WorldWideScience

Sample records for nordic nuclear safety

  1. The Nordic Nuclear Safety Research (NKS) programme. Nordic cooperation on nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kasper G. [Technical Univ. of Denmark, Roskilde (Denmark). National Lab. for Sustainable Energy; Ekstroem, Karoliina [Fortum Power and Heat, Fortum (Finland); Gwynn, Justin P. [Norwegian Radiation Protection Authority, Tromsoe (Norway). Fram Centre; Magnusson, Sigurdur M. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Physant, Finn C. [NKS-Sekretariatet, Roskilde (Denmark)

    2012-07-01

    The roots of the current Nordic Nuclear Safety Research (NKS) programme can be traced back to the recommendation by the Nordic Council in the late 1950s for the establishment of joint Nordic committees on the issues of nuclear research and radiation protection. One of these joint Nordic committees, the 'Kontaktorgan', paved the way over its 33 years of existence for the future of Nordic cooperation in the field of nuclear safety, through the formation of Nordic groups on reactor safety, nuclear waste and environmental effects of nuclear power in the late 1960s and early 1970s. With an increased focus on developing nuclear power in the wake of the energy crisis on the 1970s, the NKS was established by the Nordic Council to further develop the previous strands of Nordic cooperation in nuclear safety. NKS started its first programme in 1977, funding a series of four year programmes over the next 24 years covering the areas of reactor safety, waste management, emergency preparedness and radioecology. Initially funded directly from the Nordic Council, ownership of NKS was transferred from the political level to the national competent authorities at the beginning of the 1990s. This organizational and funding model has continued to the present day with additional financial support from a number of co-sponsors in Finland, Norway and Sweden. (orig.)

  2. The Nordic Research programme on nuclear safety

    International Nuclear Information System (INIS)

    1992-06-01

    Only two of the five Nordic countries (Denmark, Iceland, Finland, Norway and Sweden) - Sweden and Finland - operate nuclear power plants, but there are a number of nuclear installations close to their borders. Regular 4-year programmes were initiated in 1977, designated NKS-programmes. (NKS: Nordisk KerneSikkerhedsforskning - Nordic nuclear-safety research). The current fourth NKS-programme is, influenced by the Chernobyl accident, dominated by the necessity for acquiring knowledge on unexpected events and release of radioactive material from nuclear installations. The present programme is divided into the areas of emergency preparedness, waste and decommissioning, radioecology and reactor safety. It comprises a total of 18 projects, the results of which will later be published in the form of handbooks for use in cases of emergency etc. The future of joint Nordic project work in the nuclear safety field must be seen in the light of changing conditions in and around the Nordic countries, such as the opening of relations to neighbours in the east, the move towards the European Communities and the need for training a new generation of specialists in the nuclear field etc. Each project is described in considerable detail and a list of reports resulting from the third NKS-programme 1985-1989 is given. (AB)

  3. The Nordic safety programme in the nuclear field

    International Nuclear Information System (INIS)

    Wahlstroem, B.; Marcus, F.

    1987-01-01

    Safety of nuclear installations has been a concern of all the Nordic countries, although only Finland and Sweden have selected to build nuclear power plants. It was recognized early that the resources in a single country were limited and previous Nordic cooperation in the nuclear field was therefore followed up through a safety programme which started ten years ago. This research cooperation has been intensified during the years, and today more than 70 organizations in Denmark, Finland, Norway, and Sweden participate. The present programme is the third in a row and it will continue until 1989. Human factors and operational experience are touched upon in the RAS (safety philosophy) and the INF (advanced information technology) subprogrammes. The paper gives a brief overview of the Nordic safety programme in general and the RAS and INF subprogrammes. 11 refs. (author)

  4. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    1994-01-01

    The annual report on the Nordic programme for nuclear safety contains a survey of work carried out during 1993 and also the programme's budgets. Information is given on the names of project leaders, the projects' aims, methods, results and documentation. Subjects of research during 1993 have been preparedness in relation to extraordinary radiation situations, nuclear wastes and deposition of same, radioecology and reactor safety. Names of members of Nordic Nuclear Safety Research who are members of the syndicate and reference groups of the organization are listed and a note on the administration is included. (AB)

  5. Nordic projects concerning nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1988-11-01

    The report describes the nature of the work done in the first half of 1988 within the field of nuclear safety (1985-89) under the Nordic program for 1985-89. Five programmes and their documentation, are described and complete lists of addresses and of persons involved is given. (AB)

  6. The Nordic programme for nuclear safety 1990 - 1993

    International Nuclear Information System (INIS)

    1993-08-01

    The report contains summaries written by leaders of the various projects carried out under the Nordic programme for nuclear safety during the first half-year of 1993. The programme covers spreading prognoses and consequences, strategy and methods for management and exchange of data for decision-makers, the evaluation and harmonizing of countermeasures and use of intervention levels, the basis for public information, Nordic emergency exercises, the re-establishment of radioactive contaminated areas, criteria for classification of radioactive materials, decommissioning of uranium-cleaning plants, storage of information, removal and disposal of contaminated soil from fields, influence of climatological and geological processes on longterm storage of radioactive wastes, training, quality assurance, aquatic radioecology, agriculture's radioecology, natural and semi-natural terrestrial ecosystems, reactor safety and personnel preparedness, safety evaluation, severe accidents and design and safety features of nuclear installations in countries which are neighbours to the Nordic lands. Budgets of expenditures for the various project groups are presented. (AB)

  7. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    1992-02-01

    The report, covering the year 1991 of the Nordic Programme for Nuclear Safety 1990-1993, presents 18 projects divided into 4 main areas: preparedness in abnormal radiation situations, nuclear wastes and shutdowns, radioecology and reactor safety - knowledge preparedness. The main areas are briefly described and the status of each project is presented. (CLS) (118 refs.)

  8. Nordic studies in reactor safety

    International Nuclear Information System (INIS)

    Pershagen, N.

    1993-01-01

    The Nordic Nuclear Safety Research Programme SIK programme in reactor safety is part of a major joint Nordic research effort in nuclear safety. The report summarizes the achievements of the SIK programme, which was carried out during 1990-1993 in collaboration between Nordic nuclear utilities, safety authorities, and research institutes. Three main projects were successfully completed dealing with: 1) development and application of a living PSA concept for monitoring the risk of core damage, and of safety indicators for early warning of possible safety problems; 2) review and intercomparison of severe accident codes, case studies of potential core melt accidents in nordic reactors, development of chemical models for the MAAP code, and outline of a system for computerized accident management support; 3) compilation of information about design and safety features of neighbouring reactors in Germany, Lithuania and Russia, and for naval reactors and nuclear submarines. The report reviews the state-of-the-art in each subject matter as an introduction to the individual project summaries. The main findings of each project are highlighted. The report also contains an overview of reactor safety research in the Nordic countries and a summary of fundamental reactor safety principles. (au) (69 refs.)

  9. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1993-04-01

    The supplement contains a name-and-address list relevant to the Nordic Nuclear Safety Programme 1990-1993 and covering consortiums, reference groups, programme coordinators, project leaders and project participants. (AB)

  10. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1992-03-01

    The supplement contains a name-and-address list relevant to the Nordic Nuclear Safety Programme 1990-1993 and covering consortiums, reference groups, programme coordinators, project leaders and project participants. (AB)

  11. Plan of Nordic research in nuclear safety 1994-97

    International Nuclear Information System (INIS)

    1993-04-01

    A new four-year Nordic research programme in the field of nuclear safety and radiation protection is to start in 1994 as a followup of several preceding Nordic programmes. It will include seven projects and a joint coordination function. The programme is intended to sustain a common understanding among safety authorities in the Nordic countries with respect to reactor safety and radiation protection. It mainly deals with questions that are actual within the Nordic region, but it may also include problems of concern to its eastern neighbours. Two of the projects deal with reactor safety, and one with radioactive waste. The other four projects are on environmental aspects: two of them deal with radioecology, and two with questions related to emergency preparedness. The programme is managed by the Nordic Committee for Safety Research, NKS, consisting of representatives from regulatory authorities, research bodies, and industry. Basic financing is provided by one consortium member from each of the five Nordic countries, whereby an annual budget of approximately 8 million Danish Kroner will be provided. Additional financing comes from sponsors interested in the programme as well as from those organizations taking part in the project work. Definite project plans are to be elaborated within the more general frames described in the present outline. The flexibility of the programme is enhanced by limiting the duration of individual activities to one or two years. This will make it possible to adjust the programme to actual needs in the Nordic countries. (au)

  12. Nuclear emergency preparedness. Final report of the Nordic Nuclear Safety Research Project BOK-1

    DEFF Research Database (Denmark)

    Lauritzen, B.

    2002-01-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, “Nuclear Emergency Preparedness”, was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects:Laboratory measurements and quality assurance (BOK-1.......1); Mobile measurements and measurement strategies (BOK-1.2); Field measurements and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in theNordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project...

  13. The NKS programmes for Nordic cooperation on nuclear and radiological safety

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Leino, Kaisu; Magnússon, Sigurður M.

    2013-01-01

    NKS is a platform for Nordic cooperation and competence maintenance in nuclear and radiological safety, including emergency preparedness. It is an informal forum serving as an umbrella for Nordic initiatives and interests. It runs joint activities of interest to financing organisations and other...

  14. Nuclear emergency preparedness. Final report of the Nordic nuclear safety research project BOK-1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, Bent [Risoe National Lab., Roskilde (Denmark)

    2002-02-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, 'Nuclear Emergency Preparedness', was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects: Laboratory measurements and quality assurance (BOK-1.1); Mobile measurements and measurement strategies (BOK-1.2); Field measurement and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in the Nordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project outline, objectives and organization are described and main results presented. (au)

  15. Nuclear emergency preparedness. Final report of the Nordic nuclear safety research project BOK-1

    International Nuclear Information System (INIS)

    Lauritzen, Bent

    2002-02-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, 'Nuclear Emergency Preparedness', was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects: Laboratory measurements and quality assurance (BOK-1.1); Mobile measurements and measurement strategies (BOK-1.2); Field measurement and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in the Nordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project outline, objectives and organization are described and main results presented. (au)

  16. The Nordic program for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    1991-02-01

    The status of ongoing projects under The Nordic Program for Nuclear Safety (NKS) 1990-1993, and the economy of the programme is presented. A review of projects, projects managers and coordinators, and a list of members of NKS and associated members is included. (CLS)

  17. Nordic nuclear safety research. Summary report for 1995. Plans for 1996 and 1997

    International Nuclear Information System (INIS)

    1996-04-01

    NKS (Nordic Nuclear Safety Research) is a cooperative body in nuclear safety and radiation protection. Its purpose is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, recommendations, manuals and other types of background material, to be used by decision makers and other concerned staff members at authorities and within the nuclear industry. This is the annual report for 1995. The report also contains plans for the rest of the program period. The program comprises four major fields of research: reactor safety; radioactive waste; radioecology; and emergency preparedness. Finland and Sweden presently operate a total of 16 power producing reactors. Denmark, Norway and Sweden operate research reactors. There is a plant for nuclear fuel manufacture in Sweden. All five Nordic countries have intermediate waste storage facilities. In addition, there are a number of power, research and naval reactors and other nuclear installations in Nordic surroundings, both in Eastern and Western Europe. Hence, nuclear safety, radiation protection, waste management, environmental impact and emergency preparedness issues are of common interest to all Nordic countries. Environmental impact of radioactive releases is studied in two radioecology projects. The project on marine radioecology, including sediment research (EKO-1), includes sampling, analysis and modeling. These are also key issues in the project on long ecological half-lives in semi-natural systems (EKO-2). The transfer of the seven presently ongoing projects are summarized in this report by the project leaders, both in terms of results in 1995 and plans for 1996/97. (EG)

  18. The Nordic nuclear safety research 1990-93. Evalution and executive summary

    International Nuclear Information System (INIS)

    Marcus, F.

    1994-11-01

    A four-year Nordic research programme in the field of nuclear safety was carried through from 1990 through 1993, performed under the auspices of the Nordic Committee for Nuclear Safety Research, NKS. The aim has been to increase knowledge required to judge the safety of nuclear installations in and around the Nordic areas, and to improve and harmonize emergency preparedness. There were 19 individual projects within the four main section of the programme: Emergency preparedness, Waste and decommissioning, Radioecology, and Reactor safety. The programme was evaluated in 1994 by five evaluators, and the main emphasis was on general questions. The evaluators recommend that project plans are revised at mid-term, for updating. During the project period, NKS should use specified criteria to judge progress and success. Time tables must be adhered to. Recommendations deal with reporting and presentation of results, project leaders must disseminate information at the professional level and organize seminars. The NKS annual reports should be conceived so that they can also be used for external information. NKS should establish a policy aimed at enhanced information on its projects. Final reports should contain conclusions and recommendations which can subsequently be followed up. Directors of the competent authorities in the Nordic countries should be requested to give their views on the recommendations, and also industry, on the usefulness of results. It is proposed that NKS consider presentation of the outcome to responsible ministers and their staff. These recommendations were taken into account during 1994. (AB)

  19. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    1992-08-01

    The status report for the first half of the year 1992 of the Nordic programme for nuclear safety 1990-1993 contains summaries of the progress of the projects under the four sections of the programme. These sections are divided under the main headings of dealing with readiness in abnormal radiation situations, nuclear wastes and deposition, radioecology and reactor safety. The projects included in the first part concern radiation-spreading prognoses and consequences for the area, strategies and methods for measuring and management of exchange of data between decision-makers, evaluation and harmonizing of remedial measures, public information, Nordic exercises in readiness and the determination of radioactive contamination in the area. Projects under the second section concern exemptions from regulatory control of radioactive material, experiences of demolition of uranium cleaning systems, storing of information, handling of radioactive wastes from reactor accidents, transport etc., and geological and climatological processes of significance for long-term safety in a final storage system. The third section of the programme handles training and quality assurance methods, aquatic radioecology, agricultural and natural ecosystems. The fourth section treats data on the safety status of Greifswald I-IV, Leningrad I-IV, Ignalia I-II, ship reactors, Brunsbuettel, Kruemmel and Kola I-IV. The programme's total budget is presented. (AB)

  20. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  1. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    1992-02-01

    The description of planned projects concerning nuclear safety is divided under the headings of readiness for action in situations of abnormal radiation, nuclear wastes and deposition, radioecology, and reactor safety - professional emergency-readiness. Coordination initiatives are also dealt with. In addition to this a survey of projects, coordinators and project leaders and a description of suggested new measures for nuclear safety are given. Under the first heading the subjects dealt with are spreading and local consequences, strategies, measuring methods and data exchange and management for decision-makers, evaluation, harmonization and effecting of plans, public information, a nordic emergency action exercise and reduction data connected with contaminated areas. The second heading covers criteria for classification of radioactive material, experiences in demolition of uranium-cleaning plants, information management, waste management in the case of field deposition with radioactivity from past reactor accidents and climatological and geological processes of significance for long-duration safety. Subjects under the third heading of radioecology cover training, quality assurance, aquatic radioecology, agricultural and natural ecosystems. Subjects under reactor safety include safety evaluation, the course of serious accidents, and data on neighbour-reactor system's conditions of safety. (AB)

  2. The Nordic programme for nuclear safety 1990-1993. Plan for 1993

    International Nuclear Information System (INIS)

    1993-04-01

    In 1993 the fourth Nordic Nuclear Safety Research programme will be concluded with final reports on all of the eighteen projects. Each report will contain the results of the work carried out which has taken four years to complete and, at the same time, give a more general survey of the Northern countries' competence within the fields of emergency readiness in situations of abnormal radiation, radioactive waste and its disposal, radioecology and nuclear reactor safety - accessibility of appropriate information. Some of the reports will be published in the form of reference books or in the form of databases of direct assistance to the authorities. A number of seminars will be held so that the results and professional level of the reports can be discussed. The coordinators' and project leaders' plans for these activities are presented with the the amounts of money that project organizers have asked the Nordic Nuclear Safety Research programme to finance them with. During 1993 the plans for the programme starting in 1994 must be laid, and future researchers, project leaders, involved organizations and sponsors determined. (AB)

  3. The Nordic nuclear safety research. Report 1994; Nordisk kernesikkerhedsprogram 1994-1997. Rapport for 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This is a report on the first year of the fifth four-year Nordic Nuclear Safety Research (NKS) program (1994-1997). Three major fields of research have been identified: reactor safety; radioactive waste; and environmental impact. A total of seven projects are now under way within that framework. Together with additional financial support from a number of ministries and companies in the nuclear power field, the total NKS budget will be some USD 1.5 million per year. To this should be added contributions in kind by participating organizations, worth at least another USD 2 million per year, without which this program would not be possible. Finland and Sweden presently operate a total of 16 power producing reactors. Denmark, Finland, Norway and Sweden operate research reactors. There is a plant for nuclear fuel production in Sweden. All five Nordic countries have intermediate waste storages. In Finland and Sweden repositories for low and intermediate level waste are in operation, and repositories for spent fuel are being planned. In addition, there are a number of power, research and naval reactors and other nuclear installations in Nordic surroundings, both in Eastern and Western Europe. Hence, nuclear safety, radiation protection, waste management, radioecology and emergency preparedness issues are of common interest to all Nordic countries. These two reactor safety projects constitute a new angle of reactor safety in the NKS perspective: One project (AFA-1) deals with long-lived low and medium level waste in this respect. Environmental impact of radioactive releases is studied in two radioecology projects. Another aspect of environmental impact is emergency preparedness. A separate project, SAM, has been set up to organize, coordinate and follow up the technical and scientific work. (EG).

  4. Nordic projects in the field of nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1989-07-01

    This report describes the work in 1988 within the Nordic program concerning nuclear safety 1985-1989. The report has the form of a handbook meant for those in Scandinavia who are involeved in nuclear safety, and it is based on statements from the constituent subject fields of the program. The first chapter is a short summary of the work and results over the year. In the next chapter an account is given of the ongoing projects within each of the subject fields. An economic survey of the entire program and a list of the reports and articles published in 1988 is included in the publicaltion as well. Chapter 5 is a complete list of adresses comprising participants, project managers, program coordinators and members of the advirosy group. (SH)

  5. Nordic projects in the field of nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1988-05-01

    This report deseribes the work in 1987 within the Nordic program concerning nuclear safety 1985-1989. The report has the form of a handbook meant for those in Scandinavia who are involved in nuclear safety, and it is based on statements from the constituent subject fields of the program. The first chapter is a short summary of the work and results over the year. In the next chapter an account is given of the ongoing projects within each of the subject fields. An economic survey of the entire program and a list of the reports and articles published in 1987 is included in the publication as well. Chapter 5 is a complete list of adresses comprising participants, project managers, program coordinators and members of the advisory group. (SH) 74 refs

  6. Final summary report of the Nordic Nuclear Safety Research Program 1998-2001

    International Nuclear Information System (INIS)

    Bennerstedt, T.

    2002-11-01

    The results of the 1998 - 2001 NKS program are presented in the form of executive summaries, highlighting the conclusions, recommendations and other findings and results of the six projects carried out during that period. The titles of the six projects are: Risk assessment and strategies for safety (NKS/SOS-1); Reactor safety (NKS/SOS-2); Radioactive waste (NKS/SOS-3); Nuclear Emergency preparedness (NKS/BOK-1); Radiological and environmental consequences (NKS/BOK-2); Nuclear threats from Nordic surroundings (NKS/SBA-1) (ln)

  7. Food safety after nuclear accidents. A Nordic model for national response

    International Nuclear Information System (INIS)

    1992-01-01

    The Nordic model for the management of food supplies and food safety after nuclear accidents addresses production distribution, sale, and consumption of food and drink. The model contains specific recommendations on intervention levels for distribution and consumption. The overriding aim is to keep the radiation dose to the population as low as reasonably achievable by the optimization of countermeasures. Upper levels of radiation doses which should not be exceeded are termed Primary Intervention Levels. A reasonable maximum dose level resulting from intake of food over a one-year period would be 1 mSv, and this level has been chosen as the starting point for the Nordic model. Maximum levels of radioactive substances in foodstuffs, are termed Derived Intervention Levels (DILs). DILs are established on the basis of the Primary Intervention Levels. A conservative approach is taken which involves additional precautionary assumptions and an extra margin of safety. Provided the DILs are adhered to, the actual radiation dose to which the population is exposed will constitute only a small fraction of the Primary Intervention Levels. The need may arise for specific dietary advise for certain types of food consumed by special population groups. The intervention levels must be adjusted if they cause adverse effects which are unacceptable to the population in general, for instance unfavourable socio-economic impacts. In extreme nuclear accident situations, it may become necessary to suspend the use of intervention levels for a period of time. The full report with scientific annexes was adopted by AeK-LIVS in April 1991, and published as report no. 1991:546 in the Nordic seminar series. In November 1991 the Nordic Council of Ministers requested that the model should be implemented by the national authorities in each of the Nordic countries. The publication contains an abbreviated version of the report. (EG)

  8. The Nordic programme for nuclear safety 1990-1993

    International Nuclear Information System (INIS)

    1991-08-01

    The status report concerning the Nordic Nuclear Safety Programme for 1990-1993 contains a summary of the current situation regarding research projects, presented by the four coordinators, and a survey of the related economy. It is stated that all seventeen projects are running satisfactorily and a number of working descriptions have been published. Project leaders work with contracts with consultant firms, research organizations and individuals, contact meetings including lectures and discussions, mini-seminars where participants actually work at the same time, coordination of nationally financed research projects and individual contributions. Problems related to a certain lack of qualified persons for whom it is possible to coordinate this Nordic work with their daily responsibilities have led to delays in relation to the working plans and this has resulted in the fact that not all the grants have been utilized as yet. Sub-programmes are dealt with individually, and lists of publications are presented. (AB) (10 refs.)

  9. Nuclear threats in the vicinity of the Nordic countries

    International Nuclear Information System (INIS)

    Eikelmann, I.M.H.; Moeller, B.

    1999-01-01

    This project is one of the new cross-disciplinary studies in the NKS (Nordic Nuclear Safety) research program 1998-2001. The main task for the project is to aggregate knowledge of nuclear threats in the vicinity of the Nordic countries, a 'base of knowledge', and make this available for the Nordic authorities as a supplement for the national emergency preparedness work. The project will focus on potential events in nuclear installations and the consequences for the Nordic countries especially on: vulnerable food chains; doses to man; environmental contamination; the emergency preparedness system. (au)

  10. NKS - The Nordic region's cooperative network for addressing challenges in nuclear safety and emergency preparedness

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.G. [NKS/Technical University of Denmark (Denmark); Andgren, K. [NKS/Vattenfall R and D (Sweden); Leino, K. [NKS/Fortum Power and Heat Oy (Finland); Magnusson, S. [NKS/Icelandic Radiation Safety Authority (Iceland); Physant, F. [NKS/FRIT, Roskilde (Denmark)

    2014-07-01

    Based on the foundation of a common cultural and historical heritage and a long tradition of collaboration, NKS aims to facilitate a common Nordic view on nuclear and radiation safety. A common understanding of rules, practice and measures, and national differences in this context, is here an essential requirement. Problems can generally be tackled quicker, more efficiently, more consistently and at a lower cost through collaboration, bearing in mind that key competencies are not equally distributed in the different Nordic countries. For instance common Nordic challenges emerge in relation to nuclear installations, where nuclear power plants are in operation in Finland and Sweden, and research reactors have been operated in Denmark, Finland, Norway and Sweden. There is an obvious benefit in exchanging ideas and technologies in relation to plant operation, and since a number of reactors in different Nordic countries are under decommissioning, a collaborative benefit can also be realised in that context. Sweden also has a nuclear fuel production plant, and its collaboration with other Nordic nuclear installations can also be beneficial. Further, a number of large radiological installations are projected in Nordic areas (e.g., the MAX-LAB/MAX IV synchrotron radiation source and the European spallation source ESS), where Nordic organisations are collaborating in addressing, e.g., potential environmental implications. On the emergency preparedness side, the Fukushima accident in March 2011 was a reminder that large accidents at nuclear installations can lead to widespread radioactive contamination in the environment. In order to respond to nuclear or radiological emergencies, should they affect Nordic populations, it is necessary to maintain an operational emergency preparedness. By continuously improving detection, response and decision aiding tools while maintaining an informal collaborative network between relevant stakeholders in the Nordic countries (including

  11. Nuclear threats in the vicinity of the Nordic countries. Supplementary final report of the Nordic Nuclear Safety research

    International Nuclear Information System (INIS)

    Eikelmann, I.M.H.

    2006-04-01

    The purpose of this project was to continue the cross-disciplinary study SBA-1 'base of knowledge' in the NKS research program 1998-2001 regarding possible nuclear threats in the vicinity of the Nordic countries. The main task for the project was to expand and envelope this database. Finding information to be placed in the database and identifying and filling gaps in knowledge were prioritised. This is a continuous process which extends beyond the end of this project, in order to have an operating and updated database also in the years to come. In this project work has been done making information systems in Norway that can take care of the database in the future. The scope of the preceding project was to prepare a base of knowledge regarding possible nuclear threats in the vicinity of the Nordic countries. The database, including a literature database, is presented on the website 'Nuclear threats in the vicinity of the Nordic Countries'. The utilisation of modern information technology gives the user of the database easy access to information on different types of nuclear installations and threats. The project focused on potential events at nuclear installations and the consequences for the Nordic countries, especially with regards to vulnerable food chains, doses to man, environmental contamination and emergency preparedness systems. The geographical area dealt with includes North-west Russia and the Baltic states and the nuclear installations investigated are nuclear power plants, ship reactors and storage and handling of used fuel and radioactive waste. (au)

  12. The Nordic safety program on accident consequence assessment

    International Nuclear Information System (INIS)

    Tveten, U.

    1988-01-01

    One important part of Nordic cooperation is partially funded by the Nordic Council of Ministers, namely the work performed within the Nordic Safety Program (often referred to as the NKA projects). NKA is the Nordic abbreviation of the Nordic Liaison Committee on Atomic Energy. One program area in the present four-year period is concerned with problems related to reactor accident consequence assessment, and contains almost twenty projects covering a wide range of subjects. The author is program coordinator for this program area. The program will be completed in 1989. The program was strongly influenced by Chernobyl, and a number of new projects were included in the program in 1986. Involved in the program are these Nordic institutions: Riso National Laboratory (Denmark). Technical Research Centre of Finland. Finnish Centre for Radiation and Nuclear Safety. Finnish Meteorological Institute. Institute for Energy Technology (Norway). Agricultural University of Norway. Meteorological Institute of Norway. Studsvik Energiteknik AB (Sweden). National Defence Research Laboratory (Sweden)

  13. The Nordic nuclear safety research 1990-93. Evalution and executive summary; Nordisk kernesikkerhedsforskning 1990-93. Evaluering og administrativ sammenfatning

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F

    1994-11-01

    A four-year Nordic research programme in the field of nuclear safety was carried through from 1990 through 1993, performed under the auspices of the Nordic Committee for Nuclear Safety Research, NKS. The aim has been to increase knowledge required to judge the safety of nuclear installations in and around the Nordic areas, and to improve and harmonize emergency preparedness. There were 19 individual projects within the four main section of the programme: Emergency preparedness, Waste and decommissioning, Radioecology, and Reactor safety. The programme was evaluated in 1994 by five evaluators, and the main emphasis was on general questions. The evaluators recommend that project plans are revised at mid-term, for updating. During the project period, NKS should use specified criteria to judge progress and success. Time tables must be adhered to. Recommendations deal with reporting and presentation of results, project leaders must disseminate information at the professional level and organize seminars. The NKS annual reports should be conceived so that they can also be used for external information. NKS should establish a policy aimed at enhanced information on its projects. Final reports should contain conclusions and recommendations which can subsequently be followed up. Directors of the competent authorities in the Nordic countries should be requested to give their views on the recommendations, and also industry, on the usefulness of results. It is proposed that NKS consider presentation of the outcome to responsible ministers and their staff. These recommendations were taken into account during 1994. (AB).

  14. The Nordic programme for nuclear safety 1990-1993. Report for 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The annual report contains the coordinators' summary of the results so far achieved by the in all 18 current projects in which 200 persons are taking part. In some cases the project leader's account is included. An overview is given of the programme's costs and orders during 1992 in relation to the subsidies given to the individual projects. The fields covered by these projects are emergency readiness in radiation situations which are not normal, nuclear wastes and their disposal, radioecology, reactor safety - knowledge readiness, and coordination efforts. An economical overview is given and English summaries of the projects presented at the summer meeting in 1992 are presented. A list of the names of the members of the Nordic Nuclear Safety Research members in the syndicate and reference groups is included in the publication, and a brief description is to be found of the institution's activities. (AB) (78 refs.)

  15. Nordic reactor safety research 1981-85

    International Nuclear Information System (INIS)

    Micheelsen, B.

    1986-01-01

    National resources in Denmark, Finland, Norway, and Sweden were put together with Nordic funds in the four-year research programme 1981-85 on selected areas of nuclear safety. The outcome of the programme, edited in four separate reports, is summarized, and important findings are listed in the areas of probabilistic risk assessment (PRA), loss-of-coolant accidents with small breaks, heat-transfer correlations, and corrosion in the nuclear industry. (author)

  16. Radiological and environmental consequences. Final report of the Nordic Nuclear Safety Research project BOK-2

    International Nuclear Information System (INIS)

    Palsson, S.E.

    2002-11-01

    Final report of the Nordic Nuclear Safety Research project BOK-2, Radiological and Environmental Consequences. The project was carried out 1998-2001 with participants from all the Nordic countries. Representatives from the Baltic States were also invited to some of the meetings and seminars. The project consisted of work on terrestrial and marine radioecology and had a broad scope in order to enable participation of research groups with various fields of interest. This report focuses on the project itself and gives a general summary of the studies undertaken. A separate technical report summarises the work done by each research group and gives references to papers published in scientific journals. The topics in BOK-2 included improving assessment of old and recent fallout, use of radionuclides as tracers in Nordic marine areas, improving assessment of internal doses and use of mass spectrometry in radioecology. (au)

  17. Nuclear threats in the vicinity of the Nordic countries. Final report of the Nordic Nuclear Safety Research project SBA-1

    International Nuclear Information System (INIS)

    Eikelmann, I.M.H.

    2002-11-01

    The acute phase of a nuclear accident and the possibility of high exposure of the populations are always the most important threats in the emergency preparedness work. Radioactive contamination from an accident can however also cause long term effects for land use and enhanced doses to special population groups and economic problems for agriculture, reindeer industry, hunting, tourism and recreation. For planning purposes it is always valuable to be aware of surrounding radiation hazards and other potential threats. Thus, mapping such threats in a Nordic context is an important factor in emergency preparedness in the area. This report presents a cross-disciplinary study from the NKS research program 1998-2001.The scope of the project was to prepare a 'base of knowledge' regarding possible nuclear threats in the vicinity of the Nordic countries. This base of knowledge will, by modere information technology as different websites, be made available to authorities, media and the population. The users of the websites can easily get information on different types of nuclear installations and threats. The users can get an overview of the situation and, if they so wish, make their own judgements. The project dealt with a geographical area including North-west Russia and the Baltic states. The results from the different activities in the project were generated in a web based database called the 'the base of knowledge'. Key words Nuclear threats, Nordic countries, nuclear power plants, nuclear ship, nuclear waste, literature database, base of knowledge, webaccessed information, atmospheric transport, decommissioning of submarines, nuclear installations, waste management, radioactive contamination in marine environment, radioactive sources, criticality analysis. (au)

  18. Nuclear threats in the vicinity of the Nordic countries. Final report of the Nordic Nuclear Safety Research project SBA-1

    Energy Technology Data Exchange (ETDEWEB)

    Eikelmann, I.M.H. [Norwegian Radiation Protection Authority (Norway)

    2002-11-01

    The acute phase of a nuclear accident and the possibility of high exposure of the populations are always the most important threats in the emergency preparedness work. Radioactive contamination from an accident can however also cause long term effects for land use and enhanced doses to special population groups and economic problems for agriculture, reindeer industry, hunting, tourism and recreation. For planning purposes it is always valuable to be aware of surrounding radiation hazards and other potential threats. Thus, mapping such threats in a Nordic context is an important factor in emergency preparedness in the area. This report presents a cross-disciplinary study from the NKS research program 1998-2001.The scope of the project was to prepare a 'base of knowledge' regarding possible nuclear threats in the vicinity of the Nordic countries. This base of knowledge will, by modere information technology as different websites, be made available to authorities, media and the population. The users of the websites can easily get information on different types of nuclear installations and threats. The users can get an overview of the situation and, if they so wish, make their own judgements. The project dealt with a geographical area including North-west Russia and the Baltic states. The results from the different activities in the project were generated in a web based database called the 'the base of knowledge'. Key words Nuclear threats, Nordic countries, nuclear power plants, nuclear ship, nuclear waste, literature database, base of knowledge, webaccessed information, atmospheric transport, decommissioning of submarines, nuclear installations, waste management, radioactive contamination in marine environment, radioactive sources, criticality analysis. (au)

  19. Annual report 1999. NKS-programme 1998-2001[Nordic Nuclear Safety Programme]; Aarsrapport 1999. NKS-programmet 1998-2001

    Energy Technology Data Exchange (ETDEWEB)

    Bennerstedt, T. [ed.

    2000-02-01

    The Nordic nuclear safety programme consists of projects within the areas of risk assessment, reactor safety, waste, emergency preparedness, and environmental consequences. The annual report presents results and economic issues in relation to approved project plans and budgets. Also the more important reports, agreements, seminars, meetings etc are listed. Participating organisations and persons are mentioned, and the total national contributions (besides NKS- own means) to research are stated. (EHS)

  20. New and recently finalised activities within the NKS Programmes for Nordic cooperation on nuclear reactor safety and emergency preparedness

    DEFF Research Database (Denmark)

    Andgren, Karin; Andersson, Kasper Grann; Magnússon, Sigurður M.

    2015-01-01

    Over the years, NKS has provided funding for hundreds of research activities in fields comprising reactor safety, decommissioning, nuclear and radiological emergency preparedness, and management of radioactive waste. Advanced technologies and methods developed under the NKS framework have been used...... within the Nordic countries as well as internationally. Two programme areas are defined under the NKS platform: The NKS-R programme on nuclear reactor safety and the NKS-B programme on emergency preparedness. Three articles, giving an introduction to NKS and its two programmes, were published...

  1. Half a Century of Nordic Nuclear Co-operation - An Insider's Recollections

    International Nuclear Information System (INIS)

    Napier, Bruce A.

    1999-01-01

    This is a book review. This is the story of one of the most enduring instances of cooperation among different countries in any field in the twentieth century. Specifically, it describes efforts at coordination and integration in the area of nuclear development between Denmark, Finland, Iceland, Norway, and Sweden starting after World War II and continuing through the present. The Nordic countries had an early interest in nuclear activities, in part because of informal contacts based on influential individuals such as Niels Bohr. Their common history, environment, and culture led to common interests in developing nuclear power, and the precedent of the creation of the Scandinavian Airlines Systems (SAS) in 1946 showed that international initiatives could actually work. Efforts in the 1950s lead to establishment of a joint institute for theoretical atomic physics, a liaison committee to follow developments in the nuclear filed, and a Nordic group on radiation protection. Nordic electric utilities also began working together. In the mid-1960s, a Nordic Coordination Committee for Atomic Energy was established, as well as a Contact Group of members of national ministries, which generated a number of active initiatives. These groups helped direct research and development, by influencing government funding programs, through the 1960s and 1970s. Following the Three Mile Island accident in 1979, the thrust changed to nuclear waste management and safety research. In the immediate aftermath of the Chernobyl accident, the close working relations allowed quick communication of data and recommendations throughout the various countries. As time passed and regulatory programs became more formalized, the ad hoc groups were replaced with more bureaucratic structures, which were in turn threatened by funding shortfalls. A series of Nordic Committee for Nuclear Safety Research initiatives continued well into the mid-1990s

  2. Nordic Nuclear Safety Research. Presentation of the 1994 - 1997 program

    International Nuclear Information System (INIS)

    Bennerstedt, Torkel

    1998-01-01

    NKS (Nordic Nuclear Safety Research) has just concluded its fifth 4-year program (1994 - 1997). The following nine projects were performed: Strategy for reactor safety: Studies of preparatory work to minimize the risk of accidents; Prevention of severe reactor accidents: studies of recriticality, core melt progression and support systems to minimize releases; Safe disposal of radioactive waste: Waste characterization, Performance analyses and environmental impact statements for repositories; Marine radioecology: Improved assessment methods for effects of releases of radionuclides; Long ecological half-lives in semi-natural systems: Models for transfer of cesium from nature to man; Preparedness strategies and procedures: Mobile measurements, quality assurance and interventions; Emergency preparedness drills and exercises; Preplanning of early cleanup: Check-list for planners and decision makers for various environments and fallout situations; Overriding information issues: Risk communication, real-time exchange of information after an accident. Together with additional financial support from a number of ministries and companies in the nuclear power field, the total NKS budget for the period 1994 - 1997 was some USD 5 million, evenly distributed over the years. To this should be added contributions in kind by participating organizations, worth at least another USD 10 million, without which this program would not have been possible. The nine projects and some practical results (rather than scientific detail) are outlined in this paper. (EG)

  3. Final summary report of the Nordic Nuclear Safety Research Program 1998-2001; Sammanfattning av det nordiska forsknings-programmet for karnsakerhet

    Energy Technology Data Exchange (ETDEWEB)

    Bennerstedt, T. (ed.)

    2002-11-01

    The results of the 1998 - 2001 NKS program are presented in the form of executive summaries, highlighting the conclusions, recommendations and other findings and results of the six projects carried out during that period. The titles of the six projects are: Risk assessment and strategies for safety (NKS/SOS-1); Reactor safety (NKS/SOS-2); Radioactive waste (NKS/SOS-3); Nuclear Emergency preparedness (NKS/BOK-1); Radiological and environmental consequences (NKS/BOK-2); Nuclear threats from Nordic surroundings (NKS/SBA-1) (ln)

  4. Nordic Nuclear Safety Research 1994 - 2008: From standardized 4-year classics to customized R and B

    International Nuclear Information System (INIS)

    Bennerstedt, T.N.O.

    2011-10-01

    This is a presentation of NKS (Nordic Nuclear Safety Research), its work and achievements in the years 1994 - 2008, during which the author served as Nordic secretary and (later) as coordinator. NKS and the Nordic perspective are briefly introduced together with the NKS support structure, organization and administration: Owners, Board, Nordic secretary, Bureau and Secretariat. The author then embarks on a journey through the modern history of NKS work. The last two of the six fixed 4-year programs are described as regards planning, contents, project work, administration, dissemination of results, evaluations and conclusions. The trip continues to the land of R and B and the present (2011) structure of two general frameworks, namely, NKS-R: reactor safety, and NKS-B: emergency preparedness; each consisting of a set of flexible activities; hence, R and B. The reasoning behind this makeover is touched upon together with the new organization and simpler administration that developed. Major activities and the produced results are introduced and the evaluations summarized. The author's own conclusions and recommendations are followed by a short and subjective list of references. In a number of appendices some important background material has been compiled: bullet point versions of minutes of Owners Group and Board meetings; economic contributions and budgets; the NKS policy document; an overview of all NKS programs and evaluations; lists of R and B activities and funding; the author's personal remarks; a list of some NKS documents (other than technical reports and minutes); and a list of acronyms used in this report. (Author)

  5. Nordic Nuclear Safety Research 1994 - 2008: From standardized 4-year classics to customized R and B

    Energy Technology Data Exchange (ETDEWEB)

    Bennerstedt, T N.O. [TeknoTelje HB, Torhamn (Sweden)

    2011-10-15

    This is a presentation of NKS (Nordic Nuclear Safety Research), its work and achievements in the years 1994 - 2008, during which the author served as Nordic secretary and (later) as coordinator. NKS and the Nordic perspective are briefly introduced together with the NKS support structure, organization and administration: Owners, Board, Nordic secretary, Bureau and Secretariat. The author then embarks on a journey through the modern history of NKS work. The last two of the six fixed 4-year programs are described as regards planning, contents, project work, administration, dissemination of results, evaluations and conclusions. The trip continues to the land of R and B and the present (2011) structure of two general frameworks, namely, NKS-R: reactor safety, and NKS-B: emergency preparedness; each consisting of a set of flexible activities; hence, R and B. The reasoning behind this makeover is touched upon together with the new organization and simpler administration that developed. Major activities and the produced results are introduced and the evaluations summarized. The author's own conclusions and recommendations are followed by a short and subjective list of references. In a number of appendices some important background material has been compiled: bullet point versions of minutes of Owners Group and Board meetings; economic contributions and budgets; the NKS policy document; an overview of all NKS programs and evaluations; lists of R and B activities and funding; the author's personal remarks; a list of some NKS documents (other than technical reports and minutes); and a list of acronyms used in this report. (Author)

  6. Nordic Nuclear Safety Research 1994 - 2008: From standardized 4-year classics to customized R and B

    Energy Technology Data Exchange (ETDEWEB)

    Bennerstedt, T.N.O. (TeknoTelje HB, Torhamn (Sweden))

    2011-10-15

    This is a presentation of NKS (Nordic Nuclear Safety Research), its work and achievements in the years 1994 - 2008, during which the author served as Nordic secretary and (later) as coordinator. NKS and the Nordic perspective are briefly introduced together with the NKS support structure, organization and administration: Owners, Board, Nordic secretary, Bureau and Secretariat. The author then embarks on a journey through the modern history of NKS work. The last two of the six fixed 4-year programs are described as regards planning, contents, project work, administration, dissemination of results, evaluations and conclusions. The trip continues to the land of R and B and the present (2011) structure of two general frameworks, namely, NKS-R: reactor safety, and NKS-B: emergency preparedness; each consisting of a set of flexible activities; hence, R and B. The reasoning behind this makeover is touched upon together with the new organization and simpler administration that developed. Major activities and the produced results are introduced and the evaluations summarized. The author's own conclusions and recommendations are followed by a short and subjective list of references. In a number of appendices some important background material has been compiled: bullet point versions of minutes of Owners Group and Board meetings; economic contributions and budgets; the NKS policy document; an overview of all NKS programs and evaluations; lists of R and B activities and funding; the author's personal remarks; a list of some NKS documents (other than technical reports and minutes); and a list of acronyms used in this report. (Author)

  7. Regional co-operation in the nuclear field: The Nordic experience

    International Nuclear Information System (INIS)

    Marcus, F.R.

    1983-01-01

    Experience from 25 years of co-operation in the nuclear field between the Nordic countries is described. A pragmatic approach with a minimum of formalism is used. The co-operation takes place mainly through ''horizontal'' channels between corresponding bodies in the different countries - safety authorities, research institutions, electricity producers, etc. In addition, a ''vertical'' co-ordination between these different circles is accomplished through a Nordic Liaison Committee. The experience shows that valuable results can be obtained, mainly through rationalization and improved use of resources. Difficulties, which are inherent in international co-operation, can be reduced, provided that there is a strong political will, an efficient system to promote contacts, and a flexible financing scheme. Apart from the benefits obtained in each of the countries - whether or not it has its own nuclear power - particular advantages accrue when a ''Nordic group'' can present co-ordinated viewpoints on the international scene. (author)

  8. Nuclear safety culture in Finland and Sweden - Developments and challenges

    International Nuclear Information System (INIS)

    Reiman, T.; Pietikaeinen, E.; Kahlbom, U.; Rollenhagen, C.

    2011-02-01

    The project aimed at studying the concept of nuclear safety culture and the Nordic nuclear branch safety culture. The project also aimed at looking how the power companies and the regulators view the current responsibilities and role of subcontractors in the Nordic nuclear safety culture as well as to inspect the special demands for safety culture in subcontracting chains. Interview data was collected in Sweden (n = 14) and Finland (n = 16) during 2009. Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). Results gave insight into the nature and evaluation of safety culture in the nuclear industry. Results illustrated that there is a wide variety of views on matters that are considered important for nuclear safety within the Nordic nuclear community. However, the interviewees considered quite uniformly such psychological states as motivation, mindfulness, sense of control, understanding of hazards and sense of responsibility as important for nuclear safety. Results also gave insight into the characteristics of Nordic nuclear culture. Various differences in safety cultures in Finland and Sweden were uncovered. In addition to the differences, historical reasons for the development of the nuclear safety cultures in Finland and Sweden were pointed out. Finally, results gave implications that on the one hand subcontractors can bring new ideas and improvements to the plants' practices, but on the other hand the assurance of necessary safety attitudes and competence of the subcontracting companies and their employees is considered as a challenge. The report concludes that a good safety culture requires a deep and wide understanding of nuclear safety including the various accident mechanisms of the power plants as well as a willingness to continuously develop one's competence and understanding. An effective and resilient nuclear safety culture has to foster a constant sense of

  9. Reactor safety; Description and evaluation of safety activities in Nordic countries

    International Nuclear Information System (INIS)

    Wahlstroem, B.; Gunsell, L.

    1998-03-01

    The report gives a description of safety activities in the nuclear power industry. The study has been carried out as a part of the four year programme in Nordic Safety Research (NKS) which was completed in 1997. The objective of the NKS/RAK-1.1 project 'A survey and an evaluation of safety activities in nuclear power' was to make a broad description of various activities important for safety and to make an assessment of their efficiency. A special consideration was placed on a comparison of practices in Finland and Sweden, and between their nuclear utilities. The study has been divided into two parts, one theoretical part in which a model of the relationships between various activities important for safety has been constructed and one practical part where a total of 62 persons have been interviewed at the authorities, the nuclear utilities and one reactor vendor. To restrict the amount of work two activities, safety analysis and experience feedback, were selected. A few cases connected to incidents at nuclear power plants were discussed in more detail. The report has been structured around a simple model of nuclear safety consisting of the concepts of goals, means and outcomes. This model illustrates the importance of goal formulation, systematic planning and feedback of operational experience as major components in nuclear safety. In assessing organisation and management at authorities and the power utilities there is a clear trend of decentralisation and delegation of authority. The general impression from the study is that the safety activities in Finland and Sweden are efficient and well targeted. The experience from the methodology is favourable and the comparison of practices gives a good ground for a discussion of contents and targeting of safety activities. (EG) activities. (EG)

  10. Nordic nuclear safety research program 1994-1997. Project coordination incl. SAM-4 general information issues. Report 1996. Plans for 1997

    International Nuclear Information System (INIS)

    1997-04-01

    NKS (Nordic Nuclear Safety Research) is a cooperative body in nuclear safety, radiation protection and emergency preparedness. Its purpose is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, recommendations, manuals etc., to be used by decision makers and other concerned staff members at authorities and within the nuclear industry. This is the annual report for 1996, the third year of the fifth four-year NKS program (1994-1997). The report also contains plans for the rest of the program period, including budget proposals. The following major fields of research have been identified: reactor safety; radioactive waste; radioecology; emergency preparedness; and information issues. A total of nine projects are now under way within that framework. One project (RAK-1) is dedicated to reactor safety strategies: how to avoid serious accidents. A parallel project (RAK-2) deals with minimizing releases in case of an accident. When can an overheated reactor core still be water-cooled? What might be the consequences of the cooling? All Nordic countries have long-lived low and medium level radioactive waste that requires final disposal. One project (AFA-1) addresses that issue. Environmental impact of radioactive releases is studied in two radioecology projects. The project on marine radioecology, including sediment research (EKO-1), encompasses sampling, analysis and modeling. These are also key issues in the project on long ecological half-lives in semi-natural systems (EKO-2). The transfer of radioactive cesium and strontium in the chains soil - vegetation - sheep and mushroom - roe deer is studied, along with freshwater systems. Long-term doses to main is the ultimate output from the obtained models. Another aspect of environmental impact is emergency preparedness. A recently started project, EKO-5, addresses the issue of early planning for cleanup operations following a fallout. 'Early' in this context means within the

  11. Nuclear safety culture in Finland and Sweden - Developments and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.; Pietikaeinen, E. (Technical Research Centre of Finland, VTT (Finland)); Kahlbom, U. (RiskPilot AB (Sweden)); Rollenhagen, C. (Royal Institute of Technology (KTH) (Sweden))

    2011-02-15

    The project aimed at studying the concept of nuclear safety culture and the Nordic nuclear branch safety culture. The project also aimed at looking how the power companies and the regulators view the current responsibilities and role of subcontractors in the Nordic nuclear safety culture as well as to inspect the special demands for safety culture in subcontracting chains. Interview data was collected in Sweden (n = 14) and Finland (n = 16) during 2009. Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). Results gave insight into the nature and evaluation of safety culture in the nuclear industry. Results illustrated that there is a wide variety of views on matters that are considered important for nuclear safety within the Nordic nuclear community. However, the interviewees considered quite uniformly such psychological states as motivation, mindfulness, sense of control, understanding of hazards and sense of responsibility as important for nuclear safety. Results also gave insight into the characteristics of Nordic nuclear culture. Various differences in safety cultures in Finland and Sweden were uncovered. In addition to the differences, historical reasons for the development of the nuclear safety cultures in Finland and Sweden were pointed out. Finally, results gave implications that on the one hand subcontractors can bring new ideas and improvements to the plants' practices, but on the other hand the assurance of necessary safety attitudes and competence of the subcontracting companies and their employees is considered as a challenge. The report concludes that a good safety culture requires a deep and wide understanding of nuclear safety including the various accident mechanisms of the power plants as well as a willingness to continuously develop one's competence and understanding. An effective and resilient nuclear safety culture has to foster a constant

  12. The Nordic nuclear safety program 1994-1997. Project handbook

    International Nuclear Information System (INIS)

    1997-06-01

    This is a new revision of the handbook for administrators of the Nordic reactor safety program NKS. The most important administrative functions in project management are described, which should secure a uniform management approach in all the projects. The description of the organizational scheme of the NKS and distribution of responsibilities is followed by examples of various administrative routines and document forms. In the annex the names and addresses of the staff involved in administration of the NKS program are listed. (EG)

  13. A Nordic approach to impact assessment of accidents with nuclear-propelled vessels

    International Nuclear Information System (INIS)

    Reistad, O.; Hustveit, S.; Palsson, S.E.; Hoe, S.; Lahtinen, J.

    2012-11-01

    The MareNuc project has identified the parameters in a graded approach to impact assessment for marine nuclear reactors. The graded approach is founded on the following elements: 1) More detailed understanding of previous accidents in nuclear-propelled vessels (initiating events, accident developments, release fractions), including release mechanisms (radionuclide retention in vessel construction); 2) Bench-marking of release scenarios using modelling tools applied in the Nordic countries, in addition to demonstration of generally accessible and free software developed by the IAEA; 3) Other systematic approaches to safety assessments of vessel port calls, and to the design and maintenance of emergency preparedness systems; More specifically, increased emphasis compared to earlier analysis after the Kursk accident is given to the engineered vessel barriers. Relevant standards from impact assessments for commercial nuclear power plants have been identified, such as from the NUREG series. The Nordic approaches to safety evaluation, impact assessments and emergency preparedness organisation was also reported as part of the project. The Canadian approach for international port calls was carefully reported and assessed as part of the project, and commended for its broad and comprehensive approach to reactor and vessel design for the nationalities involved, to the design and maintenance of emergency preparedness systems, and the well-structured and broad cooperation between civilian and military institutions. This approach goes beyond the current approach in the Nordic countries, also in the case of Norway, which experience regular port calls from allied nuclear navies. The overall result is a broader understanding in the Nordic countries for the importance of the various parameters for impact assessment of releases from marine reactors, and to the design and maintenance of an emergency preparedness organisation without detailed knowledge of the installation in question

  14. A Nordic approach to impact assessment of accidents with nuclear-propelled vessels

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, O. [Institute for Energy Technology, Kjeller (Norway); Hustveit, S. [Norwegian Radiation Protection Authority, Oesteraes (Norway); Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Hoe, S. [Danish Emergency Management Agency, Birkeroed (Denmark); Lahtinen, J. [STUK, Helsinki (Finland)

    2012-11-15

    The MareNuc project has identified the parameters in a graded approach to impact assessment for marine nuclear reactors. The graded approach is founded on the following elements: 1) More detailed understanding of previous accidents in nuclear-propelled vessels (initiating events, accident developments, release fractions), including release mechanisms (radionuclide retention in vessel construction); 2) Bench-marking of release scenarios using modelling tools applied in the Nordic countries, in addition to demonstration of generally accessible and free software developed by the IAEA; 3) Other systematic approaches to safety assessments of vessel port calls, and to the design and maintenance of emergency preparedness systems; More specifically, increased emphasis compared to earlier analysis after the Kursk accident is given to the engineered vessel barriers. Relevant standards from impact assessments for commercial nuclear power plants have been identified, such as from the NUREG series. The Nordic approaches to safety evaluation, impact assessments and emergency preparedness organisation was also reported as part of the project. The Canadian approach for international port calls was carefully reported and assessed as part of the project, and commended for its broad and comprehensive approach to reactor and vessel design for the nationalities involved, to the design and maintenance of emergency preparedness systems, and the well-structured and broad cooperation between civilian and military institutions. This approach goes beyond the current approach in the Nordic countries, also in the case of Norway, which experience regular port calls from allied nuclear navies. The overall result is a broader understanding in the Nordic countries for the importance of the various parameters for impact assessment of releases from marine reactors, and to the design and maintenance of an emergency preparedness organisation without detailed knowledge of the installation in question

  15. A summary of the Nordic-group conference on safety management

    International Nuclear Information System (INIS)

    Salo, I.; Svenson, O.

    2005-04-01

    The report summarizes the Nordic-group conference on safety management, which took place in Lund, Sweden on October 28-29, 2004. The theme-group was originally created by researchers who had a common interest in cooperation, sharing their results, and discuss topics focusing on safety management and safety culture in nuclear power production, but also in other technologies involving risks. The research has, so far, basically been related to the areas of MTO, partly from a psychological perspective, but also from other perspectives. Today, the group consists primarily of members from Sweden, Finland and Norway. During the last three years the group has gathered twice a year. (au)

  16. Nuclear threats in the vicinity of the Nordic countries. A database, Nordic Nuclear Safety Research

    International Nuclear Information System (INIS)

    Margrethe, I.; Eikelmann, H.

    2003-01-01

    The acute phase of an accident and the possibility of high exposure of the populations are always the most important threats in the emergency preparedness work. Radioactive contamination from an accident can however also cause long time effects for land use and enhanced doses to special population groups and economic problems for agriculture, grazing animals, reindeer industry, hunting, freshwater fishing, tourism and recreation. For planning purposes it is always valuable to be aware of potential radiation hazard and other potential threats in the vicinity of the Nordic countries. Thus, mapping such threats in a Nordic context is an important factor in emergency preparedness in the Nordic countries. The project has dealt with threats from the north west of Russia and the Baltic states. The results from the different activities in the project is generated in a web based database called the 'the base of knowledge'. (orig.)

  17. Nordic co-operation in the field of nuclear safety research, thoughts on the future NKS program

    International Nuclear Information System (INIS)

    Laaksonen, Jukka

    1998-01-01

    Some general objectives for the Nordic co-operation stay for the foreseeable future. Maybe the most important of the objectives is building and maintaining a strong Nordic network between experts who work in this area. This network must be extended to the working level and to the young generation. Younger people must have similar opportunities to the co-operation as the older generation which is now in leading positions, and which to day has many other mutual contacts besides the Nordic frame. Another important objective is to build common Nordic views and to promote together our ideas in wider circles such as EU. Together we would be more influential than separately. In some fields, especially in the radioecology and emergency planning, joining the forces and sharing the common work in a co-ordinated manner could increase productivity and help to avoid overlapping work. The emphasis should be in production, communication, and systematic presentation of the research results, rather than making joint policy or common recommendations. Although the Nordic technology and the Nordic culture have similarities as compared with the rest of the world, there are differences which do not permit easy adoption of common rules and regulations. For instance, the relations between nuclear industry and nuclear regulators are not similar in Sweden and in Finland, and the entire regulatory approach is based on different philosophies. The regulatory organisations of each Nordic country are arranged and attached to the national government structure in a different way. Attempts towards harmonisation should be continued, but it is not the task of the research community and certainly not the objective of the NKS. (EG)

  18. Safety culture in the Finnish and Swedish nuclear industries - history and present

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, T.; Pietikaeinen, E. (Technical Research Centre of Finland, VTT (Finland)); Kahlbom, U. (RiskPilot AB (Sweden)); Rollenhagen, C. (Royal Institute of Technology (KTH) (Sweden))

    2010-03-15

    The report presents results from an interview study that examined the characteristics of the Nordic nuclear branch safety culture. The study also tested the theoretical model of safety culture developed by the authors. The interview data was collected in Sweden (n = 14) and Finland (n = 16). Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). The study gave insight into the nature of safety culture in the nuclear industry. It provided an overview on the variety of factors that people in the industry consider important for safety. The respondents rather coherently saw such psychological states as motivation, mindfulness, sense of control, understanding of hazards and safety and sense of responsibility as important for nuclear safety. Some of the respondents described a certain Nordic orientation towards safety. One characteristic was a sense of personal responsibility for safety. However, there was no clear agreement on the existence of a shared Nordic nuclear safety culture. Sweden and Finland were seen different for example in the way the co-operation between plants and nuclear safety authorities was arranged and re-search activities organized. There were also perceived differences in the way everyday activities like decision making were carried out in the organizations. There are multiple explanations for the differences. The industry in Sweden has been driven by the strong supplier. In Finland the regulator's role in shaping the culture has been more active. Other factors creating differences are e.g. national culture and company culture and the type of the power plant. Co-operation between Nordic nuclear power organizations was viewed valuable yet challenging from safety point of view. The report concludes that a good safety culture requires a deep and wide under-standing of nuclear safety including the various accident mechanisms of the power plants as well as

  19. Safety culture in the Finnish and Swedish nuclear industries - history and present

    International Nuclear Information System (INIS)

    Reiman, T.; Pietikaeinen, E.; Kahlbom, U.; Rollenhagen, C.

    2010-03-01

    The report presents results from an interview study that examined the characteristics of the Nordic nuclear branch safety culture. The study also tested the theoretical model of safety culture developed by the authors. The interview data was collected in Sweden (n = 14) and Finland (n = 16). Interviewees represented the major actors in the nuclear field (regulators, power companies, expert organizations, waste management organizations). The study gave insight into the nature of safety culture in the nuclear industry. It provided an overview on the variety of factors that people in the industry consider important for safety. The respondents rather coherently saw such psychological states as motivation, mindfulness, sense of control, understanding of hazards and safety and sense of responsibility as important for nuclear safety. Some of the respondents described a certain Nordic orientation towards safety. One characteristic was a sense of personal responsibility for safety. However, there was no clear agreement on the existence of a shared Nordic nuclear safety culture. Sweden and Finland were seen different for example in the way the co-operation between plants and nuclear safety authorities was arranged and re-search activities organized. There were also perceived differences in the way everyday activities like decision making were carried out in the organizations. There are multiple explanations for the differences. The industry in Sweden has been driven by the strong supplier. In Finland the regulator's role in shaping the culture has been more active. Other factors creating differences are e.g. national culture and company culture and the type of the power plant. Co-operation between Nordic nuclear power organizations was viewed valuable yet challenging from safety point of view. The report concludes that a good safety culture requires a deep and wide under-standing of nuclear safety including the various accident mechanisms of the power plants as well as a

  20. Evaluation of the safety research programme 1985-1989 by the Nordic Liaison Committee for Atomic Energy

    International Nuclear Information System (INIS)

    Marcus, F.

    1990-01-01

    Joint Nordic research programmes in nuclear safety have been conducted since 1977 under the direction of the Nordic Liaison Committee for Atomic Energy. Each of these four-year programmes is evaluated according to a procedure established by the Nordic Committee for Safety Research, NKS. The latest programme covered the period 1985-89 and included items that are of interest to countries that have nuclear power plants (Finland and Sweden) as well as to countries without (Denmark, Iceland and Norway). This last programme has been evaluated in 1990. The first area (AKT) deals with phenomena that might occur within the reactor containment during accidents. It also deals with potential pathways of radioactive material that could be released, as well as effects in the environment and possible counter-measures. The second area (KAV) investigates several topics related to waste management, such as waste arising in Scandinavia from power plant operation and decommissioning, and related transportation needs. It also deals with the methods used for modelling possible leaks from waste repositories and the uncertainty related to such calculations. The third area (RAS) deals with risk management - how decisions on safety issues are made, and what is the relative risk of nuclear activities. It also deals with methods for safety calculations that are based on a probabilistic approach. In the fourth area (MAT), the tendency of materials to develop cracks under tough external conditions is examined together with corrosion issues relevant to nuclear plants. Finally, the fifth area (INF) deals with the possibility of using modern information technology to support communication and decision making during emergency situations at compelx industrial plants. (author)

  1. The NKS-B Programme for Nordic cooperation on nuclear and radiological emergency preparedness, including measurement strategies, radioecology and waste management

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Leino, Kaisu; Magnússon, Sigurður M.

    2014-01-01

    The NKS platform for Nordic cooperation and competence maintenance in nuclear and radiological safety comprises two parallel programmes: the NKS-R programme on nuclear reactor safety and the NKS-B programme on emergency preparedness. This paper introduces the NKS-B programme and its current...

  2. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    International Nuclear Information System (INIS)

    Tuunanen, J.; Tuomainen, M.

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  3. Intervention principles and levels in the event of a nuclear accident. Final report on the Nordic Nuclear Safety Research Project BER-3

    International Nuclear Information System (INIS)

    Walmod-Larsen, O.

    1994-04-01

    The aim of the Nordic BER-3 project has been to harmonize the Nordic intervention levels after a nuclear accident. The paper deals with the findings and recommendations to be presented to the Nordic authorities as background material for common decisions on the most likely protective actions. In the report sheltering, evaluation and relocation are treated in detail. Iodine prophylaxis and foodstuff restrictions are briefly commented on. The basis for this work is the internationally accepted basic principles for interventions

  4. More than 50 years of Nordic collaboration; Plus de 50 ans de collaboration nordique

    Energy Technology Data Exchange (ETDEWEB)

    Mette, Ohlenschlaeger [Institut de radioprotection (Denmark)

    2010-11-15

    The close neighbourhood, the common history, the common culture and the family of languages are all factors which facilitate Nordic co-operation. The co-operation between the Nordic radiation protection and nuclear safety authorities has a long history going back to the mid fifties. Rolf Sievert was the driving force in the early days. He initiated the strong co-operation between the Nordic regulators which is still ongoing. Nowadays the challenges in the medical and nuclear field and the focus on non- ionizing radiation continuously provide strong arguments for an ongoing and intensive co-operation in the Nordic region between the radiation protection and nuclear safety authorities and broader. (author)

  5. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    Energy Technology Data Exchange (ETDEWEB)

    Tuunanen, J.; Tuomainen, M. [VTT Processes (Finland)

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  6. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  7. Nordic Nuclear Materials Forum for Generation IV Reactors

    International Nuclear Information System (INIS)

    Anghel, C.; Penttilae, S.

    2010-03-01

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  8. Modernisation for maintaining and improving safety at Nordic nuclear power plants

    International Nuclear Information System (INIS)

    Hammer, L.; Wahlstroem, B.; Simola, K.

    1998-02-01

    The safety practices in Finland and Sweden are described and compared in regard of effecting modernisation for safety of the nuclear plants in the two countries, considering new technology and advancing safety requirements as proposed for new reactors. Particular attention is given to strategies for applying new safety requirements to reactors built to earlier standards, and to the interplay between the nuclear utilities and the safety authorities. Overviews are given of past and current modernisation of the nuclear power plants in Finland and Sweden. The management procedures in controlling the implementation of modifications to the nuclear power plants are described and discussed in regard of prevailing differences between Finnish and Swedish practices. A formal modelling technique (SADT) was applied for capture of the essential contents of the relevant documented procedures. Two examples of recent plant modifications in the Finnish nuclear plants in Olkiluoto and Loviisa are described and discussed in greater detail. Recommendations are given. (au)

  9. Interface between radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Bengtsson, G.; Hoegberg, L.

    1991-01-01

    Interface issues concern the character and management of overlaps between radiation protection and nuclear safety in nuclear power plants. Typical examples include the selection of inspection and maintenance volumes in order to balance occupational radiation doses versus the safety status of the plant, and the intentional release to the environment in the course of an accident in order to secure better plant control. The paper discusses whether it is desirable and possible to employ a consistent management of interface issues with trade-offs between nuclear safety and radiation protection. Illustrative examples are quoted from a major Nordic research programme on risk analysis and safety rationale. These concern for instance in-service inspections, modifications of plant systems and constructions after the plant has been taken into operation, and studies on the limitations of probabilistic safety assessment. They indicate that in general there are no simple rules for such trade-offs

  10. Nordic nuclear emergency exercises. Final report

    International Nuclear Information System (INIS)

    Bennerstedt, T.; Stranden, E.; Salo, A.

    1995-01-01

    In all Nordic countries, nuclear emergency provisions have been revised following the Chernobyl accident. Local and national exercises are carried out regularly in each country. Several actions have been taken to harmonize the emergency approaches of the Nordic countries. In order to further promote consistent decisions in an emergency situation, two Nordic exercises were conducted in 1993. It was important to see if all five countries (Denmark, Finland, Iceland, Norway and Sweden) responded in a similar way to a given situation, as far as risk assessment and protective measures were concerned. The exercises were mainly aimed at decision makers and advisers of the five national emergency organizations. Thus, the exercises did not include comparison of underlying calculations on, e.g., atmospheric trajectories or transfer of radioactive material from air to ground. Such functions were tested separately in drills that also formed part of the Nordic emergency preparedness program. The exercises included an acute-phase situation (NORA), and a late-phase situation (ODIN). The Nordic exercises aroused international interest, and hence observers from IAEA, OECD/NEA and the European Union were invited to the exercises. NORA was observed by representatives from IAEA (in Finland) and OECD/NEA (in Sweden). ODIN was attended by IAEA (in Sweden) and the European Union (in Norway). Generally speaking, regional exercises such as NORA and ODIN help improve national emergency preparedness planning, organization and operations as well as international coordination. (EG)

  11. Competitive nuclear production on the nordic deregulated electricity market

    International Nuclear Information System (INIS)

    Bohl, T.

    2000-01-01

    The Nordic electricity market has been partly deregulated since 1994. Today only Denmark follows the timetable recommended by the European Union, while Sweden, Norway and Finland are completely deregulated. As in most countries, the production of electricity is deregulated while the distribution is still a monopoly. This deregulation of the electricity market has created a new situation for plant life management. In order to be competitive on the market it is important to cut cost down a level when the nuclear power companies earn money again. All means to cut cost have to be used while still maintaining safety and the possibilities for operation over at least 40+ years. The possibilities to invest in modernization are limited to the absolutely necessary modifications. All investments must be very thoroughly questioned and the money can only be spent where most benefit is gained. This means new prerequisites for the absolute necessary long-strategic planning. New safety requirements from the authorities have to be discussed between the industry and the authority. The requirement cost must be compared to the benefit to safety. The authority is today requested to carry out such analyses and do so in most cases. Since the electricity market is international the requirements of the authorities must be harmonized on the whole market. The political threat against nuclear power is serious in many countries and it is important to continue working with public acceptance and lobbying. Especially in Sweden a lot of effort is spent on trying to change the taxation of nuclear power. In the near future increasing electricity demand will make the prices go up to a level when nuclear power companies earn money again. The very serious worries about climate change will also strengthen the competitiveness of nuclear power. (author)

  12. State-of-the-art research: Reflections on a concerted Nordic-Baltic nuclear energy effort

    Energy Technology Data Exchange (ETDEWEB)

    Husdal, Lars; Tveit, Jesper; Vaagen, Jan S; Ridikas, Danas

    2009-09-15

    Quite a few hold the view that nuclear energy will have its renaissance in the not too distant future. Technology is, however, a necessary, but not sufficient condition. The needed prerequisites represent a complex issue. With increasing energy demand and depletion of non-renewable energy resources, nuclear will have to prove its role in an increasing energy mix, globally, regionally and often also nationally. Based on its history, experience with coordinated interplay in electricity production from a variety of energy sources, and science engagements, we argue for a future Nordic/Baltic SHOWCASE: A nuclear weapons free and proliferation safe nuclear energy supplier in the region, with a concerted role in competence building and in international ventures, and with focus on operation, safety, economy and societal aspects. (Author)

  13. State-of-the-art research: Reflections on a concerted Nordic-Baltic nuclear energy effort

    International Nuclear Information System (INIS)

    Husdal, Lars; Tveit, Jesper; Vaagen, Jan S.; Ridikas, Danas

    2009-09-01

    Quite a few hold the view that nuclear energy will have its renaissance in the not too distant future. Technology is, however, a necessary, but not sufficient condition. The needed prerequisites represent a complex issue. With increasing energy demand and depletion of non-renewable energy resources, nuclear will have to prove its role in an increasing energy mix, globally, regionally and often also nationally. Based on its history, experience with coordinated interplay in electricity production from a variety of energy sources, and science engagements, we argue for a future Nordic/Baltic SHOWCASE: A nuclear weapons free and proliferation safe nuclear energy supplier in the region, with a concerted role in competence building and in international ventures, and with focus on operation, safety, economy and societal aspects. (Author)

  14. Radioecology in Nordic limnic systems - present knowledge and future prospects

    International Nuclear Information System (INIS)

    1991-01-01

    This report was compiled during a meeting within the aquatic group in the Nordic Nuclear Safety Research Programme, in November 1990. It is a joint effort to summarize the results from post - Chernobyl research in Nordic limnic ecosystems. The most important pathways, processes and factors determining the 137 CS concentration in fish are identified and discussed. (au)

  15. Aspects of nuclear waste management after a 4-year Nordic programme

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-01-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (author)

  16. Nuclear power in the Nordic countries

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Of the Nordic countries-Sweden, Finland, Denmark, and Norway-the first two have chosen nuclear energy to supply a large portion of their electrical generation requirements. Finland has opted for two Western-style boiling water reactors and two modified Russian-designed pressurized water reactors. The country has led the nuclear nations of the world in the 1990s with its capacity factor. Domestic reports state that nuclear is the lowest-cost electrical generation source, and Finland will need additional capacity by 2000. The country's nuclear waste storage facilities are in operation, with more under construction. In this, the second part of a two-part feature (the first part viewed Sweden's nuclear program), the attention is focused on Finland: its government, where it has positioned itself in the world economy, and the internal conflicts of how, or if, to add the needed electrical capacity

  17. Guidelines for Nordic co-operation concerning nuclear installations in the border areas between Denmark, Finland, Norway and Sweden in respect of nuclear safety conditions

    International Nuclear Information System (INIS)

    1976-01-01

    These Guidelines were established by an Agreement between the Nordic countries. Their purpose is to set up a consultation mechanism between those countries regarding the projected setting up of nuclear facilities near borders which would be likely to affect their respective territories [fr

  18. An overview of current non-nuclear radioactive waste management in the Nordic countries and considerations on possible needs for enhanced inter-Nordic cooperation

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Brewitz, Erica; Magnússon, Sigurður M.

    -hanced Nordic cooperation within the area. The radiation safety authorities in the Nordic countries were all asked to produce a current status report including thoughts about possible needs for enhanced cooperation. The material was presented and discussed at a meeting in Copenhagen of rep-resentatives of NKS...

  19. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.

    2012-01-01

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  20. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (Norway))

    2012-01-15

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  1. Nordic Guidance Levels for Patient Doses in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Saxebol, G.; Olerud, H.M.; Hjardemaal, O.; Leitz, W.; Servomaa, A.; Walderhaug, T.

    1998-01-01

    Within the framework of Nordic authoritative cooperation in radiation protection and nuclear safety, recommendations have been prepared dealing with dose constraints in diagnostic radiology. A working group with participants from all the Nordic countries has met and discussed possible implementations of the ICRP dose constraint for medical radiology. Dose constraints, expressed as guidance levels, were specified for six different radiological examinations, i.e. chest, pelvis, lumbar spine, urography, barium meal and enema in units of kerma-area product and entrance surface dose. The recommendations are described in report No 5 in the series 'Report on Nordic Radiation Protection Cooperation'. Examples of dose distributions and factors affecting the patient dose are described in the report. (author)

  2. Nordic nuclear emergency exercises. Final report of the BER-5 project

    International Nuclear Information System (INIS)

    Bennerstedt, T.; Stranden, E.; Salo, A.

    1994-05-01

    In all Nordic countries, nuclear emergency provisions have been revised following the Chernobyl accident. Local and national exercises are carried out regularly in each of the countries. Several actions have been taken to harmonize the approaches of individual Nordic countries. In order to further promote similar decision making procedures in an emergency situation, two Nordic exercises were conducted in 1993. It was important to see if all five countries (Denmark, Finland, Iceland, Norway and Sweden) responded in a similar way to a given situation, as far as risk assessment and countermeasures were concerned. The exercises were mainly aimed at decision makers and advisers of the five national emergency organizations. Thus, the exercises did not include comparison of underlying calculations on, e.g., atmospheric trajectories or transfer of radioactive material from air to ground. Such functions were tested separately in drills that formed part of the overall Nordic emergency preparedness program. It turned out that considerable effort is required to prepare exercises of this kind and magnitude. In each country, a national exercise leader was appointed. A Nordic evaluation team was set up. Common rules for the simulated inputs during the exercise and for the evaluators were decided on. The scenarios were prepared by an independent group. An essential planning item is the coordination of the Nordic exercises with those performed on a more routine basis in each country. The exercises included an acute-phase situation (NORA), and a late-phase situation (ODIN)

  3. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  4. A compilation of experiences of corrosion in Nordic nuclear power plants

    International Nuclear Information System (INIS)

    Norring, K.; Rosborg, B.

    1985-01-01

    14 reactors in commercial operation in the Nordic countries exhibit a great variety of corrosion induced damages. The largest number of such damages have affected turbine plants and seawater cooling systems. More severe cases of corrosion which have been experienced are intergranular stress corrosion cracking of steam generator tubing, stainless steel piping, and high strenght bolts and screws, together with erosion corrosion of structural steel in turbine plants. In all units in operation some form of corrosion damage has occurred. In a worldwide perspective the corrosion problems in the Nordic nuclear power plants have been of manageable extent

  5. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  6. Knowledge management in Nordic NPPs. Summary report of the findings from the workshop

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, S. [Inst. for Energy Technology, Halden (Norway)

    2005-04-01

    The title of the reported project is 'Nordic Nuclear Safety Research (NKS) Workshop on Knowledge Management in Nordic NPPs'. One important objective of this workshop was to explore if and how knowledge retention activities could be coordinated between the various Nordic utilities. The main conclusions of the workshop can be summed up as follows: Establishing good knowledge management routines is recognized by many utilities today. However, there seem to be no real consensus on what should be focused on in the present situation. Maybe the most pressing problem is to avoid undesirable consequences of the massive retirement soon to follow. Still, there is no consensus on what those consequences might be, and what should be done to avoid them. (au)

  7. Knowledge management in Nordic NPPs. Summary report of the findings from the workshop

    International Nuclear Information System (INIS)

    Nilsen, S.

    2005-04-01

    The title of the reported project is 'Nordic Nuclear Safety Research (NKS) Workshop on Knowledge Management in Nordic NPPs'. One important objective of this workshop was to explore if and how knowledge retention activities could be coordinated between the various Nordic utilities. The main conclusions of the workshop can be summed up as follows: Establishing good knowledge management routines is recognized by many utilities today. However, there seem to be no real consensus on what should be focused on in the present situation. Maybe the most pressing problem is to avoid undesirable consequences of the massive retirement soon to follow. Still, there is no consensus on what those consequences might be, and what should be done to avoid them. (au)

  8. Safety research in the field of energy production. Plan for continued Nordic projects

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, P E [Statens Vattenfallsverk, Stockholm (Sweden); Berg, J [Institutt for Atomenergi, Kjeller (Norway); Eckered, T [Statens Kaernkraftinspektion, Stockholm (Sweden)

    1980-01-01

    NGS, an ad hoc group of the Nordic Co-ordination Committee for Atomic Energy, has prepared this survey of proposed cooperative projects as a continuation of previous projects. New areas to be given priority are:- reactor safety, environmental effects in energy production and human reliability. Continued projects are:- quality assurance, radioactive waste and radioecology. (JIW)

  9. Management of high level nuclear waste - the nordic approach

    International Nuclear Information System (INIS)

    Engstrom, S.; Aikas, T.

    2000-01-01

    Both the Swedish and the Finnish nuclear waste programmes are aimed at disposal of encapsulated spent nuclear fuel into the crystalline bedrock. In both countries research and development work have been performed since the 1970's. The focus of the programme in both countries is now shifting to practical demonstration of encapsulation technology. In parallel a site-selection programme is being carried out. Finland has selected a site at Eurajoki and is currently waiting for the Government to agree to the choice of the site. In Sweden, at least two sites will be selected by year 2001 with the goal, after performed drillings, to select one of them around 2008. Site selection for the deep repository is probably the most difficult and most sensitive part of the whole programme. The repository will be sited at a suitable place in Sweden respectively Finland where high safety requirements will be met with the consent of the concerned municipality. If there is a Nordic approach to tackle this issue that would probably be: - A stepwise approach in which the disposal is implemented in gradually each step having a decision making stage leading to a commitment of various parties involved to the following stage. -A total transparency of the work performed and the decision making process. - A genuine will from the industry to establish a dialogue with the public in the involved communities. - A will to take the time and the patience necessary to establish a constructive working relationship with the communities participating in the site selection. (authors)

  10. Radiological Protection in Transition. Proceedings of the 14. Regular Meeting of the Nordic Society for Radiation Protection, NSFS

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, J; Cederlund, T; Drake, P; Finne, I E; Glansholm, A; Jaworska, A; Paile, W; Rahola, T [eds.

    2005-09-01

    These proceedings comprise the papers and posters presented at the 14th Regular Meeting of the Nordic Society for Radiation Protection, the theme of which was 'Radiological protection in transformation'. There were sessions on international developments and stakeholder involvement, on education, training, and measurements, on emergencies, on nuclear installations, on non-ionising radiation, on medical radiation, on industrial uses of radiation, on radiobiology, on natural sources of radiation, on non-nuclear waste, on NKS (Nordic Nuclear Safety Research), on radioecology and artificial radionuclides in the environment, and on regulatory and international activities. In addition to invited lectures and proffered papers, there were educational primer lessons in the mornings and several roundtable discussions. In all, there were almost 100 contributions from participants representing at least 10 different countries. The range of different topics covered, the scientific quality of the contributions, and the interest shown in this meeting reflect the high standing of radiological protection in the Nordic countries.

  11. Radiological Protection in Transition. Proceedings of the 14. Regular Meeting of the Nordic Society for Radiation Protection, NSFS

    International Nuclear Information System (INIS)

    Valentin, J.; Cederlund, T.; Drake, P.; Finne, I.E.; Glansholm, A.; Jaworska, A.; Paile, W.; Rahola, T.

    2005-09-01

    These proceedings comprise the papers and posters presented at the 14th Regular Meeting of the Nordic Society for Radiation Protection, the theme of which was 'Radiological protection in transformation'. There were sessions on international developments and stakeholder involvement, on education, training, and measurements, on emergencies, on nuclear installations, on non-ionising radiation, on medical radiation, on industrial uses of radiation, on radiobiology, on natural sources of radiation, on non-nuclear waste, on NKS (Nordic Nuclear Safety Research), on radioecology and artificial radionuclides in the environment, and on regulatory and international activities. In addition to invited lectures and proffered papers, there were educational primer lessons in the mornings and several roundtable discussions. In all, there were almost 100 contributions from participants representing at least 10 different countries. The range of different topics covered, the scientific quality of the contributions, and the interest shown in this meeting reflect the high standing of radiological protection in the Nordic countries

  12. Radiological Protection in Transition. Proceedings of the 14. Regular Meeting of the Nordic Society for Radiation Protection, NSFS

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, J.; Cederlund, T.; Drake, P.; Finne, I.E.; Glansholm, A.; Jaworska, A.; Paile, W.; Rahola, T. (eds.)

    2005-09-01

    These proceedings comprise the papers and posters presented at the 14th Regular Meeting of the Nordic Society for Radiation Protection, the theme of which was 'Radiological protection in transformation'. There were sessions on international developments and stakeholder involvement, on education, training, and measurements, on emergencies, on nuclear installations, on non-ionising radiation, on medical radiation, on industrial uses of radiation, on radiobiology, on natural sources of radiation, on non-nuclear waste, on NKS (Nordic Nuclear Safety Research), on radioecology and artificial radionuclides in the environment, and on regulatory and international activities. In addition to invited lectures and proffered papers, there were educational primer lessons in the mornings and several roundtable discussions. In all, there were almost 100 contributions from participants representing at least 10 different countries. The range of different topics covered, the scientific quality of the contributions, and the interest shown in this meeting reflect the high standing of radiological protection in the Nordic countries.

  13. Nordic network of meteorological services engaged in nuclear preparedness - NKS-MetNet

    Energy Technology Data Exchange (ETDEWEB)

    Persson, C; Kolax, M [Swedish Meteorological and Hydrological Institute, SHMI (Sweden); Baklanov, A; Soerensen, Jens H [Danish Meteorological Institute, DMI (Denmark); Sofiev, M; Valkama, I [Finnish Meteorological Institute, FMI (Finland); Karlsdottier, S [Icelandic Meteorological Office, IMO (Ireland); Bartnicki, J; Saltbones, J [Norwegian Meteorological Institute, met.no (Norway)

    2007-03-15

    The current NKS-MetNet project was initiated to strengthen the Nordic collaboration within the field of real-time atmospheric transport modelling for nuclear emergency preparedness and to improve its contacts to the Nordic radiation protection authorities. A backup facility for the network has been established regarding exchange of operational real-time long-range dispersion model calculations. The facility consists of national password protected Web sites, at which some few basic results (maps) of atmospheric dispersion model calculations (forecasts) in emergency situations (or exercises) can be made available to the network. Technical problems at one institute will not influence the calculations or presentations from the other participants, which makes the system robust. The project has fulfilled its main harmonization goal by bringing the Nordic emergency modelling towards more unified approaches of the presentations of results and introduced a voluntary unification of the model output formats. It was left optional to upload raw data in a format enabling import into one of the Decision Support System (DSS) ARGOS or RODOS. However, implementation of either of these formats is feasible only in case of availability and utilization of the systems by the end-users in the specific country. Within the Nordic countries to-date most but not all of the models are capable of producing the ARGOS-compatible results. Another format of the output data supported by almost all MetNet participants is ENSEMBLE a standard developed within the scope of the EC ENSEMBLE project that currently continues on a voluntary basis, regulated by a joint MoU, and covers nearly all European emergency-engaged services. It seems to be feasible to keep the Nordic network of MetNet Web sites also in a near future and continue its development regardless of presence of a third-party large-scale DSS, whether it is ARGOS, RODOS, ENSEMBLE or any other. Foreseen future close cooperation of the

  14. Nordic network of meteorological services engaged in nuclear preparedness - NKS-MetNet

    International Nuclear Information System (INIS)

    Persson, C.; Kolax, M.; Baklanov, A.; Soerensen, Jens H.; Sofiev, M.; Valkama, I.; Karlsdottier, S.; Bartnicki, J.; Saltbones, J.

    2007-03-01

    The current NKS-MetNet project was initiated to strengthen the Nordic collaboration within the field of real-time atmospheric transport modelling for nuclear emergency preparedness and to improve its contacts to the Nordic radiation protection authorities. A backup facility for the network has been established regarding exchange of operational real-time long-range dispersion model calculations. The facility consists of national password protected Web sites, at which some few basic results (maps) of atmospheric dispersion model calculations (forecasts) in emergency situations (or exercises) can be made available to the network. Technical problems at one institute will not influence the calculations or presentations from the other participants, which makes the system robust. The project has fulfilled its main harmonization goal by bringing the Nordic emergency modelling towards more unified approaches of the presentations of results and introduced a voluntary unification of the model output formats. It was left optional to upload raw data in a format enabling import into one of the Decision Support System (DSS) ARGOS or RODOS. However, implementation of either of these formats is feasible only in case of availability and utilization of the systems by the end-users in the specific country. Within the Nordic countries to-date most but not all of the models are capable of producing the ARGOS-compatible results. Another format of the output data supported by almost all MetNet participants is ENSEMBLE a standard developed within the scope of the EC ENSEMBLE project that currently continues on a voluntary basis, regulated by a joint MoU, and covers nearly all European emergency-engaged services. It seems to be feasible to keep the Nordic network of MetNet Web sites also in a near future and continue its development regardless of presence of a third-party large-scale DSS, whether it is ARGOS, RODOS, ENSEMBLE or any other. Foreseen future close cooperation of the

  15. Agricultural countermeasures in the Nordic countries after a nuclear accident

    International Nuclear Information System (INIS)

    Brink, M.; Lauritzen, B.

    2001-12-01

    This report by the NKSBOK-1.4 project group describes agricultural countermeasures after a nuclear accident, aiming at the reduction of radiation doses to man from the ingestion of foodstuffs. The intention has been to collect information based on common understanding that can be used as a Nordic handbook and in further developments of the national preparedness systems. The report covers two areas: the gathering and dissemination of information before and during a nuclear emergency, and the development of a countermeasures strategy. A number of factors are discussed, which will affect the choice of countermeasure(s), and as a case study, a technical cost-benefit assessment of a specific countermeasure is described. (au)

  16. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  17. The use of living PSA in safety management, a procedure developed in the nordic project ''safety evaluation, NKS/SIK-1''

    International Nuclear Information System (INIS)

    Johanson, G.; Holmberg, J.

    1994-01-01

    The essential objective with the development of a living PSA concept is to bring the use of the plant specific PSA model out to the daily safety work to allow operational risk experience feedback and to increase the risk awareness of the intended users. This paper will present results of the Nordic project ''Safety Evaluation, NKS/SIK-1''. The SIK-1 project has defined and demonstrated the practical use of living PSA for safety evaluation and for identification of possible improvements in operational safety. Subjects discussed in this paper are dealing with the practical implementation and use of PSA to make proper safety related decisions and evaluation. (author). 24 refs, 1 fig., 1 tab

  18. PREFACE: The 6th Nordic Meeting on Nuclear Physics

    Science.gov (United States)

    Løvhøiden, G.; Thorsteinsen, T. F.; Vaagen, J. S.

    1990-01-01

    After an unintended time gap of five years, the series of regular Nordic meetings on nuclear physics was continued with the 6th Nordic Meeting, August 10-15, 1989. The site was Utgarden in the outskirts of Kopervik, the administration center for the Saga island of Karmøy on the west-coast of Norway. Utgarden, a "peoples high-school'' with a kitchen, housing facility and a neighboring modern gymnasium with fine lecture halls, proved to be an inexpensive and adequate site for the meeting. From the time of the Vikings, the sound between Karmøyy and the mainland has been a vital part of the way to the north. Mobility and international orientation is still a signature of an area where today essential parts of Norway's oil- and metal industry are located. The conference program included a session on nuclear physics in industry and society, with contributed talks from a number of companies and technology/research institutions, which also sponsored the meeting. Lunch visits to Hydro's aluminium plant on Karmøy or alternatively to Statoil's gas terminal on the mainland, were included in the program. The scientific program gives a cross section of nuclear physics activities in which researchers from the Nordic countries are involved nowadays. The spectrum is rich, and the emphasis has shifted to higher energies than was the case five years ago. We appreciate the possibility to present this overview in a separate volume of Physica Scripta. The present issue covers nearly all the talks given at the meeting. The order deviates, however, somewhat from that of the conference program. The organizing committee tried to encourage in various ways the participation of young physicists; this effort was truely rewarded. The young participants put their imprint on the activities in the lecture halls and even more on the soccer arena. The meeting was sponsored by The University of Bergen, The Nordic Accelerator Committee, NORDITA, The Norwegian Research Council for Science and the

  19. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  20. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  1. Monitoring artificial radioactivity in the Nordic countries. BER-2 final report

    International Nuclear Information System (INIS)

    Bennerstedt, T.; Rantanen, H.; Mortensen, B.N.

    1994-05-01

    This final report of the Nordic Nuclear Safety Research Project BER-2 gives detailed information on the monitoring of artificial radioactivity in the Nordic countries (Denmark, Finland, Iceland, Norway and Sweden). A comparison shows that for early warning the Nordic countries use a mix of stations measuring external gamma radiation and stations measuring airborne radioactivity. There is a trade-off between fast alarms and the sensitivity threshold. Total gamma measuring stations cannot detect increases smaller than the variations of normal background. Some stations, notably all Danish stations, are equipped with sodium iodide (NaI) type detectors, and operated in such a way that stray peaks due to an increase in the natural radon background can be subtracted. A Nordic Radiation Data Exchange System has been set up and tested on a trial basis. This system focuses on dose rate data from the automatic gamma monitoring stations. An important goal achieved in the project was to determine which data is essential, and to specify a common format for the data exchange. Various telecommunication methods have been tested, and the actual transfer of monitoring results between the Nordic countries was started. It is recommended as a future approach that every country appoint one organization with the responsibility of operating a national information data base, which can be commonly accessed from all the Nordic countries. A procedure for establishing a system of this type has been outlined

  2. Nordic study on reactor waste. Technical part 1 and 2

    International Nuclear Information System (INIS)

    1981-08-01

    An important part of the Nordic studies on system- and safety analysis of the management of low and medium level radioactive waste from nuclear power plants, is the safety analysis of a Reference System. This reference system was established within the study and is described in this Technical Part 1. The reference system covers waste management Schemes that are potential possibilities in either one of the four participating Nordic countries. The reference system is based on: a power reactor system consisting of 6 BWR's of 500 MWe each, operated simultaneously over the same 30 year period, and deep bed granular ion exchange resin wastes from the Reactor Water Clean-Up System (RWCS and powdered ion exchange resin from the Spent Fuel Pool Cleanup System (SFPCS)). Both waste types are supposed to be solidified by mixing with cement and bitumen. Two basic types of containers are considered. Standard 200 liter steel drums and specially made cubicreinforced concrete moulds with a net volume of 1 m 3 . The Nordic study assumes temporary storage of the solidified waste for a maximum of 50 years before the waste is transferred to the disposal site. Transportation of the waste from the storage facilitiy to the disposal site will be by road or sea. Three different disposal facilities are considered: Shallow land burial, near surface concrete bunker, and rock cavern with about 30 m granite cover. (EG)

  3. Performance analysis for waste repositories in the nordic countries. Report for project AFA-1.2

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [VTT Energy (Finland); Broden, K. [Studsvik RadWaste AB (Sweden); Carugati, S.; Brodersen, K. [Forskningscenter Risoe (Denmark); Walderhaug, T. [Icelandic Radiation Protection Institute (Iceland); Helgason, J. [Ekra Geological Consulting (Iceland); Sneve, M.; Hornkjoel, S. [Norwegian Radiation Protection (Norway); Backe, S. [IFE (Norway)

    1997-02-01

    The Nordic Nuclear Safety Research (NKS) project (AFA-1) focused on safety in the final disposal of long-lived low and medium level radioactive waste and its sub project (AFA-1.2), where this report has been produced, is dealing with the performance analysis of the engineered barrier system (near-field) of the repositories for low-and medium level wastes. The topic intentionally excludes the discussion of the characteristics of the geological host medium. Therefore a more generic discussion of the features of performance analysis is possible independent of the fact that different host media are considered in the Nordic countries. The different waste management systems existing and planned in the Nordic countries are shortly described in the report. In the report main emphasis is paid on the general repositories. Some of the phenomena and interactions relevant for a generic type of repository are discussed as well. Among the different approaches for the development of scenarios for safety and performance analyses one particular method - the Rock Engineering System (RES) - was chosen to be demonstratively tested in a brainstorming session, where the possible interactions and their safety significance were discussed employing a simplified and generic Nordic repository system as the reference system. As an overall impression, the AFA-project group concludes that the use of the RES approach is very easy to learn even during a short discussion session. The use of different ways to indicate the safety significance of various interactions in a graphical user interface increases the clarity. Within the project a simple software application was developed employing a generally available spread sheet programme. The developed tool allows an easy opportunity to link the cell specific comments readily available for the `reader` of the obtained results. A short review of the performance analyses carried out in the Nordic countries for actual projects concerning repositories for

  4. Performance analysis for waste repositories in the nordic countries. Report for project AFA-1.2

    International Nuclear Information System (INIS)

    Vuori, S.; Broden, K.; Carugati, S.; Brodersen, K.; Walderhaug, T.; Helgason, J.; Sneve, M.; Hornkjoel, S.; Backe, S.

    1997-02-01

    The Nordic Nuclear Safety Research (NKS) project (AFA-1) focused on safety in the final disposal of long-lived low and medium level radioactive waste and its sub project (AFA-1.2), where this report has been produced, is dealing with the performance analysis of the engineered barrier system (near-field) of the repositories for low-and medium level wastes. The topic intentionally excludes the discussion of the characteristics of the geological host medium. Therefore a more generic discussion of the features of performance analysis is possible independent of the fact that different host media are considered in the Nordic countries. The different waste management systems existing and planned in the Nordic countries are shortly described in the report. In the report main emphasis is paid on the general repositories. Some of the phenomena and interactions relevant for a generic type of repository are discussed as well. Among the different approaches for the development of scenarios for safety and performance analyses one particular method - the Rock Engineering System (RES) - was chosen to be demonstratively tested in a brainstorming session, where the possible interactions and their safety significance were discussed employing a simplified and generic Nordic repository system as the reference system. As an overall impression, the AFA-project group concludes that the use of the RES approach is very easy to learn even during a short discussion session. The use of different ways to indicate the safety significance of various interactions in a graphical user interface increases the clarity. Within the project a simple software application was developed employing a generally available spread sheet programme. The developed tool allows an easy opportunity to link the cell specific comments readily available for the 'reader' of the obtained results. A short review of the performance analyses carried out in the Nordic countries for actual projects concerning repositories for

  5. Nuclear safety and regulation

    International Nuclear Information System (INIS)

    Kim, Hho Jung

    2000-03-01

    This book contains 12 chapters, which are atom and radiation, nuclear reactor and kinds of nuclear power plant, safeguard actuation system and stability evaluation for rock foundation of nuclear power plant, nuclear safety and principle, safety analysis and classification of incident, probabilistic safety assessment and major incident, nuclear safety regulation, system of nuclear safety regulation, main function and subject of safety regulation in nuclear facilities, regulation of fuel cycle and a nuclear dump site, protection of radiation and, safety supervision and, safety supervision and measurement of environmental radioactivity.

  6. Nuclear safety

    International Nuclear Information System (INIS)

    1991-02-01

    This book reviews the accomplishments, operations, and problems faced by the defense Nuclear Facilities Safety Board. Specifically, it discusses the recommendations that the Safety Board made to improve safety and health conditions at the Department of Energy's defense nuclear facilities, problems the Safety Board has encountered in hiring technical staff, and management problems that could affect the Safety Board's independence and credibility

  7. Nuclear safety. Seguranca nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Aveline, A [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica

    1981-01-01

    What is nuclear safety Is there any technical way to reduce risks Is it possible to put them at reasonable levels Are there competitiveness and economic reliability to employ the nuclear energy by means of safety technics Looking for answers to these questions the author describes the sources of potential risks to nuclear reactors and tries to apply the answers to the Brazilian Nuclear Programme. (author).

  8. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  9. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  10. Marine radioecology. Final reports from sub-projects within the Nordic nuclear safety research project EKO-1

    International Nuclear Information System (INIS)

    Palsson, S.E.

    2001-04-01

    This report contains a collection of eight papers describing research done in the NKS/EKO-1 project. It also contains a preface giving a summary of the results. The EKO-1 project as a whole has been described in the report NKS(97)FR4. The aim of the project was to make a joint Nordic study on radionuclides in sediments and water and the interaction between these two phaseS. Relatively less emphasis had been put on this factor compared to others in previous Nordic studies on marine radioecology. For some of the participating countries this work was the first of its kind undertaken. The project involved field, laboratory and model studies. The work and results helped to highlight the important role of sediments when assessing the consequences of real or possible releases of radionuclides to the marine environment (au)

  11. National Nuclear Safety Report 2001. Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2001-01-01

    The First National Nuclear Safety Report was presented at the first review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This second National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the first review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex 1. In general, the information contained in this Report has been updated since March 31, 1998 to March 31, 2001. Those aspects that remain unchanged were not addressed in this second report with the objective of avoiding repetitions and in order to carry out a detailed analysis considering article by article. As a result of the above mentioned detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention

  12. National nuclear safety report 2004. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2004-01-01

    The second National Nuclear Safety Report was presented at the second review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This third National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the second review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex I and those belonging to the second review meeting are included as Annex II. In general, the information contained in this Report has been updated since March 31, 2001 to April 30, 2004. Those aspects that remain unchanged were not addressed in this third report. As a result of the detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention. The questions and answers originated at the Second Review Meeting are included as Annex III

  13. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  14. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  15. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  16. Enhancing operational nuclear safety

    International Nuclear Information System (INIS)

    Sengoku, Katsuhisa

    2008-01-01

    Since Chernobyl, the dictum A n accident anywhere is an accident everywhere i s a globally shared perception. The paper presents challenges to the international nuclear community: globalization, sustainable and dynamic development, secure, safe and clean energy supply, nuclear r enaissance , public concern for nuclear safety, nuclear security, and technology and management. Strong national safety infrastructures and international cooperation are required to maintain a high level of nuclear safety and security worldwide. There is an increasing number of countries thinking of going nuclear: Morocco, Indonesia, Iran, Poland, Turkey, Bangladesh, Egypt, Vietnam, Chile, Nigeria, Malaysia, Thailand, Uruguay, Tunisia, Algeria. Another serious incident will jeopardize the prospect of nuclear renaissance. Safety and security are preconditions for countries newly introducing NPP as well as for those with mature nuclear programmes. The Global Nuclear Safety Regime (GNSR) is referred to as the institutional, legal and technical framework to achieve worldwide implementation of the safety of nuclear installations. At the top of the framework is the Convention on Nuclear Safety which covers the nuclear power plants. The convention has 56 contracting parties which meet triennially where national reports are presented and subject to the review of peers. The International Atomic Energy Agency (IAEA) undertakes a programme to foster the GNSR through the establishment of IAEA safety standards and related publications. The programme provides for the application of standards for the (1) safety of nuclear installations, (2) safety of radioactive sources, (3) safe transport of radioactive material and (4) management of radioactive waste. It also provides for the security of nuclear installations, nuclear material and radioactive material. The safety standards hierarchy is as follows: safety fundamental, safety requirements and safety guides. The safety fundamentals are the bases for IAEA

  17. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  18. Nuclear Safety Review 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis.

  19. Nuclear Safety Review 2013

    International Nuclear Information System (INIS)

    2013-07-01

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis

  20. Advances in operational safety and severe accident research

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation (Finland)

    2002-02-01

    A project on reactor safety was carried out as a part of the NKS programme during 1999-2001. The objective of the project was to obtain a shared Nordic view of certain key safety issues related to the operating nuclear power plants in Finland and Sweden. The focus of the project was on selected central aspects of nuclear reactor safety that are of common interest for the Nordic nuclear authorities, utilities and research bodies. The project consisted of three sub-projects. One of them concentrated on the problems related to risk-informed deci- sion making, especially on the uncertainties and incompleteness of probabilistic safety assessments and their impact on the possibilities to use the PSA results in decision making. Another sub-project dealt with questions related to maintenance, such as human and organisational factors in maintenance and maintenance management. The focus of the third sub-project was on severe accidents. This sub-project concentrated on phenomenological studies of hydrogen combustion, formation of organic iodine, and core re-criticality due to molten core coolant interaction in the lower head of reactor vessel. Moreover, the current status of severe accident research and management was reviewed. (au)

  1. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 1: The Nordic Point of View - A user needs analysis

    International Nuclear Information System (INIS)

    Oxstrand, J.; Boring, R.L.

    2010-12-01

    The main goal of this Nordic Nuclear Safety Research (NKS) council project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. This project is intended to work across (and hopefully diminish) the borders that exist between human reliability analysis (HRA) and human-system interaction, human performance, human factors, and probabilistic risk assessment at Nordic nuclear power plants. This project consists of two major phases, where the initial phase (phase 1) is a study of current practices in the Nordic region, which is presented in this report. Even though the project covers the synergies between HRA and all other relevant fields, the main focus for the phase is to bridge HRA and design. Interviews with 26 Swedish and Finnish plant experts are summarized the present report, and 10 principles to improve the utilization of HRA at plants are presented. A second study, which is not documented in this preliminary report, will chronicle insights into how the US nuclear industry works with HRA. To gain this knowledge the author will conduct interviews with the US regulator, research laboratories, and utilities. (Author)

  2. Reliability Data Handbook for Piping Components in Nordic Nuclear Power Plants - R Book, Phase 2

    International Nuclear Information System (INIS)

    Hedtjaern Swaling, Vidar; Olsson, Anders

    2011-02-01

    This report presents results of a long research and development project financed by the regulatory body Straalsaekerhetsmyndigheten (SSM) (former SKI), the Swedish nuclear power plant licensees. The report presents a harmonized method for estimating Reliability Data for Piping Components in ASME code class 1 and 2 piping components (R-Book). Data in the R-Book is measured based on 'data driven' strategy. This first version of the R-Book comprises rupture frequencies and failure rates for all systems where ASME Code Class 1 or 2 events could be found in the OECD OPDE database. Nordic and Non-Nordic data are presented separately. Worldwide experience data is used to set up the relevant calculation cases, i.e. intersections of attributes for which there are at least one event present

  3. The sampling and analysing methods of radionuclides used in the Nordic countries for environmental samples

    International Nuclear Information System (INIS)

    Taipale, Tarja K.

    1985-01-01

    The Radioecology Group under the Nordic Liaison Committee for Atomic Energy has considered it to be of great importance to improve the comparability of environmental radioactivity measurements in the Nordic countries, a basic requirement for co-ordinated research programmes. In case of emergency, good comparability between the results obtained will be required for mutual assistance. Therefore several intercomparison exercises have been carried out between the laboratories measuring environmental radioactivity. The exercises have proved very useful and have led to a more comprehensive and systematic survey of the environmental measurement methodology used so far by the Nordic laboratories. Furthermore it is considered necessary to make some recommendations or even to reach an agreement on how to present the results in order to make the comparison of, at least, monitoring data easier. This report is based on the answers received from the participating laboratories to a questionnaire sent by the Finnish Centre for Radiation and Nuclear Safety, Helsinki

  4. The sampling and analysing methods of radionuclides used in the Nordic countries for environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Taipale, Tarja K [ed.

    1985-01-01

    The Radioecology Group under the Nordic Liaison Committee for Atomic Energy has considered it to be of great importance to improve the comparability of environmental radioactivity measurements in the Nordic countries, a basic requirement for co-ordinated research programmes. In case of emergency, good comparability between the results obtained will be required for mutual assistance. Therefore several intercomparison exercises have been carried out between the laboratories measuring environmental radioactivity. The exercises have proved very useful and have led to a more comprehensive and systematic survey of the environmental measurement methodology used so far by the Nordic laboratories. Furthermore it is considered necessary to make some recommendations or even to reach an agreement on how to present the results in order to make the comparison of, at least, monitoring data easier. This report is based on the answers received from the participating laboratories to a questionnaire sent by the Finnish Centre for Radiation and Nuclear Safety, Helsinki.

  5. Proceedings of the 8. Nordic seminar on radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E [STUK (FI)

    2002-04-01

    This report contains proceedings of the 8th Nordic Seminar on Radioecology held on February 25-28, 2001 in Rovaniemi, Finland. The Seminar was arranged by STUK - Radiation and Nuclear Safety Authority of Finland and supported by the NKS. The Seminar was intended to be a 'final forum' of the four-year NKS radioecology project BOK-2, Radioecological and Environmental Consequences, which was focused on the consequences of releases of man-made radionuclides into the environment. The programme of the Seminar consisted of 3 invited lectures, 31 oral presentations and 22 poster presentations dealing with marine, terrestrial and freshwater radioecology, methods, foodstuffs, models, whole-body counting and doses to man. (au)

  6. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  7. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  8. Nuclear Safety. 1997

    International Nuclear Information System (INIS)

    1998-01-01

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  9. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  10. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  11. Global nuclear safety culture

    International Nuclear Information System (INIS)

    1997-01-01

    As stated in the Nuclear Safety Review 1996, three components characterize the global nuclear safety culture infrastructure: (i) legally binding international agreements; (ii) non-binding common safety standards; and (iii) the application of safety standards. The IAEA has continued to foster the global nuclear safety culture by supporting intergovernmental collaborative efforts; it has facilitated extensive information exchange, promoted the drafting of international legal agreements and the development of common safety standards, and provided for the application of safety standards by organizing a wide variety of expert services

  12. The role of nuclear law in nuclear safety after Fukushima

    International Nuclear Information System (INIS)

    Cardozo, Diva E. Puig

    2013-01-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor

  13. The human component in the safety of complex systems

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1986-02-01

    The safety of nuclear power and other complex processes requires that human actions are carried though on time and without error. Investigations indicate that human errors are the main or an important contributing cause in more than half of the incidents which occur. This makes it important to try understand the mechanisms behind the human errors and to investigate possibilities for decreasing their likelihood. The present report presents an overview of the Nordic cooperation in the field of human factors in nuclear safety, under the LIT-programme carried out 1981-1985. The work was divided into six different projects in the following fields: human reliability in test and maintenance work; safety oriented organizations and company structures; design of information and control systems; new approaches for information presentation; experimental validation of man-machine interfaces; planning and evaluation of operator training. The research topics were selected from the findings of an earlier phase of the Nordic cooperation. The results are described in more detail in separate reports

  14. New Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Cizmek, A.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06), based on Nuclear Safety Act (Official Gazette No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of announcing the intention to perform nuclear activity, submitting an application for the issue of a license to perform nuclear activity, and the procedure for adoption a decision on issuing a nuclear activity license. The Ordinance also regulates the contents of the application form for the announcement of the intention to perform nuclear activity, as well as of the application for the issue of a nuclear activity license and the method of keeping a nuclear activity register. The Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, SONS finalized the text of new Ordinance on nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance regulates nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance defines facilities in which nuclear activity is

  15. Organization and Nuclear Safety: Safety culture

    International Nuclear Information System (INIS)

    Martin Marquinez, A.

    1998-01-01

    This book presents the experience in nuclear safety and its influence in the exploitation on nuclear power plants. The safety organization and quality management before and after Chernobylsk and three mile island accidents

  16. Application in the Nordic Countries of international radioactive waste recommendations

    International Nuclear Information System (INIS)

    1986-01-01

    In the publication ''Report on the Applicability of International Radiation Protection Recommendations in the Nordic Countries'' published in 1976 the radiation protection authorities in Denmark, Finland, Iceland, Norway and Sweden expressed their agreement on the main principles of radiation protection. All aspects of radiation protection are covered in the recommendations. Since the recommendations were released new information on radioactive protection has been published e.g. by ICRP, IAEA and OECD/NEA and the radiation protection authorities have felt it necessary to make a revision of Chapter 21, Radioactive Waste, in the Recommendations of the Nordic Countries. Since 1982, a working group from the radiation protection authorities has been working on that revision. In this work the experience from national and international work has been incorporated. The new recommendations are divided into two main parts, one dealing with waste originating from the nuclear fuel cycle (nuclear waste) and one with waste from other sources (non-nuclear waste). These recommendations have been approved by the Nordic radiation protection authorities at a meeting in Finland, September 1985 and replace the corresponding recommendations in Chapter 21 in The 1976 Nordic Recommendations. (author)

  17. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  18. National nuclear safety report 1998. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    The Argentine Republic subscribed the Convention on Nuclear Safety, approved by a Diplomatic Conference in Vienna, Austria, in June 17th, 1994. According to the provisions in Section 5th of the Convention, each Contracting Party shall submit for its examination a National Nuclear Safety Report about the measures adopted to comply with the corresponding obligations. This Report describes the actions that the Argentine Republic is carrying on since the beginning of its nuclear activities, showing that it complies with the obligations derived from the Convention, in accordance with the provisions of its Article 4. The analysis of the compliance with such obligations is based on the legislation in force, the applicable regulatory standards and procedures, the issued licenses, and other regulatory decisions. The corresponding information is described in the analysis of each of the Convention Articles constituting this Report. The present National Report has been performed in order to comply with Article 5 of the Convention on Nuclear Safety, and has been prepared as much as possible following the Guidelines Regarding National Reports under the Convention on Nuclear Safety, approved in the Preparatory Meeting of the Contracting Parties, held in Vienna in April 1997. This means that the Report has been ordered according to the Articles of the Convention on Nuclear Safety and the contents indicated in the guidelines. The information contained in the articles, which are part of the Report shows the compliance of the Argentine Republic, as a contracting party of such Convention, with the obligations assumed

  19. An international nuclear safety regime

    International Nuclear Information System (INIS)

    Rosen, M.

    1995-01-01

    For all the parties involved with safe use of nuclear energy, the opening for signature of the 'Convention on Nuclear Safety' (signed by 60 countries) and the ongoing work to prepare a 'Convention on Radioactive Waste Safety' are particularly important milestones. 'Convention on Nuclear Safety' is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The two conventions are only one facet of international cooperation to enhance safety. A review of some cooperative efforts of the past decades, and some key provisions of the new safety conventions, presented in this paper, show how international cooperation is increasing nuclear safety worldwide. The safety philosophy and practices involved with legal framework for the safe use of nuclear power will foster a collective international involvement and commitment. It will be a positive step towards increasing public confidence in nuclear power

  20. IAEA activities in nuclear safety: future perspectives. Spanish Nuclear Safety Council, Madrid, 28 May 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document represents the conference given by the Director General of the IAEA at the Spanish Nuclear Safety Council in Madrid, on 28 May 1998, on Agency's activities in nuclear safety. The following aspects are emphasized: Agency's role in creating a legally binding nuclear safety regime, non-binding safety standards, services provided by the Agency to assist its Member States in the Application of safety standards, Agency's nuclear safety strategy, and future perspective concerning safety aspects related to radioactive wastes, residues of past nuclear activities, and security of radiological sources

  1. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 2: The American Point of View - Insights of how the US nuclear industry works with human reliability analysis

    International Nuclear Information System (INIS)

    Oxstrand, J.

    2010-12-01

    The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)

  2. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 2: The American Point of View - Insights of how the US nuclear industry works with human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, J. (Vattenfall Ringhals AB, Stockholm (Sweden))

    2010-12-15

    The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)

  3. Nuclear Safety Culture

    International Nuclear Information System (INIS)

    2017-01-01

    Ethics is caring about people and Safety is caring that no physical harm comes to people.Therefore Safety is a type of Ethical Behavior. Culture: is The Way We Do Things Here.Safety Culture is mixture of organization traditions, values, attitudes and behaviors modeled by Its leaders and internalized by its members that serve to make nuclear safety the overriding priority. Safety Culture is that assembly of characteristics and attitudes in Organisations and individuals which established that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance

  4. Proceedings of the 8. Nordic seminar on radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E. [STUK (FI)] (ed.)

    2002-04-01

    This report contains proceedings of the 8th Nordic Seminar on Radioecology held on February 25-28, 2001 in Rovaniemi, Finland. The Seminar was arranged by STUK - Radiation and Nuclear Safety Authority of Finland and supported by the NKS. The Seminar was intended to be a 'final forum' of the four-year NKS radioecology project BOK-2, Radioecological and Environmental Consequences, which was focused on the consequences of releases of man-made radionuclides into the environment. The programme of the Seminar consisted of 3 invited lectures, 31 oral presentations and 22 poster presentations dealing with marine, terrestrial and freshwater radioecology, methods, foodstuffs, models, whole-body counting and doses to man. (au)

  5. Framework of nuclear safety and safety assessment

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    2007-01-01

    Since enormous energy is released by nuclear chain reaction mainly as a form of radiation, a great potential risk accompanies utilization of nuclear energy. Safety has been continuously a critical issue therefore from the very beginning of its development. Though the framework of nuclear safety that has been established at an early developmental stage of nuclear engineering is still valid, more comprehensive approaches are required having experienced several events such as Three Mile Island, Chernobyl, and JCO. This article gives a brief view of the most basic principles how nuclear safety is achieved, which were introduced and sophisticated in nuclear engineering but applicable also to other engineering domains in general. (author)

  6. Nuclear safety policy statement in korea

    International Nuclear Information System (INIS)

    Kim, W.S.; Kim, H.J.; Choi, K.S.; Choi, Y.S.; Park, D.K.

    2006-01-01

    Full text: Wide varieties of programs to enhance nuclear safety have been established and implemented by the Korean government in accordance with the Nuclear Safety Policy Statement announced in September 1994. The policy statement was intended to set the long-term policy goals for maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It has been recognized as very effective in developing safety culture in nuclear-related organizations and also enhancing nuclear safety in Korea. However, ageing of operating nuclear power plants and increasing of new nuclear facilities have demanded a new comprehensive national safety policy to cover the coming decade, taking the implementation results of the policy statement of 1994 and the changing environment of nuclear industries into consideration. Therefore, the results of safety policy implementation have been reviewed and, considering changing environment and future prospects, a new nuclear safety policy statement as a highest level national policy has been developed. The implementation results of 11 regulatory policy directions such as the use of Probabilistic Safety Assessment, introduction of Periodic Safety Review, strengthening of safety research, introduction of Risk Based Regulation stipulated in the safety policy statement of 1994 were reviewed and measures taken after various symposia on nuclear safety held in Nuclear Safety Days since 1995 were evaluated. The changing international and domestic environment of nuclear industry were analysed and future prospects were explored. Based on the analysis and review results, a draft of new nuclear safety policy statement was developed. The draft was finalized after the review of many prominent experts in Korea. Considering changing environment and future prospects, new policy statement that will show government's persistent will for nuclear safety has been

  7. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard (ed.) [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De (ed.) [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  8. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  9. Nordic Intervention Criteria for Nuclear or Radiological Emergencies. Recommendations

    International Nuclear Information System (INIS)

    2001-01-01

    Recommendations of the Nordic radiation protection authorities on application of international criteria in a nuclear or radiological emergency in the Nordic countries are presented. The recommendations are focused on the generic intervention levels for various actions to protect members of the public and workers undertaking an intervention. Prompt precautionary actions for the near zones around the Finnish and Swedish nuclear power plants are defined. These actions are; preventive sheltering, iodine prophylaxis and precautionary evacuation. No special intervention levels for these precautionary actions have been set, because implementation of these actions is always based on very limited information about an accident. These actions can be initiated on a mere indication of possible release of radioactivity. The indication might be an alarm or any other predefined signal. Intervention level for actions to protect members of the public are based on the concept of avertable dose. They are in line with the international recommendations. With regard to iodine prophylaxis, a national approach is recommended due to different national policies of advance distribution of iodine tablets. The longer term intervention actions, temporary relocation and permanent resettlement, will be based not only on radiation protection factors but also on wider judgement of the overall situation. For that reason, no generic intervention levels, in terms of radiation dose, are recommended. The intervention levels for various protective actions are in the following table.Table 1. Generic intervention levels for actions to protect members of the public.Protective action. Generic intervention level as an avertable dose. Sheltering: 10 mSv within two days (effective dose); Iodine prophylaxis: National recommendations; Evacuation: 50 mSv within one week (effective dose); Temporary relocation: No predetermined intervention level; Permanent resettlement: No predetermined intervention level. Workers

  10. Safety of nuclear ships

    International Nuclear Information System (INIS)

    1978-01-01

    Interest in the utilization of nuclear steam supply systems for merchant ships and icebreakers has recently increased considerably due to the sharp rise in oil prices and the continuing trend towards larger and faster merchant ships. Canada, for example, is considering construction of an icebreaker in the near future. On the other hand, an accident which could result in serious damage to or the sinking of a nuclear ship is potentially far more dangerous to the general public than a similar accident with a conventional ship. Therefore, it was very important to evaluate in an international forum the safety of nuclear ships in the light of our contemporary safety philosophy, taking into account the results of cumulative operating experience with nuclear ships in operation. The philosophy and safety requirement for land-based nuclear installations were outlined because of many common features for both land-based nuclear installations and nuclear ships. Nevertheless, essential specific safety requirements for nuclear ships must always be considered, and the work on safety problems for nuclear ships sponsored by the NEA was regarded as an important step towards developing an international code of practice by IMCO on the safety of nuclear merchant ships. One session was devoted to the quantitative assessment of nuclear ship safety. The probability technique of an accident risk assessment for nuclear power plants is well known and widely used. Its modification, to make it applicable to nuclear propelled merchant ships, was discussed in some papers. Mathematical models for describing various postulated accidents with nuclear ships were developed and reported by several speakers. Several papers discussed a loss-of-coolant accident (LOCA) with nuclear steam supply systems of nuclear ships and engineering design features to prevent a radioactive effluence after LOCA. Other types of postulated accidents with reactors and systems in static and dynamic conditions were also

  11. Nuclear safety in Slovak Republic. Regulatory aspects of NPP nuclear safety

    International Nuclear Information System (INIS)

    Lipar, M.

    1999-01-01

    Regulatory Authority (UJD) is appointed by the Slovak Republic National Council as an Executive Authority for nuclear safety supervision. Nuclear safety legislation, organisation and resources of UJD, its role and responsibilities are described together with its inspection and licensing functions and International cooperation concerning improvements of safety effectiveness. Achievements of UJD are listed in detail

  12. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  13. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  14. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  15. Nordita. Nordic Institute for Theoretical Physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report covers the period from January 1st to December 31st, 1990. The purpose of Nordita is to encourage scientific collaboration between the Nordic countries within scientific and basic nuclear physics. The scientific programme at Nordita covers astrophysics, elementary particle physics, solid state physics and nuclear physics. The scientific work is published or otherwise made public. (author)

  16. A risk informed safety classification for a Nordic NPP

    International Nuclear Information System (INIS)

    Jaenkaelae, K.

    2002-01-01

    The report describes a study to develop a safety classification proposal or classi- fication recommendations based on risks for selected equipment of a nuclear power plant. The application plant in this work is Loviisa NPP unit 1. The safety classification proposals are to be considered as an exercise in this pilot study and do not necessarily represent final proposals in a real situation. Comparisons to original safety classifications and technical specifications were made. The study concludes that it is possible to change safety classes or safety signifi- cances as considered in technical specifications and in in-service-inspections into both directions without endangering the safety or even by improving the safety. (au)

  17. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  18. Nuclear Safety Review for 2014

    International Nuclear Information System (INIS)

    2014-07-01

    The Nuclear Safety Review 2014 focuses on the dominant nuclear safety trends, issues and challenges in 2013. The Executive Overview provides general nuclear safety information along with a summary of the major issues covered in this report: strengthening safety in nuclear installations; improving radiation, transport and waste safety; enhancing emergency preparedness and response (EPR); improving regulatory infrastructure and effectiveness; and strengthening civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards, and activities relevant to the Agency’s safety standards. The global nuclear community has made steady and continuous progress in strengthening nuclear safety in 2013, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as “the Action Plan”) and reported in Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2013/8-GC(57)/INF/5), and the Supplementary Information to that report and Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2014/2). • Significant progress continues to be made in several key areas, such as assessments of safety vulnerabilities of nuclear power plants (NPPs), strengthening of the Agency’s peer review services, improvements in EPR capabilities, strengthening and maintaining capacity building, and protecting people and the environment from ionizing radiation. The progress that has been made in these and other areas has contributed to the enhancement of the global nuclear safety framework. • Significant progress has also been made in reviewing the Agency’s safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on vitally important areas such as design and operation of NPPs, protection of NPPs against severe accidents, and EPR. • The Agency continued to

  19. Nuclear safety in France

    International Nuclear Information System (INIS)

    Servant, J.

    1979-12-01

    The main areas of nuclear safety are considered in this paper, recalling the laws and resolutions in force and also the appropriate authority in each case. The following topics are reviewed: radiological protection, protection of workers, measures to be taken in case of an accident, radioactive effluents, impact on the environment of non-nuclear pollution, nuclear plant safety, protection against malicious acts, control and safeguard of nuclear materials, radioisotopes, transport of radioactive substances, naval propulsion, waste management, nuclear plant decommissioning and export of nuclear equipment and materials. Finally, the author describes the role of the general Secretariat of the Interdepartmental Committee on Nuclear Safety

  20. Nuclear safety endeavour in Korea

    International Nuclear Information System (INIS)

    Sang-hoon lee

    1987-01-01

    Korea's nuclear power plant program is growing. As it grows, nuclear safety becomes an important issue. This article traces the development of Korean nuclear power program, the structure of the nuclear industries, the Nuclear Safety Center and its roles in the regulation and licensing of nuclear power plant, and also identifies some of the activities carried out to enhance the safety of nuclear power plants. (author)

  1. Nuclear ships and their safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    Several aspects of nuclear ship propulsion, with special reference to nuclear safety, were discussed at an international symposium at Taormina, Italy, from 14-18 November 1960. Discussions on specific topics are conducted, grouped under the following headings: Economics and National Activities in Nuclear Ship Propulsion; International Problems and General Aspects of Safety for Nuclear Ships; Nuclear Ship Projects from the Angle of Safety; Ship Reactor Problems; Sea Motion and Hull Problems; Maintenance and Refuelling Problems; and Safety Aspects of Nuclear Ship Operation.

  2. Review of safety related control room function research based on experience from nuclear power plants in Finland

    International Nuclear Information System (INIS)

    Juslin, K.; Wahlstroem, B.; Rinttilae, E.

    1985-01-01

    A comprehensive human engineering research programme was established in the second half of the 1970's at the Technical Research Centre of Finland (VTT). The research is performed in cooperation with the utility companies Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (TVO) and includes topics such as Handling of alarm information, Disturbance analysis systems, Assessment of control rooms and Validation of safety parameter display systems. Reference is also made to the Finnish contribution to the OECD Halden Reactor Project (Halden) and the Nordic Liaison Committee for Atomic Energy (NKA) research projects. In this paper feasible realization alternatives of safety related control room functions are discussed on the basis of experience from the nuclear power plants in Finland, which at present are equipped with extensive process computer systems. A proposal for future power plant information systems is described. It is intended that this proposal will serve as the basis for future computer systems at nuclear power plants in Finland. (author)

  3. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  4. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  5. Nuclear safety in France

    International Nuclear Information System (INIS)

    Queniart, D.

    1989-12-01

    This paper outlines the organizational and technical aspects of nuclear safety in France. From the organization point of view, the roles of the operator, of the safety authority and of the Institute for Protection and Nuclear Safety are developed. From the technical viewpoint, the evolution of safety since the beginning of the French nuclear programme, the roles of deterministic and probabilistic methods and the severe accident policy (prevention and mitigation, venting containment) in France are explained

  6. Performance management in the Nordic countries

    DEFF Research Database (Denmark)

    Kristiansen, Mads Bøge

    -specific perspective, I analyze variations and similarities among countries and agencies in their development of a performance measurement system and the incorporation and use of performance information. Empirically the study shows that some patterns can be discerned but they also seem to be rather complex. Starting......This paper reports a study of performance management in practice in three tasks (Food safety, Meteorology and Prisons) across the three Scandinavian countries Denmark, Norway and Sweden. The paper examines how the system of performance management in Denmark, Norway and Sweden (Management...... from this analysis I discuss, whether it is possible to identify a Nordic model of performance management? Whether we should distinguish between an East Nordic and a West Nordic model? Should we rather talk about a Danish model, a Swedish model and a Norwegian model, or are the differences within...

  7. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  8. International Aspects of Nuclear Safety

    International Nuclear Information System (INIS)

    Lash, T.R.

    2000-01-01

    Even though not all the world's nations have developed a nuclear power industry, nuclear safety is unquestionably an international issue. Perhaps the most compelling proof is the 1986 accident at Chornobyl nuclear power plant in what is now Ukraine. The U.S. Department of Energy conducts a comprehensive, cooperative effort to reduce risks at Soviet-designed nuclear power plants. In the host countries : Armenia, Ukraine, Russia, Bulgaria, the Czech Republic, Hungary, Lithuania, Slovakia, and Kazakhstan joint projects are correcting major safety deficiencies and establishing nuclear safety infrastructures that will be self-sustaining.The U.S. effort has six primary goals: 1. Operational Safety - Implement the basic elements of operational safety consistent with internationally accepted practices. 2. Training - Improve operator training to internationally accepted standards. 3. Safety Maintenance - Help establish technically effective maintenance programs that can ensure the reliability of safety-related equipment. 4. Safety Systems - Implement safety system improvements consistent with remaining plant lifetimes. 5. Safety Evaluations - Transfer the capability to conduct in-depth plant safety evaluations using internationally accepted methods. 6. Legal and Regulatory Capabilities - Facilitate host-country implementation of necessary laws and regulatory policies consistent with their international treaty obligations governing the safe use of nuclear power

  9. Strengthening the Global Nuclear Safety Regime. INSAG-21. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2014-01-01

    The Global Nuclear Safety Regime is the framework for achieving the worldwide implementation of a high level of safety at nuclear installations. Its core is the activities undertaken by each country to ensure the safety and security of the nuclear installations within its jurisdiction. But national efforts are and should be augmented by the activities of a variety of international enterprises that facilitate nuclear safety - intergovernmental organizations, multinational networks among operators, multinational networks among regulators, the international nuclear industry, multinational networks among scientists, international standards setting organizations and other stakeholders such as the public, news media and non-governmental organizations (NGOs) that are engaged in nuclear safety. All of these efforts should be harnessed to enhance the achievement of safety. The existing Global Nuclear Safety Regime is functioning at an effective level today. But its impact on improving safety could be enhanced by pursuing some measured change. This report recommends action in the following areas: - Enhanced use of the review meetings of the Convention on Nuclear Safety as a vehicle for open and critical peer review and a source for learning about the best safety practices of others; - Enhanced utilization of IAEA Safety Standards for the harmonization of national safety regulations, to the extent feasible; - Enhanced exchange of operating experience for improving operating and regulatory practices; and - Multinational cooperation in the safety review of new nuclear power plant designs. These actions, which are described more fully in this report, should serve to enhance the effectiveness of the Global Nuclear Safety Regime

  10. CISG Nordic

    DEFF Research Database (Denmark)

    2009-01-01

    CISG Nordic offers full text court decisions, papers, domestic laws, etc. collected in the Nordic countries. All material is related to the application of the CISG.......CISG Nordic offers full text court decisions, papers, domestic laws, etc. collected in the Nordic countries. All material is related to the application of the CISG....

  11. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  12. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  13. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  14. Evaluation report of the Nordic emergency exercise Nora - January 14, 1993

    International Nuclear Information System (INIS)

    Salo, A.; Singer, K.; Aakesson, T.; Valfells, A.; Backe, S.; Kallhagen, B.

    1993-01-01

    Nordic countries are signatories to the Convention on Early Notification of a Nuclear Accident and to the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency. In addition to these international conventions the states, except Iceland, have bilateral agreements on early notification and exchange of information with each other and with neighbouring countries. The bilateral agreements also require notification if levels of radionuclide contamination are observed which prompt information to the public or activation of the emergency organization or part of it. The main objective of the exercise NORA was to test and harmonize the overall decision making in the responsible Nordic approach to the emergency response, to improve co-operation in assessing rumour-, threat- and accident-situations, to improve co-operation in making decisions on intervention levels and on interventions in a Nordic perspective, to enhance harmony in information policy concerning information to the public in order to avoid ''double messages'', to improve information exchange between the Nordic countries and internationally. The objectives of the exercise were considered to have been met satisfactorily and the exercise made a valuable contribution to further develop the Nordic co-operation. (EG)

  15. Development of nuclear safety issues program

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K

    2006-12-15

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants.

  16. Development of nuclear safety issues program

    International Nuclear Information System (INIS)

    Cho, J. C.; Yoo, S. O.; Yoon, Y. K.; Kim, H. J.; Jeong, M. J.; Noh, K. W.; Kang, D. K.

    2006-12-01

    The nuclear safety issues are defined as the cases which affect the design and operation safety of nuclear power plants and also require the resolution action. The nuclear safety issues program (NSIP) which deals with the overall procedural requirements for the nuclear safety issues management process is developed, in accordance with the request of the scientific resolution researches and the establishment/application of the nuclear safety issues management system for the nuclear power plants under design, construction or operation. The NSIP consists of the following 4 steps; - Step 1 : Collection of candidates for nuclear safety issues - Step 2 : Identification of nuclear safety issues - Step 3 : Categorization and resolution of nuclear safety issues - Step 4 : Implementation, verification and closure The NSIP will be applied to the management directives of KINS related to the nuclear safety issues. Through the identification of the nuclear safety issues which may be related to the potential for accident/incidents at operating nuclear power plants either directly or indirectly, followed by performance of regulatory researches to resolve the safety issues, it will be possible to prevent occurrence of accidents/incidents as well as to cope with unexpected accidents/incidents by analyzing the root causes timely and scientifically and by establishing the proper flow-up or remedied regulatory actions. Moreover, the identification and resolution of the safety issues related to the new nuclear power plants completed at the design stage are also expected to make the new reactor licensing reviews effective and efficient as well as to make the possibility of accidents/incidents occurrence minimize. Therefore, the NSIP developed in this study is expected to contribute for the enhancement of the safety of nuclear power plants

  17. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    Science.gov (United States)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  18. Nuclear safety

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  19. Nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  20. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  1. Interrelationship between nuclear safety, safeguards and nuclear security

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2007-01-01

    As preventive activities against danger within nuclear systems, three major areas exist; nuclear safety, safeguards and nuclear security. Considering the purpose of these activities, to prevent non-peaceful use is common in nuclear security in general and safeguards. At the same time, measures against sabotage, one of the subcategory in nuclear security, is similar to nuclear safety in aiming at preventing nuclear accidents. When taking into account the insider issues in nuclear security, the distinction between measures against sabotage and nuclear safety becomes ambiguous. Similarly, the distinction between measures against theft, another subcategory in nuclear security, and safeguards also becomes vague. These distinctions are influenced by psychological conditions of members in nuclear systems. Members who have the intention to make nuclear systems dangerous to human society shall be the 'enemy' to nuclear systems and thus be the target for nuclear security. (author)

  2. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Ro, Seong Ki; Shin, Hee Seong; Park, Seong Won; Shin, Young Joon.

    1997-06-01

    Nuclear criticality safety guide was described for handling, transportation and storage of nuclear fissile materials in this report. The major part of the report was excerpted frp, TID-7016(revision 2) and nuclear criticality safety written by Knief. (author). 16 tabs., 44 figs., 5 refs

  3. Nuclear safety in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1979-01-01

    A brief description of the main safety aspects of the French nuclear energy programme and of the general safety organization is followed by a discussion on the current thinking in CEA on some important safety issues. As far as methodology is concerned, the use of probabilistic analysis in the licensing procedure is being extensively developed. Reactor safety research is aimed at a better knowledge of the safety margins involved in the present designs of both PWRs and LMFBRs. A greater emphasis should be put during the next years in the safety of the nuclear fuel cycle installations, including waste disposals. Finally, it is suggested that further international cooperation in the field of nuclear safety should be developed in order to insure for all countries the very high safety level which has been achieved up till now. (author)

  4. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  5. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  6. Japan reforms its nuclear safety

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The Fukushima Daiichi NPP accident deeply questioned the bases of nuclear safety and nuclear safety regulation in Japan. It also resulted in a considerable loss of public confidence in the safety of nuclear power across the world. Although the accident was caused by natural phenomena, institutional and human factors also largely contributed to its devastating consequences, as shown by the Japanese Diet's and Government's investigation reports. 'Both regulators and licensees were held responsible and decided to fully reconsider the existing approaches to nuclear safety. Consequently, the regulatory system underwent extensive reform based on the lessons learned from the accident,' Yoshihiro Nakagome, the President of Japan Nuclear Energy Safety Organisation, an ETSON member TSO, explains. (orig.)

  7. Nuclear safety organisation in France

    International Nuclear Information System (INIS)

    1979-12-01

    This report outlines the public authorities responsible for the safety of nuclear installations in France. The composition and responsibilities of the Central Safety Service of Nuclear Installations within the Ministry of Industry, the Institute of Nuclear Protection and Safety within the CEA, the Central Service of Protection Against Ionising Radiation and the Interministerial Committee of Nuclear Safety are given. Other areas covered include the technical safety examination of large nuclear installations, the occurrence of accidents, treatment and control of release of radioactive wastes and decommissioning. The section on regulations covers the authorisation procedure, plant commissioning, release of radioactive effluents, surveillance and protection of workers exposed to ionising radiation. The situation is compared with the USA and the Federal Republic of Germany. A list of commercial nuclear installations in France is given

  8. White paper on nuclear safety in 2009

    International Nuclear Information System (INIS)

    2009-06-01

    It deals with a general introduction of nuclear safety like general safety, safety regulation and system law and standard. It indicates of nuclear energy facility safety about general safety, safety regulation of operating nuclear power plant safety regulation under constructing nuclear power plant. It deals with radiation facility safety, monitoring of environmental radiation, radiation protection, radiation control, international cooperating on nuclear energy safety and establishment of safety regulation.

  9. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  10. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  11. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  12. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2012-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having “aggressors” as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests “SSN” which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called “SSST” in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. (author)

  13. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  14. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  15. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  16. White paper on nuclear safety in 2005

    International Nuclear Information System (INIS)

    2006-04-01

    The white paper consists of four parts. The first part described the outline of international discussions on safety culture and activities promoted by utilities and regulatory bodies in Japan. The second part explained the main activities of the Nuclear Safety Commission of Japan and nuclear regulatory authorities on nuclear safety regulation. The third part introduced various activities for ensuring overall nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster measures at nuclear facilities, progress in nuclear research, nuclear safety regulation by risk-informed utilization, environmental radiation surveys, international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission of Japan. (J.P.N.)

  17. The internationalization of nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1989-01-01

    Nuclear safety is interlinked in many ways with the themes of this conference. In searching for co-operative activities that touch on global energy and environmental problems and on initiatives that relieve international tensions, the ongoing developments in nuclear power safety offer a number of successful examples. Commercial nuclear power has been with us for more than 30 years, and with 26 countries operating plants in addition to 6 more constructing their first, there has been an ongoing global co-operation, coinciding of Chernobyl with Glasnost, along with the increasing awareness of the benefits of common solutions to safety issues, have brought about an internationalization of nuclear safety. Although the main responsibility for safety rests with each operator and its government, a primary driving force expanding international co-operation is the transboundary aspects of nuclear energy, as vividly demonstrated by Chernobyl accident. In this presentation we focus on the mechanisms already in place that foster cooperation in the nuclear safety area

  18. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  19. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  20. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  1. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  2. Dispersion prognosis and consequences in the environment in emergency management context. A Nordic harmonization effort 1991-94

    International Nuclear Information System (INIS)

    Tveten, U.

    1998-01-01

    Neighbour countries have often chosen different atmospheric dispersion prognosis models for use in emergency situations. In a Nordic project in the Nordic Nuclear Safety Research Programme a worldwide survey of long-range atmospheric dispersion models was carried out. On the basis of this survey, each of the meteorological institutes of Denmark, Finland and Norway chose systems upon which future development would be based. The Swedish Meteorological and Hydrological Institute had already developed a model. These and some other available models were subsequently utilised in Nordic 'functional' emergency exercises. The exercises also served as program intercomparison exercises, whereby some programming errors were actually discovered. The exercises also revealed that the currently used graphical presentations of the results may be difficult to understand properly in an emergency situation. The authorities responsible for emergency preparedness use the predictions from the atmospheric dispersion models to evaluate radiation doses to the population. In order to provide decision makers with more readily accessible information, a computerised 'handbook' containing all pertinent information has therefore been developed. (R.P.)

  3. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  4. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  5. Synergy in the areas of NPP nuclear safety and nuclear security

    International Nuclear Information System (INIS)

    Dybach, A.M.; Kuzmyak, I.Ya.; Kukhotskij, A.V.

    2013-01-01

    The paper considers the question of synergy between nuclear safety and nuclear security. Special attention is paid to identifying interface of the two areas of safety and definition of common principles for nuclear security and nuclear safety measures. The principles of defense in depth, safety culture and graded approach are analyzed in detail.Specific features characteristic of nuclear safety and security are outlined

  6. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  7. Nuclear safety legislation and supervision in China

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-02-01

    The cause for the urgent need of nuclear safety legislation and supervision in China is firstly described, and then a brief introduction to the basic principle and guideline of nuclear safety is presented. Finally the elaboration on the establishment of nuclear safety regulatory system, the enactment of a series of regulations and safety guides, and the implementation of licencing, nuclear safety supervision and research for ensuring the safety of nuclear energy, since the founding of the National Nuclear Safety Administration, are introduced

  8. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  9. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  10. White paper on nuclear safety in 2000

    International Nuclear Information System (INIS)

    2001-04-01

    This report is composed of three parts and a subjective part Part 1 includes special articles on the measures for the security of nuclear safety and the future problems described from the beginning of the security. Taking consideration that there exists potential risk in the utilization of nuclear energy in addition to the previous accidents in the area of nuclear energy, future measures to take for safety security were discussed as well as the reorganization of government facilities. In addition, the measures for nuclear safety according to the special nuclear disaster countermeasure law and the future problems were described. In Part 2, the trend of nuclear safety in 2000 and the actual effects of 'the basic principle for the countermeasures of the hour' proposed by the nuclear safety commission were outlined. Moreover, the activities of the commission in 2000 were briefly described. In Part 3, various activities for security of nuclear safety, the safety regulation system and the disaster protection system in nuclear facilities, nuclear safety researches in Japan were described in addition to international cooperation as to nuclear safety. Finally, various materials related to the nuclear safety commission, and the materials on the practical activities for nuclear safety were listed in the subjective part. (M.N.)

  11. Nuclear safety in France in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    This article presents the milestones of 2001 concerning nuclear safety in France: 1) the new organization of nuclear safety in France, IPSN (institute of protection and nuclear safety) and OPRI (office for protection against ionizing radiation) have merged into an independent organization: IRSN (institute of radiation protection and nuclear safety); 2) a draft bill has been proposed by the government to impose to nuclear operators new obligations concerning the transfer of information to the public; 3) nuclear safety authorities have drafted a new procedure in order to cope with the demand concerning modification of nuclear fuel management particularly the increase of the burn-up; 4) new evolutions concerning the management of a major nuclear crisis as a consequence of the terrorist attack on New-york and the accident at the AZF plant in Toulouse; 5) a point is made concerning the work of the WENRA association about the harmonization of the nuclear safety policies of its different members. (A.C.)

  12. Nuclear power: safety and prospects

    International Nuclear Information System (INIS)

    Miniere, D.

    2012-01-01

    Despite the Fukushima accident new countries are willing to use nuclear power and as a nuclear accident somewhere is a nuclear accident everywhere, all countries are concerned with nuclear safety. A big association that would gather all the national Safety Authorities would be an efficient tool to promote and improve safety at the world scale and may be the unique available tool as no country would let a foreign authority to drive its own nuclear industry. An important lesson from Fukushima and Chernobyl accidents is that the signature of a big nuclear accident is not the number of casualties (it will always be limited) but the importance of the radioactive contamination. The question is how to make this long-term and long-range contamination impossible to happen, it is the mission of nuclear safety. (A.C.)

  13. Safety culture in nuclear power enterprise

    International Nuclear Information System (INIS)

    Zou Zhengyu; Su Luming

    2008-01-01

    The International Atomic Energy Agency (IAEA) introduced the concept of safety culture when analyzing the Chernobyl accident. Safety culture has now been widely accepted and practiced by nuclear enterprise in the world. As an important safeguard for nuclear safety, safety culture has become the core of nuclear power enterprise and entitled as the soul of nuclear enterprise. This paper analyzes the three levels of safety culture and describes its three developing phases. (authors)

  14. French nuclear safety authorities: for a harmonization of nuclear safety at the European level

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The European Commission is working on 2 directives concerning nuclear energy: the first one is dedicated to nuclear safety and the second to the management of radioactive wastes and spent fuels. In the context of the widening of the European Union and of the inter-connection of the different electric power grids throughout Europe, the harmonization of the rules in the nuclear safety field is seen by manufacturers as a mean to achieve a fair competition between nuclear equipment supplying companies and by the French nuclear safety authorities (FNSA) as a mean to keep on improving nuclear safety and to be sure that competitiveness does not drive safety standards down. According to FNSA the 2 European directives could give a legal framework to the harmonization and should contain principles that reinforce the responsibility of each state. FNSA considers that the EPR (European pressurized water reactor) may be an efficient tool for the harmonization because of existing industrial cooperation programs between France and Germany and between France and Finland. (A.C.)

  15. Nordic Seminar on Waste Problems in Russia

    International Nuclear Information System (INIS)

    Sneve, Malgorzata Karpow

    1999-01-01

    This presentation describes a Nordic seminar held in 1998 that focused on radioactive waste disposal in Northwest Russia and that gave special attention to a repository which planned on Novaya Zemlya. The existing plans originated in a programme formulated by the Russian Federation for the period 1996-2005 and titled The Federal Programme: The Management of Radioactive Waste and Spent Nuclear Fuel - Treatment and Final Disposal. The sea around Novaya Zemlya is important to the fishery industry in both Norway and Russia. And there is great Norwegian concern about the vulnerable Arctic environment. Geological conditions are of course crucial to waste disposal, and according to Russian experts, the permafrost bedrock on Novaya Zemlya will provide added safety. Permafrost is a source of a major complex of uncertainties, but there is Western expertise available that might provide international assessment of the construction plans

  16. A Guidebook for Evaluating Organizations in the Nuclear Industry - an example of safety culture evaluation

    International Nuclear Information System (INIS)

    Oedewald, Pia; Pietikaeinen, Elina; Reiman, Teemu

    2011-06-01

    Organizations in the nuclear industry need to maintain an overview on their vulnerabilities and strengths with respect to safety. Systematic periodical self assessments are necessary to achieve this overview. This guidebook provides suggestions and examples to assist power companies but also external evaluators and regulators in carrying out organizational evaluations. Organizational evaluation process is divided into five main steps. These are: 1) planning the evaluation framework and the practicalities of the evaluation process, 2) selecting data collection methods and conducting the data acquisition, 3) structuring and analysing the data, 4) interpreting the findings and 5) reporting the evaluation results with possible recommendations. The guidebook emphasises the importance of a solid background framework when dealing with multifaceted phenomena like organisational activities and system safety. The validity and credibility of the evaluation stem largely from the evaluation team's ability to crystallize what they mean by organization and safety when they conduct organisational safety evaluations - and thus, what are the criteria for the evaluation. Another important and often under-considered phase in organizational evaluation is interpretation of the findings. In this guidebook a safety culture evaluation in a Nordic nuclear power plant is presented as an example of organizational evaluation. With the help of the example, challenges of each step in the organizational evaluation process are described. Suggestions for dealing with them are presented. In the case example, the DISC (Design for Integrated Safety culture) model is used as the evaluation framework. The DISC model describes the criteria for a good safety culture and the organizational functions necessary to develop a good safety culture in the organization

  17. Nuclear safety. Improvement programme

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the improvement programme of nuclear safety of the Mochovce NPP is presented in detail. In 1996, a 'Mochovce NPP Nuclear Safety Improvement Programme' was developed in the frame of unit 1 and 2 completion project. The programme has been compiled as a continuous one, with the aim to reach the highest possible safety level at the time of commissioning and to establish good preconditions for permanent safety improvement in future. Such an approach is in compliance with the world's trends of safety improvement, life-time extension, modernisation and nuclear station power increase. The basic document for development of the 'Programme' is the one titled 'Safety Issues and their Ranking for WWER 440/213 NPP' developed by a group of IAEA experts. The following organisations were selected for solution of the safety measures: EUCOM (Consortium of FRAMATOME, France, and SIEMENS, Germany); SKODA Prague, a.s.; ENERGOPROJEKT Prague, a.s. (EGP); Russian organisations associated in ATOMENERGOEXPORT; VUJE Trnava, a.s

  18. International survey of living PSA and safety indicators

    International Nuclear Information System (INIS)

    Holmberg, J.; Laakso, K.; Lehtinen, E.; Bjoere, S.

    1992-01-01

    The report contains an international overview of applications of living probabilistic assessment and development of operational safety indicators. Features of an ideal living PSA tool are summarized as well as a limited survey of code systems for managing a living probabilistic safety assessment (living PSA) is included. The international survey is used as an input for planning and performance of related tasks within the nordic NKS/SIK-1 project conducted in 1990-93. The research notes are distributed to the Nordic organizations involved or interested in the subject. The report includes an overview and conclusions from technical reports and articles available and presentations and discussions related to development and use of above methods for the evaluation and management of the operational safety of nuclear power plants. A large part of this material is based on material collected and discussed in connection to international specialist meetings relating to the subject

  19. Safety standards and safety record of nuclear power plants

    International Nuclear Information System (INIS)

    Davis, A.B.

    1984-01-01

    This paper focuses on the use of standards and the measurement and enforcement of these standards to achieve safe operation of nuclear power plants. Since a discussion of the safety standards that the Nuclear Regulatory Commission (NRC) uses to regulate the nuclear power industry can be a rather tedious subject, this discussion will provide you with not only a description of what safety standards are, but some examples of their application, and various indicators that provide an overall perspective on safety. These remarks are confined to the safety standards adopted by the NRC. There are other agencies such as the Environmental Protection Agency, the Occupational Safety and Health Administration, and the state regulatory agencies which impact on a nuclear power plant. The NRC has regulatory authority for the commercial use of the nuclear materials and facilities which are defined in the Atomic Energy Act of 1954 to assure that the public health and safety and national security are protected

  20. A nuclear safety in 21 century

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    2003-01-01

    In the paper some topics of nuclear safety are discussed, namely current situation in the world energetics and a potential of nuclear energy for sustainable development of the world, Nuclear Safety Standards and modern trends in Safety Regulation, Radiation Protection Standards are rather conservative, are based on disputable approaches and have to be more pragmatic, necessity to overcome the syndromes of awful consequences of nuclear accidents at nuclear plants, residual risks of nuclear accidents have to be covered by clear compulsory insurance actions. It is shown, that now it is worthwhile to consider efficiency of existing methods of nuclear safety regulation. It is possible, that an idea of guaranteed safety [1] could become a new approach to nuclear safety. It is based on practically total elimination of severe accidents and insurance of residual risks of nuclear accidents. The realization of such idea necessitates the consideration of all spectrum of initiating events, human errors and man-made actions, more realistically predicting consequences of accidents and the probable economical detriments. It will be a benefit for gaining public support to nuclear power. (author)

  1. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  2. Nuclear regulation and safety

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed

  3. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-04-01

    Numerous environmental, safety, and health problems found at other Department of Energy (DOE) defense nuclear facilities precipitated a review of these conditions at DOE's contractor-operated Pantex Plant, where our nation's nuclear weapons are assembled. This book focuses the review on examining key safety and health problems at Pantex and determining the need for external safety oversight of the plant

  4. Emission Permits trade between the Nordic and Baltic Countries

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    2000-05-01

    A bottom-up technology oriented model of the energy systems in the Nordic and Baltic countries have been constructed and used for analysing an optimal set of energy and emission trading within the region. The model used is MARKAL, which has been developed within the IEA-ETSAP. The analyses are based on national emission levels agreed on in the Kyoto protocol (and the following burden sharing negotiations within the European Union), and with an additional strengthening after 2010. Only energy related CO{sub 2} emissions are explicitly considered. Nuclear power in Sweden is assumed to be phased out. The results show that especially Norway and Sweden have large abatement costs when acting alone, whale the Baltic countries will probably not need to take domestic actions due to the Kyoto protocol if they act alone, as the restructuring of their economies in the beginning of the 1990ties cut emissions (and their economies) dramatically. It is shown that emission trading among the Nordic and Baltic countries can reduce abatement costs among the Nordic countries significantly, possibly down to a level equivalent to a world market (Annex I) permit price. Extending the Nordic common electricity market to Balticum will have minor influence on overall energy system costs. There is no pronounced direction for net electricity flow between the Nordic and Baltic countries. High marginal costs during peak hours in Balticum indicate that imports of Nordic hydro power during peak-hours could be a cost-effective option. This possibility could be implemented with a subsea AC/DC connection between Sweden and Latvia. It is politically viable to develop more hydropower in Norway, this country will be the major electricity exporter in the region, while Sweden will be the main importer. Changing scenario assumptions, i.e. no more Norwegian hydropower, but life extension of Swedish nuclear power, could change this picture. (author)

  5. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1978-11-01

    The 13th semi-annual report 1/78 is a description of work within the Nuclear Safety Project performed in the first six months of 1978 in the nuclear safety field by KFK institutes and departments and by external institutions on behalf of KfK. It includes for each individual research activity short summaries on - work completed, - essential results, - plans for the near future. (orig./RW) [de

  6. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  7. Nordic Exceptionalism and the Nordic 'Others'

    DEFF Research Database (Denmark)

    Jensen, Lars; Loftsdóttir, Kristín

    2012-01-01

    Introduction to 'Whiteness and Postcolonialism in the Nordic Region' co-authored with Kristín Loftsdóttir, University of Iceland......Introduction to 'Whiteness and Postcolonialism in the Nordic Region' co-authored with Kristín Loftsdóttir, University of Iceland...

  8. Requirement and prospect of nuclear data activities for nuclear safety

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    2000-01-01

    Owing to continuous efforts by the members of JNDC (Japanese Nuclear Data Committee) and Nuclear Data Center in JAERI (Japan Atomic Energy Research Institute), several superb evaluated nuclear data files, such as JENDL, FP (fission product) yields and decay heat, have been compiled in Japan and opened to the world. However, they are seldom adopted in safety design and safety evaluation of light water reactors and are hardly found in related safety regulatory guidelines and standards except the decay heat. In this report, shown are a few examples of presently used nuclear data in the safety design and the safety evaluation of PWRs (pressurized water reactors) and so forth. And then, several procedures are recommended in order to enhance more utilization of Japanese evaluated nuclear data files for nuclear safety. (author)

  9. Safety and nuclear power

    International Nuclear Information System (INIS)

    Gittus, John; Gunning, Angela.

    1988-01-01

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.)

  10. New Nordic Exceptionalism

    DEFF Research Database (Denmark)

    Danbolt, Mathias

    2016-01-01

    At the 2009 Nordic Culture Forum summit in Berlin that centered on the profiling and branding of the Nordic region in a globalized world, one presenter stood out from the crowd. The lobbyist Annika Sigurdardottir delivered a speech that called for the establishment of “The United Nations of Norden...... that have been central to the debates on the branding of Nordicity over the last decades: on the one hand, the discourse of “Nordic exceptionalism,” that since the 1960s has been central to the promotion of a Nordic political, socio-economic, and internationalist “third way” model, and, on the other hand......, the discourse on the “New Nordic,” that emerged out of the New Nordic Food-movement in the early 2000s, and which has given art and culture a privileged role in the international re-fashioning of the Nordic brand. Through an analysis of Kim and Einhorn’s United Nations of Norden (UNN)-performance, the article...

  11. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2011-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. The importance of the 3Ss is now emphasized to countries which are newly introducing nuclear power generation. However, as role models for those newcomers, existing nuclear power countries are also required to strengthen their regulatory infrastructure for the 3Ss. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having 'aggressors' as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests 'SSN' which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called 'SSST' in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. Recently, it becomes quite difficult to clearly demarcate these policy tools. As nuclear security concept is expanding, the denotation of nuclear security measures is also expanding. Nuclear security measures are more and more

  12. Deregulation of the Nordic power market and environmental policy

    International Nuclear Information System (INIS)

    Amundsen, E.S.; Nesse, A.; Tjoetta, S.

    1999-01-01

    A common Nordic power market will reduce total CO2 emissions in the Nordic countries as compared to a situation of autarky and, thus, reduce the aggregate cost of complying to strict national CO2 emission targets. A common market for CO2 emission permits may reduce the aggregate cost further, but this cost reduction will be smaller the harsher the CO2 emission constraints are. The economic gain of introducing a common Nordic power market will be particularly large in the case of a Swedish nuclear power phase out. In this case, the cost reduction of introducing a common market for CO2 emission permits will not be very large. 10 refs

  13. Safety of nuclear installations: Future direction

    International Nuclear Information System (INIS)

    1990-04-01

    The Workshop presentations were divided into sessions devoted to the following topics: Environmental impact of fossil fuel energy technologies (5 papers), Future needs for nuclear power (7 papers), Safety objectives (10 papers), Safety aspects of the next generation of current-type nuclear power plants (8 papers), Safety aspects of new designs and concepts for nuclear power plants (6 papers), Special safety issues: Safety aspects of new designs and concepts for nuclear power plants (5 papers), Safety aspects of new designs and processes for the nuclear fuel cycle (5 papers), Closing panel (3 papers), 12 poster presentations and a Summary of the Workshop. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  14. Nuclear power: Siting and safety

    International Nuclear Information System (INIS)

    Openshaw, S.

    1986-01-01

    By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtained from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety

  15. Nuclear safety in France in 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This press dossier summarizes the highlights of nuclear safety in France in 2001: the point-of-view of A.C. Lacoste, director of the French authority of nuclear safety (ASN), the new organisation of the control of nuclear safety and radiation protection, the ASN's policy of transparency, the evolutions of nuclear fuels and the consistency of the fuel cycle, the necessary evolutions of the nuclear crisis management, the harmonizing work of safety approaches carried out by the WENRA association. The following documents are attached in appendixes: the decrees relative to the reformation of the nuclear control in France, the missions of the ASN, the control of nuclear safety and radiation protection in France, the organization of ASN in March 2000, the incidents notified in 2001, the inspections performed in 2001, and the list of the main French nuclear sites. (J.S.)

  16. Safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    Vuorinen, A.

    1993-01-01

    The role and purpose of safety principles for nuclear power plants are discussed. A brief information is presented on safety objectives as given in the INSAG documents. The possible linkage is discussed between the two mentioned elements of nuclear safety and safety culture. Safety culture is a rather new concept and there is more than one interpretation of the definition given by INSAG. The defence in depth is defined by INSAG as a fundamental principle of safety technology of nuclear power. Discussed is the overall strategy for safety measures, and features of nuclear power plants provided by the defence-in-depth concept. (Z.S.) 7 refs

  17. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  18. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  19. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1983-12-01

    The semiannual progress report 1983/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1983 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. (orig./RW) [de

  20. Nuclear safety project

    International Nuclear Information System (INIS)

    Anon.

    1980-11-01

    The 17th semi-annual report 1980/1 is a description of work within the Nuclear Safety Project performed in the first six months of 1980 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics - work performed, results obtained, plans for future work. (orig.) [de

  1. Improving versus maintaining nuclear safety

    International Nuclear Information System (INIS)

    2002-01-01

    The concept of improving nuclear safety versus maintaining it has been discussed at a number of nuclear regulators meetings in recent years. National reports have indicated that there are philosophical differences between NEA member countries about whether their regulatory approaches require licensees to continuously improve nuclear safety or to continuously maintain it. It has been concluded that, while the actual level of safety achieved in all member countries is probably much the same, this is difficult to prove in a quantitative way. In practice, all regulatory approaches require improvements to be made to correct deficiencies and when otherwise warranted. Based on contributions from members of the NEA Committee on Nuclear Regulatory Activities (CNRA), this publication provides an overview of current nuclear regulatory philosophies and approaches, as well as insights into a selection of public perception issues. This publication's intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  2. Nuclear safety review for the year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6.

  3. Nuclear safety review for the year 2002

    International Nuclear Information System (INIS)

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6

  4. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  5. Safety provisions of nuclear power plants

    International Nuclear Information System (INIS)

    Niehaus, F.

    1994-01-01

    Safety of nuclear power plants is determined by a deterministic approach complemented by probabilistic considerations. Much use has been made of the wealth of information from more than 6000 years of reactor operation. Design, construction and operation is governed by national and international safety standards and practices. The IAEA has prepared a set of Nuclear Safety Standards as recommendations to its Member States, covering the areas of siting, design, operations, quality assurance, and governmental organisations. In 1988 the IAEA published a report by the International Nuclear Safety Advisory Group on Basic Safety Principles for Nuclear Power Plants, summarizing the underlying objectives and principles of excellence in nuclear safety and the way in which its aspects are interrelated. The paper will summarize some of the key safety principles and provisions, and results and uses of Probabilistic Safety Assessments. Some comments will be made on the safety of WWER 440/230 and WWER-1000 reactors which are operated on Bulgaria. 8 figs

  6. White paper on nuclear safety in 2004

    International Nuclear Information System (INIS)

    2005-05-01

    The white paper consists of four parts. The first part described the regulation of nuclear facility decommissioning and the clearance level at which the decommissioned waste materials are not necessarily treated as radioactive materials. The second part explained the main operations of the nuclear safety regulation of the Nuclear Safety Commission and the regulatory bodies in 2004 and Mihama unit 3 accident. The third part introduced various activities for the general preservation of nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster preparedness of nuclear facilities, progress in nuclear research, environmental radiation surveys and international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission. (J.P.N.)

  7. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  8. Nuclear safety regulation on nuclear safety equipment activities in relation to human and organizational factors

    International Nuclear Information System (INIS)

    Li Tianshu

    2013-01-01

    Based on years of knowledge in nuclear safety supervision and experience of investigating and dealing with violation events in repair welding of DFHM, this paper analyzes major faults in manufacturing and maintaining activities of nuclear safety equipment in relation to human and organizational factors. It could be deducted that human and organizational factors has definitely become key features in the development of nuclear energy and technology. Some feasible measures to reinforce supervision on nuclear safety equipment activities have also been proposed. (author)

  9. Evaluation report of the Nordic emergency exercise Odin - November 26, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    An evaluation of the second phase, ODIN, of an emergency exercise which is related to the late phase of a hypothetical nuclear accident outside, but close to the Nordic countries. This phase, in contrast to the first one (NORA) during the course of which it was found that strong national ways of thinking unfluenced decision-making, was carried out on the same day in all five Nordic countries in order to enable contact between them. The main argument in favour of a coordinated approach in the intervention policy in this area is that it is likely that the public in each of these countries would be unable to understand or accept very different levels of ambition with regard to their protection. The main objective of ODIN was to add to the knowledge and increase the capability of those responsible in the Nordic countries for handling a situation of deposition following a nuclear accident to improve provisions for Nordic coordination of the overall decision-making and to reach a joint Nordic view of emergency response. The organization of the evaluation, the methodology of the exercise and the evaluation itself covering, amongst other aspects, responses by emergency organizations to the check lists on actions, the decision-making process, international communication, public information and technical facilities are dealt with. (AB)

  10. Status of Nuclear Safety evaluation in China

    International Nuclear Information System (INIS)

    Tian Jiashu

    1999-01-01

    Chinese nuclear safety management and control follows international practice, the regulations are mainly from IAEA with the Chinese condition. The regulatory body is National Nuclear Safety Administration (NNSA). The nuclear safety management, surveillance, safety review and evaluation are guided by NNSA with technical support by several units. Beijing Review Center of Nuclear Safety is one of these units, which was founded in 1987 within Beijing Institute of nuclear Engineering (BINE), co-directed by NNSA and BINE, it is the first technical support team to NNSA. Most of the safety reviews and evaluations of Chinese nuclear installations has been finished by this unit. It is described briefly in this paper that the NNSA's main function and organization, regulations on the nuclear safety, procedure of application and issuing of license, the main activities performed by Beijing Review Center of Nuclear Safety, the situation of severe accident analyses in China, etc. (author)

  11. Nuclear Safety Culture & Leadership in Slovenske Elektrarne

    International Nuclear Information System (INIS)

    Janko, P.

    2016-01-01

    This presentation shows practically how nuclear safety culture is maintained and assessed in Slovenske elektrarne, supported by human performance program and leadership model. Safety is the highest priority and it must be driven by the Leaders in the field. Human Performance is key to safety and therefore key to our success. Safety Policy of our operating organization—licence holder, is in line with international best practices and nuclear technology is recognised as special and unique. All nuclear facilities adopt a clear safety policy and are operated with overriding priority to nuclear safety, the protection of nuclear workers, the general public and the environment from risk of harm. The focus is on nuclear safety, although the same principles apply to radiological safety, industrial safety and environmental safety. Safety culture is assessed regularly based (every two years) on eight principles for strong safety culture in nuclear utilities. Encourage excellence in all plant activities and to go beyond compliance with applicable laws and regulations. Adopt management approaches embodying the principles of Continuous Improvement and risk Management is never ending activity for us. (author)

  12. On the road to new nuclear safety

    International Nuclear Information System (INIS)

    Kovacs, Zoltan; Novakova, Helena; Spenlinger, Robert

    2013-01-01

    The article describes the issue of nuclear safety of nuclear power plants and major factors affecting nuclear safety, discusses the consequences of the Fukushima-Daiichi accident, and outlines the advanced concept of nuclear safety which extends the current regulatory requirements for plant safety. This new concept should be adopted globally to prevent occurrences having similar consequences worldwide. The tasks of this new nuclear safety concept are discussed. (orig.)

  13. Recent Activities on Global Nuclear Safety Regime

    International Nuclear Information System (INIS)

    Cho, Kun-Woo; Park, Jeong-Seop; Kim, Do-Hyoung

    2006-01-01

    Recently, rapid progress on the globalization of the nuclear safety issues is being made in IAEA (International Atomic Energy Agency) and its member states. With the globalization, the need for international cooperation among international bodies and member states continues to grow for resolving these universal nuclear safety issues. Furthermore, the importance of strengthening the global nuclear safety regime is emphasized through various means, such as efforts in application of IAEA safety standards to all nuclear installations in the world and in strengthening the code of conduct and the convention on nuclear safety. In this regards, it is important for us to keep up with the activities related with the global nuclear safety regime as an IAEA member state and a leading country in nuclear safety regulation

  14. Nuclear safety project

    International Nuclear Information System (INIS)

    1982-06-01

    The Annual Report 1981 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1981 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on - work completed - results obtained - plans for future work. This report was compiled by the project management. (orig.) [de

  15. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  16. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  17. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  18. Data sheet based countermeasure evaluation for radioactively contaminated Nordic food-producing areas

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.G.; Roed, J. [Risoe National Lab., Roskilde (Denmark); Rantavaara, A. [STUK, Helsinki (Finland); Rosen, K. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Salbu, B.; Skipperud, L. [Agricultural Univ. of Norway, Aas (Norway)

    2002-04-01

    A Nordic expert group has identified and critically evaluated the countermeasures that may potentially be implemented in connection with major nuclear accident situations contaminating Nordic food-producing areas. This paper demonstrates how the derived technical information can be applied by decision-makers to identify practicable and cost-effective means for mitigation of the impact of contamination. (au)

  19. Data sheet based countermeasure evaluation for radioactively contaminated Nordic food-producing areas

    International Nuclear Information System (INIS)

    Andersson, K.G.; Roed, J.; Rantavaara, A.; Rosen, K.; Salbu, B.; Skipperud, L.

    2002-01-01

    A Nordic expert group has identified and critically evaluated the countermeasures that may potentially be implemented in connection with major nuclear accident situations contaminating Nordic food-producing areas. This paper demonstrates how the derived technical information can be applied by decision-makers to identify practicable and cost-effective means for mitigation of the impact of contamination. (au)

  20. The role of probabilistic safety assessment and probabilistic safety criteria in nuclear power plant safety

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this Safety Report is to provide guidelines on the role of probabilistic safety assessment (PSA) and a range of associated reference points, collectively referred to as probabilistic safety criteria (PSC), in nuclear safety. The application of this Safety Report and the supporting Safety Practice publication should help to ensure that PSA methodology is used appropriately to assess and enhance the safety of nuclear power plants. The guidelines are intended for use by nuclear power plant designers, operators and regulators. While these guidelines have been prepared with nuclear power plants in mind, the principles involved have wide application to other nuclear and non-nuclear facilities. In Section 2 of this Safety Report guidelines are established on the role PSA can play as part of an overall safety assurance programme. Section 3 summarizes guidelines for the conduct of PSAs, and in Section 4 a PSC framework is recommended and guidance is provided for the establishment of PSC values

  1. Cultivation of nuclear safety culture in Guangdong Nuclear Power Station (GNPS)

    International Nuclear Information System (INIS)

    Lu Wei; Tang Yanzhao

    2004-01-01

    Probed into the concept and developing phases of safety couture in the management of nuclear power station, especially analyzed the background and the road of cultivating nuclear safety culture in GNPS, highlighted the core concept of GNPS nuclear safety culture, presented GNPS safety culture indicators, summarized the major measures taken by GNPS, depicted the propagandizing process of transparency in GNPS, and systematically appraised the effect of GNPS in implementing nuclear safety culture. (authors)

  2. The European community and nuclear safety

    International Nuclear Information System (INIS)

    Brinkhorst, L.J.

    1992-01-01

    Full text: Since the inception of the EURATOM Treaty (1957) the use of nuclear power has made an enormous progress. The nuclear sector has become a very important component of the production of energy. Prisoner of its success further development of the use of nuclear energy is confronted with the challenge of ensuring its integration within the framework of modern environment protection concepts. The link between the radiation protection objective and the responsibilities of the State's Authorities in the control of the design and operation of nuclear industrial facilities has become evident. On the other hand, the evolution in the perception of the transfrontier character of the nuclear risk by the population and. the drive for the political integration of Europe have led the Community Member States to an increasing concentration between their nuclear policy-making organs and in particular between their Nuclear Safety Authorities It is quite natural that the Community institutions, the Council of Ministers and the Commission and more recently the European Parliament have become active hosts and catalysts of the concentration of the Member States on the nuclear safety objectives which are at the source of the protection of the population and of the environment. The joint efforts of the Member States and the Commission have led to a reinforcement of the process of harmonisation of safety requirements for nuclear installations at Community level. A parallel concentration effort has been done by Community Member States concerning the back-end of the fuel cycle, in particular radioactive waste management. The European Community meets the conditions to become a key driving force for nuclear safety progress beyond its region because of the advanced stage of nuclear safety in the Community which includes the flexibility and completeness of its fuel cycle and the long experience of Community institutions in the promotion of harmonisation of safety objectives, criteria and

  3. Nuclear Safety Review for 2015

    International Nuclear Information System (INIS)

    2015-06-01

    The Nuclear Safety Review 2015 focuses on the dominant nuclear safety trends, issues and challenges in 2014. The Executive Overview provides general nuclear safety information along with a summary of the major issues covered in this report: improving radiation, transport and waste safety; strengthening safety in nuclear installations; enhancing emergency preparedness and response (EPR); and strengthening civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the Agency’s safety standards. The global nuclear community continued to make steady progress in improving nuclear safety throughout the world in 2014; and, the Agency and its Member States continued to implement the IAEA Action Plan on Nuclear Safety (hereinafter referred to as “the Action Plan”), which was endorsed by the General Conference in 2011 after the Fukushima Daiichi accident in March 2011. • Significant progress has been made in reviewing and revising various Agency’s safety standards in areas such as management of radioactive waste, design basis hazard levels, protection of nuclear power plants (NPPs) against severe accidents, design margins to avoid cliff edge effects, multiple facilities at one site, and strengthening the prevention of unacceptable radiological consequences to the public and the environment, communications and EPR. In addition, the Guidelines for Drafting IAEA Safety Standards and Nuclear Security Series Publications was issued in July 2014.• The Agency continued to analyse the relevant technical aspects of the Fukushima Daiichi accident and to share and disseminate lessons learned to the wider nuclear community. In 2014, the Agency organized two international experts’ meetings (IEMs), one on radiation protection and one on severe accident management. Reports from previous IEMs were also published in 2014: IAEA Report on Human and Organizational Factors in Nuclear

  4. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  5. Nuclear safety infrastructure

    International Nuclear Information System (INIS)

    Moffitt, R.L.

    2010-01-01

    The introduction of nuclear power in any country requires the early establishment of a long term nuclear safety infrastructure. This is necessary to ensure that the siting, design, construction, commissioning, operation and dismantling of the nuclear power plant and any other related installations, as well as the long term management of radioactive waste and spent fuel, are conducted in a safe and secure manner. The decision to undertake a nuclear power program is a major commitment requiring strict attention to nuclear safety. This commitment is a responsibility to not only the citizens of the country developing such a program, but also a responsibility to the international community. Nobody can take on this responsibility or make the critical decisions except the host country. It is important to make sure that the decision making process and the development activities are done in as open a manner as possible allowing interested stakeholders the opportunity to review and comment on the actions and plans. It cannot be overemphasized that everyone involved in a program to develop nuclear power carries a responsibility for ensuring safety. While it is clear that the key decisions and activities are the responsibility of the host country, it is also very important to recognize that help is available. The IAEA, OECD-NEA, WANO and other international organizations along with countries with established nuclear power programs are available to provide information and assistance. In particular, the IAEA and OECD-NEA have published several documents regarding the development of a nuclear power program and they have been and continue to support many meetings and seminars regarding the development of nuclear power programs

  6. The safety function in Scottish Nuclear

    International Nuclear Information System (INIS)

    McKeown, J.

    1991-01-01

    The Director of Safety for Scottish Nuclear Ltd, the company which has owned and operated Scotland's nuclear power generating capacity since privatization, explains how the management of safety is realized within the company, in line with the company's motto of ''Quality, Safety, Excellence''. A commitment to the highest levels of safety management in all its aspects is emphasized, from Board level down. The various measures taken to ensure these aims are realized are explained in three broad areas, radiological protection, operational nuclear safety and industrial safety. (UK)

  7. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  8. Towards an International Approach to Nuclear Safety

    International Nuclear Information System (INIS)

    Tomihiro Taniguchi

    2006-01-01

    This document presents in a series of transparencies the different activities of the IAEA: Introduction of International Atomic Energy Agency, Changing world, Changing Technology, Changing Global Security, Developing Innovative Nuclear Energy Systems, Global Nuclear Safety Regime, IAEA Safety Standards: Hierarchy - Global Reference for Striving for Excellence, IAEA Safety Reviews and Services: Integrated Safety Approach, Global Knowledge Network - Asian Nuclear Safety Network, Safety Issues and Challenges, Synergy between Safety and Security, Recent Developments: Safety and Security of Radioactive Sources, Convention on Physical Protection of Nuclear Material (CPPNM), Incident and Emergency Preparedness and Response, Holistic Approach for Safety and Security, Sustainable Development. (J.S.)

  9. Nuclear safety project

    International Nuclear Information System (INIS)

    1984-11-01

    The semiannual progress report 1984/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1984 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./RW) [de

  10. Project Nuclear Safety

    International Nuclear Information System (INIS)

    1981-11-01

    The semiannual progress report 1981/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1981 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics, work performed, results obtained, plans for future work. This report was compiled by the project management. (orig.) [de

  11. Leadership Actions to Improve Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Clewett, L.K.

    2016-01-01

    The challenge many leaders face is how to effectively implement and then utilise the results of Safety Culture surveys. Bruce Power has recently successfully implemented changes to the Safety Culture survey process including how corrective actions were identified and implemented. The actions taken in response to the latest survey have proven effective with step change performance noted. Nuclear Safety is a core value for Bruce Power. Nuclear Safety at Bruce Power is based on the following four pillars: reactor safety, industrial safety, radiological safety and environmental safety. Processes and practices are in place to achieve a healthy Nuclear Safety Culture within Bruce Power such that nuclear safety is the overriding priority. This governance is based on industry leading practices which monitor, asses and take action to drive continual improvements in the Nuclear Safety Culture within Bruce Power.

  12. The Nordic programme on waste and decommissioning (KAN) 1990-93

    International Nuclear Information System (INIS)

    1994-03-01

    In assessing nuclear waste safety, both long term and short term aspects need to be considered. For the development of a system for the final disposal of spent nuclear fuel, the most challenging task is to develop a sufficient understanding of the long term safety of a potential repository. Two of the NKS-projects are directly relevant for the long term safety of a deep geological repository, whereas the other projects mainly concern issues in managing nuclear waste today. Information about repositories and their contents must be conserved so that it can be easily retrieved. The KAN-1.3 studies deal with available information and how to preserve it. Archive safety as well as the expected durability of different archive media is explored. In the long term the present day climate will change significantly. An important part of the KAN-3 project has been to assemble field evidence, such as historic data indicating effects of past glaciations. The potential impact of a future glaciation on a repository is also explored in this project. An unlikely accident at a nuclear power plant could result in deposition of radioactive elements in the environment so that cleanup becomes necessary. In the KAN-2 project waste volumes and activities in different environments are estimated. Experiments have been performed with soil removal, and with cement solidification, and cost-benefit analyses are developed for use in emergency planning. Clearance of radioactive materials from regulatory control may reduce waste volumes that must otherwise be handled as radioactive, especially in conjunction with decommissioning. In the KAN-1.1 project the essential aspects of the clearance problems are dealt with such as definitions, radiological assessments, monitoring, and preparation of a clearance application. Eventually all nuclear installations in the Nordic countries will have to be decommissioned. In the KAN-1.2 project, the decommissioning of a pilot reprocessing plant is documented and

  13. Cost calculations at early stages of nuclear research facilities in the nordic countries

    International Nuclear Information System (INIS)

    Iversen, Klaus; Salmenhaara, Seppo; Backe, Steinar; Cato, Anna; Lindskog, Staffan; Callander, Clas; Efraimsson, Henrik; Andersson, Inga; Sjoeblom, Rolf

    2007-01-01

    The Nordic countries Denmark, Norway and Sweden, and to some extent also Finland, had very large nuclear research and development programs for a few decades starting in the nineteen fifties. Today, only some of the facilities are in use. Some have been decommissioned and dismantled while others are at various stages of planning for shutdown. The perspective ranges from imminent to several decades. It eventually became realized that considerable planning for the future decommissioning is warranted and that an integral part of this planning is financial, including how financial funds should be acquired, used and allocated over time. This necessitates that accurate and reliable cost estimates be obtained at all stages. However, this is associated with fundamental difficulties and treacherous complexities, especially for the early ones. Eventually, Denmark and Norway decided not to build any nuclear power plants while Finland and Sweden did. This is reflected in the financing where the latter countries have established systems with special funds in which money is being collected now to cover the future costs for the decommissioning of the research facilities. Nonetheless, the needs for planning for the decommissioning of nuclear research facilities are very similar. However, they differ considerably from those of nuclear power reactors, especially with regard to cost calculations. It has become apparent in the course of work that summation types of cost estimation methodologies give rise to large systematic errors if applied at early stages, in which case comparison based assessments are less biased and may be more reliable. Therefore, in order to achieve the required quality of the cost calculations, it is necessary that data and experience from authentic cases be utilized in models for cost calculations. It also implies that this calculation process should include a well adopted learning process. Thus, a Nordic co-operation has been established for the exchange and

  14. No nuclear safety without security

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    ead of Health and Safety - Nuclear Safety and Corporate Security at ENGIE Benelux, Pierre Doumont has the delicate job of defining and implementing measures, including cybersecurity, to prevent the risk of malevolent acts against tangible and intangible assets. He gives some hints on the contribution of nuclear security to safety.

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  16. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  17. Informing future societies about nuclear waste repositories

    International Nuclear Information System (INIS)

    Jensen, M.

    1994-01-01

    In 1990 a working group of the NKS (the Nordic nuclear safety program) was formed and give the task of established a basis for a common Nordic view of the need for information conservation for nuclear waste repositories. The Group investigated what tipy of information should be conserved; in what form the information should be kept; the quality of the information; and the problems of future retrieval of information, including retrieval after very long periods of time. Topics covered include the following: scientific aspects including social context of scientific solutions; information management; systems for conservation and retrieval of information including the problems of prediction; archives, markers, archives vs. markers, and continuing processes in society; Archive media including paper documents, microfilm, digital media, media lifetimes; and finally conclusions and recommendations

  18. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  19. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  20. Managing for safety at nuclear installations

    International Nuclear Information System (INIS)

    1996-01-01

    This publication, by the Health and Safety Executive's (HSE's) Nuclear Safety Division (NSD), provides a statement of the criteria the Nuclear Installations Inspectorate (NII) uses to judge the adequacy of any proposed or existing system for managing a nuclear installation in so far as it affects safety. These criteria have been developed from the basic HSE model, described in the publication Successful health and safety management that applies to industry generally, in order to meet the additional needs for managing nuclear safety. In addition, the publication identifies earlier studies upon which this work was based together with the key management activities and outputs. (Author)

  1. The role of nuclear law in nuclear safety after Fukushima; El rol del derecho nuclear en seguridad nuclear luego de Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Diva E. Puig, E-mail: d.puig@adinet.com.uy [International Nuclear Law Association (INLA), Montevideo (Uruguay)

    2013-07-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor.

  2. Nuclear safety: an international approach: the convention on nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1994-01-01

    This paper is a general presentation of the IAEA Convention on Nuclear Safety which has already be signed by 50 countries and which is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The paper gives a review of its development and some key provisions for a better understanding of how this agreement will operate in practice. The Convention consists of an introductory preamble and four chapters consisting of 35 articles dealing with: the principal objectives, definitions and scope of application; the various obligations (general provisions, legislation, responsibility and regulation, general safety considerations taking into account: the financial and human resources, the human factors, the quality assurance, the assessment and verification of safety, the radiation protection and the emergency preparedness; the safety of installations: sitting, design and construction, operation); the periodic meetings of the contracting parties to review national reports on the measures taken to implement each of the obligations, and the final clauses and other judicial provisions common to international agreements. (J.S.). 1 append

  3. Safety management in nuclear technology. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    At the symposium of TueV Sued AG (Munich, Federal Republic of Germany) held in Munich on 28 and 29 October 2008, the following lectures were held: (1) Fundamental requirements of the management system in nuclear technology - Experiences from the international developments at IAEA and WENRA (M. Herttrich); (2) Information from a comparison of requirements of safety management systems (B. Kallenbach-Herbert); (3) Requirements of a modern management system in German nuclear power plants from the view of nuclear safety (D. Majer); (4) Requirements on safety management in module 8 of the regulations project (M. Maqua); (5) Requirements on the management system in nuclear power plants according to GRS-229 and developments at the KTA 1402 ''Integrated management system for safe operation of nuclear power plants (in progress)'' (C. Verstegen); (6) Experiences from the development and implementation of safety management systems in connection with the works management of a nuclear power plant (K. Ramler); (7) Design of a safety management system of a nuclear power plant in consideration of existing management systems (U. Naumann); (8) Experiences in the utilization and evaluation of a safety management system (J. Ritter); (9) Aspects of leadership of safety management systems (S. Seitz); (10) Management of safety or safety management system? Prevailing or administration? (A. Frischknecht); (11) Change management - strategies for successful transfer of new projects: How can I motivate co-workers for a further development of the safety management system? (U. Schnabel); (12) Requirements concerning indicators in integrated management systems and safety management systems (J. Stiller); (13) Integration of proactive and reactive indicators in the safety management system (B. Fahlbruch); (14) What do indicators show? About the use of indicators by regulatory authorities (A. Kern); (15) Safety management and radiation protection in nuclear technology (K. Grantner); (16) Any more

  4. National nuclear safety report 2005. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2006-01-01

    This National Nuclear Safety Report was presented at the 3rd. Review meeting. In general the information contained in the report are: Highlights / Themes; Follow-up from 2nd. Review meeting; Challenges, achievements and good practices; Planned measures to improve safety; Updates to National report to 3rd. Review meeting; Questions from peer review of National Report; and Conclusions

  5. The directive establishing a community framework for the nuclear safety of nuclear installations: the European Union approach to nuclear safety

    International Nuclear Information System (INIS)

    Garribba, M.; Chirtes, A.; Nauduzaite, M.

    2009-01-01

    This article aims at explaining the evolution leading to the adoption of the recent Council Directive 2009/71/EURATOM establishing a Community framework for the nuclear safety of nuclear installations adopted with the consent of all 27 members states following the overwhelming support of the European Parliament, that creates for the first time, a binding legal framework that brings legal certainty to European Union citizens and reinforces the role and independence of national regulators. The paper is divided into three sections. The first section addresses the competence of the European Atomic energy Community to legislate in the area of nuclear safety. It focuses on the 2002 landmark ruling of the European Court of justice that confirmed this competence by recognizing the intrinsic link between radiation protection and nuclear safety. The second part describes the history of the Nuclear safety directive from the initial 2003 European Commission proposal to today 's text in force. The third part is dedicated to a description of the content of the Directive and its implications on the further development of nuclear safety in the European Union. (N.C.)

  6. 48 CFR 923.7001 - Nuclear safety.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear safety. 923.7001... ENVIRONMENT, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Environmental, Energy and Water Efficiency, Renewable Energy Technologies, and Occupational Safety Programs 923.7001 Nuclear safety. The DOE...

  7. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  8. Nordic project food contact materials

    DEFF Research Database (Denmark)

    Li, Ågot; Tesdal Håland, Julie; Petersen, Jens Højslev

    Denmark, Finland, Faroe Islands, Iceland, Norway and Sweden have in 2013––2015 conducted a Nordic project on food contact materials. Food contact materials are used in all stages of food production and can be a general source of contamination. The food safety authorities in most of the Nordic...... countries have had a limited focus on the FCM area with the exception of Denmark and Finland. The aim of the project was therefore to control establishments producing, importing or using plastic food contact materials as well as to increase the knowledge of the inspectors performing these controls....... The focus of the inspections was to control the declaration of compliance (DoC) for plastic food contact materials. The requirement for a Doc is mandatory in order to ensure that the FCM complies with the legislation. In addition some products were analyzed for phthalates....

  9. Nuclear Safety in Central and Eastern Europe

    International Nuclear Information System (INIS)

    2001-04-01

    Nuclear safety is one of the critical issues with respect to the enlargement of the European Union towards the countries of Central and Eastern Europe. In the context of the enlargement process, the European Commission overall strategy on nuclear safety matters has been to bring the general standard of nuclear safety in the pre-accession countries up to a level that would be comparable to the safety levels in the countries of the European Union. In this context, the primary objective of the project was to develop a common format and general guidance for the evaluation of the current nuclear safety status in countries that operate commercial nuclear power plants. Therefore, one of the project team first undertakings was to develop an approach that would allow for a consistent and comprehensive overview of the nuclear safety status in the CEEC, enabling an equal treatment of the countries to be evaluated. Such an approach, which did not exist, should also ensure identification of the most important safety issues of the individual nuclear power plants. The efforts resulted in the development of the ''Performance Evaluation Guide'', which focuses on important nuclear safety issues such as plant design and operation, the practice of performing safety assessments, and nuclear legislation and regulation, in particular the role of the national regulatory body. Another important aspect of the project was the validation of the Performance Evaluation Guide (PEG) by performing a preliminary evaluation of nuclear safety in the CEEC, namely in Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, and Slovenia. The nuclear safety evaluation of each country was performed as a desktop exercise, using solely available documents that had been prepared by various Western institutions and the countries themselves. Therefore, the evaluation is only of a preliminary nature. The project did not intend to re-assess nuclear safety, but to focus on a comprehensive summary

  10. Nuclear safety chains

    International Nuclear Information System (INIS)

    Robbins, M.C.; Eames, G.F.; Mayell, J.R.

    1981-01-01

    An original scheme has been developed for expressing the complex interrelationships associated with the engineered safeguards provided for a nuclear power station. This management tool, based upon network diagrams called Nuclear Safety Chains, looks at the function required of a particular item of safety plant, defines all of the vital supplies and support features necessary for successful operation, and expresses them in visual form, to facilitate analysis and optimisation for operations and maintenance staff. The safety chains are confined to manual schemes at present, although they are designed to be compatible with modern computer techniques. Their usefulness with any routine maintenance planning application on high technology plant is already being appreciated. (author)

  11. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  12. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  13. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  14. Investigation of nuclear power safety objects

    International Nuclear Information System (INIS)

    2003-09-01

    It is a report of ground and concept of nuclear safety objects and future issues in Japan, which has investigated by the Committee of Experts on Investigation of Nuclear Safety Objects in the Nuclear Safety Research Association. The report consisted of member of committee, main conclusions and five chapters. The first chapter contains construction of safety objects and range of object, the second chapter qualitative safety objects, the third chapter quantitative safety objects, the forth subsiding objects and the fifth other items under consideration. The qualitative safety objects on individual and society, the quantitative one on effects on health and social cost, aspect of safety objects, relation between radiation protection and safety objects, practical objective values and earthquake are stated. (S.Y.)

  15. Promotion of nuclear safety culture in Korea

    International Nuclear Information System (INIS)

    Eun, Youngsoo

    1996-01-01

    The term 'nuclear safety culture' was first introduced by the IAEA after the Chernobyl accident in the former USSR and subsequently defined in the IAEA's Safety Series No. 75-IMSAG-4 'Safety Culture' as follows : 'Safety culture is that assembly of characteristics and attitudes in organizations and individuals which establish that establish that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance.' INSAG-4 deals with the concept of 'Safety Culture' as it relates to organizations and individuals engaged in nuclear power activities, and is intended for use by governmental authorities and by the nuclear industry and its supporting organizations. The IAEA's Assessment of Safety Culture in Organizations Team (ASCOT) developed ASCOT Guidelines that can be used in the assessment of the safety culture level of the organizations and their individual workers concerned, with a view to the tangible manifestations of safety culture that has intangible characteristics in nature. The IAEA provides the nuclear safety culture assessment service on the request of the Member States. Safety culture can not be achieved by the effort of the nuclear industry and its involved individuals alone. Rather, it requires a well concerted effort among various organizations engaged in nuclear activities including regulatory organizations

  16. Nordita. Nordic Institute for Theoretical Atomic Physics

    International Nuclear Information System (INIS)

    1990-01-01

    This report covers the period from January 1st to December 31st, 1989. The purpose of Nordita is to encourage scientific collaboration between the Nordic countries within scientific and basic nuclear physics. The scientific programme at Nordita covers astrophysics, elementary particle physics, solid state physics and nuclear physics. The scientific work is published or otherwise made public. The research at Nordita is performed in close cooperation with the Niels Bohr Institute, Denmark. (author)

  17. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  18. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  19. Annual report ''nuclear safety in France''

    International Nuclear Information System (INIS)

    2001-01-01

    This document is the 2001 annual report of the French authority of nuclear safety (ASN). It summarizes the highlights of the year 2000 and details the following aspects: the nuclear safety in France, the organization of the control of nuclear safety, the regulation relative to basic nuclear facilities, the control of facilities, the information of the public, the international relations, the organisation of emergencies, the radiation protection, the transport of radioactive materials, the radioactive wastes, the PWR reactors, the experimental reactors and other laboratories and facilities, the nuclear fuel cycle facilities, and the shutdown and dismantling of nuclear facilities. (J.S.)

  20. Software Quality Assurance for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Sparkman, D R; Lagdon, R

    2004-01-01

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: (sm b ullet) Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe (sm b ullet) Considers the larger system that uses the software and its impacts (sm b ullet) Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  1. Management of operational safety in nuclear power plants. INSAG-13. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. Engineering issues have received close attention from the nuclear community over many years. However, it is only in the last decade or so that organizational and cultural issues have been identified as vital to achieving safe operation. INSAG's publication No. 4 has been widely recognized as a milestone in advancing thinking about safety culture in the nuclear community and more widely. The present report deals with the framework for safety management that is necessary in organizations in order to promote safety culture. It deals with the general principles underlying the management of operational safety in a systematic way and provides guidance on good practices. It also draws on the results of audits and reviews to highlight how shortfalls in safety management have led to incidents at nuclear power plants. In addition, several specific issues are raised which are particularly topical in view of organizational changes that are taking place in the nuclear industry in various countries. Advice is given on how safety can be managed during organizational change, how safety

  2. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  3. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1989-01-01

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  4. Global Nuclear Safety and Security Network

    International Nuclear Information System (INIS)

    Guo Lingquan

    2013-01-01

    The objectives of the Regulatory Network are: - to contribute to the effectiveness of nuclear regulatory systems; - to contribute to continuous enhancements, and - to achieve and promote radiation and nuclear safety and security by: • Enhancing the effectiveness and efficiency of international cooperation in the regulation of nuclear and radiation safety of facilities and activities; • Enabling adequate access by regulators to relevant safety and security information; • Promoting dissemination of information on safety and security issues as well as information of good practices for addressing and resolving these issues; • Enabling synergies among different web based networks with a view to strengthening and enhancing the global nuclear safety framework and serving the specific needs of regulators and international organizations; • Providing additional information to the public on international regulatory cooperation in safety and security matters

  5. Clear progress in nuclear safety worldwide: Convention on nuclear safety concludes

    International Nuclear Information System (INIS)

    2002-01-01

    It has been concluded that a significant progress has been observed in a number of key areas, such as strengthened legislation, regulatory independence, the availability of financial resources, enhanced emergency preparedness and safety improvements at nuclear power plants built to earlier standards. The objective of the Convention is to achieve and maintain a high level of nuclear safety worldwide. During the two week Review Meeting, parties engaged in a 'peer review' process in which the National Reports from individual States were collectively examined and discussed, with written replies provided to all the questions raised. Clear improvement was noted in the quality of the National Reports, the number of questions and the openness and quality of discussion and answers. The Contracting Parties praised the IAEA's various safety review missions and services, which they use widely to help enhance the effectiveness of their national safety arrangements. Forty-six contracting parties participated at the Review Meeting with over 400 delegates attending, including many heads and senior officers from regulatory bodies and experts from industry. To date, the Convention has been signed by sixty-five States and ratified by fifty-four, representing 428 of the 448 nuclear power reactors worldwide

  6. Nuclear power safety economics

    International Nuclear Information System (INIS)

    Legasov, V.A.; Demin, V.F.; Shevelev, Ya.V.

    1984-01-01

    The existing conceptual and methodical basis for the decision-making process insuring safety of the nuclear power and other (industrial and non-industrial) human activities is critically analyzed. Necessity of development a generalized economic safety analysis method (GESAM) is shown. Its purpose is justifying safety measures. Problems of GESAM development are considered including the problem of costing human risk. A number of suggestions on solving them are given. Using the discounting procedure in the assessment of risk or detriment caused by harmful impact on human health is substantiated. Examples of analyzing some safety systems in the nuclear power and other spheres of human activity are given

  7. Enhancement of nuclear safety culture

    International Nuclear Information System (INIS)

    Anderson, Stanley J.

    1996-01-01

    Throughout the 40-year history of the commercial nuclear power industry, improvements have continually been made in the design of nuclear power plants and the equipment in them. In one sense, we have reached an enviable point -- in most plants, equipment failures have become relatively rare. Yet events continue to occur. Regardless of how much the plants are improved, that equipment is operated by people -- highly motivated, well-trained people -- but people nonetheless. And people occasionally make mistakes. By setting the right climate and by setting high standards, good plant management can reduce the number of mistakes made ? and also reduce their potential consequences. Another way to say this is that the proper safety culture must be established and continually improved upon in our nuclear plants. Safety culture is defined by the International Atomic Energy Agency as 'that assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance.' In short, we must make safety our top priority

  8. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  9. Elements of a nuclear criticality safety program

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1995-01-01

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance

  10. T-book. Reliability data of components in Nordic nuclear power plants. 6. ed

    International Nuclear Information System (INIS)

    2005-01-01

    reasoning in the description of the uncertainty associated with the failure rates or demand-related failure probabilities. Analytically attractive distributions, gamma distributions for the failure rate, were used to model this uncertainty, and straightforward statistical methods were used to estimate the parameters of these distributions. The reliability parameters nowadays are calculated according to a method called 'Bayes empirical Bayes'. According to this method also the parameters of the uncertainty distributions are estimated in a Bayesian way. Of great interest to the community of nuclear safety analysts is the application of the q o +λ s t model, where q o is derived from failures occurring at the demand occasion while λ s characterises failure mechanisms that are active during the standby time. This model is applicable on component groups where several test intervals are represented in the operational data. The marginal distributions of q o and λ s are shown for both generic and unit specific values. The T-Book should be considered as an important step in the continuous effort to collect and analyse data on the reliability of safety components at NPPs. There will be future revisions of the T-Book with incorporation of new data and implementation of user experiences. The English edition of the T-Book has been brought forward in response to a large interest outside the Nordic countries. The contents are essentially the same as the Swedish one

  11. Nordic Branding Podcast 4

    DEFF Research Database (Denmark)

    2017-01-01

    Reflections on Nordic branding with professor Dannie Kjeldgaard. Why Nordic regionality and why now? What is the dynamics of local/global/glocal/regional?......Reflections on Nordic branding with professor Dannie Kjeldgaard. Why Nordic regionality and why now? What is the dynamics of local/global/glocal/regional?...

  12. Sedation practice in Nordic and non-Nordic ICUs

    DEFF Research Database (Denmark)

    Egerod, Ingrid; Albarran, John W; Ring, Mette

    2013-01-01

    A trend towards lighter sedation has been evident in many intensive care units (ICUs). The aims of the survey were to describe sedation practice in European ICUs and to compare sedation practice in Nordic and non-Nordic countries....

  13. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  14. Nuclear safety - Topical issues

    International Nuclear Information System (INIS)

    1995-01-01

    The following topical issues related to nuclear safety are discussed: steam generators; maintenance strategies; control rod drive nozzle cracks; core shrouds cracks; sump strainer blockage; fire protection; computer software important for safety; safety during shutdown; operational safety experience; external hazards and other site related issues. 5 figs, 5 tabs

  15. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  16. Early phase clean-up actions after nuclear accidents. Guidelines for the planner. Final report

    International Nuclear Information System (INIS)

    Ulvsand, T.

    1997-06-01

    The work reported has been performed with the purpose of working out a guide for planners of early clean-up actions in nuclear fallout situations and for decision makers in the Nordic countries. The actions considered are hosing of roofs, walls and paved areas, lawn mowing, removal of snow, pruning of trees and bushes and vacuum cleaning of streets. The expected effects, mainly as life time dose reduction, and consequences regarding practicability, waste produced, staffing and protection are presented for urban, suburban and rural living environments. The work has been performed within the fram work of the Nordic Nuclear Safety Research Program 1994-97 (Statens Raeddningsverk). (au)

  17. A guide to countermeasures for implementation in the event of a nuclear accident affecting nordic food-producing areas

    International Nuclear Information System (INIS)

    Andersson, K.G.; Roed, J.; Rantavaara, A.; Rosen, K.; Salbu, B.; Skipperud, L.

    2000-08-01

    State-of-the-art information on methods for management of nuclear accidents affecting food-producing areas has been reviewed, evaluated and transposed to reflect conditions relevant to the Nordic countries. This data, describing in detail the various method-specific costs and benefits, is reported in a well-arranged format facilitating analyses in connection with decision-making. Guidance, recommendations and examples are given as to how the individual data sheets may be used in emergency preparedness planning. (au)

  18. Evaluation of early phase nuclear accident clean-up procedures for Nordic residential areas

    International Nuclear Information System (INIS)

    Andersson, K.G.

    1996-12-01

    The work reported was carried out as a part of the EKO-5 project under the framework of the Nordic co-operative NKS programme. The project is aimed at giving guidelines relating to Nordic conditions for the reduction of external doses in the early phase of a major accidental airborne nuclear contamination (essentially with 137 Cs) situation in urban areas. The material in this report describes the expected effects, in terms of immediate dose rate reduction and of reduction of the integrated doses over 70 years, of implementation of the methods which were considered to be feasible for early phase treatment of contaminated urban surfaces. Also given are estimates of the integrated doses if no action were taken. The given estimates were based on the experience obtained through large amounts of in situ measurements on different types of surface, mainly since the Chernobyl accident in 1986. The computer model URGENT, was used to apply the information on the migration of the radioactive material with time, together with the results of Monte Carlo photon transport calculations, for the time-integrated dose estimates. 66 data sheets describe the beneficial effects, costs and disadvantages of application of a feasible method for cleaning in the early phase of a specific type of surface in one of five different urban or suburban environments. These data form the foundation for the recommendations on guidelines, which are the ultimate goal of the EKO-5 project. References are given to recommended supplementary reading. (EG)

  19. Sedation practice in Nordic and non-Nordic ICUs: a European survey.

    Science.gov (United States)

    Egerod, Ingrid; Albarran, John W; Ring, Mette; Blackwood, Bronagh

    2013-07-01

    A trend towards lighter sedation has been evident in many intensive care units (ICUs). The aims of the survey were to describe sedation practice in European ICUs and to compare sedation practice in Nordic and non-Nordic countries. A cross-sectional survey of ICU nurses attending the fourth European federation of Critical Care Nursing associations (EfCCNa) in Denmark, 2011. Data included use of protocols; sedation, pain and delirium assessment tools; collaborative decision-making; sedation and analgesic medications; and educational preparation related to sedation. Response rate was 42% (n = 291) from 22 countries where 53% (n = 148) used sedation protocols. Nordic nurses reported greater use of sedation (91% versus 67%, p Nordic nurses. Decision-making on sedation was more inter-professionally collaborative in Nordic ICUs (83% versus 61%, p Nordic nurses reported greater consistency in maintaining circadian rhythm (66% versus 49%, p Nordic context might be more germane to the goal of lighter sedation and better pain management. Our study raises awareness of current sedation practice, paving the way towards optimized ICU sedation management. © 2013 The Authors. Nursing in Critical Care © 2013 British Association of Critical Care Nurses.

  20. Effort on Nuclear Power Plants safety

    International Nuclear Information System (INIS)

    Prayoto.

    1979-01-01

    Prospects of nuclear power plant on designing, building and operation covering natural safety, technical safety, and emergency safety are discussed. Several problems and their solutions and nuclear energy operation in developing countries especially control and permission are also discussed. (author tr.)

  1. Nuclear utility self-assessment as viewed by the corporate nuclear safety committee

    International Nuclear Information System (INIS)

    Corcoran, W.R.

    1992-01-01

    This paper discusses how corporate nuclear safety committees use the principles of self-assessment to enhance nuclear power plant safety performance. Corporate nuclear safety committees function to advise the senior nuclear power executive on matters affecting nuclear safety. These committees are required by the administrative controls section of the plant technical specifications which are part of the final safety analysis report and the operating license. Committee membership includes senior utility executives, executives from sister utilities, utility senior technical experts, and outside consultants. Current corporate nuclear safety committees often have a finely tuned intuitive feel for self-assessment that they use to probe the underlying opportunities for quality and safety enhancements. The questions prompted by the self-assessment orientation enable the utility line organization members to gain better perspectives on the characteristics of the organizational systems that they manage and work in

  2. Locating Nordic Noir

    DEFF Research Database (Denmark)

    Hansen, Kim Toft; Waade, Anne Marit

    such as Beck, The Killing, Trapped and The Bridge as well as a range of other important Nordic Noir cases. The book positions the development of Nordic Noir on the global market for popular television drama and places the international attention towards Nordic crime dramas within regional development of drama...

  3. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  4. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators

  5. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  6. Introduction into the nuclear safety technologies

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.M.; Pavlenko, A.A.; Pis'mennyj, E.N.; Shirokov, S.V.

    2006-01-01

    The theoretical and practical issues of the power and research nuclear reactor safety existing on the territory of Ukraine, the radwaste and nuclear material management objects, as well as the 'Shelter' object, the aspects of the nuclear and radiation safety regulation are considered

  7. Nuclear safety review for 1984

    International Nuclear Information System (INIS)

    1985-08-01

    This publication is based on the fourth Nuclear Safety Review prepared by the IAEA Secretariat for presentation to the Board of Governors. It discusses relevant international activities in 1984 and the current status of nuclear safety and radiation protection, and looks ahead to anticipated developments

  8. Melancholy in Nordic Noir

    DEFF Research Database (Denmark)

    Waade, Anne Marit

    2017-01-01

    Nordic noir on screen is characterised by a certain melancholy displayed in the plot, the imagery and the characters. These elements also characterise Scandinavian crime fiction, for example, the troubled protagonists and the cold climate. Nordic noir has attracted considerable interest among...... audiences and academics. However, none of the academic contributions reflect the connection to the historical Nordic melancholy. In this article, I relate Nordic noir to Nordic melancholy in art, philosophy and culture in which melancholy as a romantic ideal was embedded in a particular landscape...

  9. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  10. Nuclear Safety Review for the Year 2008

    International Nuclear Information System (INIS)

    2009-07-01

    Nuclear technologies are increasingly seen as important solutions for meeting a number of challenges. Enabling the peaceful use of nuclear technology to support global energy demands and other human needs must be accompanied by deliberate, internationally-coordinated actions to minimize the potential for nuclear accidents and terrorism. While in recent years, the safety performance of the nuclear industry has been good, it is important to avoid any complacency. The Agency continues to support and promote the global nuclear safety and security regime as a framework for worldwide achievement of high levels of safety and security in nuclear activities. In 2008, three general themes can be observed from the global trends, issues and challenges in nuclear safety: the continuous improvements in strengthening safety worldwide through international cooperation; an expected increase of new entrant nuclear power programmes and the expansion of existing programmes; and safety and security synergy. Regarding continuous improvements to strengthen safety worldwide, the focus was on operating experience feedback and knowledge networking; and self-assessment and peer review. In the areas of new entrant nuclear programmes and expansion of existing nuclear programmes, activities centred on national safety infrastructures; human resources and capacity building; regulatory independence; nuclear incident and emergency preparedness and response; spent fuel and radioactive waste management; and multinational aspects of nuclear activities. In the area of safety and security synergy, in 2008 there was increasing awareness that processes need to be in place to ensure that safety activities do not compromise security and vice versa. As outlined in Safety Fundamentals No. SF-1, the prime responsibility for safety must rest with the person or organization responsible for facilities and activities that give rise to radiation risks. An effective legal and governmental framework for safety

  11. NPP Mochovce nuclear safety enhancement program

    International Nuclear Information System (INIS)

    Cech, J.; Baumester, P.

    1997-01-01

    Nuclear power plant Mochovce is currently under construction and an extensive nuclear safety enhancement programme is under way. The upgrading and modifications are based on IAEA documents and on those of the Nuclear Regulatory Authority of the Slovak Republic. Based on a contract concluded with Riskaudit from the CEC, safety examinations of the Mochovce design were performed. An extensive list of technical specifications of safety measures is given. (M.D.)

  12. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  13. Research and exploration on nuclear safety culture construction

    International Nuclear Information System (INIS)

    Zhang Lifang; Zhao Hongtao; Wang Hongwei

    2012-01-01

    This thesis mainly researched the definition, characteristics, development stage and setup procedure concerning nuclear safety culture, based on practice and experiences in Technical Physics Institute of Heilongjian. Academy of Science. The author discussed the importance of nuclear safety culture construction for an enterprise of nuclear technology utilization, and emphasized all the enterprise and individual who engaged in nuclear and radiation safety should acquire good nuclear safety culture quality, and ensure the application and development of the nuclear safety cult.ure construction in the enterprises of nu- clear technological utilization. (authors)

  14. Nordic study on reactor waste

    International Nuclear Information System (INIS)

    1981-08-01

    In 1981, 14 nuclear power reactors are in operation and 2 under construction in the Nordic countries. So far, the reactor waste originating from day-to-day operation of these plants has been stored in solidified form at the reactor sites. Within a few years a satisfactory disposal procedure needs to be established. While the main R and D effects in the waste field have earlier been devoted to the question of irradiated fuel and waste from reprocessing, there is therefore now an increased interest in reactor waste with its much lower radioactivity but somewhat larger volumes. Since 1977, efforts have been made in a joint Nordic study to examine which facts need to be known in order to perform a comprehensive safety assessment of a reactor waste management system. In the present study a Reference system related to the waste generated over 30 years from six 500 MW-reactors is examined. The dominating radionuclides during storage and transportation accident scenarios are Cs-134, Cs-137 and Co-60. For most of the release scenarios from repositories Cs-137 and Sr-90 are dominating. Some scenarios are, however, dominated by the very longlived nuclides I-129 and C-14. A closer examination of the concentration in the waste of these nuclides and of their leaching properties indicates that their small - but significant - influence, as calculated, is probably grossly overestimated. The mechanical stability obtained in routine solidification processes of reactor waste products in conjunction with the outer container (steel drum, transport container, etc.) turns out to be sufficient. Difficulties were encountered in applying ICRP methodology and available dose calculation methods to calculation of population doses due to small activity releases, and effects extending into the far future. (EG)

  15. Nuclear Safety Review for the Year 2009

    International Nuclear Information System (INIS)

    2010-07-01

    The global nuclear community is experiencing a period of dynamic change. The introduction of new nuclear power plants, the rapid expansion of existing nuclear power programmes and the wider use of radioactive sources and ionizing radiation in general highlight the need for continued and improved international cooperation to address the associated challenges. The increasingly multinational nature of today's nuclear business and activities underscores this need. In this context, it is particularly important to note that the establishment of adequate safety infrastructure and capacity cannot be left to fall behind. The safety performance of the nuclear industry has remained at a high level. Various safety performance indicators, such as those related to unplanned reactor shutdowns, safety equipment availability, radiation exposures to workers, radioactive waste management and radioactive releases to the environment have shown steady improvement over the past two decades, with some levelling off in recent years. Nevertheless, it is necessary to avoid complacency and to continuously improve and strengthen the existing global nuclear safety and security regime so that nuclear technologies can be introduced or their use expanded in a safe and secure manner to meet the world's needs for human well-being and socio-economic development. The Agency continues to support and promote increased participation in the global nuclear safety and security regime as a framework for achieving high levels of safety in nuclear activities worldwide. Through consideration of the global trends, issues and challenges observed in 2009, four key themes in global nuclear safety were identified: 1) continuing international cooperation and emerging coordination for new and expanding nuclear power programmes; 2) improving the long term management of radioactive and nuclear materials; 3) capacity building for sustainable nuclear safety; and 4) strengthening global and regional networking activities

  16. Nuclear Safety. 1997; Surete Nucleaire. 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-19

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  17. Nuclear safety in crisis regions

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Englert, Matthias

    2017-01-01

    The use of nuclear energy demands extensive institutional and material infrastructure upon a foundation of stable intrastate conditions and interstate relations. Conflicts can result in catastrophic accidents, either deliberately or unintentionally. If there are nuclear facilities located in a crisis region, the risk of a nuclear disaster is markedly heightened. This can be explained not only in terms of the strategic relevance of the energy supply in military conflicts, but also the increased accident risks and hazards arising from collateral damage, as well as the erosion of the safety culture and institutional control in crisis regions with a nuclear infrastructure. Even just the escalation of a political dispute or the persistence of low intensity conflicts can make it generally more difficult and complex to maintain nuclear safety, if intrastate safety mechanisms come under strain or even fail as a result. So far no instance of military escalation, past or present, has led to an accident in a civil nuclear facility. Nevertheless, questions are clearly raised about the vulnerability of nuclear facilities in crisis regions and the risks associated with this vulnerability. Despite the potentially far-reaching consequences, too little attention is currently being paid to the linkage between intra- and interstate conflicts and the safety of nuclear facilities in crisis regions. The aim of the research presented here was to explore this theme and, after laying the groundwork in this manner, to raise awareness among policy-makers and the wider public. In this context the escalation of conflicts in the Ukraine is a particular focus. The first part of the report begins with a systematic look at the link between crisis regions and/or conflicts and nuclear safety. The various impact pathways relating to nuclear facility safety and the associated risks are described in relation to potential hazards induced by crises and wars. A nuclear facility can itself become a theatre

  18. Nuclear safety in crisis regions

    Energy Technology Data Exchange (ETDEWEB)

    Ustohalova, Veronika; Englert, Matthias

    2017-04-12

    The use of nuclear energy demands extensive institutional and material infrastructure upon a foundation of stable intrastate conditions and interstate relations. Conflicts can result in catastrophic accidents, either deliberately or unintentionally. If there are nuclear facilities located in a crisis region, the risk of a nuclear disaster is markedly heightened. This can be explained not only in terms of the strategic relevance of the energy supply in military conflicts, but also the increased accident risks and hazards arising from collateral damage, as well as the erosion of the safety culture and institutional control in crisis regions with a nuclear infrastructure. Even just the escalation of a political dispute or the persistence of low intensity conflicts can make it generally more difficult and complex to maintain nuclear safety, if intrastate safety mechanisms come under strain or even fail as a result. So far no instance of military escalation, past or present, has led to an accident in a civil nuclear facility. Nevertheless, questions are clearly raised about the vulnerability of nuclear facilities in crisis regions and the risks associated with this vulnerability. Despite the potentially far-reaching consequences, too little attention is currently being paid to the linkage between intra- and interstate conflicts and the safety of nuclear facilities in crisis regions. The aim of the research presented here was to explore this theme and, after laying the groundwork in this manner, to raise awareness among policy-makers and the wider public. In this context the escalation of conflicts in the Ukraine is a particular focus. The first part of the report begins with a systematic look at the link between crisis regions and/or conflicts and nuclear safety. The various impact pathways relating to nuclear facility safety and the associated risks are described in relation to potential hazards induced by crises and wars. A nuclear facility can itself become a theatre

  19. White paper on nuclear safety in 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The measures to research, develop and utilize atomic energy in Japan have been strengthened since the Atomic Energy Act was instituted in 1955, always on the major premise of securing the safety. The Nuclear Safety Commission established in October, 1978, has executed various measures to protect the health and safety of the nation as the center of the atomic energy safety regulation administration in Japan. Now, the Nuclear Safety Commission has published this annual report on atomic energy safety, summarizing various activities for securing the safety of atomic energy since its establishment to the end of March, 1981. This report is the inaugural issue, and the course till the Nuclear Safety Commission has made its start is also described. The report is composed of general remarks, response to the TMI accident, the safety regulation and security of nuclear facilities, the treatment and disposal of radioactive wastes, the investigation of environmental radioactivity, the countermeasures for preventing disasters around nuclear power stations and others, the research on the safety of atomic energy, international cooperation, and the improvement of the basis for securing the safety. Various related materials are attached. (Kako, I.)

  20. Managing nuclear safety at Point Lepreau

    Energy Technology Data Exchange (ETDEWEB)

    Paciga, J [New Brunswick Power, Point Lepreau NGS, PQ (Canada)

    1997-12-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance).

  1. Managing nuclear safety at Point Lepreau

    International Nuclear Information System (INIS)

    Paciga, J.

    1997-01-01

    Managing nuclear safety at Point Lepreau nuclear power plant is described, including technical issues (station aging, definition of the safe operating envelope, design configuration management, code validation, safety analysis and engineering standards); regulatory issues (action items, probabilistic safety assessment, event investigation, periodic safety review, prioritization of regulatory issues, cost benefit assessment); human performance issues (goals and measures, expectations and accountability, supervisory training, safety culture, configuration management, quality of operations and maintenance)

  2. Procurement strategic analysis of nuclear safety equipment

    International Nuclear Information System (INIS)

    Wu Caixia; Yang Haifeng; Li Xiaoyang; Li Shixin

    2013-01-01

    The nuclear power development plan in China puts forward a challenge on procurement of nuclear safety equipment. Based on the characteristics of the procurement of nuclear safety equipment, requirements are raised for procurement process, including further clarification of equipment technical specification, establishment and improvement of the expert database of the nuclear power industry, adoption of more reasonable evaluation method and establishment of a unified platform for nuclear power plants to procure nuclear safety equipment. This paper makes recommendation of procurement strategy for nuclear power production enterprises from following aspects, making a plan of procurement progress, dividing procurement packages rationally, establishing supplier database through qualification review and implementing classified management, promoting localization process of key equipment continually and further improving the system and mechanism of procurement of nuclear safety equipment. (authors)

  3. Measures to strengthen international co-operation in nuclear, radiation and transport safety and waste management. Nuclear safety review for the year 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Nuclear Safety Review for the Year 2003 presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety during 2003. As in 2002 the overview is supported by more detailed Notes by the Secretariat: Safety Related Events and Issues Worldwide during 2003 (document 2004/Note 6), The Agency's Safety Standards: Activities during 2003 (document 2004/Note 7) and Providing for the Application of the Safety Standards (document 2004/Note 8). In January 2003, the Agency implemented an organization change and developed an integrated approach to reflect a broader assignment of nuclear safety and nuclear security and to better exploit synergy between them. The Office of Physical Protection and Material Security renamed to Office of Nuclear Security was transferred from the Department of Safeguards to the Department of Nuclear Safety, which became the Department of Nuclear Safety and Security to reflect the change. This Review provides information primarily on nuclear safety, and nuclear security will be addressed in a separate report

  4. A philosophy for space nuclear systems safety

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1992-01-01

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions

  5. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course

  6. Nuclear criticality safety: 2-day training course

    Energy Technology Data Exchange (ETDEWEB)

    Schlesser, J.A. [ed.] [comp.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  7. Licensee responsibility for nuclear power plant safety

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    Simple sentences easy to grasp are desirable in regulations and bans. However, in a legal system, their meaning must be unambiguous. Article 6, Paragraph 1 of the EURATOM Directive on a community framework for the nuclear safety of nuclear facilities of June 2009 states that 'responsibility for the nuclear safety of a nuclear facility is incumbent primarily on the licensee.' The draft 'Safety Criteria for Nuclear Power Plants, Revision D, April 2009' of the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) (A Module 1, 'Safety Criteria for Nuclear Power Plants: Basic Safety Criteria' / '0 Principles' Paragraph 2) reads: 'Responsibility for ensuring safety rests with the licensee. He shall give priority to compliance with the safety goal over the achievement of other operational objectives.' In addition, the existing rules and regulations, whose rank is equivalent to that of international regulations, assign priority to the safety goal to be pursued by the licensee over all other objectives of the company. The operator's responsibility for nuclear safety can be required and achieved only on the basis of permits granted, which must meet legal requirements. The operator's proximity to plant operation is the reason for his 'primary responsibility.' Consequently, verbatim incorporation of Article 6, Paragraph 1 of the EURATOM Directive would only be a superscript added to existing obligations of the operator - inclusive of a safety culture designed as an incentive to further 'the spirit of safety-related actions' - without any new legal contents and consequences. In the reasons of the regulation, this would have to be clarified in addition to the cryptic wording of 'responsibility.. primarily,' at the same time expressing that operators and authorities work together in a spirit of openness and trust. (orig.)

  8. Nuclear safety in France

    International Nuclear Information System (INIS)

    Laverie, M.

    1981-02-01

    The principles and rules governing the safety of nuclear installations are defined as from three fundamental principles and three practical rules as follows: First principle: the operator is responsible and of the highest order. Second principle: the public authorities exercise their control responsibility with respect to the design, construction and running of the installations. Third principle: nuclear safety, this is to accept that man and his technique are not infallible and that one must be prepared to control the unpredictable. First rule: the installations must include several 'lines of defence' in succession and to the extent where this is possible these must be independent of each other. Second rule: procedures are required and supervised by the Government Departments. Third rule: nuclear safety requires that any incident or anomaly must undergo an analysis in depth and is also based on a standing 'clinical' examination of the installations. The definition is given as to how the public authorities exercise their intervention: terms and conditions of the intervention by the safety authorities, authorization procedures, surveillance of the installations, general technical regulations. Two specific subjects are presented in the addendum, (a) the choice of nuclear power station sites in France and (b) the storage of radioactive wastes [fr

  9. Quality and safety of nuclear installations: the role of administration, and, nuclear safety and regulatory procedures

    International Nuclear Information System (INIS)

    Queniart, D.

    1979-12-01

    In the first paper the author defines the concepts of safety and quality and describes the means of intervention by the Public Authorities in safety matters of nuclear installations. These include individual authorisations, definition and application of technical rules and surveillance of installations. In the second paper he defines the distinction between radiation protection and safety and presents the legislative and regulatory plan for nuclear safety in France. A central safety service for nuclear installations was created in March 1973 within the Ministry of Industrial and Scientific Development, where, amongst other tasks, it draws up regulatory procedures and organizes inspections of the installations. The main American regulations for light water reactors are outlined and the French regulatory system for different types of reactors discussed

  10. Nuclear Safety Review for the Year 2003

    International Nuclear Information System (INIS)

    2004-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. In line with the suggestions made by the Board of Governors in March 2002, the first part is more analytical and less descriptive. This short analytical overview is supported by a second part, which describes significant safety related events and issues worldwide during 2003. A Draft Nuclear Safety Review for the Year 2003 was submitted to the March 2004 session of the Board of Governors in document GOV/2004/3. The final version of the Nuclear Safety Review for the Year 2003 was prepared in the light of the discussion by the Board.

  11. Site evaluation for nuclear installations. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Siting, which was issued in 1988 as Safety Series No. 50-C-S (Rev. 1). It takes account of developments relating to site evaluations for nuclear installations since the Code on Siting was last revised. These developments include the issuing of the Safety Fundamentals publication on The Safety of Nuclear Installations, and the revision of various safety standards and other publications relating to safety. Requirements for site evaluation are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear installations. It is recognized that there are steady advances in technology and scientific knowledge, in nuclear safety and in what is considered adequate protection. Safety requirements change with these advances and this publication reflects the present consensus among States. This Safety Requirements publication was prepared under the IAEA programme on safety standards for nuclear installations. It establishes requirements and provides criteria for ensuring safety in site evaluation for nuclear installations. The Safety Guides on site evaluation listed in the references provide recommendations on how to meet the requirements established in this Safety Requirements publication. The objective of this publication is to establish the requirements for the elements of a site evaluation for a nuclear installation so as to characterize fully the site specific conditions pertinent to the safety of a nuclear installation. The purpose is to establish requirements for criteria, to be applied as appropriate to site and site-installation interaction in operational states and accident conditions, including those that could lead to emergency measures for: (a) Defining the extent of information on a proposed site to be presented by the applicant; (b) Evaluating a proposed site to ensure that the site

  12. Safety culture in the nuclear versus non-nuclear organization

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.

    1996-01-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period

  13. Nuclear safety. Beyond the technical details

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1987-09-01

    Nuclear safety standards must be set up with due regard for overall societal safety. Several factors contribute to the safety of the CANDU reactor, particularly open, honest and accountable review at every level. Improved public information and education in nuclear matters will contribute to the welfare of society

  14. The safety of nuclear installations

    International Nuclear Information System (INIS)

    1993-01-01

    This Safety Fundamental publication sets out basic objectives, concepts and principles for ensuring safety that can be used both by the IAEA in its international assistance operations and by Member States in their national nuclear programmes. These Safety Fundamentals apply primarily to those nuclear installations in which the stored energy developed in certain situations could potentially results in the release of radioactive material from its designated location with the consequent risk of radiation exposure of people. These principles are applicable to a broad range of nuclear installations, but their detailed application will depend on the particular technology and the risks posed by it. In addition to nuclear power plants, such installations may include: research reactors and facilities, fuel enrichment, manufacturing and reprocessing plants; and certain facilities for radioactive waste treatment and storage

  15. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  16. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  17. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  18. Safety assessment principles for nuclear plants

    International Nuclear Information System (INIS)

    1992-01-01

    The present Safety Assessment Principles result from the revision of those which were drawn up following a recommendation arising from the Sizewell-B enquiry. The principles presented here relate only to nuclear safety; there is a section on risks from normal operation and accident conditions and the standards against which those risks are assessed. A major part of the document deals with the principles that cover the design of nuclear plants. The revised Safety assessment principles are aimed primarily at the safety assessment of new nuclear plants but they will also be used in assessing existing plants. (UK)

  19. Safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Weihe, G. von; Pamme, H.

    2003-01-01

    Experience shows that German nuclear power plants have always been operated reliably and safely. Over the years, the safety level in these plants has been raised considerably so that they can stand any comparison with other countries. This is confirmed by the two reports published by the Federal Ministry for the Environment on the nuclear safety convention. Behind this, there must obviously stand countless appropriate 'good practices' and a safety management system in nuclear power plants. (orig.) [de

  20. The State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984

    International Nuclear Information System (INIS)

    1995-01-01

    The Act lays down responsibilities of the Czechoslovak Atomic Energy Commission in the field of state surveillance over nuclear safety of nuclear facilities; determines the responsibilities of nuclear safety inspectors in their inspection activities; specifies duties of bodies and corporations responsible for nuclear safety of nuclear facilities; stipulates the obligation to set up emergency plans; and specifies penalties imposed on corporations and individuals for noncompliance with nuclear safety provisions. The Act entered into force on 4 April 1984. (J.B.)

  1. Nordic market report 2009 : Development in the Nordic electricity market

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The Nordic region is characterized by a unique mix of generation sources where the high share of hydropower, representing virtually all of the Norwegian and nearly half of the Swedish generation capacity, has a great influence on the market. The level of precipitation is thus vital when calculating and analysing potential generation levels. In addition, the Nordic region has significantly colder winters than any other European country, influencing the consumption as many households are electrically heated. In 2008 the overall electricity consumption in the Nordic region was slightly higher - 1.6 per cent - than in 2007. During periods of peak consumption the Nordic power system proved sufficient to ensure security of supply without restrictions on consumption. The Nordic region operates almost entirely as one synchronous power system through transmission grid. The continuous reinforcement of the Nordic transmission grid has enabled an increased security of supply as well as a more efficient use of the generation capacity. Increasing cross border power flows strain the transmission lines and increases the demand for transmission capacity. Possible congestions occurring between the Nord Pool bidding areas are handled through market splitting, while internal congestions in general are handled through counter trade or by reducing interconnector capacity at the bidding area borders. The Nordic wholesale power market is a well functioning electricity market. Trade at Nord Pool has increased steadily since it was established in 1993. Although trading at Nord Pool Spot is voluntary, significantly more physical power is now traded on the power exchange than bilaterally - from 42 per cent of total Nordic consumption in 2004 to 76 per cent in 2008. During 2008 average spot prices at Nord Pool were considerably higher (approximately 60 per cent) than prices in 2007. The Nordic retail markets are essentially four separate markets, influenced by national differences, but work on

  2. Nordic market report 2009. Development in the Nordic electricity market

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-15

    The Nordic region is characterized by a unique mix of generation sources where the high share of hydropower, representing virtually all of the Norwegian and nearly half of the Swedish generation capacity, has a great influence on the market. The level of precipitation is thus vital when calculating and analysing potential generation levels. In addition, the Nordic region has significantly colder winters than any other European country, influencing the consumption as many households are electrically heated. In 2008 the overall electricity consumption in the Nordic region was slightly higher - 1.6 per cent - than in 2007. During periods of peak consumption the Nordic power system proved sufficient to ensure security of supply without restrictions on consumption. The Nordic region operates almost entirely as one synchronous power system through transmission grid. The continuous reinforcement of the Nordic transmission grid has enabled an increased security of supply as well as a more efficient use of the generation capacity. Increasing cross border power flows strain the transmission lines and increases the demand for transmission capacity. Possible congestions occurring between the Nord Pool bidding areas are handled through market splitting, while internal congestions in general are handled through counter trade or by reducing interconnector capacity at the bidding area borders. The Nordic wholesale power market is a well functioning electricity market. Trade at Nord Pool has increased steadily since it was established in 1993. Although trading at Nord Pool Spot is voluntary, significantly more physical power is now traded on the power exchange than bilaterally - from 42 per cent of total Nordic consumption in 2004 to 76 per cent in 2008. During 2008 average spot prices at Nord Pool were considerably higher (approximately 60 per cent) than prices in 2007. The Nordic retail markets are essentially four separate markets, influenced by national differences, but work on

  3. Nuclear safety in Spain

    International Nuclear Information System (INIS)

    Caro, R.

    1988-01-01

    Control and monitoring of all Spanish nuclear facilities was first carried out by the Department of Nuclear Safety of the Junta de Energia Nuclear established by the Nuclear Energy Act in 1964. Later, following the example of other Western countries, it was concluded that regulations and monitoring of nuclear energy on one hand and its promotion and development on the other should not be done by the same national body. Therefore, the Consejo de Seguridad Nuclear (CSN) was created in 1980, as the sole national body responsible for controlling the safety of nuclear installations, and radiological protection. The CSN has five members, one chairman and four comissioners, required to be independent and therefore with politically objective criteria, internationally acknowledged technical capability, and free from other duties and responsibilities. For this purpose the Chairman has been given the status of Minister and the commissioners that of Secretary of State. They serve for six years, after being accepted by Parliament by a majority of at least 3/5 of the votes, and are called upon to report to Parliament at least twice a year on nuclear safety and radiological protection in the country. A complete report on those issues is presented to Parliament, becoming a politic document as from that moment. To prepare that report (basically a summary of CSN activities) and, in general, to fulfill all its tasks, the CSN has a staff of some 300, about 50% being technical. CSN activities cover: 1. Standards; 2. Licences; 3. Research; 4. Environment; 5. Information; and 6. International Relations

  4. Political economy and social psychology of nuclear safety

    International Nuclear Information System (INIS)

    Choe, Gwang Sik

    2009-03-01

    The contents of this book are consideration on independence of nuclear safety regulations, analysis of trend in internal and external on effectualness of nuclear safety regulations, political psychology of a hard whistle, how to deal with trust and distrust on regulation institute, international trend and domestic trend of nuclear safe culture, policy for building of trust of people on nuclear safety and regulations, measurement and conception of nuclear safety and for who imposes legal controls?

  5. Political economy and social psychology of nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Gwang Sik

    2009-03-15

    The contents of this book are consideration on independence of nuclear safety regulations, analysis of trend in internal and external on effectualness of nuclear safety regulations, political psychology of a hard whistle, how to deal with trust and distrust on regulation institute, international trend and domestic trend of nuclear safe culture, policy for building of trust of people on nuclear safety and regulations, measurement and conception of nuclear safety and for who imposes legal controls?.

  6. Safety goals for nuclear power

    International Nuclear Information System (INIS)

    Fischhoff, B.

    1984-02-01

    The key policy question in managing hazardous technologies is often some variant of How safe is safe enough. The US Nuclear Regulatory Commission has recently broached this topic by adopting safety goals defining acceptable risk levels for nuclear power plants. These goals are analyzed here with a general theory of standard setting (Fischhoff, 1983) which asks: (1) Are standards an appropriate policy tool in this case. (2) Can the Commission's safety philosophy be defended. (3) Do the operational goals capture that philosophy. The anlaysis shows the safety goals proposal to be sophisticated in some respects, incomplete in others. More generally, it points to difficulties with the concept of acceptable risk and any attempt to build policy instruments around it. Although focused on the NRC's safety goals, the present analysis is a prototype of what can be learned by similarly detailed consideration of other standards, not only for nuclear power but also for other hazardous technologies, as well as for issues unrelated to safety

  7. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2009-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations

  8. Guidance for the definition and application of probabilistic safety criteria

    International Nuclear Information System (INIS)

    Holmberg, J.-E.; Knochenhauer, M.

    2011-05-01

    The project 'The Validity of Safety Goals' has been financed jointly by NKS (Nordic Nuclear Safety Research), SSM (Swedish Radiation Safety Authority) and the Swedish and Finnish nuclear utilities. The national financing went through NPSAG, the Nordic PSA Group (Swedish contributions) and SAFIR2010, the Finnish research programme on NPP safety (Finnish contributions). The project has been performed in four phases during 2006-2010. This guidance document aims at describing, on the basis of the work performed throughout the project, issues to consider when defining, applying and interpreting probabilistic safety criteria. Thus, the basic aim of the document is to serve as a checklist and toolbox for the definition and application of probabilistic safety criteria. The document describes the terminology and concepts involved, the levels of criteria and relations between these, how to define a probabilistic safety criterion, how to apply a probabilistic safety criterion, on what to apply the probabilistic safety criterion, and how to interpret the result of the application. The document specifically deals with what makes up a probabilistic safety criterion, i.e., the risk metric, the frequency criterion, the PSA used for assessing compliance and the application procedure for the criterion. It also discusses the concept of subsidiary criteria, i.e., different levels of safety goals. The results from the project can be used as a platform for discussions at the utilities on how to define and use quantitative safety goals. The results can also be used by safety authorities as a reference for risk-informed regulation. The outcome can have an impact on the requirements on PSA, e.g., regarding quality, scope, level of detail, and documentation. Finally, the results can be expected to support on-going activities concerning risk-informed applications. (Author)

  9. Guidance for the definition and application of probabilistic safety criteria

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, J.-E. (VTT Technical Research Centre of Finland (Finland)); Knochenhauer, M. (Scandpower AB (Sweden))

    2011-05-15

    The project 'The Validity of Safety Goals' has been financed jointly by NKS (Nordic Nuclear Safety Research), SSM (Swedish Radiation Safety Authority) and the Swedish and Finnish nuclear utilities. The national financing went through NPSAG, the Nordic PSA Group (Swedish contributions) and SAFIR2010, the Finnish research programme on NPP safety (Finnish contributions). The project has been performed in four phases during 2006-2010. This guidance document aims at describing, on the basis of the work performed throughout the project, issues to consider when defining, applying and interpreting probabilistic safety criteria. Thus, the basic aim of the document is to serve as a checklist and toolbox for the definition and application of probabilistic safety criteria. The document describes the terminology and concepts involved, the levels of criteria and relations between these, how to define a probabilistic safety criterion, how to apply a probabilistic safety criterion, on what to apply the probabilistic safety criterion, and how to interpret the result of the application. The document specifically deals with what makes up a probabilistic safety criterion, i.e., the risk metric, the frequency criterion, the PSA used for assessing compliance and the application procedure for the criterion. It also discusses the concept of subsidiary criteria, i.e., different levels of safety goals. The results from the project can be used as a platform for discussions at the utilities on how to define and use quantitative safety goals. The results can also be used by safety authorities as a reference for risk-informed regulation. The outcome can have an impact on the requirements on PSA, e.g., regarding quality, scope, level of detail, and documentation. Finally, the results can be expected to support on-going activities concerning risk-informed applications. (Author)

  10. The basic discussion on nuclear power safety improvement based on nuclear equipment design

    International Nuclear Information System (INIS)

    Zhao Feiyun; Yao Yangui; Yu Hao; He Yinbiao; Gao Lei; Yao Weida

    2013-01-01

    The safety of strengthening nuclear power design was described based on nuclear equipment design after Fukushima nuclear accident. From these aspects, such as advanced standard system, advanced design method, suitable test means, consideration of beyond design basis event, and nuclear safety culture construction, the importance of nuclear safety improvement was emphatically presented. The enlightenment was given to nuclear power designer. (authors)

  11. The Competence Promoting by NNSA for Keeping High Level Nuclear Safety: The Corner Stone of the Nuclear Safety Regulation Edifice

    International Nuclear Information System (INIS)

    Hu, L.

    2016-01-01

    Facing the fast development of the nuclear power industry and the application of radioactive sources, The MEP(NNSA) is endeavoured to promoting its competency, including: complementing the law system, training and recruiting staff to keep a capable team, constructing the R&D base to keep the basic capability, promoting safety culture both for the industry and the regulator. After the Fukushima nuclear accident, the MEP(NNSA) planned to construct R&D base, in which the Platform Nuclear Safety Monitoring and Emergency Responding, the Platform of Safety Technology of PWR Testing, the Laboratory of Safety Management Technology of Nuclear Waste Verification, the Laboratory of Environmental Radiation Monitoring and the Center of International Cooperation are included. On the other hand, the MEP(NNSA) issued Chinese nuclear safety culture policy declaration in 2014, and carried out a large scale Specialized Action for Nuclear Safety Promotion to promote the nuclear safety culture both for the industry and herself. For the nuclear regulator, It is essential to conduct the competence promoting by both “hardware” and “software”, the former is the material foundation of regulation authority, which will be effectively functioning under the facilitating of the latter. (author)

  12. Nuclear Safety Review for the Year 2012

    International Nuclear Information System (INIS)

    2012-07-01

    The Nuclear Safety Review for the Year 2012 contains an analytical overview of the dominant trends, issues and challenges worldwide in 2011 and the Agency's efforts to strengthen the global nuclear safety framework. This year's report also highlights issues and activities related to the accident at the Fukushima Daiichi nuclear power plant. The analytical overview is supported by the Appendix at the end of this document, entitled: The IAEA Safety Standards: Activities during 2011. A draft version of the Nuclear Safety Review for the Year 2012 was submitted to the March 2012 session of the Board of Governors in document GOV/2012/6. The final version of the Nuclear Safety Review for the Year 2012 was prepared in light of the discussions held during the Board of Governors and also of the comments received.

  13. Management of Operational Safety in Nuclear Power Plants. INSAG-13. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. Engineering issues have received close attention from the nuclear community over many years. However, it is only in the last decade or so that organizational and cultural issues have been identified as vital to achieving safe operation. INSAG's publication No. 4 has been widely recognized as a milestone in advancing thinking about safety culture in the nuclear community and more widely. The present report deals with the framework for safety management that is necessary in organizations in order to promote safety culture. It deals with the general principles underlying the management of operational safety in a systematic way and provides guidance on good practices. It also draws on the results of audits and reviews to highlight how shortfalls in safety management have led to incidents at nuclear power plants. In addition, several specific issues are raised which are particularly topical in view of organizational changes that are taking place in the nuclear industry in various countries. Advice is given on how safety can be managed during organizational change, how

  14. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-08-01

    This paper is a review of environmental and safety programs at facilities in the Naval Reactors Program which shows no basis for allegations that unsafe conditions exist there or that the environment is being harmed by activities conducted there. The prototype reactor design provides safety measures that are consistent with commercial nuclear power plants. Minor incidents affecting safety and the environment have occurred, however, and dents affecting safety and the environment have occurred, however, and as with other nuclear facilities, past activities have caused environmental problems that require ongoing monitoring and vigilance. While the program has historically been exempt from most oversight, some federal and state environmental oversight agencies have recently been permitted access to Naval Reactors facilities for oversight purposes. The program voluntarily cooperates with the Nuclear Regulatory Commission regarding reactor modifications, safety improvements, and component reliability. In addition, the program and its contractors have established an extensive internal oversight program that is geared toward reporting the slightest deviations from requirements or procedures. Given the program's classification policies and requirements, it does not appear that the program routinely overclassifies information to prevent its release to the public or to avoid embarrassment. However, GAO did not some instances in which documents were improperly classified

  15. The use of probabilistic safety assessments for improving nuclear safety in Europe

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1992-01-01

    The political changes in Europe broadened the scope of international nuclear safety matters considerably. The Western world started to receive reliable and increasingly detailed information on Eastern European nuclear technology and took note of a broad range of technical and administrative problems relevant for nuclear safety in these countries. Reunification made Germany a focus of information exchange on these matters. Here, cooperation with the former German Democratic Republic and with other Eastern European countries as well as safety analyses of Soviet-built nuclear power plants started rather early. Meanwhile, these activities are progressing toward all-European cooperation in the nuclear safety sector. This cooperation includes the use of probabilistic safety assessments (PSAs) addressing applications in both Western and Eastern Europe as well as the further development of this methodology in a converging Europe

  16. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  17. Culture safety in the nuclear installation

    International Nuclear Information System (INIS)

    Benar Bukit

    2008-01-01

    Culture safety is aimed to empower all the personnel to contribute and responsible to the installation safety where they work in. Culture safety is important as there were so many accidents happened due to the little attention given to the safety, take as examples of what happened in Three Mille Island installation (1979) and Chernobyl (1986). These remind us that human factor gives a significant contribution to the failure of operational system which influences the safety. Therefore, as one of institutions which has nuclear installation. National Nuclear Energy Agency must apply the culture safety to guarantee the safety operation of nuclear installation to protect the personnel, community and environment from the hazard of radioactive radiation. Culture safety has two main components. The first component under the management responsibility is a framework needed in an organisation. The second component is the personnel attitude in al/ levels to respond and optimize those framework. (author)

  18. IAEA safety fundamentals: the safety of nuclear installations and the defence in depth concept

    International Nuclear Information System (INIS)

    Aro, I.

    2005-01-01

    This presentation is a replica of the similar presentation provided by the IAEA Basic Professional Training Course on Nuclear Safety. The presentation utilizes the IAEA Safety Series document No. 110, Safety Fundamentals: the Safety of Nuclear Installations. The objective of the presentation is to provide the basic rationale for actions in provision of nuclear safety. The presentation also provides basis to understand national nuclear safety requirements. There are three Safety Fundamentals documents in the IAEA Safety Series: one for nuclear safety, one for radiation safety and one for waste safety. The IAEA is currently revising its Safety Fundamentals by combining them into one general Safety Fundamentals document. The IAEA Safety Fundamentals are not binding requirements to the Member States. But, a very similar text has been provided in the Convention on Nuclear Safety which is legally binding for the Member State after ratification by the Parliament. This presentation concentrates on nuclear safety. The Safety Fundamentals documents are the 'policy documents' of the IAEA Safety Standards Series. They state the basic objectives, concepts and principles involved in ensuring protection and safety in the development and application of atomic energy for peaceful purposes. They will state - without providing technical details and without going into the application of principles - the rationale for actions necessary in meeting Safety Requirements. Chapter 7 of this presentation describes the basic features of defence in depth concept which is referred to in the Safety Fundamentals document. The defence in depth concept is a key issue in reaching high level of safety specifically at the design stage but as the reader can see the extended concept also refers to the operational stage. The appendix has been taken directly from the IAEA Basic Professional Training Course on Nuclear Safety and applied to the Finnish conditions. The text originates from the references

  19. Nuclear security culture in comparison with nuclear safety culture. Resemblances and differences

    International Nuclear Information System (INIS)

    Kawata, Norio

    2015-01-01

    Since the terrorist attacks on the U.S. on September 11th, 2001, Nuclear Security has been focused on and treated as a global issue in the international community and it has also been discussed as a real and serious threat to nuclear power plants in the world since 'The Great East Japan Earthquake' in March, 2011. The International Atomic Energy Agency (IAEA) issued a document including Nuclear Security Recommendations (INFCIRC/225/Rev.5) (NSS 13) in the Nuclear Security Series and emphasized the necessity of fostering Nuclear Security Culture. Nuclear Security Culture has been frequently discussed at various kinds of seminars and events. Since the officials in charge of Nuclear Security are familiar with the area of Nuclear Safety, the relationships between Nuclear Safety Culture and Nuclear Security Culture have been the point in controversy. This paper clarifies relevance between Nuclear Safety and Security, considers resemblances and differences of their concepts and lessons learned for each culture from nuclear power plant accidents, and promotes deeper understanding of Nuclear Safety and Nuclear Security Culture. (author)

  20. Results of activities of the State Office for Nuclear Safety in state supervision of nuclear safety of nuclear facilities and radiation protection in 2003

    International Nuclear Information System (INIS)

    Kovar, P.

    2004-01-01

    The report summarises results of activities of the State Office for Nuclear Safety (SUJB) in the supervision of nuclear safety and radiation protection in the Czech Republic. The first part of the report evaluates nuclear safety of nuclear installations and contains information concerning the results of supervision of radiation protection in 2003 in the Czech Republic. The second part of the report describes new responsibilities of the SUJB in the domain of nuclear, chemical, bacteriological (biological) and toxin weapons ban. (author)

  1. Safety of nuclear installations

    International Nuclear Information System (INIS)

    1991-01-01

    In accordance with the Nuclear Energy Act, a Licence may only be issued if the precautions required by the state of the art have been taken to prevent damage resulting from the construction and operation of the installation. The maximum admissible body doses in the area around the installation which must be observed in planning constructional and other technical protective measures to counter accidents in or at a nuclear power station (accident planning values, are established). According to the Radiological Protection Ordinance the Licensing Authority can consider these precautions to have been taken if, in designing the installation against accidents, the applicant has assumed the accidents which, according to the Safety Criteria and Guidelines for Nuclear Power Stations published in the Federal Register by the Federal Minister of the Interior after hearing the competent senior state authorities, must determine the design of a nuclear power station. On the basis of previous experience from safety analysis, assessment and operation of nuclear power stations, the accident guidelines published here define which accidents are determinative for the safety-related design of PWR power stations and what verification -particularly with regard to compliance with the accident planning values of the Radiological Protection Ordinance -must be provided by the applicant. (author)

  2. Strengthening of nuclear power plant construction safety management

    International Nuclear Information System (INIS)

    Yu Jun

    2012-01-01

    The article describes the warning of the Fukushima nuclear accident, and analyzes the major nuclear safety issues in nuclear power development in China, problems in nuclear power plants under construction, and how to strengthen supervision and management in nuclear power construction. It also points out that the development of nuclear power must attach great importance to the safety, and nuclear power plant construction should strictly implement the principle of 'safety first and quality first'. (author)

  3. Characteristics of organizational culture at the maintenance units of two Nordic nuclear power plants

    International Nuclear Information System (INIS)

    Reiman, Teemu; Oedewald, Pia; Rollenhagen, Carl

    2005-01-01

    This study aims to characterize and assess the organizational cultures of two Nordic nuclear power plant (NPP) maintenance units. The research consisted of NPP maintenance units of Forsmark (Sweden) and Olkiluoto (Finland). The study strives to anticipate the consequences of the current practices, conceptions and assumptions in the given organizations to their ability and willingness to fulfill the organizational core task. The methods utilized in the study were organizational culture and core task questionnaire (CULTURE02) and semi-structured interviews. Similarities and differences in the perceived organizational values, conceptions of one's own work, conceptions of the demands of the maintenance task and organizational practices at the maintenance units were explored. The maintenance units at Olkiluoto and Forsmark had quite different organizational cultures, but they also shared a set of dimensions such as strong personal emphasis placed on safety. The authors propose that different cultural features and organizational practices may be equally effective from the perspective of the core task. The results show that due to the complexity of the maintenance work, the case organizations tend to emphasize some aspects of the maintenance task more than others. The reliability consequences of these cultural solutions to the maintenance task are discussed. The authors propose that the organizational core task, in this case the maintenance task, should be clear for all the workers. The results give implications that this has been a challenge recently as the maintenance work has been changing. The concepts of organizational core task and organizational culture could be useful as management tools to anticipate the consequences of organizational changes

  4. RESUME95 Nordic field test of mobile equipment for nuclear fall-out monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, C.; Bresson, J.; Chiffot, T.; Guillot, L. [Centre d`Etudes de Valduc, Direction des Applications Militaires, Commissaiat a L`Energie Atomique, Tille (France)

    1997-12-31

    Nordic Safety Research (NKS) organised in August 1995 a field test of various techniques and instrumentation for monitoring radioactive fall-out. In an emergency situation, after a major release of radioactive material, many different measuring systems are going to be used, ranging from small hand hold intensitometer to complex spectrometer systems. In this test the following type of equipment were tested: Airborne spectrometers; Carborne spectrometers and dose rate meters; In situ spectrometers and intensitometers. Helinuc team was equipped of an airborne system and of a germanium device for in situ measurements. Different tasks were specified for each team: Mapping caesium fall-out and natural activity over two areas of 18 and 5 km{sup 2}; Research of hidden sources. For measurements and data processing the respect of time allowed was strictly controlled for testing the ability of each team. (au).

  5. RESUME95 Nordic field test of mobile equipment for nuclear fall-out monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, C; Bresson, J; Chiffot, T; Guillot, L [Centre d` Etudes de Valduc, Direction des Applications Militaires, Commissaiat a L` Energie Atomique, Tille (France)

    1998-12-31

    Nordic Safety Research (NKS) organised in August 1995 a field test of various techniques and instrumentation for monitoring radioactive fall-out. In an emergency situation, after a major release of radioactive material, many different measuring systems are going to be used, ranging from small hand hold intensitometer to complex spectrometer systems. In this test the following type of equipment were tested: Airborne spectrometers; Carborne spectrometers and dose rate meters; In situ spectrometers and intensitometers. Helinuc team was equipped of an airborne system and of a germanium device for in situ measurements. Different tasks were specified for each team: Mapping caesium fall-out and natural activity over two areas of 18 and 5 km{sup 2}; Research of hidden sources. For measurements and data processing the respect of time allowed was strictly controlled for testing the ability of each team. (au).

  6. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe commissioning, operation, and transition from operation to decommissioning of nuclear power plants. Over recent years there have been developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis review and risk informed decision making processes. It became necessary to revise the IAEA’s Safety Requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications, initiated in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan, revealed no significant areas of weakness but resulted in a small set of amendments to strengthen the requirements and facilitate their implementation. These are contained in the present publication.

  7. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  8. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  9. Promoting safety in nuclear installations. The IAEA has established safety standards for nuclear reactors and provides expert review and safety services to assist Member States in their application

    International Nuclear Information System (INIS)

    2002-01-01

    More than 430 nuclear power plants (NPPs) are currently operating in 30 countries around the world. The nuclear share of total electricity production ranges from about 20 percent in the Czech Republic and United States to nearly 78 percent in France and Lithuania. Worldwide, nuclear power generates about 16% of the total electricity. The safety of such nuclear installations is fundamental. Every aspect of a power plant must be closely supervised and scrutinized by national regulatory bodies to ensure safety at every phase. These aspects include design, construction, commissioning, trial operation, commercial operation, repair and maintenance, plant upgrades, radiation doses to workers, radioactive waste management and, ultimately, plant decommissioning. Safety fundamentals comprise defence-in-depth, which means having in place multiple levels of protection. nuclear facilities; regulatory responsibility; communicating with the public; adoption of the international convention on nuclear safety including implementation of IAEA nuclear safety standards. This publication covers topics of designing for safety (including safety concepts, design principles, and human factors); operating safety (including safety culture and advance in operational safety); risk assessment and management

  10. The Nordic Obstetric Surveillance Study

    DEFF Research Database (Denmark)

    Colmorn, Lotte B.; Petersen, Kathrine B; Jakobsson, Maija

    2015-01-01

    by using International Classification of Diseases, 10th revision codes on diagnoses and the Nordic Medico-Statistical Committee Classification of Surgical Procedure codes. MAIN OUTCOME MEASURES: Rates of the studied complications and possible risk factors among parturients in the Nordic countries. RESULTS......OBJECTIVE: To assess the rates and characteristics of women with complete uterine rupture, abnormally invasive placenta, peripartum hysterectomy, and severe blood loss at delivery in the Nordic countries. DESIGN: Prospective, Nordic collaboration. SETTING: The Nordic Obstetric Surveillance Study...... (NOSS) collected cases of severe obstetric complications in the Nordic countries from April 2009 to August 2012. SAMPLE AND METHODS: Cases were reported by clinicians at the Nordic maternity units and retrieved from medical birth registers, hospital discharge registers, and transfusion databases...

  11. Refinement of nuclear safety education reinforcing technical succession

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2008-01-01

    In April 2008, Musashi Institute of Technology established another faculty, the Faculty of Nuclear Safety Engineering, to educate students for nuclear engineering to meet the demands of personnel for nuclear business. At this new faculty, students mainly obtain professional knowledge and skills related to nuclear safety issues. This article described refinement of nuclear safety education by reinforcing technical succession topics, such as Rankine cycle, fission, two-phase flow, defense in depth in safety. LOCA/ECCS, seismic effects, reactor maintenance. (T. Tanaka)

  12. The European Nuclear Safety Training and Tutoring Institute

    International Nuclear Information System (INIS)

    2012-01-01

    The European Nuclear Safety Training and Tutoring Institute, ENSTTI, is an initiative of European Technical Safety Organizations (TSO) in order to provide vocational training and tutoring in the methods and practices required to perform assessment in nuclear safety, nuclear security and radiation protection. ENSTTI calls on TSOs' expertise to maximize the transmission of safety and security knowledge, practical experience and culture. Training, tutoring and courses for specialists are achieved through practical lectures, working group and technical visits and lead to a certificate after knowledge testing. ENSTTI contributes to the harmonization of nuclear safety and security practices and to the networking of today and future nuclear safety experts in Europe and beyond. (A.C.)

  13. Ventilation in nuclear facilities. Organisation of nuclear safety in France

    International Nuclear Information System (INIS)

    Bouhet, J.C.

    1982-01-01

    Having defined safety and analysis of safety, the nature and significance of nuclear hazards are indicated, highlighting the importance of ventilation for safety. The authorization procedure for the creation and commissioning of an installation is also indicated. The list of safety organizations in France is given. Mention is then made of the general technical regulations, their aim and working out. To conclude, normalization and its application to the ventilation of nuclear installations is examined [fr

  14. Leadership and Safety Management: Regulatory Initiatives for Enhancing Nuclear Safety in the Republic of Korea

    International Nuclear Information System (INIS)

    Yun, C.H.; Park, Y.W.; Choi, K.S.

    2010-01-01

    Since the construction of the first nuclear power plant (NPP) in the Republic of Korea in 1978, a high level of nuclear safety has continued to be maintained. This has been the important basis on which the continuous construction of NPPs has been possible in the country. To date, regulatory initiatives, leaderships and strategies adopting well harmonized regulatory systems and practices of advanced countries have contributed to improving the effectiveness and efficiency of safety regulation and further enhancing nuclear safety. The outcomes have resulted in a high level of safety and performance of Korean NPPs, attributing largely to the safety promotion policy. Recently, with the support of the Korean Ministry of Education, Science and Technology (MEST), the Korea Institute of Nuclear Safety (KINS) established the International Nuclear Safety School and created a Nuclear Safety Master's Degree Programme. Further, it developed multilateral and bilateral cooperation with other agencies to promote global nuclear safety, with the aim of providing knowledge and training to new entrant countries in establishing the safety infrastructure necessary for ensuring an acceptable level of nuclear safety. (author)

  15. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  16. The international dimensions of nuclear safety standards

    International Nuclear Information System (INIS)

    Reed, J.M.

    1992-01-01

    The paper reviews the activities of the major international organisations in the field of nuclear safety standards; the International Atomic Energy Agency (IAEA), the OECD's Nuclear Energy Agency (NEA) and the Commission of the European Communities. Each organisation encourages the concept of international nuclear safety standards. After Chernobyl, there were calls for some form of binding international nuclear safety standards. Many Member States of IAEA accepted these Codes as a suitable basis for formulating their national safety standards, but the prevailing view was that voluntary compliance with the Codes was the preferred path. With few reactor vendors in a limited international market, the time may be approaching when an internationally licensable nuclear reactor is needed. Commonly accepted safety standards would be a prerequisite. The paper discusses the issues involved and the complexities of standards making in the international arena. (author)

  17. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  18. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  19. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  20. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  1. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  2. Nuclear safety management at the Wolsong NGS

    Energy Technology Data Exchange (ETDEWEB)

    Bong-Seob, Han [Korea Electric Power Corp., Wolson NPP no. 1 and 2 (Korea, Republic of)

    1997-12-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks.

  3. Nuclear safety management at the Wolsong NGS

    International Nuclear Information System (INIS)

    Han Bong-Seob

    1997-01-01

    Nuclear safety management at the Wolsong nuclear power plant is described, including the following issues: site selection; plant history; operational goals; operational guidelines; reactor safety; safety training; plant maintenance; management of plant equipment lifetime; future tasks

  4. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 12, September 2009

    International Nuclear Information System (INIS)

    2009-09-01

    The current issue presents information about the following topics: Nuclear Security Report 2009; G8 Nuclear Safety and Security Group (NSSG); Uranium Production Site Appraisal Team (UPSAT); New Entrant Nuclear Power Programmes Safety Guide on the Establishment of the Safety Infrastructure (DS424)

  5. Nuclear safety regulations in the Republic of Croatia

    International Nuclear Information System (INIS)

    Cizmek, A.; Horvatic, M.; Ilijas, B.; Medakovic, S.

    2009-01-01

    Based on Nuclear Safety Act (Official Gazette No. 173/03) in 2006 State Office for Nuclear Safety (SONS) adopted beside Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06) the new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08) and Ordinance on conditions for nuclear safety and protection with regard to the sitting, design, construction, use and decommissioning of a facility in which a nuclear activity is to be performed (Official Gazette No. 71/08). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a license to perform nuclear activity. The Ordinance also regulates the content of the form for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear conditions, whereas compliance is established by the decision passed by SONS. Ordinance on special conditions (requirements) for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned activities Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a licence to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance

  6. Development of a nuclear ship safety philosophy

    International Nuclear Information System (INIS)

    Thompson, T.E.

    1978-01-01

    A unique safety philosophy must be recognized and accepted as an integral part of the design and operation of a nuclear ship. For the nuclear powered ship, the ultimate safety of the reactor and therefore the crew and the environment lies with the safety of the ship itself. The basis for ship safety is its ability to navigate and survive the conditions or the environment in which it may find itself. The subject of traditional ship safety is examined along with its implication for reactor protection and safety. Concepts of reactor safety are also examined. These two philosophies are combined in a manner so as to provide a sound philosophy for the safety of nuclear ships, their crews, and the environment

  7. Dependency Defence and Dependency Analysis Guidance. Volume 2: Appendix 3-8. How to analyse and protect against dependent failures. Summary report of the Nordic Working Group on Common Cause Failure Analysis

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Hellstroem, Per; Makamo, Tuomas; Bento, Jean-Pierre; Knochenhauer, Michael; Poern, Kurt

    2003-10-01

    The safety systems in Nordic nuclear power plants are characterised by substantial redundancy and/or diversification in safety critical functions, as well as by physical separation of critical safety systems, including their support functions. Viewed together with the evident additional fact, that the single failure criterion has been systematically applied in the design of safety systems, this means that the plant risk profile as calculated in existing PSA:s is usually strongly dominated by failures caused by dependencies resulting in the loss of more than one system sub. The overall objective with the working group is to support safety by studying potential and real CCF events, process statistical data and report conclusions and recommendations that can improve the understanding of these events eventually resulting in increased safety. The result is intended for application in NPP operation, maintenance, inspection and risk assessments. The NAFCS project is part of the activities of the Nordic PSA Group (NPSAG), and is financed jointly by the Nordic utilities and authorities. The work is divided into one quantitative and one qualitative part with the following specific objectives: Qualitative objectives-The goal with the qualitative analysis is to compile experience data and generate insights in terms of relevant failure mechanisms and effective CCF protection measures. The results shall be presented as a guide with checklists and recommendations on how to identify current CCF protection standard and improvement possibilities regarding CCF defences decreasing the CCF vulnerability. Quantitative objectives-The goal with the quantitative analysis is to prepare a Nordic C-book where quantitative insights as Impact Vectors and CCF parameters for different redundancy levels are presented. Uncertainties in CCF data shall be reduced as much as possible. The high redundancy systems sensitivity to CCF events demand a well structured quantitative analysis in support of

  8. The safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Do nuclear power plants present an unjustifiable risk Can there be confidence in their safety The Uranium Institute invited a group of senior safety experts from eight different Western countries operating different types of reactors to provide an authoritative explanation for non-specialists of the basic principles of reactor safety, their application and their implications. The report presents the group's opinion on the level of safety achieved in the Western nuclear power plants with which the authors are directly familiar. Although many of the points made may well also be true for non-Western reactors, the report does not cover them except where specifically stated. It does describe and discuss the causes of the Chernobyl disaster. It does not compare nuclear power with other fuels, nor does it deal with its benefits, since however great the benefits from the peaceful use of nuclear power, and its own advantages over other fuels, they could not compensate for lack of safety. The conclusion reached is that the risk associated with electricity production at nuclear power plants can be kept very low. Proper use of the extensive knowledge available today can guarantee operation of nuclear power plants at very high safety levels, carrying very low risks, both to health and of contamination of the environment: risks that are continually lowered by upgrading existing plants and their operation, and by the design of future power plants. (author).

  9. IAEA activity related to safety of nuclear desalination

    International Nuclear Information System (INIS)

    Gasparini, M.

    2000-01-01

    The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. The current safety approach, based on the achievement of the fundamental safety functions and defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process. The protection of product water against radioactive contamination must be ensured. An effective infrastructure, including appropriate training, a legal framework and regulatory regime, is a prerequisite to considering use of nuclear power for desalination plants, also in those countries with limited industrial infrastructures and little experience in nuclear technology or safety. (author)

  10. Nuclear Safety Charter; Charte Surete Nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and

  11. Safety policy for nuclear power development

    International Nuclear Information System (INIS)

    Uchida, Hideo

    1987-01-01

    The report discusses various aspects of the safety policy for nuclear power development in Japan. Nuclear power development over three decades in Japan has led to operating performance which is highly safe and reliable. This has been appreciated internationally. Discussed here is the Japanese basic safety policy for nuclear power development that is essential first to design, manufacture and construction using high technology. The current careful quality assurance and reliable operation management by skilled operators are relied upon, on the basis of the fact that measures to prevent abnormal events are given first priority rather than those to mitigate consequences of abnormal events or accidents. Lessons learned from accidents and failures within or outside Japan such as the TMI accident and Chernobyl accident have been reflected in the improvement of safety through careful and thorough examinations of them. For further improvement in nuclear safety, deliberate studies and investigations on severe accidents and probabilistic safety assessment are considered to be important. Such efforts are currently being promoted. For this purpose, it is important to advance international cooperation and continue technical exchanges, based on operation experience in nuclear power stations in Japan. (Nogami, K.)

  12. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  13. Stress Tests Worldwide - IAEA Nuclear Safety Action Plan

    International Nuclear Information System (INIS)

    Lyons, J.E.

    2012-01-01

    The IAEA nuclear safety action plan relies on 11 important issues. 1) Safety assessments in light of the Fukushima accident: the IAEA secretariat will develop a methodology for stress tests against specific extreme natural hazards and will provide assistance for their implementation; 2) Strengthen existing IAEA peer reviews; 3) Emergency preparedness and response; 4) National Regulatory bodies in terms of independence and adequacy of human and financial resources; 5) The development of safety culture and scientific and technical capacity in Operating Organizations; 6) The upgrading of IAEA safety standards in a more efficient way; 7) A better implementation of relevant conventions concerning nuclear safety and nuclear accidents; 8) To provide a broad assistance on safety standard for countries embarking on a nuclear power program; 9) To facilitate the use of available information, expertise and techniques concerning radiation protection; 10) To enhance the transparency of nuclear industry; and 11) To promote the cooperation between member states in nuclear safety. (A.C.)

  14. Social contention about safety of nuclear power plant

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1978-01-01

    In Japan, the contentions and arguments on the safety of nuclear power generation have been active since its first introduction, and these are greatly influenced by the nation's experiences of atomic bombs in Hiroshima, Nagasaki, and Bikini. As the result, the attitude of peoples toward the acceptance of nuclear power plants is significantly different from that in other countries. The situation in Japan of social contentions about nuclear power safety is explained in two aspects: acceptance of the safety, by peoples and Japanese pattern of safety contentions. In both upstream and downstream of nuclear power generation, not only the safety but also the right or wrong for nuclear power generation itself is discussed. The problem of nuclear power safety has gone into the region beyond the technological viewpoint. The pattern of safety contentions in Japan is the entanglement of three sectors; i.e. local people, labor unions and political parties, enterprises and administration, and intellectuals. (Mori, K.)

  15. Adherence to the Nordic Nutrition Recommendations in a Nordic population with metabolic syndrome

    DEFF Research Database (Denmark)

    Jonsdottir, Svandis Erna; Brader, Lea; Gunnarsdottir, Ingibjorg

    2013-01-01

    The Nordic countries collaborate in setting recommendations for intake of nutrients by publishing the Nordic Nutrition Recommendations (NNR). Studies exploring how well the Nordic population adheres to the NNR are limited and none are available for the metabolic syndrome (MetS) subgroup...

  16. Naturally occurring radioactivity in the Nordic countries. Recommendations

    International Nuclear Information System (INIS)

    2000-01-01

    In the publication 'Naturally Occurring Radiation in the Nordic Countries - Recommendations' published in 1986 the radiation protection authorities in Denmark, Finland, Iceland, Norway and Sweden gave radiation protection recommendations for natural radiation in the Nordic countries. The exposure of the populations in the Nordic countries to natural radiation sources is among the highest in the world and much effort has been devoted during the last 10 to 20 years to characterising, assessing and, where feasible, to reduce these exposures. The exposure of workers to natural radiation sources has also been an important area of work in the same period. During this period the international recommendations on radiation protection policy have been further developed with ICRP Publication 60: '1990 Recommendations of the International Commission on Radiological Protection', and ICRP Publication 65: 'Protection Against Radon-222 at Home and at Work'. The European Basic Safety Standards Directive from 1996 (96/29/EURATOM), which is based on the ICRP recommendations, differs from the earlier versions in that special provisions have been laid down concerning exposure to natural radiation sources. As Denmark, Finland and Sweden are members of European Union and the EFTA-countries (Iceland and Norway) have close co-operation with the EU, the practical implementation of the EU-BSS will play an important role in all the Nordic countries. In November 1998, a new Drinking Water Directive, 98/83/EC, was adopted. The directive also includes radioactivity in drinking water, excluding potassium-40, radon, and radon decay products. Altogether this means that the Nordic recommendations from 1986 for natural radiation needed to be updated. The Nordic Radiation Protection Authorities therefore decided to set up a working group with the aim of revising the recommendations from 1986. The new revised recommendations will, as before, only deal with the components of the exposure to natural

  17. Towards a global nuclear safety culture

    International Nuclear Information System (INIS)

    Rosen, M.

    1997-01-01

    This paper discusses the evolution of the global nuclear safety culture and the role in which the IAEA has played in encouraging its development. There is also a look ahead to what the future challenges of the world-wide nuclear industry might be and to the need for a continued and improved global nuclear safety culture to meet these changing needs. (Author)

  18. Supervision of the safety culture in nuclear facilities

    International Nuclear Information System (INIS)

    2014-11-01

    This brochure issued by the Swiss Federal Nuclear Safety Inspectorate ENSI reports on safety culture aspects in nuclear facilities and ENSI’s activities as a supervisory instance. ENSI is the independent supervisory authority for the nuclear sector in Switzerland. A definition of safety culture is presented and the development of the concepts used in its monitoring are discussed. The main attributes of a good safety culture are discussed. Further, the conceptual basics and principles of such monitoring are looked at and the methods used for the supervision of safety culture in nuclear facilities are described

  19. Technical safety Organisations (TSO) contribute to European Nuclear Safety

    International Nuclear Information System (INIS)

    Repussard, J.

    2010-01-01

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  20. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  1. Nuclear safety in EU candidate countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    Nuclear safety in the candidate countries to the European Union is a major issue that needs to be addressed in the framework of the enlargement process. Therefore WENRA members considered it was their duty to offer their technical assistance to their Governments and the European Union Institutions. They decided to express their collective opinion on nuclear safety in those candidate countries having at least one nuclear power plant: Bulgaria, the Czech Republic, Hungary, Lithuania, Romania, Slovakia and Slovenia. The report is structured as follows: A foreword including background information, structure of the report and the methodology used, General conclusions of WENRA members reflecting their collective opinion, For each candidate country, an executive summary, a chapter on the status of the regulatory regime and regulatory body, and a chapter on the nuclear power plant safety status. Two annexes are added to address the generic safety characteristics and safety issues for RBMK and VVER plants. The report does not cover radiation protection and decommissioning issues, while safety aspects of spent fuel and radioactive waste management are only covered as regards on-site provisions. In order to produce this report, WENRA used different means: For the chapters on the regulatory regimes and regulatory bodies, experts from WENRA did the work. For the chapters on nuclear power plant safety status, experts from WENRA and from French and German technical support organisations did the work. Taking into account the contents of these chapters, WENRA has formulated its general conclusions in this report.

  2. Nuclear safety in EU candidate countries

    International Nuclear Information System (INIS)

    2000-10-01

    Nuclear safety in the candidate countries to the European Union is a major issue that needs to be addressed in the framework of the enlargement process. Therefore WENRA members considered it was their duty to offer their technical assistance to their Governments and the European Union Institutions. They decided to express their collective opinion on nuclear safety in those candidate countries having at least one nuclear power plant: Bulgaria, the Czech Republic, Hungary, Lithuania, Romania, Slovakia and Slovenia. The report is structured as follows: A foreword including background information, structure of the report and the methodology used, General conclusions of WENRA members reflecting their collective opinion, For each candidate country, an executive summary, a chapter on the status of the regulatory regime and regulatory body, and a chapter on the nuclear power plant safety status. Two annexes are added to address the generic safety characteristics and safety issues for RBMK and VVER plants. The report does not cover radiation protection and decommissioning issues, while safety aspects of spent fuel and radioactive waste management are only covered as regards on-site provisions. In order to produce this report, WENRA used different means: For the chapters on the regulatory regimes and regulatory bodies, experts from WENRA did the work. For the chapters on nuclear power plant safety status, experts from WENRA and from French and German technical support organisations did the work. Taking into account the contents of these chapters, WENRA has formulated its general conclusions in this report

  3. Nuclear power and nuclear safety 2009; Kernekraft og nuklear sikkerhed 2009

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; OElgaard, P.L. (eds.); Nonboel, E. (Risoe DTU, Roskilde (Denmark)); Kampmann, D.; Nystrup, P.E.; Thorlaksen, B. (Beredskabsstyrelsen, Birkeroed (Denmark))

    2010-05-15

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  4. Complementary safety assessments - Report by the French Nuclear Safety Authority

    International Nuclear Information System (INIS)

    2011-12-01

    As an immediate consequence of the Fukushima accident, the French Authority of Nuclear Safety (ASN) launched a campaign of on-site inspections and asked operators (mainly EDF, AREVA and CEA) to make complementary assessments of the safety of the nuclear facilities they manage. The approach defined by ASN for the complementary safety assessments (CSA) is to study the behaviour of nuclear facilities in severe accidents situations caused by an off-site natural hazard according to accident scenarios exceeding the current baseline safety requirements. This approach can be broken into 2 phases: first conformity to current design and secondly an approach to the beyond design-basis scenarios built around the principle of defence in depth. 38 inspections were performed on issues linked to the causes of the Fukushima crisis. It appears that some sites have to reinforce the robustness of the heat sink. The CSA confirmed that the processes put into place at EDF to detect non-conformities were satisfactory. The complementary safety assessments demonstrated that the current seismic margins on the EDF nuclear reactors are satisfactory. With regard to flooding, the complementary safety assessments show that the complete reassessment carried out following the flooding of the Le Blayais nuclear power plant in 1999 offers the installations a high level of protection against the risk of flooding. Concerning the loss of electrical power supplies and the loss of cooling systems, the analysis of EDF's CSA reports showed that certain heat sink and electrical power supply loss scenarios can, if nothing is done, lead to core melt in just a few hours in the most unfavourable circumstances. As for nuclear facilities that are not power or experimental reactors, some difficulties have appeared to implement the CSA approach that was initially devised for reactors. Generally speaking, ASN considers that the safety of nuclear facilities must be made more robust to improbable risks which are not

  5. Nuclear criticality safety basics for personnel working with nuclear fissionable materials. Phase I

    International Nuclear Information System (INIS)

    Vausher, A.L.

    1984-10-01

    DOE order 5480.1A, Chapter V, ''Safety of Nuclear Facilities,'' establishes safety procedures and requirements for DOE nuclear facilities. The ''Nuclear Criticality Safety Basic Program - Phase I'' is documented in this report. The revised program has been developed to clearly illustrate the concept of nuclear safety and to help the individual employee incorporate safe behavior in his daily work performance. Because of this, the subject of safety has been approached through its three fundamentals: scientific basis, engineering criteria, and administrative controls. Only basics of these three elements were presented. 5 refs

  6. Nuclear power performance and safety. V.3. Safety and international co-operation

    International Nuclear Information System (INIS)

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. This objective was accomplished through presentation and discussion of about 200 papers at the Conference. Almost 500 participants and observers from 40 countries and 12 organizations discussed three major questions which were posed as the focus of this Conference: (1) What are the current trends and major issues with regard to performance and safety of nuclear power, the nuclear fuel cycle and radioactive waste management? (2) What steps are being taken or need to be taken to resolve outstanding issues in order to improve the performance of nuclear power with assured safety? (3) What performance objectives and achievements can be anticipated for the 1990s? All presentations of this Conference were divided into six volumes. This is Volume 3 which is devoted to the problems of safety and international cooperation. All presentations of Volume 3 were divided into four sessions as follows: the need for safety in nuclear power programmes (4 papers); international cooperation in nuclear safety (6 papers); technical aspects in plant safety (7 papers); approaches to safety (3 papers). A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  7. International Nuclear Officials Discuss IAEA Peer Reviews of Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Senior nuclear regulators today concluded a Workshop on the Lessons Learned from the IAEA Integrated Regulatory Review Service (IRRS) Missions. The U.S. Nuclear Regulatory Commission (NRC) hosted the workshop, in cooperation with the International Atomic Energy Agency, in Washington, DC, from 26 to 28 October 2011. About 60 senior regulators from 22 IAEA Member States took part in this workshop. The IRRS programme is an international peer review service offered by the IAEA to its Member States to provide an objective evaluation of their nuclear safety regulatory framework. The review is based on the internationally recognized IAEA Safety Standards. ''The United States Nuclear Regulatory Commission was pleased to host the IAEA's IRRS meeting this week. The discussions over the past three days have provided an important opportunity for regulators from many countries to come together to strengthen the international peer review process,'' said U.S. NRC Chairman Gregory B. Jaczko. ''Especially after the Fukushima Daiichi accident, the global community recognizes that IRRS missions fill a vital role in strengthening nuclear safety and security programs around the world, and we are proud to be a part of this important effort.'' The IAEA Action Plan on Nuclear Safety includes actions focused towards strengthening the existing IAEA peer reviews, incorporating lessons learned and improving their effectiveness. The workshop provided a platform for the exchange of information, experience and lessons learned from the IRRS missions, as well as expectations for the IRRS programme for the near future. Further improvements in the planning and implementation of the IRRS missions in the longer term were discussed. A strong commitment of all relevant national authorities to the IRRS programme was identified as a key element of an effective regulatory framework. The conclusions of the workshop will be issued in November 2011 and the main results will be reported to the IAEA

  8. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  9. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  10. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  11. Nuclear Safety Review for the Year 2007

    International Nuclear Information System (INIS)

    2008-07-01

    In 2007, the 50th anniversary year of the Agency, the safety performance of the nuclear industry, on the whole, remained high, although incidents and accidents with no significant impact on public health and safety continue to make news headlines and challenge operators and regulators. It is therefore essential to maintain vigilance, continuously improve safety culture and enhance the international sharing and utilization of operating and other safety experience, including that resulting from natural events. The establishment and sustainability of infrastructures for all aspects of nuclear, radiation, transport and waste safety will remain a high priority. Member States embarking on nuclear power programmes will need to be active participants in the global nuclear safety regime. Harmonized safety standards, the peer review mechanism among contracting parties of the safety conventions, and sharing safety knowledge and best practices through networking are key elements for the continuous strengthening of the global nuclear safety regime. Technical and scientific support organizations (TSOs), whether part of the regulatory body or a separate organization, are gaining increased importance by providing the technical and scientific basis for safety related decisions and activities. There is a need for enhanced interaction and cooperation between TSOs. Academic and industrial expert communities also play a vital role in improving safety cooperation and capacity building. Countries embarking on nuclear power programmes, as well as countries expanding existing programmes, have to meet the challenge of building a technically qualified workforce. A vigorous knowledge transfer programme is key to capacity building - particularly in view of the ageing of experienced professionals in the nuclear field. National and regional safety networks, and ultimately a global safety network will greatly help these efforts. Changes in world markets and technology are having an impact on both

  12. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 6, March 2008

    International Nuclear Information System (INIS)

    2008-03-01

    The current issue presents information about the following activities: 1) International Conference on Illicit Nuclear Trafficking which took place in November 2007 in Edinburgh. The principal aim of the conference was to examine the threat and context of illicit nuclear trafficking of radioactive material, specifically, what is being done to combat such trafficking and where more needs to be done. The conference was also to consider how the obligations and commitments of the legally binding and non-binding international instruments could be and are being implemented by various States. 2) INSAG Message on Nuclear Safety Infrastructure in which the INSAG Chairman Richard Meserve addressed nuclear safety in the current context and various issues that warrant special attention. 3) approved for publication the Safety Requirements publication on Safety of Nuclear Fuel Cycle Facilities. 4) The Asian Nuclear Safety Network (ANSN)

  13. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  14. Conclusions and Recommendations of the IAEA International Conference on Topical Issues in Nuclear Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  15. Main Conclusions and Recommendations of International Conference on Topical Issues in Nuclear Installation Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  16. The nuclear safety authority (ASN) presents its report on the status of nuclear safety and radiation protection in France in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    After a presentation of the French nuclear safety authority (ASN) and of some events which occurred in 2010, this report present the actions performed by the ASN in different fields: nuclear activities (ionizing radiations and risks for health and for the environment), principles and actors of control of nuclear safety, radiation protection and environment protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency situations, public information and transparency, international relationship. It proposes a regional overview of nuclear safety and radiation protection in France. It addresses the activities controlled by the ASN: medical and non medical usages of ionizing radiations, transportation of radioactive materials, electronuclear power stations, installations involved in the nuclear fuel cycle, research nuclear installations and other nuclear installations, safety in basic nuclear installation dismantling, radioactive wastes and polluted sites

  17. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition); Seguridad de las centrales nucleares: Diseno. Requisitos de seguridad especificos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  18. The regulatory system of nuclear safety in Russia

    International Nuclear Information System (INIS)

    Mizoguchi, Shuhei

    2013-01-01

    This article explains what type of mechanism the nuclear system has and how nuclear safety is regulated in Russia. There are two main organizations in this system : ROSATOM and ROSTEKHADZOR. ROSATOM, which was founded in 2007, incorporates all the nuclear industries in Russia, including civil nuclear companies as well as nuclear weapons complex facilities. ROSTEKHNADZOR is the federal body that secures and supervises the safety in using atomic energy. This article also reviews three laws on regulating nuclear safety. (author)

  19. Implementing national nuclear safety plan at the preliminary stage of nuclear power project development

    International Nuclear Information System (INIS)

    Xue Yabin; Cui Shaozhang; Pan Fengguo; Zhang Lizhen; Shi Yonggang

    2014-01-01

    This study discusses the importance of nuclear power project design and engineering methods at the preliminary stage of its development on nuclear power plant's operational safety from the professional view. Specifically, we share our understanding of national nuclear safety plan's requirement on new reactor accident probability, technology, site selection, as well as building and improving nuclear safety culture and strengthening public participation, with a focus on plan's implications on preliminary stage of nuclear power project development. Last, we introduce China Huaneng Group's work on nuclear power project preliminary development and the experience accumulated during the process. By analyzing the siting philosophy of nuclear power plant and the necessity of building nuclear safety culture at the preliminary stage of nuclear power project development, this study explicates how to fully implement the nuclear safety plan's requirements at the preliminary stage of nuclear power project development. (authors)

  20. Preliminary Study on the Revision of Nuclear Safety Policy Statement

    International Nuclear Information System (INIS)

    Lee, Y. E.; Lee, S. H.; Chang, H. S.; Choi, K. S.; Jung, S. J.

    2011-01-01

    Nuclear safety policy in Korea is currently declared in the Nuclear Safety Charter as the highest tier document and safety principles and directions are announced in the Nuclear Safety Policy Statement. As the circumstances affecting on the nuclear safety policy change, it needs to revise the Statement. This study aims to develop the revised Nuclear Safety Policy Statement to declare that securing safety is a prerequisite to the utilization of nuclear energy, and that all workers in nuclear industry and regulatory body must adhere to the principle of priority to safety. As a result, two different types of revision are being prepared as of August. One is based on the spirit of Nuclear Safety Charter as well as the direction of future-oriented safety policies including the changes in the environment after declaration of the Statement. The other is to declare the fundamental safety objective and safety principles as the top philosophy of national nuclear safety policy by adopting the '10 Safety Principles in IAEA Safety Fundamental' instead of the current Charter. Both versions of revision are subject to further in-depth discussion. However once the revision is finalized and declared, it would be useful to accomplish effectively the organizational responsibilities and to enhance the public confidence in nuclear safety by performing the regulatory activities in a planned and systematic manner and promulgating the government's dedication to priority to safety

  1. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  2. Realism in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T. P.

    2009-01-01

    Commercial nuclear power plant operation and regulation have made remarkable progress since the Three Mile Island Accident. This is attributed largely to a heavy dose of introspection and self-regulation by the industry and to a significant infusion of risk-informed and performance-based regulation by the Nuclear Regulatory Commission. This truly represents reality in action both by the plant operators and the regulators. On the other hand, the implementation of nuclear criticality safety in ex-reactor operations involving significant quantities of fissile material has not progressed, but, tragically, it has regressed. Not only is the practice of the discipline in excess of a factor of ten more expensive than decades ago; the trend continues. This unfortunate reality is attributed to a lack of coordination within the industry (as contrasted to what occurred in the reactor operations sector), and to a lack of implementation of risk-informed and performance-based regulation by the NRC While the criticality safety discipline is orders of magnitude smaller than the reactor safety discipline, both operators and regulators must learn from the progress made in reactor safety and apply it to the former to reduce the waste, inefficiency and potentially increased accident risks associated with current practices. Only when these changes are made will there be progress made toward putting realism back into nuclear criticality safety. (authors)

  3. Reliability Data for Piping Components in Nordic Nuclear Power Plants 'R-Book'. Project Phase 1. Rev 1

    International Nuclear Information System (INIS)

    Lydell, Bengt; Olsson, Anders

    2008-01-01

    This report constitutes a planning document for a new RandD project to develop a piping component reliability parameter handbook for use in probabilistic safety assessment (PSA) and related activities. The Swedish acronym for this handbook is 'R-Book.' The objective of the project is to utilize the OECD Nuclear Energy Agency 'OECD Pipe Failure Data Exchange Project' (OPDE) database to derive piping component failure rates and rupture probabilities for input to internal flooding probabilistic safety assessment, high-energy line break' (HELB) analysis, risk-informed in-service inspection (RI-ISI) program development, and other activities related to PSA. This new RandD project is funded by member organizations of the Nordic PSA Group (NPSAG) - Forsmark AB, OKG AB, Ringhals AB, and the Swedish Nuclear Power Inspectorate (SKI). The history behind the current effort to produce a handbook of piping reliability parameters goes back to 1994 when SKI funded a 5-year RandD project to explore the viability of establishing an international database on the service experience with piping system components in commercial nuclear power plants. An underlying objective behind this 5-year program was to investigate the different options and possibilities for deriving pipe failure rates and rupture probabilities directly from service experience data as an alternative to probabilistic fracture mechanics. The RandD project culminated in an international piping reliability seminar held in the fall of 1997 in Sigtuna (Sweden) and a pilot project to demonstrate an application of the pipe failure database to the estimation of loss-of-coolant-accident (LOCA) frequency (SKI Report 98:30). A particularly important outcome of the 5-year project was a decision by SKI to transfer the pipe failure database including the lessons learned to an international cooperative effort under the auspices of the OECD Nuclear Energy Agency. Following on information exchange and planning meetings that were

  4. Nuclear Safety Review for the Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    The contents of this Nuclear Safety Review reflect the emerging nuclear safety trends, issues and challenges for 2010, as well as recapitulate the Agency's activities intended to further strengthen the global nuclear safety and security framework in all areas of nuclear, radiation, waste and transport safety. Nuclear power plant safety performance remained high, and indicated an improved trend in the number of emergency shutdowns as well in the level of energy available during these shutdowns. In addition, more States explored or expanded their interests in nuclear power programmes, and more faced the challenge of establishing the required regulatory infrastructure, regulatory supervision and safety management over nuclear installations and the use of ionizing radiation. Issues surrounding radiation protection and radioecology continued as trends in 2010. For example, increased public awareness of exposure to and environmental impacts of naturally occurring radioactive material (NORM) as well as nuclear legacy sites has led to increased public concern. In addition, human resources in radiation protection and radioecology have been lost as a result of retirement and of the migration of experts to other fields. It is clear that safety continues to be a work in progress. The global nuclear power industry continued to require substantial efforts by designers, manufacturers, operators, regulators and other stakeholders to satisfy diverse quality and safety requirements and licensing processes, along with the recognized need in industry and among regulators to standardize and harmonize these requirements and processes. In some cases, plans for nuclear power programme development moved faster than the establishment of the necessary regulatory and safety infrastructure and capacity. To assist Member States in this effort, the Regulatory Cooperation Forum (RCF) was formed in June 2010. The RCF is a regulator-to-regulator forum that optimizes regulatory support from Member

  5. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  6. Nuclear safety review for the year 2001

    International Nuclear Information System (INIS)

    2002-07-01

    The Nuclear Safety Review for the Year 2001 reports on worldwide efforts to strengthen nuclear and radiation safety, including radioactive waste safety. It is in three parts. Part 1 describes those events in 2001 that have, or may have, significance for nuclear, radiation and waste safety worldwide. It includes developments such as new initiatives in international cooperation, events of safety significance and events that may be indicative of trends in safety. Part 2 describes some of the IAEA's efforts to strengthen international co-operation in nuclear, radiation and waste safety during 2001. It covers legally binding international agreements, non-binding safety standards, and provisions for the application of safety standards. This is done in a very brief manner, because these issues are addressed in more detail in the Agency's Annual Report for 2001. Part 3 presents a brief look ahead to some issues that are likely to be prominent in the coming year(s). The topics covered were selected by the IAEA Secretariat on the basis of trends observed in recent years, account being taken of planned or expected future developments. A draft of the Nuclear Safety Review for the Year 2001 was presented to the March 2002 session of IAEA's Board of Governors. This final version has been prepared taking account of the discussion in the Board. In some places, information has been added to describe developments early in 2002 that were considered pertinent to the discussion of events during 2001

  7. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) have participated in conducting two critical experiments

  8. Minimum qualifications for nuclear criticality safety professionals

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1990-01-01

    A Nuclear Criticality Technology and Safety Training Committee has been established within the U.S. Department of Energy (DOE) Nuclear Criticality Safety and Technology Project to review and, if necessary, develop standards for the training of personnel involved in nuclear criticality safety (NCS). The committee is exploring the need for developing a standard or other mechanism for establishing minimum qualifications for NCS professionals. The development of standards and regulatory guides for nuclear power plant personnel may serve as a guide in developing the minimum qualifications for NCS professionals

  9. Proceedings of the nuclear safety seminar, 2011

    International Nuclear Information System (INIS)

    Amin S Zarkasih; Dhandang P; Rohadi A; Djarwani; Santoso; Abdul Waris; Zaki Su'ud; Sihana; Heryudo Kusumo; Yusri Heni; Yus Rusdian; Judi Pramono; Amil Mardha

    2011-06-01

    The Proceedings of the nuclear safety seminar by Nuclear Energy Regulatory Agency with the theme of strengthening in nuclear safety control, nuclear security and nuclear safeguard to Introduction of Nuclear Power Plant (NPP) in Indonesia held on Jakarta 27-28 June 2011. The seminar is an annual routine activities which organized by Nuclear Energy Regulatory Agency (BAPETEN) as an exchange for information from scientists and researchers for using nuclear technology. The proceeding consist of 4 articles from keynotes’ speaker and 39 articles from BAPETEN, BATAN and outside participants. (PPIKSN)

  10. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  11. Ensuring ecology safety, furthering the development of nuclear energy

    International Nuclear Information System (INIS)

    Shang Zhaorong; Chen Xiaoqiu; Tang Senming

    2008-01-01

    Ecology safety is as important as political safety, national defense safety, economy safety, food safety, etc. The nuclear power development is an important step for the national energy structure optimization, ecology caring, and implementing sustainable development. The aquatic ecology is important on disposal of low-level liquid waste and cooling water from NPPs and nuclear fuel cycle facilities, and people pay more attention to ecology impact and human threat from the nuclear energy. The author describes relevant ecology problems correlated with nuclear energy such as impact of thermal discharge, ecology sensitive zone, ecology restoration, etc. in order to emphasis that development of nuclear energy should guarantee ecology safety for the sustainable development of nuclear energy. (authors)

  12. Nuclear safety philosophy in the United Kingdom

    International Nuclear Information System (INIS)

    Anthony, R.D.

    1986-01-01

    Development of the United Kingdom (UK) nuclear safety philosophy is described in the context of the UK nuclear power program since 1959 and of its legislative framework. Basic to the philosophy is that the licensee is wholly responsible for nuclear safety. The licensing process and safety assessment principles used by the Nuclear Installations Inspectorate are discussed, and examples from the assessment of the proposed UK pressurized-water reactor are used to illustrate how the approach works in practice. The UK siting policy and regulatory developments since 1979 are also discussed. Recent, current, and future issues of interest to the regulatory authority are described against the development nuclear scene in the UK

  13. Nordic Energy basics

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Pursiheimo, E. [VTT, Espoo (Finland)

    2004-01-01

    This report gives numerical data of the existing energy systems in Denmark, Finland, Island, Norway and Sweden. The data includes: 1) Primary fossil fuel production and fuel reserves; 2) Energy production and consumption; 3) Hydrogen production in the Nordic countries; 4) Energy balances of the Nordic countries. The above data has been used as background information during the Nordic H{sub 2} Energy Foresight project. The data has been collected from public literature sources and also from project partners. (au)

  14. US nuclear safety review and experience

    International Nuclear Information System (INIS)

    Gilinsky, V.

    1977-01-01

    The nuclear safety review of commercial nuclear power reactors has changed over the years from the relatively simple review of Dresden 1 in 1955 to the highly complex and sophisticated regulatory process which characterizes today's reviews. Four factors have influenced this evolution: (1) maturing of the technology and industry; (2) development of the regulatory process and associated staff; (3) feedback of operating experience; and (4) public awareness and participation. The NRC's safety review responsibilities start before an application is tendered and end when the plant is decommissioned. The safety review for reactor licensing is a comprehensive, two-phase process designed to assure that all the established conservative acceptance criteria are satisfied. Operational safety is assured through a strong inspection and enforcement program which includes shutting down operating facilities when necessary to protect the health and safety of the public. The safety of operating reactors is further insured through close regulation of license changes and selective backfitting of new regulatory requirements. An effective NRC standards development program has been implemented and coordinates closely with the national standards program. A confirmatory safety research program has been developed. Both of these efforts are invaluable to the nuclear safety review because they provide the staff with key tools needed to carry out its regulatory responsibilities. Both have been given increased emphasis since the formation of the NRC in 1975. The safety review process will continue to evolve, but changes will be slower and more deliberate. It will be influenced by standardization, early site reviews and development of advanced reactor concepts. New legislation may make possible changes which will simplify and shorten the regulatory process. Certainly the experience provided by the increasing number and types of operating plants will have a very strong impact on future trends in the

  15. Nuclear Safety Review for the Year 2006

    International Nuclear Information System (INIS)

    2007-07-01

    As the Agency begins its 50th year of service to the peaceful uses of nuclear energy, there are clear signs of renewed interest in the nuclear power option. Around the world there are plans for both new and reinvigorated nuclear power development and other uses of nuclear technology. It is essential that future planning for applications of nuclear energy and related efforts are complemented with equally ambitious plans for the establishment and enhancement of sustainable safety infrastructures. Plans must be made to transfer knowledge effectively from experienced staff that will soon retire from vendors, regulatory bodies and operating organizations. Equally important are plans for the education and training of the next generation of individuals with the knowledge and expertise to support nuclear and radiation safety. In 2006, the International Nuclear Safety Group (INSAG) issued a report on the global nuclear safety regime which concludes that the regime is functioning at an effective level today, but its impact on improving safety could be enhanced by pursuing measured change. In 2006, the Board of Governors approved the Safety Fundamentals upon which the IAEA Safety Standards are based. The Safety Fundamentals establish that the prime responsibility for safety rests with the person or organization responsible for facilities and activities that give rise to radiation risks. The Safety Fundamentals also state that an effective legal and governmental framework for safety must be established and sustained. The challenge now is to ensure that the IAEA Safety Standards are applied in an appropriate manner by the entire nuclear community. Both in anticipation of expanding uses of nuclear energy and to conform to current international standards, legislative and regulatory reform is underway in a number of Member States. Most Member States now recognize that stakeholders need to be involved in decisions involving nuclear technology. The challenge remains on how to engage

  16. Perspectives on Nordic Working Life Research

    Directory of Open Access Journals (Sweden)

    Jan Ch. Karlsson

    2013-09-01

    Full Text Available Welcome to this Thematic Issue on Perspectives on Nordic Working Life Research! It is perhaps not that surprising that a journal called Nordic Journal of Working Life Studies contains many discussions about “Nordic Models”: What is the Nordic Welfare State Model? What has happened to it lately? Is there still one? Has there ever been one? What about the Nordic Industrial Relations Model—is it on its way to be abandoned? And the Nordic Labor Market Model? Or the Nordic Work Environment Model? In contrast, in the Thematic Issue part of this issue of NJWLS Nordic working life research itself is discussed. Editing the issue has led me to some (selfcritical reflections on Nordic working life research—or perhaps rather reflections on the self-image of Nordic working life researchers. We often say that two of the cornerstones of Nordic working life research are the assumption that there is a positive correlation between employee autonomy at work and higher productivity, and that our research tradition is different from those found in other geographical areas (and, implicitly, probably better. Being part of the Nordic tradition, I too have claimed both, but I now think both needs to be qualified and critically discussed. Or rather, the first needs to be qualified and the consequences of the other critically evaluated (...

  17. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  18. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  19. Nuclear Safety Review for the Year 2010

    International Nuclear Information System (INIS)

    2011-07-01

    The Agency, as a leading organization for promoting international cooperation among its Member States, is in a unique position to observe global trends, issues and challenges in nuclear safety and security through a wide variety of activities related to the establishment of safety standards and security guidelines and their application. The contents of this Nuclear Safety Review reflect the emerging nuclear safety trends, issues and challenges for 2010, as well as recapitulate the Agency's activities intended to further strengthen the global nuclear safety and security framework in all areas of nuclear, radiation, waste and transport safety. The accident at the Fukushima Daiichi Nuclear Power Plant, caused by the extraordinary disasters of the earthquake and tsunamis that struck Japan on 11 March 2011, continues to be assessed. As this report focuses on developments in 2010, the accident and its implications are not addressed here, but will be addressed in future reports of the Agency. The international nuclear community maintained a high level of safety performance in 2010. Nuclear power plant safety performance remained high, and indicated an improved trend in the number of emergency shutdowns as well in the level of energy available during these shutdowns. In addition, more States explored or expanded their interests in nuclear power programmes, and more faced the challenge of establishing the required regulatory infrastructure, regulatory supervision and safety management over nuclear installations and the use of ionizing radiation. Issues surrounding radiation protection and radioecology continued as trends in 2010. For example, increased public awareness of exposure to and environmental impacts of naturally occurring radioactive material (NORM) as well as nuclear legacy sites has led to increased public concern. In addition, human resources in radiation protection and radioecology have been lost as a result of retirement and of the migration of experts to

  20. The French Nuclear Safety Authority (ASN)

    International Nuclear Information System (INIS)

    Alloso, Ph.

    2011-01-01

    This article presents the statutes, the organization and the missions of the Nuclear Safety Authority (ASN) whose scope includes radiation protection since 2002. Globally ASN is in charge of: -) participating to the making of laws and regulations, -) delivering administrative authorizations, -) controlling the conformity of nuclear installations and activities with the laws and regulations, -) informing the public, and -) reporting on the state of nuclear safety and radiation protection each year. (A.C.)

  1. Nuclear Safety Review for the Year 2004

    International Nuclear Information System (INIS)

    2005-08-01

    In the nuclear area, challenges continue to emerge from the globalization of issues related to safety, technology, business, information, communication and security. Scientific advances and operational experience in nuclear, radiation, waste and transport technology are providing new opportunities to continuously improve safety and security by utilizing synergies between safety and security. The prime responsibility for nuclear, radiation, waste and transport safety rests with users and national governments. The Agency continues to support a Global Nuclear Safety Regime based on strong national safety infrastructures and widespread subscription to international legal instruments to maintain high levels of safety worldwide. Central to the Agency's role are the establishment of international safety standards and the provision for applying these standards, as well as the promotion of sharing information through managing the knowledge base. Nuclear power plant operational safety performance remains high throughout the world. Challenges facing the nuclear power industry include avoiding complacency, maintaining the necessary infrastructure, nuclear power plant ageing and long-term operation, as well as new reactor designs and construction. The research reactor community has a long history of safe operation. However nearly two-thirds of the world's operating research reactors are now over 30 years old and face safety and security challenges. In 2004, the Board of Governors approved the Code of Conduct on the Safety of Research Reactors to help address these challenges. In 2004, there was international consensus on radionuclide activity concentrations in materials below which regulatory controls need not apply. Key occupational radiation protection performance indicators continued to improve in 2004. Challenges include new medical practices where workers can receive high exposures, industrial radiography and worker exposure to naturally occurring radioactive material. New

  2. Effectiveness of the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    Schwarz, G.

    2016-01-01

    The Convention on Nuclear Safety (CNS) has been established after the Chernobyl accident with the primary objective of achieving and maintaining a high level of nuclear safety worldwide, through the enhancement of national measures and international cooperation. The CNS is an incentive convention. It defines the basic safety standard which shall be met by the Contracting Parties. The verification of compliance is based on a self-assessment by the Countries and a Peer Review by the other Contracting Parties. As of July 2015, there are 78 Contracting Parties. Among the Contracting Parties of the Convention are all countries operating nuclear power plants except the Islamic Republic of Iran and Taiwan, all countries constructing nuclear power plants, all countries having nuclear power plants in long term shutdown and all countries having signed contracts for the construction of nuclear power plants. The National Reports under the CNS therefore cover almost all nuclear power plants of the world. The peer review of reports, questions and answers that are exchanged in connection with the Review Meetings provided a unique overview of nuclear safety provisions and issues in countries planning or operating nuclear power plants. This is especially important for neighbouring countries to those operating nuclear power plants.

  3. Nordic cultural policies

    DEFF Research Database (Denmark)

    Duelund, Peter

    2008-01-01

    A critical view on Nordic Cultural Policy 1961-2008 - Aims, measures, forms of organisation, state og national identity......A critical view on Nordic Cultural Policy 1961-2008 - Aims, measures, forms of organisation, state og national identity...

  4. A comparison of the difference of requirements between functional safety and nuclear safety controllers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.K.; Lee, C.L.; Shyu, S.S. [Inst. of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2014-07-01

    In order to establish self-reliant capabilities of nuclear I&C systems in Taiwan, Taiwan's Nuclear I&C System (TNICS) project had been established by Institute of Nuclear Energy Research (INER). A Triple Modular Redundant (TMR) safety controller (SCS-2000) has been completed and gone through the IEC 61508 Safety Integrity Level 3 (SIL3) certification of Functional Safety for industries. Based on the certification processes, the difference of requirements between Functional Safety and Nuclear Safety controllers in term of hardware and software are addressed in this study. Besides, the measures used to determine and verify the reliability of the safety control system design are presented. (author)

  5. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 11, June 2009

    International Nuclear Information System (INIS)

    2009-06-01

    The current issue presents information about the following topics: Nuclear Safety Review for the Year 2008; Feedback from IRS Topical Studies and Events Applied to Safety Standards; Education and Training Programmes at the IAEA Department of Nuclear Safety and Security; Peer Review of Operational Safety Performance (PROSPER)

  6. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  7. Enhancing Safety Culture in Complex Nuclear Industry Projects

    International Nuclear Information System (INIS)

    Gotcheva, N.

    2016-01-01

    This paper presents an on-going research project “Management principles and safety culture in complex projects” (MAPS), supported by the Finnish Research Programme on Nuclear Power Plant Safety 2015-2018. The project aims at enhancing safety culture and nuclear safety by supporting high quality execution of complex projects in the nuclear industry. Safety-critical industries are facing new challenges, related to increased outsourcing and complexity in technology, work tasks and organizational structures (Milch and Laumann, 2016). In the nuclear industry, new build projects, as well as modernisation projects are temporary undertakings often carried out by networks of companies. Some companies may have little experience in the nuclear industry practices or consideration of specific national regulatory requirements. In large multinational subcontractor networks, the challenge for assuring nuclear safety arises partly from the need to ensure that safety and quality requirements are adequately understood and fulfilled by each partner. Deficient project management practices and unsatisfactory nuclear safety culture in project networks have been recognised as contributing factors to these challenges (INPO, 2010). Prior evidence indicated that many recent major projects have experienced schedule, quality and financial challenges both in the nuclear industry (STUK, 2011) and in the non-nuclear domain (Ahola et al., 2014; Brady and Davies, 2010). Since project delays and quality issues have been perceived mainly as economic problems, project management issues remain largely understudied in safety research. However, safety cannot be separated from other performance aspects if a systemic view is applied. Schedule and quality challenges may reflect deficiencies in coordination, knowledge and competence, distribution of roles and responsibilities or attitudes among the project participants. It is increasingly understood that the performance of the project network in all

  8. Supervision of nuclear safety - IAEA requirements, accepted solutions, trends

    International Nuclear Information System (INIS)

    Jurkowski, M.

    2007-01-01

    Ten principles of the nuclear safety, based on the IAEA's standards are presented. Convention on Nuclear Safety recommends for nuclear safety landscape, the control transparency, culture safety, legal framework and knowledge preservation. Examples of solutions accepted in France, Finland, and Czech Republic are discussed. New trends in safety fundamentals and Integration Regulatory Review are presented

  9. Nordic Market report 2010. Development in the Nordic Electricity Market

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-15

    The Nordic region is characterized by a unique mix of generation sources, with a very high share of hydropower. Hydropower accounts for virtually all of the Norwegian and nearly half of the Swedish generation capacity, making the level of precipitation vital when calculating and analysing potential generation levels. Climatic conditions such as, significantly colder winters than any other European country also influence consumption in the Nordic region, as many households are electrically heated. Overall electricity consumption in the Nordic region in 2009 was marked by decreasing consumption in every market - from a decrease of 1,5% in Denmark to a decrease of 5,5% in Finland. The Nordic transmission grid connects almost the entire region into one synchronous power system enabling increased security of supply as well as a more efficient use of the generation capacity, but congestion occurs. Congestions between the Nord Pool bidding areas are handled through market splitting, while internal congestions in general are handled through counter trade or by reducing interconnector capacity at the bidding area borders. The key future challenge for transmission network operations both in the Nordic area, and as well on the European level will be to facilitate the functioning of the pan-European wholesale electricity markets. The Nordic wholesale power market is well functioning. The volume traded at Nord Pool in 2009 was about the same share of total consumption as that of 2008. Although trading at Nord Pool is voluntary, significantly more power is traded on the power exchange than bilaterally. During 2009 average spot prices at Nord Pool were lower than prices in 2008 due to both lower demand and generation costs for thermal power plants for most of 2009. The Nordic retail markets are essentially four separate markets, influenced by national differences, but work on integration has started. Throughout 2009 retail prices in the Nordic region were lower than in 2008

  10. International organisations assure nuclear safety competence

    International Nuclear Information System (INIS)

    Alonso, A.

    2000-01-01

    Irrespective of current views on the future of nuclear power programmes, concerns are arising with respect to the long-term ability to preserve safety competence because student enrollments in nuclear engineering are decreasing rapidly and experienced staff are reaching retirement age. 'Assuring Nuclear Safety Competence into the 21. Century' was discussed in depth by workshop participants. The need for a long-term strategic view was emphasised, and policy recommendations were made. These proceedings will be of particular interest to those playing a policy role in the nuclear industry, regulatory bodies and the education sector

  11. Nuclear safety review for the year 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The nuclear safety review for the year 2000 reports on worldwide efforts to strengthen nuclear and radiation safety, including radioactive waste safety. It is in three parts: Part 1 describes those events in 2000 that have, or may have, significance for nuclear, radiation and waste safety worldwide. It includes developments such as new initiatives in international cooperation, events of safety significance and events that may be indicative of trends in safety; Part 2 describes some of the IAEA efforts to strengthen international co-operation in nuclear, radiation and waste safety during 2000. It covers legally binding international agreements, non-binding safety standards, and provisions for the application of safety standards. This is done in a very brief manner, because these issues are addressed in more detail in the Agency's Annual Report for 2000; Part 3 presents a brief look ahead to some issues that are likely to be prominent in the coming year(s). The topics covered were selected by the IAEA Secretariat on the basis of trends observed in recent years, account being taken of planned or expected future developments. A draft of the Nuclear Safety Review for the Year 2000 was presented to the March 2001 session of the IAEA Board of Governors. This final version has been prepared taking account of the discussion in the Board. In some places, information has been added to describe developments early in 2001 that were considered pertinent to the discussion of events during 2000. In such cases, a note containing the more recent information has been provided in the form of a footnote

  12. Innovation in the Safety of nuclear systems: fundamental aspects

    International Nuclear Information System (INIS)

    Herranz, L. E.

    2009-01-01

    Safety commercial nuclear reactors has been an indispensable condition for future enlargement of power generation based on nuclear technology. Its fundamental principle, defence in depth, far from being outdated, is still adopted as a key foundation in the advanced nuclear system (generations III and IV). Nevertheless, the cumulative experience gained in the operation and maintenance of nuclear reactors, the development of methodologies like the probabilistic safety analysis, the use of passive safety systems and, even, the inherent characteristics of some new design (which exclude accident scenarios), allow estimating safety figures of merit even more outstanding that those achieved in the second generation of nuclear reactors. This safety innovation of upcoming nuclear reactors has entailed a huge investigation program (generation III) that will be focused on optimizing and demonstrating the postulated safety of future nuclear systems (Generation IV). (Author)

  13. Safety targets for nuclear power plants

    International Nuclear Information System (INIS)

    Herttrich, P.M.

    1985-01-01

    By taking as an example the safety targets of the American nuclear energy authority US-NRC, this paper explains what is meant by global, quantitative safety targets for nuclear power plants and what expectations are associated with the selecton of such safety targets. It is shown how probabilistic methods can be an appropriate completion of proven deterministic methods and what are the sectors where their application may become important in future. (orig./HP) [de

  14. Decisions on the safety of using nuclear power

    International Nuclear Information System (INIS)

    Janka, P.

    1992-01-01

    A new nuclear energy law came into force in Finland in 1988. This law defines general principles, conditions and requirements concerning the use of nuclear power. The law expects the use of nuclear power to be safe and the safety and contingency systems to be sufficient. General rules for the safety of using nuclear power and for safety arrangements and contingency plans are laid down by the government. The Finnish Centre for Radiation and Nuclear Safety has proposed the various rules to be adopted by the government and come into force by 1991. The rules for the safety of nuclear power plants and final waste storage plants contain limits for emissions of radioactive substances and radiation exposure and requirements for the safety in planning, building and using nuclear power plants and final waste storage plants. They observe international experience and research on risks linked to the use of nuclear power from the last few years as well as means and measures to contain these risks under all conditions. Safety arrangements at nuclear power plants contain measures required to be taken by the owner of the plants to thwart unlawful activities aimed at the plant. Most important of these are the rules for actions to be taken in dangerous situations. The proposed contingency plans contain measures to be taken by the owner of the plants in order to contain nuclear damages resulting from an accident. Most important of these are the rules for planning contingency arrangements, keeping these arrangements operable and actions to be taken in emergency situations. (author)

  15. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  16. Nuclear power plant safety in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    The Code of Practice for the Safe Operation of Nuclear Power Plants states that: 'In discharging its responsibility for public health and safety, the government should ensure that the operational safety of a nuclear reactor is subject to surveillance by a regulatory body independent of the operating organization'. In Brazil this task is being carried out by the Comissao Nacional de Energia Nuclear in accordance with the best international practice. (orig./RW)

  17. The French Nuclear Safety Authority - ASN

    International Nuclear Information System (INIS)

    2013-01-01

    The ASN (Nuclear Safety Authority) was created by the act of 13 June 2006 concerning the transparency and safety of nuclear activities. The ASN is an independent administrative body that is in charge of controlling nuclear activities in France. The ASN has a workforce of 471 people and a budget of about 76 millions euros. This article details its missions and how it is organized to cover all the French territory. (A.C.)

  18. Nuclear criticality safety handbook. Version 2

    International Nuclear Information System (INIS)

    1999-03-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modelled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision is made based on previous studies for the chapter that treats modelling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, and burnup credit. This revision solves the inconsistencies found in the first version between the evaluation of errors found in JACS code system and criticality condition data that were calculated based on the evaluation. (author)

  19. The nuclear safety in France, in 1988

    International Nuclear Information System (INIS)

    1988-08-01

    In the scope of the nuclear safety program, in France, a state of the art of the projects on the 1st August 1988, is given. The different domains related to the nuclear safety are summarized. The purposes, the actions and the available means of the nuclear safety interministerial committee, are examined. The problems concerning the radiation protection of the personnel and reactor components, the application of the regulations and the nuclear materials management, are also examined. In the case of a nuclear accident, the protection operations depend on the responsibilities and on the different fields of action. In the world scale, the international cooperation and the example of the Tchernobyl accident are of relevant importance [fr

  20. Holes in the US nuclear safety net

    International Nuclear Information System (INIS)

    Utroska, D.

    1987-01-01

    Contrary to popular perception, the NRC has neither the authority nor the resources to comprehensively regulate the authority nor the resources to comprehensively regulate the nuclear power industry: it cannot check and monitor every nuclear plant in detail to assure reasonable reactor safety. This is widely understood within the power industry. After the Three Mile Island accident, the nuclear industry formed a group called the Institute of Nuclear Power Operations (INPO), based in Atlanta, Georgia. Its self-proclaimed mandate is to pick up the safety initiative where NRC regulations and reviews leave off; to make sure that each nuclear plant in the United States goes beyond compliance with minimum regulations and achieves excellence in safe and efficient performance. INPO's 1986 budget was $44 million, paid to the institute by electricity ratepayers via the nuclear utilities. Among other things, the money funds INPO's development of nuclear plant operating criteria and pays for plant inspections to determine if the standards are being met. INPO has deliberately maintained a low profile. INPO does not become involved in public or media activities on behalf of the industry or in the role of promoting the nuclear power option, the organization's formal institutional plan declares. A key aspect of INPO's public noninvolvement is keeping to itself and its members the results of its nuclear plant safety evaluations. Although consumers fund INPO activities and have a stake in nuclear plant safety, the press and the public are denied access to INPO safety investigation reports. 8 references

  1. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  2. Nuclear power and nuclear safety 2007; Kernekraft og nuklear sikkerhed 2007

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; OElgaard, P.L. (eds.); Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2008-05-15

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2007 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  3. Nuclear power and nuclear safety 2008; Kernekraft og nuklear sikkerhed 2008

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; OElgaard, P.L. (eds.); Nonboel, E. (Risoe DTU, Roskilde (Denmark)); Kampmann, D. (Beredskabsstyrelsen, Birkeroed (Denmark))

    2009-06-15

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  4. Nuclear criticality safety in Canada

    International Nuclear Information System (INIS)

    Shultz, K.R.

    1980-04-01

    The approach taken to nuclear criticality safety in Canada has been influenced by the historical development of participants. The roles played by governmental agencies and private industry since the Atomic Energy Control Act was passed into Canadian Law in 1946 are outlined to set the scene for the current situation and directions that may be taken in the future. Nuclear criticality safety puts emphasis on the control of materials called special fissionable material in Canada. A brief account is given of the historical development and philosophy underlying the existing regulations governing special fissionable material. Subsequent events have led to a change in emphasis in the regulatory process that has not yet been fully integrated into Canadian legislation and regulations. Current efforts towards further development of regulations governing the practice of nuclear criticality safety are described. (auth)

  5. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  6. International Nuclear Safety Center (INSC) database

    International Nuclear Information System (INIS)

    Sofu, T.; Ley, H.; Turski, R.B.

    1997-01-01

    As an integral part of DOE's International Nuclear Safety Center (INSC) at Argonne National Laboratory, the INSC Database has been established to provide an interactively accessible information resource for the world's nuclear facilities and to promote free and open exchange of nuclear safety information among nations. The INSC Database is a comprehensive resource database aimed at a scope and level of detail suitable for safety analysis and risk evaluation for the world's nuclear power plants and facilities. It also provides an electronic forum for international collaborative safety research for the Department of Energy and its international partners. The database is intended to provide plant design information, material properties, computational tools, and results of safety analysis. Initial emphasis in data gathering is given to Soviet-designed reactors in Russia, the former Soviet Union, and Eastern Europe. The implementation is performed under the Oracle database management system, and the World Wide Web is used to serve as the access path for remote users. An interface between the Oracle database and the Web server is established through a custom designed Web-Oracle gateway which is used mainly to perform queries on the stored data in the database tables

  7. Nuclear safety in Slovak Republic. Safety analysis reports for WWER 440 reactors

    International Nuclear Information System (INIS)

    Rohar, S.

    1999-01-01

    Implementation of nuclear power program is connected to establishment of regulatory body for safe regulation of siting, construction, operation and decommissioning of nuclear installations. Licensing being one of the most important regulatory surveillance activity is based on independent regulatory review and assessment of information on nuclear safety for particular nuclear facility. Documents required to be submitted to the regulatory body by the licensee in Slovakia for the review and assessment usually named Safety Analysis Report (SAR) are presented in detail in this paper. Current status of Safety Analysis Reports for Bohunice V-1, Bohunice V-2 and Mochovce NPP is shown

  8. File: nuclear safety and transparency

    International Nuclear Information System (INIS)

    Martinez, J.P.; Etchegoyen, A.; Jeandron, C.

    2001-01-01

    Several experiences of nuclear safety and transparency are related in this file. Public information, access to documents, transparency in nuclear regulation are such subjects developed in this debate. (N.C.)

  9. The politics of nuclear safety regulation

    International Nuclear Information System (INIS)

    Adam, G.

    2002-01-01

    The paper discusses political aspects of decision making about the safety of nuclear power plants especially in Eastern Europe and in connection with the enlargement of the European Union. The problem of the Kozloduy NPP safety is also discussed. Recommendations on the policy and tasks for nuclear regulators are given

  10. Review of Policy Documents for Nuclear Safety and Regulation

    International Nuclear Information System (INIS)

    Kim, Woong Sik; Choi, Kwang Sik; Choi, Young Sung; Kim, Hho Jung; Kim, Ho Ki

    2006-01-01

    The goal of regulation is to protect public health and safety as well as environment from radiological hazards that may occur as a result of the use of atomic energy. In September 1994, the Korean government issued the Nuclear Safety Policy Statement (NSPS) to establish policy goals of maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It declares the importance of establishing safety culture in nuclear community and also specifies five nuclear regulatory principles (Independence, Openness, Clarity, Efficiency and Reliability) and provides the eleven regulatory policy directions. In 2001, the Nuclear Safety Charter was declared to make the highest goal of safety in driving nuclear business clearer; to encourage atomic energy- related institutions and workers to keep in mind the mission and responsibility for assuring safety; to guarantee public confidence in related organizations. The Ministry of Science and Technology (MOST) also issues Yearly Regulatory Policy Directions at the beginning of every year. Recently, the third Atomic Energy Promotion Plan (2007-2011) has been established. It becomes necessary for the relevant organizations to prepare the detailed plans on such areas as nuclear development, safety management, regulation, etc. This paper introduces a multi-level structure of nuclear safety and regulation policy documents in Korea and presents some improvements necessary for better application of the policies

  11. Review of Policy Documents for Nuclear Safety and Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Sik; Choi, Kwang Sik; Choi, Young Sung; Kim, Hho Jung; Kim, Ho Ki [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    The goal of regulation is to protect public health and safety as well as environment from radiological hazards that may occur as a result of the use of atomic energy. In September 1994, the Korean government issued the Nuclear Safety Policy Statement (NSPS) to establish policy goals of maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It declares the importance of establishing safety culture in nuclear community and also specifies five nuclear regulatory principles (Independence, Openness, Clarity, Efficiency and Reliability) and provides the eleven regulatory policy directions. In 2001, the Nuclear Safety Charter was declared to make the highest goal of safety in driving nuclear business clearer; to encourage atomic energy- related institutions and workers to keep in mind the mission and responsibility for assuring safety; to guarantee public confidence in related organizations. The Ministry of Science and Technology (MOST) also issues Yearly Regulatory Policy Directions at the beginning of every year. Recently, the third Atomic Energy Promotion Plan (2007-2011) has been established. It becomes necessary for the relevant organizations to prepare the detailed plans on such areas as nuclear development, safety management, regulation, etc. This paper introduces a multi-level structure of nuclear safety and regulation policy documents in Korea and presents some improvements necessary for better application of the policies.

  12. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    International Nuclear Information System (INIS)

    Westfall, R.M.; McKnight, R.D.

    2005-01-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG).The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations

  13. Improving the rationality of nuclear safety regulations

    International Nuclear Information System (INIS)

    Choi, Byung Sun; Choi, Y. G.; Mun, G. H.

    2005-03-01

    This study focuses on human nature and institutions around the risk management in Korean Nuclear Installations. Nuclear safety regulatory system in Korea has had a tendency to overvalue the technical or engineering areas. But just like other risk management system, the knowledge of social science is also required to design more valid safety regulatory system. As a result of analysis, this study suggest that performance regulation need to be introduced to current nuclear safety regulation system. In this advanced regulatory system, each nuclear generation unit have to be evaluated by performance of its own regulatory implementation and would be treated differently by the performance. Additionally, self-regulation could be very effective was to guarantee nuclear safety. Because KHNP could be judged to have an considerable capabilities to manage its own regulatory procedures. To make self-regulatory system established successfully, it is also important to arrange the appropriate incentive and compensate structures

  14. Safety Culture Assessment Tools in Nuclear and Non-Nuclear Domains

    International Nuclear Information System (INIS)

    Mkrtchyan, L.; Turcanu, C.

    2012-01-01

    Over the last decades, in many domains especially in high risk industries, the authorities paid increasing attention to safety management systems and, in particular, to safety culture. Consequently, in the applied and academic literature a huge amount of studies explored the main challenges, issues and obstacles related with safety culture. We undertake a survey of safety culture experiences in the main safety-critical industries such as nuclear, railways, offshore, aviation, airlines, health care, etc. We review both academic and applied literature up to the year 2011. Our results help to establish a comprehensive view on the subject, its main terminologies, existing tools, and main difficulties. The purpose of this report is to raise awareness about the current tools of safety culture assessment, both in the nuclear as well as in the non-nuclear domain. The report provides also practical recommendations about the possible use of each tool given different circumstances and different factors. We do not aim to rank the tools pointing the best one, but we highlight instead the unique features of these tools, pointing their strong and weak sides

  15. Safety Culture Assessment Tools in Nuclear and Non-Nuclear Domains

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, L; Turcanu, C

    2012-03-15

    Over the last decades, in many domains especially in high risk industries, the authorities paid increasing attention to safety management systems and, in particular, to safety culture. Consequently, in the applied and academic literature a huge amount of studies explored the main challenges, issues and obstacles related with safety culture. We undertake a survey of safety culture experiences in the main safety-critical industries such as nuclear, railways, offshore, aviation, airlines, health care, etc. We review both academic and applied literature up to the year 2011. Our results help to establish a comprehensive view on the subject, its main terminologies, existing tools, and main difficulties. The purpose of this report is to raise awareness about the current tools of safety culture assessment, both in the nuclear as well as in the non-nuclear domain. The report provides also practical recommendations about the possible use of each tool given different circumstances and different factors. We do not aim to rank the tools pointing the best one, but we highlight instead the unique features of these tools, pointing their strong and weak sides.

  16. New Nordic comics—a question of promotion?

    Directory of Open Access Journals (Sweden)

    Rikke Platz Cortsen

    2016-11-01

    Full Text Available Throughout history, the cultures of the Nordic countries have at certain points been seen through a lense that stresses regional commonality, most recently with terms like “New Nordic Cooking” or “Nordic Noir.” In this article, we examine the possibility of a common concept of “New Nordic Comics” by analyzing a number of Nordic comics anthologies. We discuss in what way Nordic comics might be said to be new and how they can be considered to be Nordic. We state that the comics in the collections are not identifiable as particularly Nordic based on their themes or the stylistic or visual repertoires. In these respects, Nordic comics are part of a broader transnational comics culture. The comics, however, occasionally bear witness to a Nordic background or heritage, for instance, in the form of words in Finnish or the Scandinavian languages, names of characters or the milieux in the comics. On the whole, Nordicness in comics is variable and diverse, and rather than a phenomenon based on inherent quality or aesthetic commonality, new Nordic comics are a result of promotional strategies, cultural policies, and transnational connections between Nordic actors in the comics field.

  17. Safety goals for commercial nuclear power plants

    International Nuclear Information System (INIS)

    Roe, J.W.

    1988-01-01

    In its official policy statement on safety goals for the operation of nuclear power plants, the Nuclear Regulatory Commission (NRC) set two qualitative goals, supported by two quantitative objectives. These goals are that (1) individual members of the public should be provided a level of protection from the consequences of nuclear power plant operation such that individuals bear no significant additional risk to life and health; and (2) societal risks to life and health from nuclear power plant operation should be comparable to or less than the risks of generating electricity by viable competing technologies and should not be a significant addition to other societal risks. As an alternative, this study proposes four quantitative safety goals for nuclear power plants. It begins with an analysis of the NRC's safety-goal development process, a key portion of which was devoted to delineating criteria for evaluating goal-development methods. Based on this analysis, recommendations for revision of the NRC's basic benchmarks for goal development are proposed. Using the revised criteria, NRC safety goals are evaluated, and the alternative safety goals are proposed. To further support these recommendations, both the NRC's goals and the proposed goals are compared with the results of three major probabilistic risk assessment studies. Finally, the potential impact of these recommendations on nuclear safety is described

  18. Assessment of IAEA safety series no. 75-INSAG-3 - ''basic safety principles for nuclear power plants''

    International Nuclear Information System (INIS)

    1989-01-01

    The International Atomic Energy Agency Safety Series No. 75-INSAG--3, 'Basic Safety Principles for Nuclear Power Plants' is reviewed in the light of the Advisory Committee on Nuclear Safety reports ACNS--2, 'Safety Objectives for Nuclear Activities in Canada', and ACNS--4, 'Recommended General Safety Requirements for Nuclear Power Plants'. The INSAG safety objectives are consistent with the safety objectives stated in ACNS--2 but are less general, applying only to nuclear power plants. The INSAG safety principles are, in general, consistent with the requirements stated in ACNS--4 but put more emphasis on 'safety culture'. They give little attention to reactor plant effluents, waste management, or decommissioning. (fig., 5 refs.)

  19. Program nuclear safety research: report 2000

    International Nuclear Information System (INIS)

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  20. Safety classification of items in Tianwan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sun Yongbin

    2005-01-01

    The principle of integrality, moderation and equilibrium should be considered in the safety classification of items in nuclear power plant. The basic ways for safety classification of items is to classify the safety function based on the effect of the outside enclosure damage of the items (parts) on the safety. Tianwan Nuclear Power Plant adopts Russian VVER-1000/428 type reactor, it safety classification mainly refers to Russian Guidelines and standards. The safety classification of the electric equipment refers to IEEE-308(80) standard, including 1E and Non 1E classification. The safety classification of the instrumentation and control equipment refers to GB/T 15474-1995 standard, including safety 1E, safety-related SR and NC non-safety classification. The safety classification of Tianwan Nuclear Power Plant has to be approved by NNSA and satisfy Chinese Nuclear Safety Guidelines. (authors)