pediatric age, is of increasing concern because of the impact of overweight on health status in adult life. We have evaluated the impact of two regimens (balanced hypocaloric diet or balanced normocaloric diet) in a group of children ad adolescents. We have studied 260 patients seen at a community pediatric clinic. Of these, 45 overweight, 35 obese and 6 patients with normal weight were selected. The subjects were assigned to a hypocaloric balanced diet plus lifestyle changes or a normocaloric balanced diet plus lifestyle changes. In the obese patients on a hypocaloric diet, 64% of subjects remained in the "obese" category and 14% decided to shift to the "normocaloric diet". Also, the drop-out rate was 12%. In the obese patients on a normocaloric diet, 38% remained in the obese category, while 46% showed a reduction of their BMI to the "overweight" category. Moreover, the drop-out rate was lower (5%). These findings suggest that a more gentle approach to obesity/overweight in pediatric patients, with less restrictive nutritional interventions, could achieve a better compliance of the family, with a consistent reduction of overweight.

  14. NFIL3 is a negative regulator of hepatic gluconeogenesis.

    Science.gov (United States)

    Kang, Geon; Han, Hye-Sook; Koo, Seung-Hoi

    2017-12-01

    Nuclear factor interleukin-3 regulated (NFIL3) has been known as an important transcriptional regulator of the development and the differentiation of immune cells. Although expression of NFIL3 is regulated by nutritional cues in the liver, the role of NFIL3 in the glucose metabolism has not been extensively studied. Thus, we wanted to explore the potential role of NFIL3 in the control of hepatic glucose metabolism. Mouse primary hepatocytes were cultured to perform western blot analysis, Q-PCR and chromatin immunoprecipitation assay. 293T cells were cultured to perform luciferase assay. Male C57BL/6 mice (fed a normal chow diet or high fat diet for 27weeks) as well as ob/ob mice were used for experiments with adenoviral delivery. We observed that NFIL3 reduced glucose production in hepatocytes by reducing expression of gluconeogenic gene transcription. The repression by NFIL3 required its basic leucine zipper DNA binding domain, and it competed with CREB onto the binding of cAMP response element in the gluconeogenic promoters. The protein levels of hepatic NFIL3 were decreased in the mouse models of genetic- and diet-induced obesity and insulin resistance, and ectopic expression of NFIL3 in the livers of insulin resistant mice ameliorated hyperglycemia and glucose intolerance, with concomitant reduction in expression of hepatic gluconeogenic genes. Finally, we witnessed that knockdown of NFIL3 in the livers of normal chow-fed mice promoted elevations in the glucose levels and expression of hepatic gluconeogenic genes. In this study, we showed that NFIL3 functions as an important regulator of glucose homeostasis in the liver by limiting CREB-mediated hepatic gluconeogenesis. Thus, enhancement of hepatic NFIL3 activity in insulin resistant state could be potentially beneficial in relieving glycemic symptoms in the metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    International Nuclear Information System (INIS)

    Seppen, Jurgen

    2012-01-01

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.

  16. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Seppen, Jurgen, E-mail: j.seppen@amc.uva.nl

    2012-11-01

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.

  17. Exercise, dietary obesity, and growth in the rat

    Science.gov (United States)

    Pitts, G. C.; Bull, L. S.

    1977-01-01

    Experiments were conducted on weanling male rats 35 days old and weighing about 100 g to determine how endurance-type exercise and high-fat diet administered during growth influence body mass and composition. The animals were divided into four weight-matched groups of 25 animals each: group I - high-fat diet, exercised; group II - chow, exercised; group III - high-fat diet, sedentary; and group IV - chow, sedentary. During growth, masses of water, muscle and skin increased as functions of body size; bone as a function of age; and heart, liver, gut, testes, and CNS were affected by combinations of size, age, activity, and diet. Major conclusions are that growth in body size is expressed more precisely with fat-free body mass (FFBM), that late rectilinear growth is probably attributable to fat accretion, and that the observed influences on FFBM of exercise and high-fat diet are obtained only if the regimen is started at or before age 5-7 weeks.

  18. Hypercaloric cafeteria-like diet induced UCP3 gene expression in skeletal muscle is impaired by hypothyroidism

    Directory of Open Access Journals (Sweden)

    Christoffolete M.A.

    2004-01-01

    Full Text Available The uncoupling protein UCP3 belongs to a family of mitochondrial carriers located in the inner mitochondrial membrane of certain cell types. It is expressed almost exclusively at high levels in skeletal muscle and its physiological role has not been fully determined in this tissue. In the present study we have addressed the possible interaction between a hypercaloric diet and thyroid hormone (T3, which are strong stimulators of UCP3 gene expression in skeletal muscle. Male Wistar rats weighing 180 ± 20 g were rendered hypothyroid by thyroidectomy and the addition of methimazole (0.05%; w/v to drinking water after surgery. The rats were fed a hypercaloric cafeteria diet (68% carbohydrates, 13% protein and 18% lipids for 10 days and sacrificed by decapitation. Subsequently, the gastrocnemius muscle was dissected, total RNA was isolated with Trizol? and UCP3 gene expression was determined by Northern blotting using a specific probe. Statistical analysis was performed by one-way analysis of variance (ANOVA followed by the Student-Newman-Keuls post-test. Skeletal muscle UCP3 gene expression was decreased by 60% in hypothyroid rats and UCP3 mRNA expression was increased 70% in euthyroid cafeteria-fed rats compared to euthyroid chow-fed animals, confirming previous studies. Interestingly, the cafeteria diet was unable to stimulate UCP3 gene expression in hypothyroid animals (40% lower as compared to euthyroid cafeteria-fed animals. The results show that a hypercaloric diet is a strong stimulator of UCP3 gene expression in skeletal muscle and requires T3 for an adequate action.

  19. Dietary composition modulates brain mass and solubilizable Aβ levels in a mouse model of aggressive Alzheimer's amyloid pathology

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2009-10-01

    Full Text Available Abstract Objective Alzheimer's disease (AD is a progressive neurodegenerative disease of the central nervous system (CNS. Recently, an increased interest in the role diet plays in the pathology of AD has resulted in a focus on the detrimental effects of diets high in cholesterol and fat and the beneficial effects of caloric restriction. The current study examines how dietary composition modulates cerebral amyloidosis and neuronal integrity in the TgCRND8 mouse model of AD. Methods From 4 wks until 18 wks of age, male and female TgCRND8 mice were maintained on one of four diets: (1 reference (regular commercial chow; (2 high fat/low carbohydrate custom chow (60 kcal% fat/30 kcal% protein/10 kcal% carbohydrate; (3 high protein/low carbohydrate custom chow (60 kcal% protein/30 kcal% fat/10 kcal% carbohydrate; or (4 high carbohydrate/low fat custom chow (60 kcal% carbohydrate/30 kcal% protein/10 kcal% fat. At age 18 wks, mice were sacrificed, and brains studied for (a wet weight; (b solubilizable Aβ content by ELISA; (c amyloid plaque burden; (d stereologic analysis of selected hippocampal subregions. Results Animals receiving a high fat diet showed increased brain levels of solubilizable Aβ, although we detected no effect on plaque burden. Unexpectedly, brains of mice fed a high protein/low carbohydrate diet were 5% lower in weight than brains from all other mice. In an effort to identify regions that might link loss of brain mass to cognitive function, we studied neuronal density and volume in hippocampal subregions. Neuronal density and volume in the hippocampal CA3 region of TgCRND8 mice tended to be lower in TgCRND8 mice receiving the high protein/low carbohydrate diet than in those receiving the regular chow. Neuronal density and volume were preserved in CA1 and in the dentate gyrus. Interpretation Dissociation of Aβ changes from brain mass changes raises the possibility that diet plays a role not only in modulating amyloidosis but also in

  20. Plaque formation reduction with glutathione monoester in mice fed on atherogenic diet

    International Nuclear Information System (INIS)

    Iqbal, M.; Mehboobali, N.; Pervez, S.

    2006-01-01

    To determine the role of glutathione monoester on reducing the development of plaque formation in an animal model. Twenty-four Balb/c mice were divided into 3 equal groups. First group was fed on atherogenic diet alone, while the second group received atherogenic diet plus twice weekly injections of glutathione monoester. The third group was fed on normal diet for mice. After one year, the animals were sacrificed. Blood was analyzed for lipid levels, while liver, kidney, spleen, heart and aorta were removed to study morphological changes. Results: In the groups of mice receiving atherogenic diet (with and without glutathione monoesters), there was significant increase in levels of total cholesterol (p=0.011) and LDL cholesterol (p=0.001) compared to levels of these lipids in mice on normal diet. However, a significant decrease in levels of triglycerides (p=0.01) was observed in the group receiving atherogenic diet along with glutathione monoester. Supplementation with glutathione monoester had the most pronounced effect only on triglyceride levels. Atherosclerotic plaques were seen in heart and/or aorta of mice receiving atherogenic diet. However, such plaques were either totally absent or if seen in an animal, were extremely small and diffuse in the group receiving glutathione monoester along with atherogenic diet. Mice on normal diet had no evidence of any plaque formation. Cholesterol granuloma was seen in liver of mice on atherogenic diet alone. In mice receiving atherogenic diet plus glutathione monoester, no cholesterol granuloma was found in liver. There were no remarkable morphological changes in spleen and kidney in the three groups of mice. Glutathione monoester appears to inhibit or reduce the development of plaque formation in mice. (author)

  1. Meal pattern alterations associated with intermittent fasting for weight loss are normalized after high-fat diet re-feeding.

    Science.gov (United States)

    Gotthardt, Juliet D; Bello, Nicholas T

    2017-05-15

    Alternate day, intermittent fasting (IMF) can be an effective weight loss strategy. However, the effects of IMF on eating behaviors are not well characterized. We investigated the acute and residual effects of IMF for weight loss on meal patterns in adult obese male C57BL/6 mice. After 8weeks of ad libitum high-fat diet to induce diet-induced obesity (DIO), mice were either continued on ad libitum high-fat diet (HFD) or placed on one of 5 diet strategies for weight loss: IMF of high-fat diet (IMF-HFD), pair-fed to IMF-HFD group (PF-HFD), ad libitum low-fat diet (LFD), IMF of low-fat diet (IMF-LFD), or pair-fed to IMF-LFD group (PF-LFD). After the 4-week diet period, all groups were refed the high-fat diet for 6weeks. By the end of the diet period, all 5 groups had lost weight compared with HFD group, but after 6weeks of HFD re-feeding all groups had similar body weights. On (Day 2) of the diet period, IMF-HFD had greater first meal size and faster eating rate compared with HFD. Also, first meal duration was greater in LFD and IMF-LFD compared with HFD. At the end of the diet period (Day 28), the intermittent fasting groups (IMF-HFD and IMF-LFD) had greater first meal sizes and faster first meal eating rate compared with their respective ad libitum fed groups on similar diets (HFD and LFD). Also, average meal duration was longer on Day 28 in the low-fat diet groups (LFD and IMF-LFD) compared with high-fat diet groups (HFD and IMF-HFD). After 6weeks of HFD re-feeding (Day 70), there were no differences in meal patterns in groups that had previously experienced intermittent fasting compared with ad libitum fed groups. These findings suggest that meal patterns are only transiently altered during alternate day intermittent fasting for weight loss in obese male mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

    Science.gov (United States)

    Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin

    2014-01-01

    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109

  3. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Pili Zhang

    2017-04-01

    Full Text Available Objective: Overnutrition can alter gene expression patterns through epigenetic mechanisms that may persist through generations. However, it is less clear if overnutrition, for example a high fat diet, modifies epigenetic control of gene expression in adults, or by what molecular mechanisms, or if such mechanisms contribute to the pathology of the metabolic syndrome. Here we test the hypothesis that a high fat diet alters hepatic DNA methylation, transcription and gene expression patterns, and explore the contribution of such changes to the pathophysiology of obesity. Methods: RNA-seq and targeted high-throughput bisulfite DNA sequencing were used to undertake a systematic analysis of the hepatic response to a high fat diet. RT-PCR, chromatin immunoprecipitation and in vivo knockdown of an identified driver gene, Phlda1, were used to validate the results. Results: A high fat diet resulted in the hypermethylation and decreased transcription and expression of Phlda1 and several other genes. A subnetwork of genes associated with Phlda1 was identified from an existing Bayesian gene network that contained numerous hepatic regulatory genes involved in lipid and body weight homeostasis. Hepatic-specific depletion of Phlda1 in mice decreased expression of the genes in the subnetwork, and led to increased oil droplet size in standard chow-fed mice, an early indicator of steatosis, validating the contribution of this gene to the phenotype. Conclusions: We conclude that a high fat diet alters the epigenetics and transcriptional activity of key hepatic genes controlling lipid homeostasis, contributing to the pathophysiology of obesity. Author Video: Author Video Watch what authors say about their articles Keywords: DNA methylation, RNA-seq, Transcription, High fat diet, Liver, Phlda1

  4. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2011-06-01

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer deaths in the United States. Various risk factors have been associated with CRC including increasing age and diet. Epidemiological and experimental studies have implicated a diet high in fat as an important risk factor for colon cancer. High fat diets can promote obesity resulting in insulin resistance and inflammation and the development of oxidative stress, increased cell proliferation, and suppression of apoptosis. Because of the high consumption of dietary fats, especially saturated fats, by Western countries, it is of interest to see if non-nutrient food factors might be effective in preventing or delaying CRC in the presence of high saturated fat intake. Curcumin (Curcuma longa, the main yellow pigment in turmeric, was selected to test because of its reported anti-tumor activity. APC Min mice, which develop intestinal polyps and have many molecular features of CRC, were fed a diet containing 35% pork fat, 33% sucrose, and a protein and vitamin mineral mixture (HFD with or without 0.5% curcumin. These cohorts were compared to APC Min mice receiving standard rodent chow (RC with 8% fat. APC Min mice fed the HFD for 3 months had a 23% increase in total number of polyps compared to APC Min mice on RC. Curcumin was able to significantly reverse the accelerated polyp development associated with the HFD suggesting it may be effective clinically in helping prevent colon cancer even when ingesting high amounts of fatty foods. The anti-tumor effect of curcumin was shown to be associated with enhanced apoptosis and increased efficiency of DNA repair. Since curcumin prevented the gain in body weight seen in APC Min mice ingesting the HFD, modulation of energy metabolism may also be a factor.

  5. Protective Effects of Setarud (IMODTM on Development of Diet-Induced Hypercholesterolemia in Rabbits

    Directory of Open Access Journals (Sweden)

    MH Shahhosseiny

    2008-09-01

    Full Text Available Background: A new herbal drug setarud (IMODTM containing selenium, carotene, and flavonoids, was expected to have positive effects on lipid metabolism and liver functions, due to the nature of its primary components. This study was designed to determine effectiveness of the drug in reducing the risk of development of diet-induced hypercholesterolemia in laboratory animals. Methods: Two groups of male rabbits (n=10 per group as: intact and control groups on regular chow, were fed a high-cholesterol diet, and two experimental groups were maintained on the same diet and treated with different daily doses (0.02 g/kg and 0.04 g/kg of setarud (brand name IMOD®, Pars Roos, Iran. The treatment groups were then compared with the intact and control groups and with one another for the effects of the drug which was determined by changes in blood sugar, serum lipid levels, and liver function tests. Results: Results showed that drug had important benefits in alleviating the impact of high-cholesterol diet on serum lipids and liver function markers in drug-treated groups relative to hyperlipidemic controls (p < 0.001. A more favorable modification of total cholesterol and triglyceride levels and the atherogenic index was found in animals, which received 0.04 g/kg drug, as compared to the 0.02 g/kg dose group (p < 0.05. Assessment of serum total protein, albumin, transaminases, and bilirubin levels showed that no changes in liver function of control and drug-treated animals during the period of the study. Conclusion: From the results of this study it may concluded that setarud has dose-dependent positive effects on liver and lipid metabolism and may acts as an effective anti-hyperglycemic agent.

  6. Effect of methanolic extract of Piper sarmentosum leaves on neointimal foam cell infiltration in rabbits fed with high cholesterol diet

    Science.gov (United States)

    Amran, Adel A.; Zakaria, Zaiton; Othman, Faizah; Das, Srijit; Al-Mekhlafi, Hesham M.; Raj, Santhana; Nordin, Nor-Anita MM

    2012-01-01

    Previous research has shown the beneficial effects of aqueous extract of Piper sarmentosum (P.s) on atherosclerosis. The first stage in atherosclerosis is the formation of foam cell. The aim of this study was to investigate the effect of the methanol extract of P.s on fatty streaks by calculating neointimal foam cell infiltration in rabbits fed with high cholesterol diet. Thirty six male New Zealand white rabbits were divided equally into six groups: (i) C: control group fed normal rabbit chow; (ii) CH: cholesterol diet (1 % cholesterol); (iii) PM1: 1 % cholesterol with methanol extract of P.s (62.5 mg/kg); (iv) PM2: 1 % cholesterol with methanol extract of P.s (125 mg/kg); (v) PM3: 1 % cholesterol with methanol extract of P.s (250 mg/kg); (vi) SMV group fed 1 % cholesterol supplemented with Simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. At the end of the treatment, the rabbits were fasted and sacrificed and the aortic tissues were collected for histological studies to measure the area of the neointimal foam cell infiltration using software. The thickening of intima ratio of atherosclerosis and morphological changes by scanning electron microscope were measured. The results showed that the atherosclerotic group had significantly bigger area of fatty streak compared to the control group. The area of fatty streak in the abdominal aorta was significantly reduced in the treatment groups which were similar with the SMV group. Similarly, there was a reduction in the number of foam cell in the treatment groups compared to the atherosclerotic group as seen under scanning microscope. In conclusion, histological study demonstrated that the methanol extract of the P.s could reduce the neointimal foam cell infiltration in the lumen of the aorta and the atherosclerotic lesion. PMID:27366140

  7. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  8. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Harald Mangge

    2015-07-01

    Full Text Available Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP, a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66 were grouped into normal diet (ND; n = 30 and high-fat diet (HFD; n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  9. Mediterranean diet, Dietary Approaches to Stop Hypertension (DASH) style diet, and metabolic health in U.S. adults.

    Science.gov (United States)

    Park, Yong-Moon Mark; Steck, Susan E; Fung, Teresa T; Zhang, Jiajia; Hazlett, Linda J; Han, Kyungdo; Lee, Seung-Hwan; Kwon, Hyuk-Sang; Merchant, Anwar T

    2017-10-01

    There is sparse evidence on the relationship between the Mediterranean diet, Dietary Approaches to Stop Hypertension (DASH) style diet, and metabolic health, especially comparing cardiometabolic phenotypes among in normal weight and obese populations. We aimed to investigate the association of the Mediterranean diet scores (MDS) and DASH index with metabolically healthy obese (MHO) and metabolically obese normal weight (MONW) phenotypes in a representative U.S. MDS and DASH index were calculated using dietary data from 2767 adults aged 20-90 years without any prior diagnosis of cancer or cardiovascular disease from the National Health and Nutrition Examination Survey III, 1988-1994. MHO and MONW individuals were identified using fasting glucose, insulin resistance, blood pressure, triglycerides, C-reactive protein, and high-density lipoprotein-cholesterol. Higher MDS was associated with higher odds of MHO phenotype (odds ratio (OR) T3 vs T1 , 2.57 [95% confidence interval (CI), 1.04-6.35]; P trend = 0.04), and higher DASH index was associated with lower odds of MONW phenotype (OR T3 vs T1, 0.59 [95% CI, 0.38-0.93]; P trend = 0.03) only in the younger age group (Mediterranean diet or DASH style diet was favorably associated with MHO and MONW phenotypes only in the younger age group, suggesting that potential dietary intervention to prevent cardiometabolic disease differ by age group. Published by Elsevier Ltd.

  10. High-fat diet based on dried bovine brain: an effective animal model of dyslipidemia and insulin resistance.

    Science.gov (United States)

    Araújo, Tiago Gomes; Leite, Ana Catarina Rezende; Martins da Fonseca, Caíque Silveira; Carvalho, Bruno Melo; Schuler, Alexandre Ricardo Pereira; Lima, Vera Lúcia de Menezes

    2011-09-01

    Currently, there are no reports in the literature demonstrating any animal model that ingests one of the fattiest animal food source, the bovine brain. We hypothesized that a high-fat diet (HFD), based on dried bovine brain, could be used to develop an animal model possessing a spectrum of insulin resistance-related features. The HFD was formulated with 40% dried bovine brain plus 16.4% butter fat, prepared in-house. Furthermore, the diet contained 52% calories as fat and 73% of total fatty acids were saturated. Swiss mice weighing about 40 g were assigned to two dietary groups (n=6/group), one group received a standard chow diet and the other was given HFD for 3 months. The body weight and biochemical parameters of the animals were measured initially and at monthly intervals until the end of the experiment. Animals fed on a HFD showed a significant increase in the body and adipose tissue weight, serum total cholesterol and triglyceride levels, when compared with mice fed on the control diet. Additionally, the HFD group showed higher circulating levels of liver transaminases, such as alanine aminotransferase and aspartate aminotransferase, compared with the control group. Finally, to illustrate the usefulness of this model, we report that the HFD induced mild hyperglycemia, fasting hyperinsulinemia, and increased the homeostasis model of assessment (HOMA-IR), in comparison with the control group. In conclusion, our results show that HFD, based on dried bovine brain, causes insulin resistance-related metabolic disturbances. Thus, this may be a suitable model to study disturbances in energy metabolism and their consequences.

  11. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver.

    Science.gov (United States)

    Peng, Yanhua; Rideout, Drew; Rakita, Steven; Lee, James; Murr, Michel

    2012-01-01

    Obesity induces steatosis and increases oxidative stress, as well as chronic inflammation in the liver. The balance between lipogenesis and lipolysis is disrupted in obese animals. At a cellular level, the changes in metabolic sensors and energy regulators are poorly understood. We hypothesized that diet-induced steatosis increases oxidative stress, inflammation, and changes the metabolic regulators to promote energy storage in mice. The setting was a university-affiliated basic science research laboratory. Four-week-old C57BL mice were fed a high-fat diet (n = 8) or regular chow (n = 8) for 7 weeks. The liver sections were stained for fat content and immunofluorescence. Liver homogenates were used for protein analysis by immunoblotting and mRNA analysis by reverse transcriptase-polymerase chain reaction. The gels were quantified using densitometry P ≤ .05 was considered significant. The high-fat diet upregulated protein kinase-C atypical isoforms ζ and λ and decreased glucose tolerance and the interaction of insulin receptor substrate 2 with phosphoinositide kinase-3. The high-fat diet increased the transcriptional factors liver X receptor (4321 ± 98 versus 2981 ± 80) and carbohydrate response element-binding protein (5132 ± 135 versus 3076 ± 91), the lipogenesis genes fatty acid binding protein 5, stearoyl-co-enzyme A desaturase-1, and acetyl-co-enzyme A carboxylase protein, and fatty acid synthesis. The high-fat diet decreased 5'-adenosine monophosphate-activated protein kinase (2561 ± 78 versus 1765 ± 65), glucokinase-3β (2.214 ± 34 versus 3356 ± 86), and SIRT1 (2015 ± 76 versus 3567 ± 104) and increased tumor necrosis factor-α (3415 ± 112 versus 2042 ± 65), nuclear factor kappa B (5123 ± 201 versus 2562 ± 103), cyclooxygenase-2 (4230 ± 113 versus 2473 ± 98), nicotinamide-adenine dinucleotide phosphate oxidase (3501 ± 106 versus 1600 ± 69) and reactive oxygen species production (all P high-fat diet impairs glucose tolerance and hepatic

  12. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chung, Young-Mee; Hyun Lee, Joo; Youl Kim, Deuk; Hwang, Se-Hee; Hong, Young-Ho; Kim, Seong-Bo; Jin Lee, Song; Hye Park, Chi

    2012-02-01

    D-Psicose, a C-3 epimer of D-fructose, has shown promise in reducing body fat accumulation in normal rats and plasma glucose level in genetic diabetic mice. Effects of D-psicose on diet-induced obesity are not clearly elucidated, and we investigated food intake, body weight, and fat accumulation in rats fed high-fat (HF) diet. Sprague-Dawley rats became obese by feeding HF diet for 4 wk, and were assigned either to normal or HF diet supplemented with or without D-psicose, sucrose, or erythritol for 8 wk. Changing HF to normal diet gained less body weight and adipose tissue due to different energy intake. D-psicose-fed rats exhibited lower weight gain, food efficiency ratio, and fat accumulation than erythritol- and sucrose-fed rats. This effect was more prominent in D-psicose-fed rats with normal diet than with HF diet, suggesting combination of psicose and calorie restriction further reduced obesity. There was no difference in serum cholesterol/high-density lipoprotein (HDL)-C and low-density lipoprotein (LDL)-C/HDL-C ratios between D-psicose group and other groups. Liver weight in 5% psicose group with normal diet was higher than in other groups, but histopathological examination did not reveal any psicose-related change. D-Psicose inhibited the differentiation of mesenchymal stem cell (MSC) to adipose tissue in a concentration-dependent manner. These results demonstrate that D-psicose produces a marked decrease, greater than erythritol, in weight gain and visceral fat in an established obesity model by inhibiting MSC differentiation to adipocyte. Thus, D-psicose can be useful in preventing and reducing obesity as a sugar substitute and food ingredient. We can develop D-psicose as a sugar substitute and food ingredient since it can prevent obesity in normal people, but also suppress adiposity as a sugar substitute or food ingredients with antiobesity effect in obese people. D-psicose can be unique functional sweetener because of its function of reducing visceral

  13. High-protein diets and renal status in rats

    OpenAIRE

    Aparicio, V. A.; Nebot, E.; García-del Moral, R.; Machado-Vílchez, M.; Porres, J. M.; Sánchez, C.; Aranda, P.

    2013-01-01

    Introduction: High-protein (HP) diets might affect renal status. We aimed to examine the effects of a HP diet on plasma, urinary and morphological renal parameters in rats. Material and methods: Twenty Wistar rats were randomly distributed in 2 experimental groups with HP or normal-protein (NP) diets over 12 weeks. Results and discussion: Final body weight was a 10% lower in the HP group (p < 0.05) whereas we have not observed differences on food intake, carcass weight and muscle ashes conten...

  14. Do vegetarians have a normal bone mass?

    Science.gov (United States)

    New, Susan A

    2004-09-01

    Public health strategies targeting the prevention of poor bone health on a population-wide basis are urgently required, with particular emphasis being placed on modifiable factors such as nutrition. The aim of this review was to assess the impact of a vegetarian diet on indices of skeletal integrity to address specifically whether vegetarians have a normal bone mass. Analysis of existing literature, through a combination of observational, clinical and intervention studies were assessed in relation to bone health for the following: lacto-ovo-vegetarian and vegan diets versus omnivorous, predominantly meat diets, consumption of animal versus vegetable protein, and fruit and vegetable consumption. Mechanisms of action for a dietary "component" effect were examined and other potential dietary differences between vegetarians and non-vegetarians were also explored. Key findings included: (i) no differences in bone health indices between lacto-ovo-vegetarians and omnivores; (ii) conflicting data for protein effects on bone with high protein consumption (particularly without supporting calcium/alkali intakes) and low protein intake (particularly with respect to vegan diets) being detrimental to the skeleton; (iii) growing support for a beneficial effect of fruit and vegetable intake on bone, with mechanisms of action currently remaining unclarified. The impact of a "vegetarian" diet on bone health is a hugely complex area since: 1) components of the diet (such as calcium, protein, alkali, vitamin K, phytoestrogens) may be varied; 2) key lifestyle factors which are important to bone (such as physical activity) may be different; 3) the tools available for assessing consumption of food are relatively weak. However, from data available and given the limitations stipulated above, "vegetarians" do certainly appear to have "normal" bone mass. What remains our challenge is to determine what components of a vegetarian diet are of particular benefit to bone, at what levels and under

  15. The New Nordic Diet

    DEFF Research Database (Denmark)

    Salomo, Louise Havkrog; Poulsen, Sanne Kellebjerg; Rix, Marianne

    2016-01-01

    PURPOSE: High phosphorus content in the diet may have adverse effect on cardiovascular health. We investigated whether the New Nordic Diet (NND), based mainly on local, organic and less processed food and large amounts of fruit, vegetables, wholegrain and fish, versus an Average Danish Diet (ADD......) would reduce the phosphorus load due to less phosphorus-containing food additives, animal protein and more plant-based proteins. METHODS: Phosphorus and creatinine were measured in plasma and urine at baseline, week 12 and week 26 in 132 centrally obese subjects with normal renal function as part....../10 MJ in the ADD group and decreased less in the NND compared to the ADD (67 ± 36 mg/10 MJ and -266 ± 45 mg/day, respectively, p high phosphorus intake and did not decrease the fractional phosphorus excretion compared with ADD. Further...

  16. The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis.

    Science.gov (United States)

    Pung, Yuh Fen; Chilian, William M; Bennett, Martin R; Figg, Nichola; Kamarulzaman, Mohd Hamzah

    2017-03-01

    Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia. NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN. Copyright © 2017 the American Physiological Society.

  17. The effects of feeding triacylglcerols on milk fat composition ...

    African Journals Online (AJOL)

    concentrations of C18:1 - C18:3 acids compared to the low-fat diet, chow, or the coconut oil-supplemented diets. Compared with the low-fat control diet, all the other dietary regimes suppressed overall fatty acid synthesis in both the lactating mammary gland and liver, with the highest suppression being produced by the olive ...

  18. Liraglutide suppression of caloric intake competes with the intake-promoting effects of a palatable cafeteria diet, but does not impact food or macronutrient selection.

    Science.gov (United States)

    Hyde, Kellie M; Blonde, Ginger D; le Roux, Carel W; Spector, Alan C

    2017-08-01

    Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) receptor agonist, is used as a treatment for Type 2 diabetes mellitus and obesity because it improves glycemia and decreases food intake. Here, we tested whether chronic activation of the GLP-1 receptor system with liraglutide would induce decreases in intake accompanied by changes in proportional food or macronutrient intake similar to those seen following RYGB in rats when a variety of palatable food options are available. A "cafeteria diet" was used that included: laboratory rodent chow, refried beans (low-fat/low-sugar), low-fat yogurt (low-fat/high-sugar), peanut butter (high-fat/low-sugar) and sugar-fat whip (high-fat/high-sugar). Liraglutide (1mg/kg daily, sc, n=6) induced significant reductions in body weight and total caloric intake compared to saline-injected control rats (n=6). Although access to a cafeteria diet induced increases in caloric intake in both groups relative to chow alone, liraglutide still effectively decreased intake compared with saline-injected rats suggesting that chronic GLP-1 activation competes with the energy density and palatability of available food options in modulating ingestive behavior. Even with the substantial effects on overall intake, liraglutide did not change food choice or relative macronutrient intake when compared to pre-treatment baseline. When drug treatment was discontinued, the liraglutide group increased caloric intake and rapidly gained body weight to match that of the saline group. These results demonstrate that, while liraglutide effectively decreases caloric intake and body weight in rats, it does not cause adjustments in relative macronutrient consumption. Our data also show that drug-induced decreases in intake and body weight are not maintained following termination of treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns.

    Science.gov (United States)

    la Fleur, S E; Luijendijk, M C M; van der Zwaal, E M; Brans, M A D; Adan, R A H

    2014-05-01

    Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced food-motivated behavior. This raises the question of the importance of choice in the persistence of hyperphagia in rats on a fcHFHS diet. Meal patterns, food intake and body weight gain were studied in male Wistar rats on free-choice diets with fat and/or sugar and in rats on nc diets with fat and sugar (custom made with ingredients similar to the fcHFHS diet). Rats on a ncHFHS diet initially overconsumed, but reduced intake thereafter, whereas rats on a fcHFHS diet remained hyperphagic. Because half of the sugar intake in the fcHFHS group occurred during the inactive period, we next determined whether sugar intake during the light phase was a necessary requirement for hyperphagia, by restricting access to liquid sugar to either the light or dark period with unlimited access to fat and chow. Results showed that hyperphagia occurred irrespective of the timing of sugar intake. Meal pattern analysis revealed consumption of larger but fewer meals in the ncHFHS group, as well as the fcHF group. Interestingly, meal number was increased in all rats drinking liquid sugar (whether on a fcHFHS or a fcHS diet), whereas a compensatory decrease in meal size was only observed in the fcHS group, but not the fcHFHS group. We hereby show the importance of choice in the observation of fcHFHS diet-induced hyperphagia, which results in increases in meal number due to sugar drinking without any compensatory decrease in meal size. We thus provide a novel dietary model in rats that mimics important features of human overconsumption that have been ignored in rodent models of obesity.

  20. Metabolic in Vivo Labeling Highlights Differences of Metabolically Active Microbes from the Mucosal Gastrointestinal Microbiome between High-Fat and Normal Chow Diet

    NARCIS (Netherlands)

    Oberbach, Andreas; Haange, Sven Bastiaan; Schlichting, Nadine; Heinrich, Marco; Lehmann, Stefanie; Till, Holger; Hugenholtz, Floor; Kullnick, Yvonne; Smidt, Hauke; Frank, Karin; Seifert, Jana; Jehmlich, Nico; Bergen, Von Martin

    2017-01-01

    The gastrointestinal microbiota in the gut interacts metabolically and immunologically with the host tissue in the contact zone of the mucus layer. For understanding the details of these interactions and especially their dynamics it is crucial to identify the metabolically active subset of the

  1. Virgin coconut oil (VCO) by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-β induced toxicity and high-fat diet fed rat.

    Science.gov (United States)

    Mirzaei, Fatemeh; Khazaei, Mozafar; Komaki, Alireza; Amiri, Iraj; Jalili, Cyrus

    2018-05-02

    Both dyslipidemia and Alzheimer disease (AD) are associated with aging. In this study, the effects of virgin coconut oil (VCO) on inflammasome and oxidative stress in Alzheimer's model (receiving Amyloid-β (Aβ)) and high-fat diet (HFD) model were determined. A total of 120 male Wistar rats, were divided into 12 groups (n = 10), including; healthy control, sham surgery, sham surgery receiving normal saline, HFD, HFD + 8% VCO, HFD + 10% VCO, Aβ received rats, Aβ + 8%VCO, Aβ + 10%VCO, HFD + Aβ, HFD + Aβ+8%VCO, and HFD + Aβ + 10%VCO. Following memory and learning tests, blood sample prepared from the heart and hippocampus of rats in each group was kept at -70 °C for genes expression, oxidative stress, and biochemical tests. Aβ and HFD significantly impaired memory and learning by activating of both NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress (p<0.05), while treatment with both 8 and 10% VCO normalized inflammasome genes expression and oxidative stress (p<0.05). The Congo Red, Cresyl Violet staining and immunohistochemistry (IHC) test revealed that VCO improved hippocampus histological changes, reduced Aβ plaques and phosphorylated Tau. High-fat diet has exacerbated the effects of Aβ, while VCO showed potential neuroprotective effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Ileostomy and your diet

    Science.gov (United States)

    ... that collects it. You will need to take care of the stoma and empty the pouch many times a day. People who have had an ileostomy can most often eat a normal diet. But some foods may cause problems. Foods that may ... Your pouch should be sealed well enough to ...

  3. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  4. The Effects Of Fresh And Thermoxidized Palm Oil Diets On Some ...

    African Journals Online (AJOL)

    The effects of fresh and thermoxidized palm oil diets on some haematalogical indices in the rat were investigated in albino rats (Wistar strain). The animals were divided into three groups namely, the first group fed on thermoxidized palm oil (TPO) diet, a second group fed on fresh palm oil (FPO) diet and a third fed on normal ...

  5. The effects of diet and physical activity on plasma homovanillic acid in normal human subjects.

    Science.gov (United States)

    Kendler, K S; Mohs, R C; Davis, K L

    1983-03-01

    This study examines the effect of diet and moderate physical activity on plasma levels of the dopamine metabolite homovanillic acid (HVA) in healthy young males. At weekly intervals, subjects were fed four isocaloric meals: polycose (pure carbohydrate), sustecal, low monoamine, and high monoamine. Moderate physical activity consisted of 30 minutes of exercise on a bicycle ergometer. The effect of diet on plasma HVA (pHVA) was highly significant. Compared to the polycose meal, the high monoamine meal significantly increased pHVA. Moderate physical activity also significantly increased pHVA. Future clinical studies using pHVA in man as an index of brain dopamine function should control for the effects of both diet and physical activity.

  6. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    Stephanie A. Segovia

    2018-03-01

    Full Text Available Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl, high-salt (SD; 10% kcal from fat, 4% NaCl, high-fat (HF; 45% kcal from fat, 1% NaCl or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1. There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2. Gut expression of inflammatory (Il1r1, Tnfα, Il6, and Il6r and renin–angiotensin system (Agtr1a, Agtr1b markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin–angiotensin regulation.

  7. Differential Effects of Red Meat/Refined Grain Diet and Dairy/Chicken/Nuts/Whole Grain Diet on Glucose, Insulin and Triglyceride in a Randomized Crossover Study.

    Science.gov (United States)

    Kim, Yoona; Keogh, Jennifer B; Clifton, Peter M

    2016-10-30

    Epidemiological studies suggest that a diet high in processed meat, with a high glycemic index is associated with an increased risk of type 2 diabetes. It is not clear if this is due to altered insulin sensitivity or an enhanced postprandial glucose. We aimed to compare the acute metabolic response of two different types of meals after ingestion of the matching diet for four weeks. The study was a randomized, crossover acute meal study. Volunteers consumed either a red meat/refined grain meal or a dairy/chicken/nuts/wholegrain meal after four weeks of the matching diet. After a three-week washout period and four weeks of the alternate diet, they consumed the matching meal. The diets differed with respect to both protein and carbohydrate sources. Blood samples were taken for 180 min for the measurement of glucose, insulin, C-peptide and triglyceride. Fifty-one participants (age: 35.1 ± 15.6 years; body mass index: 27.7 ± 6.9 kg/m², 17 with normal and 34 with impaired glucose tolerance) completed two meal tests. The area under the curve ( p glucose tolerance group ( p glucose; the red meat/refined grain diet increased glucose relative to the dairy/chicken/nuts/whole grain diet only in the normal group (+2.5 mmol/L/3 h). The red meat/refined grain diet increased glucose and insulin responses compared with the dairy/chicken/nuts/whole grain diet. This meal pattern would increase pancreatic stress long term and may account for the increased risk of type 2 diabetes with this diet.

  8. Effect of a Diet Enriched with Fresh Coconut Saturated Fats on Plasma Lipids and Erythrocyte Fatty Acid Composition in Normal Adults.

    Science.gov (United States)

    Nagashree, Rokkam Shankar; Manjunath, N K; Indu, M; Ramesh, M; Venugopal, V; Sreedhar, P; Pavithra, N; Nagendra, Hongasandra R

    2017-07-01

    The objective of this study was to compare the effects of increased saturated fatty acid (SFA) (provided by fresh coconut) versus monounsaturated fatty acid (MUFA) intake (provided by a combination of groundnuts and groundnut oil) on plasma lipids and erythrocyte fatty acid (EFA) composition in healthy adults. Fifty-eight healthy volunteers, randomized into 2 groups, were provided standardized diet along with 100 g fresh coconut or groundnuts and groundnut oil combination for 90 days in a Yoga University. Fasting blood samples were collected before and after the intervention period for the measurement of plasma lipids and EFA profile. Coconut diet increased low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels significantly. In contrast, the groundnut diet decreased total cholesterol (TC), mainly due to a decrease in HDL levels. There were no differences in the major SFA of erythrocytes in either group. However, coconut consumption resulted in an increase in C14:0 and C24:0 along with a decrease in levels of C18:1 n9 (oleic acid). There was a significant increase in levels of C20:3 n6 (dihomo-gamma linolenic acid, DGLA). Consumption of SFA-rich coconut for 3 months had no significant deleterious effect on erythrocytes or lipid-related factors compared to groundnut consumption. On the contrary, there was an increase in the anti-atherogenic HDL levels and anti-inflammatory precursor DGLA in erythrocyte lipids. This suggests that coconut consumption may not have any deleterious effects on cardiovascular risk in normal subjects.

  9. Effect of Partial Sleep Deprivation on Lipid Profile in High Fat Diet-Fed Rats in the Presence and Absence of Vitamin C

    OpenAIRE

    Hossein Najafzadeh; Mohammad-Kazem Gharibnaseri; Ali Shahriyari; Hamideh Akbari-Aliabad

    2013-01-01

    Background: The daily stress and shift working cause insomnia. In other hands, fatty food consumption increased this disorder. The aim of present study is evaluation additive effect of partial insomnia and high fatty diet with or without vitamin C on serum lipid profile in rats.Materials and Methods: Fifty six rats in 7 groups (8 rats each group) were conducted for study during 26 days as: 1: normal diet+normal sleep, 2: high fatty diet+normal sleep, 3: normal diet+insomnia, 4: high fatty die...

  10. A human apoB100 transgenic mouse expresses human apoB100 in the RPE and develops features of early AMD

    DEFF Research Database (Denmark)

    Fujihara, Masashi; Bartels, Emil; Nielsen, Lars B

    2009-01-01

    changes consistent with early human AMD including loss of basal infoldings and accumulation of cytoplasmic vacuoles in the RPE, and basal laminar deposits containing long-spacing collagen and heterogeneous debris in Bruch membrane of apoB100 mice. In apoB100 mice given a high-fat diet, basal linear...... transgenic for a human genomic fragment encoding the full length human apoB ("apoB100" mice) and litter-mate control mice were given a normal chow or high-fat diet for 12 months. Mice were evaluated for human apoB mRNA expression in the RPE/choroid and liver by RT-qPCR. Phenotypic changes associated......-like deposits were identified in 12-month-old mice. Linear regression analysis showed that the genotype (human apoB transgene) was a stronger influencing factor than high-fat diet in producing AMD-like lesions used in this study. Human apoB100 transgenic mice overexpress apoB in RPE and, with time, develop...

  11. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  12. 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Dorothy D Sears

    2009-09-01

    Full Text Available Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD-induced insulin resistance.Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT and 12/15LO knockout (KO mice after 2-4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b(+, F4/80(+ macrophages and elevated protein levels of the inflammatory markers IL-1beta, IL-6, IL-10, IL-12, IFNgamma, Cxcl1 and TNFalpha. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.

  13. Effects of leptin treatment and Western diet on wheel running in selectively bred high runner mice.

    Science.gov (United States)

    Meek, Thomas H; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore

    2012-05-15

    The role of leptin in regulating physical activity is varied. The behavioral effects of leptin signaling depend on the type of activity and the animal's physiological state. We used mice from lines selectively bred for high voluntary wheel running to further study how leptin regulates volitional exercise. Mice from four replicate high runner (HR) lines typically run ~3-fold more revolutions per day than those from four non-selected control (C) lines. HR mice have altered dopamine function and differences from C in brain regions known to be important in leptin-mediated behavior. Furthermore, male HR mice have been found to dramatically increase running when administered Western diet, an effect possibly mediated through leptin signaling. Male mice from generation 61 (representing three HR lines and one C line) were allowed wheel access at 24 days of age and given either Western diet (high in fat and with added sucrose) or standard chow. After four weeks, Western diet significantly increased circulating leptin, insulin, C-peptide, gastric inhibitory polypeptide, and inflammatory hormone resistin concentrations in HR mice (C mice not measured). Western diet increased running in HR mice, but did not significantly affect running in C mice. During the fifth week, all mice received two days of intra-peritoneal sham injections (physiological saline) followed by three days of murine recombinant leptin injections, and then another six days of sham injections. Leptin treatment significantly decreased caloric intake (adjusted for body mass) and body mass in all groups. Wheel running significantly increased with leptin injections in HR mice (fed Western or standard diet), but was unaffected in C mice. Whether Western diet and leptin treatment stimulate wheel running in HR mice through the same physiological pathways awaits future study. These results have implications for understanding the neural and endocrine systems that control locomotor activity, food consumption, and body

  14. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Petra Hirsova

    Full Text Available Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.

  15. Obesity-induced oocyte mitochondrial defects are partially prevented and rescued by supplementation with co-enzyme Q10 in a mouse model

    Science.gov (United States)

    Boots, C.E.; Boudoures, A.; Zhang, W.; Drury, A.; Moley, K.H.

    2016-01-01

    STUDY QUESTION Does supplementation with co-enzyme Q10 (CoQ10) improve the oocyte mitochondrial abnormalities associated with obesity in mice? SUMMARY ANSWER In an obese mouse model, CoQ10 improves the mitochondrial function of oocytes. WHAT IS KNOWN ALREADY Obesity impairs oocyte quality. Oocytes from mice fed a high-fat/high-sugar (HF/HS) diet have abnormalities in mitochondrial distribution and function and in meiotic progression. STUDY DESIGN, SIZE, DURATION Mice were randomly assigned to a normal, chow diet or an isocaloric HF/HS diet for 12 weeks. After 6 weeks on the diet, half of the mice receiving a normal diet and half of the mice receiving a HF/HS diet were randomly assigned to receive CoQ10 supplementation injections for the remaining 6 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Dietary intervention was initiated on C57Bl6 female mice at 4 weeks of age, CoQ10 versus vehicle injections were assigned at 10 weeks, and assays were conducted at 16 weeks of age. Mice were super-ovulated, and oocytes were collected and stained to assess mitochondrial distribution, quantify reactive oxygen species (ROS), assess meiotic spindle formation, and measure metabolites. In vitro fertilization was performed, and blastocyst embryos were transferred into control mice. Oocyte number, fertilization rate, blastulation rate and implantation rate were compared between the four cohorts. Bivariate statistics were performed appropriately. MAIN RESULTS AND THE ROLE OF CHANCE HF/HS mice weighed significantly more than normal diet mice (29 versus 22 g, P< 0.001). CoQ10 supplementation did not influence weight. Levels of ATP, citrate, and phosphocreatine were lower and ROS levels were higher in HF/HS mice than in controls (P< 0.001). CoQ10 supplementation significantly increased the levels of metabolites and decreased ROS levels in oocytes from normal diet mice but not in oocytes from HF/HS mice. However, CoQ10 completely prevented the mitochondrial distribution abnormalities

  16. Comparison of the carbon footprint of different patient diets in a Spanish hospital.

    Science.gov (United States)

    Vidal, Rosario; Moliner, Enrique; Pikula, Andrej; Mena-Nieto, Angel; Ortega, Agustín

    2015-01-01

    Mitigating climate change requires management strategies to reduce greenhouse gas emissions in any sector, including the health system. Carbon footprint calculations should play a key role in quantifying and communicating these emissions. Food is among the categories with low accuracy because the carbon footprint for food is still under development. We aimed to quantify the carbon footprint of different diets. Average carbon footprint for a normal diet was based on detailed composition data in Juan Ramón Jiménez Hospital (Huelva, Spain). In addition, the carbon footprints of 17 other therapeutic diets were estimated using a streamlined variation of each diet published by Benidorm Clinical Hospital (Spain). The carbon footprint was calculated for 18 hospital diets for a variety of patients. The reference menu corresponds to the normal diet provided to patients who do not have special dietary requirements. This menu has a low carbon footprint of 5.083 CO₂ eq/day. Hospital diets contribute to the carbon footprint of a hospital. The type of diet has a significant impact on the greenhouse gas emissions. A Mediterranean diet is associated with lower environmental impact than diets with more meat, in particular red meat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Proinflammatory Cytokines in Prostate Cancer Development and Progression Promoted by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2015-01-01

    Full Text Available Background. We aimed to examine whether proinflammatory cytokines participated in prostate cancer (PCa development and progression promoted by high-fat diet (HFD. Methods. TRAMP (transgenic adenocarcinoma mouse prostate mice were randomly divided into two groups: normal diet group and HFD group. Mortality rate and tumor formation rate were examined. TRAMP mice were sacrificed and sampled on the 20th, 24th, and 28th week, respectively. Levels of proinflammatory cytokines, including IL-1α, IL-1β, IL-6, and TNF-α, were tested by FlowCytomix. Prostate tissue of TRAMP mice was used for histology study. Results. A total of 13 deaths of TRAMP mice were observed, among which 3 (8.33% were from the normal diet group and 10 (27.78% from the HFD group. The mortality rate of TRAMP mice from HFD group was significantly higher than that of normal diet group (P=0.032. Tumor formation rate at 20th week of age of HFD group was significantly higher than that of normal diet group (P=0.045. Proinflammatory cytokines levels, including IL-1α, IL-1β, IL-6, and TNF-α, were significantly higher in HFD TRAMP mice. Conclusions. HFD could promote TRAMP mouse PCa development and progression with elevated proinflammatory cytokines levels. Proinflammatory cytokines could contribute to PCa development and progression promoted by HFD.

  18. The effects of prenatal exposure to a 'junk food' diet on offspring food preferences and fat deposition can be mitigated by improved nutrition during lactation.

    Science.gov (United States)

    Gugusheff, J R; Vithayathil, M; Ong, Z Y; Muhlhausler, B S

    2013-10-01

    Exposure to a maternal junk food (JF) diet in utero and during the suckling period has been demonstrated to increase the preference for palatable food and increase the susceptibility to diet-induced obesity in adult offspring. We aimed to determine whether the effects of prenatal exposure to JF could be ameliorated by cross-fostering offspring onto dams consuming a standard rodent chow during the suckling period. We report here that when all offspring were given free access to the JF diet for 7 weeks from 10 weeks of age, male offspring of control (C) or JF dams that were cross-fostered at birth onto JF dams (C-JF, JF-JF), exhibited higher fat (C-C: 12.3 ± 0.34 g/kg/day; C-JF: 14.7 ± 1.04 g/kg/day; JF-C: 11.5 ± 0.41 g/kg/day; JF-JF: 14.0 ± 0.44 g/kg/day; P food intake, had increased fat mass as percentage of body weight (C-C: 19.9 ± 1.33%; C-JF: 22.8 ± 1.57%; JF-C: 17.4 ± 1.03%; JF-JF: 22.0 ± 1.0%; P food preferences in females and susceptibility to diet-induced obesity in males can be prevented by improved nutrition during the suckling period.

  19. Antitissue Transglutaminase Normalization Postdiagnosis in Children With Celiac Disease.

    Science.gov (United States)

    Isaac, Daniela Migliarese; Rajani, Seema; Yaskina, Maryna; Huynh, Hien Q; Turner, Justine M

    2017-08-01

    Limited pediatric data exist examining the trend and predictors of antitissue transglutaminase (atTG) normalization over time in children with celiac disease (CD). We aimed to evaluate time to normalization of atTG in children after CD diagnosis, and to assess for independent predictors affecting this duration. A retrospective chart review was completed in pediatric patients with CD diagnosed from 2007 to 2014 at the Stollery Children's Hospital Celiac Clinic (Edmonton, Alberta, Canada). The clinical predictors assessed for impact on time to atTG normalization were initial atTG, Marsh score at diagnosis, gluten-free diet compliance (GFDC), age at diagnosis, sex, ethnicity, medical comorbidities, and family history of CD. Kaplan-Meier survival analysis was completed to assess time to atTG normalization, and Cox regression to assess for independent predictors of this time. A total of 487 patients met inclusion criteria. Approximately 80.5% of patients normalized atTG levels. Median normalization time was 407 days for all patients (95% confidence interval [CI: 361-453]), and 364 days for gluten-free diet compliant patients (95% CI [335-393]). Type 1 diabetes mellitus (T1DM) patients took significantly longer to normalize at 1204 days (95% CI [199-2209], P normalization time. GFDC was a significant predictor of earlier normalization (OR = 13.91 [7.86-24.62], P normalization. Patients with T1DM are less likely to normalize atTG levels, with longer normalization time. Additional research and education for higher-risk populations are needed.

  20. Activity-Based Protein Profiling Reveals Mitochondrial Oxidative Enzyme Impairment and Restoration in Diet-Induced Obese Mice

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Angel, Thomas E.; Lewis, Michael P.; Pederson, Leeanna M.; Chauvigne-Hines, Lacie M.; Wiedner, Susan D.; Zink, Erika M.; Smith, Richard D.; Wright, Aaron T.

    2012-10-24

    High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD or if the mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar or elevated relative to standard diet (SD) mice, thereby IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases and nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.

  1. The impact of a junk-food diet during development on 'wanting' and 'liking'.

    Science.gov (United States)

    Lesser, Ellen Nacha; Arroyo-Ramirez, Aime; Mi, Sarah Jingyi; Robinson, Mike James Ferrar

    2017-01-15

    The global increase in obesity rates has been tied to the rise in junk-food availability and consumption. Increasingly, children are exposed to a junk-food diet during gestation and early development. Excessive consumption of junk-food during this period may negatively impact the development of brain motivation and reward pathways. In this study we investigated the effects of a chronic junk-food diet throughout development on cue-motivated behavior ('wanting'), hedonic 'liking' for sweet tastes, as well as anxiety and weight gain in male and female Long-Evans (LE) and Sprague-Dawley (SD) rats. Here we found that chronic exposure to a junk-food diet resulted in large individual differences in weight gain (gainers and non-gainers) despite resulting in stunted growth as compared to chow-fed controls. Behaviorally, junk-food exposure attenuated conditioned approach (autoshaping) in females, particularly in non-gainers. In contrast, junk-food exposed rats that gained the most weight were willing to work harder for access to a food cue (conditioned reinforcement), and were more attracted to a junk-food context (conditioned place preference) than non-gainers. Hedonic 'liking' reactions (taste reactivity) were severely blunted in LE, but not SD rats, and 'liking' for sucrose negatively correlated with greater weight gain. Finally, junk-food exposure reduced anxiety-like behavior (elevated plus maze) in males but not females. These results suggest that junk-food exposure during development may give rise to dissociable differences in 'liking' and 'wanting' neural systems that do not depend on weight gain and may not be detected through Body Mass Index monitoring alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Activity of thyroxine 5' deiodinase in brown fat of lean and obese zucker rats

    International Nuclear Information System (INIS)

    Wu, S.Y.; Fisher, D.A.; Stern, J.S.; Glick, Z.

    1986-01-01

    This study examines the possibility that the reduced brown adipose tissue (BAT) thermogenesis in the Zucker obese rat may result from a limited capacity for conversion of T 4 to T 3 in BAT, through activity of T 4 5' deiodinase. Eighteen lean (Fa/.) and 18 age matched obese (fa/fa), about 16 weeks old, were each divided into 3 groups (n=6 per group). Group 1 and 2 were fed Purina Rat Chow and a cafeteria diet respectively for 21 days, and maintained at 22 0 C+/-2. Group 3 was fed rat chow and maintained at 8 0 C+/-1 for 7 days. Activity of T 4 5'deiodinase was determined in vitro. T 3 was measured by a radioimmunoassay. The rate of T 4 to T 3 conversion was similar in the lean and the obese rats maintained at room temperature, whether fed rat chow or a cafeteria diet (about 40 to 50 pmol T 3 /scapular BAT depot, per hour). However, lean rats exposed to the cold displayed about a 5 fold increase in T 4 5' deiodinase activity (p 3 may account for the reduced tolerance of obese animals to cold, but it does not account for their reduced diet induced BAT thermogenesis

  3. Mediterranean diet adherence in individuals with prediabetes and unknown diabetes: the Di@bet.es Study.

    Science.gov (United States)

    Ortega, E; Franch, J; Castell, C; Goday, A; Ribas-Barba, L; Soriguer, F; Vendrell, J; Casamitjana, R; Bosch-Comas, A; Bordiú, E; Calle-Pascual, A; Carmena, R; Castaño, L; Catalá, M; Delgado, E; Gaztambide, S; Girbés, J; López-Alba, A; Martínez-Larrad, M T; Menéndez, E; Mora-Peces, I; Pascual-Manich, G; Rojo-Martínez, G; Serrano-Rios, M; Urrutía, I; Valdés, S; Vázquez, J A; Gomis, R

    2013-01-01

    Mediterranean diet (MedDiet) is causally related to diabetes and is a dietary pattern recommended to individuals with diabetes. We investigated MedDiet adherence in individuals with prediabetes and unknown (PREDM/UKDM) or known diabetes (KDM) compared to those with normal glucose metabolism (NORMAL). This was a national, population-based, cross-sectional, cluster-sampling study. MedDiet adherence was scored (MedScore, mean ± SD 24 ± 5) using a qualitative food frequency questionnaire. Logistic regression was used to examine the association between MedScore and PREDM/UKDM or KDM versus control subjects. We evaluated 5,076 individuals. Mean age was 50 years, 57% were female, 826 (582/244) were PREDM/UKDM, 478 were KDM and 3,772 were NORMAL. Mean age increased across MedScore tertiles (46, 51 and 56 years, p < 0.0001). Higher age-adjusted adherence to MedDiet (5-unit increment in the MedScore) was associated with lower and nondifferent odds (OR, 95% CI) of prevalent PREDM/UKDM (0.88, 0.81-0.96, p = 0.001) and KDM (0.97, 0.87-1.07, p = 0.279), respectively, compared to individuals in the NORMAL group. In a representative sample of the whole Spanish population, MedDiet adherence is independently associated with PREDM/UKDM. Therapeutic intervention may be, in part, responsible for the lack of differences in adherence observed between the KDM and NORMAL groups. However, reverse causation bias cannot be ruled out in cross-sectional studies. Copyright © 2013 S. Karger AG, Basel.

  4. Elemental diet as prophylaxis against radiation injury. Histological and ultrastructural studies

    International Nuclear Information System (INIS)

    McArdle, A.H.; Wittnich, C.; Freeman, C.R.; Duguid, W.P.

    1985-01-01

    The authors investigated whether elemental diet feeding would protect the intestine from radiation injury. Five dogs were fed an elemental diet for three days before receiving pelvic irradiation (500 rad/day for four days) and were maintained on the diet during the days of irradiation. These dogs were compared with five dogs that were fed normal kennel ration, but were treated similarly otherwise. One day and five days following completion of the radiation treatment, the dogs were anesthetized and a biopsy specimen of terminal ileum was taken for histologic and electron microscopic studies. In the dogs fed the elemental diet, there was no significant damage to the intestine seen on histological examination, and electron microscopy disclosed elongated microvilli and no organelle damage. However, both histological and electron microscopic examination of the intestine from dogs maintained on normal kennel ration showed that severe damage had occurred from the irradiation procedure. It seems, therefore, that the feeding of an elemental diet to dogs as a prophylaxis can afford protection to the intestine from the acute phase of radiation injury

  5. Differential Effects of High-Carbohydrate and High-Fat Diet Composition on Metabolic Control and Insulin Resistance in Normal Rats

    Science.gov (United States)

    Ble-Castillo, Jorge L.; Aparicio-Trapala, María A.; Juárez-Rojop, Isela E.; Torres-Lopez, Jorge E.; Mendez, Jose D.; Aguilar-Mariscal, Hidemi; Olvera-Hernández, Viridiana; Palma-Cordova, Leydi C.; Diaz-Zagoya, Juan C.

    2012-01-01

    The macronutrient component of diets is critical for metabolic control and insulin action. The aim of this study was to compare the effects of high fat diets (HFDs) vs. high carbohydrate diets (HCDs) on metabolic control and insulin resistance in Wistar rats. Thirty animals divided into five groups (n = 6) were fed: (1) Control diet (CD); (2) High-saturated fat diet (HSFD); (3) High-unsaturated fat diet (HUFD); (4) High-digestible starch diet, (HDSD); and (5) High-resistant starch diet (HRSD) during eight weeks. HFDs and HCDs reduced weight gain in comparison with CD, however no statistical significance was reached. Calorie intake was similar in both HFDs and CD, but rats receiving HCDs showed higher calorie consumption than other groups, (p < 0.01). HRSD showed the lowest levels of serum and hepatic lipids. The HUFD induced the lowest fasting glycemia levels and HOMA-IR values. The HDSD group exhibited the highest insulin resistance and hepatic cholesterol content. In conclusion, HUFD exhibited the most beneficial effects on glycemic control meanwhile HRSD induced the highest reduction on lipid content and did not modify insulin sensitivity. In both groups, HFDs and HCDs, the diet constituents were more important factors than caloric intake for metabolic disturbance and insulin resistance. PMID:22754464

  6. Deuterium oxide normalizes blood pressure and vascular calcium uptake in Dahl salt-sensitive hypertensive rats

    International Nuclear Information System (INIS)

    Vasdev, S.; Prabhakaran, V.; Sampson, C.A.

    1990-01-01

    This study examined the effect of 25% deuterium oxide in drinking water on systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas of Dahl salt-sensitive rats on 0.4% (low) and 8% (high) sodium chloride (salt) diet. Twenty-four rats were divided into four groups. Groups I and II were on the low salt diet and groups III and IV on the high salt diet from 6 weeks of age. Additionally, at 10 weeks of age groups I and III were placed on 100% water and groups II and IV on 25% deuterium oxide. At 14 weeks, systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas were significantly higher (p less than 0.01) in rats on the high salt diet as compared with those on the low salt diet. Deuterium oxide intake normalized systolic blood pressure and aortic calcium uptake but not aortic rubidium 86 uptake in hypertensive rats on the high salt diet. Deuterium oxide had no effect on blood pressure or aortic calcium uptake in rats on the low salt diet. The parallel increase in systolic blood pressure and vascular calcium uptake suggests that increased calcium uptake mechanisms are associated with hypertension in salt-sensitive Dahl rats. Furthermore, deuterium oxide appears to normalize elevated blood pressure in salt-sensitive hypertensive rats by normalizing elevated vascular (aortic) calcium uptake

  7. Assessment of the effects of six standard rodent diets on binge-like and voluntary ethanol consumption in male C57BL/6J mice

    Science.gov (United States)

    Marshall, S. Alex; Rinker, Jennifer A.; Harrison, Langston K.; Fletcher, Craig A.; Herfel, Tina M.; Thiele, Todd E.

    2015-01-01

    Background In recent years much attention has been given to the lack of reproducibility in biomedical research, particularly in pre-clinical animal studies. This is a problem that also plagues the alcohol research field, particularly in consistent consumption in animal models of alcohol use disorders. One often overlooked factor that could affect reproducibility is the maintenance diet used in pre-clinical studies. Methods Herein, two well-established models of alcohol consumption, the “drinking in the dark” (DID) procedure and the continuous two-bottle choice paradigm (C2BC), were employed to determine the effects of diet on ethanol consumption. Male C57BL/6J were given one of six standard rodent-chow diets obtained from Purina LabDiet®, Inc. [St. Louis, MO; Prolab® RMH 3000] or Harlan Laboratories Inc. [Indianapolis, IN; Teklad Diets T.2916, T.2918, T.2920X, T.7912, or T.8940]. A separate group of animals were used to test dietary effects on ethanol pharmacokinetics and behavioral measures following intraperitoneal (IP) injections of various doses of ethanol. Results Mice eating Harlan diets T.2916 (H2916) and T.2920X (H2920) consumed significantly less ethanol and exhibited lower blood ethanol concentrations (BECs) during DID; however, during C2BC animals maintained on Harlan T.7912 (H7912) consumed more ethanol and had a higher ethanol preference than the other diet groups. Ethanol consumption levels did not stem from changes in alcohol pharmacokinetics, as a separate group of animals administered ethanol IP showed no difference in BECs. However, animals on Harlan diet T.2920X (H2920) were more sensitive to alcohol-induced locomotor activity in an open-field task. No diet dependent differences were seen in alcohol-induced sedation as measured with loss of righting reflex. Conclusions Although these data do not identify a specific mechanism, together they clearly show that the maintenance diet impacts ethanol consumption. It is incumbent upon the research

  8. Body weight gain in rats by a high-fat diet produces chronodisruption in activity/inactivity circadian rhythm.

    Science.gov (United States)

    Bravo, Rafael; Cubero, Javier; Franco, Lourdes; Mesa, Mónica; Galán, Carmen; Rodríguez, Ana Beatriz; Jarne, Carlos; Barriga, Carmen

    2014-04-01

    In the last few decades, obesity has become one of the most important public health problems. Adipose tissue is an active endocrine tissue which follows a rhythmic pattern in its functions and may produce alterations in certain circadian rhythms. Our aim was to evaluate whether the locomotor activity circadian rhythm could be modified by a hypercaloric diet in rodents. Two groups were considered in the experiment: 16 rats were used as a control group and were fed standard chow; the other group comprised 16 rats fed a high-fat diet (35.8% fat, 35% glucides). The trial lasted 16 weeks. Body weight was measured every week, and a blood sample was extracted every two weeks to quantify triglyceride levels. The activity/inactivity circadian rhythm was logged through actimetry throughout the trial, and analysed using the DAS 24© software package. At the end of the experiment, the high-fat fed rats had obese-like body weights and high plasma triglyceride levels, and, compared with the control group, increased diurnal activity, decreased nocturnal activity, reductions in amplitude, midline estimating statistic of rhythm, acrophase and interdaily stability, and increases in intradaily variability of their activity rhythms. The results thus show how obesity can lead to symptoms of chronodisruption in the body similar to those of ageing.

  9. Decreased triiodothyronine receptor binding in skeletal muscle nuclei and erythrocyte membranes of obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Gilvary, E.P.

    1988-01-01

    Hindlimb skeletal muscle weights and binding of L-tri-iodothyronine (T 3 ) to isolated nuclei of this tissue were investigated in obese (ob/ob) mice and their lean littermates. Maximal binding capacities (Bmax) and dissociation constants (Kd) were determined by incubating isolated muscle nuclei with increasing conc. of 125 I-T 3 (0.4 nM to 4nM). At 12 wks. of age, although weighing substantially more, obese mice had only 55% as much muscle mass as their lean littermates. There was no phenotype effect observed for Kd, however, Bmax was significantly less for the obese mice. In a second experiment, a 16-wk. feeding study was conducted with 4 groups of mice according to the following design: lean mice fed rodent chow; obese mice fed rodent chow; obese mice, n-6 fatty acid (FA)-rich diet; and obese mice, n-3FA-rich diet. Erythrocyte T 3 receptor binding capacities were measured by incubating red cell ghosts from mice of these 4 groups with 125 I-T 3 . As with skeletal muscle nuclei there were no phenotype effects observed for Kd between any two groups. In contrasts obese mice fed chow and n-6FA-rich diets both exhibited lower Bmax than their lean counterparts, while no significant difference was observed between the latter group and the obese mice fed an n-3FA-rich diet. Bmax values of the n-6 group were also decreased compared to the n-3 group

  10. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis

    Directory of Open Access Journals (Sweden)

    Ilayaraja Muthuramu

    2017-07-01

    Full Text Available Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05 in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64 during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01 higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001 was decreased, interstitial fibrosis was 1.88-fold (p < 0.001 higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001 higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05 in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  11. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics.

    Science.gov (United States)

    Bo, Tao; Shao, Shanshan; Wu, Dongming; Niu, Shaona; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Recent studies performed provide mechanistic insight into effects of the microbiota on cholesterol metabolism, but less focus was given to how cholesterol impacts the gut microbiota. In this study, ApoE -/- Sprague Dawley (SD) rats and their wild-type counterparts (n = 12) were, respectively, allocated for two dietary condition groups (normal chow and high-cholesterol diet). Total 16S rDNA of fecal samples were extracted and sequenced by high-throughput sequencing to determine differences in microbiome composition. Data were collected and performed diversity analysis and phylogenetic analysis. The influence of cholesterol on gut microbiota was discussed by using cholesterol dietary treatment as exogenous cholesterol disorder factor and genetic modification as endogenous metabolic disorder factor. Relative microbial variations were compared to illustrate the causality and correlation of cholesterol and gut microbiota. It turned out comparing to genetically modified rats, exogenous cholesterol intake may play more effective role in changing gut microbiota profile, although the serum cholesterol level of genetically modified rats was even higher. Relative abundance of some representative species showed that the discrepancies due to dietary variation were more obvious, whereas some low abundance species changed because of genetic disorders. Our results partially demonstrated that gut microbiota are relatively more sensitive to dietary variation. Nevertheless, considering the important effect of bacteria in cholesterol metabolism, the influence to gut flora by "genetically caused cholesterol disorder" cannot be overlooked. Manipulation of gut microbiota might be an effective target for preventing cholesterol-related metabolic disorders. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity.

    Science.gov (United States)

    Shi, Yan-Chuan; Lin, Shu; Castillo, Lesley; Aljanova, Aygul; Enriquez, Ronaldo F; Nguyen, Amy D; Baldock, Paul A; Zhang, Lei; Bijker, Martijn S; Macia, Laurence; Yulyaningsih, Ernie; Zhang, Hui; Lau, Jackie; Sainsbury, Amanda; Herzog, Herbert

    2011-11-01

    Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.

  13. Postnatal development of plasma amino acids in hyperphagic rats.

    Science.gov (United States)

    Salvadó, M J; Segués, T; Arola, L

    1991-01-01

    The effect of feeding a highly palatable high-energy cafeteria diet on individual amino acid levels in plasma during postnatal development of the rat has been evaluated and compared to chow-fed controls. The cafeteria diet selected by the rats was hypercaloric and hyperlipidic, with practically the same amount of carbohydrate as the control diet, and slightly hyperproteic. In response to cafeteria feeding, significant decreases were observed in plasma serine and cysteine along the period studied. Significant changes with age during the growth period were shown by cafeteria-fed animals, which were not observed in control rats. Citrulline levels were lower on days 10 and 14 in cafeteria pups than in chow pups. Methionine was highest on day 30. Threonine was also higher at days 20 and 30, as was valine but with a nadir at day 10. Lysine showed maximal values on days 14 and 30.

  14. Effects of early-life exposure to Western diet and wheel access on metabolic syndrome profiles in mice bred for high voluntary exercise.

    Science.gov (United States)

    Meek, T H; Eisenmann, J C; Keeney, B K; Hannon, R M; Dlugosz, E M; Garland, T

    2014-03-01

    Experimental studies manipulating diet and exercise have shown varying effects on metabolic syndrome components in both humans and rodents. To examine the potential interactive effects of diet, exercise and genetic background, we studied mice from four replicate lines bred (52 generations) for high voluntary wheel running (HR lines) and four unselected control lines (C). At weaning, animals were housed for 60 days with or without wheels and fed either a standard chow or Western diet (WD, 42% kcal from fat). Four serial (three juvenile and one adult) blood samples were taken to measure fasting total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides and glucose. Western diet was obesogenic for all mice, even after accounting for the amount of wheel running and kilojoules consumed. Western diet significantly raised glucose as well as TC and HDL-C concentrations. At the level of individual variation (repeatability), there was a modest correlation (r = 0.3-0.5) of blood lipids over time, which was reduced with wheel access and/or WD. Neither genetic selection history nor wheel access had a statistically significant effect on blood lipids. However, HR and C mice had divergent ontogenetic trajectories for body mass and caloric intake. HR mice also had lower adiposity, an effect that was dependent on wheel access. The environmental factors of diet and wheel access had pronounced effects on body mass, food consumption and fasting glucose concentrations, interacting with each other and/or with genetic strain. These data underscore the importance (and often unpredictable nature) of genotype-by-environment and environment-by-environment interactions when studying body weight regulation. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. POMC and NPY mRNA expression during development is increased in rat offspring brain from mothers fed with a high fat diet.

    Science.gov (United States)

    Klein, Marianne Orlandini; MacKay, Harry; Edwards, Alexander; Park, Su-Bin; Kiss, Ana Carolina Inhasz; Felicio, Luciano Freitas; Abizaid, Alfonso

    2018-02-01

    Developmental programing is influenced by perinatal nutrition and it has long-lasting impacts on adult metabolism in the offspring. In particular, maternal high fat diet has been associated with increased risk of obesity and metabolic disorders during adulthood in the descendants. These effects may be due to the effects of the high fat diet on the development of the systems that regulate food intake and energy balance in the offspring hypothalamus. The arcuate nucleus (ARC) may be a particularly sensitive region to it as this nucleus contains the POMC and AgRP/NPY neurons that integrate the melanocortin system. Thus, the aim of this study was to investigate the effects of maternal high fat diet during pregnancy on the transcription factors that regulate hypothalamic development in the offspring as a potential mechanism that may result in altered neuronal expression of POMC, NPY and/or AgRP. To this end, pregnant females exposed to high fat diet (60% fat diet since day 0 of pregnancy) or standard rat chow were sacrificed on days 12, 14, 16 and 18 of gestation to obtain brains from their developing fetuses and examine the mRNA expression of transcription factors associated with the development of cells in the ARC. Results show that, while no changes in transcription factor expression between groups were observed, POMC and NPY mRNA expression were higher on embryonic day 18 in the high fat group. These results suggest that POMC and NPY expression are altered by in utero exposure to a high fat diet, but these changes in gene expression are not associated with changes in the expression of transcription factors known to determine the fate of ARC cells. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    O. S. Adeyemi

    2014-01-01

    Full Text Available Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4 in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity.

  17. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Science.gov (United States)

    Adeyemi, O. S.; Elebiyo, T. C.

    2014-01-01

    Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4) in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity. PMID:25295181

  18. A high-protein diet enhances satiety without conditioned taste aversion in the rat.

    Science.gov (United States)

    Bensaïd, Ahmed; Tomé, Daniel; L'Heureux-Bourdon, Diane; Even, Patrick; Gietzen, Dorothy; Morens, Céline; Gaudichon, Claire; Larue-Achagiotis, Christiane; Fromentin, Gilles

    2003-02-01

    In order to determine the respective roles of conditioned food aversion, satiety and palatability, we studied behavioral responses to a 50% total milk protein diet, compared with those to a normal protein diet containing 14% total milk protein. Different paradigms were employed, including meal pattern analysis, two-choice testing, flavor testing, a behavioral satiety sequence (BSS) and taste reactivity. Our experiments showed that only behavioral and food intake parameters were disturbed during the first day when an animal ate the high-protein (P50) diet, and that most parameters returned to baseline values as soon as the second day of P50. Rats adapted to P50 did not acquire a conditioned taste aversion (CTA) but exhibited satiety, and a normal BSS. The initial reduction in high-protein diet intake appeared to result from the lower palatability of the food combined with the satiety effect of the high-protein diet and the delay required for metabolic adaptation to the higher protein level.

  19. Differential Effects of Red Meat/Refined Grain Diet and Dairy/Chicken/Nuts/Whole Grain Diet on Glucose, Insulin and Triglyceride in a Randomized Crossover Study

    Directory of Open Access Journals (Sweden)

    Yoona Kim

    2016-10-01

    Full Text Available Epidemiological studies suggest that a diet high in processed meat, with a high glycemic index is associated with an increased risk of type 2 diabetes. It is not clear if this is due to altered insulin sensitivity or an enhanced postprandial glucose. We aimed to compare the acute metabolic response of two different types of meals after ingestion of the matching diet for four weeks. The study was a randomized, crossover acute meal study. Volunteers consumed either a red meat/refined grain meal or a dairy/chicken/nuts/wholegrain meal after four weeks of the matching diet. After a three-week washout period and four weeks of the alternate diet, they consumed the matching meal. The diets differed with respect to both protein and carbohydrate sources. Blood samples were taken for 180 min for the measurement of glucose, insulin, C-peptide and triglyceride. Fifty-one participants (age: 35.1 ± 15.6 years; body mass index: 27.7 ± 6.9 kg/m2, 17 with normal and 34 with impaired glucose tolerance completed two meal tests. The area under the curve (p < 0.001 and incremental area under the curve (p = 0.001 for insulin was significantly higher after the red meat/refined grain diet than after the dairy/chicken/nuts/whole grain diet. There was an interaction between meal and glucose tolerance group (p < 0.05 in the area under the curve (AUC and the incremental area under the curve (iAUC of glucose; the red meat/refined grain diet increased glucose relative to the dairy/chicken/nuts/whole grain diet only in the normal group (+2.5 mmol/L/3 h. The red meat/refined grain diet increased glucose and insulin responses compared with the dairy/chicken/nuts/whole grain diet. This meal pattern would increase pancreatic stress long term and may account for the increased risk of type 2 diabetes with this diet.

  20. Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: Interplay of these factors changes these effects.

    Science.gov (United States)

    Arcego, Danusa Mar; Krolow, Rachel; Lampert, Carine; Toniazzo, Ana Paula; Berlitz, Carolina; Lazzaretti, Camilla; Schmitz, Felipe; Rodrigues, André Felipe; Wyse, Angela T S; Dalmaz, Carla

    2016-05-01

    Environmental factors, like early exposure to stressors or high caloric diets, can alter the early programming of central nervous system, leading to long-term effects on cognitive function, increased vulnerability to cognitive decline and development of psychopathologies later in life. The interaction between these factors and their combined effects on brain structure and function are still not completely understood. In this study, we evaluated long-term effects of social isolation in the prepubertal period, with or without chronic high fat diet access, on memory and on neurochemical markers in the prefrontal cortex of rats. We observed that early social isolation led to impairment in short-term and working memory in adulthood, and to reductions of Na(+),K(+)-ATPase activity and the immunocontent of phospho-AKT, in prefrontal cortex. Chronic exposure to a high fat diet impaired short-term memory (object recognition), and decreased BDNF levels in that same brain area. Remarkably, the association of social isolation with chronic high fat diet rescued the memory impairment on the object recognition test, as well as the changes in BDNF levels, Na(+),K(+)-ATPase activity, MAPK, AKT and phospho-AKT to levels similar to the control-chow group. In summary, these findings showed that a brief social isolation period and access to a high fat diet during a sensitive developmental period might cause memory deficits in adulthood. On the other hand, the interplay between isolation and high fat diet access caused a different brain programming, preventing some of the effects observed when these factors are separately applied. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Effects of the Use of Assisted Reproduction and High Caloric Diet Consumption on Body Weight and Cardiovascular Health of Juvenile Mouse Offspring

    Science.gov (United States)

    Schenewerk, Angela L.; Ramírez, Francisco; Foote, Christopher; Ji, Tieming; Martínez-Lemus, Luis A.; Rivera, Rocío Melissa

    2013-01-01

    Maternal obesity and the use of assisted reproductive technologies (ART) are two suboptimal developmental environments that can lead to offspring obesity and cardiovascular disease. We hypothesized that these environments independently and synergistically adversely affect the offspring’s weight and cardiovascular performance at ∼7 weeks of age. Mice were fed either 24% fat and 17.5% high fructose corn syrup (HF) or maintenance chow (5% fat; LF). Dams were subdivided into no-ART and ART groups. ART embryos were cultured in Whitten’s medium and transferred into pseudopregnant recipients consuming the same diet as the donor. Offspring were fed the same diet as the mother. Body weights (BW) were measured weekly and mean arterial pressure (MAP) was collected through carotid artery catheterization at sacrifice (55 ± 0.5 days old). Expression of genes involved in cardiovascular remodeling was measured in thoracic aorta using qRT-PCR, and levels of reactive oxygen species were measured intracellularly and extracellularly in mesenteric resistance arteries. ART resulted in increased BW at weaning. This effect decreased over time and diet was the predominant determinant of BW by sacrifice. Males had greater MAP than females (p=0.002) and HF consumption was associated with greater MAP regardless of sex (p<0.05). Gene expression was affected by sex (p<0.05) and diet (p<0.1). Lastly, the use of ART resulted in offspring with increased intracellular ROS (p=0.05). In summary, exposure to an obesogenic diet pre- and/or post-natally affects weight, MAP, and gene expression while ART increases oxidative stress in mesenteric resistance arteries of juvenile offspring, no synergistic effects were observed. PMID:24163396

  2. Effects of the use of assisted reproduction and high-caloric diet consumption on body weight and cardiovascular health of juvenile mouse offspring.

    Science.gov (United States)

    Schenewerk, Angela L; Ramírez, Francisco Í; Foote, Christopher; Ji, Tieming; Martínez-Lemus, Luis A; Rivera, Rocío Melissa

    2014-01-01

    Maternal obesity and the use of assisted reproductive technologies (ART) are two suboptimal developmental environments that can lead to offspring obesity and cardiovascular disease. We hypothesized that these environments independently and synergistically adversely affect the offspring's weight and cardiovascular performance at ~7 weeks of age. Mice were fed either 24% fat and 17.5% high-fructose (HF) corn syrup or maintenance chow (5% fat; low-fat, no-fructose (LF)). Dams were subdivided into no ART and ART groups. ART embryos were cultured in Whitten's medium and transferred into pseudopregnant recipients consuming the same diet as the donor. Offspring were fed the same diet as the mother. Body weights (BW) were measured weekly and mean arterial pressure (MAP) was collected through carotid artery catheterization at killing (55±0.5 days old). Expression of genes involved in cardiovascular remodeling was measured in thoracic aorta using qRT-PCR, and levels of reactive oxygen species (ROS) were measured intracellularly and extracellularly in mesenteric resistance arteries. ART resulted in increased BW at weaning. This effect decreased over time and diet was the predominant determinant of BW by killing. Males had greater MAP than females (P=0.002) and HF consumption was associated with greater MAP regardless of sex (P<0.05). Gene expression was affected by sex (P<0.05) and diet (P<0.1). Lastly, the use of ART resulted in offspring with increased intracellular ROS (P=0.05). In summary, exposure to an obesogenic diet pre- and/or post-natally affects weight, MAP, and gene expression while ART increases oxidative stress in mesenteric resistance arteries of juvenile offspring, no synergistic effects were observed.

  3. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways.

    Science.gov (United States)

    Boulangé, Claire L; Claus, Sandrine P; Chou, Chieh J; Collino, Sebastiano; Montoliu, Ivan; Kochhar, Sunil; Holmes, Elaine; Rezzi, Serge; Nicholson, Jeremy K; Dumas, Marc E; Martin, François-Pierre J

    2013-04-05

    We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.

  4. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Shoshani-Dror, Dana [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Weksler-Zangen, Sarah [Diabetes Research Unit, Hebrew University Hadassah Medical School and Hospital, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester, MN (United States); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  5. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-01-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  6. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    Science.gov (United States)

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the Diet-Induced NASH (DIN) hamster model.

    Science.gov (United States)

    Briand, François; Brousseau, Emmanuel; Quinsat, Marjolaine; Burcelin, Rémy; Sulpice, Thierry

    2018-01-05

    The use of rat and mouse models limits the translation to humans for developing novel drugs targeting nonalcoholic steatohepatitis (NASH). Obeticholic acid (OCA) illustrates this limitation since its dyslipidemic effect in humans cannot be observed in these rodents. Conversely, Golden Syrian hamsters have a lipoprotein metabolism mimicking human dyslipidemia since it does express the cholesteryl ester transfer protein (CETP). We therefore developed a Diet-Induced NASH (DIN) hamster model and evaluated the impact of OCA. Compared with chow fed controls, hamsters fed for 20 weeks with a free-choice (FC) diet, developed obesity, insulin resistance, dyslipidemia and NASH (microvesicular steatosis, inflammation, hepatocyte ballooning and perisinusoidal to bridging fibrosis). After 20 weeks of diet, FC fed hamsters were treated without or with obeticholic acid (15mg/kg/day) for 5 weeks. Although a non-significant trend towards higher dietary caloric intake was observed, OCA significantly lowered body weight after 5 weeks of treatment. OCA significantly increased CETP activity and LDL-C levels by 20% and 27%, and reduced HDL-C levels by 20%. OCA blunted hepatic gene expression of Cyp7a1 and Cyp8b1 and reduced fecal bile acids mass excretion by 64% (P OCA showed a trend towards higher scavenger receptor Class B type I (SR-BI) and lower LDL-receptor hepatic protein expression. OCA reduced NAS score for inflammation (P OCA as observed in humans, and should be useful for evaluating novel drugs targeting NASH. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A role of the adaptive immune system in glucose homeostasis.

    Science.gov (United States)

    Bronsart, Laura L; Contag, Christopher H

    2016-01-01

    The immune system, including the adaptive immune response, has recently been recognized as having a significant role in diet-induced insulin resistance. In this study, we aimed to determine if the adaptive immune system also functions in maintaining physiological glucose homeostasis in the absence of diet-induced disease. SCID mice and immunocompetent control animals were phenotypically assessed for variations in metabolic parameters and cytokine profiles. Additionally, the glucose tolerance of SCID and immunocompetent control animals was assessed following introduction of a high-fat diet. SCID mice on a normal chow diet were significantly insulin resistant relative to control animals despite having less fat mass. This was associated with a significant increase in the innate immunity-stimulating cytokines granulocyte colony-stimulating factor, monocyte chemoattractant protein 1 (MCP1), and MCP3. Additionally, the SCID mouse phenotype was exacerbated in response to a high-fat diet as evidenced by the further significant progression of glucose intolerance. These results support the notion that the adaptive immune system plays a fundamental biological role in glucose homeostasis, and that the absence of functional B and T cells results in disruption in the concentrations of various cytokines associated with macrophage proliferation and recruitment. Additionally, the absence of functional B and T cells is not protective against diet-induced pathology.

  9. Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats.

    Science.gov (United States)

    da Silva, Flávia R M; Grassi, Tony F; Zapaterini, Joyce R; Bidinotto, Lucas T; Barbisan, Luis F

    2017-06-01

    Zinc deficiency during pregnancy and postnatal life can adversely increase risk of developing human diseases at adulthood. The present study was designed to evaluate whether dietary zinc deficiency or supplementation during the pregnancy, lactation and juvenile stages interferes in the development of mammary tumors induced by 7,12-dimethylbenzanthracene (DMBA) in female Sprague-Dawley (SD) rats. Pregnant female SD rats were allocated into three groups: zinc-adequate diet (ZnA - 35-mg/kg chow), zinc-deficient diet (ZnD - 3-mg/kg chow) or zinc-supplemented diet (ZnS - 180-mg/kg chow) during gestational day 10 (GD 10) until the litters' weaning. Female offspring received the same diets as their dams until postnatal day (PND) 51. At PND 51, the animals received a single dose of DMBA (50 mg/kg, ig) and zinc-adequate diets. At PND 180, female were euthanized, and tumor samples were processed for histological evaluation and gene expression microarray analysis. The ZnD induced a significant reduction in female offspring body weight evolution and in mammary gland development. At late in life, the ZnD or ZnS did not alter the latency, incidence, multiplicity, volume or histological types of mammary tumors in relation to the ZnA group. However, the total tumor number in ZnS group was higher than in ZnA group, accompanied by distinct expression of 4 genes up- and 15 genes down-regulated. The present findings indicate that early-in-life dietary zinc supplementation, differently to zinc deficiency, has a potential to modify the susceptibility to the development of mammary tumors induced by DMBA. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice.

    Science.gov (United States)

    Westbrook, Reyhan; Bonkowski, Michael S; Arum, Oge; Strader, April D; Bartke, Andrzej

    2014-01-01

    Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice.

  11. Fad diets, miracle diets, diet cult… but no results.

    Directory of Open Access Journals (Sweden)

    Ignacio Jáuregui-Lobera

    2017-03-01

    Full Text Available Fad diets, miracle diets (in sum, diet cult are diets that make promises of weight loss or other health advantages (e.g. longer life without backing by solid science, and usually they are characterized by highly restrictive or unusual food choices. These diets are often supported by celebrities and some health “professionals”, and they result attractive among people who want to lose weight quickly. By means of pseudoscientific arguments, designers of fad, miracle or magic diets usually describe them as healthy diets with unusual properties but always with undoubted benefits. After revising the history of these diets and exploring the scientific evidence, it must be noted that there is not a diet better than eating less, moving more and eating lots of fruits and vegetables. In addition, it is necessary to be aware of our general daily habits, remembering that eating is important but it is not everything. Getting active is also very relevant to improve (or recover our health. Summarizing, eating healthy and taking care of yourself are a duty but not a miracle.

  12. Utilization of Wheat Offal-Carried Pineapple Waste in the Diet of ...

    African Journals Online (AJOL)

    Utilization of Wheat Offal-Carried Pineapple Waste in the Diet of West African Dwarf (WAD) Goats. ... Although, the analysis of blood cells (red blood cell, white blood and packed cell volume counts) were significantly different (p<0.05) among the goats fed experimental diets, the counts fell within the normal physiological ...

  13. Rice bran protein hydrolysates reduce arterial stiffening, vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet.

    Science.gov (United States)

    Senaphan, Ketmanee; Sangartit, Weerapon; Pakdeechote, Poungrat; Kukongviriyapan, Veerapol; Pannangpetch, Patchareewan; Thawornchinsombut, Supawan; Greenwald, Stephen E; Kukongviriyapan, Upa

    2018-02-01

    Rice bran protein hydrolysates (RBPH) contain highly nutritional proteins and antioxidant compounds which show benefits against metabolic syndrome (MetS). Increased arterial stiffness and the components of MetS have been shown to be associated with an increased risk of cardiovascular disease. This study aimed to investigate whether RBPH could alleviate the metabolic disorders, arterial stiffening, vascular remodeling, and oxidative stress in rats fed a high-carbohydrate and high-fat (HCHF) diet. Male Sprague-Dawley rats were fed either a standard chow and tap water or a HCHF diet and 15 % fructose solution for 16 weeks. HCHF rats were treated orally with RBPH (250 or 500 mg/kg/day) for the final 6 weeks of the experimental period. Rats fed with HCHF diet had hyperglycemia, insulin resistance, dyslipidemia, hypertension, increased aortic pulse wave velocity, aortic wall hypertrophy and vascular remodeling with increased MMP-2 and MMP-9 expression. RBPH supplementation significantly alleviated these alterations (P stress was also alleviated after RBPH treatment by decreasing plasma malondialdehyde, reducing superoxide production and suppressing p47 phox NADPH oxidase expression in the vascular tissues of HCHF rats. RBPH increased plasma nitrate/nitrite level and up-regulated eNOS expression in the aortas of HCHF-diet-fed rats, indicating that RBPH increased NO production. RBPH mitigate the deleterious effects of HCHF through potential mechanisms involving enhanced NO bioavailability, anti-ACE, anti-inflammatory and antioxidant properties. RBPH could be used as dietary supplements to minimize oxidative stress and vascular alterations triggered by MetS.

  14. SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Yoo, C-H; Lim, S-I; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats were estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.

  15. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles

    DEFF Research Database (Denmark)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne

    2009-01-01

    patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (Pobese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.......3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance......-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles....

  16. Insulin-Like growth factor 1 related pathways and high-fat diet promotion of transgenic adenocarcinoma mouse prostate (TRAMP) cancer progression.

    Science.gov (United States)

    Xu, H; Jiang, H W; Ding, Q

    2015-04-01

    We aimed to investigate the role of IGF-1 related pathway in high-fat diet (HFD) promotion of TRAMP mouse PCa progression. TRAMP mice were randomly divided into two groups: HFD group and normal diet group. TRAMP mice of both groups were sacrificed and sampled on the 20th, 24th and 28th week respectively. Serum levels of insulin, IGF-1 and IGF-2 were tested by ELISA. Prostate tissue of TRAMP mice was used for both HE staining and immunohistochemical staining of IGF-1 related pathway proteins, including IGF-1Rα, IGF -1Rβ, IGFBPs and AKT. The mortality of TRAMP mice from HFD group was significantly higher than that of normal diet group (23.81% and 7.14%, p=.035). The tumor incidence of HFD TRAMP mice at 20(th) week was significantly higher than normal diet group (78.57% and 35.71%, p=.022). Serum IGF-1 level of HFD TRAMP mice was significantly higher than that of normal diet TRAMP mice. Serum IGF-1 level tended to increase with HFD TRAMP mice's age. HFD TRAMP mice had higher positive staining rate of IGF-1Rα, IGF-1Rβ, IGFBP3 and Akt than normal diet TRAMP mice. IGF-1 related pathway played an important role in high-fat diet promotion of TRAMP mouse PCa development and progression. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. The recovery of bladder epithelial hyperplasia caused by a melamine diet-induced bladder calculus in mice.

    Science.gov (United States)

    Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li

    2014-02-01

    Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Tocotrienol rich tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet

    Directory of Open Access Journals (Sweden)

    Saher F Ali

    2016-10-01

    Full Text Available We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat or control rat chow (SD, 6% fat for 12 weeks. Tocomin (40 mg/kg/day sc or its vehicle (peanut oil was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin and phosphorylated Akt and an increase in caveolin-Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS, soluble guanylate cyclase (sGC and calcium activated potassium (KCa channels we demonstrated that tocomin increased NO mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggests that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity.

  19. Liver, but not muscle, has an entrainable metabolic memory.

    Directory of Open Access Journals (Sweden)

    Sheng-Song Chen

    Full Text Available Hyperglycemia in the hospitalized setting is common, especially in patients that receive nutritional support either continuously or intermittently. As the liver and muscle are the major sites of glucose disposal, we hypothesized their metabolic adaptations are sensitive to the pattern of nutrient delivery. Chronically catheterized, well-controlled depancreatized dogs were placed on one of three isocaloric diets: regular chow diet once daily (Chow or a simple nutrient diet (ND that was given either once daily (ND-4 or infused continuously (ND-C. Intraportal insulin was infused to maintain euglycemia. After 5 days net hepatic (NHGU and muscle (MGU glucose uptake and oxidation were assessed at euglycemia (120 mg/dl and hyperglycemia (200 mg/dl in the presence of basal insulin. While hyperglycemia increased both NHGU and MGU in Chow, NHGU was amplified in both groups receiving ND. The increase was associated with enhanced activation of glycogen synthase, glucose oxidation and suppression of pyruvate dehydrogenase kinase-4 (PDK-4. Accelerated glucose-dependent muscle glucose uptake was only evident with ND-C. This was associated with a decrease in PDK-4 expression and an increase in AMP-activated protein kinase (AMPK phosphorylation. Interestingly, ND-C markedly increased hepatic FGF-21 expression. Thus, augmentation of carbohydrate disposal in the liver, as opposed to the muscle, is not dependent on the pattern of nutrient delivery.

  20. Normal Roles for Dietary Fructose in Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Maren R. Laughlin

    2014-08-01

    Full Text Available Although there are many well-documented metabolic effects linked to the fructose component of a very high sugar diet, a healthy diet is also likely to contain appreciable fructose, even if confined to that found in fruits and vegetables. These normal levels of fructose are metabolized in specialized pathways that synergize with glucose at several metabolic steps. Glucose potentiates fructose absorption from the gut, while fructose catalyzes glucose uptake and storage in the liver. Fructose accelerates carbohydrate oxidation after a meal. In addition, emerging evidence suggests that fructose may also play a role in the secretion of insulin and GLP-1, and in the maturation of preadipocytes to increase fat storage capacity. Therefore, fructose undergoing its normal metabolism has the interesting property of potentiating the disposal of a dietary carbohydrate load through several routes.