WorldWideScience

Sample records for nonviable asporogenic recombinant

  1. An Exploratory Study on Factors Affecting Private College Non-Viability in Korea

    Science.gov (United States)

    Choi, Bo Young

    2017-01-01

    Korean private colleges, especially institutions which depend largely on tuition revenue, are in danger due to the decrease in the college-aged population affecting their student enrollment. Given that private institutions become nonviable at different points in time, this study examines the effects of covariates on the occurrence as well as the…

  2. Grazing of particle-associated bacteria-an elimination of the non-viable fraction

    Directory of Open Access Journals (Sweden)

    Maria-Judith Gonsalves

    Full Text Available Abstract Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42 h showed that at the end of 24 h, growth coefficient (k of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, ‘k’ value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g = 0.564, the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, ‘g’ of non-viable fraction (particle-associated bacteria = 0.615, Free = 0.0086 was much greater than the viable fraction (particle-associated bacteria = 0.056, Free = 0.068. Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the “persistent variants” where the viable fraction multiply and release their progeny.

  3. Grazing of particle-associated bacteria-an elimination of the non-viable fraction.

    Science.gov (United States)

    Gonsalves, Maria-Judith; Fernandes, Sheryl Oliveira; Priya, Madasamy Lakshmi; LokaBharathi, Ponnapakkam Adikesavan

    Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42h showed that at the end of 24h, growth coefficient (k) of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, 'k' value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g)=0.564), the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, 'g' of non-viable fraction (particle-associated bacteria=0.615, Free=0.0086) was much greater than the viable fraction (particle-associated bacteria=0.056, Free=0.068). Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the "persistent variants" where the viable fraction multiply and release their progeny. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Single seed Near Infrared Spectroscopy discriminates viable and non-viable seeds of Juniperus polycarpos

    OpenAIRE

    Daneshvar, Abolfazl; Tigabu, Mulualem; Karimidoost, Asaddollah; Oden, Per Christer

    2015-01-01

    A large quantity of non-viable (empty, insect-attacked and shriveled) seeds of Juniperus polycarpos (K. Koch) is often encountered during seed collection, which should be removed from the seed lots to ensure precision sowing in the nursery or out in the field. The aims of this study were to evaluate different modelling approaches and to examine the sensitivity of the change in detection system (Silicon-detector in the shorter vis-a-vis InGsAs-detector in the longer NIR regions) for discrimina...

  5. In Vivo Magnetic Resonance Imaging and Optical Imaging Comparison of Viable and Nonviable Mesenchymal Stem Cells with a Bifunctional Label

    Directory of Open Access Journals (Sweden)

    Elizabeth Jane Sutton

    2010-09-01

    Full Text Available The purpose of this study was to compare viable and nonviable bilabeled mesenchymal stem cells (MSCs in arthritic joints with magnetic resonance imaging (MRI and optical imaging (OI. MSCs were labeled with ferucarbotran and DiD. MRI and OI of bilabeled cells were compared with controls. Six rats with arthritis received intra-articular injections of bilabeled viable MSCs into the right knee and nonviable MSCs into the left knee. Animals underwent MRI and OI preinjection and at 4, 24, 48, and 72 hours postinjection. The results were analyzed with a mixed random effects model and Fisher probability. Bilabeled MSCs showed increased MRI and OI signals compared to unlabeled controls (p < .0001. After intra-articular injection, bilabeled MSCs caused significant T2 and T2* effect on MRI and fluorescence on OI up to 72 hours postinjection (p < .05. There was no significant difference between viable and nonviable MSC signal in the knee joints; however, some of the viable cells migrated to an adjacent inflamed ankle joint (p < .05. Immunohistochemistry confirmed viable MSCs in right knee and ankle joints and nonviable MSCs in the left knee. Viable and nonviable cells could not be differentiated with MRI or OI signal intensity but were differentiated based on their ability to migrate in vivo.

  6. Exposure to chlorine dioxide gas for 4 hours renders Syphacia ova nonviable.

    Science.gov (United States)

    Czarra, Jane A; Adams, Joleen K; Carter, Christopher L; Hill, William A; Coan, Patricia N

    2014-07-01

    The purpose of our study was to evaluate the efficacy of chlorine dioxide gas for environmental decontamination of Syphacia spp. ova. We collected Syphacia ova by perianal cellophane tape impression of pinworm-infected mice. Tapes with attached ova were exposed to chlorine dioxide gas for 1, 2, 3, or 4 h. After gas exposure, ova were incubated in hatching medium for 6 h to promote hatching. For controls, tapes with attached ova were maintained at room temperature for 1, 2, 3, and 4 h without exposure to chlorine dioxide gas and similarly incubated in hatch medium for 6 h. Ova viability after incubation was assessed by microscopic examination. Exposure to chlorine dioxide gas for 4 h rendered 100% of Syphacia spp. ova nonviable. Conversely, only 17% of ova on the 4-h control slide were nonviable. Other times of exposure to chlorine dioxide gas resulted in variable effectiveness. These data suggest that exposure to chlorine dioxide gas for at least 4 h is effective for surface decontamination of Syphacia spp. ova.

  7. Identification of nonviable genes affecting touch sensitivity in Caenorhabditis elegans using neuronally enhanced feeding RNA interference.

    Science.gov (United States)

    Chen, Xiaoyin; Cuadros, Margarete Diaz; Chalfie, Martin

    2015-01-09

    Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause lethality or paralysis when mutated, and we identified 61 such genes affecting touch sensitivity, including five positive controls. We confirmed 18 genes by using available alleles, and further studied one of them, tag-170, now renamed txdc-9. txdc-9 preferentially affects anterior touch response but is needed for tubulin acetylation and microtubule formation in both the anterior and posterior touch receptor neurons. Our results indicate that neuronally enhanced feeding RNA interference screens complement traditional mutageneses by identifying additional nonviable genes needed for specific neuronal functions. Copyright © 2015 Chen et al.

  8. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger

    International Nuclear Information System (INIS)

    Xiong Xiaojing; Meng Xuejiao; Zheng Tianling

    2010-01-01

    The capacity and mechanism with which nonviable Aspergillus niger removed the textile dye, C.I. Direct Blue 199, from aqueous solution was investigated using different parameters, such as initial dye concentration, pH and temperature. In batch experiments, the biosorption capacity increased with decrease in pH, and the maximum dye uptake capacity of the biosorbent was 29.96 mg g -1 at 400 mg L -1 dye concentration and 45 deg. C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of C.I. Direct Blue 199 onto the fungal biomass. Biosorption followed a pseudo-second order kinetic model with high correlation coefficients (r 2 > 0.99). Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.

  9. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiaojing, E-mail: xiongxj@xmu.edu.cn [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Meng Xuejiao [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Zheng Tianling [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China)

    2010-03-15

    The capacity and mechanism with which nonviable Aspergillus niger removed the textile dye, C.I. Direct Blue 199, from aqueous solution was investigated using different parameters, such as initial dye concentration, pH and temperature. In batch experiments, the biosorption capacity increased with decrease in pH, and the maximum dye uptake capacity of the biosorbent was 29.96 mg g{sup -1} at 400 mg L{sup -1} dye concentration and 45 deg. C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of C.I. Direct Blue 199 onto the fungal biomass. Biosorption followed a pseudo-second order kinetic model with high correlation coefficients (r{sup 2} > 0.99). Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.

  10. Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction.

    Science.gov (United States)

    Larroza, Andrés; López-Lereu, María P; Monmeneu, José V; Gavara, Jose; Chorro, Francisco J; Bodí, Vicente; Moratal, David

    2018-04-01

    To investigate the ability of texture analysis to differentiate between infarcted nonviable, viable, and remote segments on cardiac cine magnetic resonance imaging (MRI). This retrospective study included 50 patients suffering chronic myocardial infarction. The data were randomly split into training (30 patients) and testing (20 patients) sets. The left ventricular myocardium was segmented according to the 17-segment model in both cine and late gadolinium enhancement (LGE) MRI. Infarcted myocardium regions were identified on LGE in short-axis views. Nonviable segments were identified as those showing LGE ≥ 50%, and viable segments those showing 0 cine images. A support vector machine (SVM) classifier was trained with different combination of texture features to obtain a model that provided optimal classification performance. The best classification on testing set was achieved with local binary patterns features using a 2D + t approach, in which the features are computed by including information of the time dimension available in cine sequences. The best overall area under the receiver operating characteristic curve (AUC) were: 0.849, sensitivity of 92% to detect nonviable segments, 72% to detect viable segments, and 85% to detect remote segments. Nonviable segments can be detected on cine MRI using texture analysis and this may be used as hypothesis for future research aiming to detect the infarcted myocardium by means of a gadolinium-free approach. © 2018 American Association of Physicists in Medicine.

  11. TREATMENT OF ACID MINE DRAINAGE: I. EQUILIBRIUM BIOSORPTION OF ZINC AND COPPER ON NON-VIABLE ACTIVATED SLUDGE

    Science.gov (United States)

    Biosorption is potentially attractive technology for treament of acid mine drainage for separation/recovery of metal ions and mitigation of their toxicity to sulfate reducing bacteria. This study describes the equilibrium biosorptio of Zn(II) and CU(II) by nonviable activated slu...

  12. Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida.

    Science.gov (United States)

    Boeris, Paola Sabrina; Agustín, María Del Rosario; Acevedo, Diego Fernando; Lucchesi, Gloria Inés

    2016-10-20

    Living and non-living biomass of Pseudomonas putida A (ATCC 12633) was used as biosorbent for the removing of Al(3+) from aqueous solutions. The process was stable with time, efficient at pH 4.3 and between 15°C and 42°C. Two isotherms models were applied to describe the interaction between the biosorbent and Al(3+). Non-living biomass of P. putida A (ATCC 12633) was found to be the most efficient at adsorbing Al(3+) with a maximum sorption capacity of 0.55mg Al(3+)/gr adsorbent and with 36×10(5) binding sites of Al(3+)/microorganisms. Infrared spectroscopy analysis shows that the biosorbent present some vibrational band of functional groups that change in presence of Al(3+): hydroxyl, carboxyl and phosphate. Considering that Al(3+) binds to the phosphate group of phosphatidylcholine, non-viable biomass of P. putida PB01 (mutant lacking phosphatidylcholine) was used. Aluminum adsorption of the parental strain was 30 times higher than values registered in P. putida PB01 (36×10(5) sites/microorganism vs 1.2×10(5) sites/microorganism, respectively). This result evidenced that the absence of phosphatidylcholine significantly affected the availability of the binding sites and consequently the efficiency of the biomass to adsorb Al(3+). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Genetic Phagocyte NADPH Oxidase Deficiency Enhances Nonviable Candida albicans-Induced Inflammation in Mouse Lungs.

    Science.gov (United States)

    Endo, Daiki; Fujimoto, Kenta; Hirose, Rika; Yamanaka, Hiroko; Homme, Mizuki; Ishibashi, Ken-Ichi; Miura, Noriko; Ohno, Naohito; Aratani, Yasuaki

    2017-02-01

    Patients with chronic granulomatous disease (CGD) have mutated phagocyte NADPH oxidase, resulting in reduced production of reactive oxygen species (ROS). While the mechanism underlying hyperinfection in CGD is well understood, the basis for inflammatory disorders that arise in the absence of evident infection has not been fully explained. This study aimed to evaluate the effect of phagocyte NADPH oxidase deficiency on lung inflammation induced by nonviable Candida albicans (nCA). Mice deficient in this enzyme (CGD mice) showed more severe neutrophilic pneumonia than nCA-treated wild-type mice, which exhibited significantly higher lung concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and keratinocyte-derived chemokine (KC). Neutralization of these proinflammatory mediators significantly reduced neutrophil infiltration. In vitro, production of IL-1β and TNF-α from neutrophils and that of KC from macrophages was enhanced in nCA-stimulated neutrophils from CGD mice. Expression of IL-1β mRNA was higher in the stimulated CGD neutrophils than in the stimulated wild-type cells, concomitant with upregulation of nuclear factor (NF)-κB and its upstream regulator extracellular-signal regulated kinase (ERK) 1/2. Pretreatment with an NADPH oxidase inhibitor significantly enhanced IL-1β production in the wild-type neutrophils stimulated with nCA. These results suggest that lack of ROS production because of NADPH oxidase deficiency results in the production of higher levels of proinflammatory mediators from neutrophils and macrophages, which may at least partly contribute to the exacerbation of nCA-induced lung inflammation in CGD mice.

  14. The role of the plasminogen activating system in the proteolytic and phagocytic clearance of non-viable cells

    OpenAIRE

    Borg, Rachael Jade

    2017-01-01

    The plasminogen activator (PA) system is an enzymatic cascade involved in the breakdown of fibrin, the structural component of a blood clot. tPA co-localises with plasminogen on the fibrin surface via C-terminal lysine residues, leading to the generation of plasmin and subsequent fibrin removal. In this thesis, both tPA and plasminogen were shown to interact with proteins in non-viable cells. Analogous to fibrinolysis, plasminogen binding, but not tPA binding was lysine dependent. Hence, t...

  15. Discerning Viable from Nonviable Yersinia pestis pgm- and Bacillus anthracis Sterne using Propidium Monoazide in the Presence of White Powders

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Kaiser, Brooke LD; Sydor, Michael A.; Wunschel, David S.; Bruckner-Lea, Cindy J.; Hutchison, Janine R.

    2015-12-23

    ABSTRACT Aims To develop and optimize an assay to determine viability status of Bacillus anthracis Sterne and Yersinia pestis pgm- strains in the presence of white powders by coupling propidium monoazide (PMA) treatment with real-time PCR (qPCR) analysis. Methods and Results PMA selectively enters nonviable cells and binds DNA, thereby increasing qPCR assay cycle threshold (CT) values compared to untreated samples. Dye concentration, cell number and fitness, incubation time, inactivation methods, and assay buffer were optimized for B. anthracis Sterne and Y. pestis pgm-. Differences in CT values in nonviable cells compared to untreated samples were consistently > 9 for both B. anthracis Sterne vegetative cells and Y. pestis pgm- in the presence and absence of three different white powders. Our method eliminates the need for a DNA extraction step prior to detection by qPCR. Conclusions The developed assay enables simultaneous identification and viability assessment for B. anthracis Sterne and Y. pestis pgm- under laboratory conditions, even in the presence of white powders. Eliminating the DNA extraction step that is typically used reduces total assay time and labor requirements for sample analysis. Significance and Impact of the Study The method developed for simultaneous detection and viability assessment for B. anthracis and Y. pestis can be employed in forming decisions about the severity of a biothreat event or the safety of food. Keywords Bacillus anthracis, Yersinia pestis, Propidium Monoazide, qPCR, White Powders, Rapid Viability Detection

  16. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  17. Bio sorption of Reactive Dye from Textile Wastewater by Non-viable Biomass of Aspergillus niger and Spirogyra sp

    International Nuclear Information System (INIS)

    Khalaf, M.A.

    2008-01-01

    The Potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a bio sorbents for removal of reactive dye (Synazol) from its multi-component textile wastewater. Pre-treatment of fungal and algal biomass with autoclaving increased the removal of dye more than that pre-treated with gamma-irradiation. The heat dried autoclaved biomass for the 2 organisms exhibited maximum dye removal at ph 3, temperature 30 degree C and 8 g/l (w/v) biomass conc. after 18 h contact time. The results showed that the non-viable biomass possessed high stability and efficiency of dye removal over 3 repeated batches

  18. Interruption of nonviable pregnancies of 24-28 weeks' gestation using medical methods: release date June 2013 SFP guideline #20133.

    Science.gov (United States)

    Perritt, Jamila B; Burke, Anne; Edelman, Alison B

    2013-09-01

    The need to interrupt a pregnancy between 24 and 28 weeks of gestation is uncommon and is typically due to fetal demise or lethal anomalies. Nonetheless, treatment options become more limited at these gestations, when access to surgical methods may not be available in many circumstances. The efficacy of misoprostol with or without mifepristone has been well studied in the first and earlier second trimesters of pregnancy, but its use beyond 24 weeks' gestation is less well described. This document attempts to synthesize the existing evidence for the use of misoprostol with or without mifepristone to induce labor for nonviable pregnancies at gestations of 24-28 weeks. The composite evidence suggests that a regimen combining mifepristone and misoprostol may shorten the time to expulsion, though the overall success rates are similar to those seen with misoprostol-only regimens. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy.

    Science.gov (United States)

    Zhang, Xiaoli; Schindler, Thomas H; Prior, John O; Sayre, James; Dahlbom, Magnus; Huang, Sung-Cheng; Schelbert, Heinrich R

    2013-04-01

    The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25 ± 10 %) were studied with (13)N-ammonia and (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to (13)N-ammonia activity ratios. Rest MBF was reduced in viable (0.42 ± 0.18 ml/min per g) and nonviable regions (0.32 ± 0.09 ml/min per g) relative to remote regions (0.68 ± 0.23 ml/min per g, p MFRs did not differ significantly (p > 0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39 ± 0.56 vs 1.70 ± 0.45, p > 0.05) but were significantly lower in nonviable regions (1.23 ± 0.43, p MFRs (r =-0.424, p MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes.

  20. Nonviable tumor tissue should not upstage Wilms' tumor from stage I to stage II: a report from the SIOP 93-01 nephroblastoma trial and study

    NARCIS (Netherlands)

    Vujanić, Gordan M.; Harms, Dieter; Bohoslavsky, Roman; Leuschner, Ivo; de Kraker, Jan; Sandstedt, Bengt

    2009-01-01

    In SIOP trials, Wilms' tumors were labeled as stage II by the presence of nonviable and/or viable tumor in the renal sinus and/or perirenal fat. The aim of this study was to determine if this approach was justified. Stage II Wilms' tumors were reviewed to establish whether staging was due to viable

  1. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    Science.gov (United States)

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  2. Neisseria arctica sp. nov. isolated from nonviable eggs of greater white-fronted geese (Anser albifrons) in Arctic Alaska

    Science.gov (United States)

    Hansen, Cristina M.; Himschoot, Elizabeth; Hare, Rebekah F.; Meixell, Brandt; Van Hemert, Caroline R.; Hueffer, Karsten

    2017-01-01

    During the summers of 2013 and 2014, isolates of a novel Gram-negative coccus in the Neisseria genus were obtained from the contents of nonviable greater white-fronted goose (Anser albifrons) eggs on the Arctic Coastal Plain of Alaska. We used a polyphasic approach to determine whether these isolates represent a novel species. 16S rRNA gene sequences, 23S rRNA gene sequences, and chaperonin 60 gene sequences suggested that these Alaskan isolates are members of a distinct species that is most closely related to Neisseria canis, N. animaloris, and N. shayeganii. Analysis of the rplF gene additionally showed that our isolates are unique and most closely related to N. weaveri. Average nucleotide identity of the whole genome sequence of our type strain was between 71.5% and 74.6% compared to close relatives, further supporting designation as a novel species. Fatty acid methyl ester analysis showed a predominance of C14:0, C16:0, and C16:1ω7c fatty acids. Finally, biochemical characteristics distinguished our isolates from other Neisseria species. The name Neisseria arctica (type strain KH1503T = ATCC TSD-57T = DSM 103136T) is proposed.

  3. Non-Viable Lactobacillus Casei Beneficially Modulates Poly I:C Immune Response in Co-Cultures of Human Cells.

    Science.gov (United States)

    Vintiñi, Elisa; Medina, Marcela

    2017-12-01

    Polyinosinic:polycytidylic acid (Poly-IC) has been used as a viral stimulus to mimic in vivo and in vitro infection induced by some viruses. To determine whether non-viable Lactobacillus casei CRL431 (LcM) can modulate the immune response induced by Poly I:C in co-culture models of peripheral blood mononuclear cells (PBMC) and A549 cells. T and NK cell activation was evaluated by flow cytometry and levels of TNF-α, IFN-γ, IL-10, IL-29, and IL-17 by ELISA. Cells in direct contact with A549 (PBMC-A549) and cells with no contact with it (PBMC//A549) were used for this purpose. PBMCs alone and both co-culture systems were stimulated for 24 h with the following stimuli: LPS (10 µg/ml), LcM (106 UFC/ml), Poly I:C (2 µg/ml), Poly I:C+LcM, and LcM (3 h)+Poly I:C. Moreover, unstimulated cells were used as a control. Poly I:C and LcM (3 h)+Poly I:C in PBMC-A549 showed a significant increase in the percentage of CD8+ expression (psystem. However, activation percentages were higher in direct co-culture. Poly I:C induced a higher level of pro-inflammatory TNF-α and IFN-γ cytokines as well as IL-17 and IL-29 with lower IL-10 levels in both co-culture systems while LcM induced a beneficial pattern of cytokines that would regulate Poly I:C effect. This in vitro model allowed us to highlight the potential of LcM as a modulator of anti-viral immune response and suggest its potential use in formulations against RNA respiratory viruses.

  4. Terminating pregnancy for severe hypertension when the fetus is considered non-viable: a retrospective cohort study.

    Science.gov (United States)

    Van Eerden, Leonoor; Van Oostwaard, Miriam F; Zeeman, Gerda G; Page-Christiaens, Godelieve C M; Pajkrt, Eva; Duvekot, Johannes J; Vandenbussche, Frank P; Oei, Swan G; Scheepers, Hubertina C J; Van Eyck, Jim; Middeldorp, Johanna M; Koenen, Steven V; De Groot, Christianne J M; Bolte, Antoinette C

    2016-11-01

    To investigate frequency and practise of termination of pregnancy for early-onset hypertensive disorders where the fetus is considered to be non-viable. Retrospective cohort study in all Dutch tertiary perinatal care centres (n=10), between January 2000 and January 2014. All women who underwent termination of pregnancy, without fetal surveillance or intention to intervene for fetal reasons, for early-onset hypertensive disorders in pregnancy, were analyzed. Women eligible for this study were identified in the local delivery databases. Medical records were used to collect relevant data. Between January 2000 and January 2014, 2,456,584 women delivered in The Netherlands, of which 238,448 (9.7%) in a tertiary care centre. A total of 161 pregnancy terminations (11-12 per year) for severe early-onset preeclampsia were identified, including 6 women with a twin pregnancy. Mean gestational age at termination was 172 days (GA 24 4/7 )±9.4 days. In 70% of cases termination was performed at or shortly after 24 weeks' gestation. 74.5% of women developed HELLP syndrome (n=96), eclampsia (n=10) or needed admission to an ICU (n=14). Birth weight was below 500g in 64% of cases. In 69% of the cases the estimated fetal weight was within a 10% margin of the actual birth weight. Termination of pregnancy for early-onset hypertensive disorders without intervention for fetal indication occurs approximately 12 times per year in The Netherlands. More data are needed to investigate contemporary best practice regarding termination of pregnancy for early-onset hypertensive indications at the limits of fetal viability. Considering the frequency of maternal complications, termination of pregnancy and not expectant management should be considered for all women presenting with severe early onset hypertensive disorders at the limits of fetal viability. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.

  5. FULL-THICKNESS SMALL INTESTINE NECROSIS WITH MIDGUT VOLVULUS, DISTRIBUTED IN A PATCHY FASHION, IS REVERSIBLE WITH MODERATE BLOOD FLOW : RESUMPTION OF NORMAL FUNCTION TO NON-VIABLE INTESTINE

    OpenAIRE

    AMANO, HIZURU; UCHIDA, HIROO; KAWASHIMA, HIROSHI; TANAKA, YUJIRO; KISHIMOTO, HIROSHI

    2014-01-01

    ABSTRACT Midgut volvulus is a highly life-threatening condition that carries a high risk of short gut syndrome. We report a case of catastrophic neonatal midgut volvulus in which second-look laparotomy revealed apparently non-viable remnant small intestine but with a moderate blood supply. Full-thickness small intestine necrosis was distributed in a patchy fashion, with non-viable and necrotic areas distributed so widely that no portion of the intestine could be resected. A section of full-th...

  6. Immunomodulatory effect of non-viable components of probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus on holoxenic mice

    Directory of Open Access Journals (Sweden)

    L. M. Ditu

    2014-09-01

    Full Text Available Background: Competition of probiotic bacteria with other species from the intestinal microbiota involves different mechanisms that occur regardless of probiotics’ viability. The objective of this paper was to assess the cytokine serum levels in holoxenic mice after oral administration of non-viable components (NVC of Enterococcus faecium probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus in comparison to NVC of unstimulated E. faecium probiotic culture. Methods: Probiotic E. faecium CMGb 16 culture, grown in the presence of heat-inactivated cultures of E. coli and B. cereus CMGB 102, was subsequently separated into supernatant (SN and heat-inactivated cellular sediment (CS fractions by centrifugation. Each NVC was orally administered to holoxenic mice (balb C mouse strain, in three doses, given at 24 hours. Blood samples were collected from the retinal artery, at 7, 14, and 21 days after the first administration of the NVC. The serum concentrations of IL-12 and tumor necrosis factor-alpha (TNF-α interleukins were assessed by ELISA method. Results: After the oral administration of SN component obtained from the probiotic culture stimulated with heat-inactivated cultures of B. cereus CMGB 102 and E. coli O28, the serum concentrations of IL-12 were maintained higher in the samples collected at 7 and 14 days post-administration. No specific TNF-α profile could be established, depending on stimulated or non-stimulated probiotic culture, NVC fraction, or harvesting time. Conclusion: The obtained results demonstrate that non-viable fractions of probiotic bacteria, stimulated by other bacterial species, could induce immunostimulatory effects mediated by cytokines and act, therefore, as immunological adjuvants.

  7. Recombinant protein production technology

    Science.gov (United States)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  8. Functional analyses of GB virus B p13 protein: Development of a recombinant GB virus B hepatitis virus with a p7 protein

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Emerson, Suzanne U

    2006-01-01

    that substitutions of the -1 and/or -3 residues of the putative cleavage sites (amino acid 613/614 and 732/733) abolished processing in vitro and rendered an infectious GBV-B clone nonviable in tamarins. Internal cleavage was predicted at two sites (amino acid 669/670 and 681/682), and in vitro analysis indicated....... The availability of a recombinant GBV-B virus containing a p7 protein with similarities to the HCV p7 will enhance the relevance of this model and will be of importance for identifying compounds that inhibit p7 function as additional therapeutic agents....

  9. Recombinant clotting factors.

    Science.gov (United States)

    Pipe, Steven W

    2008-05-01

    The recombinant era for haemophilia began in the early 1980s with the cloning and subsequent expression of functional proteins for both factors VIII and IX. Efficient production of recombinant clotting factors in mammalian cell culture systems required overcoming significant challenges due to the complex post-translational modifications that were integral to their pro-coagulant function. The quick development and commercialization of recombinant clotting factors was, in part, facilitated by the catastrophic impact of viral contamination of plasma-derived clotting factor concentrates at the time. Since their transition into the clinic, the recombinant versions of both factor VIII and IX have proven to be remarkable facsimiles of their plasma-derived counterparts. The broad adoption of recombinant therapy throughout the developed world has significantly increased the supply of clotting factor concentrates and helped advance aggressive therapeutic interventions such as prophylaxis. The development of recombinant VIIa was a further advance bringing a recombinant option to haemophilia patients with inhibitors. Recombinant DNA technology remains the platform to address ongoing challenges in haemophilia care such as reducing the costs of therapy, increasing the availability to the developing world, and improving the functional properties of these proteins. In turn, the ongoing development of new recombinant clotting factor concentrates is providing alternatives for patients with other inherited bleeding disorders.

  10. Recombinant gene expression protocols

    National Research Council Canada - National Science Library

    Tuan, Rocky S

    1997-01-01

    .... A fundamental requirement for successful recombinant gene expression is the design of the cloning vector and the choice of the host organism for expression. Recombinant Gene Expression Protocols grows out of the need for a laboratory manual that provides the reader the background and rationale, as well as the practical protocols for the preparation of...

  11. Two fibrinogen-like proteins, FGL1 and FGL2 are disulfide-linked subunits of oligomers that specifically bind nonviable spermatozoa.

    Science.gov (United States)

    Nagdas, Subir K; Winfrey, Virginia P; Olson, Gary E

    2016-11-01

    Nevertheless, a nonviable sperm population is present in the cauda epididymidis of many species. Degenerating spermatozoa release enzymes that could have detrimental effects on the viability of neighboring cells, and they are source of autoantigens that induce an autoimmune response if they escape the blood-epididymis barrier. Does the epididymis have specialized protective mechanism(s) to segregate the viable sperm population from defective spermatozoa? Previously, we identified a fibrinogen-like protein-2 (fgl2) that specifically binds to and polymerizes into a cocoon-like complex coating defective spermatozoa and sperm fragments. The objective of the present study is to identify the subunit composition of the fgl2-containing oligomers both in the soluble and cocoon-like complex. Our proteomic studies indicate that the 260/280kDa oligomers (termed eFGL) contain two distinct disulfide-linked subunits; 64kDa fgl2 and 33kDa fgl1. Utilizing a PCR-based cloning strategy, the 33kDa polypeptide has been identified as fibrinogen-like protein-1 (fgl1). Immunocytochemical studies revealed that fgl1 selectively binds to defective spermatozoa in the cauda epididymidis. Northern blot analysis and in situ hybridization demonstrated the high expression of fgl1 in the principal cells of the proximal cauda epididymidis. Co-immunoprecipitation analyses of cauda epididymal fluid, using anti-fgl2, demonstrate that both fgl1 and fgl2 are present in the soluble eFGL. Our study is the first to show an association of fgl1 and fgl2 both in the soluble and in the sperm-associated eFGL. We conclude that our results provide new insights into the mechanisms by which the potentially unique epididymal protein functions in the recognition and elimination of defective spermatozoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements.

    Science.gov (United States)

    Haskett, Timothy L; Terpolilli, Jason J; Ramachandran, Vinoy K; Verdonk, Callum J; Poole, Phillip S; O'Hara, Graham W; Ramsay, Joshua P

    2018-03-01

    Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases-or recombination directionality factors-RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a "master controller" of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer.

  13. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  14. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  15. Gateway Recombinational Cloning.

    Science.gov (United States)

    Reece-Hoyes, John S; Walhout, Albertha J M

    2018-01-02

    The Gateway recombinatorial cloning system was developed for cloning multiple DNA fragments in parallel (e.g., in 96-well formats) in a standardized manner using the same enzymes. Gateway cloning is based on the highly specific integration and excision reactions of bacteriophage λ into and out of the Escherichia coli genome. Because the sites of recombination (" att " sites) are much longer (25-242 bp) than restriction sites, they are extremely unlikely to occur by chance in DNA fragments. Therefore, the same recombination enzyme can be used to robustly clone many different fragments of variable size in parallel reactions. © 2018 Cold Spring Harbor Laboratory Press.

  16. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  17. Site directed recombination

    Science.gov (United States)

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  18. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  19. Construction and biological characterization of artificial recombinants between a wild type flavivirus (Kunjin) and a live chimeric flavivirus vaccine (ChimeriVax-JE).

    Science.gov (United States)

    Pugachev, Konstantin V; Schwaiger, Julia; Brown, Nathan; Zhang, Zhen-xi; Catalan, John; Mitchell, Frederick S; Ocran, Simeon W; Rumyantsev, Alexander A; Khromykh, Alexander A; Monath, Thomas P; Guirakhoo, Farshad

    2007-09-17

    Although the theoretical concern of genetic recombination has been raised related to the use of live attenuated flavivirus vaccines [Seligman, Gould, Lancet 2004;363:2073-5], it has little foundation [e.g., Monath TP, Kanesa-Thasan N, Guirakhoo F, Pugachev K, Almond J, Lang J, et al. Vaccine 2005;23:2956-8]. To investigate biological effects of recombination between a chimeric yellow fever (YF) 17D/Japanese encephalitis (JE) vaccine virus (ChimeriVax-JE) and a wild-type flavivirus Kunjin (KUN-cDNA), the prM-E envelope protein genes were swapped between the two viruses, resulting in new YF 17D/KUN(prM-E) and KUN/JE(prM-E) chimeras. The prM-E genes are easily exchangeable between flavivirues, and thus the exchange was expected to yield the most replication-competent chimeras, while other rationally designed recombinants would be more likely to be crippled or non-viable. The new chimeras proved highly attenuated in comparison with the KUN-cDNA parent, as judged by plaque size and growth kinetics in cell culture, low viremia in hamsters, and reduced neurovirulence/neuroinvasiveness in mice. These data provide strong experimental evidence that the potential of recombinants, should they ever emerge, to cause disease or spread (compete in nature with wild-type flaviviruses) would be indeed extremely low.

  20. Improved Culture Medium (TiKa) for Mycobacterium avium Subspecies Paratuberculosis (MAP) Matches qPCR Sensitivity and Reveals Significant Proportions of Non-viable MAP in Lymphoid Tissue of Vaccinated MAP Challenged Animals

    DEFF Research Database (Denmark)

    Bull, Tim J.; Munshil, Tulika; Melvang, Heidi Mikkelsen

    2017-01-01

    The quantitative detection of viable pathogen load is an important tool in determining the degree of infection in animals and contamination of foodstuffs. Current conventional culture methods are limited in their ability to determine these levels in Mycobacterium avium subspecies paratuberculosis...... in recoverability and an improved sensitivity of up to three logs when compared with conventional culture. Using TiKa culture, MAP clumping was minimal and produced visible colonies in half the time required by standard culture methods. Parallel quantitative evaluation of the TiKa culture approach and qPCR on MAP......, the relative fold changes in Geq and cfu from the TiKa culture approach suggests that non-mucosal tissue loads from MAP infected animals contained a reduced proportion of non-viable MAP (mean 19-fold) which was reduced significantly further (mean 190-fold) in vaccinated "reactor" calves. This study shows Ti...

  1. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  2. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules...... as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics...

  3. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  4. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  5. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  6. Review of Parton Recombination Models

    International Nuclear Information System (INIS)

    Bass, Steffen A

    2006-01-01

    Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models

  7. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  8. Characterization of hepatitis C virus recombinants with chimeric E1/E2 envelope proteins and identification of single amino acids in the E2 stem region important for entry

    DEFF Research Database (Denmark)

    Carlsen, Thomas H R; Scheel, Troels K H; Ramirez, Santseharay

    2013-01-01

    The hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a...... core-NS2, we exchanged E2 with functional isolate sequences of genotypes 1a (alternative isolate), 1b, and 2a. While the 1a-E2 exchange did not impact virus viability, the 2a-E2 recombinant was nonviable. After E2 exchange from three 1b isolates, long delays were observed before spread of infection....... For recovered 1b-E2 recombinants, single E2 stem region amino acid changes were identified at residues 706, 707, and 710. In reverse genetic studies, these mutations increased infectivity titers by ~100-fold, apparently without influencing particle stability or cell binding although introducing slight decrease...

  9. Electric hydrogen recombiner special tests

    International Nuclear Information System (INIS)

    Wilson, J.F.

    1975-12-01

    Westinghouse has produced an electric hydrogen recombiner to control hydrogen levels in reactor containments following a postulated loss-of-coolant accident. The recombiner underwent extensive testing for NRC qualification (see WCAP 7709-L and Supplements 1, 2, 3, 4). As a result, WCAP 7709-L and Supplements 1, 2, 3, and 4 have been accepted by the NRC for reference in applications not committed to IEEE-323-1974. Supplement 5 and the next supplement will demonstrate conformance to IEEE-323-1974. This supplement describes additional tests, beyond those necessary to qualify the system, which will be referenced in supplement 6. Each test has demonstrated a considerable margin of safety over required performance. Concurrently, the test results increased the fund of technical information on the electric hydrogen recombiner

  10. The effect of a single recombination event

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Jensen, Thomas Mailund; Wiuf, Carsten

    We investigate the variance in how visible a single recombination event is in a SNP data set as a function of the type of recombination event and its age. Data is simulated under the coalescent with recombination and inference is by the popular composite likelihood methods. The major determinant...... of the effect of a recombination event is the genealogical type of the event and whether SNP variation is present that can reveal the genealogical consequences of the recombination event. Recombination events that only change some branch lengths in the genealogy have a very small, but detectable, effect....... The more lineages left when the recombination event occurs, the larger effect it has, implying that it is mainly young recombination events that we detect when estimating the rate. If the population is growing, though, more lineages are present back in time and relatively more ancient recombination events...

  11. Improving recombinant protein purification yield

    Science.gov (United States)

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  12. A recombinant protein expression system

    African Journals Online (AJOL)

    Aghomotsegin

    2015-06-23

    Jun 23, 2015 ... Serum free cultivation of Leishmania is cost-effective and improves large scale production of well- defined parasite material. Moreover, the production of recombinant pharmaceutical proteins requires cultivation of the host in a culture medium free of animal materials, so several culture media for.

  13. Production and recombination of gluons

    International Nuclear Information System (INIS)

    Temiraliev, A.T.

    2006-01-01

    Full text: Nonlinear Markov process of parton production has been considered. The Kolmogorov equation is applied for the evolution equation based on the approximation of independent gluons production in every decay act. We introduced a 'crossing' parameter and used the combination relations to obtain nonlinear recombination equation for the evolution of gluon structure function. (author)

  14. Recombination in hepatitis C virus.

    Science.gov (United States)

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  15. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  16. Hadron production at RHIC: recombination of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.

  17. High efficiency recombineering in lactic acid bacteria

    OpenAIRE

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lact...

  18. Population inversion in recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.

    1978-11-01

    The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)

  19. Complete sucrose hydrolysis by heat-killed recombinant Pichia pastoris cells entrapped in calcium alginate.

    Science.gov (United States)

    Martínez, Duniesky; Menéndez, Carmen; Echemendia, Félix M; Pérez, Enrique R; Trujillo, Luis E; Sobrino, Alina; Ramírez, Ricardo; Quintero, Yamira; Hernández, Lázaro

    2014-06-18

    An ideal immobilized biocatalyst for the industrial-scale production of invert sugar should stably operate at elevated temperatures (60-70°C) and high sucrose concentrations (above 60%, w/v). Commercial invertase from the yeast Saccharomyces cerevisiae is thermolabile and suffers from substrate inhibition. Thermotoga maritima β-fructosidase (BfrA) is the most thermoactive and thermostable sucrose-hydrolysing enzyme so far identified and allows complete inversion of the substrate in highly concentrated solutions. In this study, heat-killed Pichia pastoris cells bearing N-glycosylated BfrA in the periplasmic space were entrapped in calcium alginate beads. The immobilized recombinant yeast showed maximal sucrose hydrolysis at pH 5-7 and 90°C. BfrA was 65% active at 60°C and had no activity loss after incubation without the substrate at this temperature for 15 h. Complete inversion of cane sugar (2.04 M) at 60°C was achieved in batchwise and continuous operation with respective productivities of 4.37 and 0.88 gram of substrate hydrolysed per gram of dry beads per hour. The half-life values of the biocatalyst were 14 and 20 days when operated at 60°C in the stirred tank and the fixed-bed column, respectively. The reaction with non-viable cells prevented the occurrence of sucrose fermentation and the formation of by-products. Six-month storage of the biocatalyst in 1.46 M sucrose (pH 5.5) at 4°C caused no reduction of the invertase activity. The features of the novel thermostable biocatalyst developed in this study are more attractive than those of immobilized S. cerevisiae cells for application in the enzymatic manufacture of inverted sugar syrup in batch and fixed-bed reactors.

  20. Solitary BioY Proteins Mediate Biotin Transport into Recombinant Escherichia coli

    Science.gov (United States)

    Finkenwirth, Friedrich; Kirsch, Franziska

    2013-01-01

    Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [3H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane. PMID:23836870

  1. Cloning, purification and characterization of recombinant silkworm ...

    African Journals Online (AJOL)

    The recombinant His-tagged BmAK protein was expressed in soluble form in Escherichia coli Rosetta and purified by metal chelating affinity chromatography. The amino acid sequence of recombinant protein was confirmed by mass spectroscopic analysis and the enzyme activity assay that indicated the recombinant ...

  2. Determination of recombination in Mycoplasma hominis

    DEFF Research Database (Denmark)

    Jacobsen, Iben Søgaard; Boesen, Thomas; Mygind, Tina

    2002-01-01

    indicating the presence of recombination. In order to test for intergenic recombination, phylogenetic trees were reconstructed for each of the genes but no well-supported bifurcating phylogenetic trees could be obtained. The genes were tested for intragenic recombination using the correlation between linkage...

  3. Mechanisms of sister chromatid recombination

    International Nuclear Information System (INIS)

    Nakai, Sayaka; Machida, Isamu; Tsuji, Satsuki

    1985-01-01

    Studies using T948 as a model system have been carried out aimed at elucidating the mechanism of sister chromatid recombination (SCR). Characterization of U.V. light- and x-ray-induced SCR, the relationiship between SCR induction and DNA repair using rad mutations, and the relationship between SCR induction and the time of cell division using cdc mutations are presented. It has been supposed that SCR is induced at the phase of S-G 2 following DNA replication, that postreplication break of DNA strands is strongly involved in the induction of SCR, and that induction type of SCR, i.e., conversion type or recombination type, is dependent upon the type of molecular damage of DNA. (Namekawa, K.)

  4. Heterogeneity in recombinant protein production

    DEFF Research Database (Denmark)

    Schalén, Martin; Johanson, Ted; Lundin, Luisa

    2012-01-01

    contribute to make a population in a fermenter heterogeneous, resulting in cell-to-cell variation in physiological parameters of the microbial culture. Our study aims at investigating how population heterogeneity and recombinant protein production is affected by environmental gradients in bioreactors....... For this purpose, a Saccharomyces cerevisiae strain, that functions as a protein production reporter, has been developed. A heterologous protein has been tagged with a fluorescent protein providing a way to measure the amount of heterologous protein produced by the cells on single cell level. Gradients...... are simulated in small bioreactors and the population heterogeneity can be visualised by analysing single cells with flow cytometry. This can give new insights to cell physiology and recombinant protein production at the industrial scale....

  5. Workshop on Radio Recombination Lines

    CERN Document Server

    1980-01-01

    Since their first detection 15 years ago, radio recombination lines from several elements have been observed in a wide variety of objects including HII regions, planetary nebulae, molecular clouds, the diffuse interstellar medium, and recently, other galaxies. The observations span almost the entire range from 0.1 to 100 GHz, and employ both single­ djsh and aperture synthesis techniques. The theory of radio recombination lines has also advanced strongly, to the point where it is perhaps one of the best-understood in astro­ physics. In a parallel development, it has become possible over the last decade to study these same highly-excited atoms in the laboratory; this work provides further confirmation of the theoretical framework. However there has been continuing controversy over the astrophysical interpre­ tation of radio recombination line observations, especially regarding the role of stimulated emission. A workshop was held in Ottawa on 24-25 August, 1979, bringing together many of the active scientist...

  6. Nondisjunction of chromosome 15: Origin and recombination

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A.; Mutirangura, A.; Ledbetter, D.H. (Baylor College of Medicine, Houston, TX (United States)); Langlois, S. (Univ. of Britisch Columbia, Vancouver (Canada)); Morris, M.A.; Malcolm, S.

    1993-09-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N=27) and Angelman syndrome patients (N-5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, more paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. 33 refs., 1 fig., 7 tabs.

  7. Consequences of recombination on traditional phylogenetic analysis

    DEFF Research Database (Denmark)

    Schierup, M H; Hein, J

    2000-01-01

    We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mt......DNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination....... With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may...

  8. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  9. CRMAGE: CRISPR Optimized MAGE Recombineering

    DEFF Research Database (Denmark)

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Sommer, Morten Otto Alexander

    2016-01-01

    A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli...... that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red...

  10. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  11. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  12. Quantum mechanical theory of collisional recombination rates

    International Nuclear Information System (INIS)

    Miller, W.H.

    1995-01-01

    Quantum mechanical expressions for the pressure-dependent recombination rate (within the strong collision assumption) are presented which have a very similar form to those developed recently for rate constants of chemical reactions: eqs. 11 and 12 express the recombination rate in terms of a flux autocorrelation function, and eqs. 14-16 in terms of a cumulative recombination probability. The qualitative behavior of these functions is illustrated by several pedagogical examples. 24 refs., 1 fig

  13. Recombination chambers for BNCT dosimetry

    International Nuclear Information System (INIS)

    Tulik, Piotr

    2006-01-01

    Parallel plate recombination ionization chambers are known as the detectors which can be used for determination of gamma and high-LET dose components and for characterization of radiation quality of mixed radiation fields. Specially designed chambers can operate correctly even at dose rates of therapeutic beams. In this work the investigations were extended to a set of cylindrical chambers including a TE chamber and three graphite chambers filled with different gases - CO 2 , N 2 and 10 BF 3 , in order to determine the thermal neutrons, 14 N capture, gamma, and fast neutron dose components. The separation of the dose components is based on differences of the shape of the saturation curve, in dependence on LET spectrum of the investigated radiation. The measurements using all the chambers and a parallel plate recombination chamber were performed in a reactor beam of NRI Rez (Czech Republic). The gamma component was determined with accuracy of about 5%, while the variations of its value could be monitored with accuracy of about 0.5%. Relative changes of the beam components could be detected with accuracy of about 5% using the parallel plate chamber. The use of the chambers filled with different gases considerably improved the resolution of the method. (author)

  14. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  15. The Red Queen theory of recombination hotspots.

    Science.gov (United States)

    Ubeda, F; Wilkins, J F

    2011-03-01

    Recombination hotspots are small chromosomal regions, where meiotic crossover events happen with high frequency. Recombination is initiated by a double-strand break (DSB) that requires the intervention of the molecular repair mechanism. The DSB repair mechanism may result in the exchange of homologous chromosomes (crossover) and the conversion of the allelic sequence that breaks into the one that does not break (biased gene conversion). Biased gene conversion results in a transmission advantage for the allele that does not break, thus preventing recombination and rendering recombination hotspots transient. How is it possible that recombination hotspots persist over evolutionary time (maintaining the average chromosomal crossover rate) when they are self-destructive? This fundamental question is known as the recombination hotspot paradox and has attracted much attention in recent years. Yet, that attention has not translated into a fully satisfactory answer. No existing model adequately explains all aspects of the recombination hotspot paradox. Here, we formulate an intragenomic conflict model resulting in Red Queen dynamics that fully accounts for all empirical observations regarding the molecular mechanisms of recombination hotspots, the nonrandom targeting of the recombination machinery to hotspots and the evolutionary dynamics of hotspot turnover. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  16. Fundamental Studies of Recombinant Hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. [Univ. of Georgia, Athens, GA (United States)

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  17. Electronic recombination in some physics problems

    International Nuclear Information System (INIS)

    Guzman, O.

    1988-01-01

    This work is related to calculations of electronic recombination rates, as a function of electronic density, electronic temperature, and ion nuclear charge. Recombination times can be calculated and compared to cooling time, in cooling processes of ion beans by electrons from storage rings. (A.C.A.S.) [pt

  18. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  19. Recombinant human endostatin reduces hypertrophic scar ...

    African Journals Online (AJOL)

    Background: Recombinant human endostatin (Endostar) has been widely used to suppress angiogenesis in carcinoma patients. ... Cite as: Wang P, Jiang L-Z, Xue B. Recombinant human endostatin reduces hypertrophic scar formation in rabbit ear model through ... wounds on the tail of each ear were discarded because.

  20. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  1. Generation of Modified Pestiviruses by Targeted Recombination

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Friis, Martin Barfred; Risager, Peter Christian

    involves targeted modification of viral cDNA genomes, cloned within BACs, by Red/ET recombination-mediated mutagenesis in E.coli DH10B cells. Using recombination-mediated mutagenesis for the targeted design, the work can be expedited and focused in principal on any sequence within the viral genome...

  2. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  3. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  4. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  5. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  6. The recombinational anatomy of a mouse chromosome.

    Directory of Open Access Journals (Sweden)

    Kenneth Paigen

    2008-07-01

    Full Text Available Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1-2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2x higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots.

  7. Reciprocality of Recombination Events That Rearrange the Chromosome

    OpenAIRE

    Mahan, M. J.; Roth, J. R.

    1988-01-01

    We describe a genetic system for studying the reciprocality of chromosomal recombination; all substrates and recombination functions involved are provided exclusively by the bacterial chromosome. The genetic system allows the recovery of both recombinant products from a single recombination event. The system was used to demonstrate the full reciprocality of three different types of recombination events: (1) intrachromosomal recombination between direct repeats, causing deletions; (2) intrachr...

  8. Invariant Measures of Genetic Recombination Processes

    Science.gov (United States)

    Akopyan, Arseniy V.; Pirogov, Sergey A.; Rybko, Aleksandr N.

    2015-07-01

    We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory.

  9. Ultramicroscopic observation of recombinant adenoassociated virus ...

    African Journals Online (AJOL)

    Ultramicroscopic observation of recombinant adenoassociated virus type 2 on the surface of formvarcarbon coated copper grids under different relative humidity and incubation time using negative stain transmission electron microscopy.

  10. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  11. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  12. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  13. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  14. Recombinant aequorin and recombinant semi-synthetic aequorins. Cellular Ca2+ ion indicators.

    OpenAIRE

    Shimomura, O; Inouye, S; Musicki, B; Kishi, Y

    1990-01-01

    Properties of a recombinant aequorin were investigated in comparison with those of natural aequorin. In chromatographic behaviour the recombinant aequorin did not match any of ten isoaequorins tested, although it was very similar to aequorin J. Its sensitivity to Ca2+ was found to be higher than that of any isoaequorin except aequorin D. The recombinant aequorin exhibited no toxicity when tested in various kinds of cells, even where samples of natural aequorin had been found to be toxic. Prop...

  15. Live recombinant BHV/BRSV vaccine

    OpenAIRE

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the protection of cattle against both Bovine herpesvirus infection and against Bovine Respiratory Syncytium virus infection. Also the invention relates to methods for the preparation of such live attenuated r...

  16. Recombination-deficient mutant of Streptococcus faecalis

    International Nuclear Information System (INIS)

    Yagi, Y.; Clewell, D.B.

    1980-01-01

    An ultraviolet radiation-sensitive derivative of Streptococcus faecalis strain JH2-2 was isolated and found to be deficient in recombination, using a plasmid-plasmid recombination system. The strain was sensitive to chemical agents which interact with deoxyribonucleic acid and also underwent deoxyribonucleic acid degradation after ultraviolet irradiation. Thus, the mutant has properties similar to those of recA strains of Escherichia coli

  17. Hadron correlations from recombination and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-04-01

    We review the formalism of quark recombination applied to the hadronization of a quark-gluon plasma. Evidence in favour of the quark recombination model is outlined. Recent work on parton correlations, leading to detectable correlations between hadrons, is discussed. Hot spots from completely quenched jets are a likely source of such correlations which appear to be jet like. It will be discussed how such a picture compares with measurement of associated hadron yields at RHIC.

  18. A radioresistant Gram-positive asporogenous rod isolated from the faeces of a giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Kobatake, M; Kurata, H; Komagata, K

    1977-05-01

    A highly radioresistant bacterium was isolated from the faeces of a giant panda (Ailuropoda melanoleuca). When the organism was subjected to gamma irradiation in phosphate buffer, the induction dose and D10 values were 846 and 345 krad, respectively, for cells grown on PCNZ agar, and 700 and 460 krad, respectively, for the enlarged cells grown on 5% (v/v) horse blood brain heart infusion agar. The D10 value of the former cells was about 1.8 times higher than that of Micrococcus radiodurans grown on PCNZ agar.

  19. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution

    Directory of Open Access Journals (Sweden)

    Monjane Adérito L

    2011-12-01

    Full Text Available Abstract Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae, the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots

  20. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution.

    Science.gov (United States)

    Monjane, Adérito L; van der Walt, Eric; Varsani, Arvind; Rybicki, Edward P; Martin, Darren P

    2011-12-02

    Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV

  1. Recombination of electrons with an anisotropic velocity distribution. Continuation of recombination continuum to series lines

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Imaida, Takashi

    1998-01-01

    For ions in recombination with electrons with directional motion, the recombination continuum to a J = 0 state is π polarized, and this polarization characteristic should continue across the ionization threshold down to the series lines. A Monte Carlo calculation has been performed for electron collisions on a classical atom in excited states. No evidence is found to support the above conclusion. (author)

  2. Spontaneous radiative recombination and nonradiative Auger recombination in quantum-confined heterostructures

    International Nuclear Information System (INIS)

    Asryan, L V

    2005-01-01

    General approach is described to the rates, fluxes and current densities associated with spontaneous radiative and nonradiative Auger recombinations in heterostructure lasers with different types of a quantum-confined active region (quantum wells, quantum wires, and quantum dots). The proper way of defining the spontaneous radiative and Auger recombination coefficients and their dimensionality are discussed. It is shown that only in a quantum dot, true time constants can be introduced for spontaneous radiative and nonradiative Auger recombinations, which are independent of the injection level. Closed-form elegant expressions are presented for the radiative recombination coefficient as an explicit function of temperature and parameters in bulk and quantum-confined structures. These expressions clearly demonstrate inappropriateness of the common practice of deriving the recombination coefficients in low-dimensional heterostructures from the bulk values. (lasers)

  3. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers. © 2012 American Chemical Society.

  4. Constraints from jet calculus on quark recombination

    International Nuclear Information System (INIS)

    Jones, L.M.; Lassila, K.E.; Willen, D.

    1979-01-01

    Within the QCD jet calculus formalism, we deduce an equation describing recombination of quarks and antiquarks into mesons within a quark or gluon jet. This equation relates the recombination function R(x 1 ,x 2 ,x) used in current literature to the fragmentation function for producing that same meson out of the parton initiating the jet. We submit currently used recombination functions to our consistency test, taking as input mainly the u-quark fragmentation data into π + mesons, but also s-quark fragmentation into K - mesons. The constraint is well satisfied at large Q 2 for large moments. Our results depend on one parameter, Q 0 2 , the constraint equation being satisfied for small values of this parameter

  5. Recombinant human erythropoietin in sports: a review

    Directory of Open Access Journals (Sweden)

    Rafael Maia de Almeida Bento

    2003-06-01

    Full Text Available Erythropoietin is an endogenous hormone of glicoproteic nature secreted by the kidneys and is the main regulator of the erythropoiesis. An alteration in its production generates a disturbance in the plasmatic concentration giving rise to several types of pathologies related to the hematopoietic system. The recombinant forms of erythropoietin have indiscriminately been used by athletes, mainly in endurance sports, by increasing the erythrocytes concentration, generating a better delivery of oxygen to the muscle tissue. The administration of recombinant erythropoietin was prohibited by the International Olympic Committee and its use considered as doping. This review has the intention to describe the physical, biological and pharmacokinetic properties of the endogenous erythropoietin, as well as its recombinant form, describing also its use in sports and the process of searching methodologies for its detection in doping control.

  6. A recombinant rabies virus expressing luciferase.

    Science.gov (United States)

    Liang, H; Tan, Y; Dun, C; Guo, X

    2010-01-01

    A recombinant Rabies virus (RV) expressing firefly luciferase (rRV-luc) was generated by an improved reverse genetics system. Its biological properties were compared with those of the parental RV. The rRV-luc grew in BHK-21 cells similarly to RV, but its virulence for mice was weaker as shown by the lower infectious titers in brain. Rising infectious titers of rRV-luc during its passaging in BHK-21 cells indicated a virus adaptation, while the luciferase (luc) expression was stable. These results suggest that the recombinant RV carrying luc gene might prove a useful tool for further analysis of pathogenesis of RV in small animal models.

  7. Thermal recombination: Beyond the valence quark approximation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: fries@physics.umn.edu; Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2005-07-07

    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.

  8. Theoretical models for recombination in expanding gas

    International Nuclear Information System (INIS)

    Avron, Y.; Kahane, S.

    1978-09-01

    In laser isotope separation of atomic uranium, one is confronted with the theoretical problem of estimating the concentration of thermally ionized uranium atoms. To investigate this problem theoretical models for recombination in an expanding gas and in the absence of local thermal equilibrium have been constructed. The expansion of the gas is described by soluble models of the hydrodynamic equation, and the recombination by rate equations. General results for the freezing effect for the suitable ranges of the gas parameters are obtained. The impossibility of thermal equilibrium in expanding two-component systems is proven

  9. Anomalous Abundances in Gaseous Nebulae From Recombination and Collisional Lines: Improved Photoionization and Recombination Studies

    Science.gov (United States)

    Pradhan, Anil Kumar; Nahar, S. N.; Eissner, W. B.; Montenegro, M.

    2011-01-01

    A perplexing anomaly arises in the determination of abundances of common elements in gaseous nebulae, as derived from collisionally excited lines (CEL) as opposed to those from Recombination Lines (RCL). The "abundance discrepancy factors" can range from a factor of 2 to an order of magnitude or more. That has led to quite different interpretation of the physical structure and processes in gaseous nebulae, such as temperature fluctuations across the object, or metal-rich concentrations leading to a dual-abundnace scenario. We show that the problem may lie in inaccuracies in photoionization and recombination models neglecting low-energy resonance phenomena due to fine structure. Whereas the atomic physics of electron impact excitation of forbidden lines is well understood, and accurate collision strengths have long been available, that is not generally the case for electron-ion recombination cross sections. A major problem is the inclusion of relativisitic effects as it pertains to the existence of very low-energy fine structure resonances in photoionization cross sections. We carry out new relativistic calculations for photoionization and recombination cross sections using a recently extended version of the Breit-Pauli R-matrix codes, and the unified electron-ion recombination method that subsumes both the radiative and the dielectronic recombination (RR and DR) processes in an ab initio and self-consistent manner. We find that near-thresold resonances manifest themselves within fine structure levels of the ground state of ions, enhancing low-temperature recombination rate coefficients at 1000-10,000 K. The resulting enahncement in level-specific and total recombination rate coefficients should therefore lead to reduced abundances derived from RCL, and in accordance with those from CEL. We present results for photoionization of O II into, and recombination from, O III. Theoretical cross sections are benchmarked against high-resolution measurements from synchrotron

  10. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  11. Mismatch Repair during Homologous and Homeologous Recombination

    Science.gov (United States)

    Spies, Maria; Fishel, Richard

    2015-01-01

    Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans. PMID:25731766

  12. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Purpose: To develop processes for effective isolation and purification of recombinant human plasminogen activator (rhPA) from transgenic rabbit milk. Methods: Immunoaffinity chromatography was selected and improved by a special polyol-responsive monoclonal antibody (PR-mAb). Alteplase was used as immunogen ...

  13. Recombinant Poliovirus circulation among healthy children ...

    African Journals Online (AJOL)

    In order to assess the level of polio virus with natural recombinant genome and wild polio virus circulating in the environment of healthy children aged 0 to 5 years in Abidjan, 130 polio viruses made up of 26 polio type 1, 55 type 2 and 49 type 3 were identified by neutralisation test with monoclonal antibodies and restriction ...

  14. RECOMBINANT HUMAN INTERLEUKIN-3 IN CLINICAL ONCOLOGY

    NARCIS (Netherlands)

    DEVRIES, EGE; VANGAMEREN, MM; WILLEMSE, PHB

    Interleukin 3 (IL-3) is a multipotent hematopoietic growth factor which became available as a recombinant (rh) growth factor for use in the clinic a few years ago. In dose-finding studies, this hematopoietic growth factor has been evaluated without and after standard chemotherapy. Stimulatory

  15. Carbon source feeding strategies for recombinant protein ...

    African Journals Online (AJOL)

    Pichia pastoris and Pichia methanolica have been used as expression systems for the production of recombinant protein. The main problems of the production are the slow hierarchic consumption of ethanol and acetate which cause toxicity problems due to methanol accumulation when this surpasses 0.5 gl-1. In some ...

  16. Recombinant human activated protein C (Xigris)

    NARCIS (Netherlands)

    Levi, M. [=Marcel M.; de Jonge, E.; van der Poll, T.

    2002-01-01

    An impaired function of the protein C pathway plays a central role in the pathogenesis of sepsis. Administration of human recombinant activated protein C (Xigris) may restore the dysfunctional anticoagulant mechanism and prevent amplification and propagation of thrombin generation and formation of

  17. Asthma and Therapeutics: Recombinant Therapies in Asthma

    Directory of Open Access Journals (Sweden)

    Cockcroft Donald W

    2005-03-01

    Full Text Available Abstract Numerous recombinant therapies are being investigated for the treatment of asthma. This report reviews the current status of several of these novel agents. Anti-immunoglobulin (IgE (omalizumab, Xolair markedly inhibits all aspects of the allergen challenge in subjects who have reduction of free serum IgE to undetectable levels. Several clinical studies in atopic asthma have demonstrated benefit by improved symptoms and lung function and a reduction in corticosteroid requirements. Early use in atopic asthmatics may be even more effective. Several approaches target interleukin (IL-4. Soluble IL-4 receptor has been shown to effectively replace inhaled corticosteroid; further studies are under way. Recombinant anti-IL-5 and recombinant IL-12 inhibit blood and sputum eosinophils and allergen-induced eosinophilia without any effect on airway responsiveness, allergen-induced airway responses, or allergen-induced airway hyperresponsiveness. Efalizumab, a recombinant antibody that inhibits lymphocyte trafficking, is effective in psoriasis. A bronchoprovocation study showed a reduction in allergen-induced late asthmatic response and allergen-induced eosinophilia, which suggests that it should be effective in clinical asthma. These exciting novel therapies provide not only promise of new therapies for asthma but also valuable tools for investigation of asthma mechanisms.

  18. Expression of recombinant Streptokinase from local Egyptian ...

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... DISCUSSION. Isolation and identification of Streptococcus sp. In this study, SK isolated from local Streptococcus sp. SalMarEg was efficiently produced in a recombinant bioactive form. It is worthy to mention that the binding of plasminogen by pathogenic Group C streptococci isolated from human, horses, ...

  19. Expression of recombinant Streptokinase from local Egyptian ...

    African Journals Online (AJOL)

    We reported for the first time the expression of a recombinant SK from a local Streptococcus strain. When produced on industrial scale this r-SK may substantially contribute to reducing the costs of thrombolytic therapy in developing countries. In this study, a highly purified r-SK from Streptococcus sp. isolated from Egyptian ...

  20. CATALYTIC RECOMBINER FOR A NUCLEAR REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-07-01

    A hydrogen-oxygen recombiner is described for use with water-boiler type reactors. The catalyst used is the wellknown platinized alumina, and the novelty lies in the structural arrangement used to prevent flashback through the gas input system. The recombiner is cylindrical, the gases at the input end being deflected by a baffle plate through a first flashback shield of steel shot into an annular passage adjacent to and extending the full length of the housing. Below the baffle plate the gases flow first through an outer annular array of alumina pellets which serve as a second flashback shield, a means of distributing the flowing gases evenly and as a means of reducing radiation losses to the walls. Thereafter the gases flow inio the centrally disposed catalyst bed where recombination is effected. The steam and uncombined gases flow into a centrally disposed cylindrical passage inside the catalyst bod and thereafter out through the exit port. A high rate of recombination is effected.

  1. Expression and characterization of recombinant human serum ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... Key words: C-peptide, human serum albumin, recombinant fusion protein, Pichia pastoris, bioactivity, biological half-time. ... lines were purchased from Cell bank of Chinese academy of sciences (Shanghai, China). .... agarose electrophoresis and DNA sequencing (data was not shown). Expression and ...

  2. Therapeutic implications of recombinant human erythropoietin in ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-29

    Dec 29, 2006 ... The introduction of recombinant human erythropoietin (RHUEPO) has revolutionised the treatment strategies for patients suffering with anaemia of chronic renal disease and chronic heart failure. Clinical studies and several observational evidences have demonstrated that RHUEPO is also useful in various.

  3. Recombinant Supercharged Polypeptides Restore and Improve Biolubrication

    NARCIS (Netherlands)

    Veeregowda, Deepak H.; Kolbe, Anke; van der Mei, Henny C.; Busscher, Henk J.; Herrmann, Andreas; Sharma, Prashant K.

    2013-01-01

    Recombinant supercharged polypeptides (SUPs) with low cytotoxicity are developed and applied to rejuvenate the lubrication of naturally occurring salivary conditioning films (SCFs). SUPs with 72 positive charges adsorbed and rigidified the SCFs and recruited mucins to form a hydrated layer. These

  4. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  5. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  6. Theory of dielectronic recombination and plasma effects

    International Nuclear Information System (INIS)

    Yukap Hahn

    2000-01-01

    Current status of the various theoretical approaches to calculation of dielectronic recombination rates is summarized, with emphasis on the available data base and on the plasma effects of both the plasma ion (and external) fields and plasma electron collisional effects which seriously affect the rates and complicate compilation of data. (author)

  7. Ultramicroscopic observation of recombinant adenoassociated virus ...

    African Journals Online (AJOL)

    The purpose of this investigation was to compare the effects of different relative humidity (RH) on the microcosmic conformation of the recombinant AAV-2 virion at 22°C. rAAV-2 virions prepared on copper grid were placed in a high, middle or low RH cabinet and incubated for 72, 48 and 24 h, respectively. The rAAV-2 ...

  8. Expression and characterization of recombinant ecarin.

    NARCIS (Netherlands)

    Jonebring, A.; Lange, U.; Bucha, E.; Deinum, J.; Elg, M.; Lovgren, A.

    2012-01-01

    The snake venom protease ecarin from Echis carinatus was expressed in stable transfected CHO-S cells grown in animal component free cell culture medium. Recombinant ecarin (r-ecarin) was secreted from the suspension adapted Chinese Hamster Ovary (CHO-S) host cells as a pro-protein and activation to

  9. Radiative recombination of excitons in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    A theory for calculating the radiative lifetime of excitons in amorphous semiconductors is presented. Four possibilities of excitonic radiative recombination are considered and the corresponding rates are derived at thermal equilibrium. The radiative lifetime is calculated from the inverse of the maximum rate for all the four possibilities. Results agree very well with experiments

  10. Correlations in the Parton Recombination Model

    Energy Technology Data Exchange (ETDEWEB)

    Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); RIKEN BNL Research Center, Brookhaven Nat. Lab., Upton, NY 11973 (United States); Fries, R.J. [School of Physics and Astronomy, Univ. of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States)

    2006-08-07

    We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.

  11. Production, purification and characterization of two recombinant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Two recombinant DNA-derived variants of ovine growth hormone were produced, purified, characterized and compared with the authentic pituitary derived GH. The variants oGH3 and oGH5 were isolated by differential centrifugation method and were purified after refolding by ion-exchange.

  12. Gas recombination assembly for electrochemical cells

    Science.gov (United States)

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  13. Improving recombinant protein solubility in Escherichia coli ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... capable of improving solubility ratio of human lysozyme. All these studies show that while this approach has been very successful for a large number of unrelated sub- strates, there is no guarantee that chaperones co- overproduction will improve the folding of a recombinant protein. For the first time in this ...

  14. Recombination times in germanium under high pressure

    International Nuclear Information System (INIS)

    Kuyt, J.H.

    1975-01-01

    The influence of pressure on a well defined recombination process was studied. The centres were introduced by γirradiation and the lifetime determined by the decay time of photoconductivity. An optical pressure vessel is described which allows for a hydrostatic variation of 3000 bars. The diffusion constant and lifetime measurements are presented and analysed. (V.J.C.)

  15. Virus efficacy of recombined Autographa californica M ...

    African Journals Online (AJOL)

    Ectropis obliqua is a major tea pest and chitin synthase (CHS) plays a key role in the pest growth and development. A 192 bp conserved domain from E. obliqua CHS gene was cloned and it was used to construct recombined Autographa californica M nucleopolyhedrovirus (AcMNPV) with double-stranded RNA interference ...

  16. Purification of human recombinant granulocyte colony stimulating ...

    African Journals Online (AJOL)

    In Escherichia coli, recombinant proteins were produced either as three dimensionally folded forms or as unfolded forms, inclusion body (IB). The formation of IB was a frequent consequence of high-level protein production and inadequacy of folding agents namely chaperones in the cytoplasm. The structure of the protein in ...

  17. A molecular recombination map of Antirrhinum majus

    Directory of Open Access Journals (Sweden)

    Hudson Andrew

    2010-12-01

    Full Text Available Abstract Background Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus. Results We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size. Conclusions The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.

  18. Extrachromosomal recombination substrates recapitulate beyond 12/23 restricted VDJ recombination in nonlymphoid cells.

    Science.gov (United States)

    Jung, David; Bassing, Craig H; Fugmann, Sebastian D; Cheng, Hwei-Ling; Schatz, David G; Alt, Frederick W

    2003-01-01

    V(D)J recombination occurs efficiently only between gene segments flanked by recombination signals (RSs) containing 12 and 23 base pair spacers (the 12/23 rule). A further limitation "beyond the 12/23 rule" (B12/23) exists at the TCRbeta locus and ensures Dbeta usage. Herein, we show that extrachromosomal V(D)J recombination substrates recapitulate B12/23 restriction in nonlymphoid cells. We further demonstrate that the Vbeta coding flank, the 12-RS heptamer/nonamer, and the 23-RS spacer each can significantly influence B12/23 restriction. Finally, purified core RAG1 and RAG2 proteins (together with HMG2) also reproduce B12/23 restriction in a cell-free system. Our findings indicate that B12/23 restriction of V(D)J recombination is cemented at the level of interactions between the RAG proteins and TCRbeta RS sequences.

  19. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    Science.gov (United States)

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  20. High recombination rate in natural populations of Plasmodium falciparum

    NARCIS (Netherlands)

    Conway, D. J.; Roper, C.; Oduola, A. M.; Arnot, D. E.; Kremsner, P. G.; Grobusch, M. P.; Curtis, C. F.; Greenwood, B. M.

    1999-01-01

    Malaria parasites are sexually reproducing protozoa, although the extent of effective meiotic recombination in natural populations has been debated. If meiotic recombination occurs frequently, compared with point mutation and mitotic rearrangement, linkage disequilibrium between polymorphic sites is

  1. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2011-07-01

    Full Text Available The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

  2. RNA recombination in Hepatitis delta virus: Identification of a novel naturally occurring recombinant

    Directory of Open Access Journals (Sweden)

    Chia-Chi Lin

    2017-12-01

    Full Text Available Background/Purpose: Hepatitis delta virus (HDV is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity. It replicates in the nucleus by host RNA polymerase via a rolling circle mechanism. Similar to many RNA viruses encoding their own RNA-dependent RNA polymerases, homologous recombination of HDV occurs in mixed-genotype infections and in cultured cells cotransfected with two HDV sequences, as demonstrated by molecular analyses. Methods: Among 237 published complete genomic sequences, 34 sequences were reported from the small and isolated Miyako Island, Japan, and belonged to the Asia-specific genotypes, HDV-2 and HDV-4 (the majority of them belonged to the known Miyako Island-specific subgroup, HDV-4M. We investigated the presence of naturally occurring HDV recombinant in Miyako Island using phylogenetic and recombination analyses. Results: We identified a two-switch HDV-4/4M intersubtype recombinant with an unbranched rod-like RNA genome. Conclusion: Our data suggest that RNA recombination plays an important role in the rapid evolution of HDV, allowing the production of new HDV strains with correct genomic structures. Keywords: hepatitis delta virus, RNA recombination

  3. Genetic Analysis of Meiotic Recombination in Schizosaccharomyces pombe

    OpenAIRE

    Smith, Gerald R.

    2009-01-01

    The fission yeast Schizosaccharomyces pombe is well-suited for studying meiotic recombination. Methods are described here for culturing S. pombe and for genetic assays of intragenic recombination (gene conversion), intergenic recombination (crossing-over), and spore viability. Both random spore and tetrad analyses are described.

  4. Genetic analysis of japonica x indica recombinant inbred lines and ...

    African Journals Online (AJOL)

    Genetic analysis of japonica x indica recombinant inbred lines and characterization of major fragrance gene by microsatellite markers. ... At some SSR loci, new/recombinant alleles were observed, which indicate the active recombination between genomes of two rice varieties and can be used for linkage mapping once ...

  5. Regulation of homologous recombination at telomeres in budding yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2010-01-01

    Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms...... that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae....

  6. Recombinant zoster (shingles) vaccine, RZV - what you need to know

    Science.gov (United States)

    ... year in the United States get shingles. Shingles vaccine (recombinant) Recombinant shingles vaccine was approved by FDA in 2017 for the ... life-threatening allergic reaction after a dose of recombinant shingles vaccine, or has a severe allergy to any component ...

  7. Bimolecular recombination in ambipolar organic field effect transistors

    NARCIS (Netherlands)

    Charrier, D.S.H.; Vries, T. de; Mathijssen, S.G.J.; Geluk, E.-J.; Smits, E.C.P.; Kemerink, M.; Janssen, R.A.J.

    2009-01-01

    In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron–hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy

  8. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    Recombinant melittin was then successfully expressed in Escherichia coli. The activity of affinity-purified recombinant melittin was determined in human leukemic U937 cells. Results show that the recombinant melittin had the same anti-proliferative activity in human leukemic U937 cells in vitro as natural one. This shows the ...

  9. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  10. Dissipative Stern-Gerlach recombination experiment

    International Nuclear Information System (INIS)

    Oliveira, Thiago R. de; Caldeira, A. O.

    2006-01-01

    The possibility of obtaining the initial pure state in a usual Stern-Gerlach experiment through the recombination of the two emerging beams is investigated. We have extended the previous work of Englert, Schwinger, and Scully [Found Phys. 18, 1045 (1988)] including the fluctuations of the magnetic field generated by a properly chosen magnet. As a result we obtained an attenuation factor to the possible revival of coherence when the beams are perfectly recombined. When the source of the magnetic field is a superconducting quantum interference device (SQUID) the attenuation factor can be controlled by external circuits and the spin decoherence directly measured. For the proposed SQUID with dimensions in the scale of microns the attenuation factor has been shown unimportant when compared with the interaction time of the spin with the magnet

  11. Charge exchange recombination x-ray laser

    International Nuclear Information System (INIS)

    Kawachi, Tetsuya; Namba, Shinichi; Kado, Masataka; Tanaka, Momoko; Hasegawa, Noboru; Nagashima, Keisuke; Kato, Yoshiaki

    2001-01-01

    A recombining plasma x-ray laser using charge exchange recombination (CXR) is proposed. Fully stripped carbon ions collide with neutral He atoms and become excited hydrogenlike carbon ions, in which the excited levels with n=3 or 4 are mainly populated. We calculate the gain coefficients of the Balmer α and the Lyman β line of the hydrogenlike carbon ions by the use of a collisional-radiative model in which the CXR process is included. The calculated result shows that substantial gain can be generated for the Lyman β and Balmer α lines and that the gain of the Balmer α line can be strongly enhanced by the effect of CXR. We also report a preliminary experiment of this scheme. (author)

  12. Thermostable exoshells fold and stabilize recombinant proteins.

    Science.gov (United States)

    Deshpande, Siddharth; Masurkar, Nihar D; Girish, Vallerinteavide Mavelli; Desai, Malan; Chakraborty, Goutam; Chan, Juliana M; Drum, Chester L

    2017-11-13

    The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated control. Thermolabile proteins internalized by tES are resistant to thermal, organic, chaotropic, and proteolytic denaturation and can be released from the tES assembly with mild pH titration followed by proteolysis.

  13. CFD Analysis of Passive Autocatalytic Recombiner

    Directory of Open Access Journals (Sweden)

    B. Gera

    2011-01-01

    Full Text Available In water-cooled nuclear power reactors, significant quantities of hydrogen could be produced following a postulated loss-of-coolant accident (LOCA along with nonavailability of emergency core cooling system (ECCS. Passive autocatalytic recombiners (PAR are implemented in the containment of water-cooled power reactors to mitigate the risk of hydrogen combustion. In the presence of hydrogen with available oxygen, a catalytic reaction occurs spontaneously at the catalyst surfaces below conventional ignition concentration limits and temperature and even in presence of steam. Heat of reaction produces natural convection flow through the enclosure and promotes mixing in the containment. For the assessment of the PAR performance in terms of maximum temperature of catalyst surface and outlet hydrogen concentration an in-house 3D CFD model has been developed. The code has been used to study the mechanism of catalytic recombination and has been tested for two literature-quoted experiments.

  14. Multiple Exponential Recombination for Differential Evolution.

    Science.gov (United States)

    Xin Qiu; Kay Chen Tan; Jian-Xin Xu

    2017-04-01

    Differential evolution (DE) is a popular population-based metaheuristic approach for solving numerical optimization problems. In recent years, considerable research has been devoted to the development of new mutation strategies and parameter adaptation mechanisms. However, as one of the basic algorithmic components of DE, the crossover operation has not been sufficiently examined in existing works. Most of the main DE variants solely employ traditional binomial recombination, which has intrinsic limitations in handling dependent subsets of variables. To fill this research niche, we propose a multiple exponential recombination that inherits all the main advantages of existing crossover operators while possessing a stronger ability in managing dependent variables. Multiple segments of the involved solutions will be exchanged during the proposed operator. The properties of the new scheme are examined both theoretically and empirically. Experimental results demonstrate the robustness of the proposed operator in solving problems with unknown variable interrelations.

  15. Recombination clumping factor during cosmic reionization

    International Nuclear Information System (INIS)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2014-01-01

    We discuss the role of recombinations in the intergalactic medium, and the related concept of the clumping factor, during cosmic reionization. The clumping factor is, in general, a local quantity that depends on both the local overdensity and the scale below which the baryon density field can be assumed smooth. That scale, called the filtering scale, depends on over-density and local thermal history. We present a method for building a self-consistent analytical model of inhomogeneous reionization, assuming the linear growth rate of the density fluctuation, which simultaneously accounts for these effects. We show that taking into account the local clumping factor introduces significant corrections to the total recombination rate, compared to the model with a globally uniform clumping factor.

  16. Regulation of Homologous Recombination by SUMOylation

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina

    , deletions, and genome rearrangements that can lead to cell death or cancer in humans. The post-translational modification by SUMO (small ubiquitinlike modifier) has proven to be an important regulator of HR and genome integrity, but the molecular mechanisms responsible for these roles are still unclear......Double-strand breaks (DSBs) are one of the most deleterious types of DNA lesions challenging genome integrity. The DNA damage response (DDR) promotes fast and effective detection and repair of the damaged DNA, leading to cell cycle arrest through checkpoint activation and the recruitment of repair...... factors such as the homologous recombination (HR) machinery. HR constitutes the main DSB repair pathway in Saccharomyces cerevisiae and despite being largely considered an error-free process and essential for genome stability, uncontrolled recombination can lead to loss of heterozygosity, translocations...

  17. Recombinant cells and organisms having persistent nonstandard amino acid dependence and methods of making them

    Science.gov (United States)

    Church, George M.; Mandell, Daniel J.; Lajoie, Marc J.

    2017-12-05

    Recombinant cells and recombinant organisms persistently expressing nonstandard amino acids (NSAAs) are provided. Methods of making recombinant cells and recombinant organisms dependent on persistently expressing NSAAs for survival are also provided. These methods may be used to make safe recombinant cells and recombinant organisms and/or to provide a selective pressure to maintain one or more reassigned codon functions in recombinant cells and recombinant organisms.

  18. Expression, purification and characterization of recombinant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... aggregation activity analysis, we found that the anti-thrombin activity of the fusion protein did not change comparing with the ... the recombinant protein r-HV into the expression vector pPIC9K and pPIC9K1 and pPIC9K2 were ..... coagulation proteases (Dodt et al., 1984; Seemmuller et al., 1986). Hirudin is a ...

  19. DSMC Modeling of Flows with Recombination Reactions

    Science.gov (United States)

    2017-06-23

    Reactions S. Gimelshein, I. Wysong Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680 Air Force Research...dimensional flows, modeling is usually con- ducted for Knudsen numbers Kn > 0.001, where the impact of recombination reactions is almost always minor, so...prac- tical applicability of the DSMC method. These methods have already been tested for reacting air flows.20 Today, modeling of gas flows at

  20. Modelling of procecces in catalytic recombiners

    International Nuclear Information System (INIS)

    Boehm, J.

    2007-01-01

    In order to achieve a high degree of safety in nuclear power plants and prevent possible accident scenarios, their consequences are calculated and analysed with numeric codes. One of the most important part of nuclear safety research of hazardous incidents are development and validation of these numeric models, which are implemented into accident codes. The severe hydrogen release during a core meltdown is one of the considered scenario of performed accident analyses. One of the most important measure for the elimination of the hydrogen is catalytic recombiners. Converting the hydrogen with the atmospheric oxygen to water vapor in an exothermic reaction will prevent possible detonation of the hydrogen/air atmosphere. Within the dissertation the recombiner simulation REKO-DIREKT was developed and validated by an extensive experimental database. The performance of recombiners with regard to the conversion of the hydrogen and the temperature development is modelled. The REKO-DIREKT program is unique and has made significant revolution in research of hydrogen safety. For the first time it has been possible to show the performance of the recombiner so great in detail by using REKO-DIREKT. In the future engineers of nuclear power plants will have opportunity to have precise forecasts about the process of the possible accidents with hydrogen release. Also with presence of water vapor or with oxygen depletion which are included in the model. The major discussion of the hydrogen ignition at hot catalyst steel plates can be evaluated in the future with REKO-DIREKT more reliably than the existing used models. (orig.)

  1. Cultivating Insect Cells To Produce Recombinant Proteins

    Science.gov (United States)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  2. Ancestries of a recombining diploid population.

    Science.gov (United States)

    Sainudiin, R; Thatte, B; Véber, A

    2016-01-01

    We derive the exact one-step transition probabilities of the number of lineages that are ancestral to a random sample from the current generation of a bi-parental population that is evolving under the discrete Wright-Fisher model with n diploid individuals. Our model allows for a per-generation recombination probability of r . When r = 1, our model is equivalent to Chang's (Adv Appl Probab 31:1002-1038, 1999) model for the karyotic pedigree. When r = 0, our model is equivalent to Kingman's (Stoch Process Appl 13:235-248, 1982) discrete coalescent model for the cytoplasmic tree or sub-karyotic tree containing a DNA locus that is free of intra-locus recombination. When 0 r r . Thus, our family of models indexed by r ∈ [0, 1] connects Kingman's discrete coalescent to Chang's pedigree in a continuous way as r goes from 0 to 1. For large populations, we also study three properties of the ancestral process corresponding to a given r ∈ (0, 1): the time Tn to a most recent common ancestor (MRCA) of the population, the time Un at which all individuals are either common ancestors of all present day individuals or ancestral to none of them, and the fraction of individuals that are common ancestors at time Un. These results generalize the three main results of Chang's (Adv Appl Probab 31:1002-1038, 1999). When we appropriately rescale time and recombination probability by the population size, our model leads to the continuous time Markov chain called the ancestral recombination graph of Hudson (Theor Popul Biol 23:183-201, 1983) and Griffiths (The two-locus ancestral graph, Institute of Mathematical Statistics 100-117, 1991).

  3. Dissociation of recombinant prion autocatalysis from infectivity

    OpenAIRE

    Noble, Geoffrey P; Supattapone, Surachai

    2015-01-01

    Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication – that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and ...

  4. Development of Mycoplasma hyopneumoniae Recombinant Vaccines.

    Science.gov (United States)

    Marchioro, Silvana Beutinger; Simionatto, Simone; Dellagostin, Odir

    2016-01-01

    Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Research using genome-based approach has the potential to elucidate the biology and pathogenesis of M. hyopneumoniae and contribute to the development of more effective vaccines. Here, we describe the protocol for developing M. hyopneumoniae recombinant vaccines using reverse vaccinology approaches.

  5. Kinetic studies of ion - recombination in gases

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, K.J.; Bhave, R.N.; Cooper, R. [Melbourne Univ., Parkville, VIC (Australia). Dept. of Chemistry

    1996-12-31

    Full text: Subsequent to primary ionisation/excitation and dissociation events in irradiated systems, the medium relaxes by various secondary processes which may also be precursors to lasting chemical and physical changes in the system. Pulse radiolysis techniques can be successfully utilised to directly observe such processes so that kinetic parameters may be determined to subsequently accurately model these processes in irradiated systems. Time resolved microwave absorption techniques on a Febetron 706 pulsed electron beam system have been used to study ion recombination in simple gas systems. The microwave absorption method relies on the mobility of charged species within the system and effectively measures an ac-conductivity of the irradiated medium. The technique has a time resolution of about one nanosecond. The decay of conductivity in irradiated gases over the pressure range 50 to 1500 torr has been measured on time scales from 10 nanoseconds to 10 microseconds. Bulk gas pressure and ion densities were such that measurements yielded recombination coefficients for dimeric rare gas cations with thermal electrons. The recombination rate constant, {alpha}{sub T}, is shown to be both independent and dependent on the total pressure in the system ({alpha}{sub T} = {alpha}{sub 2} + {alpha}{sub 3} [M]; {alpha}{sub T} has values up to approx 10{sup +14} L. M{sup -1} s{sup -1} ). Total recombination coefficients {alpha}{sub T} have been measured for the noble gases helium, neon, argon, krypton and xenon. Measurements have also been made for the simple diatomic molecules nitrogen and hydrogen. All the systems studied, except for argon, show both two and three body processes occurring. The three body or assisted process requires the thermalisation of electrons in the neighborhood of the positive ion prior capture. The two body effect is thought to be a radiative or dissociative process. The mechanistic implications of the pulse radiolysis results will be discussed in

  6. Recent advances in DNA repair and recombination.

    Science.gov (United States)

    Iwanejko, L A; Jones, N J

    1998-09-11

    The subjects of the talks at this 1-day DNA Repair Network meeting, held at City University, London on December 15, 1997, encompassed a range of topics and reflected some of the current areas of research in the United Kingdom. Topics included DNA double-strand break repair, V(D)J recombination, DNA ligases, the RecQ family of helicases and Bloom's syndrome, UVB and immunosuppression, the repair of oxidative damage and mismatch repair mechanisms.

  7. Dissociative recombination of small molecular ions

    International Nuclear Information System (INIS)

    Mul, P.M.

    1981-01-01

    In this thesis an analysis is given of merged electron-ion beam experiment and work on dissociative recombination of molecular ions and electrons is described. Chapter II covers a brief introduction of the theory of dissociative recombination. In chapter III, a description is given of the merged electron-ion beam experiment and a method is described which allows the determination of the mean angle between the electron and ion trajectories in a merged electron-ion beam experiment. In chapter IV a paper on the three dominant atmospheric diatomic ions NO + , O 2 + and N 2 + is presented and in chapter V the dissociative recombination for N 2 H + and N 2 D + is discussed. In chapter VI two papers on the polyatomic ions of the carbon-containing molecular ions are presented, and in chapter VII a letter with some results of the work presented in more detail in the chapters IV, V and VI is presented. The magnitude and the energy dependence of the cross-section measured by the merged beam technique and by other techniques is compared and discussed. (Auth.)

  8. Heavy-ion cooling and radiative recombination

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1988-09-01

    There is presently a large number of ion storage rings under construction which will use electron cooling for increasing the phase-space density of the stored ions in order to gain luminosity and resolution advantages for a variety of experiments. In this review a more general introduction to the electron-cooling technique is given. The atomic-physics aspects of electron-ion interactions at low relative velocity are identified. One of the most important processes is electron-ion radiative recombination because it can have strong implications on the operation of a storage ring employing electron cooling. Estimates are given of the ion-beam lifetime, as limited by recombination losses, as a function of electron density and temperature and for all values of the atomic number Z of the ions. The use of recombination processes in the electron cooler for atomic spectroscopy of few-electron heavy ions is discussed along with their implication on diagnostics of electron cooling. (orig.)

  9. Recombination-dependent concatemeric viral DNA replication.

    Science.gov (United States)

    Lo Piano, Ambra; Martínez-Jiménez, María I; Zecchi, Lisa; Ayora, Silvia

    2011-09-01

    The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. CFD modeling of passive autocatalytic recombiners*

    Directory of Open Access Journals (Sweden)

    Orszulik Magdalena

    2015-06-01

    Full Text Available This study deals with numerical modeling of passive autocatalytic hydrogen recombiners (PARs. Such devices are installed within containments of many nuclear reactors in order to remove hydrogen and convert it to steam. The main purpose of this work is to develop a numerical model of passive autocatalytic recombiner (PAR using the commercial computational fluid dynamics (CFD software ANSYS-FLUENT and tuning the model using experimental results. The REKO 3 experiment was used for this purpose. Experiment was made in the Institute for Safety Research and Reactor Technology in Julich (Germany. It has been performed for different hydrogen concentrations, different flow rates, the presence of steam, and different initial temperatures of the inlet mixture. The model of this experimental recombiner was elaborated within the framework of this work. The influence of mesh, gas thermal conductivity coefficient, mass diffusivity coefficients, and turbulence model was investigated. The best results with a good agreement with REKO 3 data were received for k-ɛ model of turbulence, gas thermal conductivity dependent on the temperature and mass diffusivity coefficients taken from CHEMKIN program. The validated model of the PAR was next implemented into simple two-dimensional simulations of hydrogen behavior within a subcompartment of a containment building.

  11. Antagonistic experimental coevolution with a parasite increases host recombination frequency

    Directory of Open Access Journals (Sweden)

    Kerstes Niels AG

    2012-02-01

    Full Text Available Abstract Background One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.

  12. Monitoring homologous recombination in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhuanying; Tang Li [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China); Li Meiru [South China Botanic Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Chen Lei; Xu Jie [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China); Wu Goujiang [South China Botanic Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Li Hongqing, E-mail: hqli@scnu.edu.cn [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China)

    2010-09-10

    Here we describe a system to assay homologous recombination during the complete life cycle of rice (Oryza sativa L.). Rice plants were transformed with two copies of non-functional GUS reporter overlap fragments as recombination substrate. Recombination was observed in all plant organs examined, from the seed stage until the flowering stage of somatic plant development. Embryogenic cells exhibited the highest recombination ability with an average of 3 x 10{sup -5} recombination events per genome, which is about 10-fold of that observed in root cells, and two orders of that observed in leaf cells. Histological analysis revealed that recombination events occurred in diverse cell types, but preferentially in cells with small size. Examples of this included embryogenic cells in callus, phloem cells in the leaf vein, and cells located in the root apical meristem. Steady state RNA analysis revealed that the expression levels of rice Rad51 homologs are positively correlated with increased recombination rates in embryogenic calli, roots and anthers. Finally, radiation treatment of plantlets from distinct recombination lines increased the recombination frequency to different extents. These results showed that homologous recombination frequency can be effectively measured in rice using a transgene reporter assay. This system will facilitate the study of DNA damage signaling and homologous recombination in rice, a model monocot.

  13. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  14. V(D)J recombination frequency is affected by the sequence interposed between a pair of recombination signals: sequence comparison reveals a putative recombinational enhancer element

    DEFF Research Database (Denmark)

    Roch, F A; Hobi, R; Berchtold, M W

    1997-01-01

    this activity suggests that the effect is no mediated through attachment of the recombination substrate to a nuclear matrix-associated recombination complex but through cis-activation. The presence of a 26 bp A-T-rich sequence motif in the 5' and 3' MARs of Emu and in all of the other upregulating fragments....... These we prepared by interposing between the recombination signal sequences (RSS) of the plasmid pBlueRec various fragments, including Emu, possibly affecting V(D)J recombination. Our work shows that sequences inserted between RSS 23 and RSS 12, with distances from their proximal ends of 26 and 284 bp...

  15. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  16. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference.

    Science.gov (United States)

    Segura, Joana; Ferretti, Luca; Ramos-Onsins, Sebastián; Capilla, Laia; Farré, Marta; Reis, Fernanda; Oliver-Bonet, Maria; Fernández-Bellón, Hugo; Garcia, Francisca; Garcia-Caldés, Montserrat; Robinson, Terence J; Ruiz-Herrera, Aurora

    2013-11-22

    Recombination allows faithful chromosomal segregation during meiosis and contributes to the production of new heritable allelic variants that are essential for the maintenance of genetic diversity. Therefore, an appreciation of how this variation is created and maintained is of critical importance to our understanding of biodiversity and evolutionary change. Here, we analysed the recombination features from species representing the major eutherian taxonomic groups Afrotheria, Rodentia, Primates and Carnivora to better understand the dynamics of mammalian recombination. Our results suggest a phylogenetic component in recombination rates (RRs), which appears to be directional, strongly punctuated and subject to selection. Species that diversified earlier in the evolutionary tree have lower RRs than those from more derived phylogenetic branches. Furthermore, chromosome-specific recombination maps in distantly related taxa show that crossover interference is especially weak in the species with highest RRs detected thus far, the tiger. This is the first example of a mammalian species exhibiting such low levels of crossover interference, highlighting the uniqueness of this species and its relevance for the study of the mechanisms controlling crossover formation, distribution and resolution.

  17. [Gene fusion of egfp & kan and recombinant plasmid construction by red mediated in vivo homologous recombination].

    Science.gov (United States)

    Wu, Yang; Li, Shan-Hu; Shi, Qing-Guo; Liu, Dang-Sheng; Zhou, Jian-Guang

    2007-07-01

    Recombineering, a new genetic engineering technology based on high efficiency in vivo homologous recombination, can be used in target DNA knock-in, knock-out and gene cloning. In the process of gene subcloning mediated by Recombineering technique, high-quality target DNA fragments were difficult to obtain using in vitro overlapping PCR,therefore the efficiency of in vivo homologous recombination was severely interrupted. To solve this problem, some technology improvements have been established based on the principle of Red recombinases. The PCR DNA fragments of egfp and kan genes with complementary sequences on the end of each fragment were co-introduced into a pcDNA3.1 vector and Red recombinases containing E. coli DY331 host cells by electroporation. A recombinant plasmid pcDNA3.1-egfp-kan was screened directly by antibiotic marker. The positive rates can reach to 45%. The EGFP gene expression of pcDNA3.1-egfp-kan can be observed by transient transfection of 293 eukaryotic cells.

  18. Mobility dependent recombination models for organic solar cells

    Science.gov (United States)

    Wagenpfahl, Alexander

    2017-09-01

    Modern solar cell technologies are driven by the effort to enhance power conversion efficiencies. A main mechanism limiting power conversion efficiencies is charge carrier recombination which is a direct function of the encounter probability of both recombination partners. In inorganic solar cells with rather high charge carrier mobilities, charge carrier recombination is often dominated by energetic states which subsequently trap both recombination partners for recombination. Free charge carriers move fast enough for Coulomb attraction to be irrelevant for the encounter probability. Thus, charge carrier recombination is independent of charge carrier mobilities. In organic semiconductors charge carrier mobilities are much lower. Therefore, electrons and holes have more time react to mutual Coulomb-forces. This results in the strong charge carrier mobility dependencies of the observed charge carrier recombination rates. In 1903 Paul Langevin published a fundamental model to describe the recombination of ions in gas-phase or aqueous solutions, known today as Langevin recombination. During the last decades this model was used to interpret and model recombination in organic semiconductors. However, certain experiments especially with bulk-heterojunction solar cells reveal much lower recombination rates than predicted by Langevin. In search of an explanation, many material and device properties such as morphology and energetic properties have been examined in order to extend the validity of the Langevin model. A key argument for most of these extended models is, that electron and hole must find each other at a mutual spatial location. This encounter may be limited for instance by trapping of charges in trap states, by selective electrodes separating electrons and holes, or simply by the morphology of the involved semiconductors, making it impossible for electrons and holes to recombine at high rates. In this review, we discuss the development of mobility limited

  19. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay

    DEFF Research Database (Denmark)

    Nikolaitchik, Olga A; Galli, Andrea; Moore, Michael D

    2011-01-01

    Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms...... between variants from different groups is further reduced compared with green fluorescent protein, indicating that sequence divergence interferes with recombination efficiency in the gag gene. Compared with identical sequences, we estimate that recombination rates are reduced by 3-fold and by 10- to 13...... of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses...

  20. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  1. Late replicating domains are highly recombining in females but have low male recombination rates: implications for isochore evolution.

    Directory of Open Access Journals (Sweden)

    Catherine J Pink

    Full Text Available In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in

  2. Late Replicating Domains Are Highly Recombining in Females but Have Low Male Recombination Rates: Implications for Isochore Evolution

    Science.gov (United States)

    Pink, Catherine J.; Hurst, Laurence D.

    2011-01-01

    In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in analysis of GC

  3. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance.

    Science.gov (United States)

    Kempf, Brian J; Peersen, Olve B; Barton, David J

    2016-10-01

    RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3D(pol), as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3D(pol) may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3D(pol)-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3D(pol) decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3D(pol) increased the frequency of recombination. The 3D(pol) Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3D(pol) Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a polymerase

  4. Recombination: the good, the bad and the variable.

    Science.gov (United States)

    Stapley, Jessica; Feulner, Philine G D; Johnston, Susan E; Santure, Anna W; Smadja, Carole M

    2017-12-19

    Recombination, the process by which DNA strands are broken and repaired, producing new combinations of alleles, occurs in nearly all multicellular organisms and has important implications for many evolutionary processes. The effects of recombination can be good , as it can facilitate adaptation, but also bad when it breaks apart beneficial combinations of alleles, and recombination is highly variable between taxa, species, individuals and across the genome. Understanding how and why recombination rate varies is a major challenge in biology. Most theoretical and empirical work has been devoted to understanding the role of recombination in the evolution of sex-comparing between sexual and asexual species or populations. How recombination rate evolves and what impact this has on evolutionary processes within sexually reproducing organisms has received much less attention. This Theme Issue focusses on how and why recombination rate varies in sexual species, and aims to coalesce knowledge of the molecular mechanisms governing recombination with our understanding of the evolutionary processes driving variation in recombination within and between species. By integrating these fields, we can identify important knowledge gaps and areas for future research, and pave the way for a more comprehensive understanding of how and why recombination rate varies. © 2017 The Authors.

  5. Creating Porcine Biomedical Models Through Recombineering

    Directory of Open Access Journals (Sweden)

    Lawrence B. Schook

    2006-03-01

    Full Text Available Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates traditionally used as models as well as new candidates (pigs and cattle. In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to ‘forward genetics’, in which gene(s responsible for a particular phenotype are identified by positional cloning (phenotype to genotype, the ‘reverse genetics’ approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype. The convergence of classical and reverse genetics, along with genomics, provides a working definition of a ‘genetic model’ organism (3. The recent construction of phenotypic maps defining quantitative trait loci (QTL in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT technology can provide ‘clones’ of genetically modified animals.

  6. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  7. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    , equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  8. Dissociative recombination of molecular ions H2+

    International Nuclear Information System (INIS)

    Abarenov, A.V.; Marchenko, V.S.

    1989-01-01

    The total cross sections of dissociation and dissociative recombination of slow electrons and molecular ions H 2 + have been calculated in terms of the quasiclassical and dipole approximations. In the calculations allowance was made for the quantum nature of vibrational motion of heavy particles and presence of autoionization of divergence states of the H 2 (Σ u , nl) molecules. It is shown that the H 2 + ion dissociation cross sections are dominant in increase of the electron energy in the ε >or approx. 2-3 eV region for H 2 + (v) ion distribution over the vibrational levels characteristic for the beam experiments. 15 refs.; 5 figs

  9. Population inversion in a stationary recombining plasma

    International Nuclear Information System (INIS)

    Otsuka, M.

    1980-01-01

    Population inversion, which occurs in a recombining plasma when a stationary He plasma is brought into contact with a neutral gas, is examined. With hydrogen as a contact gas, noticeable inversion between low-lying levels of H as been found. The overpopulation density is of the order of 10 8 cm -3 , which is much higher then that (approx. =10 5 cm -3 ) obtained previously with He as a contact gas. Relations between these experimental results and the conditions for population inversion are discussed with the CR model

  10. An introduction to recombination and linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mcpeek, M.S. [Univ. of Chicago, IL (United States)

    1996-12-31

    With a garden as his laboratory, Mendel was able to discern basic probabilistic laws of heredity. Although it first appeared as a baffling exception to one of Mendel`s principles, the phenomenon of variable linkage between characters was soon recognized to be a powerful tool in the process of chromosome mapping and location of genes of interest. In this introduction, we first describe Mendel`s work and the subsequent discovery of linkage. Next we describe the apparent cause of variable linkage, namely recombination, and we introduce linkage analysis. 33 refs., 1 fig., 2 tabs.

  11. Nanobodies and recombinant binders in cell biology

    Science.gov (United States)

    Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge

    2015-01-01

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137

  12. Hydrogen recombiner catalyst test supporting data

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  13. Recombinant DNA. Rifkin's regulatory revivalism runs riot.

    Science.gov (United States)

    David, P

    Jeremy Rifkin, activist opponent of genetic engineering, has adopted tactics of litigation, persuasion, and confrontation in his campaign to halt genetic experimentation. The Recombinant DNA Advisory Committee of the National Institutes of Health has often been the target of his criticism, most recently for its failure to prepare an environmental risk assessment for some DNA tests it approved. Rifkin has won support for his position from religious organizations in the United States, and in June 1983 persuaded an ecumenical group of religious leaders to ask Congress to ban genetic experiments that would affect the human germ line.

  14. ReCombine: a suite of programs for detection and analysis of meiotic recombination in whole-genome datasets.

    Directory of Open Access Journals (Sweden)

    Carol M Anderson

    Full Text Available In meiosis, the exchange of DNA between chromosomes by homologous recombination is a critical step that ensures proper chromosome segregation and increases genetic diversity. Products of recombination include reciprocal exchanges, known as crossovers, and non-reciprocal gene conversions or non-crossovers. The mechanisms underlying meiotic recombination remain elusive, largely because of the difficulty of analyzing large numbers of recombination events by traditional genetic methods. These traditional methods are increasingly being superseded by high-throughput techniques capable of surveying meiotic recombination on a genome-wide basis. Next-generation sequencing or microarray hybridization is used to genotype thousands of polymorphic markers in the progeny of hybrid yeast strains. New computational tools are needed to perform this genotyping and to find and analyze recombination events. We have developed a suite of programs, ReCombine, for using short sequence reads from next-generation sequencing experiments to genotype yeast meiotic progeny. Upon genotyping, the program CrossOver, a component of ReCombine, then detects recombination products and classifies them into categories based on the features found at each location and their distribution among the various chromatids. CrossOver is also capable of analyzing segregation data from microarray experiments or other sources. This package of programs is designed to allow even researchers without computational expertise to use high-throughput, whole-genome methods to study the molecular mechanisms of meiotic recombination.

  15. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  16. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...... a protocol for expressing Hbs with low intrinsic solubilities. Since the alpha- and beta-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression......-translational modifications. CONCLUSION/SIGNIFICANCE: Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need...

  17. Test tube systems with cutting/recombination operations

    Energy Technology Data Exchange (ETDEWEB)

    Freund, R. [Technische Universitaet Wien (Austria); Csuhaj-Varju, E. [Computer and Automation Institute, Budapest (Hungary); Wachtler, F. [Universitaet Wien (Austria)

    1996-12-31

    We introduce test tube systems based on operations that are closely related to the splicing operations, i.e. we consider the operations of cutting a string at a specific site into two pieces with marking them at the cut ends and of recombining two strings with specifically marked endings. Whereas in the splicing of two strings these strings are cut at specific sites and the cut pieces are recombined immediately in a crosswise way, in CR(cutting/recombination)-schemes cutting can happen independently from recombining the cut pieces. Test tube systems based on these operations of cutting and recombination turn out to have maximal generative power even if only very restricted types of input filters for the test tubes are used for the redistribution of the contents of the test tubes after a period of cuttings and recombinations in the test tubes. 10 refs.

  18. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch.

    Directory of Open Access Journals (Sweden)

    Fabio Vanoli

    2010-11-01

    Full Text Available Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different

  19. Homologous recombination-mediated cloning and manipulation of genomic DNA regions using Gateway and recombineering systems.

    Science.gov (United States)

    Rozwadowski, Kevin; Yang, Wen; Kagale, Sateesh

    2008-11-17

    Employing genomic DNA clones to characterise gene attributes has several advantages over the use of cDNA clones, including the presence of native transcription and translation regulatory sequences as well as a representation of the complete repertoire of potential splice variants encoded by the gene. However, working with genomic DNA clones has traditionally been tedious due to their large size relative to cDNA clones and the presence, absence or position of particular restriction enzyme sites that may complicate conventional in vitro cloning procedures. To enable efficient cloning and manipulation of genomic DNA fragments for the purposes of gene expression and reporter-gene studies we have combined aspects of the Gateway system and a bacteriophage-based homologous recombination (i.e. recombineering) system. To apply the method for characterising plant genes we developed novel Gateway and plant transformation vectors that are of small size and incorporate selectable markers which enable efficient identification of recombinant clones. We demonstrate that the genomic coding region of a gene can be directly cloned into a Gateway Entry vector by recombineering enabling its subsequent transfer to Gateway Expression vectors. We also demonstrate how the coding and regulatory regions of a gene can be directly cloned into a plant transformation vector by recombineering. This construct was then rapidly converted into a novel Gateway Expression vector incorporating cognate 5' and 3' regulatory regions by using recombineering to replace the intervening coding region with the Gateway Destination cassette. Such expression vectors can be applied to characterise gene regulatory regions through development of reporter-gene fusions, using the Gateway Entry clones of GUS and GFP described here, or for ectopic expression of a coding region cloned into a Gateway Entry vector. We exemplify the utility of this approach with the Arabidopsis PAP85 gene and demonstrate that the expression

  20. The estimation of recombination rates from population genetic data

    OpenAIRE

    2007-01-01

    Genetic recombination is an important process that generates new combinations of genes on which natural selection can operate. As such, an understanding of recombination in the human genome will provide insight into the evolutionary processes that have shaped our genetic history. The aim of this thesis is to use samples of population genetic data to explore the patterns of variation in the rate of recombination in the human genome. To do this I introduce a novel means of estimating recombinat...

  1. Modified Fragmentation Function from Quark Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, A.; Wang, Enke; Wang, Xin-Nian

    2005-07-26

    Within the framework of the constituent quark model, it isshown that the single hadron fragmentation function of a parton can beexpressed as a convolution of shower diquark or triquark distributionfunction and quark recombination probability, if the interference betweenamplitudes of quark recombination with different momenta is neglected.Therecombination probability is determined by the hadron's wavefunction inthe constituent quark model. The shower diquark or triquark distributionfunctions of a fragmenting jet are defined in terms of overlappingmatrices of constituent quarks and parton field operators. They aresimilar in form to dihadron or trihadron fragmentation functions in termsof parton operator and hadron states. Extending the formalism to thefield theory at finite temperature, we automatically derive contributionsto the effective single hadron fragmentation function from therecombination of shower and thermal constituent quarks. Suchcontributions involve single or diquark distribution functions which inturn can be related to diquark or triquark distribution functions via sumrules. We also derive QCD evolution equations for quark distributionfunctions that in turn determine the evolution of the effective jetfragmentation functions in a thermal medium.

  2. Sweetness characterization of recombinant human lysozyme.

    Science.gov (United States)

    Matano, Mami; Nakajima, Kana; Kashiwagi, Yutaka; Udaka, Shigezo; Maehashi, Kenji

    2015-10-01

    Lysozyme, a bacteriolytic enzyme, is widely distributed in nature and is a component of the innate immune system. It is established that chicken egg lysozyme elicits sweetness. However, the sweetness of human milk lysozyme, which is vital for combating microbial infections of the gastrointestinal tract of breast-fed infants, has not been characterized. This study aimed to assess the elicitation of sweetness using recombinant mammalian lysozymes expressed in Pichia pastoris. Recombinant human lysozyme (h-LZ) and other mammalian lysozymes of mouse, dog, cat and bovine milk elicited similar sweetness as determined using a sensory test, whereas bovine stomach lysozyme (bs-LZ) did not. Assays of cell cultures showed that h-LZ activated the human sweet taste receptor hT1R2/hT1R3, whereas bs-LZ did not. Point mutations confirmed that the sweetness of h-LZ was independent of enzyme activity and substrate-binding sites, although acidic amino acid residues of bs-LZ played a significant role in diminishing sweetness. Therefore, we conclude that elicitation of sweetness is a ubiquitous function among all lysozymes including mammalian lysozymes. These findings may provide novel insights into the biological implications of T1R2/T1R3-activation by mammalian lysozyme in the oral cavity and gastrointestinal tract. However, the function of lysozyme within species lacking the functional sweet taste receptor gene, such as cat, is currently unknown. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Simulation and Optimisation of CLIC's recombination complex

    CERN Document Server

    Costa, Raul; Barroso, Manuel

    In this thesis we present the first Placet2 recombination simulations of the drive beam recombination complex (DBRC) design for the compact linear collider (CLIC). We start by presenting a review of the CLIC project and the DBRC’s role and design within it. We then discuss some of the core principles of beam dynamics and how tracking codes like Placet2 implement them. We follow that by presenting the design issues raised by our simulations and our proposed strategy to address them, key among which is a previously unknown parabolic dependency of the longitudinal position to the momentum (T 566 ), which threat- ens the efficiency of the power extraction structures. Through iterative opti- misation of the design, we eliminated this aberration both in the delay loop and in combiner ring 1. We also found the beam’s horizontal emittance to be significantly over the design budget (150 μm) and attempted to meet that budget, reaching 157 μm. In order to obtain this emittance value, an update to the combiner ring...

  4. The landscape of recombination in African Americans

    Science.gov (United States)

    Hinch, Anjali G.; Tandon, Arti; Patterson, Nick; Song, Yunli; Rohland, Nadin; Palmer, Cameron D.; Chen, Gary K.; Wang, Kai; Buxbaum, Sarah G.; Akylbekova, Meggie; Aldrich, Melinda C.; Ambrosone, Christine B.; Amos, Christopher; Bandera, Elisa V.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Bock, Cathryn H.; Boerwinkle, Eric; Cai, Qiuyin; Caporaso, Neil; Casey, Graham; Cupples, L. Adrienne; Deming, Sandra L.; Diver, W. Ryan; Divers, Jasmin; Fornage, Myriam; Gillanders, Elizabeth M.; Glessner, Joseph; Harris, Curtis C.; Hu, Jennifer J.; Ingles, Sue A.; Isaacs, Williams; John, Esther M.; Kao, W. H. Linda; Keating, Brendan; Kittles, Rick A.; Kolonel, Laurence N.; Larkin, Emma; Le Marchand, Loic; McNeill, Lorna H.; Millikan, Robert C.; Murphy, Adam; Musani, Solomon; Neslund-Dudas, Christine; Nyante, Sarah; Papanicolaou, George J.; Press, Michael F.; Psaty, Bruce M.; Reiner, Alex P.; Rich, Stephen S.; Rodriguez-Gil, Jorge L.; Rotter, Jerome I.; Rybicki, Benjamin A.; Schwartz, Ann G.; Signorello, Lisa B.; Spitz, Margaret; Strom, Sara S.; Thun, Michael J.; Tucker, Margaret A.; Wang, Zhaoming; Wiencke, John K.; Witte, John S.; Wrensch, Margaret; Wu, Xifeng; Yamamura, Yuko; Zanetti, Krista A.; Zheng, Wei; Ziegler, Regina G.; Zhu, Xiaofeng; Redline, Susan; Hirschhorn, Joel N.; Henderson, Brian E.; Taylor, Herman A.; Price, Alkes L.; Hakonarson, Hakon; Chanock, Stephen J.; Haiman, Christopher A.; Wilson, James G.; Reich, David; Myers, Simon R.

    2011-01-01

    Recombination, together with mutation, is the ultimate source of genetic variation in populations. We leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing-over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P<10−245). We identify a 17 base pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of African-enriched alleles of PRDM9. PMID:21775986

  5. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  6. Evidence of recombination in intrapatient populations of hepatitis C virus.

    Science.gov (United States)

    Sentandreu, Vicente; Jiménez-Hernández, Nuria; Torres-Puente, Manuela; Bracho, María Alma; Valero, Ana; Gosalbes, María José; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2008-09-18

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and a potential cause of substantial morbidity and mortality in the future. HCV is characterized by a high level of genetic heterogeneity. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there are only a few studies reporting recombination on natural populations of HCV, suggesting that these events are rare in vivo. Furthermore, these few studies have focused on recombination between different HCV genotypes/subtypes but there are no reports on the extent of intra-genotype or intra-subtype recombination between viral strains infecting the same patient. Given the important implications of recombination for RNA virus evolution, our aim in this study has been to assess the existence and eventually the frequency of intragenic recombination on HCV. For this, we retrospectively have analyzed two regions of the HCV genome (NS5A and E1-E2) in samples from two different groups: (i) patients infected only with HCV (either treated with interferon plus ribavirin or treatment naïve), and (ii) HCV-HIV co-infected patients (with and without treatment against HIV). The complete data set comprised 17712 sequences from 136 serum samples derived from 111 patients. Recombination analyses were performed using 6 different methods implemented in the program RDP3. Recombination events were considered when detected by at least 3 of the 6 methods used and were identified in 10.7% of the amplified samples, distributed throughout all the groups described and the two genomic regions studied. The resulting recombination events were further verified by detailed phylogenetic analyses. The complete experimental procedure was applied to an artificial mixture of relatively closely viral populations and the ensuing analyses failed to reveal artifactual recombination. From these results we conclude that recombination should be considered as a potentially

  7. Evaluation of non-viable biomass of Laurencia papillosa for ...

    African Journals Online (AJOL)

    The uptake of fast orange dye by the red seaweed Laurencia papillosa has been demonstrated in order to explore its potential use as low-cost adsorbent. The adsorption kinetics of fast orange dye on the alga with respect to initial dye concentration, contact time, particle size and pH were investigated. The dye removal ...

  8. The significance of nonviable eggs for Daphnia population dynamics

    NARCIS (Netherlands)

    Boersma, M.; Vijverberg, J.

    1995-01-01

    Egg mortality was studied in populations of Daphnia galeata, Daphnia cucullata, and the hybrid between these species. In Tjeukemeer, a shallow eutrophic lake in the Netherlands, egg mortality in daphnids manifested itself as an apparent increase in the frequency of eggs in the early developmental

  9. Omenn Syndrome and DNA recombination defects.

    Science.gov (United States)

    Yachie, Akihiro

    2017-01-01

    Mutations in the RAG1/RAG2 genes are associated with a broad spectrum of clinical phenotypes, ranging from severe combined immunodeficiency to various autoimmune diseases. The diversity of the clinical symptoms is determined not only by the residual RAG recombinase enzyme activity as determined by the mutations, but also by multiple environmental factors and, in rare cases, by second site mutations within the RAG1/RAG2 genes. The residual recombinase activity is responsible for the oligoclonal expansion of autoreactive T cells. Omenn syndrome is the result of intense Th2 type inflammation involving the skin and multiple other organs triggered by these T cells. In this review, the molecular pathology of diseases caused by RAG1/RAG2 mutations, in particular Omenn syndrome, will be discussed. Furthermore, abnormalities in other molecules involved in V(D)J recombination will be discussed in relation to Omenn-like syndrome.

  10. Classification of Recombinant Biologics in the EU

    DEFF Research Database (Denmark)

    Klein, Kevin; De Bruin, Marie L; Broekmans, Andre W

    2015-01-01

    BACKGROUND AND OBJECTIVE: Biological medicinal products (biologics) are subject to specific pharmacovigilance requirements to ensure that biologics are identifiable by brand name and batch number in adverse drug reaction (ADR) reports. Since Member States collect ADR data at the national level...... before the data is aggregated at the European Union (EU) level, it is important that an unambiguous understanding of which medicinal products belong to the biological product category exists. This study aimed to identify the level of consistency between Member States regarding the classification...... of biologics by national authorities responsible for ADR reporting. METHODS: A sample list of recombinant biologics from the European Medicines Agency database of European Public Assessment Reports was created to analyze five Member States (Belgium, the Netherlands, Spain, Sweden, and the UK) according...

  11. Scavenging and recombination kinetics in radiation chemistry.

    Science.gov (United States)

    Al-Samra, Eyad H; Green, Nicholas J B

    2017-08-02

    This work describes stochastic models developed to study the competition between radical scavenging and recombination for simple model systems typical of radiation chemistry, where the reactive particles are tightly clustered and reactions are assumed fully diffusion limited. Three models are developed: a Monte Carlo random flights model with a periodic boundary condition for scavengers, Monte Carlo simulations in which the scavenging rate is calculated from the Smoluchowski theory for diffusion-limited reactions and a modification of the independent reaction times method where the scavengers close to the spur are explicitly included and the scavengers further away are treated as a continuum. The results indicate that the Smoluchowski theory makes a systematic overestimate of the scavenging rate when such competition is present. A correction for the Smoluchowski rate constant is suggested, an analytical justification is presented and it is tested against the simulations, and shown to be a substantial improvement.

  12. Recombinant expression of backbone-cyclized polypeptides.

    Science.gov (United States)

    Borra, Radhika; Camarero, Julio A

    2013-09-01

    Here we review the different biochemical approaches available for the expression of backbone-cyclized polypeptides, including peptides and proteins. These methods allow for the production of circular polypeptides either in vitro or in vivo using standard recombinant DNA expression techniques. Polypeptide circularization provides a valuable tool to study the effects of topology on protein stability and folding kinetics. Furthermore, having biosynthetic access to backbone-cyclized polypeptides makes the production of genetically encoded libraries of cyclic polypeptides possible. The production of such libraries, which was previously restricted to the domain of synthetic chemistry, now offers biologists access to highly diverse and stable molecular libraries that can be screened using high-throughput methods for the rapid selection of novel cyclic polypeptide sequences with new biological activities. Copyright © 2013 Wiley Periodicals, Inc.

  13. Soluble variants of human recombinant glutaminyl cyclase.

    Directory of Open Access Journals (Sweden)

    Cristiana Castaldo

    Full Text Available Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of (1H-(15N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer's disease.

  14. MSD Recombination Method in Statistical Machine Translation

    Science.gov (United States)

    Gros, Jerneja Žganec

    2008-11-01

    Freely available tools and language resources were used to build the VoiceTRAN statistical machine translation (SMT) system. Various configuration variations of the system are presented and evaluated. The VoiceTRAN SMT system outperformed the baseline conventional rule-based MT system in all English-Slovenian in-domain test setups. To further increase the generalization capability of the translation model for lower-coverage out-of-domain test sentences, an "MSD-recombination" approach was proposed. This approach not only allows a better exploitation of conventional translation models, but also performs well in the more demanding translation direction; that is, into a highly inflectional language. Using this approach in the out-of-domain setup of the English-Slovenian JRC-ACQUIS task, we have achieved significant improvements in translation quality.

  15. Guiding recombinant antivenom development by omics technologies

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2017-01-01

    , endogenous animal proteins with toxin-neutralizing capabilities, and recombinant monoclonal antibodies. Harnessing either of these approaches, antivenom development may benefit from an in-depth understanding of venom compositions and the medical importance of individual venom toxins. Focus is thus also...... directed towards the different omics technologies (particularly venomics, antivenomics, and toxicovenomics) that are being used to uncover novel animal toxins, shed light on venom complexity, and provide directions for how to determine the medical relevance of individual toxins within whole venoms. Finally......In this review, the different approaches that have been employed with the aim of developing novel antivenoms against animal envenomings are presented and discussed. Reported efforts have focused on the use of innovative immunization strategies, small molecule inhibitors against enzymatic toxins...

  16. Recombinant Brucella abortus gene expressing immunogenic protein

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, J.E.; Tabatabai, L.B.

    1991-06-11

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  17. Initiation of Meiotic Recombination in Mammals

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2010-12-01

    Full Text Available Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs. DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs, which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization.

  18. Functional, Responsive Materials Assembled from Recombinant Oleosin

    Science.gov (United States)

    Hammer, Daniel

    Biological cells are surrounded by a plasma membrane made primarily of phospholipids that form a bilayer. This membrane is permselective and compartmentalizes the cell. A simple form of artificial cell is the vesicle, in which a phospholipid bilayer membrane surrounds an aqueous solution. However, there is no a priori reason why a membrane needs to be made of phospholipids. It could be made of any surfactant that forms a bilayer. We have assembled membranes and other structures from the recombinant plant protein oleosin. The ability to assemble from a recombinant protein means that every molecule is identical, we have complete control over the sequence, and hence can build in designer functionality with high fidelity, including adhesion and enzymatic activity. Such incorporation is trivial using the tools of molecular biology. We find that while many variants of oleosin make membranes, others make micelles and sheets. We show how the type of supramolecular structure can be altered by the conditions of solvent, such as ionic strength, and the architecture of the surfactant itself. We show that protease cleavable domains can be incorporated within oleosin, and be engineered to protect other functional domains such as adhesive motifs, to make responsive materials whose activity and shape depend on the action of proteases. We will also present the idea of making ``Franken''-oleosins, where large domains of native oleosin are replaced with domains from other functional proteins, to make hybrids conferred by the donor protein. Thus, we can view oleosin as a template upon which a vast array of designer functionalities can be imparted..

  19. Dynamic protein assemblies in homologous recombination with single DNA molecules

    NARCIS (Netherlands)

    van der Heijden, A.H.

    2007-01-01

    What happens when your DNA breaks? This thesis describes experimental work on the single-molecule level focusing on the interaction between DNA and DNA-repair proteins, in particular bacterial RecA and human Rad51, involved in homologous recombination. Homologous recombination and its central event

  20. Improved means and methods for expressing recombinant proteins

    NARCIS (Netherlands)

    Poolman, Berend; Martinez Linares, Daniel; Gul, Nadia

    2014-01-01

    The invention relates to the field of genetic engineering and the production of recombinant proteins in microbial host cells. Provided is a method for enhanced expression of a recombinant protein of interest in a microbial host cell, comprising providing a microbial host cell wherein the function of

  1. The pharmacology of recombinant hirudin, a new anticoagulant

    African Journals Online (AJOL)

    1990-09-01

    Sep 1, 1990 ... The pharmacology of recombinant hirudin, a new anticoagulant. B. H. MEYER, H. G. LUUS, F. O. MULLER, P. N. BADENHORST, H.-J. ROTHIG. Summary. A new anticoagulant, recombinant hirudin, was given to hea"hy volunteers (5 per test dose) in single .intravenous doses of 0,01, 0,02, 0,04, 0,07 and 0 ...

  2. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  3. Activity of recombinant factor VIIa under different conditions in vitro

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Jespersen, Jørgen

    2008-01-01

    Recombinant activated factor VII (NovoSeven; Novo Nordisk A/S, Måløv, Denmark) is an effective drug for treatment of bleeding in patients with haemophilia A or B and inhibitors. Little is known about physiological conditions influencing the efficacy of recombinant activated factor VII. We...

  4. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    neglected in comparison to the effect due to the recombination for estimating the dust-acoustic instability; later the other report shows that the recombination effect is negligible in the presence of dust-neutral collisions. In line of this present situation our investigation revealed that the recom- bination is more important than ...

  5. Recombinant HT.sub.m4 gene, protein and assays

    Science.gov (United States)

    Lim, Bing; Adra, Chaker N.; Lelias, Jean-Michel

    1996-01-01

    The invention relates to a recombinant DNA molecule which encodes a HT.sub.m4 protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT.sub.m4 protein and a recombinant HT.sub.m4 protein. The invention also relates to a method for detecting the presence of a hereditary atopy.

  6. Mitochondrial recombination increases with age in Podospora anserina

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Goedbloed, Daniël J; Slakhorst, S Marijke; Koopmanschap, A Bertha; Maas, Marc F P M; Hoekstra, Rolf F; Debets, Alfons J M

    With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer

  7. Effect of dielectronic recombination on the charge-state distribution ...

    Indian Academy of Sciences (India)

    either neglecting dielectronic recombination [6] or later is taken to be proportional to radiative recombination [7]. Since the theoretically calculated population density of an ionic charge state depends on the rate coefficients used, it is interesting to investigate their effect on the charge-state distribution and spectral line ...

  8. Measurements of EEDF in recombination dominated afterglow plasma

    Science.gov (United States)

    Plasil, R.; Korolov, I.; Kotrik, T.; Varju, J.; Dohnal, P.; Donko, Z.; Bano, G.; Glosik, J.

    2009-11-01

    Electron energy distribution functions (EEDF) have been measured in decaying plasma in Flowing Afterglow Langmuir Probe (FALP) experiment. The measurements have been carried out in diffusion and recombination governed plasmas used for studies of recombination of KrD+ and H3+ ions.

  9. Measurements of EEDF in recombination dominated afterglow plasma

    Energy Technology Data Exchange (ETDEWEB)

    Plasil, R; Korolov, I; Kotrik, T; Varju, J; Dohnal, P; Glosik, J [Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Prague (Czech Republic); Donko, Z; Bano, G, E-mail: radek.plasil@mff.cuni.c [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary)

    2009-11-15

    Electron energy distribution functions (EEDF) have been measured in decaying plasma in Flowing Afterglow Langmuir Probe (FALP) experiment. The measurements have been carried out in diffusion and recombination governed plasmas used for studies of recombination of KrD{sup +} and H{sub 3}{sup +} ions.

  10. Measurements of EEDF in recombination dominated afterglow plasma

    International Nuclear Information System (INIS)

    Plasil, R; Korolov, I; Kotrik, T; Varju, J; Dohnal, P; Glosik, J; Donko, Z; Bano, G

    2009-01-01

    Electron energy distribution functions (EEDF) have been measured in decaying plasma in Flowing Afterglow Langmuir Probe (FALP) experiment. The measurements have been carried out in diffusion and recombination governed plasmas used for studies of recombination of KrD + and H 3 + ions.

  11. Recombinant-activated factor VII in the paediatric cardiac surgery ...

    African Journals Online (AJOL)

    Recombinant-activated factor VII in the paediatric cardiac surgery: Single unit experience. V Agarwal, KE Okonta, PS Lal. Abstract. Background: The control of excessive bleeding after paediatric cardiac surgery can be challenging. This may make the use of recombinant-activated factor VII (rFVIIa) in preventing this ...

  12. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  13. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant ...

  14. Co-solute assistance in refolding of recombinant proteins | Gerami ...

    African Journals Online (AJOL)

    Prokaryotic expression system is the most widely used host for the production of recombinant proteins but inclusion body formation is a major bottleneck in the production of recombinant proteins in prokaryotic cells, especially in Escherichia coli. In vitro refolding of inclusion body into the the proteins with native ...

  15. A study on the hydrogen recombination rates of catalytic recombiners and deliberate ignition

    International Nuclear Information System (INIS)

    Fineschi, F.; Bazzichi, M.; Carcassi, M.

    1994-01-01

    A study is being carried out by the Department of Nuclear and Mechanical Constructions (DCMN) at the University of Pisa on catalytic recombiners and on deliberately induced weak deflagration. The recombination rates of different types of catalytic devices were obtained from a thorough analysis of published experimental data. The main parameter that affects the effectiveness of these devices seems to be the molar density of the deficiency reactant rather than its volumetric concentration. The recombination rate of weak deflagrations in vented compartments has been assessed with experimental tests carried out in a small scale glass vessel. Through a computerized system of analysis of video recordings of the deflagrations, the flame surface and the burned gas volume were obtained as functions of time. Although approximations are inevitable, the method adopted to identify the position of the flame during propagation is more reliable than other non-visual methods (thermocouples and ion-probes). It can only easily be applied to vented weak deflagrations, i.e. when the hydrogen concentration is far from stoichiometric conditions and near to flammability limits, because the pressurization has to be limited due to the low mechanical resistance of the glass. The values of flame surface and burned gas volume were used as inputs for a computer code to calculate the recombining rate, the burning velocity and the pressure transient in the experimental test. The code is being validated with a methodology principally based on a comparison of the measurements of pressure with the calculated values. The research gave some very interesting results on a small scale which should in the future be compared with large scale data

  16. Optimal recombination in genetic algorithms for flowshop scheduling problems

    Science.gov (United States)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  17. Recombinant expression systems: the obstacle to helminth vaccines?

    Science.gov (United States)

    Geldhof, Peter; De Maere, Veerle; Vercruysse, Jozef; Claerebout, Edwin

    2007-11-01

    The need for alternative ways to control helminth parasites has in recent years led to a boost in vaccination experiments with recombinant antigens. Despite the use of different expression systems, only a few recombinants induced high levels of protection against helminths. This is often attributed to the limitations of the current expression systems. Therefore, the need for new systems that can modify and glycosylate the expressed antigens has been advocated. However, analysis of over 100 published vaccine trials with recombinant helminth antigens indicates that it is often not known whether the native parasite antigen itself can induce protection or, if it does, which epitopes are important. This information is vital for a well-thought-out strategy for recombinant production. So, in addition to testing more expression systems, it should be considered that prior evaluation and characterization of the native antigens might help the development of recombinant vaccines against helminths in the long term.

  18. Recombination Rate Evolution and the Origin of Species.

    Science.gov (United States)

    Ortiz-Barrientos, Daniel; Engelstädter, Jan; Rieseberg, Loren H

    2016-03-01

    A recipe for dissolving incipient species into a continuum of phenotypes is to recombine their genetic material. Therefore, students of speciation have become increasingly interested in the mechanisms by which recombination between locally adapted lineages is reduced. Evidence abounds that chromosomal rearrangements, via their suppression of recombination during meiosis in hybrids, play a major role in adaptation and speciation. By contrast, genic modifiers of recombination rates have been largely ignored in studies of speciation. We show how both types of reduction in recombination rates facilitate divergence in the face of gene flow, including the early stages of adaptive divergence, the persistence of species after secondary contact, and reinforcement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sex recombination, and reproductive fitness: an experimental study using Paramecium

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, D.

    1982-08-01

    The effect of sex and recombination on reproductive fitness are measured using five wild stocks of Paramecium primaurelia. Among the wild stocks there were highly significant differences in growth rates. No hybrid had as low a fitness as the least fit parental stock. Recombination produced genotypes of higher fitness than those of either parent only in the cross between the two stocks of lowest fitness. The increase in variance of fitness as a result of recombination was almost exclusively attributable to the generation lines with low fitness. The fitness consequences of sexuality and mate choice were stock specific; some individuals leaving the most descendants by inbreeding, others by outcrossing. For most crosses the short-term advantage of sex, if any, accrue from the fusion of different gametes (hybrid vigor) and not from recombination. Since the homozygous genotype with the highest fitnes left the most progeny by inbreeding (no recombination), the persistence of conjugation in P. primaurelia is paradoxical. (JMT)

  20. Charge carrier recombination dynamics in perovskite and polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulke, Andreas; Kniepert, Juliane; Kurpiers, Jona; Wolff, Christian M.; Schön, Natalie; Brenner, Thomas J. K.; Neher, Dieter [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476, Potsdam (Germany); Stranks, Samuel D. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2016-03-14

    Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10{sup −9} cm{sup 3}/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC{sub 71}BM yields important differences with regard to the mechanism and time scale of free carrier recombination.

  1. Looking for the optimal rate of recombination for evolutionary dynamics

    Science.gov (United States)

    Saakian, David B.

    2018-01-01

    We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.

  2. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    Full Text Available Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus, a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  3. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E; Moriyama, Hideaki; Storz, Jay F

    2011-01-01

    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  4. Recombination in Escherichia coli V. Genetic analysis of recombinants from crosses with recipients deficient in ATP-dependent exonuclease activity

    NARCIS (Netherlands)

    Haan, P.G. de; Hoekstra, W.P.M.; Verhoef, C.

    A genetic analysis of recombinants from crosses with recombination-deficient recipients, lacking the ATP-dependent exonuclease activity, demonstrated differences in the inheritance pattern of donor markers compared with a Rec+ recipient. In particular the donor markers proximal to the transfer

  5. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae. [Comparison of. gamma. -, uv-induced meiotic and spontaneous mitotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1979-01-01

    Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, ..gamma..-ray-induced, uv-induced, and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Intra- and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the hisl-1/hisl-315 and trp5-2/trp5-48 heteroalleles. Gene-centromere recombination was also not observed in rad52/rad52 diploids. No ..gamma..-ray-induced intragenic mitotic recombination is seen in rad52/rad52 diploids and uv-induced intragenic recombination is greatly reduced. However, spontaneous mitotic recombination is not similarly affected. The RAD52 gene thus functions in recombination in meiosis and in ..gamma..-ray and uv-induced mitotic recombination but not in spontaneous mitotic recombination.

  6. Bio-equivalent doses of recombinant HCG and recombinant LH during ovarian stimulation result in similar oestradiol output

    DEFF Research Database (Denmark)

    Alsbjerg, Birgit; Elbaek, Helle Olesen; Laursen, Rita Jakubcionyte

    2017-01-01

    In nature, HCG is secreted by the implanting embryo from peri-implantation and onwards. In contrast, LH is mandatory for steroidogenesis and follicular development during the follicular phase, working in synergy with FSH. Moreover, LH is mandatory for the function of the corpus luteum. Although LH...... and HCG bind to the same receptor, significant molecular, structural and functional differences exist, inducing differences in bioactivity. This randomized controlled study compared the effect of recombinant FSH stimulation combined with daily either micro-dose recombinant HCG or recombinant LH...... oestradiol level in the HCG supplemented group was 8662 pmol/l versus 9203 pmol/l in the recombinant LH supplemented group; therefore, no significant difference was found. Moreover, no differences were observed in the number of oocytes retrieved or in the live birth rate. We conclude that recombinant HCG...

  7. Cold Spring Harbor symposia on quantitative biology: Volume 49, Recombination at the DNA level

    International Nuclear Information System (INIS)

    1984-01-01

    This volume contains full papers prepared by the participants to the 1984 Cold Springs Harbor Symposia on Quantitative Biology. This year's theme is entitled Recombination at the DNA level. The volume consists of 93 articles grouped into subject areas entitled chromosome mechanics, yeast systems, mammalian homologous recombination, transposons, mu, plant transposons/T4 recombination, topoisomerase, resolvase and gyrase, Escherichia coli general recombination, RecA, repair, leukaryotic enzymes, integration and excision of bacteriophage, site-specific recombination, and recombination in vitro

  8. Recombination properties of dislocations in GaN

    Science.gov (United States)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  9. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    Directory of Open Access Journals (Sweden)

    Jonathan M.O. Rawson

    2014-09-01

    Full Text Available Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.

  10. Phylogenetic and recombination analysis of tomato spotted wilt virus.

    Directory of Open Access Journals (Sweden)

    Sen Lian

    Full Text Available Tomato spotted wilt virus (TSWV severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV.

  11. Data Mining for Expressivity of Recombinant Protein Expression

    Science.gov (United States)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  12. Experimental study of para- and ortho-H3+ recombination

    International Nuclear Information System (INIS)

    Plasil, R; Varju, J; Hejduk, M; Dohnal, P; KotrIk, T; Glosik, J

    2011-01-01

    Recombination of H 3 + with electrons is a key process for many plasmatic environments. Recent experiments on storage ring devices used ion sources producing H 3 + with enhanced populations of H 3 + ions in the para nuclear spin configuration to shed light on the theoretically predicted faster recombination of para states. Although increased recombination rates were observed, no in situ characterization of recombining ions was performed. We present a state selective recombination study of para- and ortho-H 3 + ions with electrons at 77 K in afterglow plasma in a He/Ar/H 2 gas-mixture. Both spin configurations of H 3 + have been observed in situ with a near infrared cavity ring down spectrometer (NIR-CRDS) using the two lowest energy levels of H 3 + . Using hydrogen with an enhanced population of H 2 molecules in para states allowed us to influence the [para-H 3 + ]/[ortho-H 3 + ] ratio in the discharge and in the afterglow. We observed an increase in the measured effective recombination rate coefficients with the increase of the fraction of para-H 3 + . Measurements with different fractions of para-H 3 + at otherwise identical conditions allowed us to determine the binary recombination rate coefficients for pure para-H 3 + p α bin (77 K) = (2.0±0.4)x10 -7 cm 3 s -1 and pure ortho-H 3 + o α bin (77 K) = (4±3)x10 -8 cm 3 s -1 .

  13. Triplet formation in the ion recombination in irradiated liquids

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Tachiya, M.; Hummel, A.

    1990-01-01

    The formation of singlet and triplet excited stages in the ion recombination in groups of oppositely charged ions (or positive ions and electrons) in nonpolar liquids, as occurs in the tracks of high energy electrons, is considered. Theoretical studies on triplet formation in groups of ion pairs have thus far concentrated on the case where recombination of the negative ions with any of the positive ions in the group is equally probable (random recombination). In this paper the probability for geminate recombination (electron and parent positive ion) vs cross-recombination (an electron with a positive ion other than its parent ion) in multiple ion pair groups is calculated by computer simulation and the effect of the initial spatial configuration of the charged species is investigated. It is also shown explicitly that the probability for singlet formation as a result of cross recombination is equal to 1/4, when spin relaxation by magnetic interaction with the medium and by exchange interaction can be neglected. The effect of the preferential recombination on the singlet formation probability is illustrated and recent experimental results on singlet to triplet ratios are discussed. (author)

  14. Evaluation of somatic embryos of alfalfa for recombinant protein expression.

    Science.gov (United States)

    Fu, Guohua; Grbic, Vojislava; Ma, Shengwu; Tian, Lining

    2015-02-01

    Somatic embryos of alfalfa can accumulate higher levels of recombinant proteins comparing to vegetative organs. Somatic embryos may be explored as a new system for new protein production for plants. Plants have been explored via genetic engineering as an inexpensive system for recombinant protein production. However, protein expression levels in vegetative tissues have been low, which limits the commercial utilization of plant expression systems. Somatic embryos resemble zygotic embryos in many aspects and may accumulate higher levels of proteins as true seed. In this study, somatic embryo of alfalfa (Medicago sativa L.) was investigated for the expression of recombinant proteins. Three heterologous genes, including the standard scientific reporter uid that codes for β-glucuronidase and two genes of interest: ctb coding for cholera toxin B subunit (CTB), and hIL-13 coding for human interleukin 13, were independently introduced into alfalfa via Agrobacterium-mediated transformation. Somatic embryos were subsequently induced from transgenic plants carrying these genes. Somatic embryos accumulated approximately twofold more recombinant proteins than vegetative organs including roots, stems, and leaves. The recombinant proteins of CTB and hIL-13 accumulated up to 0.15 and 0.18 % of total soluble protein in alfalfa somatic embryos, respectively. The recombinant proteins expressed in somatic embryos also exhibited biological activities. As somatic embryos can be induced in many plant species and their production can be scaled up via different avenues, somatic embryos may be developed as an efficient expression system for recombinant protein production.

  15. Homologous plasmid recombination is elevated in immortally transformed cells.

    Science.gov (United States)

    Finn, G K; Kurz, B W; Cheng, R Z; Shmookler Reis, R J

    1989-09-01

    The levels of intramolecular plasmid recombination, following transfection of a plasmid substrate for homologous recombination into normal and immortally transformed cells, have been examined by two independent assays. In the first assay, recovered plasmid was tested for DNA rearrangements which regenerate a functional neomycin resistance gene from two overlapping fragments. Following transformation of bacteria, frequencies of recombinationlike events were determined from the ratio of neomycin-resistant (recombinant) colonies to ampicillin-resistant colonies (indicating total plasmid recovery). Such events, yielding predominantly deletions between the directly repeated sequences, were substantially more frequent in five immortal cell lines than in any of three normal diploid cell strains tested. Effects of plasmid replication or interaction with T antigen and of bacterially mediated rejoining of linear molecules generated in mammalian cells were excluded by appropriate controls. The second assay used limited coamplification of a control segment of plasmid DNA, and of the predicted recombinant DNA region, primed by two sets of flanking oligonucleotides. Each amplified band was quantitated by reference to a near-linear standard curve generated concurrently, and recombination frequencies were determined from the ratio of recombinant/control DNA regions. The results confirmed that recombinant DNA structures were generated within human cells at direct repeats in the transfected plasmid and were markedly more abundant in an immortal cell line than in the diploid normal cells from which that line was derived.

  16. Analysis of intermolecular RNA-RNA recombination by rubella virus

    International Nuclear Information System (INIS)

    Adams, Sandra D.; Tzeng, W.-P.; Chen, M.-H.; Frey, Teryl K.

    2003-01-01

    To investigate whether rubella virus (RUB) undergoes intermolecular RNA-RNA recombination, cells were cotransfected with pairs of in vitro transcripts from genomic cDNA plasmid vectors engineered to contain nonoverlapping deletions: the replicative transcript maintained the 5'-proximal nonstructural (NS) ORF (which contained the replicase, making it RNA replication competent), had a deletion in the 3'-proximal structural protein (SP) ORF, and maintained the 3' end of the genome, including the putative 3' cis-acting elements (CSE), while the nonreplicative transcript consisted of the 3' half of the genome including the SP-ORF and 3' CSE. Cotransfection yielded plaque-forming virus that synthesized the standard genomic and subgenomic RNAs and thus was generated by RNA-RNA recombination. Using transcripts tagged with a 3'-terminal deletion, it was found that recombinants contained the 3' end derived from the replicative strand, indicating a cis-preference for initiation of negative-strand synthesis. In cotransfections in which the replicative transcript lacked the 3' CSE, recombination occurred, albeit at lower efficiency, indicating that initiation in trans from the NS-ORF can occur. The 3' CSE was sufficient as a nonreplicative transcript, showing that it can serve as a promoter for negative-strand RNA synthesis. While deletion mutagenesis showed that the presence of the junction untranslated region (J-UTR) between the ORFs appeared to be necessary on both transcripts for recombination in this region of the genome, analysis with transcripts tagged with restriction sites showed that the J-UTR was not a hot spot for recombination compared to neighboring regions in both ORFs. Sequence analysis of recombinants revealed that both precise (homologous) and imprecise recombination (aberrant, homologous resulting in duplications) occurred; however, imprecise recombination only involved the J-UTR or the 3' end of the NS-ORF and the J-UTR (maintaining the NS-ORF), indicating

  17. Functional bottlenecks for generation of HIV-1 intersubtype Env recombinants.

    Science.gov (United States)

    Bagaya, Bernard S; Vega, José F; Tian, Meijuan; Nickel, Gabrielle C; Li, Yuejin; Krebs, Kendall C; Arts, Eric J; Gao, Yong

    2015-05-23

    Intersubtype recombination is a powerful driving force for HIV evolution, impacting both HIV-1 diversity within an infected individual and within the global epidemic. This study examines if viral protein function/fitness is the major constraint shaping selection of recombination hotspots in replication-competent HIV-1 progeny. A better understanding of the interplay between viral protein structure-function and recombination may provide insights into both vaccine design and drug development. In vitro HIV-1 dual infections were used to recombine subtypes A and D isolates and examine breakpoints in the Env glycoproteins. The entire env genes of 21 A/D recombinants with breakpoints in gp120 were non-functional when cloned into the laboratory strain, NL4-3. Likewise, cloning of A/D gp120 coding regions also produced dead viruses with non-functional Envs. 4/9 replication-competent viruses with functional Env's were obtained when just the V1-V5 regions of these same A/D recombinants (i.e. same A/D breakpoints as above) were cloned into NL4-3. These findings on functional A/D Env recombinants combined with structural models of Env suggest a conserved interplay between the C1 domain with C5 domain of gp120 and extracellular domain of gp41. Models also reveal a co-evolution within C1, C5, and ecto-gp41 domains which might explain the paucity of intersubtype recombination in the gp120 V1-V5 regions, despite their hypervariability. At least HIV-1 A/D intersubtype recombination in gp120 may result in a C1 from one subtype incompatible with a C5/gp41 from another subtype.

  18. Applications of recombinant antibodies in plant pathology.

    Science.gov (United States)

    Ziegler, Angelika; Torrance, Lesley

    2002-09-01

    Summary Advances in molecular biology have made it possible to produce antibody fragments comprising the binding domains of antibody molecules in diverse heterologous systems, such as Escherichia coli, insect cells, or plants. Antibody fragments specific for a wide range of antigens, including plant pathogens, have been obtained by cloning V-genes from lymphoid tissue, or by selection from large naive phage display libraries, thus avoiding the need for immunization. The antibody fragments have been expressed as fusion proteins to create different functional molecules, and fully recombinant assays have been devised to detect plant viruses. The defined binding properties and unlimited cheap supply of antibody fusion proteins make them useful components of standardized immunoassays. The expression of antibody fragments in plants was shown to confer resistance to several plant pathogens. However, the antibodies usually only slowed the progress of infection and durable 'plantibody' resistance has yet to be demonstrated. In future, it is anticipated that antibody fragments from large libraries will be essential tools in high-throughput approaches to post-genomics research, such as the assignment of gene function, characterization of spatio-temporal patterns of protein expression, and elucidation of protein-protein interactions.

  19. Meiotic Recombination in the Giraffe (G. reticulata).

    Science.gov (United States)

    Vozdova, Miluse; Fröhlich, Jan; Kubickova, Svatava; Sebestova, Hana; Rubes, Jiri

    2017-01-01

    Recently, the reticulated giraffe (G. reticulata) was identified as a distinct species, which emphasized the need for intensive research in this interesting animal. To shed light on the meiotic process as a source of biodiversity, we analysed the frequency and distribution of meiotic recombination in 2 reticulated giraffe males. We used immunofluorescence detection of synaptonemal complex protein (SYCP3), meiotic double strand breaks (DSB, marked as RAD51 foci) in leptonema, and crossovers (COs, as MLH1 foci) in pachynema. The mean number of autosomal MLH1 foci per cell (27), which resulted from a single, distally located MLH1 focus observed on most chromosome arms, is one of the lowest among mammalian species analysed so far. The CO/DSB conversion ratio was 0.32. The pseudoautosomal region was localised in the Xq and Yp termini by FISH and showed an MLH1 focus in 83% of the pachytene cells. Chromatin structures corresponding to the nucleolus organiser regions were observed in the pachytene spermatocytes. The results are discussed in the context of known data on meiosis in Cetartiodactyla, depicting that the variation in CO frequency among species of this taxonomic group is mostly associated with their diploid chromosome number. © 2017 S. Karger AG, Basel.

  20. Overview of the purification of recombinant proteins.

    Science.gov (United States)

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  1. Developing recombinant antibodies for biomarker detection

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.; Miller, Keith D.; Kagen, Jacob; Srivastava, Sudhir; Rodland, Karin D.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune libraries provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.

  2. Dielectronic recombination studies based on EBIT

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jun; Han Chuan; Yao Ke; Shen Yang; Yang Yang; Wei Baoren; Fu Yunqing; Lu Di; Hutton, Roger; Zou Yaming [Key Laboratory of Applied Ion Beam Physics, Ministry of Education (China) and Shanghai EBIT Laboratory, Institute of Modern Physics, Fudan University, Shanghai (China)

    2013-04-19

    Dielectronic recombination (DR) process plays an important role in high temperature plasmas, where DR can affect charge balance and level populations significantly, and can cause radiative energy loss. Resolvable DR sourced satellite lines are often used for plasma temperature diagnostics, while the un-resolvable ones disturb determining spectral line shape, line intensity, and line position. Data of DR resonant strength is vital for accurate modeling of high temperature plasmas. DR studies are also important for testing atomic structure and atomic collision theories, since they carry information on quantum electrodynamics, relativistic effects, electron correlations and so on. Electron beam ion trap (EBIT) is an accelerator type device, which is capable of acting as both ion sources and light sources. EBIT can produce a special sort of plasma, in which electron energy is tunable and has a very narrow distribution. This made it possible for disentanglement studies on electron ion collision processes in plasmas. In this paper, experimental studies of DR processes based on electron beam ion traps (EBIT) will be discussed.

  3. Characterization of recombinantly expressed matrilin VWA domains.

    Science.gov (United States)

    Becker, Ann-Kathrin A; Mikolajek, Halina; Werner, Jörn M; Paulsson, Mats; Wagener, Raimund

    2015-03-01

    VWA domains are the predominant independent folding units within matrilins and mediate protein-protein interactions. Mutations in the matrilin-3 VWA domain cause various skeletal diseases. The analysis of the pathological mechanisms is hampered by the lack of detailed structural information on matrilin VWA domains. Attempts to resolve their structures were hindered by low solubility and a tendency to aggregation. We therefore took a comprehensive approach to improve the recombinant expression of functional matrilin VWA domains to enable X-ray crystallography and nuclear magnetic resonance (NMR) studies. The focus was on expression in Escherichia coli, as this allows incorporation of isotope-labeled amino acids, and on finding conditions that enhance solubility. Indeed, circular dichroism (CD) and NMR measurements indicated a proper folding of the bacterially expressed domains and, interestingly, expression of zebrafish matrilin VWA domains and addition of N-ethylmaleimide yielded the most stable proteins. However, such proteins did still not crystallize and allowed only partial peak assignment in NMR. Moreover, bacterially expressed matrilin VWA domains differ in their solubility and functional properties from the same domains expressed in eukaryotic cells. Structural studies of matrilin VWA domains will depend on the use of eukaryotic expression systems. Copyright © 2014. Published by Elsevier Inc.

  4. Recombination-assisted megaprimer (RAM) cloning

    Science.gov (United States)

    Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.

    2014-01-01

    No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930

  5. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  6. Pediocin production by recombinant lactic acid bacteria.

    Science.gov (United States)

    Somkuti, G A; Steinberg, D H

    2003-03-01

    Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 degrees C, while incubation at 40 degrees C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51,000 units ml(-1) and 25,000 units ml(-1), respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.

  7. Dielectronic Recombination of Al-Like Ions

    Science.gov (United States)

    Abdel-Naby, Shahin; Nikolic, Dragan; Gorczyca, Thomas W.; Badnell, Nigel R.; Savin, Daniel W.

    2008-05-01

    Accurate dielectronic recombination (DR) data are important for cosmic and laboratory plasma modeling. Over the past few years, our group has computed reliable DR data for all isoelectronic sequences up through Mg-like ions. Recently, we have focused our work on the complex third-row M-shell isoelectronic sequences, especially Al-like. Previous calculations for the DR rate coefficient for S^3+ were performed only within a non-relativistic LS-coupling approximation. Fe^13+ DR calculations, including semi-relativistic effects, have been completed and tested against the Heidelberg heavy-ion Test Storage Ring facility measurements. Here we present semi-relativistic DR rate coefficient calculations for a wide range of Al-like ions using AUTOSTRUCTURE, a level-resolved distorted-wave program package. The important effect of fine structure splitting in the Al-like ground state will be discussed. Finally, our results are fitted into a simple formula for use by astrophysical plasma modelers.This work was funded in part by NASA (APRA), NASA (SHP) SR&T, and UK PPARC grants.

  8. Therapeutic Use of Native and Recombinant Enteroviruses

    Directory of Open Access Journals (Sweden)

    Jani Ylä-Pelto

    2016-02-01

    Full Text Available Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.

  9. Recombinant phage probes for Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S; Gioffre, G; Felici, F; Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2007-10-03

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 10{sup 4} cells ml{sup -1}. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  10. Recombinant canine coronaviruses in dogs, Europe.

    Science.gov (United States)

    Decaro, Nicola; Mari, Viviana; Elia, Gabriella; Addie, Diane D; Camero, Michele; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-01-01

    Coronaviruses of potential recombinant origin with porcine transmissible gastroenteritis virus (TGEV), referred to as a new subtype (IIb) of canine coronavirus (CCoV), were recently identified in dogs in Europe. To assess the distribution of the TGEV-like CCoV subtype, during 2001-2008 we tested fecal samples from dogs with gastroenteritis. Of 1,172 samples, 493 (42.06%) were positive for CCoV. CCoV-II was found in 218 samples, and CCoV-I and CCoV-II genotypes were found in 182. Approximately 20% of the samples with CCoV-II had the TGEV-like subtype; detection rates varied according to geographic origin. The highest and lowest rates of prevalence for CCoV-II infection were found in samples from Hungary and Greece (96.87% and 3.45%, respectively). Sequence and phylogenetic analyses showed that the CCoV-IIb strains were related to prototype TGEV-like strains in the 5' and the 3' ends of the spike protein gene.

  11. Stress in recombinant protein producing yeasts.

    Science.gov (United States)

    Mattanovich, Diethard; Gasser, Brigitte; Hohenblum, Hubertus; Sauer, Michael

    2004-09-30

    It is well established today that heterologous overexpression of proteins is connected with different stress reactions. The expression of a foreign protein at a high level may either directly limit other cellular processes by competing for their substrates, or indirectly interfere with metabolism, if their manufacture is blocked, thus inducing a stress reaction of the cell. Especially the unfolded protein response (UPR) in Saccharomyces cerevisiae (as well as some other yeasts) is well documented, and its role for the limitation of expression levels is discussed. One potential consequence of endoplasmatic reticulum folding limitations is the ER associated protein degradation (ERAD) involving retrotranslocation and decay in the cytosol. High cell density fermentation, the typical process design for recombinant yeasts, exerts growth conditions that deviate far from the natural environment of the cells. Thus, different environmental stresses may be exerted on the host. High osmolarity, low pH and low temperature are typical stress factors. Whereas the molecular pathways of stress responses are well characterized, there is a lack of knowledge concerning the impact of stress responses on industrial production processes. Accordingly, most metabolic engineering approaches conducted so far target at the improvement of protein folding and secretion, whereas only few examples of cell engineering against general stress sensitivity were published. Apart from discussing well-documented stress reactions of yeasts in the context of heterologous protein production, some more speculative topics like quorum sensing and apoptosis are addressed.

  12. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  13. Engineered mammalian cells for production of recombinant proteins

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins.......The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...

  14. Recombinative generalization of subword units using matching to sample.

    LENUS (Irish Health Repository)

    Mahon, Catherine

    2010-01-01

    The purpose of the current study was to develop and test a computerized matching-to-sample (MTS) protocol to facilitate recombinative generalization of subword units (onsets and rimes) and recognition of novel onset-rime and onset-rime-rime words. In addition, we sought to isolate the key training components necessary for recombinative generalization. Twenty-five literate adults participated. Conditional discrimination training emerged as a crucial training component. These findings support the effectiveness of MTS in facilitating recombinative generalization, particularly when conditional discrimination training with subword units is used.

  15. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants.

    Science.gov (United States)

    Chen, Nanhua; Li, Shuangjie; Zhou, Rongyun; Zhu, Meiqin; He, Shan; Ye, Mengxue; Huang, Yucheng; Li, Shuai; Zhu, Cong; Xia, Pengpeng; Zhu, Jianzhong

    2017-10-15

    Porcine epidemic diarrhea virus (PEDV) causes devastating impact on global pig-breeding industry and current vaccines have become not effective against the circulating PEDV variants since 2011. During the up-to-date investigation of PEDV prevalence in Fujian China 2016, PEDV was identified in vaccinated pig farms suffering severe diarrhea while other common diarrhea-associated pathogens were not detected. Complete genomes of two PEDV representatives (XM1-2 and XM2-4) were determined. Genomic comparison showed that these two viruses share the highest nucleotide identities (99.10% and 98.79%) with the 2011 ZMDZY strain, but only 96.65% and 96.50% nucleotide identities with the attenuated CV777 strain. Amino acid alignment of spike (S) proteins indicated that they have the similar mutation, insertion and deletion pattern as other Chinese PEDV variants but also contain several unique substitutions. Phylogenetic analysis showed that 2016 PEDV variants belong to the cluster of recombination strains but form a new branch. Recombination detection suggested that both XM1-2 and XM2-4 are inter-subgroup recombinants with breakpoints within ORF1b. Remarkably, the natural recombinant HNQX-3 isolate serves as a parental virus for both natural recombinants identified in this study. This up-to-date investigation provides the direct evidence that natural recombinants may serve as parental viruses to generate recombined PEDV progenies that are probably associated with the vaccination failure. Copyright © 2017. Published by Elsevier B.V.

  16. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome.

    Science.gov (United States)

    Cottingham, Matthew G; Gilbert, Sarah C

    2010-09-01

    The non-replicating poxviral vector modified vaccinia virus Ankara (MVA) is currently a leading candidate for development of novel recombinant vaccines against globally important diseases. The 1980s technology for making recombinant MVA (and other poxviruses) is powerful and robust, but relies on rare recombination events in poxviral-infected cells. In the 21st century, it has become possible to apply bacterial artificial chromosome (BAC) technology to poxviruses, as first demonstrated by B. Moss' lab in 2002 for vaccinia virus. A similar BAC clone of MVA was subsequently derived, but while recombination-mediated genetic engineering for rapid production was used of deletion mutants, an alternative method was required for efficient insertion of transgenes. Furthermore "markerless" viruses, which carry no trace of the selectable marker used for their isolation, are increasingly required for clinical trials, and the viruses derived via the new method contained the BAC sequence in their genomic DNA. Two methods are adapted to MVA-BAC to provide more rapid generation of markerless recombinants in weeks rather than months. "En passant" recombineering is applied to the insertion of a transgene expression cassette and the removal of the selectable marker in bacteria; and a self-excising variant of MVA-BAC is constructed, in which the BAC cassette region is rapidly and efficiently lost from the viral genome following rescue of the BAC into infectious virus. These methods greatly facilitate and accelerate production of recombinant MVA, including markerless constructs. Copyright 2010 Elsevier B.V. All rights reserved.

  17. New strategies for genetic engineering Pseudomonas syringae using recombination

    Science.gov (United States)

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  18. The evolutionary value of recombination is constrained by genome modularity.

    Directory of Open Access Journals (Sweden)

    Darren P Martin

    2005-10-01

    Full Text Available Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV, we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.

  19. A new strategy for estimating two-locus recombination fractions ...

    Indian Academy of Sciences (India)

    2011-08-19

    locus recombination fractions under some natural inequality restrictions. J. Genet. ... mation strategy, called restricted projection algorithm (RPA). The new ...... Differentiating equation (8) to obtain the equation. 2λj(βj − β∗.

  20. Molecular analysis of intragenic recombination at the tryptophan ...

    Indian Academy of Sciences (India)

    /fulltext/jgen/092/03/0523-0528. Keywords. mutation; recombination; DNA sequence; primary metabolism; trp-3. Abstract. Fifteen different classically generated and mapped mutations at the tryptophan synthetase locus in Neurospora crassa ...

  1. The Evolutionary Value of Recombination Is Constrained by Genome Modularity.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV, we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.

  2. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    Science.gov (United States)

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  3. Human Prostate Cancer in a Tissue Recombination Model

    National Research Council Canada - National Science Library

    Williams, Karin

    2002-01-01

    .... Tissue recombinations (TR) composed of hPrE and rat urogenital sinus mesenchyme (rUGM) grafted beneath the renal capsule of immunocompromised rat hosts recapitulate many key events in prostatic development and adult function...

  4. Human Prostate Cancer in a Tissue Recombination Model

    National Research Council Canada - National Science Library

    Williams, Karin

    2003-01-01

    .... Tissue recombinations (TR) composed of hPrE and rat urogenital sinus mesenchyme (rUGM) grafted beneath the renal capsule of immunocompromised rodent hosts recapitulate many key events in prostatic development and adult function...

  5. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    Science.gov (United States)

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  6. Charge Recombination Suppressed by Destructive Quantum Interference in Heterojunction Materials

    NARCIS (Netherlands)

    Tempelaar, Roel; Koster, L. Jan Anton; Havenith, Remco W. A.; Knoester, Jasper; Jansen, Thomas L. C.

    2016-01-01

    We show that charge recombination in ordered heterojunctions depends sensitively on the degree of coherent delocalization of charges at the donor acceptor interface. Depending on the relative sign of the electron and hole transfer integrals, such delocalization can dramatically suppress

  7. Products of Dissociative Recombination in the Ionosphere

    Science.gov (United States)

    Cosby, Philip

    1996-01-01

    SRI International undertook a novel experimental measurement of the product states formed by dissociative recombination (DR) of O2(+), NO(+), and N2(+) as a function of both electron energy and reactant ion vibrational level. For these measurements we used a recently developed experimental technique for measuring dissociation product distributions that allows both the branching ratios to be accurately determined and the electronic and rovibrational state composition of the reactant ions to be specified. DR is the dominant electron loss mechanism in all regions of the ionosphere. In this process, electron attachment to the molecular ion produces an unstable neutral molecule that rapidly dissociates. For a molecular ion such as O2(+), the dissociation recombination reaction is (1) O2(+) + e yields O + O + W. The atomic products of this reaction, in this case two oxygen atoms, can be produced in a variety of excited states and with a variety of kinetic energies, as represented by W in Eq. (1). These atoms are not only active in the neutral chemistry of the ionosphere, but are also especially important because their optical emissions are often used to infer in situ concentrations of the parent molecular ion and ambient electron densities. Many laboratory measurements have been made of DR reaction rates under a wide range of electron temperatures, but very little is known about the actual distributions among the final states of the atomic products. This lack of knowledge seriously limits the validity and effectiveness of efforts to model both natural and man-made ionospheric disturbances. Bates recently identified major deficiencies in the currently accepted branching ratios for O2(+) as they relate to blue and green line emission measurements in the nocturnal F-region. During our two-year effort, we partially satisfied our ambitious goals. We constructed and operated a variable pressure, electron-impact ion source and a high pressure, hollow-cathode discharge ion

  8. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  9. Comparative and evolutionary analysis of the bacterial homologous recombination systems.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Homologous recombination is a housekeeping process involved in the maintenance of chromosome integrity and generation of genetic variability. Although detailed biochemical studies have described the mechanism of action of its components in model organisms, there is no recent extensive assessment of this knowledge, using comparative genomics and taking advantage of available experimental data on recombination. Using comparative genomics, we assessed the diversity of recombination processes among bacteria, and simulations suggest that we missed very few homologs. The work included the identification of orthologs and the analysis of their evolutionary history and genomic context. Some genes, for proteins such as RecA, the resolvases, and RecR, were found to be nearly ubiquitous, suggesting that the large majority of bacterial genomes are capable of homologous recombination. Yet many genomes show incomplete sets of presynaptic systems, with RecFOR being more frequent than RecBCD/AddAB. There is a significant pattern of co-occurrence between these systems and antirecombinant proteins such as the ones of mismatch repair and SbcB, but no significant association with nonhomologous end joining, which seems rare in bacteria. Surprisingly, a large number of genomes in which homologous recombination has been reported lack many of the enzymes involved in the presynaptic systems. The lack of obvious correlation between the presence of characterized presynaptic genes and experimental data on the frequency of recombination suggests the existence of still-unknown presynaptic mechanisms in bacteria. It also indicates that, at the moment, the assessment of the intrinsic stability or recombination isolation of bacteria in most cases cannot be inferred from the identification of known recombination proteins in the genomes.

  10. Inverted polymer solar cells with reduced interface recombination

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Song; Small, Cephas E.; Subbiah, Jegadesan; Lai, Tzung-han; Tsang, Sai-Wing; Manders, Jesse R.; So, Franky [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Amb, Chad M. [The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center of Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Reynolds, John R. [School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Altanta, GA, 30332-0400 (United States)

    2012-11-15

    Interface recombination induced by the defect states in zinc-oxide-nanoparticle-based electron extraction layer is reported as a significant loss-mechanism of photocurrent collection. By choosing appropriate UV-ozone treatment conditions on the zinc oxide layer, inverted polymer solar cells show reduced interface recombination and thus improved power conversion efficiencies of up to 8.1%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Recombinant HT{sub m4} gene, protein and assays

    Science.gov (United States)

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  12. Recombination Processes on Low Bandgap Antimonides for Thermophotovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Saroop, Sudesh [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-09-01

    Recombination processes in antimonide-based (TPV) devices have been investigated using a technique, in which a Nd-YAG pulsed laser is materials for thermophotovoltaic radio-frequency (RF) photoreflectance used to excite excess carriers and the short-pulse response and photoconductivity decay are monitored with an inductively-coupled non-contacting RF probe. The system has been used to characterize surface and bulk recombination mechanisms in Sb-based materials.

  13. Homologous plasmid recombination is elevated in immortally transformed cells.

    OpenAIRE

    Finn, G K; Kurz, B W; Cheng, R Z; Shmookler Reis, R J

    1989-01-01

    The levels of intramolecular plasmid recombination, following transfection of a plasmid substrate for homologous recombination into normal and immortally transformed cells, have been examined by two independent assays. In the first assay, recovered plasmid was tested for DNA rearrangements which regenerate a functional neomycin resistance gene from two overlapping fragments. Following transformation of bacteria, frequencies of recombinationlike events were determined from the ratio of neomyci...

  14. Integrated continuous production of recombinant therapeutic proteins.

    Science.gov (United States)

    Warikoo, Veena; Godawat, Rahul; Brower, Kevin; Jain, Sujit; Cummings, Daniel; Simons, Elizabeth; Johnson, Timothy; Walther, Jason; Yu, Marcella; Wright, Benjamin; McLarty, Jean; Karey, Kenneth P; Hwang, Chris; Zhou, Weichang; Riske, Frank; Konstantinov, Konstantin

    2012-12-01

    In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost-effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high-density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four-column periodic counter-current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high-density perfusion CHO cell cultures were operated at a quasi-steady state of 50-60 × 10(6) cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed-batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time-based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch-column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non-value-added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins. Copyright © 2012 Wiley Periodicals, Inc.

  15. Clinical targeting recombinant immunotoxins for cancer therapy

    Directory of Open Access Journals (Sweden)

    Li M

    2017-07-01

    Full Text Available Meng Li,1,* Zeng-Shan Liu,1,* Xi-Lin Liu,1,* Qi Hui,2,* Shi-Ying Lu,1 Lin-Lin Qu,1 Yan-Song Li,1 Yu Zhou,1 Hong-Lin Ren,1 Pan Hu1 1Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun, 2School of Pharmacy, Wenzhou Medical University, Wenzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Recombinant immunotoxins (RITs are proteins that contain a toxin fused to an antibody or small molecules and are constructed by the genetic engineering technique. RITs can bind to and be internalized by cells and kill cancerous or non-cancerous cells by inhibiting protein synthesis. A wide variety of RITs have been tested against different cancers in cell culture, xenograft models, and human patients during the past several decades. RITs have shown activity in therapy of several kinds of cancers, but different levels of side effects, mainly related to vascular leak syndrome, were also observed in the treated patients. High immunogenicity of RITs limited their long-term or repeat applications in clinical cases. Recent advances in the design of immunotoxins, such as humanization of antibody fragment, PEGylation, and modification of human B- and T-cell epitopes, are overcoming the above mentioned problems, which predict the use of these immunotoxins as a potential therapeutic method to treat cancer patients. Keywords: targeted therapy, hematologic malignancies, solid tumors, vascular leak syndrome, immunogenicity 

  16. Recombinant production of the therapeutic peptide lunasin

    Directory of Open Access Journals (Sweden)

    Kyle Stuart

    2012-02-01

    Full Text Available Abstract Background Lunasin is a chemopreventive peptide produced in a number of plant species. It comprises a helical region with homology to a region of chromatin binding proteins, an Arg-Gly-Asp cell adhesion motif and eight aspartic acid residues. In vitro studies indicate that lunasin suppresses chemical and oncogene driven transformation of mammalian cells. We have explored efficient recombinant production of lunasin by exploiting the Clostridium thermocellum CipB cellulose binding domain (CBD as a fusion partner protein. Results We used a pET28 vector to express a CBD-lunasin fusion with a hexahistidine tag and Tobacco Etch Virus protease site, to allow protease-mediated release of native lunasin. Autoinduction in E. coli BL21 (DE3 Star cells achieved expression of 3.35 g/L of CBD-lunasin fusion protein. The final yield of lunasin was 210 mg/L corresponding to 32% of the theoretical yield. Purification by cellulose binding and nickel affinity chromatography were tested with the latter proving more satisfactory. The effects of CBD-lunasin expression on growth and morphology of the E. coli cells were examined by light and electron microscopy revealing an altered morphology in a proportion of cells. Cell division appeared to be inhibited in these cells resulting in elongated, non-septated cells. Conclusions The use of CBD as a fusion partner gave high protein yields by autoinduction, with lunasin release by TEV protease cleavage. With some optimisation this approach could provide a potentially valuable route for production of this therapeutic peptide. Over-expression in the host cells manifest as a cell division defect in a population of the cells, presumably mimicking some aspect of the chemopreventive function observed in mammalian cells.

  17. Trends in recombinant protein use in animal production.

    Science.gov (United States)

    Gifre, Laia; Arís, Anna; Bach, Àlex; Garcia-Fruitós, Elena

    2017-03-04

    Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.

  18. Quasispecies theory for horizontal gene transfer and recombination

    Science.gov (United States)

    Muñoz, Enrique; Park, Jeong-Man; Deem, Michael W.

    2008-12-01

    We introduce a generalization of the parallel, or Crow-Kimura, and Eigen models of molecular evolution to represent the exchange of genetic information between individuals in a population. We study the effect of different schemes of genetic recombination on the steady-state mean fitness and distribution of individuals in the population, through an analytic field theoretic mapping. We investigate both horizontal gene transfer from a population and recombination between pairs of individuals. Somewhat surprisingly, these nonlinear generalizations of quasispecies theory to modern biology are analytically solvable. For two-parent recombination, we find two selected phases, one of which is spectrally rigid. We present exact analytical formulas for the equilibrium mean fitness of the population, in terms of a maximum principle, which are generally applicable to any permutation invariant replication rate function. For smooth fitness landscapes, we show that when positive epistatic interactions are present, recombination or horizontal gene transfer introduces a mild load against selection. Conversely, if the fitness landscape exhibits negative epistasis, horizontal gene transfer or recombination introduces an advantage by enhancing selection towards the fittest genotypes. These results prove that the mutational deterministic hypothesis holds for quasispecies models. For the discontinuous single sharp peak fitness landscape, we show that horizontal gene transfer has no effect on the fitness, while recombination decreases the fitness, for both the parallel and the Eigen models. We present numerical and analytical results as well as phase diagrams for the different cases.

  19. Insights into the Functions of a Prophage Recombination Directionality Factor

    Directory of Open Access Journals (Sweden)

    Mireille Ansaldi

    2012-10-01

    Full Text Available Recombination directionality factors (RDFs, or excisionases, are essential players of prophage excisive recombination. Despite the essentially catalytic role of the integrase in both integrative and excisive recombination, RDFs are required to direct the reaction towards excision and to prevent re-integration of the prophage genome when entering a lytic cycle. KplE1, HK620 and numerous (prophages that integrate at the same site in enterobacteria genomes (such as the argW tRNA gene all share a highly conserved recombination module. This module comprises the attL and attR recombination sites and the RDF and integrase genes. The KplE1 RDF was named TorI after its initial identification as a negative regulator of the tor operon. However, it was characterized as an essential factor of excisive recombination. In this study, we designed an extensive random mutagenesis protocol of the torI gene and identified key residues involved in both functions of the TorI protein. We show that, in addition to TorI-TorR protein-protein interaction, TorI interacts in solution with the IntS integrase. Moreover, in vitro, TorR and IntS appear to compete for TorI binding. Finally, our mutagenesis results suggest that the C-terminal part of the TorI protein is dedicated to protein-protein interactions with both proteins TorR and IntS.

  20. Genetic characterization of somatic recombination in Trichoderma pseudokoningii

    Directory of Open Access Journals (Sweden)

    Barcellos Fernando Gomes

    2003-01-01

    Full Text Available Crossing experiments via hyphal anastomosis between two strains contrasting for auxotrophic markers of Trichoderma pseudokoningii were conducted to characterize the somatic recombination process in this specie. Four crossings were made and a total of 1052 colonies obtained from conidial suspensions of the heterokaryotic colonies were analyzed. Sixty-eight recombinant colonies, from four growing generations, were analyzed for the auxotrophic markers. Of the 68 colonies analyzed, 58 were stable after four generations and the remainders were unstable, reverting to one of the parentals. Most of the recombinant colonies were unstable through subculture and after four growing generations they showed the leu ino met markers (auxotrophic for leucin, inositol and metionin respectively. The unstable recombinant colonies showed irregular growing borders, sparse sporulation and frequent sector formation. The results suggest the occurrence of recombination mechanisms in the heterokaryon (somatic recombination, different from those described for the parasexual cycle or parameiosis. Therefore, we proposed the ocurrence of nuclei degradation from one parental (non prevalent parental in the heterokaryon and that the resulting chromosomal fragments may be incorporated into whole nuclei of the another parental (prevalent parental. However the parameiosis as originally described cannot be excluded.

  1. A simple negative selection method to identify adenovirus recombinants using colony PCR

    Directory of Open Access Journals (Sweden)

    Yongliang Zhao

    2014-01-01

    Conclusions: The negative selection method to identify AdEasy adenovirus recombinants by colony PCR can identify the recombined colony within a short time-period, and maximally avoid damage to the recombinant plasmid by limiting recombination time, resulting in improved adenovirus packaging.

  2. Accelerated Recombination in Cold Dense Plasmas with Metastable Ions due to Resonant Deexcitation

    International Nuclear Information System (INIS)

    Ralchenko, Yu.V.; Maron, M.

    2001-01-01

    In a recombining plasma the metastable states are known to accumulate population thereby slowing down the recombination process. We show that a proper account of the doubly-excited autoionizing states, populated through collisional 3-body recombination of metastable ions, results in a significant acceleration of recombination. 3-body recombination followed by collisional (de)excitations and autoionization effectively produces deexcitation via the following chain of elementary events: A fully time-dependent collisional-radiative (CR) modeling for stripped ions of carbon recombining in a cold dense plasma demonstrates an order of magnitude faster recombination of He-like ions. The CR model used in calculations is discussed in details

  3. Agroinfiltration contributes to VP1 recombinant protein degradation.

    Science.gov (United States)

    Pillay, Priyen; Kunert, Karl J; van Wyk, Stefan; Makgopa, Matome Eugene; Cullis, Christopher A; Vorster, Barend J

    2016-11-01

    There is a growing interest in applying tobacco agroinfiltration for recombinant protein production in a plant based system. However, in such a system, the action of proteases might compromise recombinant protein production. Protease sensitivity of model recombinant foot-and-mouth disease (FMD) virus P1-polyprotein (P1) and VP1 (viral capsid protein 1) as well as E. coli glutathione reductase (GOR) were investigated. Recombinant VP1 was more severely degraded when treated with the serine protease trypsin than when treated with the cysteine protease papain. Cathepsin L- and B-like as well as legumain proteolytic activities were elevated in agroinfiltrated tobacco tissues and recombinant VP1 was degraded when incubated with such a protease-containing tobacco extract. In silico analysis revealed potential protease cleavage sites within the P1, VP1 and GOR sequences. The interaction modeling of the single VP1 protein with the proteases papain and trypsin showed greater proximity to proteolytic active sites compared to modeling with the entire P1-polyprotein fusion complex. Several plant transcripts with differential expression were detected 24 hr post-agroinfiltration when the RNA-seq technology was applied to identify changed protease transcripts using the recently available tobacco draft genome. Three candidate genes were identified coding for proteases which included the Responsive-to-Desiccation-21 (RD21) gene and genes for coding vacuolar processing enzymes 1a (NbVPE1a) and 1b (NbVPE1b). The data demonstrates that the tested recombinant proteins are sensitive to protease action and agroinfiltration induces the expression of potential proteases that can compromise recombinant protein production.

  4. Experimental study of para- and ortho-H3+ recombination

    Science.gov (United States)

    Plašil, R.; Varju, J.; Hejduk, M.; Dohnal, P.; Kotrík, T.; Glosík, J.

    2011-07-01

    Recombination of H3+ with electrons is a key process for many plasmatic environments. Recent experiments on storage ring devices used ion sources producing H3+ with enhanced populations of H3+ ions in the para nuclear spin configuration to shed light on the theoretically predicted faster recombination of para states. Although increased recombination rates were observed, no in situ characterization of recombining ions was performed. We present a state selective recombination study of para- and ortho-H3+ ions with electrons at 77 K in afterglow plasma in a He/Ar/H2 gas-mixture. Both spin configurations of H3+ have been observed in situ with a near infrared cavity ring down spectrometer (NIR-CRDS) using the two lowest energy levels of H3+. Using hydrogen with an enhanced population of H2 molecules in para states allowed us to influence the [para-H3+]/[ortho-H3+] ratio in the discharge and in the afterglow. We observed an increase in the measured effective recombination rate coefficients with the increase of the fraction of para-H3+. Measurements with different fractions of para-H3+ at otherwise identical conditions allowed us to determine the binary recombination rate coefficients for pure para-H3+ pαbin(77 K) = (2.0±0.4)×10-7 cm3s-1 and pure ortho-H3+ oαbin(77 K) = (4±3)×10-8 cm3s-1.

  5. Recombination of hepatitis B virus DNA in patients with HIV.

    Science.gov (United States)

    Fallot, Guillaume; Halgand, Boris; Garnier, Elisabeth; Branger, Michel; Gervais, Anne; Roque-Afonso, Anne-Marie; Thiers, Valérie; Billaud, Eric; Matheron, Sophie; Samuel, Didier; Féray, Cyrille

    2012-08-01

    Hepatitis B is a major cause of death in patients with HIV who usually receive drugs active against hepatitis B virus (HBV). The variability of HBV DNA over time has been little studied. Recombination between different HBV genotypes has been described in many cross-sectional studies, but the frequency of intergenotypic and intragenotypic recombinations in individual patients is unknown. 32 HIV-positive and 11 HIV-negative patients who remained HBV viraemic despite antiviral therapy for at least 1 year were studied. Genotyping was based on line probe assays and genotype-specific PCR. The variability of HBV DNA over time was examined with restriction length and single-strand conformational polymorphism (RFLP-SSCP). HBV DNA sequences obtained by cloning a 2800 bp PCR fragment were analysed for phylogenetic parameters (diversity and selection pressure) and recombination was detected with RDP3 software. Large fragments of HBV DNA could be amplified at two different time points in 33 patients. Marked quasi-species modifications occurred in 14 patients. In seven of these patients and in one patient with no change detectable by RFLP-SSCP, the 2800 bp fragment was cloned at two time points at least. In four (57%) of these seven patients, various intergenotypic or intragenotypic recombination events were detected between subvariants present in the initial quasi-species. Recombinant fragments mostly harboured antiviral resistance determinants and reflected a large increase in diversity and in positive selection pressure on the entire HBV quasi-species. In coinfected patients, HBV DNA recombination events are frequent during antiviral therapy, corresponding to increased positive selection pressure on the HBV quasi-species and to conservation of antiviral resistance mutations. In this population and at the individual level, recombination is a significant source of HBV genetic variability.

  6. Evaluation of multicomponent recombinant vaccines against Actinobacillus pleuropneumoniae in mice

    Directory of Open Access Journals (Sweden)

    Shao Meili

    2010-09-01

    Full Text Available Abstract Background Porcine contagious pleuropneumonia (PCP is a highly contagious disease that is caused by Actinobacillus pleuropneumoniae (APP and characterized by severe fibrinous necrotizing hemorrhagic pleuropneumonia, which is a severe threat to the swine industry. In addition to APP RTX-toxins I (ApxI, APP RTX-toxin II (ApxII, APP RTX-toxin III (ApxIII and Outer membrane protein (OMP, there may be other useful antigens that can contribute to protection. In the development of an efficacious vaccine against APP, the immunogenicities of multicomponent recombinant subunit vaccines were evaluated. Methods Six major virulent factor genes of APP, i.e., apxI, apxII, apxIII, APP RTX-toxins IV (apxIV, omp and type 4 fimbrial structural (apfa were expressed. BALB/c mice were immunized with recombinant ApxI ( rApxI, recombinant ApxII (rApxII, recombinant ApxIII (rApxIII and recombinant OMP (rOMP (Group I; rApxI, rApxII, rApxIII, recombinant ApxIV (rApxIV, recombinant Apfa (rApfa and rOMP (Group II; APP serotype 1 (APP1 inactivated vaccine (Group III; or phosphate-buffered saline (PBS (Control group, respectively. After the first immunization, mice were subjected to two booster immunizations at 2-week intervals, followed by challenge with APP1 Shope 4074 and APP2 S1536. Results The efficacy of the multicomponent recombinant subunit vaccines was evaluated on the basis of antibody titers, survival rates, lung lesions and indirect immunofluorescence (IIF detection of APP. The antibody level of Group I was significantly higher than those of the other three groups (P P P Conclusion The result indicates that the multicomponent recombinant subunit vaccine composed of rApxI, rApxII, rApxIII and rOMP can provide effective cross-protection against homologous and heterologous APP challenge.

  7. Temporally-controlled site-specific recombination in zebrafish.

    Directory of Open Access Journals (Sweden)

    Stefan Hans

    Full Text Available Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreER(T2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM or its active metabolite, 4-hydroxy-tamoxifen (4-OHT. Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms.

  8. Suppression of auger recombination in ""giant"" core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Santamaria, Florencio [Los Alamos National Laboratory; Vela, Javier [Los Alamos National Laboratory; Schaller, Richard D [Los Alamos National Laboratory; Hollingsworth, Jennifer A [Los Alamos National Laboratory; Klimov, Victor I [Los Alamos National Laboratory; Chen, Yongfen [NON LANL

    2009-01-01

    Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ('blinking') of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has been a longstanding goal in colloidal nanocrystal research. Here, we demonstrate that such suppression is possible using so-called 'giant' nanocrystals that consist of a small CdSe core and a thick CdS shell. These nanostructures exhibit a very long biexciton lifetime ({approx}10 ns) that is likely dominated by radiative decay instead of non-radiative Auger recombination. As a result of suppressed Auger recombination, even high-order multiexcitons exhibit high emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 me V) and record low excitation thresholds.

  9. Building up and breaking down: mechanisms controlling recombination during replication.

    Science.gov (United States)

    Branzei, Dana; Szakal, Barnabas

    2017-08-01

    The complete and faithful duplication of the genome is an essential prerequisite for proliferating cells to maintain genome integrity. This objective is greatly challenged by DNA damage encountered during replication, which causes fork stalling and in certain cases, fork breakage. DNA damage tolerance (DDT) pathways mitigate the effects on fork stability induced by replication fork stalling by mediating damage-bypass and replication fork restart. These DDT mechanisms, largely relying on homologous recombination (HR) and specialized polymerases, can however contribute to genome rearrangements and mutagenesis. There is a profound connection between replication and recombination: recombination proteins protect replication forks from nuclease-mediated degradation of the nascent DNA strands and facilitate replication completion in cells challenged by DNA damage. Moreover, in case of fork collapse and formation of double strand breaks (DSBs), the recombination factors present or recruited to the fork facilitate HR-mediated DSB repair, which is primarily error-free. Disruption of HR is inexorably linked to genome instability, but the premature activation of HR during replication often leads to genome rearrangements. Faithful replication necessitates the downregulation of HR and disruption of active RAD51 filaments at replication forks, but upon persistent fork stalling, building up of HR is critical for the reorganization of the replication fork and for filling-in of the gaps associated with discontinuous replication induced by DNA lesions. Here we summarize and reflect on our understanding of the mechanisms that either suppress recombination or locally enhance it during replication, and the principles that underlie this regulation.

  10. Reduced effectiveness of selection caused by a lack of recombination.

    Science.gov (United States)

    Betancourt, Andrea J; Welch, John J; Charlesworth, Brian

    2009-04-28

    Genetic recombination associated with sexual reproduction is expected to have important consequences for the effectiveness of natural selection. These effects may be evident within genomes, in the form of contrasting patterns of molecular variation and evolution in regions with different levels of recombination. Previous work reveals patterns that are consistent with a benefit of recombination for adaptation at the level of protein sequence: both positive selection for adaptive variants and purifying selection against deleterious ones appear to be compromised in regions of low recombination [1-11]. Here, we re-examine these patterns by using polymorphism and divergence data from the Drosophila dot chromosome, which has a long history of reduced recombination. To avoid confounding selection and demographic effects, we collected these data from a species with an apparently stable demographic history, Drosophila americana. We find that D. americana dot loci show several signatures of ineffective purifying and positive selection, including an increase in the rate of protein evolution, an increase in protein polymorphism, and a reduction in the proportion of amino acid substitutions attributable to positive selection.

  11. Population demographic history can cause the appearance of recombination hotspots.

    Science.gov (United States)

    Johnston, Henry R; Cutler, David J

    2012-05-04

    Although the prevailing view among geneticists suggests that recombination hotspots exist ubiquitously across the human genome, there is only limited experimental evidence from a few genomic regions to support the generality of this claim. A small number of true recombination hotspots are well supported experimentally, but the vast majority of hotspots have been identified on the basis of population genetic inferences from the patterns of linkage disequilibrium (LD) seen in the human population. These inferences are made assuming a particular model of human history, and one of the assumptions of that model is that the effective population size of humans has remained constant throughout our history. Our results show that relaxation of the constant population size assumption can create LD and variation patterns that are qualitatively and quantitatively similar to human populations without any need to invoke localized hotspots of recombination. In other words, apparent recombination hotspots could be an artifact of variable population size over time. Several lines of evidence suggest that the vast majority of hotspots identified on the basis of LD information are unlikely to have elevated recombination rates. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Recombination Phenotypes of Escherichia coli greA Mutants

    Directory of Open Access Journals (Sweden)

    Poteete Anthony R

    2011-03-01

    Full Text Available Abstract Background The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination. Results Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination. Conclusion These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.

  13. Recombinant host cells and media for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  14. Recombinant protein hydrazides: application to site-specific protein PEGylation.

    Science.gov (United States)

    Thom, Jennifer; Anderson, David; McGregor, Joanne; Cotton, Graham

    2011-06-15

    Here, we describe a novel method for the site-specific C-terminal PEGylation of recombinant proteins. This general approach exploits chemical cleavage of precursor intein-fusion proteins with hydrazine to directly produce recombinant protein hydrazides. This unique functionality within the protein sequence then facilitates site-specific C-terminal modification by hydrazone-forming ligation reactions. This approach was used to generate folded, site-specifically C-terminal PEGylated IFNalpha2b and IFNbeta1b, which retained excellent antiviral activity, demonstrating the utility of this technology in the PEGylation of therapeutic proteins. As this methodology is straightforward to perform, is compatible with disulfide bonds, and is exclusively selective for the protein C-terminus, it shows great potential as general technology for the site-specific engineering and labeling of recombinant proteins.

  15. Dissociative recombination and electron attachment in regions of star formation

    International Nuclear Information System (INIS)

    Herbst, Eric; Roueff, Evelyne

    2011-01-01

    Dissociative recombination and electron attachment are important in interstellar chemistry, which is heavily dominated by ions and ionic processes. Here we consider how the competition between dissociative recombination and other reactions, such as H-atom transfer, can explain the unusually high observed abundances of the reactive cations OH + and H 2 O + in the dense outflow source in front of the Orion Nebula. We also show how dissociative recombination and other processes might block the achievement of an equilibrium ortho-to-para abundance ratio for H 2 O + in diffuse interstellar clouds. Finally, we consider the formation and destruction rates of molecular anions observed in the interstellar and circumstellar media, especially the formation mechanism of radiative attachment, the rate of which has only been estimated by a simple phase space theory, which is surprisingly successful in most instances.

  16. Recombination in one- and two-dimensional fitness landscapes.

    Science.gov (United States)

    Avetisyan, Zh; Saakian, David B

    2010-05-01

    We consider many-site mutation-recombination models of molecular evolution, where fitness is a function of a Hamming distance from one (one-dimensional case) or two (two-dimensional case) sequences. For the one-dimensional case, we calculate the population distribution dynamics for a model with zero fitness and an arbitrary symmetric initial distribution and find an error threshold transition point in the single-peak fitness model for a given initial symmetric distribution. We calculate the recombination period in the case of a single-peak fitness function, when the original population is located at one sequence, at some Hamming distance from the peak configuration. Steady-state fitness is calculated with finite genome length corrections. We derive analytical equations for the two-dimensional mutation-recombination model.

  17. Obscured phylogeny and possible recombinational dormancy in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sawyer Stanley A

    2011-06-01

    Full Text Available Abstract Background Escherichia coli is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence. Results The phylogeny of E. coli varies according to the segment of chromosome analyzed. Recombination between extant E. coli groups is largely limited to only three intergroup pairings. Conclusions Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, E. coli are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of E. coli as a species, or herald the coalescence of E. coli groups into new species.

  18. Production of N-acetylglucosamine using recombinant chitinolytic enzymes.

    Science.gov (United States)

    Kumar, Sanjeev; Sharma, Rohit; Tewari, Rupinder

    2011-07-01

    The pharmaceutically important compound N-acetylglucosamine (NAG), is used in various therapeutic formulations, skin care products and dietary supplements. Currently, NAG is being produced by an environment-unfriendly chemical process using chitin, a polysaccharide present in abundance in the exoskeleton of crustaceans, as a substrate. In the present study, we report the potential of an eco-friendly biological process for the production of NAG using recombinant bacterial enzymes, chitinase (CHI) and chitobiase (CHB). The treatment of chitin with recombinant CHI alone produced 8% NAG and 72% chitobiose, a homodimer of NAG. However, supplementation of the reaction mixture with another recombinant enzyme, CHB, resulted in approximately six fold increase in NAG production. The product, NAG, was confirmed by HPLC, TLC and ESI-MS studies. Conditions are being optimized for increased production of NAG from chitin.

  19. Impact of cell culture on recombinant monoclonal antibody product heterogeneity.

    Science.gov (United States)

    Liu, Hongcheng; Nowak, Christine; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa

    2016-09-01

    Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103-1112, 2016. © 2016 American Institute of Chemical Engineers.

  20. Recombination methods in the dosimetry of mixed radiation

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    The work describes the state of art of recombination methods developed for the dosimetry of mixed radiation fields. The existing theories of initial recombination of ions in gases is given. Recombination methods developed in IAE are reviewed in detail. The methods described here can be applied in mixed radiation fields of poorly known composition and practically unlimited energy range. Main dosimetric parameters such as absorbed dose, photon component to the absorbed dose, radiation quality factor, dose equivalent, ambient dose equivalent and some other quantities can be determined in single instrument. A novel method has been developed for determination of the energy loss distribution in the nanometric region. Experimental tests showed that the method is promising not only for radiation protection but also for radiobiological investigations. (author). 166 refs, 62 figs, 16 tabs.

  1. Mercury resistance as a selective marker for recombinant mycobacteria.

    Science.gov (United States)

    Baulard, A; Escuyer, V; Haddad, N; Kremer, L; Locht, C; Berche, P

    1995-04-01

    The use of antibiotic-resistance markers for the selection of recombinant mycobacteria is widespread but questionable considering the development of live recombinant BCG vaccines. In contrast, vector-encoded resistance to heavy metals such as mercury may represent an interesting alternative for the development of live vaccines compatible with use in humans and in animals. The mercury resistance genes (mer) from Pseudomonas aeruginosa and from Serratia marcescens were cloned into the Escherichia coli-Mycobacterium shuttle vector pRR3. The resulting vectors, designated pMR001 and pVN2, were introduced by electroporation into Mycobacterium smegmatis, Mycobacterium bovis BCG and Mycobacterium tuberculosis. The recombinant mycobacteria were stable in vitro and in vivo, and had high-level mercury resistance, thus indicating that the mer genes can be useful as selective markers in mycobacteria.

  2. Recombinant DNA technologies for construction of precisely designed transgene constructs.

    Science.gov (United States)

    Ohtsuka, Masato; Kimura, Minoru; Tanaka, Masafumi; Inoko, Hidetoshi

    2009-02-01

    Genetically modified animals have been used as models in broad range of studies including pharmaceutical biology. Designing and construction of transgene constructs are the first indispensable task in generating model animals. In addition to the classical restriction enzyme-based method, still holds some advantages in generating precise constructs, site-specific recombinase-based and homologous recombination-based DNA engineering strategies (e.g. Gateway and Red/ET recombineering, respectively) have been developed and widely used for vector construction or BAC modification. In this review, the three construction methods are described and their applications are discussed such as tandem assemblies of multiple components and modification of large DNA molecules. Combinational use of these E. coli-based recombinant DNA technologies enables the generation of precisely designed vectors useful for desired genome modification for future analyses.

  3. Thermalisation and recombination of subexcitation electrons in solid water

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, T.; Jay-Gerin, J.-P. (Sherbrooke Univ., PQ (Canada). Faculte de Medicine); Patau, J.-P. (Toulouse-3 Univ., 31 (France))

    1990-01-01

    The results of Monte Carlo simulations of the thermalisation of subexcitation electrons in solid water are reported. In the simulations, the possibility is taken into account that, prior to being thermalised, the electrons either recombine with their parent cation (H{sub 2}O{sup +}), or undergo a dissociative attachment to water molecules. A particular emphasis is placed on the description of the recombination process and on the influence of the parent cation on the electron's motion. The simulations are performed for different initial electron energies E{sub o} in the subexcitations energy range (i.e. E{sub o} < 7.4 eV). For each of these energies, the mean thermalisation distance {sub th} and time {sub th} are determined, as well as the proportions P{sub rec} and P{sub dis} of subexcitation electrons which, instead of thermalising, undergo recombination or dissociative attachment. (author).

  4. Theoretical investigation of dielectronic recombination of Sn12+ ions

    International Nuclear Information System (INIS)

    Fu, Y. B.; Dong, C. Z.; Su, M. G.; Koike, F.; O'Sullivan, G.; Wang, J. G.

    2011-01-01

    Theoretical calculations have been made for the dielectronic recombination (DR) rate coefficients of Sn 12+ ion using a relativistic flexible atomic code with configuration interaction. Comparison of the rate coefficients for 4s, 4p, and 4d subshell excitation shows that while the 4p subshell excitation dominates over the whole temperature region, 4d subshell excitation at low temperature and 4s subshell excitation at high temperature cannot be neglected. In order to facilitate simple applications, the calculated DR rate coefficients are fitted to an empirical formula. The total DR rate coefficient is greater than either the radiative recombination or three-body recombination coefficients for electron temperatures greater than 1 eV. Therefore, DR can strongly influence the ionization balance of laser-produced tin plasmas.

  5. A network approach to analyzing highly recombinant malaria parasite genes.

    Directory of Open Access Journals (Sweden)

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  6. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Science.gov (United States)

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  7. Biochemical and immunological characterization of recombinant allergen Lol p 1.

    Science.gov (United States)

    Tamborini, E; Faccini, S; Lidholm, J; Svensson, M; Brandazza, A; Longhi, R; Groenlund, H; Sidoli, A; Arosio, P

    1997-11-01

    Pollen from perennial rye grass (Lolium perenne), a major cause of type-I allergy worldwide, contains a complex mixture of allergenic proteins among which Lol p 1 is one of the most important. We describe the expression, purification and characterization of a recombinant Lol p 1 overproduced in Escherichia coli. The recombinant allergen, expressed in high yields and purified in milligram amounts, bound to specific IgE antibodies from human sera, induced histamine release from sensitized human basophils, and elicited rabbit antisera that recognize specifically recombinant Lol p 1 and natural Lol p 1 of pollen extract. Recombinant Lol p 1 was used to develop ImmunoCAP assays for analysis of 150 sera that were Radioallergosorbent test positive to L. perenne pollen. In 130 of them (87%) the assay detected a significant level of IgE antibodies to Lol p 1, reaching on average 37% of the level obtained with a test for IgE to the whole grass pollen extract. To map epitopes on Lol p 1, we produced three deletion mutants [des-(116-240)-Lol p 1, des-(1-88)-Lol p 1 and des-(133-189)-Lol p 1], which were efficiently expressed in bacteria. These all showed a strong reactivity with the specific rabbit IgG antibodies, but lacked most or all the allergenic properties of recombinant Lol p 1. A study of the antigenic structure of Lol p 1 was performed using the three deletion mutants and a set of 17-18-residue overlapping synthetic peptides covering the whole allergen sequence. The results indicate that human IgE and rabbit IgG antibodies bind to distinct regions of Lol p 1, and that at least some important IgE epitopes are mainly conformational. The findings suggest that recombinant allergens constitute useful reagents for further development of serological diagnosis of allergy, and that it should be possible to produce immunogenic fragments of allergenic proteins without allergenic properties.

  8. Green factory: plants as bioproduction platforms for recombinant proteins.

    Science.gov (United States)

    Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J

    2012-01-01

    Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Ovarian response to recombinant human follicle-stimulating hormone

    DEFF Research Database (Denmark)

    Arce, Joan-Carles; Andersen, Anders Nyboe; Fernández-Sánchez, Manuel

    2014-01-01

    OBJECTIVE: To evaluate the dose-response relationship of a novel recombinant human FSH (rhFSH; FE 999049) with respect to ovarian response in patients undergoing IVF/intracytoplasmic sperm injection treatment; and prospectively study the influence of initial antimüllerian hormone (AMH) concentrat......OBJECTIVE: To evaluate the dose-response relationship of a novel recombinant human FSH (rhFSH; FE 999049) with respect to ovarian response in patients undergoing IVF/intracytoplasmic sperm injection treatment; and prospectively study the influence of initial antimüllerian hormone (AMH...

  10. Intensities of decimetric-wavelength radio recombination lines

    International Nuclear Information System (INIS)

    Parrish, A.; Pankonin, V.

    1975-01-01

    We summarize the intensity results of some of the 221 and 248α recombination-line observations taken with the Arecibo telescope, and report additional results including 166α observations from the NRAO 300-foot (91 m) telescope. The brightness temperatures of these lines increase sharply with wavelength. We show that these results require that the upper levels of the recombining atoms be overpopulated with respect to LTE conditions. The most reasonable interpretation of the results is that the line emission at these decimetric wavelengths is stimulated by a background source of continuum radiation

  11. Generation and Selection of Orf Virus (ORFV) Recombinants.

    Science.gov (United States)

    Rziha, Hanns-Joachim; Rohde, Jörg; Amann, Ralf

    2016-01-01

    Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.

  12. Recombinant protein expression in Escherichia coli: advances and challenges

    Science.gov (United States)

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field. PMID:24860555

  13. Enteric Immunization of Mice Against Influenza with Recombinant Vaccinia

    Science.gov (United States)

    Meitin, Catherine A.; Bender, Bradley S.; Small, Parker A., Jr.

    1994-11-01

    Intrajejunal administration to mice of a recombinant vaccinia virus containing the influenza virus hemagglutinin gene induced IgA antibody in nasal, gut, and vaginal secretions. It also induced IgG antibody in serum and cell-mediated immunity. The immunization provided significant protection against an influenza virus challenge. This work suggests that enteric-coated recombinant vaccinia could be an orally administered, inexpensive, multivalent, temperature-stable, safe, and effective vaccine for children that could be particularly useful in developing nations, where multiple injections are not easily administered. Oral administration of vaccines should also reduce children's fear of shots at the doctor's office.

  14. Slow recombination centers in cadmium selenide monocrystalline films

    International Nuclear Information System (INIS)

    Smyntyna, V.A.

    1983-01-01

    As a result of annealing when concentration of selenium Vacancies decreases due to their diffusion towards the surface, show recombination K-centers begin to influence the photoelectric properties of monocrystalline cadmium selenide layers. Energy levels of K-centers are located by 0.23-0.25 eV over the valent zone ceiling. The nature of K-centers is determined by the presence in the cadmium selenide layer structure of intrisic defects-cadmium vacancies in contrast to r-centers of slow recombination which are bound with impurities in a semiconductor material

  15. Recombination analysis and structure prediction show correlation between breakpoint clusters and RNA hairpins in the pol gene of human immunodeficiency virus type 1 unique recombinant forms

    DEFF Research Database (Denmark)

    Galli, Andrea; Lai, Alessia; Corvasce, Stefano

    2008-01-01

    throughout the genome, leading to viral recombination. Some recombination hotspots have been identified and found to correlate with RNA structure or sequence features. The aim of this study was to evaluate the presence of recombination hotspots in the pol gene of HIV-1 and to assess their correlation......Recombination is recognized as a primary force in human immunodeficiency virus type 1 (HIV-1) evolution, increasing viral diversity through reshuffling of genomic portions. The strand-switching activity of reverse transcriptase is required to complete HIV-1 replication and can occur randomly...... with the underlying RNA structure. Analysis of the recombination pattern and breakpoint distribution in a group of unique recombinant forms (URFs) detected two recombination hotspots in the pol region. Two stable and conserved hairpins were consistently predicted corresponding to the identified hotspots using six...

  16. Analysis of chickens for recombination within the MHC (B-complex)

    DEFF Research Database (Denmark)

    Skjødt, K; Koch, C; Crone, M

    1985-01-01

    In an attempt to further map the chicken MHC (the B complex), a systematic search for genetic recombinants within the B complex was performed by serotyping the progeny from F2 crosses of chickens by means of specific anti-class I, anti-class II, and anti-class IV alloantisera. Two recombinant B...... confirmed the original serological typing of the two recombinant B haplotypes. No recombination between B-F (class I) and B-L (class II) loci was found. This very low frequency of recombination within the B complex as compared with recombination frequencies found in mammalian MHC's is discussed...

  17. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency.

    Science.gov (United States)

    Lee, Yu Nee; Frugoni, Francesco; Dobbs, Kerry; Walter, Jolan E; Giliani, Silvia; Gennery, Andrew R; Al-Herz, Waleed; Haddad, Elie; LeDeist, Francoise; Bleesing, Jack H; Henderson, Lauren A; Pai, Sung-Yun; Nelson, Robert P; El-Ghoneimy, Dalia H; El-Feky, Reem A; Reda, Shereen M; Hossny, Elham; Soler-Palacin, Pere; Fuleihan, Ramsay L; Patel, Niraj C; Massaad, Michel J; Geha, Raif S; Puck, Jennifer M; Palma, Paolo; Cancrini, Caterina; Chen, Karin; Vihinen, Mauno; Alt, Frederick W; Notarangelo, Luigi D

    2014-04-01

    The recombination-activating gene (RAG) 1/2 proteins play a critical role in the development of T and B cells by initiating the VDJ recombination process that leads to generation of a broad T-cell receptor (TCR) and B-cell receptor repertoire. Pathogenic mutations in the RAG1/2 genes result in various forms of primary immunodeficiency, ranging from T(-)B(-) severe combined immune deficiency to delayed-onset disease with granuloma formation, autoimmunity, or both. It is not clear what contributes to such heterogeneity of phenotypes. We sought to investigate the molecular basis for phenotypic diversity presented in patients with various RAG1 mutations. We have developed a flow cytometry-based assay that allows analysis of RAG recombination activity based on green fluorescent protein expression and have assessed the induction of the Ighc locus rearrangements in mouse Rag1(-/-) pro-B cells reconstituted with wild-type or mutant human RAG1 (hRAG1) using deep sequencing technology. Here we demonstrate correlation between defective recombination activity of hRAG1 mutant proteins and severity of the clinical and immunologic phenotype and provide insights on the molecular mechanisms accounting for such phenotypic diversity. Using a sensitive assay to measure the RAG1 activity level of 79 mutations in a physiologic setting, we demonstrate correlation between recombination activity of RAG1 mutants and the severity of clinical presentation and show that RAG1 mutants can induce specific abnormalities of the VDJ recombination process. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    Science.gov (United States)

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  19. Surveys of galactic hydrogen radio recombination line emission

    International Nuclear Information System (INIS)

    Wilson, T.L.

    1980-01-01

    Large scale surveys of the radio recombination lines of hydrogen are presented. The aim of this review is to: (1) examine the already existing data, (2) consider the interpretation of the results, (3) discuss the relation between these data and other astronomical surveys, and (4) determine what we learn from such catalogs. (Auth.)

  20. Cloning, recombinant expression and characterization of a new ...

    African Journals Online (AJOL)

    Jane

    2011-06-13

    Jun 13, 2011 ... A new amylase gene APGA1 was cloned from Aureobasidium pullulans NRRL 12974 and expressed in. Pichia pastoris. This is the first report on cloning and expression of amylolytic gene from the industrially important microorganism A. pullulans. The purified recombinant protein with MW of 66 kDa.

  1. The Time Scale of Recombination Rate Evolution in Great Apes

    NARCIS (Netherlands)

    Stevison, Laurie S; Woerner, August E; Kidd, Jeffrey M; Kelley, Joanna L; Veeramah, Krishna R; McManus, Kimberly F; Bustamante, Carlos D; Hammer, Michael F; Wall, Jeffrey D

    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and

  2. Estimating and testing the effect of allelic recombination on the ...

    African Journals Online (AJOL)

    Jane

    2011-01-21

    Jan 21, 2011 ... The significance of the correlation coefficient as well as the fitted regression model was obtained using. Analysis of Variance method. Key words: Allele, genotype, regression, correlation, F-ratio, analysis of variance. INTRODUCTION. Genetic recombination is an effective means of combining one individual ...

  3. Breit interaction effect on dielectronic recombination of heavy ions

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki

    2016-01-01

    Interaction of highly charged heavy ions with electrons is one of the most important atomic processes in high temperature plasmas, including astrophysical plasmas such as solar corona and artificial plasmas such as fusion reactor plasmas. Therefore it has been well studied to date, both theoretically and experimentally, to accumulate the atomic data required for understanding or controlling such plasmas. However, there still remains interesting subjects that receive remarkable attention from the atomic physics point of view. One of them, which is the subject of this review, is substantially large Breit interaction effects on the resonance recombination process called dielectronic recombination. The Breit interaction is a relativistic effect in the electron–electron interaction potential; it is thus generally important for highly charged heavy ions. However, in the calculation of the energy levels for heavy ions, the Breit interaction is still a small perturbation compared with the main Coulomb term. On the other hand for the dielectronic recombination, it was found that the Breit interaction can enhance the cross sections significantly. It was also found that the Breit interaction can play not only an important, but even a dominant role in determining the angular distribution of x-rays emitted in the recombination processes. This topical review introduces the recent experimental and theoretical activities to clarify the essential origin of the strong effects. (topical review)

  4. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. The pharmacology of recombinant hirudin, a new anticoagulant ...

    African Journals Online (AJOL)

    A new anticoagulant, recombinant hirudin, was given to healthy volunteers (5 per test dose) in single .intravenous doses of 0,01, 0,02, 0,04, 0,07 and 0,1 mg/kg to study its anticoagulant effects, how it was tolerated and its pharmacokinetics. Hirudin proved to be a potent anticoagulant with important effects on thrombin ...

  6. Role of Recombinant DNA Technology to Improve Life

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2016-01-01

    Full Text Available In the past century, the recombinant DNA technology was just an imagination that desirable characteristics can be improved in the living bodies by controlling the expressions of target genes. However, in recent era, this field has demonstrated unique impacts in bringing advancement in human life. By virtue of this technology, crucial proteins required for health problems and dietary purposes can be produced safely, affordably, and sufficiently. This technology has multidisciplinary applications and potential to deal with important aspects of life, for instance, improving health, enhancing food resources, and resistance to divergent adverse environmental effects. Particularly in agriculture, the genetically modified plants have augmented resistance to harmful agents, enhanced product yield, and shown increased adaptability for better survival. Moreover, recombinant pharmaceuticals are now being used confidently and rapidly attaining commercial approvals. Techniques of recombinant DNA technology, gene therapy, and genetic modifications are also widely used for the purpose of bioremediation and treating serious diseases. Due to tremendous advancement and broad range of application in the field of recombinant DNA technology, this review article mainly focuses on its importance and the possible applications in daily life.

  7. Recombinant alpha-interferon as salvage therapy in multiple myeloma

    African Journals Online (AJOL)

    1989-08-05

    Aug 5, 1989 ... Ten patients with end-stage multiple myeloma refractory to conventional chemotherapy and hemibody irradiation received recombinant a-interferon as salvage therapy. The median duration of treatment was 8 weeks. One patient had an objective response and survived 8 months, whereas in the remaining ...

  8. Recombinant alpha-interferon as salvage therapy in multiple myeloma

    African Journals Online (AJOL)

    Ten patients with end-stage multiple myeloma refractory to conventional chemotherapy and hemibody irradiation received recombinant α-interferon as salvage therapy. The median duration of treatment was 8 weeks. One patient had an objective response and survived 8 months, whereas in the remaining 9 patients the ...

  9. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    PANCHIGA

    2016-10-19

    Oct 19, 2016 ... Traditionally, HSA is produced by fractionation from human plasma but this method is limited by human blood supply and has the risk of contamination of blood-derived pathogens (Kobayashi et al., 2000a; Watanabe et al., 2001; Ohya et al., 2005;. Kaoru, 2006; Belew et al., 2008). Therefore, recombinant.

  10. Genetic recombination in Actinoplanes brasiliensis by protoplast fusion.

    OpenAIRE

    Palleroni, N J

    1983-01-01

    Protoplast formation, fusion, and cell regeneration have been achieved with mutant strains of Actinoplanes brasiliensis. Three-, four-, and five-factor crosses have shown genetic recombination among the markers, and a five-factor cross is analyzed and discussed. Possibilities of using protoplast fusion for gene mapping and strain improvement are suggested.

  11. Distant Recombination and the Creation of Basic Inventions

    DEFF Research Database (Denmark)

    Barirani, Ahmad; Beaudry, Catherine; Agard, Bruno

    2015-01-01

    characteristics. Our analysis of Canadian nanotechnology patents granted between 1990 and 1997 shows that although private organizations generally yield smaller rates of basic inventions than public organizations, increases to recombination distance by the former increases invention basicness at a higher rate...

  12. Is the use of recombinant human erythropoietin in anaemia of ...

    African Journals Online (AJOL)

    In a double-blind placebo-eontrolled study we showed a 3-fold decrease in blood transfusions (BTFs) given to preterm infants with anaemia of prematurity who received recombinant erythropoietin. However, only 50% of placebo recipients required a BTF. Data from the placebo group indicated that either mean daily weight ...

  13. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    kesiena

    2012-02-09

    Feb 9, 2012 ... 44 amino acid residues mediated by dipeptidylpeptidase. IV (Vlasak et al., 1983). It has been reported that the melittin exhibits antimicrobial activity and pro- ... Construction of recombinant expression vector. A pair of complementary oligonucleotides named Mel-1 (5′-GAT. CCG GAA TTG GAG CAG TTC ...

  14. Isomerization of metastable amine radical cations by dissociation-recombination

    DEFF Research Database (Denmark)

    Pedersen, Anders Holmen; Nielsen, Christian Benedikt; Bojesen, Gustav

    2015-01-01

    The metastable molecular ions of primary aliphatic amines branched at C2 can isomerize by cleavage-recombination, thereby facilitating fragmentation reactions that require less energy than simple cleavage of the initial molecular ion. This process complements the reactions described by Audier...

  15. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    Drinovac, P.

    2006-01-01

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  16. Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter

    NARCIS (Netherlands)

    Lutje Spelberg, Jeffrey H.; Rink, Rick; Kellogg, Richard M.; Janssen, Dick B.

    1998-01-01

    The recombinant epoxide hydrolase from Agrobacterium radiobacter AD1 was used to obtain enantiomerically pure epoxides by means of a kinetic resolution. Epoxides such as styrene oxide and various derivatives thereof and phenyl glycidyl ether were obtained in high enantiomeric excess and in

  17. Efforts towards the development of recombinant Vaccines against ...

    African Journals Online (AJOL)

    Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida. In this review an ...

  18. Molecular cloning, sequencing and recombinant expression of a ...

    African Journals Online (AJOL)

    The 4D8 gene was recently discovered in Ixodes scapularis and identified as a tick protective antigen. Vaccination using recombinant 4D8 from I. scapularis showed a significant reduction against I. scapularis tick infestation in a sheep model. This protein is expressed in both salivary gland and gut tissues, and is thought to ...

  19. Effects of anti-tick vaccines, recombinant serine protease inhibitors ...

    African Journals Online (AJOL)

    A preliminary trial of a cocktail of recombinant RAS-1-2 and RIM 36 antigens was conducted in Uganda to assess the effects of ant-tick vaccines against Rhipicephalus appendiculatus tick feeding on Zebu cattle under both experimental and natural conditions. Under experimental conditions, over a period of 28 days, the ...

  20. Homing of radiolabelled recombinant interleukin-2 activated natural ...

    Indian Academy of Sciences (India)

    Homing of radiolabelled recombinant interleukin-2 activated natural killer cells and their efficacy in adoptive immunotherapy against murine fibrosarcoma. Anuradha Rai Ashim ... Department of Zoology, St Joseph's College, Darjeeling 734 104, India; Centre for Life Sciences, North Bengal University, Siliguri 734 430, India ...

  1. Effect of dielectronic recombination on the charge-state distribution ...

    Indian Academy of Sciences (India)

    Abstract. The effect of dielectronic recombination in determining charge-state distribu- tion and radiative emission from a laser-produced carbon plasma has been investigated in the collisional radiative ionization equilibrium. It is observed that the relative abundances of different ions in the plasma, and soft X-ray emission ...

  2. Expression and purification of recombinant Shiga toxin 2B from ...

    African Journals Online (AJOL)

    sunny t

    (SDS-PAGE) and StxB2 yield was 450 µg ml-1 confirmed by Bradford assay. Recombinant Stx2B protein was produced in highly pure yield using HaloTag technology. Key words: Escherichia coli O157:H7, StxB gene, expression, HaloTag technology, purification. INTRODUCTION. Enterohemorrhagic Escherichia coli ...

  3. Recent advances in yeast molecular biology: recombinant DNA

    International Nuclear Information System (INIS)

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis

  4. Recombinant pharmaceuticals from microbial cells: a 2015 update.

    Science.gov (United States)

    Sanchez-Garcia, Laura; Martín, Lucas; Mangues, Ramon; Ferrer-Miralles, Neus; Vázquez, Esther; Villaverde, Antonio

    2016-02-09

    Diabetes, growth or clotting disorders are among the spectrum of human diseases related to protein absence or malfunction. Since these pathologies cannot be yet regularly treated by gene therapy, the administration of functional proteins produced ex vivo is required. As both protein extraction from natural producers and chemical synthesis undergo inherent constraints that limit regular large-scale production, recombinant DNA technologies have rapidly become a choice for therapeutic protein production. The spectrum of organisms exploited as recombinant cell factories has expanded from the early predominating Escherichia coli to alternative bacteria, yeasts, insect cells and especially mammalian cells, which benefit from metabolic and protein processing pathways similar to those in human cells. Up to date, around 650 protein drugs have been worldwide approved, among which about 400 are obtained by recombinant technologies. Other 1300 recombinant pharmaceuticals are under development, with a clear tendency towards engineered versions with improved performance and new functionalities regarding the conventional, plain protein species. This trend is exemplified by the examination of the contemporary protein-based drugs developed for cancer treatment.

  5. Modelling of the aerosol deposition in a hydrogen catalytic recombiner

    International Nuclear Information System (INIS)

    Vendel, J.; Studer, E.; Zavaleta, P.; Hadida, Ph.

    1997-01-01

    Catalytic recombiners are used to remove the hydrogen released in case of a severe accident in a nuclear power plant, so as to reduce the risk of deflagration or detonation. H 2 PAR experiments are carried out to precise the behaviour of recombiners in term of poisoning by aerosols. Firstly, some calculations have been done with the Trio-EF code to assess the structure of convection loops in the experimental tent. We note that when the recombiner is active, it may have a strong influence on the flow inside the tent and may even interact with an other heat source such as a furnace. In the second part, we study the deposition of aerosols on catalytic plates for a given recombiner, when it is active or passive. We list the different mechanisms and quantify them by introducing the deposition velocity. In fact, thermophoresis appears to be the main mechanism, compared to brownian diffusion or difrusiophoresis, which governs aerosols deposition. It favours deposition on > plates and acts against it for > plates. (author)

  6. Homoeologous Heterozygosity and Recombination in the Fern Pteridium aquilinum.

    Science.gov (United States)

    Chapman, R H; Klekowski, E J; Selander, R K

    1979-06-15

    The bracken fern, Pteridium aquilinum, which can form completely homozygous zygotes in a single generation of self-fertilization, has a genetic system that allows the storage and release of genetic variability in spite of this homozygosity. Analysis of the distribution of electrophoretically demonstrable genetic markers demonstrates that this system is based on recombination between duplicated, unlinked loci.

  7. Generation of truncated recombinant form of tumor necrosis factor ...

    African Journals Online (AJOL)

    Generation of truncated recombinant form of tumor necrosis factor receptor-1 to produce cancer vaccine. Hamide Hatamihanza1, Mehrdad Hashemi1*, Azim Akbarzadeh2, Fatemeh. Fotouhi3, Behrokh Farahmand3, Hasan Ebrahimi Shahmabadi4. 1Department of Molecular Genetics, Tehran Medical Branch, Islamic Azad ...

  8. Overview of the recombinant proteins purification by affinity tags and ...

    African Journals Online (AJOL)

    From protein within isolation process which the same matter increases labor costs further and prevents application of these tags in industrial scale. Therefore proper replacement is emphasized for enzymatic removal of purification tags. Keywords: protein purification; recombinant proteins; self-cleavable tags; Intein tags; ...

  9. Clinical experience with Repotin, a locally produced recombinant ...

    African Journals Online (AJOL)

    Clinical experience with Repotin, a locally produced recombinant human erythropoietin, in the treatment of anaemia of chronic renal failure in South Africa. C. R. Swanepoel, M. R. Moosa, G. F. Rowland, G. F. Rowland, B. P. Botha, A. J. Smart, R. Goodman, R. Schall, H. J. Keogh, E. H. Merrifield ...

  10. Laboratory scale production of the human recombinant iduronate 2 ...

    African Journals Online (AJOL)

    sulfate sulfatase-Like (hIDSLike) was employed for low-scale production of the recombinant enzyme in a saline culture media without phosphate. The biological activity found was between 7.3 and 29.5 nmol h-1 mg-1 of total protein. It is about 1.73 ...

  11. Binding properties of beetal recombinant caprine growth hormone to ...

    African Journals Online (AJOL)

    SAM

    2014-07-23

    Jul 23, 2014 ... The aim of the study was to illustrate the radio-receptor assay of beetal recombinant caprine growth hormone (rcGH) ... interaction with microsomal membrane that shall be beneficial to study hormone receptor interactions of other Bovidae .... adding 1 ml of ice cold assay buffer, followed by 1 ml of 25% (w/v).

  12. Interspecific Plastome Recombination Reflects Ancient Reticulate Evolution in Picea (Pinaceae).

    Science.gov (United States)

    Sullivan, Alexis R; Schiffthaler, Bastian; Thompson, Stacey Lee; Street, Nathaniel R; Wang, Xiao-Ru

    2017-07-01

    Plastid sequences are a cornerstone in plant systematic studies and key aspects of their evolution, such as uniparental inheritance and absent recombination, are often treated as axioms. While exceptions to these assumptions can profoundly influence evolutionary inference, detecting them can require extensive sampling, abundant sequence data, and detailed testing. Using advancements in high-throughput sequencing, we analyzed the whole plastomes of 65 accessions of Picea, a genus of ∼35 coniferous forest tree species, to test for deviations from canonical plastome evolution. Using complementary hypothesis and data-driven tests, we found evidence for chimeric plastomes generated by interspecific hybridization and recombination in the clade comprising Norway spruce (P. abies) and 10 other species. Support for interspecific recombination remained after controlling for sequence saturation, positive selection, and potential alignment artifacts. These results reconcile previous conflicting plastid-based phylogenies and strengthen the mounting evidence of reticulate evolution in Picea. Given the relatively high frequency of hybridization and biparental plastid inheritance in plants, we suggest interspecific plastome recombination may be more widespread than currently appreciated and could underlie reported cases of discordant plastid phylogenies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Recombination instability and domainisation in Ô-Ge(Au)

    Indian Academy of Sciences (India)

    fested in the non-linear mode in the case of the Gunn effect [3,4], very important for semiconductor device applications, since the initial equations for both the models are very similar. The recombination current instability, first reported by stafeev [5] and Bonch-. Bruevich and Kalashnikov [6-8], has been studied in sufficient ...

  14. Is the use of recombinant human erythropoietin in anaemia of ...

    African Journals Online (AJOL)

    1996-03-03

    Mar 3, 1996 ... In a double-blind placebo-eontrolled study we showed a. 3-fold decrease in blood transfusions (BTFs) given to preterm infants with anaemia of prematurity who received recombinant erythropoietin. However, only 50% of placebo recipients required a BTF. Data from the placebo group indicated that either ...

  15. Isolation of recombinant cysteine dioxygenase protein from Trichophyton mentagrophytes

    Czech Academy of Sciences Publication Activity Database

    Kašperová, A.; Kunert, J.; Horynová, M.; Weigl, E.; Sebela, M.; Lenobel, René; Raška, M.

    2011-01-01

    Roč. 54, č. 5 (2011), E456-E462 ISSN 0933-7407 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cysteine dioxygenase * dermatophytes * recombinant protein * keratinolytic fungi * cDNA Subject RIV: CE - Biochemistry Impact factor: 2.247, year: 2011

  16. Two step culture for production of recombinant herpes simplex virus ...

    African Journals Online (AJOL)

    Herpes simplex virus type 2 (HSV-2) was the major cause of genital herpes in humans. The HSV-2 glycoprotein D (gD2) had been proved to be a potentially effective vaccine for treatment of genital herpes. The present study was to develop a two step culture to express the recombinant gD2 protein using the immobilized ...

  17. Haldane, Waddington and recombinant inbred lines: extension of ...

    Indian Academy of Sciences (India)

    In the early 1930s, J. B. S. Haldane and C. H. Waddington collaborated on the consequences of genetic linkage and inbreeding. One elegant mathematical genetics problem solved by them concerns recombinant inbred lines (RILs) produced via repeated self or brother–sister mating. In this classic contribution, Haldane ...

  18. Dense genomic sampling identifies highways of pneumococcal recombination

    Science.gov (United States)

    Chewapreecha, Claire; Harris, Simon R; Croucher, Nicholas J; Turner, Claudia; Marttinen, Pekka; Cheng, Lu; Pessia, Alberto; Aanensen, David M; Mather, Alison E; Page, Andrew J; Salter, Susannah J.; Harris, David; Nosten, Francois; Goldblatt, David; Corander, Jukka; Parkhill, Julian

    2014-01-01

    Evasion of clinical interventions by Streptococcus pneumoniae occurs through selection of non-susceptible genomic variants. Here we use genome sequencing of 3,085 pneumococcal carriage isolates from a 2.4 km2 refugee camp to enable unprecedented resolution of the process of recombination, and highlight its impact on population evolution. Genomic recombination hotspots show remarkable consistency between lineages, indicating common selective pressures acting at certain loci, particularly those associated with antibiotic resistance. Temporal changes in antibiotic consumption are reflected in changes in recombination trends demonstrating rapid spread of resistance when selective pressure is high. The highest frequencies of receipt and donation of recombined DNA fragments were observed in non-encapsulated lineages, implying that this largely overlooked pneumococcal group, which is beyond the reach of current vaccines, may play a major role in genetic exchange and adaptation of the species as a whole. These findings advance our understanding of pneumococcal population dynamics and provide important information for the design of future intervention strategies. PMID:24509479

  19. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    In an earlier research work, the dust-neutral collision was neglected in comparison to the effect due to the recombination for estimating the dust-acoustic instability; later the other report ... Department of Physics, Jadavpur University, Kolkata 700 032, India; Department of AEIE, Dream Institute of Technology, Kolkata, India ...

  20. Recombinant expression and purification of L2 domain of human ...

    African Journals Online (AJOL)

    The aim of the present study was cloning and expressing the fragment coding for L2 region of human EGFR for the production of recombinant L2 protein. The total RNA from A431 cells line was extracted and used for amplification of the sequence coding for L2 domain of EGFR by reverse transcriptase-polymerase chain ...

  1. Constructive episodic simulation, flexible recombination, and memory errors.

    Science.gov (United States)

    Schacter, Daniel L; Carpenter, Alexis C; Devitt, Aleea; Roberts, Reece P; Addis, Donna Rose

    2018-01-01

    According to Mahr & Csibra (M&C), the view that the constructive nature of episodic memory is related to its role in simulating future events has difficulty explaining why memory is often accurate. We hold this view, but disagree with their conclusion. Here we consider ideas and evidence regarding flexible recombination processes in episodic retrieval that accommodate both accuracy and distortion.

  2. Genetic loci mapping for ear axis weight using recombinant inbred ...

    African Journals Online (AJOL)

    Ear axis weight (EAW) is one of the important agronomic traits in maize (Zea mays L.), related to yield. To understand its genetic basis, a recombinant inbred line (RIL) population, derived from the cross Mo17 × Huangzao4, was used for quantitative trait locus mapping (QTL) for EAW under high and low nitrogen (N) regimes.

  3. A Mechanistic Model of a Passive Autocatalytic Hydrogen Recombiner

    Directory of Open Access Journals (Sweden)

    Rożeń Antoni

    2015-03-01

    Full Text Available : A passive autocatalytic hydrogen recombiner (PAR is a self-starting device, without operator action or external power input, installed in nuclear power plants to remove hydrogen from the containment building of a nuclear reactor. A new mechanistic model of PAR has been presented and validated by experimental data and results of Computational Fluid Dynamics (CFD simulations. The model allows to quickly and accurately predict gas temperature and composition, catalyst temperature and hydrogen recombination rate. It is assumed in the model that an exothermic recombination reaction of hydrogen and oxygen proceeds at the catalyst surface only, while processes of heat and mass transport occur by assisted natural and forced convection in non-isothermal and laminar gas flow conditions in vertical channels between catalyst plates. The model accounts for heat radiation from a hot catalyst surface and has no adjustable parameters. It can be combined with an equation of chimney draft and become a useful engineering tool for selection and optimisation of catalytic recombiner geometry.

  4. Binding properties of beetal recombinant caprine growth hormone to ...

    African Journals Online (AJOL)

    The aim of the study was to illustrate the radio-receptor assay of beetal recombinant caprine growth hormone (rcGH). Tracer (125I-rcGH) was prepared by iodinating beetal rcGH with iodine-125 and its biological activity was analyzed by rabbit anti-rcGH antibodies. Liver microsomal membranes of the Bovidae species ...

  5. Screening of recombinant inbred lines for salinity tolerance in bread ...

    African Journals Online (AJOL)

    Screening a large number of plants for salinity tolerance is not easy, therefore this investigation was performed to evaluate and screen 186 F8 recombinant inbred lines (RILs) derived from a cross between Superhead#2 (Super Seri) and Roshan wheat varieties for salinity tolerance. All the individuals were evaluated under ...

  6. (111)Indium Labelling of Recombinant Activated Coagulation Factor VII

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Buch, Inge; Sigvardt, Maibritt

    2012-01-01

    The aim of this study is to investigate whether (111)Indium-labelled recombinant FVIIa (rFVIIa) could be a potential radiopharmaceutical for localization of bleeding sources. DTPA-conjugated rFVIIa was radiolabelled with (111)In chloride. In vitro binding efficiency of (111)In-DTPA-rFVIIa to F1A2...

  7. Recent advances in yeast molecular biology: recombinant DNA. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis. (KRM)

  8. Recombination plus fragmentation model at RHIC: elliptic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, C [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B [Department of Physics, Duke University, Durham, NC 27708 (United States); Bass, S A [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Asakawa, M [Department of Physics, Osaka University, Toyonaka 560-0043 (Japan)

    2005-04-01

    We discuss hadron production in relativistic heavy-ion collisions in the framework of the recombination and fragmentation model. We propose elliptic flow as a useful tool for exploring final interactions of resonances, the hadron structure of exotic particles and the phase structure of the reaction.

  9. Effect of recombinant bovine somatotropin application intervals on ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the effect of recombinant bovine somatotropin (rBST) application intervals on chemical composition of milk from Girolando cows with productivity below 20 L/milk/day and animals with productivity above 20.1 liters/milk/day. The study included 30 Girolando cows with production ranging ...

  10. Yeast Hosts for the Production of Recombinant Laccases: A Review

    Czech Academy of Sciences Publication Activity Database

    Antošová, Zuzana; Sychrová, Hana

    2016-01-01

    Roč. 58, č. 2 (2016), s. 93-116 ISSN 1073-6085 R&D Projects: GA TA ČR(CZ) TA01011461 Institutional support: RVO:67985823 Keywords : laccase * yeasts * heterologous expression * recombinant * expression optimization Subject RIV: EE - Microbiology, Virology Impact factor: 1.634, year: 2016

  11. Treatment of anemia of nephrotic syndrome with recombinant erythropoietin

    NARCIS (Netherlands)

    Gansevoort, RT; Vaziri, ND; deJong, PE

    Nephrotic syndrome has been recently shown to cause erythropoietin (EPO) deficiency in humans and experimental models. However, efficacy and safety of recombinant EPO (rEPO) in the treatment of the associated anemia has not been previously investigated. We report a patient with nephrotic syndrome

  12. A Novel Recombined Potato virus Y Isolate in China

    Science.gov (United States)

    Han, Shuxin; Gao, Yanling; Fan, Guoquan; Zhang, Wei; Qiu, Cailing; Zhang, Shu; Bai, Yanju; Zhang, Junhua; Spetz, Carl

    2017-01-01

    This study reports the findings of a distinct Potato virus Y (PVY) isolate found in Northeast China. One hundred and ten samples (leaves and tubers) were collected from potato plants showing mosaic symptoms around the city of Harbin in Heilongjiang province of China. The collected tubers were planted and let to grow in a greenhouse. New potato plants generated from these tubers showed similar symptoms, except for one plant. Subsequent serological analyses revealed PVY as the causing agent of the disease. A novel PVY isolate (referred to as HLJ-C-44 in this study) was isolated from this sample showing unique mild mosaic and crisped leaf margin symptoms. The complete genome of this isolate was analyzed and determined. The results showed that HLJ-C-44 is a typical PVY isolate. Phylogenetic analysis indicated that this isolate belongs to the N-Wi strain group of PVY recombinants (PVYN-Wi) and also shared the highest overall sequence identity (nucleotide and amino acid) with other members of this strain group. However, recombination analysis of isolate HLJ-C-44 revealed a recombination pattern that differed from that of other PVYN-Wi isolates. Moreover, biological assays in four different potato cultivars and in Nicotiana tabacum also revealed a different phenotypic response than that of a typical PVYN-Wi isolate. This data, combined, suggest that HLJ-C-44 is a novel PVY recombinant with distinct biological properties. PMID:28811755

  13. A Novel RecombinedPotato virus YIsolate in China.

    Science.gov (United States)

    Han, Shuxin; Gao, Yanling; Fan, Guoquan; Zhang, Wei; Qiu, Cailing; Zhang, Shu; Bai, Yanju; Zhang, Junhua; Spetz, Carl

    2017-08-01

    This study reports the findings of a distinct Potato virus Y (PVY) isolate found in Northeast China. One hundred and ten samples (leaves and tubers) were collected from potato plants showing mosaic symptoms around the city of Harbin in Heilongjiang province of China. The collected tubers were planted and let to grow in a greenhouse. New potato plants generated from these tubers showed similar symptoms, except for one plant. Subsequent serological analyses revealed PVY as the causing agent of the disease. A novel PVY isolate (referred to as HLJ-C-44 in this study) was isolated from this sample showing unique mild mosaic and crisped leaf margin symptoms. The complete genome of this isolate was analyzed and determined. The results showed that HLJ-C-44 is a typical PVY isolate. Phylogenetic analysis indicated that this isolate belongs to the N-Wi strain group of PVY recombinants (PVY N-Wi ) and also shared the highest overall sequence identity (nucleotide and amino acid) with other members of this strain group. However, recombination analysis of isolate HLJ-C-44 revealed a recombination pattern that differed from that of other PVY N-Wi isolates. Moreover, biological assays in four different potato cultivars and in Nicotiana tabacum also revealed a different phenotypic response than that of a typical PVY N-Wi isolate. This data, combined, suggest that HLJ-C-44 is a novel PVY recombinant with distinct biological properties.

  14. Limits for Recombination in a Low Energy Loss Organic Heterojunction

    KAUST Repository

    Menke, S. Matthew

    2016-11-03

    Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

  15. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    Science.gov (United States)

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  16. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    The apr gene was cloned into plasmid pUB110, resulting in the recombinant plasmid pUB-apr, which was then transformed into Bacillus amyloliquefaciens CICIM B4803. The protease productivity was significantly improved in the transformants of B. amyloliquefaciens CICIM B4803. A transformant with high alkaline ...

  17. Cloning, recombinant expression and characterization of a new ...

    African Journals Online (AJOL)

    A new amylase gene APGA1 was cloned from Aureobasidium pullulans NRRL 12974 and expressed in Pichia pastoris. This is the first report on cloning and expression of amylolytic gene from the industrially important microorganism A. pullulans. The purified recombinant protein with MW of 66 kDa and specific activity of ...

  18. Meiotic sister chromatid cohesion and recombination in two filamentous fungi

    NARCIS (Netherlands)

    Heemst, van D.

    2000-01-01

    Homologous recombination and sister chromatid cohesion play important roles in the maintenance of genome integrity and the fidelity of chromosome segregation in mitosis and meiosis. Within the living cell, the integrity of the DNA is threatened by various factors that cause DNA-lesions, of

  19. Natural and recombinant fungal laccases for paper pulp bleaching

    NARCIS (Netherlands)

    Sigoillot, C.; Record, E.; Belle, V.; Robert, J.L.; Levasseur, A.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Fournel, A.; Sigoillot, J.C.; Asther, M.

    2004-01-01

    Three laccases, a natural form and two recombinant forms obtained from two different expression hosts, were characterized and compared for paper pulp bleaching. Laccase from Pycnoporus cinnabarinus, a well known lignolytic fungus, was selected as a reference for this study. The corresponding

  20. Efforts Towards The Development Of Recombinant Vaccines Against

    African Journals Online (AJOL)

    ABSTRACT. Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida.

  1. Effects of recombinant human nerve growth factor on cervical cancer

    African Journals Online (AJOL)

    Jane

    2011-07-25

    Jul 25, 2011 ... systems. However, the roles of NGF to cervical cancer remain deeply unknown. This study investigated the effect of recombinant human nerve growth factor ... In addition, the immune abilities of thymus and spleen were improved by rhNGF. Finally ... polypeptide neurotrophin, plays a crucial role in the life of.

  2. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate

    DEFF Research Database (Denmark)

    Kaiser, Gitte Schalck; Germann, Susanne Manuela; Westergaard, Tine

    2011-01-01

    . Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability...

  3. Effect of Cytotoxicity of Pegylated Liposomal Recombinant Human ...

    African Journals Online (AJOL)

    Purpose: To evaluate the cytotoxic effect of pegylated liposomal Recombinant Human Erythropoietin- alfa (rHuEPO) nanoparticles synthesized by reverse phase evaporation technique on SH-SY5Y cell line. Methods: To prepare the nanoparticles of the drug, rHuEPO, PEG3000, cholesterol and phosphatidylcholine were ...

  4. Review of literature on catalytic recombination of hydrogen--oxygen

    International Nuclear Information System (INIS)

    Homsy, R.V.; Glatron, C.A.

    1968-01-01

    The results are reported of a literature search for information concerning the heterogeneous, gas phase, catalytic hydrogen-oxygen recombination. Laboratory scale experiments to test the performance of specific metal oxide catalysts under conditions simulating the atmosphere within a nuclear reactor containment vessel following a loss-of-coolant blowdown accident are suggested

  5. Cloning, recombinant expression and characterization of a new ...

    African Journals Online (AJOL)

    Jane

    2011-06-13

    Jun 13, 2011 ... highest raw starch hydrolysis efficiency report about recombinant fungal glucoamylase. This useful property indicated that this glucoamylase may find important applications in the starch saccharification industry and in bioethanol production. Key words: Glucoamylase, Aureobasidium pullulans, expression, ...

  6. Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic ...

    African Journals Online (AJOL)

    Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic hydrolysis of corn stover with low cellulase loadings. ... These results provided a feasible way for the potential application of BsEXLX1 in the efficient saccharification of cellulose materials for bioethanol production. Key word: Bacillus subtilis, BsEXLX1, ...

  7. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  8. Recombination in the human Pseudoautosomal region PAR1.

    Directory of Open Access Journals (Sweden)

    Anjali G Hinch

    2014-07-01

    Full Text Available The pseudoautosomal region (PAR is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome.

  9. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  10. Production of recombinant proteins in suspension-cultured plant cells.

    Science.gov (United States)

    Plasson, Carole; Michel, Rémy; Lienard, David; Saint-Jore-Dupas, Claude; Sourrouille, Christophe; de March, Ghislaine Grenier; Gomord, Véronique

    2009-01-01

    Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis

  11. Multiple genomic recombination events in the evolution of saffold cardiovirus.

    Directory of Open Access Journals (Sweden)

    Lili Ren

    Full Text Available BACKGROUND: Saffold cardiovirus (SAFV is a new human cardiovirus with 11 identified genotypes. Little is known about the natural history and pathogenicity of SAFVs. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the genome of five SAFV-1 strains which were identified from fecal samples taken from children with viral diarrhea in Beijing, China between March 2006 and November 2007, and analyzed the phylogenetic and phylodynamic properties of SAFVs using the genome sequences of every known SAFV genotypes. We identified multiple recombination events in our SAFV-1 strains, specifically recombination between SAFV-2, -3, -4, -9, -10 and the prototype SAFV-1 strain in the VP4 region and recombination between SAFV-4, -6, -8, -10, -11 and prototype SAFV-1 in the VP1/2A region. Notably, recombination in the structural gene VP4 is a rare event in Cardiovirus. The ratio of nonsynonymous substitutions to synonymous substitutions indicates a purifying selection of the SAFV genome. Phylogenetic and molecular clock analysis indicates the existence of at least two subclades of SAFV-1 with different origins. Subclade 1 includes two strains isolated from Pakistan, whereas subclade 2 includes the prototype strain and strains isolated in China, Pakistan, and Afghanistan. The most recent common ancestor of all SAFV genotypes dates to the 1710s, and SAFV-1, -2, and -3 to the 1940s, 1950s, and 1960s, respectively. No obvious relationship between variation and pathogenicity exists in the critical domains of the CD and EF loops of viral capsid proteins or the multi-functional proteins L based on amino acid sequence identity comparison between SAFV genotypes. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that intertypic recombination plays an important role in the diversity of SAFVs, highlighting the diversity of the five strains with the previously described SAFV-1 strains.

  12. Making Recombinant Monoclonal Antibody And Radiolabelling For Medical Purpose

    International Nuclear Information System (INIS)

    Nguyen Thi Thu; Duong Van Dong; Vo Thi Cam Hoa; Bui Van Cuong; Chu Van Khoa; Vu Bich Huong; Le Quang Huan

    2008-01-01

    Recombinant monoclonal antibody labeling with 131 I specific to tumor cell has been studied and prepared for treatment of Hodgkin lymphoma. In this study, a recombinant monoclonal antibody with two specific properties is a hybrid molecule created by coupling an antibody variable fragments with peptide melittin. The gene coding the antibody fragment has been obtained from human synthetic Fv libraries using for panning and screening on populations of lymphocytes fragmented from human blood cells with Hodgkin diseases. The gene encoding peptit melittin has been cloned from honeybee Apis cerana DNA. The gene coding recombinant monoclonal antibody has been expressed in E.coli BL21 (DE3) at 37 o C and was induced with 0.6 mM IPTG. The recombinant compound has been purified by affinity chromatography with HiTrap affinity column. The obtained recombinant monoclonal antibody has showed cytolytic activities when added to cell culture medium for LU cancer cell line with the amount of 100 - 200 mg/ml. This monoclonal antibody is labeled with 131 I using chloramine T procedure. ChT mass for the oxidation of 50 μg monoclonal antibody in 76 MBq was 10 μg. Sodium metabisulfite was used as a reducing agent. Reaction time was above 3 mins. The radiochemical purity was determined using electrophoresis and TLC methods. Radiochemical yield was > 97%. Radiochemical purity after purification was > 99%. Nuclear purity was > 99%. Stability of the label antibody was 12 days. This is the product promise potential used in the diagnostic and therapeutic of Hodgkin lymphoma. (author)

  13. Dusting Off the Knowledge Shelves: Recombinant Lag and the Technological Value of Inventions

    NARCIS (Netherlands)

    Kok, Holmer; Faems, Dries; de Faria, Pedro

    2018-01-01

    Whereas knowledge recombination research tends to focus on original knowledge component attri- butes and their recombinant value implications, we contribute to an emerging literature stream on knowledge reuse trajectories, investigating the temporal dimension of reuse by introducing the concept of

  14. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    Science.gov (United States)

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  15. Similarity of recombinant human perlecan domain 1 by alternative expression systems bioactive heterogenous recombinant human perlecan D1

    DEFF Research Database (Denmark)

    Ellis, April L; Pan, Wensheng; Yang, Guang

    2010-01-01

    perlecan domain 1 (HSPG2 abbreviated as rhPln.D1) synthesized in either HEK 293 cells or HUVECs by transient gene delivery using either adenoviral or expression plasmid technology. RESULTS: By SDS-PAGE analysis following anion exchange chromatography, the recombinant proteoglycans appeared to possess...

  16. Recombinant FSH versus urinary gonadotrophins or recombinant FSH for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; van der Veen, F.

    2001-01-01

    BACKGROUND: Over the last four decades, various urinary FSH (uFSH) products of different purity have been developed. In 1988 recombinant FSH (rFSH ) was prepared by transfecting Chinese hamster ovary cell lines with both FSH subunit genes. Both rFSH and uFSH are known to be effective in inducing

  17. Effect of desorption and recombination on texture development in hydrogenation–disproportionation–desorption–recombination processed Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; An, Byeong-Seon [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Cha, Hee-Ryoung [Powder & Ceramics Division, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of); School of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Lee, Jung-Goo, E-mail: jglee36@kims.re.kr [Powder & Ceramics Division, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of); Kwon, Hae-Woong, E-mail: hwkwon@pknu.ac.kr [Department of Materials Science and Engineering, Pukyong National University, Busan 48513 (Korea, Republic of); Yang, Cheol-Woong, E-mail: cwyang@skku.edu [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2016-07-05

    The microstructural evolution of Nd–Fe–B magnets during a hydrogenation–disproportionation–desorption–recombination (HDDR) process was investigated, with particular focus on the effects of the desorption–recombination (DR) stage of the process. Samples that went through the DR process under different conditions were compared to examine the texture development during the reaction. Even though the same hydrogenation–disproportionation (HD) treatment was carried out on all samples before the DR reaction, variations in conditions of the latter significantly affected the development of texture in the samples. In consideration of the microstructural evolution, magnetic properties, and thermodynamics, nucleation of recombined Nd{sub 2}Fe{sub 14}B grains was found to occur not only at the NdH{sub 2}/Fe{sub 2}B interfaces but also at the NdH{sub 2}/α-Fe interfaces, and it was affected by the desorption of hydrogen. Preferential growth of nuclei at the NdH{sub 2}/Fe{sub 2}B interfaces, which led to a highly textured Nd{sub 2}Fe{sub 14}B phase, could be induced by slow desorption and recombination with a low driving force. Hydrogen desorption at a slower rate was important for achieving high magnetic anisotropy in the HDDR-processed Nd–Fe–B powders. - Highlights: • The DR condition significantly affected magnetic anisotropy of HDDR powder. • Mechanism of texture development during the DR stage was suggested. • Recombined Nd{sub 2}Fe{sub 14}B could be nucleated at both NdH{sub 2}/Fe{sub 2}B and NdH{sub 2}/α-Fe interfaces. • Hydrogen pressure during DR reaction affects the preference of nucleation site. • Slow DR process is important for high magnetic anisotropy.

  18. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly

    NARCIS (Netherlands)

    Horzinek, M.C.; Vennema, H.; Heijnen, L.; Zijderveld, A.; Spaan, W.J.M.

    1990-01-01

    Coronavirus spike protein genes were expressed in vitro by using the recombinant vaccinia virus expression system. Recombinant spike proteins were expressed at the cell surface and induced cell fusion in a host-cell-dependent fashion. The intracellular transport of recombinant spike proteins was

  19. Recombination in Perovskite Solar Cells : Significance of Grain Boundaries, Interface Traps, and Defect Ions

    NARCIS (Netherlands)

    Sherkar, Tejas; Momblona, Cristina; Gil-Escrig, Lidon; Avila, Jorge; Sessolo, Michele; Bolink, Henk J.; Koster, Lambert

    2017-01-01

    Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain

  20. DNA repair and its relation to recombination-deficient and other mutations in Bacillus subtilis

    International Nuclear Information System (INIS)

    Ganesan, A.T.

    1975-01-01

    DNA repair processes operating in Bacillus subtilis are similar to other transformable bacterial systems. Radiation-sensitive, recombination-deficient mutants are blocked in distinct steps leading to recombination. DNA polymerase I is essential for the repair of x-ray-induced damage to DNA but not for recombination

  1. The role of recombination in the emergence of a complex and dynamic HIV epidemic

    Directory of Open Access Journals (Sweden)

    Morgenstern Burkhard

    2010-03-01

    Full Text Available Abstract Background Inter-subtype recombinants dominate the HIV epidemics in three geographical regions. To better understand the role of HIV recombinants in shaping the current HIV epidemic, we here present the results of a large-scale subtyping analysis of 9435 HIV-1 sequences that involve subtypes A, B, C, G, F and the epidemiologically important recombinants derived from three continents. Results The circulating recombinant form CRF02_AG, common in West Central Africa, appears to result from recombination events that occurred early in the divergence between subtypes A and G, followed by additional recent recombination events that contribute to the breakpoint pattern defining the current recombinant lineage. This finding also corrects a recent claim that G is a recombinant and a descendant of CRF02, which was suggested to be a pure subtype. The BC and BF recombinants in China and South America, respectively, are derived from recent recombination between contemporary parental lineages. Shared breakpoints in South America BF recombinants indicate that the HIV-1 epidemics in Argentina and Brazil are not independent. Therefore, the contemporary HIV-1 epidemic has recombinant lineages of both ancient and more recent origins. Conclusions Taken together, we show that these recombinant lineages, which are highly prevalent in the current HIV epidemic, are a mixture of ancient and recent recombination. The HIV pandemic is moving towards having increasing complexity and higher prevalence of recombinant forms, sometimes existing as "families" of related forms. We find that the classification of some CRF designations need to be revised as a consequence of (1 an estimated > 5% error in the original subtype assignments deposited in the Los Alamos sequence database; (2 an increasing number of CRFs are defined while they do not readily fit into groupings for molecular epidemiology and vaccine design; and (3 a dynamic HIV epidemic context.

  2. Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Etienne Simon-Loriere

    2009-05-01

    Full Text Available The ability of pathogens to escape the host's immune response is crucial for the establishment of persistent infections and can influence virulence. Recombination has been observed to contribute to this process by generating novel genetic variants. Although distinctive recombination patterns have been described in many viral pathogens, little is known about the influence of biases in the recombination process itself relative to selective forces acting on newly formed recombinants. Understanding these influences is important for determining how recombination contributes to pathogen genome and proteome evolution. Most previous research on recombination-driven protein evolution has focused on relatively simple proteins, usually in the context of directed evolution experiments. Here, we study recombination in the envelope gene of HIV-1 between primary isolates belonging to subtypes that recombine naturally in the HIV/AIDS pandemic. By characterizing the early steps in the generation of recombinants, we provide novel insights into the evolutionary forces that shape recombination patterns within viral populations. Specifically, we show that the combined effects of mechanistic processes that determine the locations of recombination breakpoints across the HIV-1 envelope gene, and purifying selection acting against dysfunctional recombinants, can explain almost the entire distribution of breakpoints found within this gene in nature. These constraints account for the surprising paucity of recombination breakpoints found in infected individuals within this highly variable gene. Thus, the apparent randomness of HIV evolution via recombination may in fact be relatively more predictable than anticipated. In addition, the dominance of purifying selection in localized areas of the HIV genome defines regions where functional constraints on recombinants appear particularly strong, pointing to vulnerable aspects of HIV biology.

  3. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.

    Science.gov (United States)

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand

    2017-10-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society

  4. A New Metazoan Recombination Rate Record and Consistently High Recombination Rates in the Honey Bee Genus Apis Accompanied by Frequent Inversions but Not Translocations

    Science.gov (United States)

    Kuster, Ryan; Miller, Katelyn; Fouks, Bertrand; Rubio Correa, Sara; Collazo, Juan; Phaincharoen, Mananya; Tingek, Salim; Koeniger, Nikolaus

    2016-01-01

    Abstract Western honey bees (Apis mellifera) far exceed the commonly observed 1–2 meiotic recombination events per chromosome and exhibit the highest Metazoan recombination rate (20 cM/Mb) described thus far. However, the reasons for this exceptional rate of recombination are not sufficiently understood. In a comparative study, we report on the newly constructed genomic linkage maps of Apis florea and Apis dorsata that represent the two honey bee lineages without recombination rate estimates so far. Each linkage map was generated de novo, based on SNP genotypes of haploid male offspring of a single female. The A. florea map spans 4,782 cM with 1,279 markers in 16 linkage groups. The A. dorsata map is 5,762 cM long and contains 1,189 markers in 16 linkage groups. Respectively, these map sizes result in average recombination rate estimates of 20.8 and 25.1 cM/Mb. Synteny analyses indicate that frequent intra-chromosomal rearrangements but no translocations among chromosomes accompany the high rates of recombination during the independent evolution of the three major honey bee lineages. Our results imply a common cause for the evolution of very high recombination rates in Apis. Our findings also suggest that frequent homologous recombination during meiosis might increase ectopic recombination and rearrangements within but not between chromosomes. It remains to be investigated whether the resulting inversions may have been important in the evolutionary differentiation between honey bee species. PMID:28173114

  5. Recombination An important effect in multigap resistive plate chambers

    CERN Document Server

    Doroud, K; Hatzifotiadou, D; Rahighi, J; Williams, M C S; Zichichi, A

    2009-01-01

    We have simulated the gas avalanche in a multigap resistive plate chamber (MRPC). The results were then compared with our data from the MRPC [1]. Up to now, the total amount of charge produced in a gas gap is considered to be given by the total number of positive ions generated by the gas avalanches. However, the total charge generated by the simulation program is much too large and is in conflict with our data. Our data indicate that nearly 100% of the negative ions recombine with the positive ions. The recombination effect dramatically reduces the amount of charge in the gas gap: a very important feature for MRPC technology especially for the rate capability.

  6. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    Kafrouni, Hanna.

    1979-01-01

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values [fr

  7. Recombination: An important effect in multigap resistive plate chambers

    International Nuclear Information System (INIS)

    Doroud, K.; Afarideh, H.; Hatzifotiadou, D.; Rahighi, J.; Williams, M.C.S.; Zichichi, A.

    2009-01-01

    We have simulated the gas avalanche in a multigap resistive plate chamber (MRPC). The results were then compared with our data from the MRPC . Up to now, the total amount of charge produced in a gas gap is considered to be given by the total number of positive ions generated by the gas avalanches. However, the total charge generated by the simulation program is much too large and is in conflict with our data. Our data indicate that nearly 100% of the negative ions recombine with the positive ions. The recombination effect dramatically reduces the amount of charge in the gas gap: a very important feature for MRPC technology especially for the rate capability.

  8. Use of Recombinant Antigens for the Diagnosis of Invasive Candidiasis

    Directory of Open Access Journals (Sweden)

    Ana Laín

    2008-01-01

    Full Text Available Invasive candidiasis is a frequent and often fatal complication in immunocompromised and critically ill patients. Unfortunately, the diagnosis of invasive candidiasis remains difficult due to the lack of specific clinical symptoms and a definitive diagnostic method. The detection of antibodies against different Candida antigens may help in the diagnosis. However, the methods traditionally used for the detection of antibodies have been based on crude antigenic fungal extracts, which usually show low-reproducibility and cross-reactivity problems. The development of molecular biology techniques has allowed the production of recombinant antigens which may help to solve these problems. In this review we will discuss the usefulness of recombinant antigens in the diagnosis of invasive candidiasis.

  9. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    Science.gov (United States)

    Hruby, D E

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector. PMID:2187593

  10. Three faces of recombination activating gene 1 (RAG1) mutations.

    Science.gov (United States)

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam

    2015-12-01

    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation.

  11. Recombination patterns reveal information about centromere location on linkage maps

    DEFF Research Database (Denmark)

    Limborg, Morten T.; McKinney, Garrett J.; Seeb, Lisa W.

    2016-01-01

    , approximate centromere placement is possible by phasing the same data used to generate linkage maps. Assuming one obligate crossover per chromosome arm, information about centromere location can be revealed by tracking the accumulated recombination frequency along linkage groups, similar to half......Linkage mapping is often used to identify genes associated with phenotypic traits and for aiding genome assemblies. Still, many emerging maps do not locate centromeres – an essential component of the genomic landscape. Here, we demonstrate that for genomes with strong chiasma interference....... mykiss) characterized by low and unevenly distributed recombination – a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations...

  12. A model for electron/ion recombination in ionization chambers

    International Nuclear Information System (INIS)

    Sailor, W.C.

    1988-05-01

    The recombination of free electrons and positive ions along charged particle tracks in gases has been modeled using electron tranport equations, which assume homogeneous distribution in the vicinity of the tracks. The equations include space charge terms, which have been negelected in previous models. A formula for the electron yield as a function of detector applied potential is obtained from a perturbation solution valid when the ratio of the Debye length to the charge column radius is larger then unity. When this ratio is very large, the formula reduces to that of previous models. Pulse height measurements in a 3 He ionization chamber indicate 2% to 30% losses to recombination which vary with applied field, particle type, and energy. Using reasonable values for the electron transport coefficients, the calculated loss of signal to recommendation is generally in agreement with experiment, but the variation with applied bias is stronger in the experiment

  13. Recombinant lactic acid bacteria as mucosal biotherapeutic agents.

    Science.gov (United States)

    Daniel, Catherine; Roussel, Yvonne; Kleerebezem, Michiel; Pot, Bruno

    2011-10-01

    The safety status of lactic acid bacteria (LAB) and their capacity to survive the passage through the gastrointestinal tract (GI tract) have rendered them excellent candidates for the production of therapeutic proteins and their delivery in situ to the GI tract. During the past two decades, major health benefits of mucosally administered recombinant LAB have been successfully demonstrated, predominantly using animal models. However, the field has recently moved into the era of human clinical trials. In this review, we provide a timely update on the recent important advances made in this field, and outline the potential of recombinant LAB as therapeutic tools for their safe and efficient use in human health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Dissociative recombination in reactive flows related to planetary atmospheric entries

    Directory of Open Access Journals (Sweden)

    Bultel Arnaud

    2015-01-01

    Full Text Available The Dissociative Recombination (DR processes play a significant role in plasma chemistry. This article illustrates this role from the modeling point of view in the case of reactive flows related to atmospheric entry plasmas. Two situations are investigated, for which the studied plasma is nitrogen. The first configuration corresponds to the relaxation process behind a strong shock wave moving at high Mach number in a shock tube, the second one to the recombination taking place in an expanding plasma flowing in a diverging nozzle. In both cases, the collisional-radiative model CoRaM-N2, involving N2, N, N2+, N+ and electrons, is implemented in an Eulerian 1D code able to compute the aerodynamic fields; calculations are performed in standard conditions. We show that, according to the rate coefficients used for the DR processes, the population density of the charged species especially N2+ is strongly modified only for the post-shock flow.

  15. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    Science.gov (United States)

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Galaxy formation-a condensation process just after recombination

    International Nuclear Information System (INIS)

    Lessner, G.

    1998-01-01

    A scenario of galaxy formation is put forward which is a process of sudden condensation just after recombination. It is essentially based on the fact that the cosmic-matter gas after recombination is a general relativistic Boltzmann gas which runs within a few 10 6 years into a tate very close to collision-dominated equilibrium. The mass spectrum of axially symmetric condensation 'drops' extends from the lower limit M ≅ 10 5 M to the upper limit M ≅ 10 12 M. The lower-limit masses are spheres whereas the upper-limit masses are thin pancakes. These pancakes contract within a time of about 2.5 · 10 9 y to rotating spiral galaxies with ordinary proportions. In this final state they have a redshift z ≅ 3. At an earlier time during their contraction they are highly active and are observed with a redshift z ≅ 5

  17. Gas recombination device design and cost study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Under a contract with Argonne National Laboratory, VARTA Batterie AG. conducted a design and cost study of hydrogen-oxygen recombination devices (HORD) for use with utility load-leveling lead-acid cells. Design specifications for the devices, through extensive calculation of the heat-flow conditions of the unit, were developed. Catalyst and condenser surface areas were specified. The exact dimensions can, however, be adjusted to the cell dimension and the space available above the cell. Design specifications were also developed for additional components required to ensure proper function of the recombination device, including metal hydride compound decomposer, aerosol retainer, and gas storage component. Costs for HORD were estimated to range from $4 to $10/kWh cell capacity for the production of a large number of units (greater than or equal to 10,000 units). The cost is a function of cell size and positive grid design. 21 figures, 2 tables.

  18. Stimulated luminescence emission from localized recombination in randomly distributed defects

    DEFF Research Database (Denmark)

    Jain, Mayank; Guralnik, Benny; Andersen, Martin Thalbitzer

    2012-01-01

    408–15) which assumes a fixed d → a tunnelling probability for the entire crystal, our model is based on nearest-neighbour recombination within randomly distributed centres. Such a random distribution can occur through the entire volume or within the defect complexes of the dosimeter, and implies...... that the tunnelling probability varies with the donor–acceptor (d–a) separation distance. We first develop an ‘exact kinetic model’ that incorporates this variation in tunnelling probabilities, and evolves both in spatial as well as temporal domains. We then develop a simplified one-dimensional, semi-analytical model...... results in a highly asymmetric TL peak; this peak can be understood to derive from a continuum of several first-order TL peaks. Our model also shows an extended power law behaviour for OSL (or prompt luminescence), which is expected from localized recombination mechanisms in materials with random...

  19. Construction of recombinant DNA clone for bovine viral diarrhea virus

    International Nuclear Information System (INIS)

    Yeo, S.G.; Cho, H.J.; Masri, S.A.

    1992-01-01

    Molecular cloning was carried out on the Danish strain of bovine viral diarrhea virus (BVDV) to construct strategy for the diagnostic tools and effective vaccine of BVD afterwards. A recombinant DNA clone (No. 29) was established successfully from cDNA for viral RNA tailed with adenine homopolymer at 3 -end. 32 P-labeled DNA probes of 300~1, 800bp fragments, originating from the clone 29, directed specific DNA-RNA hybridization results with BVDV RNA. Recombinant DNA of the clone 29 was about 5,200bp representing 41.6% of the full length of Danish strain's RNA, and restriction sites were recognized for EooR I, Sst I, Hind III and Pst I restriction enzymes in the DNA fragment

  20. Hydrogen jet recombination under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1977-01-01

    Certain conditions may be postulated in LMFBR risk assessments for which the potential of hydrogen release to the reactor containment building needs to be evaluated. The inherent self-ignition characteristics of hydrogen jets entering the air atmosphere of the reactor containment building should be understood for such analyses. If hydrogen jets were to self-ignite (recombine) at the source where they enter the reactor containment building, then undesirable hydrogen accumulation would not occur. Therefore, experiments have been conducted investigating the phenomena associated with the recombination of hydrogen jets under conditions similar to those postulated for LMFBR studies. The data presented define the conditions required for self-ignition of the hydrogen jets

  1. Expression of recombinant vaccines and antibodies in plants.

    Science.gov (United States)

    Ko, Kisung

    2014-06-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants.

  2. Transfer line from the PSB to the PS (recombination)

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    After sequential ejection of 5 bunches from each of the 4 rings of the Booster (originally 800 MeV, now 1.4 GeV), the 4 batches are brought to the same vertical level, so as to form a string of 20 bunches, filling the circumference of the PS. This vertical "recombination" is performed in the transfer line, using vertical bending magnets, septa and kickers. Here we see the section where the beam from ring 4 (the top one) is brought down to the level of ring 3, and the beam from ring 1 up to the level of ring 2. Further downstream (to the right, outside this picture), level 2 is brought up to level 3, identical to that of the PS. After this original recombination scheme, other ways of combining the 4 beams, vertically and/or longitudinally, were developed and used in operation.

  3. Multifaceted regulation of V(D)J recombination

    Science.gov (United States)

    Wang, Guannan

    V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By

  4. Cambridge Healthtech Institute's 4th Annual Recombinant Antibodies Conference.

    Science.gov (United States)

    Casey, Joanne L; Coley, Andrew M

    2003-08-01

    The 4th Annual Recombinant Antibodies Conference was immediately following the 5th Annual 'Molecular Display: The Chemistry Set for Proteins and Small Molecules' conference, both held in Cambridge, MA and organised by Cambridge Healthtech Institute. The former conference focused on development of new approaches for recombinant antibody development, with particular emphasis on improved methods for selection and optimisation allowing rapid validation and development of human antibodies for the clinic. There were many impressive presentations describing emerging technologies such as new antibody-like scaffolds, covalent P2 antibody display, de-immunisation of antibodies and measuring affinities of as many as 400 clones simultaneously using proteomic microarray platforms. The conference also highlighted the latest applications of library technologies for proteomics and target discovery, and the generation of therapeutic molecules as antibodies alone or as drug, toxin or radionuclide conjugates.

  5. A role for histone acetylation in the developmental regulation of VDJ recombination.

    Science.gov (United States)

    McMurry, M T; Krangel, M S

    2000-01-21

    VDJ recombination is developmentally regulated in vivo by enhancer-dependent changes in the accessibility of chromosomal recombination signal sequences to the recombinase, but the molecular nature of these changes is unknown. Here histone H3 acetylation was measured along versions of a transgenic VDJ recombination reporter and the endogenous T cell receptor alpha/delta locus. Enhancer activity was shown to impart long-range, developmentally regulated changes in H3 acetylation, and H3 acetylation status was tightly linked to VDJ recombination. H3 hyperacetylation is proposed as a molecular mechanism coupling enhancer activity to accessibility for VDJ recombination.

  6. The potential of shifting recombination hotspots to increase genetic gain in livestock breeding.

    Science.gov (United States)

    Gonen, Serap; Battagin, Mara; Johnston, Susan E; Gorjanc, Gregor; Hickey, John M

    2017-07-04

    This study uses simulation to explore and quantify the potential effect of shifting recombination hotspots on genetic gain in livestock breeding programs. We simulated three scenarios that differed in the locations of quantitative trait nucleotides (QTN) and recombination hotspots in the genome. In scenario 1, QTN were randomly distributed along the chromosomes and recombination was restricted to occur within specific genomic regions (i.e. recombination hotspots). In the other two scenarios, both QTN and recombination hotspots were located in specific regions, but differed in whether the QTN occurred outside of (scenario 2) or inside (scenario 3) recombination hotspots. We split each chromosome into 250, 500 or 1000 regions per chromosome of which 10% were recombination hotspots and/or contained QTN. The breeding program was run for 21 generations of selection, after which recombination hotspot regions were kept the same or were shifted to adjacent regions for a further 80 generations of selection. We evaluated the effect of shifting recombination hotspots on genetic gain, genetic variance and genic variance. Our results show that shifting recombination hotspots reduced the decline of genetic and genic variance by releasing standing allelic variation in the form of new allele combinations. This in turn resulted in larger increases in genetic gain. However, the benefit of shifting recombination hotspots for increased genetic gain was only observed when QTN were initially outside recombination hotspots. If QTN were initially inside recombination hotspots then shifting them decreased genetic gain. Shifting recombination hotspots to regions of the genome where recombination had not occurred for 21 generations of selection (i.e. recombination deserts) released more of the standing allelic variation available in each generation and thus increased genetic gain. However, whether and how much increase in genetic gain was achieved by shifting recombination hotspots depended

  7. Taxing the rich: recombinations and bubble growth during reionization

    Science.gov (United States)

    Furlanetto, Steven R.; Oh, S. Peng

    2005-11-01

    Reionization is inhomogeneous for two reasons: the clumpiness of the intergalactic medium (IGM), and clustering of the discrete ionizing sources. While numerical simulations can in principle take both into account, they are at present limited by small box sizes. On the other hand, analytic models have only examined the limiting cases of a clumpy IGM (with uniform ionizing emissivity) and clustered sources (embedded in a uniform IGM). Here, we present the first analytic model that includes both factors. At first, recombinations can be ignored and ionized bubbles grow primarily through major mergers, because at any given moment the bubbles have a well-defined characteristic size. As a result, reionization resembles `punctuated equilibrium,' with a series of well-separated sharp jumps in the ionizing background. These features are local effects and do not reflect similar jumps in the global ionized fraction. We then combine our bubble model with a simple description of recombinations in the IGM. We show that the bubbles grow until recombinations balance ionizations, when their expansion abruptly halts. If the IGM density structure is similar to that at moderate redshifts, this limits the bubble radii to ~20 comoving Mpc; however, if the IGM is significantly clumpier at higher redshifts (because of minihalo formation, for example), the limit could be much smaller. Once a bubble reaches saturation, that region of the Universe has for all intents and purposes entered the `post-overlap' stage. Because different HII regions saturate over a finite time interval, the overlap epoch actually has a finite width. Our model also predicts a mean recombination rate several times larger than expected for a uniformly illuminated IGM. This picture naturally explains the substantial large-scale variation in Lyman-series opacity along the lines of sight to the known z > 6 quasars. More quasar spectra will shed light on the transition between the `bubble-dominated' topology

  8. Human oligoclonal recombinant antivenom against the black mamba (Dendroaspis polylepis)

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Karatt-­Vellatt, Aneesh; Slavny, Peter

    Snakebite envenoming is a major cause of death and morbidity in tropical parts of the world. Current therapies are based on animal-­derived antisera that are associated with a high degree of immunogenicity, high cost, and batch-to-batch variation. Here, we report the results of our ongoing efforts...... of developing the world’s first fully recombinant antivenom based on human IgGs targeting the key toxins from the notorious black mamba (Dendroaspis polylepis)....

  9. Immunological and biological properties of recombinant Lol p 1.

    Science.gov (United States)

    Boutin, Y; Lamontagne, P; Boulanger, J; Brunet, C; Hébert, J

    1997-03-01

    Current forms of allergy diagnosis and therapies are based on the use of natural allergenic extracts. Despite strong evidence that higher therapeutic efficacy may be achieved with purified allergens, the purification of multiple allergic components from extracts is a fastidious and sometimes an impossible task. However, the use of recombinant allergens may be an alternative to overcome this problem. In this study, we compared the immunological properties of recombinant (r) Lol p 1 with those of the natural protein. We cloned directly the gene encoding Lol p 1 from genomic DNA of ryegrass pollen. This gene was subcloned into the expression vector pMAL-c and expressed as fusion protein. Subsequently, rLol p 1 was cleaved from maltose-binding protein using factor Xa. Using binding inhibition and proliferative assays, we assessed the immunological properties of the recombinant allergens. The capacity of rLol p 1 to trigger basophil histamine release and to elicit a skin reaction was also assessed and compared to those of its natural counterpart. We found that the Lol p 1 gene has no introns since we amplified this gene directly from genomic DNA. We demonstrated that the binding sites of anti-Lol p 1 monoclonal antibody, specific human IgG and IgE antibody are well conserved on rLol p 1 as no difference in the binding inhibition profile was observed when using either natural or recombinant protein. At the T-cell level, rLol p 1 elicited a T-cell response in mice comparable to that observed with the natural protein. In addition, we demonstrated that the biological characteristics of rLol p 1 were comparable to those of the natural counterpart, in that rLol p 1 elicited a skin wheal reaction and induced basophil histamine release in grass-allergic patients only. The data indicate that natural Lol p 1 and rLol p 1 shared identical immunological and biological properties.

  10. A quantum computer based on recombination processes in microelectronic devices

    International Nuclear Information System (INIS)

    Theodoropoulos, K; Ntalaperas, D; Petras, I; Konofaos, N

    2005-01-01

    In this paper a quantum computer based on the recombination processes happening in semiconductor devices is presented. A 'data element' and a 'computational element' are derived based on Schokley-Read-Hall statistics and they can later be used to manifest a simple and known quantum computing process. Such a paradigm is shown by the application of the proposed computer onto a well known physical system involving traps in semiconductor devices

  11. Dissociative recombination of interstellar ions: electronic structure calculations for HCO+

    International Nuclear Information System (INIS)

    Kraemer, W.P.; Hazi, A.U.

    1985-01-01

    The present study of the interstellar formyl ion HCO + is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO + process. Similar calculations for the isoelectronic ions HOC + and HN 2 + are in progress. 60 refs

  12. Optimizing the feeding operation of recombinant Escherichia coli ...

    African Journals Online (AJOL)

    Recombinant Escherichia coli BL21 was used to produce human-like collagen in fed-batch culture. After building and analyzing the kinetic models of fed-batch cultures, the maximum specific growth rate, Yx/s and Yp/s were 0.411 h-1 , 0.428 g·g-1 and 0.0716 g/g, respectively. The square error of cell growth models, glucose ...

  13. Mapping of non-recombining regions via molecular markers

    Czech Academy of Sciences Publication Activity Database

    Janoušek, Bohuslav; Žlůvová, Jitka

    2007-01-01

    Roč. 53, č. 7 (2007), s. 321-324 ISSN 1214-1178. [4. Metodické dny. Srní, 01.10.2006-04.10.2006] R&D Projects: GA ČR(CZ) GD204/05/H505; GA ČR(CZ) GA521/05/2076 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : physical maps * recombination * RH mapping software Subject RIV: BO - Biophysics

  14. Radio recombination lines from diffuse interstellar gas in the Galaxy

    International Nuclear Information System (INIS)

    Cersosimo, J.C.; Onello, J.S.

    1991-01-01

    The paper reports the detection of the H159-alpha and H200-beta radio recombination lines at 1.62 GHz at l = 30.5 deg and 31.0 deg in the Galactic plane. Using the new observations obtained with the NRAO 43 m telescope a non-LTE analysis is presented to show that the observed LTE intensity ratio for these lines can arise from an inhomogeneous ionized nebula with a low-density component. 16 refs

  15. Relationship among the repair mechanisms and the genetic recombination

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1987-12-01

    In accordance with the previous reports of the Project BZ87 of the Department of Radiobiology, a dependent stimulation of the system exists in E.coli SOS, of the recombination of the bacteriophage Lambda whose genetic material has not been damaged. This stimulation is not due to the increase of the cellular concentration of the protein RecA and the mechanism but probable for which we find that it is carried out, it is through a cooperation among the product of the gene rec N of E. coli and the system Net of recombination of Lambda. The gene recN belongs to the group of genes SOS and its expression is induced when damaging the bacterial DNA where it intervenes in the repair of breaks of the double helix of the molecule (Picksley et, 1984). If the repair of breaks of this type is a factor that limits the speed with which it happens the recombination among viral chromosomes, then the biggest readiness in the protein RecN, due to the induction of the functions SOS, would facilitate the repair of such ruptures. In this new project it is to enlarge the knowledge about this phenomenon, it was, on one hand of corroborating in a way but he/she specifies the relationship between the recombinogenic response of Lambda and the System SOS of E. coli and for the other one to determine the effect that has the inhibition of the duplication of the DNA on the stimulation of the viral recombination. Everything it with the idea of making it but evident and to be able to use it as a system of genotoxic agents detection in E. coli. (Author)

  16. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots

    Czech Academy of Sciences Publication Activity Database

    Baker, C.L.; Petkova, P.; Walker, M.; Flachs, Petr; Mihola, Ondřej; Trachtulec, Zdeněk; Petkov, P.M.; Paigen, K.

    2015-01-01

    Roč. 11, č. 9 (2015), e1005512-e1005512 ISSN 1553-7390 R&D Projects: GA ČR GAP305/10/1931; GA ČR(CZ) GA14-20728S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : recombination * PRDM9 * allelic competition Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.528, year: 2014

  17. Hydrogen mitigation by catalytic recombiners and ignition during severe accidents

    International Nuclear Information System (INIS)

    Rohde, J.; Chakraborty, A.K.; Heitsch, M.; Klein-Hebling, W.

    1994-01-01

    A large amount of hydrogen is expected to be released within a large dry containment of a PWR shortly after the onset of a severe accident, leading to core melting. According to local gas concentrations, turbulence and structural configurations within the containment, the released hydrogen can reach the boundary of deflagration or under certain conditions cause local detonations threatening the containment integrity. During the last few years, several concepts of mitigation have been developed to limit the hydrogen concentrations and extensive efforts have been given to investigate the use of catalytic recombiners as well as the use of deliberate ignition within the contemplated framework of a 'Dual-concept'. Although the recent recommendation of the German Reactor Safety Commission (RSK) foresees the sole application of catalytic recombiners to remove hydrogen during severe accident, a review is planned within two years for the partial and directed additional application of early ignitions or post dilution of the atmosphere of the compartments in conjunction with the recombiners installed. This presentation will review the results of large number of experiments performed both in small scale and large scale to qualify the recombiners. It is also the subject of the presentation to address the requirements for proper and secure functioning of the catalyzers under the existing boundary conditions during the severe accidents. These requirements ask for measures, starting from the proper selection of catalysts, multi purposed catalytic devices and their protection against contamination during the standby condition as well as against aerosol deposition and surface poisoning during the propagation of an accident. A short review of the results to large scale experiments with the combined application of catalytic devices and igniters form also a part of this presentation. (author). 8 refs., 2 tabs., 7 figs

  18. Enhanced Dielectronic Recombination in Crossed Electric and Magnetic Fields

    International Nuclear Information System (INIS)

    Robicheaux, F.; Pindzola, M.S.

    1997-01-01

    The dependence of the dielectronic recombination cross section on crossed electric and magnetic fields is described. The enhancement of this cross section due to a static electric field is further increased when a magnetic field is added perpendicular to the electric field. Calculation of this field induced enhancement is presented for a realistic atomic model, and the mechanism for the enhancement is discussed. copyright 1997 The American Physical Society

  19. Generation of truncated recombinant form of tumor necrosis factor ...

    African Journals Online (AJOL)

    Purpose: To produce truncated recombinant form of tumor necrosis factor receptor 1 (TNFR1), cysteine-rich domain 2 (CRD2) and CRD3 regions of the receptor were generated using pET28a and E. coli/BL21. Methods: DNA coding sequence of CRD2 and CRD3 was cloned into pET28a vector and the corresponding ...

  20. Hemodynamic Characterization of Recombinant Inbred Strains: Twenty Years Later

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jaroslav; Dobešová, Zdenka; Musilová, Alena; Zídek, Václav; Vorlíček, Jaroslav; Pravenec, Michal; Křen, Vladimír; Zicha, Josef

    2008-01-01

    Roč. 31, č. 8 (2008), s. 1659-1668 ISSN 0916-9636 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/08/0139; GA AV ČR(CZ) IAA500110604 Institutional research plan: CEZ:AV0Z50110509 Keywords : recombinant inbred strains * blood pressure * telemetry Subject RIV: ED - Physiology Impact factor: 3.146, year: 2008

  1. Theoretical simulation of soft x-rays for recombining pump

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-05-01

    The theoretical study and computational simulation of soft X-ray laser produced by the recombination of highly ionized plasma are given. An one-dimensional non LTE radiative hydrodynamic code JB-19 is used for simulating the process of soft X-ray laser produced by the recombination. The incident laser light is focused linearly onto the thin carbon fibre. In the duration of incident laser pulse a highly ionized plasma is generated. After the incident laser has been ended the plasma adiabatically expands and rapidly cools down. During the time of three-body recombination and cascading transition, the population inversion between n = 3 and n = 2 is produced and transition gain is obtained. The analysis and evolution is presented, and factors effected on the gain are also discussed. The calculated results have been compared with the experimental data of RAL. It is found that some were in good agreement with them but some are not. Under the limitation of laser energy, the gain is inversely proportional to the wave-length and pulse width of incident laser. For obtaining high gain it is necessary to have double frequency and to shorten the pulse width of Nd-glass laser. Finally the preliminary results about H-like F ion are also given

  2. Recombinant allergen Lol p II: expression, purification and characterization.

    Science.gov (United States)

    Tamborini, E; Brandazza, A; De Lalla, C; Musco, G; Siccardi, A G; Arosio, P; Sidoli, A

    1995-05-01

    Pollen from perennial rye grass (Lolium perenne) is a major cause of type I allergies worldwide. It contains complex mixtures of proteins, among which Lol p II is a major allergen. Previously, we have reported the cloning and sequencing of Lol p II and its expression in fusion with the heavy chain of human ferritin as carrier polypeptide (Sidoli et al., 1993, J. biol. Chem. 268, 21819-21825). Here, we describe the expression, purification and characterization of a recombinant Lol p II overproduced as a non-fusion protein in the periplasm of E. coli. The recombinant allergen was expressed in high yields and was easily purified in milligram amounts. It competed with the natural Lol p II for binding to specific IgE, and it induced allergic responses in skin prick tests, indicating to be immunologically analogous to the natural protein. Biochemical analyses indicate that recombinant Lol p II is a highly stable and soluble monomeric molecule which behaves like a small globular protein.

  3. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Nascimento, I.P.; Leite, L.C.C.

    2012-01-01

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  4. Synthesis and characterization of recombinant abductin-based proteins.

    Science.gov (United States)

    Su, Renay S-C; Renner, Julie N; Liu, Julie C

    2013-12-09

    Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II β-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.

  5. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    Directory of Open Access Journals (Sweden)

    Junyuan Ren

    Full Text Available The dicistrovirus Israeli Acute Paralysis Virus (IAPV has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  6. Combustible gas recombining method and processing facility for gas waste

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Atsushi; Murakami, Kazuo

    1998-09-02

    Combustible gases (hydrogen, oxygen) generated by radiation decomposition of reactor water in the vicinity of a reactor core in a reactor pressure vessel of a BWR type nuclear power plant pass, together with flow of steams, through a gas/water separator and a steam dryer disposed at the upper portion of a reactor core. A catalyst for allowing hydrogen and oxygen to react efficiently and recombine them into water is plated on the surface of the steam dryer. The catalyst comprises palladium (Pd) or platinum (Pt) or a Pd-Pt alloy. The combustible gases passing through the steam dryer are recombined and formed into steams by the catalyst. A slight amount of hydrogen and oxygen which are not recombined transfers, together with main steams, from a main steam pipe to a main condensator by way of a turbine. Then they are released, together with air from an air extraction device, from an activated carbon-type rare gas hold up tower. (I.N.)

  7. Evidence of recombination and positive selection in cetacean papillomaviruses

    International Nuclear Information System (INIS)

    Robles-Sikisaka, Refugio; Rivera, Rebecca; Nollens, Hendrik H.; St Leger, Judy; Durden, Wendy N.; Stolen, Megan; Burchell, Jennifer; Wellehan, James F.X.

    2012-01-01

    Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.

  8. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  9. Aperture synthesis observations of recombination lines from compact HII regions

    International Nuclear Information System (INIS)

    Gorkom, J.H. van.

    1980-01-01

    This thesis describes a continuation of early attempts to attain a high spectral dynamic range in general and to study recombination lines from compact HII regions in particular. These observations are made with the WSRT, until recently, the only instrument with sufficient angular resolution and sensitivity to provide at 6 cm detailed line maps of compact HII regions. An investigation into the spectral stability of the WSRT is described. Chromatic errors were found and their effects on maps are shown. These errors were found in the 80 channel filter spectrometer which was still in use at that time. The advent of the digital line backend (DLB) improved the dynamic range by an order of magnitude. An experiment is described which was partially aimed at testing the spectral stability of the DLB. It concerns a search for HI emission from the high velocity system of NGC 1275. Recombination line observations of the compact components in five giant HII regions are presented. The author discusses the radiative transfer problem in recombination lines and shows that non-LTE effects and pressure broadening can be of importance in compact HII regions. Observations obtained with the DLB are also presented. Because of the much better instrumental quality and improved insight into calibration procedures, mapping the H110α emission of DR21 and both the H110α and H166α emission of W3 was succeeded. (Auth.)

  10. Bicarbonate-dependent secretion and proteolytic processing of recombinant myocilin.

    Directory of Open Access Journals (Sweden)

    José-Daniel Aroca-Aguilar

    Full Text Available Myocilin is an extracellular glycoprotein of poorly understood function. Mutations of this protein are involved in glaucoma, an optic neuropathy characterized by a progressive and irreversible visual loss and frequently associated with elevated intraocular pressure. We previously showed that recombinant myocilin undergoes an intracellular proteolytic processing by calpain II which cleaves the central region of the protein, releasing one N- and one C-terminal fragment. Myocilin cleavage is reduced by glaucoma mutations and it has been proposed to participate in intraocular pressure modulation. To identify possible factors regulating the proteolytic processing of recombinant myocilin, we used a cellular model in which we analyzed how different culture medium parameters (i.e., culture time, cell density, pH, bicarbonate concentration, etc. affect the presence of the extracellular C-terminal fragment. Extracellular bicarbonate depletion associated with culture medium acidification produced a reversible intracellular accumulation of full-length recombinant myocilin and incremented its intracellular proteolytic processing, raising the extracellular C-terminal fragment percentage. It was also determined that myocilin intracellular accumulation depends on its N-terminal region. These data suggest that aqueous humor bicarbonate variations could also modulate the secretion and cleavage of myocilin present in ocular tissues.

  11. Jeremy Rifkin challenges recombinant DNA research: A rhetoric of heresy

    Energy Technology Data Exchange (ETDEWEB)

    Futrell, W.M.

    1992-01-01

    One significant issue to come before the public in recent years is recombinant DNA research or genetic engineering and its applications. An important spokesman on this issue is Jeremy Rifkin. Rifkin is of rhetorical interest because of his strategies to sustain the dialogue and define the parameters in which it occurs. This dissertation analyzes a broad range of Rifkin's rhetorical artifacts and those of scientists engaged in recombinant DNA research. They are examined against criteria developed to identify and understand heresy. The five areas of analysis are: the nearness/remoteness phenomenon, the social construction of heresy, the social consequences of heresy, the doctrinal consequences of heresy, and the heresy-hunt ritual. The first two criteria focus on the rhetorical strategies of the heretic. The last three concentrate on the rhetorical strategies of the defenders of the institutional orthodoxy. This dissertation examines the rhetorical strategies of a heretical challenge to the scientific establishment and the consequences of that challenge. This dissertation also analyzes the rhetorical strategies employed by the defenders of the scientific orthodoxy. Although an understanding of the rhetorical strategies employed on both sides of this conflict is important, the implications for the role of rhetoric in highly controversial issues such as recombinant DNA are even more critical.

  12. Evidence of recombination and positive selection in cetacean papillomaviruses

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Sikisaka, Refugio, E-mail: refugio.robles1@gmail.com [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Rivera, Rebecca, E-mail: RRivera@hswri.org [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Nollens, Hendrik H., E-mail: Hendrik.Nollens@SeaWorld.com [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); College of Veterinary Medicine, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States); SeaWorld San Diego, 500 SeaWorld Drive, San Diego, CA 92109 (United States); St Leger, Judy, E-mail: Judy.St.Leger@SeaWorld.com [SeaWorld San Diego, 500 SeaWorld Drive, San Diego, CA 92109 (United States); Durden, Wendy N., E-mail: WNoke@hswri.org [Hubbs-SeaWorld Research Institute, 3830 South Highway A1A 4-181, Melbourne Beach, FL 32951 (United States); Stolen, Megan, E-mail: MStolen@hswri.org [Hubbs-SeaWorld Research Institute, 3830 South Highway A1A 4-181, Melbourne Beach, FL 32951 (United States); Burchell, Jennifer, E-mail: JBurchell@hswri.org [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Wellehan, James F.X., E-mail: WellehanJ@ufl.edu [College of Veterinary Medicine, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States)

    2012-06-05

    Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.

  13. Phylogenetic and recombination analysis of human bocavirus 2

    Directory of Open Access Journals (Sweden)

    Li Huiying

    2011-02-01

    Full Text Available Abstract Background Human bocavirus 2(HBoV2 and other human bocavirus species (HBoV, HBoV3, and HBoV4 have been discovered recently. But the precise phylogenetic relationships among these viruses are not clear yet. Methods We collected 632 diarrhea and 162 healthy children in Lanzhou, China. Using PCR, Human bocavirus (HBoV, HBoV2, HBoV3 and HBoV4 were screened. The partial genes of NS, NP1 and VP, and two nearly complete sequences of HBoV2 were obtained. Result Phylogenetic analysis showed the different genes of HBoV2 strain were homogenous with different reference strains. HBoV3 may be a recombinant derived from HBoV and HBoV4. We also observed that the VP1 and VP2 region of HBoV3 is as similar to HBoV2 as to HBoV4. Conclusions A single genetic lineage of HBoV2 is circulating in children with and without gastroenteritis in Lanzhou, China. Current evidence in this study was not enough to support recombination between HBoV2 strains, and HBoV3 may be a recombinant between HBoV and the common ancestor of HBoV2 and HBoV4.

  14. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  15. Novel recombinant alphaviral and adenoviral vectors for cancer immunotherapy.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Lyerly, H Kim

    2012-06-01

    Although cellular immunotherapy based on autolgous dendritic cells (DCs) targeting antigens expressed by metastatic cancer has demonstrated clinical efficacy, the logistical challenges in generating an individualized cell product create an imperative to develop alternatives to DC-based cancer vaccines. Particularly attractive alternatives include in situ delivery of antigen and activation signals to resident antigen-presenting cells (APCs), which can be achieved by novel fusion molecules targeting the mannose receptor and by recombinant viral vectors expressing the antigen of interest and capable of infecting DCs. A particular challenge in the use of viral vectors is the well-appreciated clinical obstacles to their efficacy, specifically vector-specific neutralizing immune responses. Because heterologous prime and boost strategies have been demonstrated to be particularly potent, we developed two novel recombinant vectors based on alphaviral replicon particles and a next-generation adenovirus encoding an antigen commonly overexpressed in many human cancers, carcinoembryonic antigen (CEA). The rationale for developing these vectors, their unique characteristics, the preclinical studies and early clinical experience with each, and opportunities to enhance their effectiveness will be reviewed. The potential of each of these potent recombinant vectors to efficiently generate clinically active anti-tumor immune response alone, or in combination, will be discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Charge recombination and exciton annihilation reactions in conjugated polymer blends.

    Science.gov (United States)

    Howard, Ian A; Hodgkiss, Justin M; Zhang, Xinping; Kirov, Kiril R; Bronstein, Hugo A; Williams, Charlotte K; Friend, Richard H; Westenhoff, Sebastian; Greenham, Neil C

    2010-01-13

    Bimolecular interactions between excitations in conjugated polymer thin films are important because they influence the efficiency of many optoelectronic devices that require high excitation densities. Using time-resolved optical spectroscopy, we measure the bimolecular interactions of charges, singlet excitons, and triplet excitons in intimately mixed polyfluorene blends with band-edge offsets optimized for photoinduced electron transfer. Bimolecular charge recombination and triplet-triplet annihilation are negligible, but exciton-charge interactions are efficient. The annihilation of singlet excitons by charges occurs on picosecond time-scales and reaches a rate equivalent to that of charge transfer. Triplet exciton annihilation by charges occurs on nanosecond time-scales. The surprising absence of nongeminate charge recombination is shown to be due to the limited mobility of charge carriers at the heterojunction. Therefore, extremely high densities of charge pairs can be maintained in the blend. The absence of triplet-triplet annihilation is a consequence of restricted triplet diffusion in the blend morphology. We suggest that the rate and nature of bimolecular interactions are determined by the stochastic excitation distribution in the polymer blend and the limited connectivity between the polymer domains. A model based on these assumptions quantitatively explains the effects. Our findings provide a comprehensive framework for understanding bimolecular recombination and annihilation processes in nanostructured materials.

  17. Differences between selection on sex versus recombination in red queen models with diploid hosts.

    Science.gov (United States)

    Agrawal, Aneil F

    2009-08-01

    The Red Queen hypothesis argues that parasites generate selection for genetic mixing (sex and recombination) in their hosts. A number of recent papers have examined this hypothesis using models with haploid hosts. In these haploid models, sex and recombination are selectively equivalent. However, sex and recombination are not equivalent in diploids because selection on sex depends on the consequences of segregation as well as recombination. Here I compare how parasites select on modifiers of sexual reproduction and modifiers of recombination rate. Across a wide set of parameters, parasites tend to select against both sex and recombination, though recombination is favored more often than is sex. There is little correspondence between the conditions favoring sex and those favoring recombination, indicating that the direction of selection on sex is often determined by the effects of segregation, not recombination. Moreover, when sex was favored it is usually due to a long-term advantage whereas short-term effects are often responsible for selection favoring recombination. These results strongly indicate that Red Queen models focusing exclusively on the effects of recombination cannot be used to infer the type of selection on sex that is generated by parasites on diploid hosts.

  18. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution.

    Directory of Open Access Journals (Sweden)

    Rafal Mostowy

    2014-05-01

    Full Text Available The bacterium Streptococcus pneumoniae (pneumococcus is one of the most important human bacterial pathogens, and a leading cause of morbidity and mortality worldwide. The pneumococcus is also known for undergoing extensive homologous recombination via transformation with exogenous DNA. It has been shown that recombination has a major impact on the evolution of the pathogen, including acquisition of antibiotic resistance and serotype-switching. Nevertheless, the mechanism and the rates of recombination in an epidemiological context remain poorly understood. Here, we proposed several mathematical models to describe the rate and size of recombination in the evolutionary history of two very distinct pneumococcal lineages, PMEN1 and CC180. We found that, in both lineages, the process of homologous recombination was best described by a heterogeneous model of recombination with single, short, frequent replacements, which we call micro-recombinations, and rarer, multi-fragment, saltational replacements, which we call macro-recombinations. Macro-recombination was associated with major phenotypic changes, including serotype-switching events, and thus was a major driver of the diversification of the pathogen. We critically evaluate biological and epidemiological processes that could give rise to the micro-recombination and macro-recombination processes.

  19. A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors

    Directory of Open Access Journals (Sweden)

    Huixuan Liang

    2012-09-01

    Nestin-cre transgenic mice have been widely used to direct recombination to neural stem cells (NSCs and intermediate neural progenitor cells (NPCs. Here we report that a readily utilized, and the only commercially available, Nestin-cre line is insufficient for directing recombination in early embryonic NSCs and NPCs. Analysis of recombination efficiency in multiple cre-dependent reporters and a genetic mosaic line revealed consistent temporal and spatial patterns of recombination in NSCs and NPCs. For comparison we utilized a knock-in Emx1cre line and found robust recombination in NSCs and NPCs in ventricular and subventricular zones of the cerebral cortices as early as embryonic day 12.5. In addition we found that the rate of Nestin-cre driven recombination only reaches sufficiently high levels in NSCs and NPCs during late embryonic and early postnatal periods. These findings are important when commercially available cre lines are considered for directing recombination to embryonic NSCs and NPCs.

  20. Frequent intra-subtype recombination among HIV-1 circulating in Tanzania.

    Science.gov (United States)

    Kiwelu, Ireen E; Novitsky, Vladimir; Margolin, Lauren; Baca, Jeannie; Manongi, Rachel; Sam, Noel; Shao, John; McLane, Mary F; Kapiga, Saidi H; Essex, M

    2013-01-01

    The study estimated the prevalence of HIV-1 intra-subtype recombinant variants among female bar and hotel workers in Tanzania. While intra-subtype recombination occurs in HIV-1, it is generally underestimated. HIV-1 env gp120 V1-C5 quasispecies from 45 subjects were generated by single-genome amplification and sequencing (median (IQR) of 38 (28-50) sequences per subject). Recombination analysis was performed using seven methods implemented within the recombination detection program version 3, RDP3. HIV-1 sequences were considered recombinant if recombination signals were detected by at least three methods with p-values of ≤0.05 after Bonferroni correction for multiple comparisons. HIV-1 in 38 (84%) subjects showed evidence for intra-subtype recombination including 22 with HIV-1 subtype A1, 13 with HIV-1 subtype C, and 3 with HIV-1 subtype D. The distribution of intra-patient recombination breakpoints suggested ongoing recombination and showed selective enrichment of recombinant variants in 23 (60%) subjects. The number of subjects with evidence of intra-subtype recombination increased from 29 (69%) to 36 (82%) over one year of follow-up, although the increase did not reach statistical significance. Adjustment for intra-subtype recombination is important for the analysis of multiplicity of HIV infection. This is the first report of high prevalence of intra-subtype recombination in the HIV/AIDS epidemic in Tanzania, a region where multiple HIV-1 subtypes co-circulate. HIV-1 intra-subtype recombination increases viral diversity and presents additional challenges for HIV-1 vaccine design.

  1. Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis.

    Science.gov (United States)

    Stevison, Laurie S; Noor, Mohamed A F

    2010-12-01

    Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed "recombinational neighborhoods," where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5-7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.

  2. Frequent intra-subtype recombination among HIV-1 circulating in Tanzania.

    Directory of Open Access Journals (Sweden)

    Ireen E Kiwelu

    Full Text Available The study estimated the prevalence of HIV-1 intra-subtype recombinant variants among female bar and hotel workers in Tanzania. While intra-subtype recombination occurs in HIV-1, it is generally underestimated. HIV-1 env gp120 V1-C5 quasispecies from 45 subjects were generated by single-genome amplification and sequencing (median (IQR of 38 (28-50 sequences per subject. Recombination analysis was performed using seven methods implemented within the recombination detection program version 3, RDP3. HIV-1 sequences were considered recombinant if recombination signals were detected by at least three methods with p-values of ≤0.05 after Bonferroni correction for multiple comparisons. HIV-1 in 38 (84% subjects showed evidence for intra-subtype recombination including 22 with HIV-1 subtype A1, 13 with HIV-1 subtype C, and 3 with HIV-1 subtype D. The distribution of intra-patient recombination breakpoints suggested ongoing recombination and showed selective enrichment of recombinant variants in 23 (60% subjects. The number of subjects with evidence of intra-subtype recombination increased from 29 (69% to 36 (82% over one year of follow-up, although the increase did not reach statistical significance. Adjustment for intra-subtype recombination is important for the analysis of multiplicity of HIV infection. This is the first report of high prevalence of intra-subtype recombination in the HIV/AIDS epidemic in Tanzania, a region where multiple HIV-1 subtypes co-circulate. HIV-1 intra-subtype recombination increases viral diversity and presents additional challenges for HIV-1 vaccine design.

  3. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning

    Directory of Open Access Journals (Sweden)

    Martin Darren P

    2009-04-01

    Full Text Available Abstract Background Recombination has a profound impact on the evolution of viruses, but characterizing recombination patterns in molecular sequences remains a challenging endeavor. Despite its importance in molecular evolutionary studies, identifying the sequences that exhibit such patterns has received comparatively less attention in the recombination detection framework. Here, we extend a quartet-mapping based recombination detection method to enable identification of recombinant sequences without prior specifications of either query and reference sequences. Through simulations we evaluate different recombinant identification statistics and significance tests. We compare the quartet approach with triplet-based methods that employ additional heuristic tests to identify parental and recombinant sequences. Results Analysis of phylogenetic simulations reveal that identifying the descendents of relatively old recombination events is a challenging task for all methods available, and that quartet scanning performs relatively well compared to the triplet based methods. The use of quartet scanning is further demonstrated by analyzing both well-established and putative HIV-1 recombinant strains. In agreement with recent findings, we provide evidence that the presumed circulating recombinant CRF02_AG is a 'pure' lineage, whereas the presumed parental lineage subtype G has a recombinant origin. We also demonstrate HIV-1 intrasubtype recombination, confirm the hybrid origin of SIV in chimpanzees and further disentangle the recombinant history of SIV lineages in a primate immunodeficiency virus data set. Conclusion Quartet scanning makes a valuable addition to triplet-based methods for identifying recombinant sequences without prior specifications of either query and reference sequences. The new method is available in the VisRD v.3.0 package http://www.cmp.uea.ac.uk/~vlm/visrd.

  4. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination.

    Science.gov (United States)

    Carmona, Lina Marcela; Schatz, David G

    2017-06-01

    The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented. © 2016 Federation of European Biochemical Societies.

  5. Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin: using recombinant endophytic fungi to control aphids.

    Science.gov (United States)

    Qi, G; Lan, N; Ma, X; Yu, Z; Zhao, X

    2011-05-01

    Sap-sucking insect pests have become the major threats to many crops in recent years; however, only a few biopesticides have been developed for controlling those pests. Here, we developed a novel pest management strategy, which uses endophytes to express anti-pest plant lectins. The fungal endophyte of Chaetomium globosum YY-11 with anti-fungal activities was isolated from rape seedlings. Pinellia ternata agglutinin (pta) gene was cloned into YY-11 mediated by Agrobacterium tumefaciens. The positive transformants, as selected by antibiotic resistance, were evaluated using PCR and Western blot assay. We found that the recombinant endophytes colonized most of the crops, and the resistance of rape inoculated with recombinant endophytic fungi significantly inhibited the growth and reproduction of Myzus persicae. Our results showed that the recombinant endophytes expressing Pinellia ernata agglutinin (PTA) may endow hosts with resistance against sap-sucking pests. This research may have important implications for using endophytes to deliver insecticidal plant lectin proteins to control sap-sucking pests for crop protection. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. A prospective study of predictive factors of ovarian response in 'standard' IVF/ICSI patients treated with recombinant FSH. A suggestion for a recombinant FSH dosage normogram

    DEFF Research Database (Denmark)

    Popovic-Todorovic, B; Loft, A; Lindhard, A

    2003-01-01

    The aim was to identify independent predictors of ovarian response to recombinant (r)FSH through a multiple regression analysis.......The aim was to identify independent predictors of ovarian response to recombinant (r)FSH through a multiple regression analysis....

  7. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms.

    Science.gov (United States)

    Tiley, George P; Burleigh, J Gordon; Burleigh, Gordon

    2015-09-16

    Although homologous recombination affects the efficacy of selection in populations, the pattern of recombination rate evolution and its effects on genome evolution across plants are largely unknown. Recombination can reduce genome size by enabling the removal of LTR retrotransposons, alter codon usage by GC biased gene conversion, contribute to complex histories of gene duplication and loss through tandem duplication, and enhance purifying selection on genes. Therefore, variation in recombination rate across species may explain some of the variation in genomic architecture as well as rates of molecular evolution. We used phylogenetic comparative methods to investigate the evolution of global meiotic recombination rate in angiosperms and its effects on genome architecture and selection at the molecular level using genetic maps and genome sequences from thirty angiosperm species. Recombination rate is negatively correlated with genome size, which is likely caused by the removal of LTR retrotransposons. After correcting recombination rates for euchromatin content, we also found an association between global recombination rate and average gene family size. This suggests a role for recombination in the preservation of duplicate genes or expansion of gene families. An analysis of the correlation between the ratio of nonsynonymous to synonymous substitution rates (dN/dS) and recombination rate in 3748 genes indicates that higher recombination rates are associated with an increased efficacy of purifying selection, suggesting that global recombination rates affect variation in rates of molecular evolution across distantly related angiosperm species, not just between populations. We also identified shifts in dN/dS for recombination proteins that are associated with shifts in global recombination rate across our sample of angiosperms. Although our analyses only reveal correlations, not mechanisms, and do not include potential covariates of recombination rate, like effective

  8. Statistical Analysis on Detecting Recombination Sites in DNA-β Satellites Associated with Old World Geminiviruses

    Science.gov (United States)

    Xu, Kai; Yoshida, Ruriko

    2010-01-01

    Although exchange of genetic information by recombination plays an important role in the evolution of viruses, it is not clear how it generates diversity. Understanding recombination events helps with the study of the evolution of new virus strains or new viruses. Geminiviruses are plant viruses which have ambisense single-stranded circular DNA genomes and are one of the most economically important plant viruses in agricultural production. Small circular single-stranded DNA satellites, termed DNA-β, have recently been found to be associated with some geminivirus infections. In this paper we analyze several DNA-β sequences of geminiviruses for recombination events using phylogenetic and statistical analysis and we find that one strain from ToLCMaB has a recombination pattern and is a recombinant molecule between two strains from two species, PaLCuB-[IN:Chi:05] (major parent) and ToLCB-[IN:CP:04] (minor parent). We propose that this recombination event contributed to the evolution of the strain of ToLCMaB in South India. The Hidden Markov Chain (HMM) method developed by Webb et al. (2009) estimating phylogenetic tree through out the whole alignment provide us a recombination history of these DNA-β strains. It is the first time that this statistic method has been used on DNA-β recombination study and give a clear recombination history of DNA-β recombination. PMID:21423447

  9. Sex in a test tube: testing the benefits of in vitro recombination.

    Science.gov (United States)

    Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M

    2016-10-19

    The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  10. Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan.

    Directory of Open Access Journals (Sweden)

    Yue Chen

    Full Text Available A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%, together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15% but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a while 12 (38% were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan.

  11. Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot.

    Directory of Open Access Journals (Sweden)

    Frédéric Baudat

    2007-06-01

    Full Text Available In most eukaryotes, the prophase of the first meiotic division is characterized by a high level of homologous recombination between homologous chromosomes. Recombination events are not distributed evenly within the genome, but vary both locally and at large scale. Locally, most recombination events are clustered in short intervals (a few kilobases called hotspots, separated by large intervening regions with no or very little recombination. Despite the importance of regulating both the frequency and the distribution of recombination events, the genetic factors controlling the activity of the recombination hotspots in mammals are still poorly understood. We previously characterized a recombination hotspot located close to the Psmb9 gene in the mouse major histocompatibility complex by sperm typing, demonstrating that it is a site of recombination initiation. With the goal of uncovering some of the genetic factors controlling the activity of this initiation site, we analyzed this hotspot in both male and female germ lines and compared the level of recombination in different hybrid mice. We show that a haplotype-specific element acts at distance and in trans to activate about 2,000-fold the recombination activity at Psmb9. Another haplotype-specific element acts in cis to repress initiation of recombination, and we propose this control to be due to polymorphisms located within the initiation zone. In addition, we describe subtle variations in the frequency and distribution of recombination events related to strain and sex differences. These findings show that most regulations observed act at the level of initiation and provide the first analysis of the control of the activity of a meiotic recombination hotspot in the mouse genome that reveals the interactions of elements located both in and outside the hotspot.

  12. Dissection of Recombination Attributes for Multiple Maize Populations Using a Common SNP Assay

    Directory of Open Access Journals (Sweden)

    Haiying Guan

    2017-11-01

    Full Text Available Recombination is a vital characteristic for quantitative trait loci mapping and breeding to enhance the yield potential of maize. However, recombination characteristics in globally used segregating populations have never been evaluated at similar genetic marker densities. This study aimed to divulge the characteristics of recombination events, recombinant chromosomal segments, and recombination frequency for four dissimilar populations. These populations were doubled haploid (DH, recombination inbred line (RIL, intermated B73xMo17 (IBM, and multi-parent advanced generation inter-cross (MAGIC, using the Illumina MaizeSNP50 BeadChip to provide markers. Our results revealed that the average number of recombination events was 16, 41, 72, and 86 per line in DH, RIL, IBM, and MAGIC populations, respectively. Accordingly, the average length of recombinant chromosomal segments was 84.8, 47.3, 29.2, and 20.4 Mb in DH, RIL, IBM, and MAGIC populations, respectively. Furtherly, the recombination frequency varied in different genomic regions and population types [DH (0–12.7 cM/Mb, RIL (0–15.5 cM/Mb, IBM (0–24.1 cM/Mb, MAGIC (0–42.3 cM/Mb]. Utilizing different sub-sets of lines, the recombination bin number and size were analyzed in each population. Additionally, different sub-sets of markers and lines were employed to estimate the recombination bin number and size via formulas for relationship in these populations. The relationship between recombination events and recombination bin length was also examined. Our results contribute to determining the most suitable number of genetic markers, lines in each population, and population type for successful mapping and breeding.

  13. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  14. Production of biologically active recombinant human factor H in Physcomitrella.

    Science.gov (United States)

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L

    2011-04-01

    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  15. Toxicological evaluation of lactase derived from recombinant Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Shiying Zou

    Full Text Available A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50 based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system.

  16. Phylogenetic and recombination analysis of the herpesvirus genus varicellovirus.

    Science.gov (United States)

    Kolb, Aaron W; Lewin, Andrew C; Moeller Trane, Ralph; McLellan, Gillian J; Brandt, Curtis R

    2017-11-21

    The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for phylogenetic, recombination, and genetic distance analysis. A phylogenetic network including genomic sequences of individual species, was generated and suggested a potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1 (EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses (FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown varicellovirus. Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest a new clade nomenclature scheme based on genetic distances.

  17. Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response

    Directory of Open Access Journals (Sweden)

    Nicole A. Najor

    2016-12-01

    Full Text Available In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.

  18. Recombinant human growth hormone in the treatment of Turner syndrome

    Directory of Open Access Journals (Sweden)

    Bessie E Spiliotis

    2008-12-01

    Full Text Available Bessie E SpiliotisDivision of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras, School of Medicine, Patras, GreeceAbstract: Turner syndrome (TS is a common chromosomal disorder in women that is associated with the absence of one of the X chromosomes. Severe short stature and a lack of pubertal development characterize TS girls, causing psychosocial problems and reduced bone mass. The growth impairment in TS seems to be due to multiple factors including an abnormal growth hormone (GH – insulin-like growth factor (IGF – IGF binding protein axis and haploinsufficiency of the short stature homeobox-containing gene. Growth hormone and sex steroid replacement therapy has enhanced growth, pubertal development, bone mass, and the quality of life of TS girls. Recombinant human GH (hGH has improved the height potential of TS girls with varied results though, depending upon the dose of hGH and the age of induction of puberty. The best final adult height and peak bone mass achievement results seem to be achieved when hGH therapy is started early and puberty is induced at the normal age of puberty in a regimen mimicking physiologic puberty. The initiation of estradiol therapy at an age-appropriate time may also help the TS patients avoid osteoporosis during adulthood. Recombinant hGH therapy in TS seems to be safe. Studies so far show no adverse effects on cardiac function, glucose metabolism or any association with neoplasms but research is still in progress to provide conclusive data on long-term safety.Keywords: Turner syndrome, recombinant growth hormone, growth hormone deficiency, SHOX gene, hormonal replacement therapy

  19. Comparison of the Genetic Recombination Rates of Human Immunodeficiency Virus Type 1 in Macrophages and T Cells†

    OpenAIRE

    Chen, Jianbo; Rhodes, Terence D.; Hu, Wei-Shau

    2005-01-01

    Human immunodeficiency virus type 1 (HIV-1) exhibits a high level of genetic variation generated by frequent mutation and genetic recombination during reverse transcription. We have measured HIV-1 recombination rates in T cells in one round of virus replication. It was recently proposed that HIV-1 recombines far more frequently in macrophages than in T cells. In an attempt to delineate the mechanisms that elevate recombination, we measured HIV-1 recombination rates in macrophages at three dif...

  20. Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks.

    OpenAIRE

    Darren P Martin; Pierre Lefeuvre; Arvind Varsani; Murielle Hoareau; Jean-Yves Semegni; Betty Dijoux; Claire Vincent; Bernard Reynaud; Jean-Michel Lett

    2011-01-01

    Genetic recombination is an important process during the evolution of many virus species and occurs particularly frequently amongst begomoviruses in the single stranded DNA virus family, Geminiviridae. As in many other recombining viruses it is apparent that non-random recombination breakpoint distributions observable within begomovirus genomes sampled from nature are the product of variations both in basal recombination rates across genomes and in the over-all viability of different recombin...