A Phase Vocoder Based on Nonstationary Gabor Frames
DEFF Research Database (Denmark)
Ottosen, Emil Solsbæk; Dörfler, Monika
2017-01-01
We propose a new algorithm for time stretching music signals based on the theory of nonstationary Gabor frames (NSGFs). The algorithm extends the techniques of the classical phase vocoder (PV) by incorporating adaptive timefrequency (TF) representations and adaptive phase locking. The adaptive TF...
A Phase Vocoder Based on Nonstationary Gabor Frames
DEFF Research Database (Denmark)
Ottosen, Emil Solsbæk; Dörfler, Monika
2017-01-01
We propose a new algorithm for time stretching music signals based on the theory of nonstationary Gabor frames (NSGFs). The algorithm extends the techniques of the classical phase vocoder (PV) by incorporating adaptive timefrequency (TF) representations and adaptive phase locking. The adaptive TF...... representations imply good time resolution for the onsets of attack transients and good frequency resolution for the sinusoidal components. We estimate the phase values only at peak channels and the remaining phases are then locked to the values of the peaks in an adaptive manner. During attack transients we keep...... that with just three times as many TF coefficients as signal samples, artifacts such as phasiness and transient smearing can be greatly reduced compared to the classical PV. The proposed algorithm is tested on both synthetic and real world signals and compared with state of the art algorithms in a reproducible...
Nonstationary signals phase-energy approach-theory and simulations
Klein, R; Braun, S; 10.1006/mssp.2001.1398
2001-01-01
Modern time-frequency methods are intended to deal with a variety of nonstationary signals. One specific class, prevalent in the area of rotating machines, is that of harmonic signals of varying frequencies and amplitude. This paper presents a new adaptive phase-energy (APE) approach for time-frequency representation of varying harmonic signals. It is based on the concept of phase (frequency) paths and the instantaneous power spectral density (PSD). It is this path which represents the dynamic behaviour of the system generating the observed signal. The proposed method utilises dynamic filters based on an extended Nyquist theorem, enabling extraction of signal components with optimal signal-to-noise ratio. The APE detects the most energetic harmonic components (frequency paths) in the analysed signal. Tests on simulated signals show the superiority of the APE in resolution and resolving power as compared to STFT and wavelets wave- packet decomposition. The dynamic filters also enable the reconstruction of the ...
International Nuclear Information System (INIS)
Blinkov, V.N.
1993-01-01
This paper presents a mathematical model and a open-quotes fastclose quotes computer program for analyzing nonstationary thermohydrodynamic processes in distributed multi-element circuits containing a two-phase coolant. The author's approach is based on representing the distributed multi-element circuits with the two-phase coolant (such as cooling circuits of the reactor of an atomic power station) in the form of equivalent thermohydrodynamic chains composed of idealized elements with the intrinsic properties of the structure elements of real systems. The author has developed the nomenclature of such conceptual elements for objects which can be modelled; the nomenclature encompasses the control volumes (with a single-phase or two-phase coolant or a moving boundary of boiling/condensation) and the branch lines (type of tube and connections in dependence on the inertia of the coolant being taken into account) for a hydrodynamic submodel and the thermal components and lines for a thermal submodel. The mathematical models which have been developed and the program using them are designated for various forms of calculating slow thermohydrodynamic processes in multi-element coolant circuits in reactors and modeling test stands. The program facilitates calculation of the range of stable operation, detailed studies of stationary and nonstationary modes of operation, and forecasts of effective engineering measures to obtain stability with the aid of microcomputers
Analytic solution of boundary-value problems for nonstationary model kinetic equations
International Nuclear Information System (INIS)
Latyshev, A.V.; Yushkanov, A.A.
1993-01-01
A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected
EDITORIAL: The nonstationary Casimir effect and quantum systems with moving boundaries
Barton, Gabriel; Dodonov, Victor V.; Man'ko, Vladimir I.
2005-03-01
This topical issue of Journal of Optics B: Quantum and Semiclassical Optics contains 16 contributions devoted to quantum systems with moving boundaries. In a broad sense, the papers continue the studies opened exactly 100 years ago by Einstein in his seminal work on the electrodynamics of moving bodies and the quantum nature of light. Another jubilee which we wish to celebrate by launching this issue is the 80th anniversary of the publication of two papers, where the first solutions of the classical Maxwell equations in a one-dimensional cavity with moving boundaries were obtained, by T H Havelock (1924 Some dynamical illustrations of the pressure of radiation and of adiabatic invariance Phil. Mag. 47 754-71) and by E L Nicolai (1925 On a dynamical illustration of the pressure of radiation Phil. Mag. 49 171-7). As was shown by Einstein, studying the fluctuations of the electromagnetic field inevitably leads one to its quantum (corpuscular) nature. Many papers in this issue deal with problems where moving boundaries produce parametric excitation of vacuum fluctuations of the field, which could result in several different observable effects, like the modification of the famous Casimir force, or the creation of real quanta from the vacuum. It is worth emphasizing that these phenomena, frequently referred to as nonstationary (or dynamical) Casimir effects, are no longer the province only of pure theorists: some experimental groups have already started long-term work aimed at observing such effects in the laboratory. Of course, many difficult problems remain to be resolved before this dream becomes reality. Several papers here show both important progress in this direction, and possible difficulties still to be tackled. Problems that have been considered include, in particular, decoherence, entanglement, and the roles of geometry and polarization. Other papers deal with fundamental problems like the Unruh effect, the interaction of accelerated relativistic atoms with
Kvitko, A. N.
2018-01-01
An algorithm convenient for numerical implementation is proposed for constructing differentiable control functions that transfer a wide class of nonlinear nonstationary systems of ordinary differential equations from an initial state to a given point of the phase space. Constructive sufficient conditions imposed on the right-hand side of the controlled system are obtained under which this transfer is possible. The control of a robotic manipulator is considered, and its numerical simulation is performed.
Directory of Open Access Journals (Sweden)
V. K. Bityukov
2016-01-01
Full Text Available Analytical study of the processes of heat conduction is one of the main topics of modern engineering research in engineering, energy, nuclear industry, process chemical, construction, textile, food, geological and other industries. Suffice to say that almost all processes in one degree or another are related to change in the temperature condition and the transfer of warmth. It should also be noted that engineering studies of the kinetics of a range of physical and chemical processes are similar to the problems of stationary and nonstationary heat transfer. These include the processes of diffusions, sedimentation, viscous flow, slowing down the neutrons, flow of fluids through a porous medium, electric fluctuations, adsorption, drying, burning, etc. There are various methods for solving the classical boundary value problems of nonstationary heat conduction and problems of the generalized type: the method of separation of variables (Fourier method method; the continuation method; the works solutions; the Duhamel's method; the integral transformations method; the operating method; the method of green's functions (stationary and non-stationary thermal conductivity; the reflection method (method source. In this paper, based on the consistent application of the Laplace transform on the dimensionless time θ and finite sine integral transformation in the spatial coordinates X and Y solves the problem of unsteady temperature distribution on the mechanism of heat conduction in a parallelepiped with boundary conditions of first kind. As a result we have the analytical solution of the temperature distribution in the parallelepiped to a conductive mode free convection, when one of the side faces of the parallelepiped is maintained at a constant temperature, and the others with the another same constant temperature.
Kot, V. A.
2017-11-01
The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.
Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong
2017-11-01
Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.
Kashiwabara, Takahito
Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.
International Nuclear Information System (INIS)
Bartolomaeus, G.; Wilhelm, J.
1983-01-01
Recently, based on the semigroup approach a new proof was presented of the existence of a unique solution of the non-stationary Boltzmann equation for the electron component of a collision dominated plasma. The proof underlies some restriction which should be overcome to extend the validity range to other problems of physical interest. One of the restrictions is the boundary condition applied. The choice of the boundary condition is essential for the proof because it determines the range of definition of the infinitesimal generator and thus the operator semigroup itself. The paper proves the existence of a unique solution for generalized boundary conditions, this solution takes non-negative values, which is necessary for a distribution function from the physical point of view. (author)
Identifying Phase Space Boundaries with Voronoi Tessellations
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2016-11-24
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.
Nonstationary heat flow in the piston of the turbocharged engine
Directory of Open Access Journals (Sweden)
Piotr GUSTOF
2010-01-01
Full Text Available In this study the numeric computations of nonstationary heat flow in form of temperature distribution on characteristic surfaces of the piston of the turbocharged engine at the beginning phase its work was presented. The computations were performed for fragmentary load engine by means of the two-zone combustion model, the boundary conditions of III kind and the finite elements method (FEM by using of COSMOS/M program.
Non-stationary filtration mode during chemical reactions with the gas phase
Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey
2015-04-01
An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.
Micellar phase boundaries under the influence of ethyl alcohol
International Nuclear Information System (INIS)
Bergeron, Denis E.
2016-01-01
The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. - Highlights: • Compton spectrum quenching technique applied to find micellar phase boundaries. • Toluenic Triton X-100 and Ultima Gold AB investigated. • Ethyl alcohol affects phase boundaries in Triton X-100, not in Ultima Gold AB. • Phase boundary observations discussed in terms of relevant molecular interactions.
A grain boundary phase transition in Si–Au
International Nuclear Information System (INIS)
Ma, Shuailei; Meshinchi Asl, Kaveh; Tansarawiput, Chookiat; Cantwell, Patrick R.; Qi, Minghao; Harmer, Martin P.; Luo, Jian
2012-01-01
A grain boundary transition from a bilayer to an intrinsic (nominally clean) boundary is observed in Si–Au. An atomically abrupt transition between the two complexions (grain boundary stabilized phases) implies the occurrence of a first-order interfacial phase transition associated with a discontinuity in the interfacial excess. This observation supports a grain-boundary complexion theory with broad applications. This transition is atypical in that the monolayer complexion is absent. A model is proposed to explain the bilayer stabilization and the origin of this complexion transition.
Boundary condition histograms for modulated phases
International Nuclear Information System (INIS)
Benakli, M.; Gabay, M.; Saslow, W.M.
1997-11-01
Boundary conditions strongly affect the results of numerical computations for finite size inhomogeneous or incommensurate structures. We present a method which allows to deal with this problem, both for ground state and for critical properties: it combines fluctuating boundary conditions and specific histogram techniques. Our approach concerns classical as well as quantum systems. In particular, current-current correlation functions, which probe large scale coherence of the states, can be accurately evaluated. We illustrate our method on a frustrated two dimensional XY model. (author)
Phase boundary effects in metal matrix embedded glasses
International Nuclear Information System (INIS)
Schiewer, E.
1979-01-01
An investigation was performed to study reactions at the phase boundaries of glass-lead composites at temperatures up to the softening point of the glass. Some metal was oxidized at the boundary and penetrated into the glass. Solid-state diffusion was rate controlling. In the case of a phosphate glass, fission products were depleted in the boundary area. Molybdenum migrated into the lead, and cesium migrated into the glass core. 2 figures, 3 tables
Grain-boundary, glassy-phase identification and possible artifacts
International Nuclear Information System (INIS)
Simpson, Y.K.; Carter, C.B.; Sklad, P.; Bentley, J.
1985-01-01
Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpreting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina
Internal loading of an inhomogeneous compressible Earth with phase boundaries
Defraigne, P.; Dehant, V.; Wahr, J. M.
1996-01-01
The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.
Yan, Meng; Yao, Minyu; Zhang, Hongming
2005-11-01
The performance of a spectral-phase-encoded (SPE) optical code-division multiple-access (OCDMA) system is analyzed. Regarding the incorrectly decoded signal (IDS) as a nonstationary random process, we derive a novel probability distribution for it. The probability distribution of the IDS is considered a chi-squared distribution with degrees of freedom r=1, which is more reasonable and accurate than in previous work. The bit error rate (BER) of an SPE OCDMA system under multiple-access interference is evaluated. Numerical results show that the system can sustain very low BER even when there are multiple simultaneous users, and as the code length becomes longer or the initial pulse becomes shorter, the system performs better.
Entrophy producing processes at phase boundaries
International Nuclear Information System (INIS)
Hampe, M.J.
1981-01-01
A thermodynamic theory for the treatment of transport phenomena in multiphase and multicomponent systems is presented. Starting point is a field theoretical description of interfacial systems. The interface in its three dimensional structure is described by new thermodynamic variables, namely the structure vectors a k of the components k. This offers the possibility to analyse processes related with a change of the three dimensional structure by means of the methods of irreversible thermodynamics. Compared to the well known theory of irreversible processes in single phase and membrane systems there are differences regarding the balance equations for component masses and momentum; additionally a balance equation for the structure vector has to be introduced to treat changes of the interfacial structure. The linear constitutive equations obtained from the production term of the entropy balance equation describe transport processes at every point of a multiphase system. - It is shown that in the interfacial region of multiphase systems there are other processes producing entropy than in the bulk of a single phase system. E.g. in the region of an interface Fickian diffusion is not allowed to occur due to a stability criterion. Instead of this a tensorial transport phenomenon due to the structural change of the interface sets in which is possible only at interfaces. By means of a thermodynamic coupling of this tensorial process with the tensorial momentum transport a thermodynamic explanation and description of the Marangoni-effect is obtained. - New expressions for entropy producing processes are also derived for generalized chemical reactions and transport of momentum. A discussion of potential ineractions between fluxes shows that the same cross-effects occurring in single phase systems cannot be supposed to occur in an interfacial region too. This results in new aspects for the thermodynamic explanation of active transport. (orig.)
Intergranular and inter-phased boundaries in the materials
International Nuclear Information System (INIS)
Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.
2000-01-01
This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)
On the search for experimentally observed grain boundary phase transitions
International Nuclear Information System (INIS)
Balluffi, R.W.; Hsieh, T.E.
1987-07-01
The phase space for a heterogeneous system containing a grain boundary involves a relatively large number of variables (i.e., at least six plus the number of components), and it is therefore conceptually possible to induce a large variety of grain boundary phase transitions by selectively varying these parameters. Despite this, a review of the literature reveals that there have been virtually no clear-cut experimental observations of transitions reported in which the boundary structure has been observed as a function of time under well defined conditions. In current work, we are searching for roughening/faceting transitions and melting transitions for boundaries in Al by hot stage transmission electron microscopy. A clear example of a reversible roughening/faceting transition has been found. No evidence for melting has been found for temperatures as high as 0.96 T/sub m/ (by monitoring GBD core delocalization in several special boundaries with Σ ≤ 13) or 0.999 T/sub m/ (by observing the local diffraction contrast at general boundaries in polycrystalline specimens)
Identifying phase-space boundaries with Voronoi tessellations
International Nuclear Information System (INIS)
Debnath, Dipsikha; Matchev, Konstantin T.; Gainer, James S.; Kilic, Can; Yang, Yuan-Pao; Kim, Doojin
2016-01-01
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)
Identifying phase-space boundaries with Voronoi tessellations
Energy Technology Data Exchange (ETDEWEB)
Debnath, Dipsikha; Matchev, Konstantin T. [University of Florida, Physics Department, Gainesville, FL (United States); Gainer, James S. [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Kilic, Can; Yang, Yuan-Pao [The University of Texas at Austin, Theory Group, Department of Physics and Texas Cosmology Center, Austin, TX (United States); Kim, Doojin [University of Florida, Physics Department, Gainesville, FL (United States); CERN, Theory Division, Geneva 23 (Switzerland)
2016-11-15
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)
Nonstationary quantum mechanics
International Nuclear Information System (INIS)
Todorov, N.S.
1981-01-01
Some peculiarities of the results of nonstationary perturbation theory in the presence of a degenerate continuous energy spectrum are considered. Their relevance to the ideology of the preceding articles in this series is discussed. (author)
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Directory of Open Access Journals (Sweden)
Francesco Cordero
2015-12-01
Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Cordero, Francesco
2015-01-01
The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707
Size effect for phase stability on Au–Cd–Ag of phase boundary composition
International Nuclear Information System (INIS)
Matsuoka, Yuki; Suzuki, Keiko; Kudo, Natsuko
2013-01-01
Highlights: ► Size and heat treatment effects of phase boundary composition Au 52.5−x Cd 47.5 Ag x were studied. ► The transformation temperature T 0 increases by quench. It is investigated that disordering of atoms and lattice defects make β-phase unstable. ► Downsizing sample decreased T 0 in β-phase, showed a tendency of increase in coexistent phase. ► Downsizing is supposed to make difficult nucleation for martensitic transformation. ► Increasing of surface ratio by downsizing of powder sample is estimated to make easy to transform from unstable β-phase to martensite phase. -- Abstract: Size and heat treatment effects on martensitic transformation of phase boundary composition Au 52.5−x Cd 47.5 Ag x were studied. Au 52.5−x Cd 47.5 Ag x has coexistent phase of β-phase and α-phase of fcc structure at x > 42 at.%. The transformation temperature T 0 decreases as Au is substituted on Ag over phase boundary. T 0 increases by quench in both case of bulk and powder. This behavior is investigated that disordering of atoms and lattice defects make β-phase (L2 1 , B2 or bcc) unstable. Size effect was also inspected. Downsizing sample decreased the transformation temperature in β-phase. On the contrary, the transformation temperature of the coexistent phase showed a tendency of increase. Downsizing is supposed to make difficult nucleation for martensitic transformation because of reduction of β-phase ordered volume. Increasing of surface (disorder structure) ratio by downsizing of powder sample is estimated to make easy to transform from unstable β-phase to martensite phase
Boundary induced phase transition with stochastic entrance and exit
International Nuclear Information System (INIS)
Mitra, Mithun Kumar; Chatterjee, Sakuntala
2014-01-01
We study an open-chain totally asymmetric exclusion process (TASEP) with stochastic gates present at the two boundaries. The gating dynamics has been modeled with the physical system of ion-channel gating in mind. These gates can randomly switch between an open state and a closed state. In the open state, the gates are highly permeable such that any particle arriving at the gate immediately passes through. In the closed state, a particle becomes trapped at the gate and cannot pass through until the gate switches open again. We calculate the phase-diagram of the system and find important and non-trivial differences with the phase-diagram of a regular open-chain TASEP. In particular, depending on the switching rates of the two gates, the system may or may not admit a maximal current phase. Our analytic calculations within mean-field theory capture the main qualitative features of our Monte Carlo simulation results. We also perform a refined mean-field calculation where the correlations at the boundaries are taken into account. This theory shows significantly better quantitative agreement with our simulation results. (paper)
Ferroelectric properties of tungsten bronze morphotropic phase boundary systems
International Nuclear Information System (INIS)
Oliver, J.R.; Neurgaonkar, R.R.; Cross, L.E.; Pennsylvania State Univ., University Park, PA
1989-01-01
Tungsten bronze ferroelectrics which have a morphotropic phase boundary (MPB) can have a number or enhanced dielectric, piezoelectric, and electrooptic properties compared to more conventional ferroelectric materials. The structural and ferroelectric properties of several MPB bronze systems are presented, including data from sintered and hot-pressed ceramics, epitaxial thin films, and bulk single crystals. Included among these are three systems which had not been previously identified as morphotropic. The potential advantages and limitations of these MPB systems are discussed, along with considerations of the appropriate growth methods for their possible utilization in optical, piezoelectric, or pyroelectric device applications
International Nuclear Information System (INIS)
Mello, Kelen Berra de
2005-02-01
In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)
Dynamic Phase Boundary Estimation in Two-phase Flows Based on Electrical Impedance Tomography
International Nuclear Information System (INIS)
Lee, Jeong Seong; Muhammada, Nauman Malik; Kim, Kyung Youn; Kim, Sin
2008-01-01
For the dynamic visualization of the phase boundary in two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected through the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrodes. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm where the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers phase boundary estimation with EIT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. For the present problem, the formulation of UKF algorithm involved its incorporation in the adopted image reconstruction algorithm. Also, phantom experiments have been conducted to evaluate the improvement reported by UKF
The Monoclinic Phase in PZT : New Light on Morphotropic Phase Boundaries
Noheda, B.; Gonzalo, J.A.; Guo, R.; Park, S.-E.; Cross, L.E.; Cox, D.E.; Shirane, G.
2000-01-01
A summary of the work recently carried out on the morphotropic phase boundary (MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic samples of excellent quality, the MPB has been successfully characterized by changing temperature in a series of closely spaced compositions. As a
Impact of Compound Hydrate Dynamics on Phase Boundary Changes
Osegovic, J. P.; Max, M. D.
2006-12-01
Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed
Exact phase boundaries and topological phase transitions of the X Y Z spin chain
Jafari, S. A.
2017-07-01
Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.
Nonstationary quantum mechanics
International Nuclear Information System (INIS)
Todorov, N.S.
1981-01-01
It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article rests essentially on the ideology of the preceding articles, in particular article I. (author)
Development of boundary layers
International Nuclear Information System (INIS)
Herbst, R.
1980-01-01
Boundary layers develop along the blade surfaces on both the pressure and the suction side in a non-stationary flow field. This is due to the fact that there is a strongly fluctuating flow on the downstream blade row, especially as a result of the wakes of the upstream blade row. The author investigates the formation of boundary layers under non-stationary flow conditions and tries to establish a model describing the non-stationary boundary layer. For this purpose, plate boundary layers are measured, at constant flow rates but different interferent frequency and variable pressure gradients. By introducing the sample technique, measurements of the non-stationary boundary layer become possible, and the flow rate fluctuation can be divided in its components, i.e. stochastic turbulence and periodical fluctuation. (GL) [de
Liu, Hui; Chen, Jun; Huang, Houbing; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Chen, Long-Qing; Xing, Xianran
2018-01-01
A functional material with coexisting energetically equivalent phases often exhibits extraordinary properties such as piezoelectricity, ferromagnetism, and ferroelasticity, which is simultaneously accompanied by field-driven reversible phase transformation. The study on the interplay between such phase transformation and the performance is of great importance. Here, we have experimentally revealed the important role of field-driven reversible phase transformation in achieving enhanced electromechanical properties using in situ high-energy synchrotron x-ray diffraction combined with 2D geometry scattering technology, which can establish a comprehensive picture of piezoelectric-related microstructural evolution. High-throughput experiments on various Pb /Bi -based perovskite piezoelectric systems suggest that reversible phase transformation can be triggered by an electric field at the morphotropic phase boundary and the piezoelectric performance is highly related to the tendency of electric-field-driven phase transformation. A strong tendency of phase transformation driven by an electric field generates peak piezoelectric response. Further, phase-field modeling reveals that the polarization alignment and the piezoelectric response can be much enhanced by the electric-field-driven phase transformation. The proposed mechanism will be helpful to design and optimize the new piezoelectrics, ferromagnetics, or other related functional materials.
National Aeronautics and Space Administration — The Grain Boundary Engineering (GBE) approach, successfully demonstrated in Phase I, that microstructural optimization provides a very significant improvement in...
Nonstationary quantum mechanics. 5. Nonstationary quantum models of scattering
Energy Technology Data Exchange (ETDEWEB)
Todorov, N S [Low Temperature Department of the Institute of Solid State Physics of the Bulgarian Academy of Sciences, Sofia
1981-05-01
Some peculiarities of the results of nonstationary perturbation theory in the presence of a degenerate continuous energy spectrum are considered. Their relevance to the ideology of the preceding articles in this series is discussed.
Nonstationary quantum mechanics v. nonstationary quantum models of scattering
Energy Technology Data Exchange (ETDEWEB)
Todorov, N S
1981-05-01
Some pecularities of the results of nonstationary pertubation theory in the presence of a degenerate continuous energy spectrum are considered. Their relevance to the ideology of the preceding articles in this series is discussed.
Two-phase semilinear free boundary problem with a degenerate phase
Matevosyan, Norayr
2010-10-16
We study minimizers of the energy functional ∫D[{pipe}∇u{pipe}2 + λ(u+)p]dx for p ∈ (0, 1) without any sign restriction on the function u. The distinguished feature of the problem is the lack of nondegeneracy in the negative phase. The main result states that in dimension two the free boundaries Γ+ = ∂{u > 0} ∩ D andΓ- = ∂{u < 0} ∩ D are C1,α-regular, provided 1 - ∈0 < p < 1. The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate in the negative phase, compensating for the apriori unknown nondegeneracy. © 2010 Springer-Verlag.
Probing Gamma-ray Emission of Geminga & Vela with Non-stationary Models
Directory of Open Access Journals (Sweden)
Yating Chai
2016-06-01
Full Text Available It is generally believed that the high energy emissions from isolated pulsars are emitted from relativistic electrons/positrons accelerated in outer magnetospheric accelerators (outergaps via a curvature radiation mechanism, which has a simple exponential cut-off spectrum. However, many gamma-ray pulsars detected by the Fermi LAT (Large Area Telescope cannot be fitted by simple exponential cut-off spectrum, and instead a sub-exponential is more appropriate. It is proposed that the realistic outergaps are non-stationary, and that the observed spectrum is a superposition of different stationary states that are controlled by the currents injected from the inner and outer boundaries. The Vela and Geminga pulsars have the largest fluxes among all targets observed, which allows us to carry out very detailed phase-resolved spectral analysis. We have divided the Vela and Geminga pulsars into 19 (the off pulse of Vela was not included and 33 phase bins, respectively. We find that most phase resolved spectra still cannot be fitted by a simple exponential spectrum: in fact, a sub-exponential spectrum is necessary. We conclude that non-stationary states exist even down to the very fine phase bins.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics.
Zheng, Ting; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Lou, Xiaojie
2015-09-16
The piezoelectricity of (K,Na)NbO3 ceramics strongly depends on the phase boundary types as well as the doped compositions. Here, we systematically studied the relationships between the compositions and phase boundary types in (K,Na) (Nb,Sb)O3-Bi0.5Na0.5AO3 (KNNS-BNA, A=Hf, Zr, Ti, Sn) ceramics; then their piezoelectricity can be readily modified. Their phase boundary types are determined by the doped elements. A rhombohedral-tetragonal (R-T) phase boundary can be driven in the compositions range of 0.035≤BNH≤0.040 and 0.035≤BNZ≤0.045; an orthorhombic-tetragonal (O-T) phase boundary is formed in the composition range of 0.005≤BNT≤0.02; and a pure O phase can be only observed regardless of BNS content (≤0.01). In addition, the phase boundary types strongly affect their corresponding piezoelectricities. A larger d33 (∼440-450 pC/N) and a higher d33* (∼742-834 pm/V) can be attained in KNNS-BNA (A=Zr and Hf) ceramics due to the involvement of R-T phase boundary, and unfortunately KNNS-BNA (A=Sn and Ti) ceramics possess a relatively poor piezoelectricity (d33≤200 and d33*piezoelectricity and phase boundary types were also discussed. We believe that comprehensive research can design more excellent ceramic systems concerning potassium-sodium niobate.
Movement of the boundary between the A and B helium-3 phases in superfluid
International Nuclear Information System (INIS)
Kopnin, N.B.
1987-01-01
The friction force arising on motion of the boundary between the A and B phases in superfluid helium-3 is calculated on the basis of the microscopic theory in a linear approximation with respect to the velocity
Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces
International Nuclear Information System (INIS)
Cheung, F.B.; Epstein, M.
1985-01-01
The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior
International Nuclear Information System (INIS)
Zhang, Yang; Xue, Dezhen; Wu, Haijun; Ding, Xiangdong; Lookman, Turab; Ren, Xiaobing
2014-01-01
With a focus on local symmetry, the microstructural basis for high piezoelectric performance in PbMg 1/3 Nb 2/3 O 3 –xPbTiO 3 (PMN–PT) ceramics at the morphotropic phase boundary (MPB) composition was investigated by means of convergent-beam electron diffraction analysis and twin diffraction pattern analysis. The local structure was found to consist of coexisting (1 0 1)-type tetragonal nanotwins and (0 0 1)-type rhombohedral nanotwins. A phenomenological theory based on crystallography is proposed to show that such nanoscale coexistence can give rise to an average monoclinic structure through strain accommodation. The average monoclinic structures (Ma and Mc) vary with temperature and composition due to the dependence on temperature and composition of the lattice parameters. Based on in situ X-ray diffraction data, we demonstrate how the polarization rotates across the MPB region in PMN–PT ceramics with varying temperatures and compositions
High-yield acetonitrile | water triple phase boundary electrolysis at platinised Teflon electrodes
Energy Technology Data Exchange (ETDEWEB)
Watkins, John D.; MacDonald, Stuart M.; Fordred, Paul S.; Bull, Steven D. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Gu, Yunfeng; Yunus, Kamran; Fisher, Adrian C. [Department of Chemical Engineering, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Bulman-Page, Philip C. [School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (United Kingdom); Marken, Frank [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)], E-mail: f.marken@bath.ac.uk
2009-11-30
A dynamic acetonitrile | aqueous electrolyte phase boundary in contact with platinised Teflon working electrodes is investigated. High concentrations of salt in the aqueous phase (2 M NaCl and 0.1 M NaClO{sub 4}) ensure immiscibility and the polar nature of acetonitrile aids the formation of a well-behaved triple phase boundary reaction zone. The one-electron oxidation of tert-butylferrocene in the organic phase without intentionally added electrolyte is studied. The limiting current for the flowing triple phase boundary process is shown to be essentially volume flow rate independent. The process is accompanied by the transfer of perchlorate from the aqueous into the organic phase and the flux of anions is shown to be approximately constant along the dynamic acetonitrile | aqueous electrolyte | platinum line interface. A high rate of conversion (close to 100%) is achieved at slow volume flow rates and at longer platinum electrodes.
Information retrieval for nonstationary data records
Su, M. Y.
1971-01-01
A review and a critical discussion are made on the existing methods for analysis of nonstationary time series, and a new algorithm for splitting nonstationary time series, is applied to the analysis of sunspot data.
Parametric modelling of nonstationary platform deck motions
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
with fast Fourier transform spectra and show good agreement. However, the higher order maximum entropy model can be used for better representation of nonstationary motions. This method also reduces long time series of nonstationary offshore data into a few...
Photorefraction in crystals with nonstationary photovoltaic current
International Nuclear Information System (INIS)
Volk, T.R.; Astaf'ev, S.B.; Razumovskij, N.V.
1995-01-01
Effect of photovoltaic current nonstationary components, conditioned by nonstationary character of photovoltaic centers, on photorefractive properties of LiNbO 3 crystals is considered. Analytic expressions describing nonstationary photovoltaic current effect on kinetics of recording and optical erasure of photorefraction are obtained. A possibility of nonstationary photovoltaic current occurrence in crystals with multilevel charge transfer circuit is considered. Recording light pulse duration effect on photorefraction in LiNbO 3 is discussed. 25 refs., 8 figs
Nonstationary statistical theory for multipactor
International Nuclear Information System (INIS)
Anza, S.; Vicente, C.; Gil, J.; Boria, V. E.; Gimeno, B.; Raboso, D.
2010-01-01
This work presents a new and general approach to the real dynamics of the multipactor process: the nonstationary statistical multipactor theory. The nonstationary theory removes the stationarity assumption of the classical theory and, as a consequence, it is able to adequately model electron exponential growth as well as absorption processes, above and below the multipactor breakdown level. In addition, it considers both double-surface and single-surface interactions constituting a full framework for nonresonant polyphase multipactor analysis. This work formulates the new theory and validates it with numerical and experimental results with excellent agreement.
Enhanced tunneling through nonstationary barriers
International Nuclear Information System (INIS)
Palomares-Baez, J. P.; Rodriguez-Lopez, J. L.; Ivlev, B.
2007-01-01
Quantum tunneling through a nonstationary barrier is studied analytically and by a direct numerical solution of Schroedinger equation. Both methods are in agreement and say that the main features of the phenomenon can be described in terms of classical trajectories which are solutions of Newton's equation in complex time. The probability of tunneling is governed by analytical properties of a time-dependent perturbation and the classical trajectory in the plane of complex time. Some preliminary numerical calculations of Euclidean resonance (an easy penetration through a classical nonstationary barrier due to an underbarrier interference) are presented
Three-phase boundary length in solid-oxide fuel cells: A mathematical model
Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf
A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.
Directory of Open Access Journals (Sweden)
O. V. Luganska
2015-06-01
Full Text Available The extraction coefficients of the cation of alkyldimethylbenzylammonium chloride at the phase boundary water-tricresylphosphate, water-dioctylphthalate, water-dibutylphtalate have been determined by the potentiometric titration of the aqueous phase with a silver electrode. The correctness of the obtained results has been proved by the titrimetric method with visual fixation of the equivalence point using methylene blue indicator.
International Nuclear Information System (INIS)
Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.
1996-01-01
Alteration behavior of UO 2 pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO 2 granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO 2 ) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems
Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow
International Nuclear Information System (INIS)
Bostjan Koncar; Borut Mavko; Yassin A Hassan
2005-01-01
Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling
On the rutile alpha-PbO"2-type phase boundary of TiO"2
DEFF Research Database (Denmark)
Olsen, J.S.; Gerward, Leif; Jiang, Jianzhong
1999-01-01
The high-pressure, high-temperature phase quilibria of TiO"2 have been studied with special emphasis on the rutile and alpha-PbO"2-type phases. It is found that the phase boundary, when plotted in a pressure-temperature diagram, changes from having a negative to having a positive slope...... with increasing temperature at about 6GPa and 850^oC. For nanophase material, the phase boundary is shifted towards lower pressure. The room-temperature bulk moduli are 210(120)GPa, 258(8)GPa and 290(20)GPa for rutile, the alpha-PbO"2-type phase and the baddeleyite-type phase, respectively....
Directory of Open Access Journals (Sweden)
Ermuratschii V.V.
2014-04-01
Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.
A phase-field simulation study of irregular grain boundary migration during recrystallization
DEFF Research Database (Denmark)
Moelans, N.; Zhang, Yubin; Godfrey, A.
2015-01-01
We present simulation results based on a phase-field model that describes the migration of recrystallization boundaries into spatially varying deformation energy fields. Energy fields with 2-dimensional variations representing 2 sets of dislocation boundaries lying at equal, but opposite, angles......, highly asymmetrical protrusions and retrusions can develop on the migrating recrystallization front resulting in a migration velocity considerably larger than that expected from standard recrystallization models. It is also seen that, when the wavelength of the variations in a deformation microstructure...
Energy Technology Data Exchange (ETDEWEB)
Aslanides, A. [Electricite de France, Dept. CIMA, 77 - Moret sur Loing (France); Backhaus-Ricoult, M. [Centre d' Etudes de Chimie metallurgique, 94 - Vitry-sur-Seine (France); Bayle-Guillemaud, P. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)] [and others
2000-07-01
This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)
Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions
International Nuclear Information System (INIS)
Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G.
1990-01-01
The effect of thermally activated phase slippage (TAPS) in YBa 2 Cu 3 O 7 grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-T c Josephson junctions are outlined
Thermally activated phase slippage in high- T sub c grain-boundary Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))
1990-01-08
The effect of thermally activated phase slippage (TAPS) in YBa{sub 2}Cu{sub 3}O{sub 7} grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-{ital T}{sub {ital c}} Josephson junctions are outlined.
International Nuclear Information System (INIS)
Mina, M. F.; Akhtar, F.; Haque, M.E.
2003-10-01
The phase boundary of incompatible polymer blends such as poly (methyl methacrylate) (PMMA)/natural rubber (NR) and polyestyrene (PS)/NR as well as compatible blends such as PMMA/NR/epoxidizer NR (compatibilizer) and PS/NR/styrene-butadiene-styrene (SBS) block copolymer (compatibilizer) was studied by means of microhardness (H) technique and microscopy. Solution grown films of neat PMMA, PS and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR and PS/NR/SBS were cast using a common solvent (toluene). While the neat PMMA and PS provide constant hardness values of 178 and 173 MPa, respectively, the binary (incompatible) and the ternary (compatible) blends show a conspicuous H-decrease (PMMA/NR=140 MPa, PS/NR=167 MPa, PMMA/NR/ENR=109 MPa and PS/NR/SBS=127 MPa). Scanning electron microscopy and optical microscopy reveal clear difference of the phase boundary of compatible (smooth boundary) and incompatible (sharp boundary) blends. Besides, the compatibilizer blends are characterised by the thinnest phase boundary (30 μm), which is found about 60 μm in the incompatible blends, showing a final hardness value that demonstrates the compatibilizer to be smoothly distributed in the interface between the two blend components. Results highlight that microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non- or compatibilized polymer blends and other inhomogeneous materials. (author)
Wavelet analysis for nonstationary signals
International Nuclear Information System (INIS)
Penha, Rosani Maria Libardi da
1999-01-01
Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect
The quantum-field renormalization group in the problem of a growing phase boundary
International Nuclear Information System (INIS)
Antonov, N.V.; Vasil'ev, A.N.
1995-01-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik's assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants (open-quotes chargeclose quotes). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundary and time, δ h and δ t , which satisfy the exact relationship 2 δ h = δ t + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab
Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces
International Nuclear Information System (INIS)
Cheung, F.B.; Epstein, M.
1985-01-01
The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined
Energy Technology Data Exchange (ETDEWEB)
Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)
2010-08-15
A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)
A phase field study of strain energy effects on solute–grain boundary interactions
International Nuclear Information System (INIS)
Heo, Tae Wook; Bhattacharyya, Saswata; Chen Longqing
2011-01-01
We have studied strain-induced solute segregation at a grain boundary and the solute drag effect on boundary migration using a phase field model integrating grain boundary segregation and grain structure evolution. The elastic strain energy of a solid solution due to the atomic size mismatch and the coherency elastic strain energy caused by the inhomogeneity of the composition distribution are obtained using Khachaturyan’s microelasticity theory. Strain-induced grain boundary segregation at a static planar boundary is studied numerically and the equilibrium segregation composition profiles are validated using analytical solutions. We then systematically studied the effect of misfit strain on grain boundary migration with solute drag. Our theoretical analysis based on Cahn’s analytical theory shows that enhancement of the drag force with increasing atomic size mismatch stems from both an increase in grain boundary segregation due to the strain energy reduction and misfit strain relaxation near the grain boundary. The results were analyzed based on a theoretical analysis in terms of elastic and chemical drag forces. The optimum condition for solute diffusivity to maximize the drag force under a given driving force was identified.
Superconducting-normal phase boundary of quasicrystalline arrays in a magnetic field
International Nuclear Information System (INIS)
Nori, F.; Niu, Q.; Fradkin, E.; Chang, S.
1987-01-01
We study the effect of frustration, induced by a mangnetic field, on the superconducting diamagnetic properties of two-dimensional quasicrystalline arrays. In particular, we calculate the superconducting-normal phase boundary, T/sub c/(H), for several geometries with quasicrystalline order. The agreement between our theoretically obtained phase boundaries and the experimentally obtained ones is very good. We also propose a new way of analytically analyzing the overall and the fine structure of T/sub c/(H) in terms of short- and long-range correlations among tiles
Bubble boundary estimation in an annulus two-phase flow using electrical impedance tomography
International Nuclear Information System (INIS)
Lee, Jeong Seong
2008-02-01
For the visualization of the phase boundary in an annulus two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with EIT in an annulus two-phase flows. And in many industrial cases there are a priori known internal structures inside the vessels which could be used as internal electrodes in tomographical imaging. In this paper internal electrodes were considered in electrical impedance tomography. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. The UKF algorithm was formulated to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF
International Nuclear Information System (INIS)
Lee, Jeong Seong; Chung, Soon Il; Ljaz, Umer Zeeshan; Khambampati, Anil Kumar; Kim, Kyung Youn; Kim, Sin Kim
2007-01-01
For the visualization of the phase boundary in annular two-phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of ERT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with ERT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. We formulated the UKF algorithm to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF
Zhou, Chao; Ke, Xiaoqin; Yao, Yonggang; Yang, Sen; Ji, Yuanchao; Liu, Wenfeng; Yang, Yaodong; Zhang, Lixue; Hao, Yanshuang; Ren, Shuai; Zhang, Le; Ren, Xiaobing
2018-04-01
Obtaining superior physical properties for ferroic materials by manipulating the phase transitions is a key concern in solid state physics. Here, we investigated the dielectric permittivity, piezoelectric coefficient d33, storage modulus, and crystal symmetry of (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba1-yCay)TiO3 (BZT-xBCyT) systems to demonstrate the gradual evolution process from successive phase transitions in BaTiO3 to the morphotropic phase boundary (MPB) regime in BZT-xBC0.3T. Furthermore, we analysed with a Landau-type theoretical model to show that the high field-sensitive response (dielectric permittivity) originates from a small polarization anisotropy and low energy barrier at the quadruple point. Together, the intermediate orthorhombic phase regime and the tetragonal-orthorhombic and orthorhombic-rhombohedral phase boundaries constitute the MPB. Our work not only reconciles the arguments regarding whether the structural state around the MPB corresponds to a single-phase regime or a multiple-phase-coexistence regime but also suggests an effective method to design high-performance functional ferroic materials by tailoring the successive phase transitions.
Multidimensional phase change problems by the dual-reciprocity boundary-element method
International Nuclear Information System (INIS)
Jo, J.C.; Shin, W.K.; Choi, C.Y.
1999-01-01
Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach provided in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available
Energy Technology Data Exchange (ETDEWEB)
Schryvers, D., E-mail: nick.schryvers@uantwerpen.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Salje, E.K.H. [Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom); Nishida, M. [Department of Engineering Sciences for Electronics and Materials, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); De Backer, A. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Idrissi, H. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Place Sainte Barbe, 2, B-1348, Louvain-la-Neuve (Belgium); Van Aert, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)
2017-05-15
The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials. - Highlights: • Quantification of picometer displacements at ferroelastic twin boundary in CaTiO{sub 3.} • Quantification of kinks in meandering ferroelectric domain wall in LiNbO{sub 3}. • Quantification of column occupation in anti-phase boundary in Co-Pt. • Quantification of atom displacements at twin boundary in Ni-Ti B19′ martensite.
Switching moving boundary models for two-phase flow evaporators and condensers
Bonilla, Javier; Dormido, Sebastián; Cellier, François E.
2015-03-01
The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.
Comparison of phase boundaries between kagomé and honeycomb superconducting wire networks
Xiao, Yi; Huse, David A.; Chaikin, Paul M.; Higgins, Mark J.; Bhattacharya, Shobo; Spencer, David
2002-06-01
We measure resistively the mean-field superconducting-normal phase boundaries of both kagomé and honeycomb wire networks immersed in a transverse magnetic field. In addition to their agreement with theory about the overall shapes of phase diagrams, they show striking one-to-one correspondence between the cusps in the honeycomb phase boundary and those in the kagomé curve. This correspondence is due to their geometric arrangements and agrees with Lin and Nori's recent calculation. We also find that for the frustrated honeycomb network at f=1/2, the current patterns in the superconducting phase differ between the low-temperature London regime and the higher-temperature Ginzburg-Landau regime near Tc.
Stress engineering for the design of morphotropic phase boundary in piezoelectric material
Energy Technology Data Exchange (ETDEWEB)
Ohno, Tomoya, E-mail: ohno@mail.kitami-it.ac.jp [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)
2015-06-30
Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.
Mukherji, Sutapa
2018-03-01
In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
Three-phase boundary length in solid-oxide fuel cells: A mathematical model
Energy Technology Data Exchange (ETDEWEB)
Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)
2008-03-15
A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)
Mallak, Saed
1996-01-01
Ankara : Department of Mathematics and Institute of Engineering and Sciences of Bilkent University, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves leaf 29 In thi.s work, we studierl the Ergodicilv of Non-Stationary .Markov chains. We gave several e.xainples with different cases. We proved that given a sec[uence of Markov chains such that the limit of this sec|uence is an Ergodic Markov chain, then the limit of the combination ...
Primary collector wall local temperature fluctuations in the area of water-steam phase boundary
Energy Technology Data Exchange (ETDEWEB)
Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)
1995-12-31
A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.
Primary collector wall local temperature fluctuations in the area of water-steam phase boundary
Energy Technology Data Exchange (ETDEWEB)
Matal, O; Klinga, J; Simo, T [Energovyzkum Ltd., Brno (Switzerland)
1996-12-31
A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.
Variable and space steps solution of a two phase moving boundary ...
African Journals Online (AJOL)
Equations of a two phase moving boundary problem in cylindrical coordinates are obtained from the formulation of a transient shrinking core model of whole tree combustion in a one dimensional steady state fixed-bed reactor. An hybrid Variable Grid Method is developed to solve the non linear equations and the results are ...
Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging
Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.
2011-01-01
The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.
Splines employment for inverse problem of nonstationary thermal conduction
International Nuclear Information System (INIS)
Nikonov, S.P.; Spolitak, S.I.
1985-01-01
An analytical solution has been obtained for an inverse problem of nonstationary thermal conduction which is faced in nonstationary heat transfer data processing when the rewetting in channels with uniform annular fuel element imitators is investigated. In solving the problem both boundary conditions and power density within the imitator are regularized via cubic splines constructed with the use of Reinsch algorithm. The solution can be applied for calculation of temperature distribution in the imitator and the heat flux in two-dimensional approximation (r-z geometry) under the condition that the rewetting front velocity is known, and in one-dimensional r-approximation in cases with negligible axial transport or when there is a lack of data about the temperature disturbance source velocity along the channel
Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics
Lv, Xiang
2017-10-04
Although a rhombohedral-tetragonal (R-T) phase boundary is known to substantially enhance the piezoelectric properties of potassium-sodium niobate ceramics, the structural evolution of the R-T phase boundary itself is still unclear. In this work, the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction (XRD) patterns and Raman spectra, the structural evolution was determined to be Rhombohedral (R, <-125 °C) → Rhombohedral+Orthorhombic (R+O, -125 °C to 0 °C) → Rhombohedral+Tetragonal (R+T, 0 °C to 150 °C) → dominating Tetragonal (T, 200 °C to Curie temperature (TC)) → Cubic (C, >TC). In addition, the enhanced electrical properties (e.g., a direct piezoelectric coefficient (d33) of ~450±5 pC/N, a conversion piezoelectric coefficient (d33*) of ~580±5 pm/V, an electromechanical coupling factor (kp) of ~0.50±0.02, and TC~250 °C), fatigue-free behavior, and good thermal stability were exhibited by the ceramics possessing the R-T phase boundary. This work improves understanding of the physical mechanism behind the R-T phase boundary in KNN-based ceramics and is an important step towards their adoption in practical applications. This article is protected by copyright. All rights reserved.
Single particle nonlocality, geometric phases and time-dependent boundary conditions
Matzkin, A.
2018-03-01
We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.
Boundary fidelity and entanglement in the symmetry protected topological phase of the SSH model
International Nuclear Information System (INIS)
Sirker, J; Maiti, M; Konstantinidis, N P; Sedlmayr, N
2014-01-01
We present a detailed study of the fidelity, the entanglement entropy and the entanglement spectrum, for a dimerized chain of spinless fermions—a simplified Su–Schrieffer–Heeger (SSH) model—with open boundary conditions which is a well-known example for a model supporting a symmetry protected topological (SPT) phase. In the non-interacting case the Hamiltonian matrix is tridiagonal and the eigenvalues and vectors can be given explicitly as a function of a single parameter which is known analytically for odd chain lengths and can be determined numerically in the even length case. From a scaling analysis of these data for essentially semi-infinite chains we obtain the fidelity susceptibility and show that it contains a boundary contribution which is different in the topologically ordered than in the topologically trivial phase. For the entanglement spectrum and entropy we confirm predictions from massive field theory for a block in the middle of an infinite chain but also consider blocks containing the edge of the chain. For the latter case we show that in the SPT phase additional entanglement—as compared to the trivial phase—is present which is localized at the boundary. Finally, we extend our study to the dimerized chain with a nearest-neighbour interaction using exact diagonalization, Arnoldi and density-matrix renormalization group methods and show that a phase transition into a topologically trivial charge-density wave phase occurs. (paper)
Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang
2018-03-01
We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.
Two-phase semilinear free boundary problem with a degenerate phase
Matevosyan, Norayr; Petrosyan, Arshak
2010-01-01
states that in dimension two the free boundaries Γ+ = ∂{u > 0} ∩ D andΓ- = ∂{u < 0} ∩ D are C1,α-regular, provided 1 - ∈0 < p < 1. The proof is obtained by a careful iteration of the Harnack inequality to obtain a nontrivial growth estimate
Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun
2017-09-01
Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.
Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection
Karma, Alain; Trivedi, Rohit
1999-01-01
Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth
A Novel Simulation Model for Nonstationary Rice Fading Channels
Directory of Open Access Journals (Sweden)
Kaili Jiang
2018-01-01
Full Text Available In this paper, we propose a new simulator for nonstationary Rice fading channels under nonisotropic scattering scenarios, as well as the improved computation method of simulation parameters. The new simulator can also be applied on generating Rayleigh fading channels by adjusting parameters. The proposed simulator takes into account the smooth transition of fading phases between the adjacent channel states. The time-variant statistical properties of the proposed simulator, that is, the probability density functions (PDFs of envelope and phase, autocorrelation function (ACF, and Doppler power spectrum density (DPSD, are also analyzed and derived. Simulation results have demonstrated that our proposed simulator provides good approximation on the statistical properties with the corresponding theoretical ones, which indicates its usefulness for the performance evaluation and validation of the wireless communication systems under nonstationary and nonisotropic scenarios.
Anti-phase boundaries and magnetic domain structures in Ni{sub 2}MnGa-type Heusler alloys
Energy Technology Data Exchange (ETDEWEB)
Venkateswaran, S.P. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Nuhfer, N.T. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); De Graef, M. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)]. E-mail: degraef@cmu.edu
2007-05-15
The microstructure and magnetic domain structure of austenitic Heusler Ni{sub 2}MnGa are investigated as a function of heat treatment to study the interplay of anti-phase boundaries and magnetic domain walls. Conventional electron microscopy observations on arc-melted polycrystalline samples show that anti-phase boundaries in this system are invisible for standard two-beam imaging conditions, due to the large extinction distance of the Heusler superlattice reflections. Lorentz Fresnel and Foucault observations on quenched samples reveal a wavy magnetic domain morphology, reminiscent of curved anti-phase boundaries. A close inspection of the domain images indicates that the anti-phase boundaries have a magnetization state different from that of the matrix. Fresnel image simulations for a simple magnetization model are in good agreement with the observations. Magnetic coercivity measurements show a decrease in coercivity with annealing, which correlates with the microscopy observations of reduced anti-phase boundary density for annealed samples.
Learning for Nonstationary Dirichlet Processes
Czech Academy of Sciences Publication Activity Database
Quinn, A.; Kárný, Miroslav
2007-01-01
Roč. 21, č. 10 (2007), s. 827-855 ISSN 0890-6327 R&D Projects: GA AV ČR 1ET100750401 Grant - others:MŠk ČR(CZ) 2C06001 Program:2C Institutional research plan: CEZ:AV0Z10750506 Keywords : Nestacionární procesy * učení * Dirichletovy procesy * zapomínání Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.776, year: 2007 http://library.utia.cas.cz/separaty/2007/as/karny- learning for nonstationary dirichlet processes.pdf
Directory of Open Access Journals (Sweden)
Yuliang Wang
Full Text Available Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.
Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng
2015-01-01
Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.
A Cosserat crystal plasticity and phase field theory for grain boundary migration
Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut
2018-06-01
The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.
Aperiodic superconducting phase boundary of periodic micronetworks in a magnetic field
International Nuclear Information System (INIS)
Nori, F.; Niu, Q.
1988-01-01
We study flux quantization in periodic arrays with two elementary cells having an irrational ratio of areas. In particular, we calculate the superconducting-normal phase boundary T/sub c/(H) and we analyze the origin of its overall and fine structure as a function of the network size. We discuss our theoretical results, exploiting the electronic tight-binding analogy to the Ginzburg-Landau equations, and compare them with the experimental ones
Study of two-phase boundary layer phenomena in boiling water by means of photographic techniques
International Nuclear Information System (INIS)
Molen, S.B. van der
1976-01-01
The behaviour of bubbles in the boundary layer of a two-phase flow is important for the heat exchange between the heat production unit and the cooling medium. Theoretical knowledge of the forces on a bubble and the interaction between molecules of different kind are essential for understanding the phenomena. The photographic techniques are needed for the investigation of the bubble pattern which exists where we find Departure from Nucleate Boiling. (orig.) [de
Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate
International Nuclear Information System (INIS)
Rouquette, J.; Haines, J.; Bornand, V.; Pintard, M.; Papet, Ph.; Bousquet, C.; Konczewicz, L.; Gorelli, F. A.; Hull, S.
2004-01-01
Titanium-rich PZT solid solutions were studied under high pressure by neutron and x-ray diffraction, Raman spectroscopy and dielectric measurements. The results show that high pressure stabilizes the ferroelectric monoclinic phases, which are proposed to be responsible for the high piezoelectric properties characteristic of the morphotropic composition PbZr 0.52 Ti 0.48 O 3 . Pressure may thus be used to tune the morphotropic phase boundary in the composition-pressure plane to include a wide range of titanium-rich PZT compositions
Directory of Open Access Journals (Sweden)
Hiroshi Tsukahara
2018-05-01
Full Text Available We investigated the effects of grain boundary phases on magnetization reversal in permanent magnets by performing large-scale micromagnetic simulations based on Landau–Lifshitz–Gilbert equation under a periodic boundary. We considered planar grain boundary phases parallel and perpendicular to an easy axis of the permanent magnet and assumed the saturation magnetization and exchange stiffness constant of the grain boundary phase to be 10% and 1%, respectively, for Nd2Fe14B grains. The grain boundary phase parallel to the easy axis effectively inhibits propagation of magnetization reversal. In contrast, the domain wall moves across the grain boundary perpendicular to the easy axis. These properties of the domain wall motion are explained by dipole interaction, which stabilizes the antiparallel magnetic configuration in the direction perpendicular to the magnetization orientation. On the other hand, the magnetization is aligned in the same direction by the dipole interaction parallel to the magnetization orientation. This anisotropy of the effect of the grain boundary phase shows that improvement of the grain boundary phase perpendicular to the easy axis effectively enhances the coercivity of permanent magnets.
Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-01
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
Phase-relationships between scales in the perturbed turbulent boundary layer
Jacobi, I.; McKeon, B. J.
2017-12-01
The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.
Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric
DEFF Research Database (Denmark)
Walker, Julian; Simons, Hugh; Alikin, Denis O
2016-01-01
Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroe......Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb......)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...
Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.
2018-05-01
The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.
The α-γ-ɛ triple point and phase boundaries of iron under shock compression
Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng
2017-07-01
The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.
Phase-field simulation study of the migration of recrystallization boundaries
DEFF Research Database (Denmark)
Moelans, Nele; Godfrey, Andy; Zhang, Yubin
2013-01-01
We present simulation results based on a phase-field model that describes the local migration of recrystallization boundaries into varying deformation energy fields. An important finding from the simulations is that the overall migration rate of the recrystallization front can be considerably...... amplitudes, however, the velocity scales with the maximum of the deformation energy density along the variation, resulting in a considerably larger velocity than that obtained from standard recrystallization models. The shape of the migrating grain boundary greatly depends on the local characteristics...... of the varying stored deformation energy field. For different deformation energy fields, the simulation results are in good qualitative agreement with experiments and add information which cannot be directly derived from experiments....
Nonstationary oscillations in gyrotrons revisited
International Nuclear Information System (INIS)
Dumbrajs, O.; Kalis, H.
2015-01-01
Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper
Calorimetric Study of Phase Transitions Involving Twist-Grain-Boundary TGB{A} and TGB{C} Phases
Navailles, L.; Garland, C. W.; Nguyen, H. T.
1996-09-01
High-resolution calorimetry has been used to determine the heat capacity and latent heat associated with phase transitions in the homologous series of chiral liquid crystals nF_2BTFO_1M_7 [ 3-fluoro-4(1-methylheptyloxy)4'-(4''-alkoxy-2'', 3''-difluorobenzoyloxy)tolane] . These compounds exhibit smectic-C^* (SmC^*), twist-grain-boundary (TGBA for n=10, TGBC for n=11, 12) and cholesteric (N^*) phases. All the phase transitions are first order with small to moderate latent heats. There is a large rounded excess heat capacity peak in the N^* phase that is consistent with the predicted appearance of short-range TGB order (chiral line liquid character). This is analogous to the development of an Abrikosov flux vortex liquid in type-II superconductors. Both the n=11 and 12 homologs exhibit two closely spaced transitions in the region where a single TGBC - N^* transition was expected. This suggests the existence of two thermodynamically distinct TGBC phases. Des exprériences de calorimétrie haute résolution ont été réalisées pour déterminer les chaleurs spécifiques et les chaleurs latentes associées aux transitions de phase des homologues de la série crystal liquide nF_2BTFO_1M_7: 3-fluoro-4[1-methyl-heptyloxy]4'-(4''-alcoxy-2'', 3''-difluorobenzoyloxy)tolanes. Ces produits présentent la phase smectique C^* (SmC^*), les phases à torsion par joint de grain (TGBA pour n=10 et TGBC pour n=11, 12) et la phase cholestérique (N^*). Toutes les transitions de phase sont du premier ordre. La chaleur latente associée à ces transitions est faibles ou modérée. Nous observons, dans la phase N^*, un grand pic arrondi qui est en accord avec les prédictions de l'apparition d'un ordre TGB à courte distance (liquide de ligne de dislocation). Ce phénomène est l'analogue du liquide de vortex dans les supraconducteurs de type II. Les composés n=11 et 12 présentent, dans la région où nous attendions une transition TGBC - N^* unique, deux transitions sur un très faible
Kinetic boundaries and phase transformations of ice i at high pressure
Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.
2018-01-01
Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.
International Nuclear Information System (INIS)
Khambampati, Anil Kumar; Kim, Kyung Youn; Ijaz, Umer Zeeshan; Lee, Jeong Seong; Kim, Sin
2010-01-01
In industrial processes, monitoring of heterogeneous phases is crucial to the safety and operation of the engineering structures. Particularly, the visualization of voids and air bubbles is advantageous. As a result many studies have appeared in the literature that offer varying degrees of functionality. Electrical impedance tomography (EIT) has already been proved to be a hallmark for process monitoring and offers not only the visualization of the resistivity profile for a given flow mixture but is also used for detection of phase boundaries. Iterative image reconstruction algorithms, such as the modified Newton–Raphson (mNR) method, are commonly used as inverse solvers. However, their utility is problematic in a sense that they require the initial solution in close proximity of the ground truth. Furthermore, they also rely on the gradient information of the objective function to be minimized. Therefore, in this paper, we address all these issues by employing a direct search algorithm, namely the Hooke and Jeeves pattern search method, to estimate the phase boundaries that directly minimizes the cost function and does not require the gradient information. It is assumed that the resistivity profile is known a priori and therefore the unknown information will be the size and location of the object. The boundary coefficients are parameterized using truncated Fourier series and are estimated using the relationship between the measured voltages and injected currents. Through extensive simulation and experimental result and by comparison with mNR, we show that the Hooke and Jeeves pattern search method offers a promising prospect for process monitoring
Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics
Lv, Xiang; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Zhang, Xixiang
2017-01-01
, the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction
Wouden, Alex; Cimbala, John; Lewis, Bryan
2014-11-01
While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.
Loss energy states of nonstationary quantum systems
International Nuclear Information System (INIS)
Dodonov, V.V.; Man'ko, V.I.
1978-01-01
The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed
Lead-free piezoelectric KNN-BZ-BNT films with a vertical morphotropic phase boundary
Directory of Open Access Journals (Sweden)
Wen Chen
2015-07-01
Full Text Available The lead-free piezoelectric 0.915K0.5Na0.5NbO3-0.075BaZrO3-0.01Bi0.5Na0.5TiO3 (0.915KNN-0.075BZ-0.01BNT films were prepared by a chemical solution deposition method. The films possess a pure rhomobohedral perovskite phase and a dense surface without crack. The temperature-dependent dielectric properties of the specimens manifest that only phase transition from ferroelectric to paraelectric phase occurred and the Curie temperature is 217 oC. The temperature stability of ferroelectric phase was also supported by the stable piezoelectric properties of the films. These results suggest that the slope of the morphotropic phase boundary (MPB for the solid solution formed with the KNN and BZ in the films should be vertical. The voltage-induced polarization switching, and a distinct piezo-response suggested that the 0.915 KNN-0.075BZ-0.01BNT films show good piezoelectric properties.
Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki
2017-04-01
The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.
International Nuclear Information System (INIS)
Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki
2017-01-01
The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum , a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum , but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation. (paper)
Energy Technology Data Exchange (ETDEWEB)
Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.
1996-12-31
Alteration behavior of UO{sub 2} pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO{sub 2} granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO{sub 2}) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems.
Determination of γ′+γ / γ Phase Boundary in Ni-Al-Cr System Using DTA Thermal Analysis
Directory of Open Access Journals (Sweden)
Maciąg T.
2016-03-01
Full Text Available Mechanical properties at elevated temperature, in modern alloys based on intermetallic phase Ni3Al are connected with phase composition, especially with proportion of ordered phase γ′ (L12 and disordered phase γ (A1. In this paper, analysis of one key systems for mentioned alloys - Ni-Al-Cr, is presented. A series of alloys with chemical composition originated from Ni-rich part of Ni-Al-Cr system was prepared. DTA thermal analysis was performed on all samples. Based on shape of obtained curves, characteristic for continuous order-disorder transition, places of course of phase boundaries γ′+γ / γ were determined. Moreover, temperature of melting and freezing of alloys were obtained. Results of DTA analysis concerning phase boundary γ′+γ / γ indicated agreement with results obtained by authors using calorimetric solution method.
Energy Technology Data Exchange (ETDEWEB)
Pikin, S. A., E-mail: pikin@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)
2017-03-15
It is shown that anomalous piezoelectric properties of epitaxial nanostructures arise on the morphotropic phase boundary (MPB) due to the strong flexoelectric effect on dislocation walls. The MPB (typical of many materials) exhibits a coexistence of various phases and partition of these phases to minimum sizes. This minimum size l{sub c} (nanoscale) is found using the dislocation theory; it coincides with the distance between individual dislocations in dislocation walls, which is much larger than the Burgers vector b, regardless of the type of crystalline material. The flexoelectric coefficients f are estimated taking into account dimensional relations and experimental data on the rotations of ferroelectric nanodomains in multiferroics. These estimates coincide with classical values. The critical value l{sub c} ~ 10b specifies the measured dependence on the dielectric susceptibility χ{sub e}, f ~ χ{sub e}{sup 1/2}. The quantity χ{sub e} depends on the frequency of the ac electric field applied to a sample and on the dislocation density. The Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic composite shows typical frequency dispersion of χ{sub e} in a wide frequency range. The frequency dependence of flexoelecric coefficients is shown to reproduce the frequency dependence of permittivity at high frequencies.
Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter
Cong, Iris; Cheng, Meng; Wang, Zhenghan
2017-10-01
We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-19
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...
International Nuclear Information System (INIS)
Gittus, J.H.
1977-01-01
A new theory is developed to explain superplastic flow in two-phase materials. It is postulated that boundary-dislocations, piled up in dislocation-Interphase-Boundaries (IPBs) climb away into disordered regions of the IPB. Sliding then occurs at an IPB as dislocations glide toward the head of the pile up to replace those which have climbed into disordered regions of the boundary. An energy barrier which would otherwise render sliding virtually impossible on dislocation-IPBs can, it is shown, be largely eliminated if the dislocations glide in pairs. The disorder (actually an antiphase domain boundary) which is created by the passage of the leading dislocation is then repaired by passage of its successor. The threshold stress for superplastic flow is provisionally identified with the stress which pins IPB dislocations to boundary ledges. The activation energy is theoretically that for IPB diffusion. Good agreement is obtained between the theoretical equation for superplastic flow and the results of published experiments
Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics
Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.
2016-06-01
The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.
DEFF Research Database (Denmark)
Jørgensen, Peter Stanley; Ebbehøj, Søren Lyng; Hauch, Anne
2015-01-01
of the pathways through which they can be reached. New methods for performing TPB specific pathway analysis on 3D image data are introduced, analyzing the pathway properties of each TPB site in the electrode structure. The methods seek to provide additional information beyond whether the TPB sites are percolating......The density and percolation of Triple phase boundary sites are important quantities in analyzing microstructures of solid oxide fuel cell electrodes from tomography data. However, these measures do not provide descriptions of the quality of the TPB sites in terms of the length and radius...... or not by also analyzing the pathway length to the TPB sites and the bottleneck radius of the pathway. We show how these methods can be utilized in quantifying and relating the TPB specific results to cell test data of an electrode reduction protocol study for Ni/Scandia-and-Yttria-doped-Zirconia (Ni...
Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT
Energy Technology Data Exchange (ETDEWEB)
Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com [Advanced Materials Research Laboratory, Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440033, M.S. India (India)
2016-05-23
In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of doped PZT.
Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?
Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.
2016-02-01
It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.
Superfluid kinetic equation approach to the dynamics of the 3He A-B phase boundary
International Nuclear Information System (INIS)
Palmeri, J.
1990-01-01
The dynamics of the A-B phase boundary is studied using a nonequilibrium theory inspired by the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid model consisting of coupled dynamical equations for the superfluid order parameter and the quasiparticle fluid. The interface mobility is obtained to lowest order in the front velocity in three different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far only been performed in the ballistic regime, and in this regime we find that, if only Andreev scattering processes are accounted for in the interface mobility, then the theoretical predictions for the terminal velocity of the planar interface are too big by a factor ∼2. From this we conclude that there may be other important contributions to the interface mobility in the ballistic regime, and we discuss a few possibilities
International Nuclear Information System (INIS)
Liu, Y.; Ecke, R.E.
1999-01-01
We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society
COMPUTER MODELING OF STRAINS ON PHASE BOUNDARIES IN DUCTILE CAST IRON AT HOT EXTRUSION
Directory of Open Access Journals (Sweden)
A. I. Pokrovsky
2017-01-01
Full Text Available The computer modeling of the strain distribution in the structure of ductile iron with ferrite-pearlite matrix and inclusions of spherical graphite dependence on increasing degree of deformation during direct hot extrusion was researched. Using a software system of finite-element analysis ANSYS the numerical values of the strains at the phase boundaries: ferrite-perlite, graphiteferrite and also inside the graphite inclusions were defined. The analysis of the strain distribution in the investigated structures was performed and local zones of increased strains were discovered. The results of modeling are compared with metallographic analysis and fracture patterns. The obtained results could be used in the prediction of fracture zones in the cast iron products.
Ishiyama, Tatsuya; Yano, Takeru; Fujikawa, Shigeo
2004-01-01
The kinetic boundary condition for the Boltzmann equation at an interface between a polyatomic vapor and its liquid phase is investigated by the numerical method of molecular dynamics, with particular emphasis on the functional form of the evaporation part of the boundary condition, including the evaporation coefficient. The present study is an extension of a previous one for argon [Ishiyama, Yano, and Fujikawa, Phys. Fluids 16, 2899 (2004)] to water and methanol, typical examples of polyatom...
Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys
Directory of Open Access Journals (Sweden)
Hao-Ting Shen
2016-06-01
Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.
Effects of Iron and Aluminum on Phase Boundaries at 600-800 km Depths
Shim, Sang-Heon; Ye, Yu; Prakapenka, Vitali; Meng, Yue
2014-05-01
High-resolution seismic studies have reported complex discontinuity structures at 600-800 km depths. However, the origin of the structures have not been well understood. In order to understand compositional effects, we have measured the post-spinel, post-garnet, and post-ilmenite phase boundaries in MgO-Al2O3-SiO2 (iron free) and CaO-MgO-Al2O3-SiO2-FeO (iron bearing) systems with pyrolitic oxide ratios. In-situ X-ray diffraction measurements were performed at 20-30 GPa and 1500-2300 K in the laser-heated diamond-anvil cell at the GSECARS and HPCAT sectors of the Advanced Photon Source. We use the Pt and Au pressure scales for the iron-free and iron-bearing compositions, respectively. The Pt and Au scales were calibrated with respect to each other in separate experiments. In most experiments, Ar was cryogenically loaded in the sample chamber as a thermal insulation and pressure transmitting medium, except for a few experiments where a KCl medium was used. At temperatures above 1900 K, the post-garnet transition occurs at higher pressures than the post-spinel transition in both the iron-free and iron-bearing systems. At lower temperatures, while the post-ilmenite transition occurs at nearly same pressures as the post-spinel transition in the iron-bearing system, the post-ilmenite transition occurs at slightly higher pressure (1 GPa) than the post-spinel transitions in the iron-free system. In the iron-free system, akimotoite is stable to much higher temperature (2300 K) than previously thought. In the iron-bearing system, the stability of akimotoite is limited to 2050 K. Our data indicate that Al partitions more into akimotoite than garnet in the iron-free system, which is the opposite to what has been found in iron-bearing systems. The high Al content in akimotoite seems to be responsible for the high-temperature stability of akimotoite in the iron-free system. The Clapeyron slope of the post-garnet boundary is greater by a factor of 2.5 in the iron-bearing system
Sparse Bayesian Learning for Nonstationary Data Sources
Fujimaki, Ryohei; Yairi, Takehisa; Machida, Kazuo
This paper proposes an online Sparse Bayesian Learning (SBL) algorithm for modeling nonstationary data sources. Although most learning algorithms implicitly assume that a data source does not change over time (stationary), one in the real world usually does due to such various factors as dynamically changing environments, device degradation, sudden failures, etc (nonstationary). The proposed algorithm can be made useable for stationary online SBL by setting time decay parameters to zero, and as such it can be interpreted as a single unified framework for online SBL for use with stationary and nonstationary data sources. Tests both on four types of benchmark problems and on actual stock price data have shown it to perform well.
Wei, Songrui; Liao, Xiaoqi; Gao, Yipeng; Yang, Sen; Wang, Dong; Song, Xiaoping
2017-11-08
Extensive efforts have been made in searching enhanced functionalities near the so-called morphotropic phase boundaries (MPBs) in both ferroelectric and ferromagnetic materials. Due to the exchange anti-symmetry of the wave function of fermions, it is widely recognized that the exchange interaction plays a critical role in ferromagnetism. As a quantum effect, the exchange interaction is magnitudes larger than electric interaction, leading to a fundamental difference between ferroelectricity and ferromagnetism. In this paper, we establish an energetic model capturing the interplay among the anisotropy energy, magnetostatic energy and the exchange energy to investigate systematically the effects of the exchange energy on the behavior of the ferromagnetic MPB. For the first time, it is found that the exchange energy can narrow the width of MPB region in the composition temperature phase diagram for ferromagnetic MPB systems. As temperature increases, MPB region becomes wider because of the weakening of the exchange interaction. Our simulation results suggest that the exchange energy play a critical role on the unique behavior of ferromagnetic MPB, which is in contrast different from that of ferroelectric MPB.
International Nuclear Information System (INIS)
Ibrahim, Abdel-Baset M A; Osman, Junaidah
2013-01-01
The dynamics of the nonlinear (NL) dielectric susceptibility of ferroelectrics (FE) near the morphotropic phase boundary (MPB) is theoretically investigated based on the Landau–Devonshire free energy approach and the concept of FE soft modes. To do so, the NL dielectric susceptibility elements of FE material in the tetragonal phase are expressed as functions of optical phonon modes. These are the E modes with normal characteristic frequency ω E 2 and the A modes with ω A 2 . On the one hand, the tetragonal E modes appear to exhibit a double soft-mode character, i.e. the mode softens either when the thermodynamic temperature T approaches the transition temperature T c or when the free energy parameter β 1 approaches β 2 . On the other hand, the A modes exhibit single soft-mode character when T approaches T c . Within this formulation, the dynamics of first-, second- and third-order NL susceptibility elements are investigated. The origin of the anomalous behavior of certain NL elements at the MPB appears to be a manifestation of FE mode-softening. This approach provides a simple yet powerful technique to understand the dynamics of the NL dielectric susceptibility elements of FE material near the MPB. (paper)
Directory of Open Access Journals (Sweden)
Gregor A. Zickler
2017-01-01
Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.
Effect of grain boundaries on shock-induced phase transformation in iron bicrystals
Zhang, Xueyang; Wang, Kun; Zhu, Wenjun; Chen, Jun; Cai, Mengqiu; Xiao, Shifang; Deng, Huiqiu; Hu, Wangyu
2018-01-01
Non-equilibrium molecular-dynamic simulations with a modified analytic embedded-atom model potential have been performed to investigate the effect of three kinds of grain boundaries (GBs) on the martensitic transformation in iron bicrystals with three different GBs under shock loadings. Our results show that the phase transition was influenced by the GBs. All three GBs provide a nucleation site for the α → ɛ transformation in samples shock-loaded with up = 0.5 km/s, and in particular, the elastic wave can induce the phase transformation at Σ3 ⟨110⟩ twist GB, which indicates that the phase transformation can occur at Σ3 ⟨110⟩ twist GB with a much lower pressure. The effect of GBs on the stress assisted transformation (SAT) mechanisms is discussed. All variants nucleating at the vicinity of these GBs meet the maximum strain work (MSW) criterion. Moreover, all of the variants with the MSW nucleate at Σ5 ⟨001⟩ twist GB and Σ3 ⟨110⟩ tilt GB, but only part of them nucleate at Σ3 ⟨110⟩ twist GB. This is because the coincident planes between both sides of the GB would affect the slip process, which is the second stage of the martensitic transformation and influences the selection of variant. We also find that the martensitic transformation at the front end of the bicrystals would give rise to stress attenuation in samples shock-loaded with up = 0.6 km/s, which makes the GBs seem to be unfavorable to the martensitic transformation. Our findings have the potential to affect the interface engineering and material design under high pressure conditions.
Cukjati, J.; Parman, S. W.; Cooper, R. F.; Zhao, N.
2017-12-01
Atom probe tomography (APT) was used to characterize the chemistry of three grain boundaries: an olivine-olivine (ol-ol) and olivine-clinopyroxene (ol-cpx) boundary in fine-grained experimentally-deformed wehrlite and an ol-cpx boundary in a fine-grained, hot-pressed wehrlite. Grain boundaries were extracted and formed into APT tips using a focused ion beam (FIB). The tips were analyzed in a reflectron-equipped LEAP4000HR (Harvard University) at 1% or 0.5% detection rate, 5pJ laser energy and 100kHz pulse rate. Total ion counts are between 40 and 100 million per tip. Examination of grain and phase boundaries in wehrlite are of interest since slow-diffusing and olivine-incompatible cations present in cpx (e.g. Ca and Al) may control diffusion-accommodated grain boundary sliding and affect mantle rheology (Sundberg & Cooper, 2008). At steady state, ol-cpx aggregates are weaker than either ol or cpx end member, the results of which are not currently well-explained. We investigate grain boundary widths to understand the transport of olivine-incompatible elements. Widths of grain/phase boundary chemical segregation are between 3nm and 6nm for deformed ol-ol and ol-cpx samples; minimally-deformed (hot-pressed) samples having slightly wider chemical segregation widths. Chemical segregation widths were determined from profiles of Na, Al, P, Cl, K, Ca, or Ni, although not all listed elements can be used for all samples (e.g. Na, K segregation profiles can only be observed for ol-ol sample). These estimates are consistent with prior estimates of grain boundary segregation by atom probe tomography on ol-ol and opx-opx samples (Bachhav et al., 2015) and are less than ol-ol interface widths analyzed by STEM/EDX (Hiraga, Anderson, & Kohlstedt, 2007). STEM/EDX will be performed on deformed wehrlite to investigate chemical profile as a function of applied stress orientation and at length scales between those observable by APT and EPMA. Determination of phase boundary chemistry and
International Nuclear Information System (INIS)
Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.
2016-01-01
A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.
Zuo, Chao; Chen, Qian; Li, Hongru; Qu, Weijuan; Asundi, Anand
2014-07-28
Boundary conditions play a crucial role in the solution of the transport of intensity equation (TIE). If not appropriately handled, they can create significant boundary artifacts across the reconstruction result. In a previous paper [Opt. Express 22, 9220 (2014)], we presented a new boundary-artifact-free TIE phase retrieval method with use of discrete cosine transform (DCT). Here we report its experimental investigations with applications to the micro-optics characterization. The experimental setup is based on a tunable lens based 4f system attached to a non-modified inverted bright-field microscope. We establish inhomogeneous Neumann boundary values by placing a rectangular aperture in the intermediate image plane of the microscope. Then the boundary values are applied to solve the TIE with our DCT-based TIE solver. Experimental results on microlenses highlight the importance of boundary conditions that often overlooked in simplified models, and confirm that our approach effectively avoid the boundary error even when objects are located at the image borders. It is further demonstrated that our technique is non-interferometric, accurate, fast, full-field, and flexible, rendering it a promising metrological tool for the micro-optics inspection.
Results of nonlinear and nonstationary image processing
International Nuclear Information System (INIS)
Pizer, S.M.; Correla, J.A.; Chesler, D.A.; Metz, C.E.
1973-01-01
A nonstationary method, multiple z-divided filtering, and a nonlinear method, biased smearing have been applied to scintigrams. Biased smearing does not appear to hold much promise. Multiple z-divided filtering, on the other hand, appears to be justified, and initial results at minimum encourage further research into the possibility that this technique may become a method of choice
Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase
Bleher, P M
2005-01-01
The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite $N$ by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an $N\\times N$ Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large $N$ asymptotics of the six-vertex model with DWBC in the disordered phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method. As was noticed by Kuperberg, the problem of enumeration of alternating sign matrices (the ASM problem) is a special case of the the six-vertex model. We compare the obtained exact solution of the six-vertex model with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with the exact solution on the so-called f...
The interstellar boundary explorer (IBEX): Update at the end of phase B
International Nuclear Information System (INIS)
McComas, D. J.; Allegrini, F.; Pope, S.; Scherrer, J.; Bartolone, L.; Knappenberger, P.; Bochsler, P.; Wurz, P.; Bzowski, M.; Collier, M.; Moore, T.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Lee, M.
2006-01-01
The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ∼10 eV to 6 keV. IBEX's high-apogee (∼50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008
The interstellar boundary explorer (IBEX): Update at the end of phase B
McComas, D. J.; Allegrini, F.; Bartolone, L.; Bochsler, P.; Bzowski, M.; Collier, M.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Knappenberger, P.; Lee, M.; Livi, S.; Mitchell, D.; Möbius, E.; Moore, T.; Pope, S.; Reisenfeld, D.; Roelof, E.; Runge, H.; Scherrer, J.; Schwadron, N.; Tyler, R.; Wieser, M.; Witte, M.; Wurz, P.; Zank, G.
2006-09-01
The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ~10 eV to 6 keV. IBEX's high-apogee (~50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008.
Bakker, Eric
2010-02-15
A generalized description of the response behavior of potentiometric polymer membrane ion-selective electrodes is presented on the basis of ion-exchange equilibrium considerations at the sample-membrane interface. This paper includes and extends on previously reported theoretical advances in a more compact yet more comprehensive form. Specifically, the phase boundary potential model is used to derive the origin of the Nernstian response behavior in a single expression, which is valid for a membrane containing any charge type and complex stoichiometry of ionophore and ion-exchanger. This forms the basis for a generalized expression of the selectivity coefficient, which may be used for the selectivity optimization of ion-selective membranes containing electrically charged and neutral ionophores of any desired stoichiometry. It is shown to reduce to expressions published previously for specialized cases, and may be effectively applied to problems relevant in modern potentiometry. The treatment is extended to mixed ion solutions, offering a comprehensive yet formally compact derivation of the response behavior of ion-selective electrodes to a mixture of ions of any desired charge. It is compared to predictions by the less accurate Nicolsky-Eisenman equation. The influence of ion fluxes or any form of electrochemical excitation is not considered here, but may be readily incorporated if an ion-exchange equilibrium at the interface may be assumed in these cases.
Extrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials
Energy Technology Data Exchange (ETDEWEB)
Ochoa, Diego A.; García, José E., E-mail: jose.eduardo.garcia@upc.edu [Department of Physics, Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona 08034 (Spain); Esteves, Giovanni; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27696 (United States); Rubio-Marcos, Fernando; Fernández, José F. [Department of Electroceramics, Instituto de Cerámica y Vidrio - CSIC, Madrid 28049 (Spain)
2016-04-04
Polymorphic phase boundaries (PPBs) in piezoelectric materials have attracted significant interest in recent years, in particular, because of the unique properties that can be found in their vicinity. However, to fully harness their potential as micro-nanoscale functional entities, it is essential to achieve reliable and precise control of their piezoelectric response, which is due to two contributions known as intrinsic and extrinsic. In this work, we have used a (K,Na)NbO{sub 3}-based lead-free piezoceramic as a model system to investigate the evolution of the extrinsic contribution around a PPB. X-ray diffraction measurements are performed over a wide range of temperatures in order to determine the structures and transitions. The relevance of the extrinsic contribution at the PPB region is evaluated by means of nonlinear dielectric response measurements. Though it is widely appreciated that certain intrinsic properties of ferroelectric materials increase as PPBs are approached, our results demonstrate that the extrinsic contribution also maximizes. An enhancement of the extrinsic contribution is therefore also responsible for improving the functional properties at the PPB region. Rayleigh's law is used to quantitatively analyze the nonlinear response. As a result, an evolution of the domain wall motion dynamics through the PPB region is detected. This work demonstrates that the extrinsic contribution at a PPB may have a dynamic role in lead-free piezoelectric materials, thereby exerting a far greater influence on their functional properties than that considered to date.
Energy Technology Data Exchange (ETDEWEB)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Morshed, A. K. M. Monjur, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 (Bangladesh)
2016-07-12
In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90 K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.
In situ synchrotron diffraction of lead-zirconate-titanate at its morphotropic phase boundary
International Nuclear Information System (INIS)
Schoenau, K.A.
2008-01-01
Ferroelectric lead zirconate titanate ceramics (PZT,Pb(Zr x Ti 1-x )O 3 ) find in industry intensifiedly applications as piezoactors. Their largest macroscopic strain under electric field they show in the region of the morphotropic phase boundary (MPB), the transition region between the Ti rich tetragonal and the Zr rich structure. The structure of PZT at the MPB was controversially discussed since the detection of a monoclinic intermediate phase by Noheda et al. [Appl. Phys. Lett.,74(14), 2059(1999)], whereby into the considerations the domain structure of the material not entered, which however is essentially responsible for the reaction under electric field. In order to understand the domain structure of PZT under electric field and to study possible causes for the fatigue behaviour of the material under bipolar cycling a bridge must be built between macroscopic and local structure. For this at the measuring place B2 of the Hasylab, Hamburg, synchrotron X-ray powder diffractometry was in situ performed under different sample environments in transmission geometry, which was correlated with transmission-electron-microscopical studies and electron spin resonance. Samples with compositions over the whole MPB were beside temperature-dependent measurements measured at room temperature in high resolution and under applied electric field. Furthermore for studies under electric field at elevated temperatures a special E-field furnace was constructed. It could be shown the large piezoelectric reaction of PZT at its MPB is strongly correlated with a diminishment of the domain structure, which simulates in X-ray diffraction a lower symmetric phase. The stability range of the nanodomains with temperature and electric field reflects in the switching behaviour of the matter and by the detection of a relaxor behavior of the nanodomain structure for the first time a direct comparison with relaxoceramics is possible. The varying stress conditions within the sample influence
Singha Roy, Sudipto; Dhar, Himadri Shekhar; Rakshit, Debraj; Sen(De), Aditi; Sen, Ujjwal
2017-12-01
Phase transition in quantum many-body systems inevitably causes changes in certain physical properties which then serve as potential indicators of critical phenomena. Besides the traditional order parameters, characterization of quantum entanglement has proven to be a computationally efficient and successful method for detection of phase boundaries, especially in one-dimensional models. Here we determine the rich phase diagram of the ground states of a quantum spin-1/2 XXZ ladder by analyzing the variation of bipartite and multipartite entanglements. Our study characterizes the different ground state phases and notes the correspondence with known results, while highlighting the finer details that emerge from the behavior of ground state entanglement. Analysis of entanglement in the ground state provides a clearer picture of the complex ground state phase diagram of the system using only a moderate-size model.
Nonstationary interference and scattering from random media
International Nuclear Information System (INIS)
Nazikian, R.
1991-12-01
For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Energy Technology Data Exchange (ETDEWEB)
Lü, Xiaoling [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Liwei [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China); Zheng, Yisong, E-mail: zhengys@jlu.edu.cn [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China)
2016-04-22
Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin–orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized. - Highlights: • The TI helical state moves to nanoribbon edge in a gated ZENR-BG. • The gapless modes of LD-BG at the two line defects are not equal to each other. • The Kramers pairs are still valley polarized in a gated LD-BG.
International Nuclear Information System (INIS)
Svoboda, J.; Fischer, F.D.; Schillinger, W.
2013-01-01
The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.
Taillefumier, Thibaud; Magnasco, Marcelo O
2013-04-16
Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.
Hazard function theory for nonstationary natural hazards
Read, L.; Vogel, R. M.
2015-12-01
Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.
Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.
2018-05-01
It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.
Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin
2011-11-01
The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).
International Nuclear Information System (INIS)
Shulishova, O.I.; Zyrin, A.V.; Ismalgaliev, R.K.; Izmajlov, Sh.Z.; Kovylyaev, V.V.; Shevchuk, N.V.; Shcherbak, I.A.
1990-01-01
The electron-probe microanalysis permits investigating the interaction on the boundary of current-conducting and glass-binding phases in cermet films without noble metals on the base of ruthenium oxide. The performed studies along with experiments on model microsections subject to annealing in different media have shown the differences in the process of formation of structure and properties of cermet resistive elements as well as a significance of the oxidation process of current-conducting phase in formation of high working characteristics of cermet resistors on the base of hexaborides of the rare-earth elements
Extrinsic coefficient charcterisation of PZT ceramics near the morphotropic phase boundary
Directory of Open Access Journals (Sweden)
Albareda, A.
2006-06-01
Full Text Available PZT ceramics with high piezoelectric coefficients have high extrinsic contributions. This extrinsic behaviour, which is related to the domain wall movement, produces high non-linear effects that are sometimes inconvenient, for example when it increases the losses in power devices. The relation between extrinsic behaviour and non-linearities could be used to provide a good extrinsic characterization of materials in order to optimise the piezoelectric devices. In all cases the physical explanation of the behaviour is sought. The aim of this work is to study the dependence of the linear and non-linear dielectric, piezoelectric and mechanical coefficients on the Ti fraction in PZT ceramic compositions near the morphotropic phase boundary (MPB. The dependence of these coefficients on the defect concentration is also analysed. Hard ceramics belonging to Ferroperm Piezoceramics, with two different acceptor dopant levels, high and low, have been measured.
Las cerámicas PZT con coeficientes piezoeléctricos elevados poseen contribuciones extrínsecas grandes. Este comportamiento extrínseco, relacionado con el movimiento de las paredes de los dominios, comporta efectos no lineales grandes que no siempre son deseables, por ejemplo, al incrementar las pérdidas de los dispositivos piezoeléctricos. Esta correspondencia entre efectos extrínsecos y no linealidades puede ser utilizada para caracterizar las cerámicas con el fin de optimizar sus propiedades piezoeléctricas. En todos los casos se busca una interpretación física de los resultados obtenidos. El objetivo de este trabajo es el estudio de la dependencia de los coeficientes lineales y no lineales dieléctricos, piezoeléctricos y elásticos con la fracción de Ti en cerámicas PZT con composiciones de Zr-Ti cerca de la transición de fase morfotrópica (MPB. También se analiza la dependencia de estos coeficientes con la concentración de impurezas, utilizando para ello cerámicas de
Energy Technology Data Exchange (ETDEWEB)
Keylock, Christopher J [Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Nishimura, Kouichi, E-mail: c.keylock@sheffield.ac.uk [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)
2016-04-15
Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)
International Nuclear Information System (INIS)
Keylock, Christopher J; Nishimura, Kouichi
2016-01-01
Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)
2014-06-09
The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.
Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle.
Yamashita, Tomoko; Nishimura, Kazuhiro; Saiki, Ryotaro; Okudaira, Hiroyuki; Tome, Mayuko; Higashi, Kyohei; Nakamura, Mizuho; Terui, Yusuke; Fujiwara, Kunio; Kashiwagi, Keiko; Igarashi, Kazuei
2013-06-01
The role of polyamines at the G1/S boundary and in the G2/M phase of the cell cycle was studied using synchronized HeLa cells treated with thymidine or with thymidine and aphidicolin. Synchronized cells were cultured in the absence or presence of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, plus ethylglyoxal bis(guanylhydrazone) (EGBG), an inhibitor of S-adenosylmethionine decarboxylase. When polyamine content was reduced by treatment with DFMO and EGBG, the transition from G1 to S phase was delayed. In parallel, the level of p27(Kip1) was greatly increased, so its mechanism was studied in detail. Synthesis of p27(Kip1) was stimulated at the level of translation by a decrease in polyamine levels, because of the existence of long 5'-untranslated region (5'-UTR) in p27(Kip1) mRNA. Similarly, the transition from the G2/M to the G1 phase was delayed by a reduction in polyamine levels. In parallel, the number of multinucleate cells increased by 3-fold. This was parallel with the inhibition of cytokinesis due to an unusual distribution of actin and α-tubulin at the M phase. Since an association of polyamines with chromosomes was not observed by immunofluorescence microscopy at the M phase, polyamines may have only a minor role in structural changes of chromosomes at the M phase. In general, the involvement of polyamines at the G2/M phase was smaller than that at the G1/S boundary. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.
2010-01-01
Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.
Divergence of dielectric permittivity near phase transition within ferroelectric domain boundaries
Czech Academy of Sciences Publication Activity Database
Márton, Pavel; Stepkova, Vilgelmina; Hlinka, Jiří
2013-01-01
Roč. 86, č. 1 (2013), s. 103-108 ISSN 0141-1594 R&D Projects: GA ČR GAP204/10/0616 Institutional support: RVO:68378271 Keywords : Bloch wall * domain boundary * BaTiO 3 * Ginzburg-Landau-Devonshire theory * permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.044, year: 2013
International Nuclear Information System (INIS)
Bhattacharyya, D.; Viswanathan, G.B.; Fraser, Hamish L.
2007-01-01
In the present study, the relationship between the crystallographic orientations and growth directions of grain boundary-allotriomorphic-α (GB α) and secondary Widmanstaetten α laths growing from the GB α at grain boundaries separating β grains with specific misorientations has been examined. These relationships have been determined using a variety of characterization techniques, including scanning electron microscopy, orientation imaging microscopy, transmission electron microscopy (TEM) and a dual-beam focused ion beam instrument to provide site-selected TEM foils. Two very interesting cases, one in which the two adjacent β grains are rotated mutually by approximately 10.5 o about a common direction and the other in which the two β grains are in a twin relationship, i.e. a 60 o rotation about a common direction, have been studied. It was discovered that the α laths growing into two adjacent β grains from the common grain boundary may have the same orientation in both grains, while they may have either large (∼88.8 o ) or small (28.8 o ) angular differences in growth directions in the two adjacent β grains, depending on the relative misorientation of the β grains. The growth directions of the α laths growing from such boundaries are explained on the basis of the Burgers orientation relationship between the Widmanstaetten α and the β phases and the interfacial structure proposed previously by various workers
International Nuclear Information System (INIS)
Rudolph, G.
1983-01-01
With the aid of quantitative microprobe tests, diffusion phenomena and phase formation in the ternary CuNiAl system at 600 - 900 0 C were investigated taking as an example the diffusion couple CuNi5Al5-nickel. The diffusion paths in the ternary system are dependent on temperature and assume an S-form in the copper corner of the phase diagram. In the copper corner, the curves swing away from the more rapid component aluminium towards the copper. Due to this non-linear course of the curves, the intermetallic theta-phase of the type (Ni,Cu) 3 Al can be observed as a layer at all temperatures in the boundary zone. At 800 0 C and to a lesser extend at 900 0 C the solubility of α-CuNi40 for aluminium, at around 5 mass-%, is higher than the value given by W.O. Alexander (1938). As far as it is possible with the diffusion couple under analysis, the microprobe measurements taken otherwise conform at 700 and 600 0 C the position of the phase boundary α-(Cu,Ni)/(α+theta)-miscibility gap indicated in W.O. Alexander (1938). (Author)
Hazard function theory for nonstationary natural hazards
Read, Laura K.; Vogel, Richard M.
2016-04-01
Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.
Non-stationary compositions of Anosov diffeomorphisms
International Nuclear Information System (INIS)
Stenlund, Mikko
2011-01-01
Motivated by non-equilibrium phenomena in nature, we study dynamical systems whose time-evolution is determined by non-stationary compositions of chaotic maps. The constituent maps are topologically transitive Anosov diffeomorphisms on a two-dimensional compact Riemannian manifold, which are allowed to change with time—slowly, but in a rather arbitrary fashion. In particular, such systems admit no invariant measure. By constructing a coupling, we prove that any two sufficiently regular distributions of the initial state converge exponentially with time. Thus, a system of this kind loses memory of its statistical history rapidly
Fermat principle for a nonstationary medium.
Voronovich, A G; Godin, O A
2003-07-25
One possible formulation of a variational principle of the Fermat type for systems with time-dependent parameters is suggested. In a stationary case, it reduces to the Mopertui-Lagrange least-action principle. A class of Hamiltonians (dispersion relations) is indicated, for which the variational principle reduces to the Fermat principle in a general nonstationary case. Hamiltonians that are homogeneous functions of momenta are in this category. For the important case of nondispersive waves (corresponding to Hamiltonians being homogeneous function of momenta order 1) the Fermat principle fully determines the geometry of the rays. Equations relating the variation of signal frequency with the rate of change of propagation time are established.
Duvvuri, Subrahmanyam; McKeon, Beverley
2017-03-13
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Directory of Open Access Journals (Sweden)
Daniel J Franzbach
2014-02-01
Full Text Available The strain- and polarization-electric field behavior was characterized at room temperature for Pb0.98Ba0.01(Zr1−xTix0.98Nb0.02O3, 0.40 ≤ x ≤ 0.60. The investigated compositions were located in the vicinity of the morphotropic phase boundary, giving insight into the influence of crystal structure on the hysteretic ferroelectric behavior. The remanent strain of particular compositions is shown to be larger than theoretically allowed by ferroelectric switching alone, indicating the presence of additional remanent strain mechanisms. A phenomenological free energy analysis was used to simulate the effect of an applied electric field on the initial equilibrium phase. It is shown that electric-field-induced phase transitions in polycrystalline ferroelectrics can account for the experimental observations. The experimental and simulation results are contrasted to neutron diffraction measurements performed on representative compositions in the virgin and remanent states.
A simple nonstationary-volatility robust panel unit root test
Demetrescu, Matei; Hanck, Christoph
2012-01-01
We propose an IV panel unit root test robust to nonstationary error volatility. Its finite-sample performance is convincing even for many units and strong cross-correlation. An application to GDP prices illustrates the inferential impact of nonstationary volatility. (C) 2012 Elsevier B.V. All rights
Analysis of stress and deformation in non-stationary creep
International Nuclear Information System (INIS)
Feijoo, R.A.; Taroco, E.; Guerreiro, J.N.C.
1980-12-01
A variational method and its algorithm are presented; they permit the analysis of stress and deformation in non-stationary creep. This algorithm is applied to an infinite cylinder submitted to an internal pressure. The solution obtained is compared with the solution of non-stationary creep problems [pt
Reis, T.; Dellar, P.J.
2011-01-01
Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.
Reis, T.
2011-07-01
Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.
Tiwari, Anuj; Prince, Ashutosh; Arakha, Manoranjan; Jha, Suman; Saleem, Mohammed
2018-02-15
The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of
DEFF Research Database (Denmark)
Larsen, Simon Tylsgaard; Taboryski, Rafael Jozef
2009-01-01
We present experimental contact angle data for surfaces, which were surface-engineered with a hydrophobic micropattern of hexagonal geometry. The chemically heterogeneous surface of the same hexagonal pattern of defects resulted in faceted droplets of hexagonal shape. When measuring the advancing...... contact angles with a viewing position aligned parallel to rows of defects, we found that an area averaged Cassie-law failed in describing the data. By replacing the area fractions by line fractions of the triple phase boundary Line segments in the Cassie equation, we found excellent agreement with data....
DEFF Research Database (Denmark)
Tao, Youkun; Shao, Jing; Cheng, Shiyang
2016-01-01
Silica impurity originated from the sealing or raw materials of the solid oxide cells (SOCs) accumulating at the. Ni-YSZ triple phase boundaries (TPBs) is known as one major reason for electrode passivation. Here we report nanosilica precipitates inside Ni grains instead of blocking the TPBs when...... operating the SOCs at vertical bar i vertical bar >= 1.5 A cm-2 for electrolysis of H2O/CO2. An electrochemical scavenging mechanism was proposed to explain this unique behavior: the removal of silica proceeded through the reduction of the silica to Si under strong cathodic polarization, followed by bulk...
DEFF Research Database (Denmark)
Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.
2015-01-01
This paper presents an analysis and comparison of boundary conduction mode (BCM) and continuous conduction mode (CCM) in single phase power factor correction (PFC) applications. The comparison is based on double pulse tester (DPT) characterization results of state-of-the-art superjunction devices...... in the 600V range. The measured switching energy is used to evaluate the devices performance in a conventional PFC. This data is used together with a mathematical model for prediction of the conducted electromagnetic interference (EMI). This allows comparing the different devices in BCM and CCM operation...
Energy Technology Data Exchange (ETDEWEB)
Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Chen, Jun; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Fancher, Chris M.; Zhao, Jianwei [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Forrester, Jennifer S.; Jones, Jacob L., E-mail: JacobJones@ncsu.edu [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)
2016-07-28
Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.
Rao, T. Lakshmana; Pradhan, M. K.; Ramakrishna, P. V.; Dash, S.
2018-05-01
Modified-PZT ceramics with a formula Pb0.9Ni0.1[(Zr0.52Ti0.48)]1-xSnxO3 located near the morphotropic phase boundary (MPB) were prepared by conventional solid state process to investigate effects of dilute doping of Ni and Sn in different sites of PZT. The single phase structure of the series of samples has been identified by x-ray diffraction technique. The optical band gap has been obtained from the UV-Vis spectra and found to be shrinkage with doping. The detail dielectric and impedance studies are being carried out to investigate the conduction mechanism of the samples. A significant enhancement in the electric polarization is observed for the maximum Sn doping in a modified PZT.
Directory of Open Access Journals (Sweden)
A. Ehrlich
2008-12-01
Full Text Available Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices I_{S} and I_{P} were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength spectral range which is characterized by ice and water absorption. While I_{S} analyzes the spectral slope of the reflectance in this wavelength range, I_{S} utilizes a principle component analysis (PCA of the spectral reflectance. A third ice index I_{A} is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.
Radiative transfer simulations show that I_{S}, I_{P} and I_{A} range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index I_{S} and the PCA ice index I_{P} are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index I_{A} is mainly dominated by the uppermost cloud layer (τ<1.5. Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will
Non-stationary dynamics in the bouncing ball: A wavelet perspective
Energy Technology Data Exchange (ETDEWEB)
Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 (India); Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics (SINP), Sector 1, Block-AF, Bidhannagar, Kolkata 700064 (India)
2014-12-01
The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding to neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.
Continuum Models for Irregular Phase Boundary Motion in Shape-Memory Tensile Bars
National Research Council Canada - National Science Library
Rosakis, Phoebus
1997-01-01
... observed experimentally. We show that when the model involves a kinetic relation that is 'unstable' in a definite sense, 'stick-slip' motion of the interface between phases and serration of the accompanying stress-elongation...
International Nuclear Information System (INIS)
Winzer, A.
1978-01-01
It is shown that a direct proportionality exists between the activation energy for the mass transfer at the respective crystal faces of ionic crystals and the frequency of the phonones (longitudinal-optical), Planck's constant being found once more as a proportionality constant. Thus it could be demonstrated that the different activation energies measured at different time intervals for the mass transfer processes at phase boundaries of ionic crystals can be attributed to the specific growth of the crystal faces. Thus, NaCl crystal fractions which were mechanically stressed (pulverized and sifted) and consequently contained a great amount of [111]- and [110]-faces, respectively, experimentally yielded an activation energy which agrees with the values determined by quantum theory when the frequency of propagation of the phonons is inserted into a derived equation. This relation was also confirmed by NaCl crystal fractions predominantly containing cubic faces. This also indicates that in mass transfer processes on phase boundaries of ionic crystals quantum mechanical laws are of importance. (author)
Bollati, Julieta; Tarzia, Domingo A.
2018-04-01
Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
Determination of phase boundaries and diffusion parameters in tantalum hydrides in pulsed NMR
International Nuclear Information System (INIS)
Hornung, P.A.
1978-04-01
Proton spin-lattice relaxation times T 1 were measured over a wide range of temperature (77 K to 470 K) and compositions (H/Ta = 0.155 to 0.677) in the tantalum-hydrogen system at a frequency of 40,000 MHz. In the high temperature solid solution α phase, the activation energy for hydrogen diffusion was found to be 0.140 +- 0.002 eV/atom, and the value of the jump rate (or its corresponding correlation time) was found to be essentially constant throughout the range of compositions studied. The conduction electron contribution to T 1 measured in the α phase agreed qualitatively with the trend shown by previously published susceptibility data. The single phase epsilon region and the α + epsilon two-phase region were particularly noted. It could also be concluded from the measurements that the hydrogen jump rate decreased by a factor of approximately 7.2 from the α phase to the ordered phases at low temperatures and slightly decreased further in the epsilon phase. Anomalous relaxation times were found in the low temperature range (77 K less than or equal to T less than or equal to K). In this region, T 1 remains essentially constant, and does not follow the usual temperature dependence for either motional or electronic relaxation. Two possible explanations for this behavior were considered. The first involves proton cross-relaxation to the 181 Ta nuclei which would sample the spectral density of magnetic fluctuations in the sample at several frequencies because of the probable very strong 181 Ta quadrupole interaction strength. The second explanation postulates that the hydrogen diffusional jump path involves an intermediate metastable state
International Nuclear Information System (INIS)
Xu, W.; San Martin, D.; Rivera Diaz del Castillo, P.E.J.; Zwaag, S. van der
2007-01-01
High molybdenum stainless steels may contain the chi-phase precipitate (χ, Fe 36 Cr 12 Mo 10 ) which may lead to undesirable effects on strength, toughness and corrosion resistance. In the present work, specimens of a 12Cr-9Ni-4Mo wt% steel are heat treated at different temperatures and times, and the average particle size and particle size distribution of chi-phase precipitate are studied quantitatively. A computer model based on the KWN framework has been developed to describe the evolution of chi-phase precipitation. The kinetic model takes advantage of the KWN model to describe the precipitate particle size distribution, and is coupled with the thermodynamic software ThermoCalc for calculating the instantaneous local thermodynamic equilibrium condition at the interface and the driving force for nucleation. A modified version of Zener's theory accounting for capillarity effects at early growth stages is implemented in this model. The prediction of the model for chi-phase precipitation at a grain boundary is compared to experimental results and both the average particle size and the particle size distribution are found to be in good agreement with experimental observations at late precipitation stages
On the accuracy of triple phase boundary lengths calculated from tomographic image data
DEFF Research Database (Denmark)
Jørgensen, Peter Stanley; Yakal-Kremski, Kyle; Wilson, James
2014-01-01
to systematic errors in TPB estimates. Here, two approaches for calculating the TPB density are compared to investigate how different TPB aspects such as curvature, orientation, and phase contact angles affect the results. The first approach applies a correction factor to the TPB length calculated by simply...
Boundary Induced Phase Transition in Cellular Automata Models of Pedestrian Flow
Czech Academy of Sciences Publication Activity Database
Bukáček, M.; Hrabák, Pavel
2016-01-01
Roč. 11, č. 4 (2016), s. 327-338 ISSN 1557-5969 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive time-span * Cellular automata model * Floor-field * Pedestrian flow * Phase transition * Principle of bonds Subject RIV: BD - Theory of Information Impact factor: 0.696, year: 2016
Poplová, Michaela; Sovka, Pavel; Cifra, Michal
2017-01-01
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.
The Fourier decomposition method for nonlinear and non-stationary time series analysis.
Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik
2017-03-01
for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.
Local rhombohedral symmetry in Tb0.3Dy0.7Fe2 near the morphotropic phase boundary
International Nuclear Information System (INIS)
Ma, Tianyu; Liu, Xiaolian; Pan, Xingwen; Li, Xiang; Jiang, Yinzhu; Yan, Mi; Li, Huiying; Fang, Minxia; Ren, Xiaobing
2014-01-01
The recently reported morphotropic phase boundary (MPB) in a number of giant magnetostrictive materials (GMMs) has drawn considerable interest to the local symmetry/structure near MPB region of these materials. In this letter, by in-situ X-ray diffraction and AC magnetic susceptibility measurements, we show that Tb 0.3 Dy 0.7 Fe 2 , the typical composition of Terfenol-D GMMs, has coexistence of rhombohedral and tetragonal phases over a wide temperature range in the vicinity of MPB. High resolution transmission electron microscopy provides direct evidence for local rhombohedral symmetry of the ferromagnetic phase and reveals regular-shaped nanoscale domains below 10 nm. The nano-sized structural/magnetic domains are hierarchically inside a single micron-sized stripe-like domain with the same average magnetization direction. Such domain structures are consistent with the low magnetocrystalline anisotropy and easy magnetic/structural domain switching under magnetic field, thus generating large magnetostriction at low field
International Nuclear Information System (INIS)
Sikand, M.; Koskulics, J.; Stamnes, K.; Hamre, B.; Stamnes, J.J.; Lawson, R.P.
2010-01-01
A tethered balloon system was used to collect data on radiometric and cloud microphysical properties for mixed phase boundary layer clouds, consisting of ice crystals and liquid water droplets during a May-June 2008 experimental campaign in Ny-Alesund, Norway, located high in the Arctic at 78.9 o N, 11.9 o E. The balloon instrumentation was controlled and powered from the ground making it possible to fly for long durations and to profile clouds vertically in a systematic manner. We use a radiative transfer model to analyze the radiometric measurements and estimate the optical properties of mixed-phase clouds. The results demonstrate the ability of instruments deployed on a tethered balloon to provide information about optical properties of mixed-phase clouds in the Arctic. Our radiative transfer simulations show that cloud layering has little impact on the total downward irradiance measured at the ground as long as the total optical depth remains unchanged. In contrast, the mean intensity measured by an instrument deployed on a balloon depends on the vertical cloud structure and is thus sensitive to the altitude of the balloon. We use the total downward irradiance measured by a ground-based radiometer to estimate the total optical depth and the mean intensity measured at the balloon to estimate the vertical structure of the cloud optical depth.
Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice
2018-08-01
We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.
Lee, Man; Lee, Yi-Kuen; Zohar, Yitshak
2012-01-01
A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.
Lee, Man
2012-02-22
A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.
Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B; Anastasio, Mark A
2015-04-21
Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis.
International Nuclear Information System (INIS)
Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B III; Anastasio, Mark A
2015-01-01
Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis. (note)
Boudys, M
1991-01-01
Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.
Kong, W.G.; Wang, A.; Chou, I.-Ming
2011-01-01
Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
Kushner, Mark Jay [University of Michigan
2014-07-10
In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine
Qiu, S.; Dong, X.; Xi, B.
2017-12-01
In this study, autumnal boundary layer characteristics and cloud properties have been investigated using data collected at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site from January 2002 to December 2008. We found that both cloud and planetary boundary layer (PBL) properties can be well distinguished by surface wind directions. When the ARM NSA site is dominated by a northerly wind during the period September- November, the PBL is at near saturation for all three months; while the maximum RH layer varies from low and thin in September, to higher and thicker in October, and then it becomes close to surface again in November. Both the ceilometer and the MPL derived cloud base heights coincide well with the RH maximum layer in the PBL for all three autumnal months. The frequencies of occurrence of mixed phase clouds in September and October are around 60-80% under a northerly wind, which are about 1.5 times higher than those during a southerly wind. Under northerly wind, the PDFs of PBL temperature and specific humidity are narrow and unimodal, with a peak probability around 0.4-0.5. Under a southerly wind, on the other hand, the PBL is both warmer and wetter than northerly wind profiles, which result in lower RH values (10-15% lower) in September and October; and the PDFs of PBL temperature and specific humidity are more evenly distributed with larger distribution range and lower PDF peak values (<0.3). In September, colder and dryer PBL is more favorable for mixed phase cloud formation, cloud occurrence frequency decreases from 90% to 60% as PBL temperature and specific humidity increase. In October, the frequency of occurrence of mixed phase clouds also decreases from 90% to 50-60% as PBL temperature increases. While in November, it increases first and then decreases with increasing PBL temperature and specific humidity. The frequency of occurrence of mixed phase clouds is linearly correlated to PBL RH values: for all three months, it
Zheng, Y.; Liu, Q.; Li, Y.
2012-03-01
Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with
International Nuclear Information System (INIS)
Lima, Elton Carvalho; Araujo, Eudes Borges; Souza Filho, Antonio Gomes de; Bdikin, Igor
2011-01-01
Full text: The demand for portability in consumer electronics has motivated the understanding of size effects on ferroelectric thin films. The actual comprehension of these effects in ferroelectrics is unsatisfactory, since the polarization interacts more strongly than other order parameters such as strain and charge. As a result, extrinsic effects are produced if these variables are uncontrolled and problems such as ferroelectric paraelectric phase transition at nanometers scale remains an unsolved issue. In the present work, the effects of thickness and compositional fractions on the structural and dielectric properties of PbZr 1-x Ti x O 3 (PZT) thin films were studied at a composition around the morphotropic phase boundary (x = 0.50). For this purpose, thin films with different thicknesses and different PbO excess were deposited on Si(100) and Pt=T iO 2 =SiO 2 =Si substrates by a chemical method and crystallized in electric furnace at 700 deg C for 1 hour. The effects of substrate, pyrolysis temperature and excess lead addition in the films are reported. For films with 10 mol% PbO in excess, the pyrolysis in the regime of 300 deg C for 30 minutes was observed to yield PZT pyrochlore free thin films deposited on Pt=T iO 2 =SiO 2 =Si substrate. Out this condition, the transformation from amorphous to the pyrochlore metastable phase is kinetically more favorable that a transformation to the perovskite phase, which is thermodynamically stable. Rietveld refinements based on X-ray diffraction results showed that films present a purely tetragonal phase and that this phase does not change when the film thickness decreases. The dielectric permittivity measurements showed a monoclinic → tetragonal phase transition at 198K. Results showed that the dielectric permittivity (ε) increases continuously from 257 to 463, while the thickness of the PZT films increases from 200 to 710 nm. These results suggests that interface pinning centers can be the responsible mechanism by
Phase of N=2 theories in 1+1 dimensions with boundary
Energy Technology Data Exchange (ETDEWEB)
Herbst, M. [CERN, Geneva (Switzerland). Theory Division, Dept. of Physics; Hori, K.; Page, D. [Toronto Univ., ON (Canada). Dept. of Physics
2008-03-15
We study B-type D-branes in linear sigma models with Abelian gauge groups. The most important finding is the grade restriction rule. It classifies representations of the gauge group on the Chan-Paton factor, which can be used to define a family of D-branes over a region of the Kahler moduli space that connects special points of different character. As an application, we find a precise, transparent relation between D-branes in various geometric phases as well as free orbifold and Landau-Ginzburg points. The result reproduces and unifies many of the earlier mathematical results on equivalences of D-brane categories, including the McKay correspondence and Orlov's construction. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Peralta, Pedro [Arizona State Univ., Tempe, AZ (United States); Fortin, Elizabeth [Arizona State Univ., Tempe, AZ (United States); Opie, Saul [Arizona State Univ., Tempe, AZ (United States); Gautam, Sudrishti [Arizona State Univ., Tempe, AZ (United States); Gopalakrishnan, Ashish [Arizona State Univ., Tempe, AZ (United States); Lynch, Jenna [Arizona State Univ., Tempe, AZ (United States); Chen, Yan [Arizona State Univ., Tempe, AZ (United States); Loomis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-01
Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong and repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 10^{5} s^{-1} and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity
Inverse boundary design of a radiative smelting furnace with ablative phase change phenomena
International Nuclear Information System (INIS)
Farzan, H.; Hosseini Sarvari, S.M.; Mansouri, S.H.
2016-01-01
Highlights: • The ablation phenomenon in a reverberatory smelting furnace is simulated numerically. • The results are verified by comparing with exact analytic solution. • Inverse design problem is solved to construct the desired melting rate. • The conjugate gradient method is used to solve the inverse phase change problem. - Abstract: An inverse analysis is employed to control the time rate of heaters in a 2-D smelting furnace to provide the specified radiative heat flux across the design surface to establish a desired melting rate. The design surface in the smelting furnace is the melting surface of the metal concentrate bank, and the melting process is considered to occur as an ablation phenomenon. The net radiation method is used to determine the radiation exchange between the elements of the furnace surfaces and the melting surface. The conjugate gradient method is employed to minimize the objective function, which is the sum of square residuals between the estimated and the desired heat fluxes over the design surface. It is shown that the proposed inverse technique is reliable and accurate for predicting the heater power distribution.
Shimada, Alisa; Nakano, Hiroki; Sakai, Tôru; Yoshimura, Kazuyoshi
2018-03-01
The S = 1/2 triangular-lattice Heisenberg antiferromagnet with distortion is investigated by the numerical-diagonalization method. The examined distortion type is √{3} × √{3} . We study the case when the distortion connects the undistorted triangular lattice and the dice lattice. For the intermediate phase reported previously in this system, we obtain results of the boundaries of the intermediate phase for a larger system than those in the previous report and examine the system size dependence of the boundaries in detail. We also report the specific heat of this system, which shows a marked peak structure related to the appearance of the intermediate state.
Energy Technology Data Exchange (ETDEWEB)
Iamsasri, Thanakorn; Jones, Jacob L., E-mail: jacobjones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Uthaisar, Chunmanus; Pojprapai, Soodkhet [School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, Nakorn Ratchasima 30000 (Thailand); Wongsaenmai, Supattra [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand)
2015-01-14
The electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary (PPB) were observed using in situ X-ray diffraction. The ratio of monoclinic to tetragonal phase fraction was used as an indicator of the extent and reversibility of the phase transitions. The reversibility of the phase transition was greater in compositions further from the PPB. These results demonstrate that the field-induced phase transition is one of the origins of high piezoelectric properties in lead-free ferroelectric materials.
International Nuclear Information System (INIS)
Watkins, John D.; Ahn, Sunyhik D.; Taylor, James E.; Bull, Steven D.; Bulman-Page, Philip C.; Marken, Frank
2011-01-01
Graphical abstract: Display Omitted Highlights: → Amphiphilic carbon nanofiber membrane employed in electro-synthesis. → Triple phase boundary process within a carbon membrane. → Electrochemical deuteration in a liquid|liquid micro-reactor system. → Triple phase boundary reaction zone effects in electro-synthesis. - Abstract: An amphiphilic carbon nanofibre membrane electrode (ca. 50 nm fibre diameter, 50-100 μm membrane thickness) is employed as an active working electrode and separator between an aqueous electrolyte phase (with reference and counter electrode) and an immiscible organic acetonitrile phase (containing only the redox active material). Potential control is achieved with a reference and counter electrode located in the aqueous electrolyte phase, but the electrolysis is conducted in the organic acetonitrile phase in the absence of intentionally added supporting electrolyte. For the one-electron oxidation of n-butylferrocene coupled to perchlorate anion transfer from aqueous to organic phase effective electrolysis is demonstrated with an apparent mass transfer coefficient of m = 4 x 10 -5 m s -1 and electrolysis of typically 1 mg n-butylferrocene in a 100 μL volume. For the two-electron reduction of tetraethyl-ethylenetetracarboxylate the apparent mass transfer coefficient m = 4 x 10 -6 m s -1 is lower due to a less extended triple phase boundary reaction zone in the carbon nanofibre membrane. Nevertheless, effective electrolysis of up to 6 mg tetraethyl-ethylenetetracarboxylate in a 100 μL volume is demonstrated. Deuterated products are formed in the presence of D 2 O electrolyte media. The triple phase boundary dominated mechanism and future microreactor design improvements are discussed.
Assessing the extent of non-stationary biases in GCMs
Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish
2017-06-01
General circulation models (GCMs) are the main tools for estimating changes in the climate for the future. The imperfect representation of climate models introduces biases in the simulations that need to be corrected prior to their use for impact assessments. Bias correction methods generally assume that the bias calculated over the historical period does not change and can be applied to the future. This study investigates this assumption by considering the extent and nature of bias non-stationarity using 20th century precipitation and temperature simulations from six CMIP5 GCMs across Australia. Four statistics (mean, standard deviation, 10th and 90th quantiles) in monthly and seasonal biases are obtained for three different time window lengths (10, 25 and 33 years) to examine the properties of bias over time. This approach is repeated for two different phases of the Interdecadal Pacific Oscillation (IPO), which is known to have strong influences on the Australian climate. It is found that bias non-stationarity at decadal timescales is indeed an issue over some of Australia for some GCMs. When considering interdecadal variability there are significant difference in the bias between positive and negative phases of the IPO. Regional analyses confirmed these findings with the largest differences seen on the east coast of Australia, where IPO impacts tend to be the strongest. The nature of the bias non-stationarity found in this study suggests that it will be difficult to modify existing bias correction approaches to account for non-stationary biases. A more practical approach for impact assessments that use bias correction maybe to use a selection of GCMs where the assumption of bias non-stationarity holds.
Thiombiano, Alida N.; El Adlouni, Salaheddine; St-Hilaire, André; Ouarda, Taha B. M. J.; El-Jabi, Nassir
2017-07-01
In this paper, a statistical inference of Southeastern Canada extreme daily precipitation amounts is proposed using a classical nonstationary peaks-over-threshold model. Indeed, the generalized Pareto distribution (GPD) is fitted to excess time series derived from annual averages of independent precipitation amount events above a fixed threshold, the 99th percentile. Only the scale parameter of the fitted distribution is allowed to vary as a function of a covariate. This variability is modeled using B-spline function. Nonlinear correlation and cross-wavelet analysis allowed identifying two dominant climate indices as covariates in the study area, Arctic Oscillation (AO) and Pacific North American (PNA). The nonstationary frequency analysis showed that there is an east-west behavior of the AO index effects on extreme daily precipitation amounts in the study area. Indeed, the higher quantiles of these events are conditional to the AO positive phase in Atlantic Canada, while those in the more southeastern part of Canada, especially in Southern Quebec and Ontario, are negatively related to AO. The negative phase of PNA also gives the best significant correlation in these regions. Moreover, a regression analysis between AO (PNA) index and conditional quantiles provided slope values for the positive phase of the index on the one hand and the negative phase and on the other hand. This statistic allows computing a slope ratio which permits to sustain the nonlinear relation assumption between climate indices and precipitation and the development of the nonstationary GPD model for Southeastern Canada extremes precipitation modeling.
Damping Identification of Bridges Under Nonstationary Ambient Vibration
Directory of Open Access Journals (Sweden)
Sunjoong Kim
2017-12-01
Full Text Available This research focuses on identifying the damping ratio of bridges using nonstationary ambient vibration data. The damping ratios of bridges in service have generally been identified using operational modal analysis (OMA based on a stationary white noise assumption for input signals. However, most bridges are generally subjected to nonstationary excitations while in service, and this violation of the basic assumption can lead to uncertainties in damping identification. To deal with nonstationarity, an amplitude-modulating function was calculated from measured responses to eliminate global trends caused by nonstationary input. A natural excitation technique (NExT-eigensystem realization algorithm (ERA was applied to estimate the damping ratio for a stationarized process. To improve the accuracy of OMA-based damping estimates, a comparative analysis was performed between an extracted stationary process and nonstationary data to assess the effect of eliminating nonstationarity. The mean value and standard deviation of the damping ratio for the first vertical mode decreased after signal stationarization. Keywords: Damping, Operational modal analysis, Traffic-induced vibration, Nonstationary, Signal stationarization, Amplitude-modulating, Bridge, Cable-stayed, Suspension
Non-stationary and relaxation phenomena in cavity-assisted quantum memories
Veselkova, N. G.; Sokolov, I. V.
2017-12-01
We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.
Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.
2016-09-01
The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
Matérn-based nonstationary cross-covariance models for global processes
Jun, Mikyoung
2014-01-01
-covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters
Non-Stationary Internal Tides Observed with Satellite Altimetry
Ray, Richard D.; Zaron, E. D.
2011-01-01
Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.
Correlation, Regression, and Cointegration of Nonstationary Economic Time Series
DEFF Research Database (Denmark)
Johansen, Søren
), and Phillips (1986) found the limit distributions. We propose to distinguish between empirical and population correlation coefficients and show in a bivariate autoregressive model for nonstationary variables that the empirical correlation and regression coefficients do not converge to the relevant population...... values, due to the trending nature of the data. We conclude by giving a simple cointegration analysis of two interests. The analysis illustrates that much more insight can be gained about the dynamic behavior of the nonstationary variables then simply by calculating a correlation coefficient......Yule (1926) introduced the concept of spurious or nonsense correlation, and showed by simulation that for some nonstationary processes, that the empirical correlations seem not to converge in probability even if the processes were independent. This was later discussed by Granger and Newbold (1974...
H2 emission from non-stationary magnetized bow shocks
Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.
2018-01-01
When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).
Correlation, regression, and cointegration of nonstationary economic time series
DEFF Research Database (Denmark)
Johansen, Søren
Yule (1926) introduced the concept of spurious or nonsense correlation, and showed by simulation that for some nonstationary processes, that the empirical correlations seem not to converge in probability even if the processes were independent. This was later discussed by Granger and Newbold (1974......), and Phillips (1986) found the limit distributions. We propose to distinguish between empirical and population correlation coeffients and show in a bivariate autoregressive model for nonstationary variables that the empirical correlation and regression coe¢ cients do not converge to the relevant population...
Non-stationary flow of hydraulic oil in long pipe
Directory of Open Access Journals (Sweden)
Hružík Lumír
2014-03-01
Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.
Review: the atmospheric boundary layer
Garratt, J. R.
1994-10-01
An overview is given of the atmospheric boundary layer (ABL) over both continental and ocean surfaces, mainly from observational and modelling perspectives. Much is known about ABL structure over homogeneous land surfaces, but relatively little so far as the following are concerned, (i) the cloud-topped ABL (over the sea predominantly); (ii) the strongly nonhomogeneous and nonstationary ABL; (iii) the ABL over complex terrain. These three categories present exciting challenges so far as improved understanding of ABL behaviour and improved representation of the ABL in numerical models of the atmosphere are concerned.
Numerical Clifford Analysis for the Non-stationary Schroedinger Equation
International Nuclear Information System (INIS)
Faustino, N.; Vieira, N.
2007-01-01
We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example
Nonstationary Narrow-Band Response and First-Passage Probability
DEFF Research Database (Denmark)
Krenk, Steen
1979-01-01
The notion of a nonstationary narrow-band stochastic process is introduced without reference to a frequency spectrum, and the joint distribution function of two consecutive maxima is approximated by use of an envelope. Based on these definitions the first passage problem is treated as a Markov po...
Dynamic Factor Analysis of Nonstationary Multivariate Time Series.
Molenaar, Peter C. M.; And Others
1992-01-01
The dynamic factor model proposed by P. C. Molenaar (1985) is exhibited, and a dynamic nonstationary factor model (DNFM) is constructed with latent factor series that have time-varying mean functions. The use of a DNFM is illustrated using data from a television viewing habits study. (SLD)
Elastic-plastic response characteristics during frequency nonstationary waves
International Nuclear Information System (INIS)
Miyama, T.; Kanda, J.; Iwasaki, R.; Sunohara, H.
1987-01-01
The purpose of this paper is to study fundamental effects of the frequency nonstationarity on the inelastic responses. First, the inelastic response characteristics are examined by applying stationary waves. Then simple representation of nonstationary characteristics is considered to general nonstationary input. The effects for frequency nonstationary response are summarized for inelastic systems. The inelastic response characteristics under white noise and simple frequency nonstationary wave were investigated, and conclusions can be summarized as follows. 1) The maximum response values for both BL model and OO model corresponds fairly well with those estimated from the energy constant law, even when R is small. For the OO model, the maximum displacement response forms a unique curve except for very small R. 2) The plastic deformation for the BL model is affected by wide frequency components, as R decreases. The plastic deformation for the OO model can be determined from the last stiffness. 3). The inelastic response of the BL model is considerably affected by the frequency nonstationarity of the input motion, while the response is less affected by the nonstationarity for OO model. (orig./HP)
A bootstrap invariance principle for highly nonstationary long memory processes
Kapetanios, George
2004-01-01
This paper presents an invariance principle for highly nonstationary long memory processes, defined as processes with long memory parameter lying in (1, 1.5). This principle provides the tools for showing asymptotic validity of the bootstrap in the context of such processes.
Cointegration and Econometric Analysis of Non-Stationary Data in ...
African Journals Online (AJOL)
This is in conformity with the philosophy underlying the cointegration theory. Therefore, ignoring cointegration in non-stationary time series variables could lead to misspecification of the underlying process in the determination of corporate income tax in Nigeria. Thus, the study conclude that cointegration is greatly enhanced ...
Non-Stationary Dependence Structures for Spatial Extremes
Huser, Raphaë l; Genton, Marc G.
2016-01-01
been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference
Dynamic Memory Model for Non-Stationary Optimization
DEFF Research Database (Denmark)
Bendtsen, Claus Nørgaard; Krink, Thiemo
2002-01-01
Real-world problems are often nonstationary and can cause cyclic, repetitive patterns in the search landscape. For this class of problems, we introduce a new GA with dynamic explicit memory, which showed superior performance compared to a classic GA and a previously introduced memory-based GA for...
Robust Forecasting of Non-Stationary Time Series
Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.
2010-01-01
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable
Zhang, R; Steiner, M A; Agnew, S R; Kairy, S K; Davies, C H J; Birbilis, N
2017-06-07
An empirical model for the evolution of β-phase (Mg 2 Al 3 ) along grain boundaries in aluminium alloy AA5083 (Al-Mg-Mn) during isothermal exposures is proposed herein. Developing a quantitative understanding of grain boundary precipitation is important to interpreting intergranular corrosion and stress corrosion cracking in this alloy system. To date, complete ab initio models for grain boundary precipitation based upon fundamental principles of thermodynamics and kinetics are not available, despite the critical role that such precipitates play in dictating intergranular corrosion phenomena. Empirical models can therefore serve an important role in advancing the understanding of grain boundary precipitation kinetics, which is an approach applicable beyond the present context. High resolution scanning electron microscopy was to quantify the size and distribution of β-phase precipitates on Ga-embrittled intergranular fracture surfaces of AA5083. The results are compared with the degree of sensitisation (DoS) as judged by nitric acid mass loss testing (ASTM-G67-04), and discussed with models for sensitisation in 5xxx series Al-alloys. The work herein allows sensitisation to be quantified from an unambiguous microstructural perspective.
Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.
2017-10-01
We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.
Nonstationary Hydrological Frequency Analysis: Theoretical Methods and Application Challenges
Xiong, L.
2014-12-01
Because of its great implications in the design and operation of hydraulic structures under changing environments (either climate change or anthropogenic changes), nonstationary hydrological frequency analysis has become so important and essential. Two important achievements have been made in methods. Without adhering to the consistency assumption in the traditional hydrological frequency analysis, the time-varying probability distribution of any hydrological variable can be established by linking the distribution parameters to some covariates such as time or physical variables with the help of some powerful tools like the Generalized Additive Model of Location, Scale and Shape (GAMLSS). With the help of copulas, the multivariate nonstationary hydrological frequency analysis has also become feasible. However, applications of the nonstationary hydrological frequency formula to the design and operation of hydraulic structures for coping with the impacts of changing environments in practice is still faced with many challenges. First, the nonstationary hydrological frequency formulae with time as covariate could only be extrapolated for a very short time period beyond the latest observation time, because such kind of formulae is not physically constrained and the extrapolated outcomes could be unrealistic. There are two physically reasonable methods that can be used for changing environments, one is to directly link the quantiles or the distribution parameters to some measureable physical factors, and the other is to use the derived probability distributions based on hydrological processes. However, both methods are with a certain degree of uncertainty. For the design and operation of hydraulic structures under changing environments, it is recommended that design results of both stationary and nonstationary methods be presented together and compared with each other, to help us understand the potential risks of each method.
National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...
National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...
Directory of Open Access Journals (Sweden)
Iakov A. Lyashenko
2017-09-01
Full Text Available This article presents an investigation of the dynamical contact between two atomically flat surfaces separated by an ultrathin lubricant film. Using a thermodynamic approach we describe the second-order phase transition between two structural states of the lubricant which leads to the stick–slip mode of boundary friction. An analytical description and numerical simulation with radial distributions of the order parameter, stress and strain were performed to investigate the spatial inhomogeneity. It is shown that in the case when the driving device is connected to the upper part of the friction block through an elastic spring, the frequency of the melting/solidification phase transitions increases with time.
Energy Technology Data Exchange (ETDEWEB)
Murtaza, Adil; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Zhou, Chao; Chang, Tieyan; Chen, Kaiyun; Tian, Fanghua; Song, Xiaoping [School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Suchomel, Matthrew R.; Ren, Y. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2016-08-01
In this work, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb{sub 1-x}Nd{sub x}Co{sub 2} and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo{sub 2}-rich side is detected to be rhombohedral and that of NdCo{sub 2}-rich side is tetragonal below their respective Curie temperatures T{sub C}. The MPB composition Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase (T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} shows minimum magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb{sub 1-x}Nd{sub x}Co{sub 2} decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.
International Nuclear Information System (INIS)
Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin
2011-01-01
Research highlights: → Three morphologies of alloy phases were observed under different conditions. → Three different morphologies were thick-strip, fish-bone like and thin-strip. → These phases were all with enrichment of boron and dilution of silicon. → Three morphologies of alloy phases had different influences on mechanical property. - Abstract: The morphology of precipitated phases along Fe-6.5Si-0.05B columnar grain boundary and its effect on the initiation and propagation of compression cracks were investigated. Under the present experimental condition, alloy phases along the grain boundary exhibited three different morphologies, i.e., thick-strip, fish-bone like and thin-strip. These phases were all with enrichment of boron and dilution of silicon. The grain boundary with dendrite growth mode was apt to generate the thick-strip and fish-bone like phases, while the boundary with cellular growth mode was easy to form the thin-strip phase. The thick-strip phase was favorable to form 'weak plane' containing numerous micropores, which ultimately led to intergranular cracks. The fish-bone like phase was one of the main crack sources under the compression processing and easily caused transgranular cracks. The thin-strip phase enhanced the bond strength of the grain boundary and detained the crack propagation.
Kojitani, Hiroshi; Yamazaki, Monami; Kojima, Meiko; Inaguma, Yoshiyuki; Mori, Daisuke; Akaogi, Masaki
2018-06-01
Heat capacity (C P) of rutile and α-PbO2 type TiO2 (TiO2-II) were measured by the differential scanning calorimetry and thermal relaxation method. Using the results, standard entropies at 1 atm and 298.15 K of rutile and TiO2-II were determined to be 50.04(4) and 46.54(2) J/mol K, respectively. Furthermore, thermal expansivity (α) determined by high-temperature X-ray diffraction measurement and mode Grüneisen parameters obtained by high-pressure Raman spectroscopy suggested the thermal Grüneisen parameter (γ th) for TiO2-II of 1.7(1). By applying the obtained low-temperature C P and γ th, the measured C P and α data of TiO2-II were extrapolated to higher temperature region using a lattice vibrational model calculation, as well as rutile. Internally consistent thermodynamic data sets of both rutile and TiO2-II assessed in this study were used to thermodynamically calculate the rutile‒TiO2-II phase equilibrium boundary. The most plausible boundary was obtained to be P (GPa) = 0.0074T (K) - 1.7. Our boundary suggests that the crystal growth of TiO2-II observed below 5.5 GPa and 900 K in previous studies advanced in its stability field. The phase boundary calculation also suggested small, exothermic phase transition enthalpy from rutile to TiO2-II at 1 atm and 298.15 K of - 0.5 to - 1.1 kJ/mol. This implies that the thermodynamic stability of rutile at 1 atm above room temperature is due to larger contribution of entropy term.
Wang, Qing; Dong, Chuang; Liaw, Peter K.
2015-08-01
Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.
International Nuclear Information System (INIS)
Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.
2011-01-01
Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro
Energy Technology Data Exchange (ETDEWEB)
Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)
2011-04-21
Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid
International Nuclear Information System (INIS)
Lin, Chang Sheng; Chiang, Dar Yun
2012-01-01
Modal identification is considered from response data of structural system under nonstationary ambient vibration. In a previous paper, we showed that by assuming the ambient excitation to be nonstationary white noise in the form of a product model, the nonstationary response signals can be converted into free-vibration data via the correlation technique. In the present paper, if the ambient excitation can be modeled as a nonstationary white noise in the form of a product model, then the nonstationary cross random decrement signatures of structural response evaluated at any fixed time instant are shown theoretically to be proportional to the nonstationary cross-correlation functions. The practical problem of insufficient data samples available for evaluating nonstationary random decrement signatures can be approximately resolved by first extracting the amplitude-modulating function from the response and then transforming the nonstationary responses into stationary ones. Modal-parameter identification can then be performed using the Ibrahim time-domain technique, which is effective at identifying closely spaced modes. The theory proposed can be further extended by using the filtering concept to cover the case of nonstationary color excitations. Numerical simulations confirm the validity of the proposed method for identification of modal parameters from nonstationary ambient response data
Study on statistical analysis of nonlinear and nonstationary reactor noises
International Nuclear Information System (INIS)
Hayashi, Koji
1993-03-01
For the purpose of identification of nonlinear mechanism and diagnosis of nuclear reactor systems, analysis methods for nonlinear reactor noise have been studied. By adding newly developed approximate response function to GMDH, a conventional nonlinear identification method, a useful method for nonlinear spectral analysis and identification of nonlinear mechanism has been established. Measurement experiment and analysis were performed on the reactor power oscillation observed in the NSRR installed at the JAERI and the cause of the instability was clarified. Furthermore, the analysis and data recording methods for nonstationary noise have been studied. By improving the time resolution of instantaneous autoregressive spectrum, a method for monitoring and diagnosis of operational status of nuclear reactor has been established. A preprocessing system for recording of nonstationary reactor noise was developed and its usability was demonstrated through a measurement experiment. (author) 139 refs
Inferential framework for non-stationary dynamics: theory and applications
International Nuclear Information System (INIS)
Duggento, Andrea; Luchinsky, Dmitri G; McClintock, Peter V E; Smelyanskiy, Vadim N
2009-01-01
An extended Bayesian inference framework is presented, aiming to infer time-varying parameters in non-stationary nonlinear stochastic dynamical systems. The convergence of the method is discussed. The performance of the technique is studied using, as an example, signal reconstruction for a system of neurons modeled by FitzHugh–Nagumo oscillators: it is applied to reconstruction of the model parameters and elements of the measurement matrix, as well as to inference of the time-varying parameters of the non-stationary system. It is shown that the proposed approach is able to reconstruct unmeasured (hidden) variables of the system, to determine the model parameters, to detect stepwise changes of control parameters for each oscillator and to track the continuous evolution of the control parameters in the adiabatic limit
Compounding approach for univariate time series with nonstationary variances
Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich
2015-12-01
A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.
Non-stationary condition monitoring through event alignment
DEFF Research Database (Denmark)
Pontoppidan, Niels Henrik; Larsen, Jan
2004-01-01
We present an event alignment framework which enables change detection in non-stationary signals. change detection. Classical condition monitoring frameworks have been restrained to laboratory settings with stationary operating conditions, which are not resembling real world operation....... In this paper we apply the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission sensor signals. The performance of the event alignment is analyzed in an unsupervised probabilistic detection framework based on outlier detection with either Principal Component...... Analysis or Gaussian Processes modeling. We are especially interested in the true performance of the condition monitoring performance with mixed aligned and unaligned data, e.g. detection of fault condition of unaligned examples versus false alarms of aligned normal condition data. Further, we expect...
Nonstationary ARCH and GARCH with t-distributed Innovations
DEFF Research Database (Denmark)
Pedersen, Rasmus Søndergaard; Rahbek, Anders
Consistency and asymptotic normality are established for the maximum likelihood estimators in the nonstationary ARCH and GARCH models with general t-distributed innovations. The results hold for joint estimation of (G)ARCH effects and the degrees of freedom parameter parametrizing the t-distribut......Consistency and asymptotic normality are established for the maximum likelihood estimators in the nonstationary ARCH and GARCH models with general t-distributed innovations. The results hold for joint estimation of (G)ARCH effects and the degrees of freedom parameter parametrizing the t......-distribution. With T denoting sample size, classic square-root T-convergence is shown to hold with closed form expressions for the multivariate covariances....
Deviations from uniform power law scaling in nonstationary time series
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
Non-Stationary Dependence Structures for Spatial Extremes
Huser, Raphaël
2016-03-03
Max-stable processes are natural models for spatial extremes because they provide suitable asymptotic approximations to the distribution of maxima of random fields. In the recent past, several parametric families of stationary max-stable models have been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference is performed using pairwise likelihoods, and its performance is assessed by an extensive simulation study based on a non-stationary locally isotropic extremal t model. Evidence that unknown parameters are well estimated is provided, and estimation of spatial return level curves is discussed. The methodology is demonstrated with temperature maxima recorded over a complex topography. Models are shown to satisfactorily capture extremal dependence.
Thin viscoelastic disc subjected to radial non-stationary loading
Directory of Open Access Journals (Sweden)
Adámek V.
2010-07-01
Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.
Learning in Non-Stationary Environments Methods and Applications
Lughofer, Edwin
2012-01-01
Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...
ADSL Transceivers Applying DSM and Their Nonstationary Noise Robustness
Directory of Open Access Journals (Sweden)
Bostoen Tom
2006-01-01
Full Text Available Dynamic spectrum management (DSM comprises a new set of techniques for multiuser power allocation and/or detection in digital subscriber line (DSL networks. At the Alcatel Research and Innovation Labs, we have recently developed a DSM test bed, which allows the performance of DSM algorithms to be evaluated in practice. With this test bed, we have evaluated the performance of a DSM level-1 algorithm known as iterative water-filling in an ADSL scenario. This paper describes the results of, on the one hand, the performance gains achieved with iterative water-filling, and, on the other hand, the nonstationary noise robustness of DSM-enabled ADSL modems. It will be shown that DSM trades off nonstationary noise robustness for performance improvements. A new bit swap procedure is then introduced to increase the noise robustness when applying DSM.
Network simulation of nonstationary ionic transport through liquid junctions
International Nuclear Information System (INIS)
Castilla, J.; Horno, J.
1993-01-01
Nonstationary ionic transport across the liquid junctions has been studied using Network Thermodynamics. A network model for the time-dependent Nernst-Plack-Poisson system of equation is proposed. With this network model and the electrical circuit simulation program PSPICE, the concentrations, charge density, and electrical potentials, at short times, have been simulated for the binary system NaCl/NaCl. (Author) 13 refs
On the dynamics of non-stationary binary stellar systems
International Nuclear Information System (INIS)
Bekov, A. A.; Bejsekov, A.N.; Aldibaeva, L.T.
2005-01-01
The motion of test body in the external gravitational field of the binary stellar system with slowly variable some physical parameters of radiating components is considered on the base of restricted non-stationary photo-gravitational three and two bodies problem. The family of polar and coplanar solutions are obtained. These solutions give the possibility of the dynamical and structure interpretation of the binary young evolving stars and galaxies. (author)
Robust Forecasting of Non-Stationary Time Series
Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.
2010-01-01
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estima...
A Generalized Framework for Non-Stationary Extreme Value Analysis
Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.
2017-12-01
Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA
Stationary and nonstationary properties of evolving networks with preferential linkage
International Nuclear Information System (INIS)
Jezewski, W.
2002-01-01
Networks evolving by preferential attachment of both external and internal links are investigated. The rate of adding an external link is assumed to depend linearly on the degree of a preexisting node to which a new node is connected. The process of creating an internal link, between a pair of existing vertices, is assumed to be controlled entirely by the vertex that has more links than the other vertex in the pair, and the rate of creation of such a link is assumed to be, in general, nonlinear in the degree of the more strongly connected vertex. It is shown that degree distributions of networks evolving only by creating internal links display for large degrees a nonstationary power-law decay with a time-dependent scaling exponent. Nonstationary power-law behaviors are numerically shown to persist even when the number of nodes is not fixed and both external and internal connections are introduced, provided that the rate of preferential attachment of internal connections is nonlinear. It is argued that nonstationary effects are not unlikely in real networks, although these effects may not be apparent, especially in networks with a slowly varying mean degree
Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics
Jo, Wook; Daniels, John E.; Jones, Jacob L.; Tan, Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan; Rödel, Jürgen
2011-01-01
The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.
Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics
International Nuclear Information System (INIS)
Jo, Wook; Roedel, Juergen; Daniels, John E.; Jones, Jacob L.; Tan Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan
2011-01-01
The correlation between structure and electrical properties of lead-free (1-x)(Bi 1/2 Na 1/2 )TiO 3 -xBaTiO 3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.
Aristizabal, F; Glavinovic, M I
2003-10-01
Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the "composite spectra" of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic
Taillefumier, Thibaud; Magnasco, Marcelo O.
2013-01-01
Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss–Markov process will...
Some strange numerical solutions of the non-stationary Navier-Stokes equations in pipes
Energy Technology Data Exchange (ETDEWEB)
Rummler, B.
2001-07-01
A general class of boundary-pressure-driven flows of incompressible Newtonian fluids in three-dimensional pipes with known steady laminar realizations is investigated. Considering the laminar velocity as a 3D-vector-function of the cross-section-circle arguments, we fix the scale for the velocity by the L{sub 2}-norm of the laminar velocity. The usual new variables are introduced to get dimension-free Navier-Stokes equations. The characteristic physical and geometrical quantities are subsumed in the energetic Reynolds number Re and a parameter {psi}, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form u=u{sub L}+u, where u{sub L} is the scaled laminar velocity and periodical conditions in center-line-direction are prescribed for u. An autonomous system (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction is got by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u. The finite-dimensional approximations u{sub N({lambda}}{sub )} of u are defined in the usual way. (orig.)
Ye, Y.; Gu, C.; Shim, S. H.; Prakapenka, V.; Meng, Y.
2014-12-01
Recent seismic studies have revealed complex structures near 660-km depth. In order to understand the effects of composition and temperature, we measured the depth and Clapeyron slope of the post-spinel and post-garnet boundaries at the pressure-temperature conditions of 600-700 km depths in pyrolitic compositions: (1) MgO-Al2O3-SiO2 (MAS) and (2) CaO-MgO-Al2O3-SiO2-FeO (CMASF). Glass starting materials were mixed with either gold or platinum powder (10 wt%) for laser coupling and internal pressure scale. Cold compressed foils of the mixtures were loaded in the diamond-anvil cell together with Ar or KCl for thermal insulation and pressure transmission. X-ray diffraction patterns were measured for the samples in the diamond-anvil cell at in situ high pressure and high temperature combined with double side laser heating at beamlines 13-IDD (GSECARS) and 16-IDB (HPCAT) in the Advanced Photon Source. Within 5 to 8 minutes of heating, stable crystalline phase assemblages were formed and persisted with further heating for 20 to 30 minutes. A total of 160 heating cycles were conducted at different pressures and temperatures, providing tight constrains on the phase boundaries. Our data show that the post-spinel transition occurs at 23.6-24.5 GPa and 1850 K with a Clapeyron slope of -2.5(4) MPa/K if the Pt pressure scales are used, consistent with the seismic observation of the 660 discontinuity. The post-garnet boundary occurs at 24.2-27.5 GPa and 1900 - 2450 K. We found that the Clapeyron slope of the post-garnet transition increases with Fe: from 2.4 MPa/K for MAS to 6.2 MPa/K for CMASF. Below 1900 K, garnet disappears near the post-spinel boundary within the resolution of our measurements. Our new data supports the notion that the 660 discontinuity is dominated by the post-spinel phase transition below 1900 K while dominated by the post-garnet phase transition above 1900 K. However, our data indicate much larger Clapeyron slope of the post-garnet transition, suggesting
Optimizing a Military Supply Chain in the Presence of Random, Non-Stationary Demands
National Research Council Canada - National Science Library
Yew
2003-01-01
... logistics supply chain that satisfies uncertain, non-stationary demands, while taking into account the volatility and singularity of military operations This research focuses on the development...
International Nuclear Information System (INIS)
Endo, Takako; Konno, Norio; Obuse, Hideaki; Segawa, Etsuo
2017-01-01
In this paper, we treat quantum walks in a two-dimensional lattice with cutting edges along a straight boundary introduced by Asboth and Edge (2015 Phys. Rev . A 91 022324) in order to study one-dimensional edge states originating from topological phases of matter and to obtain collateral evidence of how a quantum walker reacts to the boundary. Firstly, we connect this model to the CMV matrix, which provides a 5-term recursion relation of the Laurent polynomial associated with spectral measure on the unit circle. Secondly, we explicitly derive the spectra of bulk and edge states of the quantum walk with the boundary using spectral analysis of the CMV matrix. Thirdly, while topological numbers of the model studied so far are well-defined only when gaps in the bulk spectrum exist, we find a new topological number defined only when there are no gaps in the bulk spectrum. We confirm that the existence of the spectrum for edge states derived from the CMV matrix is consistent with the prediction from a bulk-edge correspondence using topological numbers calculated in the cases where gaps in the bulk spectrum do or do not exist. Finally, we show how the edge states contribute to the asymptotic behavior of the quantum walk through limit theorems of the finding probability. Conversely, we also propose a differential equation using this limit distribution whose solution is the underlying edge state. (paper)
Identification of QRS complex in non-stationary electrocardiogram of sick infants.
Kota, S; Swisher, C B; Al-Shargabi, T; Andescavage, N; du Plessis, A; Govindan, R B
2017-08-01
Due to the high-frequency of routine interventions in an intensive care setting, electrocardiogram (ECG) recordings from sick infants are highly non-stationary, with recurrent changes in the baseline, alterations in the morphology of the waveform, and attenuations of the signal strength. Current methods lack reliability in identifying QRS complexes (a marker of individual cardiac cycles) in the non-stationary ECG. In the current study we address this problem by proposing a novel approach to QRS complex identification. Our approach employs lowpass filtering, half-wave rectification, and the use of instantaneous Hilbert phase to identify QRS complexes in the ECG. We demonstrate the application of this method using ECG recordings from eight preterm infants undergoing intensive care, as well as from 18 normal adult volunteers available via a public database. We compared our approach to the commonly used approaches including Pan and Tompkins (PT), gqrs, wavedet, and wqrs for identifying QRS complexes and then compared each with manually identified QRS complexes. For preterm infants, a comparison between the QRS complexes identified by our approach and those identified through manual annotations yielded sensitivity and positive predictive values of 99% and 99.91%, respectively. The comparison metrics for each method are as follows: PT (sensitivity: 84.49%, positive predictive value: 99.88%), gqrs (85.25%, 99.49%), wavedet (95.24%, 99.86%), and wqrs (96.99%, 96.55%). Thus, the sensitivity values of the four methods previously described, are lower than the sensitivity of the method we propose; however, the positive predictive values of these other approaches is comparable to those of our method, with the exception of the wqrs approach, which yielded a slightly lower value. For adult ECG, our approach yielded a sensitivity of 99.78%, whereas PT yielded 99.79%. The positive predictive value was 99.42% for both our approach as well as for PT. We propose a novel method for
Noise Diagnostics of Stationary and Non-Stationary Reactor Processes
Energy Technology Data Exchange (ETDEWEB)
Sunde, Carl
2007-04-15
This thesis concerns the application of noise diagnostics on different problems in the area of reactor physics involving both stationary and non-stationary core processes. Five different problems are treated, divided into three different parts. The first problem treated in the first part is the classification of two-phase flow regimes from neutron radiographic and visible light images with a neuro-wavelet algorithm. The algorithm consists of wavelet pre-processing and of an artificial neural network. The result indicates that the wavelet pre-processing is improving the training of the neural network. Next, detector tubes which are suspected of impacting on nearby fuel-assemblies in a boiling water reactor (BWR) are identified by both a classical spectral method and wavelet-based methods. It was found that there is good agreement between the different methods as well as with visual inspections of detector tube and fuel assembly damage made during the outage at the plant. The third problem addresses the determination of the decay ratio of a BWR from the auto-correlation function (ACF). Here wavelets are used, with some success, both for de-trending and de-nosing of the ACF and also for direct estimation of the decay ratio from the ACF. The second part deals with the analysis of beam-mode and shell-mode core-barrel vibrations in pressurised water reactors (PWRs). The beam-mode vibrations are analysed by using parameters of the vibration peaks, in spectra from ex core detectors. A trend analysis of the peak amplitude shows that the peak amplitude is changing during the fuel cycle. When it comes to the analysis of the shell-mode vibration, 1-D analytical and numerical calculations are performed in order to calculate the neutron noise induced in the core. The two calculations are in agreement and show that a large local noise component is present in the core which could be used to classify the shell-mode vibrations. However, a measurement made in the PWR Ringhals-3 shows
Noise Diagnostics of Stationary and Non-Stationary Reactor Processes
International Nuclear Information System (INIS)
Sunde, Carl
2007-01-01
This thesis concerns the application of noise diagnostics on different problems in the area of reactor physics involving both stationary and non-stationary core processes. Five different problems are treated, divided into three different parts. The first problem treated in the first part is the classification of two-phase flow regimes from neutron radiographic and visible light images with a neuro-wavelet algorithm. The algorithm consists of wavelet pre-processing and of an artificial neural network. The result indicates that the wavelet pre-processing is improving the training of the neural network. Next, detector tubes which are suspected of impacting on nearby fuel-assemblies in a boiling water reactor (BWR) are identified by both a classical spectral method and wavelet-based methods. It was found that there is good agreement between the different methods as well as with visual inspections of detector tube and fuel assembly damage made during the outage at the plant. The third problem addresses the determination of the decay ratio of a BWR from the auto-correlation function (ACF). Here wavelets are used, with some success, both for de-trending and de-nosing of the ACF and also for direct estimation of the decay ratio from the ACF. The second part deals with the analysis of beam-mode and shell-mode core-barrel vibrations in pressurised water reactors (PWRs). The beam-mode vibrations are analysed by using parameters of the vibration peaks, in spectra from ex core detectors. A trend analysis of the peak amplitude shows that the peak amplitude is changing during the fuel cycle. When it comes to the analysis of the shell-mode vibration, 1-D analytical and numerical calculations are performed in order to calculate the neutron noise induced in the core. The two calculations are in agreement and show that a large local noise component is present in the core which could be used to classify the shell-mode vibrations. However, a measurement made in the PWR Ringhals-3 shows
Autocalibration method for non-stationary CT bias correction.
Vegas-Sánchez-Ferrero, Gonzalo; Ledesma-Carbayo, Maria J; Washko, George R; Estépar, Raúl San José
2018-02-01
Computed tomography (CT) is a widely used imaging modality for screening and diagnosis. However, the deleterious effects of radiation exposure inherent in CT imaging require the development of image reconstruction methods which can reduce exposure levels. The development of iterative reconstruction techniques is now enabling the acquisition of low-dose CT images whose quality is comparable to that of CT images acquired with much higher radiation dosages. However, the characterization and calibration of the CT signal due to changes in dosage and reconstruction approaches is crucial to provide clinically relevant data. Although CT scanners are calibrated as part of the imaging workflow, the calibration is limited to select global reference values and does not consider other inherent factors of the acquisition that depend on the subject scanned (e.g. photon starvation, partial volume effect, beam hardening) and result in a non-stationary noise response. In this work, we analyze the effect of reconstruction biases caused by non-stationary noise and propose an autocalibration methodology to compensate it. Our contributions are: 1) the derivation of a functional relationship between observed bias and non-stationary noise, 2) a robust and accurate method to estimate the local variance, 3) an autocalibration methodology that does not necessarily rely on a calibration phantom, attenuates the bias caused by noise and removes the systematic bias observed in devices from different vendors. The validation of the proposed methodology was performed with a physical phantom and clinical CT scans acquired with different configurations (kernels, doses, algorithms including iterative reconstruction). The results confirmed the suitability of the proposed methods for removing the intra-device and inter-device reconstruction biases. Copyright © 2017 Elsevier B.V. All rights reserved.
Local polynomial Whittle estimation covering non-stationary fractional processes
DEFF Research Database (Denmark)
Nielsen, Frank
to the non-stationary region. By approximating the short-run component of the spectrum by a polynomial, instead of a constant, in a shrinking neighborhood of zero we alleviate some of the bias that the classical local Whittle estimators is prone to. This bias reduction comes at a cost as the variance is in...... study illustrates the performance of the proposed estimator compared to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical justi.cation of the proposed estimator is shown through an analysis of credit spreads....
Radiation of light impurities in a nonstationary plasma
International Nuclear Information System (INIS)
Abramov, V.A.; Krotova, G.I.
1984-01-01
In the framework of a nonstationary coronal model with account for latest data on elementary process cross sections calculations of oxygen radiation power are performed. It is shown that taking into account electron temperature nonstationarity characteristic of the initial stage in nowadays tokamaks, line emission power in the principal maximum region (Tsub(e) approximately 40 eV) changes but slightly, whereas the radiation power in the second maximum (Tsub(e) approximately 100 eV increases approximately 20 times as compared with stationary values
Theoretical analysis of radiographic images by nonstationary Poisson processes
International Nuclear Information System (INIS)
Tanaka, Kazuo; Uchida, Suguru; Yamada, Isao.
1980-01-01
This paper deals with the noise analysis of radiographic images obtained in the usual fluorescent screen-film system. The theory of nonstationary Poisson processes is applied to the analysis of the radiographic images containing the object information. The ensemble averages, the autocorrelation functions, and the Wiener spectrum densities of the light-energy distribution at the fluorescent screen and of the film optical-density distribution are obtained. The detection characteristics of the system are evaluated theoretically. Numerical examples one-dimensional image are shown and the results are compared with those obtained under the assumption that the object image is related to the background noise by the additive process. (author)
Detrending of non-stationary noise data by spline techniques
International Nuclear Information System (INIS)
Behringer, K.
1989-11-01
An off-line method for detrending non-stationary noise data has been investigated. It uses a least squares spline approximation of the noise data with equally spaced breakpoints. Subtraction of the spline approximation from the noise signal at each data point gives a residual noise signal. The method acts as a high-pass filter with very sharp frequency cutoff. The cutoff frequency is determined by the breakpoint distance. The steepness of the cutoff is controlled by the spline order. (author) 12 figs., 1 tab., 5 refs
Energy Technology Data Exchange (ETDEWEB)
Hauet, Thomas; Gunther, Christian M.; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav
2008-12-09
We investigate the reversal process in antiferromagnetically coupled [Co/Pt]{sub X-1}/{l_brace}Co/Ru/[Co/Pt]{sub X-1}{r_brace}{sub 16} multilayer films by combining magnetometry and Magnetic soft X-ray Transmission Microscopy (MXTM). After out-of-plane demagnetization, a stable one dimensional ferromagnetic (FM) stripe domain phase (tiger-tail phase) for a thick stack sample (X=7 is obtained), while metastable sharp antiferromagnetic (AF) domain walls are observed in the remanent state for a thinner stack sample (X=6). When applying an external magnetic field the sharp domain walls of the thinner stack sample transform at a certain threshold field into the FM stripe domain wall phase. We present magnetic energy calculations that reveal the underlying energetics driving the overall reversal mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Adil, Murtaza; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Mi, Meng; Zhou, Chao, E-mail: zhouch1982@gmail.com; Wang, Jieqiong; Zhang, Rui; Liao, Xiaoqi; Wang, Yu; Ren, Xiaobing; Song, Xiaoping, E-mail: xpsong@mail.xjtu.edu.cn [School of Sciences, Frontier Institute of Science and Technology, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2015-03-30
Morphotropic phase boundary (MPB), separating two ferroic phases of different crystal symmetries, has been studied extensively for its extraordinary enhancement of piezoelectricity in ferroelectrics. Based on the same mechanism, we have designed a magnetic MPB in the pseudobinary ferromagnetic system of Tb{sub 1−x}Gd{sub x}Fe{sub 2} and the corresponding crystal structure, magnetic properties, and magnetostriction are explored. With the synchrotron x-ray diffractometry, the structure symmetry of TbFe{sub 2}-rich compositions is detected to be rhombohedral (R) and that of GdFe{sub 2}-rich compositions is tetragonal (T) below T{sub c}. With the change of concentration, the value of magnetostriction of the samples changes monotonously, while the MPB composition Tb{sub 0.1}Gd{sub 0.9}Fe{sub 2}, which corresponds to the coexistence of R and T phases, exhibits the maximum magnetization among all available compositions and superposition of magnetostriction behaviour of R and T phases. Our result of MPB phenomena in ferromagnets may provide an effective route to design functional magnetic materials with exotic properties.
International Nuclear Information System (INIS)
Marshall, W.L.
1981-12-01
Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases nor liquid-liquid immiscibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators. 16 refs
Shpielberg, O.; Akkermans, E.
2016-06-01
A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.
Shpielberg, O; Akkermans, E
2016-06-17
A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)
2015-04-14
Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.
Dymshits, Anna M.; Litasov, Konstantin D.; Shatskiy, Anton; Chanyshev, Artem D.; Podborodnikov, Ivan V.; Higo, Yuji
2018-01-01
The phase relations and equation of state of (Mg0.08Fe0.92)O magnesiowüstite (Mw92) have been studied using the Kawai-type high-pressure apparatus coupled with synchrotron radiation. To determine the phase boundary between the NaCl-type cubic (B1) and rhombohedral ( rB1) structures in Mw92, in situ X-ray observations were carried out at pressures of 0-35 GPa and temperatures of 300-1473 K. Au and MgO were used as the internal pressure markers and metallic Fe as oxygen fugacity buffer. The phase boundary between B1 and rB1 structures was described by a linear equation P (GPa) = 1.6 + 0.033 × T (K). The Clapeyron slope (d P/d T) determined in this study is close to that obtained at pressures above 70 GPa but steeper than that obtained for FeO. An addition of MgO to FeO structure expands the stability field of the rB1 phase to lower pressures and higher temperatures. Thus, the rB1 phase may be stabilized with respect to the B1 phase at a lower pressures. The pressure-volume-temperature equation of state of B1-Mw92 was determined up to 30 GPa and 1473 K. Fitting the hydrostatic compression data up to 30 GPa with the Birch-Murnaghan equation of state (EoS) yielded: unit cell volume ( V 0, T0), 79.23 ± 4 Å3; bulk modulus ( K 0, T0), 183 ± 4 GPa; its pressure derivative ( K' T ), 4.1 ± 0.4; (∂ K 0, T /∂ T) = -0.029 ± 0.005 GPa K‒1; a = 3.70 ± 0.27 × 10-5 K-1 and b = 0.47 ± 0.49 × 10-8 K-2, where α0, T = a + bT is the volumetric thermal expansion coefficient. The obtained bulk modulus of Mw92 is very close to the value expected for stoichiometric iron-rich (Mg,Fe)O. This result confirms the idea that the bulk modulus of (Mg,Fe)O is greatly affected by the actual defect structure, caused by either Mg2+ or vacancies.
DEFF Research Database (Denmark)
Ahmadi Atouei,, Saeed; Rezaniakolaei, Alireza; Akbar Ranjbar, Ali
2017-01-01
phase change materials (PCM) in an aluminium box are placed between heat source and the thermoelectric module. The results show when the input heat flux is high, a fraction of the thermal energy is saved in the PCM during the melting process, and when the heat source is off, the saved energy in the PCM...
Cappell, M S; Spray, D C; Bennett, M V
1988-06-28
Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.
Guo, L.; Van der Wegen, M.; Jay, D.A.; Matte, P.; Wang, Z.B.; Roelvink, J.A.; He, Q.
2015-01-01
River-tide dynamics remain poorly understood, in part because conventional harmonic analysis (HA) does not cope effectively with nonstationary signals. To explore nonstationary behavior of river tides and the modulation effects of river discharge, this work analyzes tidal signals in the Yangtze
Wavelet-Based Methodology for Evolutionary Spectra Estimation of Nonstationary Typhoon Processes
Directory of Open Access Journals (Sweden)
Guang-Dong Zhou
2015-01-01
Full Text Available Closed-form expressions are proposed to estimate the evolutionary power spectral density (EPSD of nonstationary typhoon processes by employing the wavelet transform. Relying on the definition of the EPSD and the concept of the wavelet transform, wavelet coefficients of a nonstationary typhoon process at a certain time instant are interpreted as the Fourier transform of a new nonstationary oscillatory process, whose modulating function is equal to the modulating function of the nonstationary typhoon process multiplied by the wavelet function in time domain. Then, the EPSD of nonstationary typhoon processes is deduced in a closed form and is formulated as a weighted sum of the squared moduli of time-dependent wavelet functions. The weighted coefficients are frequency-dependent functions defined by the wavelet coefficients of the nonstationary typhoon process and the overlapping area of two shifted wavelets. Compared with the EPSD, defined by a sum of the squared moduli of the wavelets in frequency domain in literature, this paper provides an EPSD estimation method in time domain. The theoretical results are verified by uniformly modulated nonstationary typhoon processes and non-uniformly modulated nonstationary typhoon processes.
International Nuclear Information System (INIS)
Chen, Shih-Hung; Chen, Liu
2013-01-01
The nonstationary oscillation of the gyrotron backward wave oscillator (gyro-BWO) with cylindrical interaction structure was studied utilizing both steady-state analyses and time-dependent simulations. Comparisons of the numerical results reveal that the gyro-BWO becomes nonstationary when the trailing field structure completely forms due to the dephasing energetic electrons. The backward propagation of radiated waves with a lower resonant frequency from the trailing field structure interferes with the main internal feedback loop, thereby inducing the nonstationary oscillation of the gyro-BWO. The nonstationary gyro-BWO exhibits the same spectral pattern of modulated oscillations with a constant frequency separation between the central frequency and sidebands throughout the whole system. The frequency separation is found to be scaled with the square root of the maximum field amplitude, thus further demonstrating that the nonstationary oscillation of the gyro-BWO is associated with the beam-wave resonance detuning
Incremental learning of concept drift in nonstationary environments.
Elwell, Ryan; Polikar, Robi
2011-10-01
We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper. © 2011 IEEE
Nonstationary stochastic charge fluctuations of a dust particle in plasmas.
Shotorban, B
2011-06-01
Stochastic charge fluctuations of a dust particle that are due to discreteness of electrons and ions in plasmas can be described by a one-step process master equation [T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285 (1995)] with no exact solution. In the present work, using the system size expansion method of Van Kampen along with the linear noise approximation, a Fokker-Planck equation with an exact Gaussian solution is developed by expanding the master equation. The Gaussian solution has time-dependent mean and variance governed by two ordinary differential equations modeling the nonstationary process of dust particle charging. The model is tested via the comparison of its results to the results obtained by solving the master equation numerically. The electron and ion currents are calculated through the orbital motion limited theory. At various times of the nonstationary process of charging, the model results are in a very good agreement with the master equation results. The deviation is more significant when the standard deviation of the charge is comparable to the mean charge in magnitude.
International Nuclear Information System (INIS)
Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.
2017-01-01
Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.
Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish
2011-07-01
We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.
Local rhombohedral symmetry in Tb{sub 0.3}Dy{sub 0.7}Fe{sub 2} near the morphotropic phase boundary
Energy Technology Data Exchange (ETDEWEB)
Ma, Tianyu, E-mail: maty@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Ferroic Physics Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki (Japan); Liu, Xiaolian; Pan, Xingwen; Li, Xiang; Jiang, Yinzhu; Yan, Mi, E-mail: mse-yanmi@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Li, Huiying; Fang, Minxia [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing, E-mail: ren.xiaobing@nims.go.jp [Ferroic Physics Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki (Japan); Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China)
2014-11-10
The recently reported morphotropic phase boundary (MPB) in a number of giant magnetostrictive materials (GMMs) has drawn considerable interest to the local symmetry/structure near MPB region of these materials. In this letter, by in-situ X-ray diffraction and AC magnetic susceptibility measurements, we show that Tb{sub 0.3}Dy{sub 0.7}Fe{sub 2}, the typical composition of Terfenol-D GMMs, has coexistence of rhombohedral and tetragonal phases over a wide temperature range in the vicinity of MPB. High resolution transmission electron microscopy provides direct evidence for local rhombohedral symmetry of the ferromagnetic phase and reveals regular-shaped nanoscale domains below 10 nm. The nano-sized structural/magnetic domains are hierarchically inside a single micron-sized stripe-like domain with the same average magnetization direction. Such domain structures are consistent with the low magnetocrystalline anisotropy and easy magnetic/structural domain switching under magnetic field, thus generating large magnetostriction at low field.
Rigorous homogenization of a Stokes-Nernst-Planck-Poisson problem for various boundary conditions
Ray, N.; Muntean, A.; Knabner, P.
2011-01-01
We perform the periodic homogenization (i. e. e ¿ 0) of the non-stationary Stokes-Nernst-Planck-Poisson system using two-scale convergence, where e is a suitable scale parameter. The objective is to investigate the influence of different boundary conditions and variable choices of scaling in e of
Kou, Jisheng
2015-03-01
In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.
Schuraytz, B. C.; Lindstrom, D. J.; Sharpton, V. L.
1997-01-01
Among Cretaceous-Tertiary boundary sites worldwide, variations in the concentrations and ratios of elements commonly enriched in meteorites complicate traditional geochemical attempts at impactor identification. Yet they may provide constraints on the physical and chemical processes associated with large-body disruption and dispersal, as well as with diagenesis of projectile components. To this end, we continue our efforts to identify the mineral host-phases of projectile-derived elements, particularly for Ir, and to document their partitioning between crater deposits and ejecta resulting from the Chicxulub basin-forming impact. Building on earlier work, we used INAA to measure Ir concentrations in successively smaller splits of finely powdered impact melt breccia from the Chicxulub Crater in Mexico (sample Y6Nl9-R(b)), and K/T boundary fish clay from Stevns Klint, Denmark (sample FC-1, split from 40 kg of homogenized material intended as an analytical standard). Results for the Chicxulub sample show a heterogeneous Ir distribution and document that at least five discrete Ir-bearing host phases were isolated in subsequent splits, having Ir masses equivalent to pure Ir spheres from about 0.8 to about 3.5 mm in diameter. Three of these are within a sufficiently reduced mass of powder to warrant searching for them using backscattered electron microscopy. In contrast, successively smaller splits of the Stevns Klint fish clay show no statistically significant deviation from the reported value of 32 +/- 2 ng/g Ir, suggesting a uniform Ir host-phase distribution. For the smallest split obtained thus far (100 +/- 40 ng/g Ir), a pure Ir sphere of equivalent Ir mass would be <0.05 min in diameter. (n.b. Although homogenizing and sieving of FC-1 to <75 min obviously obscured variations in stratigraphic distribution, it is unlikely to have affected the size-frequency distribution of Ir host phases.) We previously identified micrometer-scale Ir host phases by electron
Enhancement of Non-Stationary Speech using Harmonic Chirp Filters
DEFF Research Database (Denmark)
Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll
2015-01-01
In this paper, the issue of single channel speech enhancement of non-stationary voiced speech is addressed. The non-stationarity of speech is well known, but state of the art speech enhancement methods assume stationarity within frames of 20–30 ms. We derive optimal distortionless filters that take...... the non-stationarity nature of voiced speech into account via linear constraints. This is facilitated by imposing a harmonic chirp model on the speech signal. As an implicit part of the filter design, the noise statistics are also estimated based on the observed signal and parameters of the harmonic chirp...... model. Simulations on real speech show that the chirp based filters perform better than their harmonic counterparts. Further, it is seen that the gain of using the chirp model increases when the estimated chirp parameter is big corresponding to periods in the signal where the instantaneous fundamental...
Coupling detrended fluctuation analysis for analyzing coupled nonstationary signals
Hedayatifar, L.; Vahabi, M.; Jafari, G. R.
2011-08-01
When many variables are coupled to each other, a single case study could not give us thorough and precise information. When these time series are stationary, different methods of random matrix analysis and complex networks can be used. But, in nonstationary cases, the multifractal-detrended-cross-correlation-analysis (MF-DXA) method was introduced for just two coupled time series. In this article, we have extended the MF-DXA to the method of coupling detrended fluctuation analysis (CDFA) for the case when more than two series are correlated to each other. Here, we have calculated the multifractal properties of the coupled time series, and by comparing CDFA results of the original series with those of the shuffled and surrogate series, we can estimate the source of multifractality and the extent to which our series are coupled to each other. We illustrate the method by selected examples from air pollution and foreign exchange rates.
Likelihood inference for a nonstationary fractional autoregressive model
DEFF Research Database (Denmark)
Johansen, Søren; Ørregård Nielsen, Morten
2010-01-01
This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d-b. Fractional differencing involves infinitely many past values and because we are interested in nonstationary processes we model the data X1......,...,X_{T} given the initial values X_{-n}, n=0,1,..., as is usually done. The initial values are not modeled but assumed to be bounded. This represents a considerable generalization relative to all previous work where it is assumed that initial values are zero. For the statistical analysis we assume...... the conditional Gaussian likelihood and for the probability analysis we also condition on initial values but assume that the errors in the autoregressive model are i.i.d. with suitable moment conditions. We analyze the conditional likelihood and its derivatives as stochastic processes in the parameters, including...
Nonstationary Transient Vibroacoustic Response of a Beam Structure
Caimi, R. E.; Margasahayam, R. N.; Nayfeh, Jamal F.
1997-01-01
This study consists of an investigation into the nonstationary transient response of the Verification Test Article (VETA) when subjected to random acoustic excitation. The goal is to assess excitation models that can be used in the design of structures and equipment when knowledge of the structure and the excitation is limited. The VETA is an instrumented cantilever beam that was exposed to acoustic loading during five Space Shuttle launches. The VETA analytical structural model response is estimated using the direct averaged power spectral density and the normalized pressure spectra methods. The estimated responses are compared to the measured response of the VETA. These comparisons are discussed with a focus on prediction conservatism and current design practice.
Martingales, nonstationary increments, and the efficient market hypothesis
McCauley, Joseph L.; Bassler, Kevin E.; Gunaratne, Gemunu H.
2008-06-01
We discuss the deep connection between nonstationary increments, martingales, and the efficient market hypothesis for stochastic processes x(t) with arbitrary diffusion coefficients D(x,t). We explain why a test for a martingale is generally a test for uncorrelated increments. We explain why martingales look Markovian at the level of both simple averages and 2-point correlations. But while a Markovian market has no memory to exploit and cannot be beaten systematically, a martingale admits memory that might be exploitable in higher order correlations. We also use the analysis of this paper to correct a misstatement of the ‘fair game’ condition in terms of serial correlations in Fama’s paper on the EMH. We emphasize that the use of the log increment as a variable in data analysis generates spurious fat tails and spurious Hurst exponents.
Gravitational entropy of nonstationary black holes and spherical shells
International Nuclear Information System (INIS)
Hiscock, W.A.
1989-01-01
The problem of defining the gravitational entropy of a nonstationary black hole is considered in a simple model consisting of a spherical shell which collapses into a preexisting black hole. The second law of black-hole mechanics strongly suggests identifying one-quarter of the area of the event horizon as the gravitational entropy of the system. It is, however, impossible to accurately locate the position of the global event horizon using only local measurements. In order to maintain a local thermodynamics, it is suggested that the entropy of the black hole be identified with one-quarter the area of the apparent horizon. The difference between the event-horizon entropy (to the extent it can be determined) and the apparent-horizon entropy may then be interpreted as the gravitational entropy of the collapsing shell. The total (event-horizon) gravitational entropy evolves in a smooth (C 0 ) fashion, even in the presence of δ-functional shells of matter
Simulation of nonstationary phenomena in atmospheric-pressure glow discharge
Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.
2016-06-01
Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.
Simulation of nonstationary phenomena in atmospheric-pressure glow discharge
International Nuclear Information System (INIS)
Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas’yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.
2016-01-01
Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.
Non-stationary vibrations of a thin viscoelastic orthotropic beam
Czech Academy of Sciences Publication Activity Database
Adámek, V.; Valeš, František; Tikal, B.
2009-01-01
Roč. 71, č. 12 (2009), e2569-e2576 ISSN 0362-546X R&D Projects: GA ČR(CZ) GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : thin beam * non-stationary vibration * analytical solution Subject RIV: BI - Acoustics Impact factor: 1.487, year: 2009 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0Y-4WB3N8S-4&_user=640952&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1156243286&_rerunOrigin= google &_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=ce096901a3382058455e822a20645820
Generalized Predictive Control for Non-Stationary Systems
DEFF Research Database (Denmark)
Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen
1994-01-01
This paper shows how the generalized predictive control (GPC) can be extended to non-stationary (time-varying) systems. If the time-variation is slow, then the classical GPC can be used in context with an adaptive estimation procedure of a time-invariant ARIMAX model. However, in this paper prior...... knowledge concerning the nature of the parameter variations is assumed available. The GPC is based on the assumption that the prediction of the system output can be expressed as a linear combination of present and future controls. Since the Diophantine equation cannot be used due to the time......-variation of the parameters, the optimal prediction is found as the general conditional expectation of the system output. The underlying model is of an ARMAX-type instead of an ARIMAX-type as in the original version of the GPC (Clarke, D. W., C. Mohtadi and P. S. Tuffs (1987). Automatica, 23, 137-148) and almost all later...
International Nuclear Information System (INIS)
Umino, Satoru; Takahashi, Hideaki; Morita, Akihiro
2016-01-01
In a recent work, we developed a method [H. Takahashi et al., J. Chem. Phys. 143, 084104 (2015)] referred to as exchange-core function (ECF) approach, to compute exchange repulsion E ex between solute and solvent in the framework of the quantum mechanical (QM)/molecular mechanical (MM) method. The ECF, represented with a Slater function, plays an essential role in determining E ex on the basis of the overlap model. In the work of Takahashi et al. [J. Chem. Phys. 143, 084104 (2015)], it was demonstrated that our approach is successful in computing the hydrogen bond energies of minimal QM/MM systems including a cationic QM solute. We provide in this paper the extension of the ECF approach to the free energy calculation in condensed phase QM/MM systems by combining the ECF and the QM/MM-ER approach [H. Takahashi et al., J. Chem. Phys. 121, 3989 (2004)]. By virtue of the theory of solutions in energy representation, the free energy contribution δμ ex from the exchange repulsion was naturally formulated. We found that the ECF approach in combination with QM/MM-ER gives a substantial improvement on the calculation of the hydration free energy of a hydronium ion. This can be attributed to the fact that the ECF reasonably realizes the contraction of the electron density of the cation due to the deficit of an electron.
Energy Technology Data Exchange (ETDEWEB)
Umino, Satoru; Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Morita, Akihiro [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan)
2016-08-28
In a recent work, we developed a method [H. Takahashi et al., J. Chem. Phys. 143, 084104 (2015)] referred to as exchange-core function (ECF) approach, to compute exchange repulsion E{sub ex} between solute and solvent in the framework of the quantum mechanical (QM)/molecular mechanical (MM) method. The ECF, represented with a Slater function, plays an essential role in determining E{sub ex} on the basis of the overlap model. In the work of Takahashi et al. [J. Chem. Phys. 143, 084104 (2015)], it was demonstrated that our approach is successful in computing the hydrogen bond energies of minimal QM/MM systems including a cationic QM solute. We provide in this paper the extension of the ECF approach to the free energy calculation in condensed phase QM/MM systems by combining the ECF and the QM/MM-ER approach [H. Takahashi et al., J. Chem. Phys. 121, 3989 (2004)]. By virtue of the theory of solutions in energy representation, the free energy contribution δμ{sub ex} from the exchange repulsion was naturally formulated. We found that the ECF approach in combination with QM/MM-ER gives a substantial improvement on the calculation of the hydration free energy of a hydronium ion. This can be attributed to the fact that the ECF reasonably realizes the contraction of the electron density of the cation due to the deficit of an electron.
International Nuclear Information System (INIS)
Kandil, Mohamed E.; Marsh, Kenneth N.; Goodwin, Anthony R.H.
2005-01-01
For a natural gas and, especially, retrograde condensates, it is important for exploration and production that the (liquid + gas) phase boundary be known along with the ratio of liquid-to-gas volumes within the (liquid + gas) two-phase region. These fluid properties can be measured by a plethora of methods and here we report a method based on the measurement of the resonance frequency of the lowest order inductive-capacitance mode of a re-entrant cavity capable of operating at temperatures up to 473 K and pressures below 20 MPa. This instrument has been used to measure, at T 4 + 0.5974C 3 H 8 }. The measured dew pressures differ by less than 0.5 % from values obtained by interpolation of those reported in the literature, which were determined from measurements with experimental techniques that suffer from quite different potential sources of systematic error than the radio-frequency resonator used here. Dew pressures estimated from both NIST 14 and the Peng-Robinson equation of state lie within <±1 % of our results at temperature between (315 and 337) K while predictions obtained from the Soave Redlich Kwong cubic equation of state deviate from our results by 0.4 % at T = 315 K and these absolute differences increase smoothly with increasing temperature to be -2.4 % at T = 337 K
Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.
1993-01-01
The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.
A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology.
Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik
2015-11-01
Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. © The Author
Partitioning uncertainty in streamflow projections under nonstationary model conditions
Chawla, Ila; Mujumdar, P. P.
2018-02-01
Assessing the impacts of Land Use (LU) and climate change on future streamflow projections is necessary for efficient management of water resources. However, model projections are burdened with significant uncertainty arising from various sources. Most of the previous studies have considered climate models and scenarios as major sources of uncertainty, but uncertainties introduced by land use change and hydrologic model assumptions are rarely investigated. In this paper an attempt is made to segregate the contribution from (i) general circulation models (GCMs), (ii) emission scenarios, (iii) land use scenarios, (iv) stationarity assumption of the hydrologic model, and (v) internal variability of the processes, to overall uncertainty in streamflow projections using analysis of variance (ANOVA) approach. Generally, most of the impact assessment studies are carried out with unchanging hydrologic model parameters in future. It is, however, necessary to address the nonstationarity in model parameters with changing land use and climate. In this paper, a regression based methodology is presented to obtain the hydrologic model parameters with changing land use and climate scenarios in future. The Upper Ganga Basin (UGB) in India is used as a case study to demonstrate the methodology. The semi-distributed Variable Infiltration Capacity (VIC) model is set-up over the basin, under nonstationary conditions. Results indicate that model parameters vary with time, thereby invalidating the often-used assumption of model stationarity. The streamflow in UGB under the nonstationary model condition is found to reduce in future. The flows are also found to be sensitive to changes in land use. Segregation results suggest that model stationarity assumption and GCMs along with their interactions with emission scenarios, act as dominant sources of uncertainty. This paper provides a generalized framework for hydrologists to examine stationarity assumption of models before considering them
Non-stationary (13)C-metabolic flux ratio analysis.
Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola
2013-12-01
(13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.
Hammouda, Imen; Mihoubi, Daoued
2017-12-01
This work deals with a numerical study of the response of a porcelain slab when subjected to convective drying in stationary and non-stationary conditions. The used model describes heat, mass, and momentum transfers is applied to an unsaturated viscoelastic medium described by a Maxwell model. The numerical code allows us to determine the effect of the surrounding air temperature on drying kinetics and on mechanical stress intensities. Von Mises stresses are analysed in order to foresee an eventual damage that may occur during drying. Simulation results for several temperatures in the range of [30 °C, 90 °C] shows that for the temperature from 30 °C to 60 °C, Von Mises stresses are always lower than the yield strength. But above 70 °C, Von Mises stresses are higher than the ultimate strength, and consequently there is a risk of crack at the end of the constant drying rate period. The idea proposed in this work is to integrate a reducing temperature phase when the predicted Von Mises stress intensity exceeds the admissible stress. Simulation results shows that a non-stationary convective drying (90-60 °C) allows us to optimize costs and quality by reducing the drying time and maintaining Von Mises stress values under the admissible stress.
Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.
Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat
2014-09-01
Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Murtaza, Adil; Yang, Sen; Chang, Tieyan; Ghani, Awais; Khan, Muhammad Tahir; Zhang, Rui; Zhou, Chao; Song, Xiaoping; Suchomel, Matthew; Ren, Yang
2018-03-01
The spin reorientation (SR) and magnetoelastic properties of pseudobinary ferromagnetic T b1 -xN dxC o2 (0 ≤x ≤1.0 ) systems involving a morphotropic phase boundary (MPB) were studied by high-resolution synchrotron x-ray diffraction (XRD), magnetization, and magnetostriction measurements. The easy magnetization direction of the Laves phase lies along the 〈111 〉 axis with x 0.65 below Curie temperature (TC). The temperature-dependent magnetization curves showed SR; this can be explained by a two-sublattice model. Based on the synchrotron (XRD) and magnetization measurements, the SR phase diagram for a MPB composition of T b0.35N d0.65C o2 was obtained. Contrary to previously reported ferromagnetic systems involving MPB, the MPB composition of T b0.35N d0.65C o2 exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The anisotropic magnetostriction (λS) first decreased until x =0.8 and then continuously increased in the negative direction with further increase of Nd concentration. The decrease in magnetostriction can be attributed to the decrease of spontaneous magnetostriction λ111 and increase of λ100 with opposite sign to λ111. This paper indicates an anomalous type of MPB in the ferromagnetic T b1 -xN dxC o2 system and provides an active way to design novel functional materials with exotic properties.
International Nuclear Information System (INIS)
Woodcock, T.G.; Ramasse, Q.M.; Hrkac, G.; Shoji, T.; Yano, M.; Kato, A.; Gutfleisch, O.
2014-01-01
Hot deformed Nd–Fe–Co–B–Ga magnets were infiltrated with a Nd–Cu eutectic liquid, resulting in a 71% increase in coercivity to μ 0 H c = 2.4 T without the use of Dy, and a 22% decrease in remanence, attributed to the dilution effect. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy have been used to reveal the structure and chemical composition of phase boundaries in the magnets on the atomic scale. The results showed that the Nd–Cu liquid penetrated the ≈1 nm thick intergranular regions. The coercivity increase following infiltration was therefore attributed to improved volume fraction and distribution of the intergranular phases. Co enrichment in the outermost 1–2 unit cells at several {0 0 1} and {1 1 0} surfaces of the Nd 2 (Fe, Co) 14 B crystals was shown for the infiltrated sample. The as-deformed sample did not appear to show this Co enrichment. Molecular dynamics simulations indicated that the distorted layer at an {0 0 1} surface of a Nd 2 (Fe, Co) 14 B grain was significantly thicker with higher Co surface enrichment. The magnetocrystalline anisotropy may be reduced in such distorted regions, which could have a detrimental effect on coercivity. Such features may therefore play a role in limiting coercivity to a fraction of the anisotropy field. Interfacial segregation of Cu between Nd 2 (Fe, Co) 14 B and the Nd-rich intergranular phase occurred in the infiltrated sample. Step defects in Nd 2 (Fe, Co) 14 B {0 0 1} surfaces, a half or a whole unit cell in height, were also observed
Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.
2012-01-01
Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c) 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.
Energy Technology Data Exchange (ETDEWEB)
Yang, Shuiyuan; Zhang, Fan; Zhang, Kaixin; Huang, Yangyang; Wang, Cuiping; Liu, Xingjun [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome
2016-09-15
In this study, the shape recovery and mechanical properties of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} high-temperature shape memory alloy are improved simultaneously. This results from the low, about 4.4%, volume fraction of γ phase being almost completely distributed along grain boundaries. The recovery strain gradually increases with the increase in residual strain with a shape recovery rate of above 68%, up to a maximum value of 5.3%. The compressive fracture strain of Ni{sub 54}Mn{sub 16}Fe{sub 9}Ga{sub 21} alloy is about 35%. The results further reveal that when applying a high compression deformation two types of cracks form and propagate either within martensite grains (type I) or along the boundaries between martensite phase and γ phase (type II) in the present two-phase alloy.
DEFF Research Database (Denmark)
Harrod, Steven; Kelton, W. David
2006-01-01
Nonstationary Poisson processes are appropriate in many applications, including disease studies, transportation, finance, and social policy. The authors review the risks of ignoring nonstationarity in Poisson processes and demonstrate three algorithms for generation of Poisson processes...
Comparison of nonstationary generalized logistic models based on Monte Carlo simulation
Directory of Open Access Journals (Sweden)
S. Kim
2015-06-01
Full Text Available Recently, the evidences of climate change have been observed in hydrologic data such as rainfall and flow data. The time-dependent characteristics of statistics in hydrologic data are widely defined as nonstationarity. Therefore, various nonstationary GEV and generalized Pareto models have been suggested for frequency analysis of nonstationary annual maximum and POT (peak-over-threshold data, respectively. However, the alternative models are required for nonstatinoary frequency analysis because of analyzing the complex characteristics of nonstationary data based on climate change. This study proposed the nonstationary generalized logistic model including time-dependent parameters. The parameters of proposed model are estimated using the method of maximum likelihood based on the Newton-Raphson method. In addition, the proposed model is compared by Monte Carlo simulation to investigate the characteristics of models and applicability.
Self-adaptive change detection in streaming data with non-stationary distribution
Zhang, Xiangliang; Wang, Wei
2010-01-01
Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non
DEFF Research Database (Denmark)
Kock, Anders Bredahl
2016-01-01
We show that the adaptive Lasso is oracle efficient in stationary and nonstationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...
Approximate calculation method for integral of mean square value of nonstationary response
International Nuclear Information System (INIS)
Aoki, Shigeru; Fukano, Azusa
2010-01-01
The response of the structure subjected to nonstationary random vibration such as earthquake excitation is nonstationary random vibration. Calculating method for statistical characteristics of such a response is complicated. Mean square value of the response is usually used to evaluate random response. Integral of mean square value of the response corresponds to total energy of the response. In this paper, a simplified calculation method to obtain integral of mean square value of the response is proposed. As input excitation, nonstationary white noise and nonstationary filtered white noise are used. Integrals of mean square value of the response are calculated for various values of parameters. It is found that the proposed method gives exact value of integral of mean square value of the response.
Directory of Open Access Journals (Sweden)
Orlov Alexey
2016-01-01
Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.
Orlov Alexey; Ushakov Anton; Sovach Victor
2016-01-01
This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...
Orlov, Aleksey Alekseevich; Ushakov, Anton; Sovach, Victor
2017-01-01
The article presents results of development of a mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of silicon isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary hydraulic processes in gas centrifuge cascades for separation...
Analyzing nonstationary financial time series via hilbert-huang transform (HHT)
Huang, Norden E. (Inventor)
2008-01-01
An apparatus, computer program product and method of analyzing non-stationary time varying phenomena. A representation of a non-stationary time varying phenomenon is recursively sifted using Empirical Mode Decomposition (EMD) to extract intrinsic mode functions (IMFs). The representation is filtered to extract intrinsic trends by combining a number of IMFs. The intrinsic trend is inherent in the data and identifies an IMF indicating the variability of the phenomena. The trend also may be used to detrend the data.
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-01-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods ...
Teaching geographical hydrology in a non-stationary world
Hendriks, Martin R.; Karssenberg, Derek
2010-05-01
Understanding hydrological processes in a non-stationary world requires knowledge of hydrological processes and their interactions. Also, one needs to understand the (non-linear) relations between the hydrological system and other parts of our Earth system, such as the climate system, the socio-economic system, and the ecosystem. To provide this knowledge and understanding we think that three components are essential when teaching geographical hydrology. First of all, a student needs to acquire a thorough understanding of classical hydrology. For this, knowledge of the basic hydrological equations, such as the energy equation (Bernoulli), flow equation (Darcy), continuity (or water balance) equation is needed. This, however, is not sufficient to make a student fully understand the interactions between hydrological compartments, or between hydrological subsystems and other parts of the Earth system. Therefore, secondly, a student also needs to be knowledgeable of methods by which the different subsystems can be coupled; in general, numerical models are used for this. A major disadvantage of numerical models is their complexity. A solution may be to use simpler models, provided that a student really understands how hydrological processes function in our real, non-stationary world. The challenge for a student then lies in understanding the interactions between the subsystems, and to be able to answer questions such as: what is the effect of a change in vegetation or land use on runoff? Thirdly, knowledge of field hydrology is of utmost importance. For this a student needs to be trained in the field. Fieldwork is very important as a student is confronted in the field with spatial and temporal variability, as well as with real life uncertainties, rather than being lured into believing the world as presented in hydrological textbooks and models, e.g. the world under study is homogeneous, isotropic, or lumped (averaged). Also, students in the field learn to plan and
DEFF Research Database (Denmark)
Løvschal, Mette
2014-01-01
of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...
DEFF Research Database (Denmark)
Brodkin, Evelyn; Larsen, Flemming
2013-01-01
project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...
Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong
2018-06-01
Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.
Wang, Bin; Liu, Fangmeng; Yang, Xue; Guan, Yehui; Ma, Ce; Hao, Xidong; Liang, Xishuang; Liu, Fengmin; Sun, Peng; Zhang, Tong; Lu, Geyu
2016-07-06
A well-ordered porous three-phase boundary (TPB) was prepared with a polystyrene sphere as template and examined to improve the sensitivity of yttria-stabilized zirconia (YSZ)-based mixed-potential-type NO2 sensor due to the increase of the electrochemical reaction active sites. The shape of pore array on the YSZ substrate surface can be controlled through changing the concentration of the precursor solution (Zr(4+)/Y(3+) = 23 mol/L/4 mol/L) and treatment conditions. An ordered hemispherical array was obtained when CZr(4+) = 0.2 mol/L. The processed YSZ substrates were used to fabricate the sensors, and different sensitivities caused by different morphologies were tested. The sensor with well-ordered porous TPB exhibited the highest sensitivity to NO2 with a response value of 105 mV to 100 ppm of NO2, which is approximately twice as much as the smooth one. In addition, the sensor also showed good stability and speedy response kinetics. All these enhanced sensing properties might be due to the structure and morphology of the enlarged TPB.
Energy Technology Data Exchange (ETDEWEB)
Bothner, D.; Kemmler, M.; Cozma, R.; Kleiner, R.; Koelle, D. [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Misko, V.; Peeters, F. [Departement Fysica, Universiteit Antwerpen (Belgium); Nori, F. [Advanced Science Institute, RIKEN (Japan)
2011-07-01
The magnetic field dependent critical current I{sub c}(H) of superconducting thin films with artificial defects strongly depends on the symmetry of the defect arrangement. Likewise the critical temperature T{sub c}(H) of superconducting wire networks is heavily influenced by the symmetry of the system. Here we present experimental data on the I{sub c}(H)-T{sub c}(H) phase boundary of Nb thin films with artificial defect lattices of different symmetries. For this purpose we fabricated 60 nm thick Nb films with antidots in periodic (triangular) and five different quasiperiodic arrangements. The parameters of the antidot arrays were varied to investigate the influence of antidot diameter and array density. Experiments were performed with high temperature stability ({delta}T<1 mK) at 0.5{<=}T/T{sub c}{<=}1. From the I-V-characteristics at variable H and T we extract I{sub c}(H) and T{sub c}(H) for different voltage and resistance criteria. The experimental data for the critical current density are compared with results from numerical molecular dynamics simulations.
Chen, Jyun-Hong
2018-03-12
Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS_{2} through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS_{2}.
DEFF Research Database (Denmark)
Aarhus, Rikke; Ballegaard, Stinne Aaløkke
2010-01-01
to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...
On the non-stationary generalized Langevin equation
Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja
2017-12-01
In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.
International Nuclear Information System (INIS)
Ramiere, I.
2006-09-01
This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain
DEFF Research Database (Denmark)
Zølner, Mette
The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....
Directory of Open Access Journals (Sweden)
Jose Luiz Boldrini
2003-11-01
Full Text Available We study the existence and regularity of weak solutions of a phase field type model for pure material solidification in presence of natural convection. We assume that the non-stationary solidification process occurs in a two dimensional bounded domain. The governing equations of the model are the phase field equation coupled with a nonlinear heat equation and a modified Navier-Stokes equation. These equations include buoyancy forces modelled by Boussinesq approximation and a Carman-Koseny term to model the flow in mushy regions. Since these modified Navier-Stokes equations only hold in the non-solid regions, which are not known a priori, we have a free boundary-value problem.
Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling
Liu, D.; Guo, S.; Lian, Y.
2014-12-01
Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.
Designing and operating infrastructure for nonstationary flood risk management
Doss-Gollin, J.; Farnham, D. J.; Lall, U.
2017-12-01
Climate exhibits organized low-frequency and regime-like variability at multiple time scales, causing the risk associated with climate extremes such as floods and droughts to vary in time. Despite broad recognition of this nonstationarity, there has been little theoretical development of ideas for the design and operation of infrastructure considering the regime structure of such changes and their potential predictability. We use paleo streamflow reconstructions to illustrate an approach to the design and operation of infrastructure to address nonstationary flood and drought risk. Specifically, we consider the tradeoff between flood control and conservation storage, and develop design and operation principles for allocating these storage volumes considering both a m-year project planning period and a n-year historical sampling record. As n increases, the potential uncertainty in probabilistic estimates of the return periods associated with the T-year extreme event decreases. As the duration m of the future operation period decreases, the uncertainty associated with the occurrence of the T-year event also increases. Finally, given the quasi-periodic nature of the system it may be possible to offer probabilistic predictions of the conditions in the m-year future period, especially if m is small. In the context of such predictions, one can consider that a m-year prediction may have lower bias, but higher variance, than would be associated with using a stationary estimate from the preceding n years. This bias-variance trade-off, and the potential for considering risk management for multiple values of m, provides an interesting system design challenge. We use wavelet-based simulation models in a Bayesian framework to estimate these biases and uncertainty distributions and devise a risk-optimized decision rule for the allocation of flood and conservation storage. The associated theoretical development also provides a methodology for the sizing of storage for new
Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping
2017-09-01
Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.
New Non-Stationary Gradient Model of Heat-Mass-Electric Charge Transfer in Thin Porous Media
Directory of Open Access Journals (Sweden)
V. Rogankov
2017-10-01
Full Text Available The well-known complicated system of non-equilibrium balance equations for a continuous fluid (f medium needs the new non-Gibbsian model of f-phase to be applicable for description of the heterogeneous porous media (PMs. It should be supplemented by the respective coupled thermal and caloric equations of state (EOS developed specially for PMs to become adequate and solvable for the irreversible transport f-processes. The set of standard assumptions adopted by the linear (or quasi-linear non-equilibrium thermodynamics are based on the empirical gradient-caused correlations between flows and forces. It leads, in particular, to the oversimplified stationary solutions for PMs. The most questionable but typical modeling suppositions of the stationary gradient (SG theory are: 1 the assumption of incompressibility accepted, as a rule, for f-flows; 2 the ignorance of distinctions between the hydrophilic and hydrophobic influence of a porous matrix on the properties; 3 the omission of effects arising due to the concomitant phase intra-porous transitions between the neighboring f-fragments with the sharp differences in densities; 4 the use of exclusively Gibbsian (i.e. homogeneous and everywhere differentiable description of any f-phase in PM; 5 the very restrictive reduction of the mechanical velocity field to its specific potential form in the balance equation of f-motion as well as of the heat velocity field in the balance equation of internal energy; 6 the neglect of the new specific peculiarities arising due to the study of any non-equilibrium PM in the meso- and nano-scales of a finite-size macroscopic (N,V-system of discrete particles. This work is an attempt to develop the alternative non-stationary gradient (NSG model of real irreversible processes in PM. Another aim is to apply it without the above restrictions 1-6 to the description of f-flows through the obviously non-Gibbsian thin porous medium (TPM. We will suppose that it is composed by two
DEFF Research Database (Denmark)
Neergaard, Ulla; Nielsen, Ruth
2010-01-01
of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....
Vragov’s boundary value problem for an implicit equation of mixed type
Egorov, I. E.
2017-10-01
We study a Vragov boundary value problem for a third-order implicit equation of mixed type with an arbitrary manifold of type switch. These Sobolev-type equations arise in many important applied problems. Given certain constraints on the coefficients and the right-hand side of the equation, we demonstrate, using nonstationary Galerkin method and regularization method, the unique regular solvability of the boundary value problem. We also obtain an error estimate for approximate solutions of the boundary value problem in terms of the regularization parameter and the eigenvalues of the Dirichlet spectral problem for the Laplace operator.
Detection of Partial Demagnetization Fault in PMSMs Operating under Nonstationary Conditions
DEFF Research Database (Denmark)
Wang, Chao; Delgado Prieto, Miguel; Romeral, Luis
2016-01-01
Demagnetization fault detection of in-service Permanent Magnet Synchronous Machines (PMSMs) is a challenging task because most PMSMs operate under nonstationary circumstances in industrial applications. A novel approach based on tracking characteristic orders of stator current using Vold-Kalman F......Demagnetization fault detection of in-service Permanent Magnet Synchronous Machines (PMSMs) is a challenging task because most PMSMs operate under nonstationary circumstances in industrial applications. A novel approach based on tracking characteristic orders of stator current using Vold......-Kalman Filter is proposed to detect the partial demagnetization fault in PMSMs running at nonstationary conditions. Amplitude of envelope of the fault characteristic orders is used as fault indictor. Experimental results verify the superiority of the proposed method on partial demagnetization online fault...... detection of PMSMs under various speed and load conditions....
Non-stationary classical diffusion in field - reversed configurations
International Nuclear Information System (INIS)
Clemente, R.A.; Sakanaka, P.H.; Mania, A.J.
1988-01-01
Plasma decay in field-reversed configurations (FRC) is described using resistive MHD equations. Assuming non-stationariety together with uniform but time dependent plasma temperature and neglecting inertial effects in the momentum balance equation, it is possible to show that the functional dependence of the plasma pressure with the poloidal magnetic flux remains fixed during diffusion. This allows to describe FRC evolution as a continuous sequence of plasma equilibria satisfying proper boundary conditions. The method is applied to pressure profiles linear with the poloidal magnetic flux obtaining the evolution of the flux, the number of confined particles and the size of the plasma boundary. (author) [pt
Directory of Open Access Journals (Sweden)
Xiang Zeng
2016-06-01
Full Text Available Abstract We prove some almost sure central limit theorems for the maxima of strongly dependent nonstationary Gaussian vector sequences under some mild conditions. The results extend the ASCLT to nonstationary Gaussian vector sequences and give substantial improvements for the weight sequence obtained by Lin et al. (Comput. Math. Appl. 62(2:635-640, 2011.
Directory of Open Access Journals (Sweden)
Rehan Balqis M.
2016-01-01
Full Text Available Current practice in flood frequency analysis assumes that the stochastic properties of extreme floods follow that of stationary conditions. As human intervention and anthropogenic climate change influences in hydrometeorological variables are becoming evident in some places, there have been suggestions that nonstationary statistics would be better to represent the stochastic properties of the extreme floods. The probabilistic estimation of non-stationary models, however, is surrounded with uncertainty related to scarcity of observations and modelling complexities hence the difficulty to project the future condition. In the face of uncertain future and the subjectivity of model choices, this study attempts to demonstrate the practical implications of applying a nonstationary model and compares it with a stationary model in flood risk assessment. A fully integrated framework to simulate decision makers’ behaviour in flood frequency analysis is thereby developed. The framework is applied to hypothetical flood risk management decisions and the outcomes are compared with those of known underlying future conditions. Uncertainty of the economic performance of the risk-based decisions is assessed through Monte Carlo simulations. Sensitivity of the results is also tested by varying the possible magnitude of future changes. The application provides quantitative and qualitative comparative results that satisfy a preliminary analysis of whether the nonstationary model complexity should be applied to improve the economic performance of decisions. Results obtained from the case study shows that the relative differences of competing models for all considered possible future changes are small, suggesting that stationary assumptions are preferred to a shift to nonstationary statistics for practical application of flood risk management. Nevertheless, nonstationary assumption should also be considered during a planning stage in addition to stationary assumption
Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun
2017-12-01
The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.
Energy Technology Data Exchange (ETDEWEB)
Ruiz, Jordi-Roger Riba [EUETII, Dept. d' Enginyeria Electrica, Universitat Politecnica de Catalunya, Placa del Rei 15, 08700 Igualada, Barcelona (Spain); Garcia Espinosa, Antonio [Dept. d' Enginyeria Electrica, Universitat Politecnica de Catalunya C/Colom 1, 08222 Terrassa (Spain); Romeral, Luis; Cusido, Jordi [Dept. d' Enginyeria Electronica, Universitat Politecnica de Catalunya C/Colom 1, 08222 Terrassa (Spain)
2010-10-15
Permanent magnet synchronous motors (PMSMs) are applied in high performance positioning and variable speed applications because of their enhanced features with respect to other AC motor types. Fault detection and diagnosis of electrical motors for critical applications is an active field of research. However, much research remains to be done in the field of PMSM demagnetization faults, especially when running under non-stationary conditions. This paper presents a time-frequency method specifically focused to detect and diagnose demagnetization faults in PMSMs running under non-stationary speed conditions, based on the Hilbert Huang transform. The effectiveness of the proposed method is proven by means of experimental results. (author)
International Nuclear Information System (INIS)
Lobashev, A.A.; Mostepanenko, V.M.
1993-01-01
Heisenberg formalism is developed for creation-annihilation operators of quantum fields propagating in nonstationary external fields. Quantum fields with spin 0,1/2, 1 are considered in the presence of such external fields as electromagnetic, scalar and the field of nonstationary dielectric properties of nonlinear medium. Elliptic operator parametrically depending on time is constructed. In Heisenberg representation field variables are decomposed over eigenfunction of this operator. The relation between Heisenberg creation-annihilation operators and the operators obtained in the frame of diagonalization of Hamiltonian with Bogoliubov transformations is set up
International Nuclear Information System (INIS)
Tashchilova, Eh.M.; Sharovarov, G.A.
1985-01-01
The mathematical model of nonstationary processes in heat exchangers with dissociating coolant at supercritical parameters is given. Its dimensionless criteria are deveped. The effect of NPP regenerator parameters on criteria variation is determined. The proceeding nonstationary processes are estimated qualitatively using the dimensionless parameters. Dynamics of the processes in heat exchangers is described by the energy, mass and moment-of-momentum equations for heating and heated medium taking into account heat accumulation in the heat-transfer wall and distribution of parameters along the length of a heat exchanger
International Nuclear Information System (INIS)
Hartwig, J. T.; Stokman, J. V.
2013-01-01
We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schrödinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schrödinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.
Non-stationary pre-envelope covariances of non-classically damped systems
Muscolino, G.
1991-08-01
A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.
Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance
Okonechnikov, A. S.; Tarlakovski, D. V.; Ul'yashina, A. N.; Fedotenkov, G. V.
2016-11-01
One of the key problems in studying the non-stationary processes of solid mechanics is obtaining of influence functions. These functions serve as solutions for the problems of effect of sudden concentrated loads on a body with linear elastic properties. Knowledge of the influence functions allows us to obtain the solutions for the problems with non-mixed boundary and initial conditions in the form of quadrature formulae with the help of superposition principle, as well as get the integral governing equations for the problems with mixed boundary and initial conditions. This paper offers explicit derivations for all nonstationary surface influence functions of an elastic half-plane in a plane strain condition. It is achieved with the help of combined inverse transform of a Fourier-Laplace integral transformation. The external disturbance is both dynamic and kinematic. The derived functions in xτ-domain are studied to find and describe singularities and are supplemented with graphs.
Energy Technology Data Exchange (ETDEWEB)
Abdessalem, M. Ben; Aydi, S.; Aydi, A.; Abdelmoula, N.; Khemakhem, H. [Universite de Sfax, Faculte des Sciences de Sfax (FSS), Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA) LR16ES18, B.P.1171, Sfax (Tunisia); Sassi, Z. [Laboratoire de Genie Electrique et Ferroelectricite (LGEF) de L' INSA de Lyon, Lyon (France)
2017-09-15
This paper deals with Ca and Zr co-doped BaTiO{sub 3} (BCTZ{sub (x,} {sub y)}) (x = 0.1, 0.13, 0.2 and y = 0.05, 0.1, 0.15). These ceramics were prepared using the conventional solid state method. The symmetry, dielectric properties, Raman spectroscopy, ferroelectric behavior and piezoelectric effect were examined. X-ray diffraction (XRD) results display that morphotropic boundary occurs from tetragonal to orthorhombic region of BCZT{sub (x=0.1,} {sub 0.2,} {sub y=0.05,} {sub 0.1)} and polymorphic phase transitions from tetragonal to orthorhombic, orthorhombic to rhombohedral regions of BCZT{sub (x=0.13,} {sub y=0.1)}. The evolution of the Raman spectra was investigated as a function of compositions at room temperature, in correlation with XRD analysis and dielectric measurements. We note that the substitution of Ca in Ba site and Zr ions in Ti site slightly decreased the cubic-tetragonal temperature transition (T{sub C}) and increased the orthorhombic-tetragonal (T{sub 1}) and rhombohedral-orthorhombic (T{sub 2}) temperatures transitions. The ferroelectric properties were examined by a P-E hysteresis loop. The two parameters ΔT{sub 1} and ΔT{sub 2} are defined as ΔT{sub 1} = T{sub C} - T{sub 1} and ΔT{sub 2} = T{sub C} - T{sub 2}, they come close to T{sub C} for x = 0.13, y = 0.1, which reveals that this composition is around the polymorphic phase. The excellent piezoelectric coefficient of d{sub 33} = 288 pC N{sup -1}, the electromechanical coupling factor k{sub p} = 40%, high constant dielectric 9105, coercive field E{sub c} = 0.32 (KV mm{sup -1}) and remanent polarization P{sub r} = 0.1 (μc mm{sup -2}) were obtained for composition x = 0.13, y = 0.1. (orig.)
Melkonian, D; Korner, A; Meares, R; Bahramali, H
2012-10-01
A novel method of the time-frequency analysis of non-stationary heart rate variability (HRV) is developed which introduces the fragmentary spectrum as a measure that brings together the frequency content, timing and duration of HRV segments. The fragmentary spectrum is calculated by the similar basis function algorithm. This numerical tool of the time to frequency and frequency to time Fourier transformations accepts both uniform and non-uniform sampling intervals, and is applicable to signal segments of arbitrary length. Once the fragmentary spectrum is calculated, the inverse transform recovers the original signal and reveals accuracy of spectral estimates. Numerical experiments show that discontinuities at the boundaries of the succession of inter-beat intervals can cause unacceptable distortions of the spectral estimates. We have developed a measure that we call the "RR deltagram" as a form of the HRV data that minimises spectral errors. The analysis of the experimental HRV data from real-life and controlled breathing conditions suggests transient oscillatory components as functionally meaningful elements of highly complex and irregular patterns of HRV. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zheng, Ting; Jiang, Zhenggen; Wu, Jiagang
2016-07-28
Site engineering has been employed to modulate the piezoelectric activity of high temperature (1 -x)Bi1.05Fe1-yScyO3-xBaTiO3 lead-free ceramics fabricated by a conventional solid-state method together with a quenching technique. The effects of x and y content on the phase structure, microstructure, and electrical properties have been investigated in detail. A wide rhombohedral (R) to pseudo-cubic (C) phase boundary was formed in the ceramics with x = 0.30 and 0 ≤y≤ 0.07, thus leading to enhanced piezoelectricity (d33 = 120-180 pC N(-1)), ferroelectricity (Pr = 19-22 μC cm(-2)) and a high Curie temperature (TC = 478-520 °C). In addition, the influence of different element substitutions for Fe(3+) on phase structure and electrical behavior was also investigated. Improved piezoelectricity (d33 = 160-180 pC N(-1)) and saturated P-E loops can be simultaneously achieved in the ceramics with A = Sc, Ga, and Al due to the R-C phase boundary. As a result, site engineering may be an efficient way to modulate the piezoelectricity of BiFeO3-BaTiO3 lead-free ceramics.
International Nuclear Information System (INIS)
Yoneda, Kimitoshi; Okawa, Tomio; Zhou, Shirong
1999-01-01
In nuclear power plants, many large-diameter pipes are subject to gas-liquid two-phase flow. For rational design and performance estimation, the flow in the pipes should be predicted accurately. With the correlation used at present, however, the flow analysis can not reach desirable precision. This is partly due to the lack of understanding of the two-phase flow characteristics in large-diameter pipes. Therefore, steam-water two-phase flow in a vertical pipe (155 mm i.d.) was investigated empirically. Lateral distribution data of phase volume fraction, gas velocity and bubble diameter were obtained. The effects of the inlet boundary condition were also observed. The drift velocity in the developing region was considerably affected by the inlet boundary condition. By deriving the correlation of mean bubble diameter as a function of void fraction and pressure, the empirical data was predicted with high accuracy compared with the existing correlation used in best-estimate codes of nuclear reactor safety analysis. (author)
Non-stationary covariance function modelling in 2D least-squares collocation
Darbeheshti, N.; Featherstone, W. E.
2009-06-01
Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the observed data. However, the assumption that the spatial dependence is constant throughout the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage for dealing with non-stationarity in geodetic data. We then compared stationary and non- stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC.
Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation
Erkelens, J.S.; Heusdens, R.
2008-01-01
This paper considers estimation of the noise spectral variance from speech signals contaminated by highly nonstationary noise sources. The method can accurately track fast changes in noise power level (up to about 10 dB/s). In each time frame, for each frequency bin, the noise variance estimate is
Staffing a call center with uncertain non-stationary arrival rate and flexibility
Liao, S.; van Delft, C.; Jouini, O.; Koole, G.M.
2012-01-01
We consider a multi-period staffing problem in a single-shift call center. The call center handles inbound calls, as well as some alternative back-office jobs. The call arrival process is assumed to follow a doubly non-stationary stochastic process with a random mean arrival rate. The inbound calls
Optimal inventory policies with non-stationary supply disruptions and advance supply information
Atasoy, B.; Güllü, R.; Tan, T.
2012-01-01
We consider the production/inventory problem of a manufacturer (or a retailer) under non-stationary and stochastic supply availability. Although supply availability is uncertain, the supplier would be able to predict her near future shortages – and hence supply disruption to (some of) her customers
Optimal inventory policies with non-stationary supply disruptions and advance supply information
Atasoy, B.; Güllü, R.; Tan, T.
2011-01-01
We consider the production/inventory problem of a manufacturer (or a retailer) under non-stationary and stochastic supply availability. Although supply availability is uncertain, the supplier would be able to predict her near future shortages -and hence supply disruption to (some of) her customers-
Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.
2018-01-01
Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.
Production planning of a perishable product with lead time and non-stationary demand
Pauls-Worm, K.G.J.; Haijema, R.; Hendrix, E.M.T.; Rossi, R.; Vorst, van der J.G.A.J.
2012-01-01
We study a production planning problem for a perishable product with a fixed lifetime, under a service-level constraint. The product has a non-stationary stochastic demand. Food supply chains of fresh products like cheese and several crop products, are characterised by long lead times due to
Shi, Yingzhong; Chung, Fu-Lai; Wang, Shitong
2015-09-01
Recently, a time-adaptive support vector machine (TA-SVM) is proposed for handling nonstationary datasets. While attractive performance has been reported and the new classifier is distinctive in simultaneously solving several SVM subclassifiers locally and globally by using an elegant SVM formulation in an alternative kernel space, the coupling of subclassifiers brings in the computation of matrix inversion, thus resulting to suffer from high computational burden in large nonstationary dataset applications. To overcome this shortcoming, an improved TA-SVM (ITA-SVM) is proposed using a common vector shared by all the SVM subclassifiers involved. ITA-SVM not only keeps an SVM formulation, but also avoids the computation of matrix inversion. Thus, we can realize its fast version, that is, improved time-adaptive core vector machine (ITA-CVM) for large nonstationary datasets by using the CVM technique. ITA-CVM has the merit of asymptotic linear time complexity for large nonstationary datasets as well as inherits the advantage of TA-SVM. The effectiveness of the proposed classifiers ITA-SVM and ITA-CVM is also experimentally confirmed.
Photorespiration is a central component of photosynthesis; however to better understand its role it should be viewed in the context of an integrated metabolic network rather than a series of individual reactions that operate independently. Isotopically nonstationary 13C metabolic flux analysis (INST...
International Nuclear Information System (INIS)
Barry, J.M.; Pollard, J.P.
1986-11-01
A FORTRAN subroutine MLTGRD is provided to solve efficiently the large systems of linear equations arising from a five-point finite difference discretisation of some elliptic partial differential equations. MLTGRD is a multigrid algorithm which provides multiplicative correction to iterative solution estimates from successively reduced systems of linear equations. It uses the method of implicit non-stationary iteration for all grid levels
A flag-up algorithm and test for nonstationary customer-specific product graphs
DEFF Research Database (Denmark)
Fenger, Morten H. J.; Scholderer, Joachim
period. The results show that the test is clearly able to identify customers with evolving behavior, and that it can easily be deployed as part of a CRM system. It enables companies with loyalty programs to focus on nonstationary customers, i.e. customers who may represent opportunities for cross...
A survey of techniques applied to non-stationary waveforms in electrical power systems
Rodrigues, R.P.; Silveira, P.M.; Ribeiro, P.F.
2010-01-01
The well-known and ever-present time-varying and non-stationary nature of waveforms in power systems requires a comprehensive and precise analytical basis that needs to be incorporated in the system studies and analyses. This time-varying behavior is due to continuous changes in system
Performance of a written radiation protection inspection of nonstationary gamma radiography users
International Nuclear Information System (INIS)
Hoehne, M.
1986-01-01
A questionare has been developed for controlling users of nonstationary gamma radiography devices. It is aimed at obtaining information about the weak points according to radiation protection and to give guidance in performing such controls by the respective radiation protection officers. The questionare is included
Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
DEFF Research Database (Denmark)
Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert
Many key macro-economic and financial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...
Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
DEFF Research Database (Denmark)
Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, A. M. Robert
Many key macro-economic and …nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...
Magnetization of a warm plasma by the nonstationary ponderomotive force of an electromagnetic wave
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P. K.; Stenflo, L.
2009-01-01
It is shown that magnetic fields can be generated in a warm plasma by the nonstationary ponderomotive force of a large-amplitude electromagnetic wave. In the present Brief Report, we derive simple and explicit results that can be useful for understanding the origin of the magnetic fields that are produced in intense laser-plasma interaction experiments.
Effect of non-stationary climate on infectious gastroenteritis transmission in Japan
Onozuka, Daisuke
2014-06-01
Local weather factors are widely considered to influence the transmission of infectious gastroenteritis. Few studies, however, have examined the non-stationary relationships between global climatic factors and transmission of infectious gastroenteritis. We analyzed monthly data for cases of infectious gastroenteritis in Fukuoka, Japan from 2000 to 2012 using cross-wavelet coherency analysis to assess the pattern of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Infectious gastroenteritis cases were non-stationary and significantly associated with the IOD and ENSO (Multivariate ENSO Index [MEI], Niño 1 + 2, Niño 3, Niño 4, and Niño 3.4) for a period of approximately 1 to 2 years. This association was non-stationary and appeared to have a major influence on the synchrony of infectious gastroenteritis transmission. Our results suggest that non-stationary patterns of association between global climate factors and incidence of infectious gastroenteritis should be considered when developing early warning systems for epidemics of infectious gastroenteritis.
Non-stationary dynamics of climate variability in synchronous influenza epidemics in Japan
Onozuka, Daisuke; Hagihara, Akihito
2015-09-01
Seasonal variation in the incidence of influenza is widely assumed. However, few studies have examined non-stationary relationships between global climate factors and influenza epidemics. We examined the monthly incidence of influenza in Fukuoka, Japan, from 2000 to 2012 using cross-wavelet coherency analysis to assess the patterns of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). The monthly incidence of influenza showed cycles of 1 year with the IOD and 2 years with ENSO indices (Multivariate, Niño 4, and Niño 3.4). These associations were non-stationary and appeared to have major influences on the synchrony of influenza epidemics. Our study provides quantitative evidence that non-stationary associations have major influences on synchrony between the monthly incidence of influenza and the dynamics of the IOD and ENSO. Our results call for the consideration of non-stationary patterns of association between influenza cases and climatic factors in early warning systems.
Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Haijema, R.; Vorst, van der J.G.A.J.
2014-01-01
We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at
Inventory control for a perishable product with non-stationary demand and service level constraints
Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Haijema, R.; Vorst, van der J.G.A.J.
2013-01-01
We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at
On the Oracle Property of the Adaptive LASSO in Stationary and Nonstationary Autoregressions
DEFF Research Database (Denmark)
Kock, Anders Bredahl
We show that the Adaptive LASSO is oracle efficient in stationary and non-stationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...
Double-Wavelet Approach to Studying the Modulation Properties of Nonstationary Multimode Dynamics
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Mosekilde, Erik; Pavlov, A.N.
2005-01-01
On the basis of double-wavelet analysis, the paper proposes a method to study interactions in the form of frequency and amplitude modulation in nonstationary multimode data series. Special emphasis is given to the problem of quantifying the strength of modulation for a fast signal by a coexisting...
Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site
Directory of Open Access Journals (Sweden)
Xuhui He
2017-09-01
Full Text Available The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.
Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site.
He, Xuhui; Qin, Hongxi; Tao, Tianyou; Liu, Wenshuo; Wang, Hao
2017-09-22
The wind-sensitive long-span suspension bridge is a vital element in land transportation. Understanding the wind characteristics at the bridge site is thus of great significance to the wind- resistant analysis of such a flexible structure. In this study, a strong wind event from a landfall typhoon called Soudelor recorded at the Jiangyin Bridge site with the anemometer is taken as the research object. As inherent time-varying trends are frequently captured in typhoon events, the wind characteristics of Soudelor are analyzed in a non-stationary perspective. The time-varying mean is first extracted with the wavelet-based self-adaptive method. Then, the non-stationary turbulent wind characteristics, e.g.; turbulence intensity, gust factor, turbulence integral scale, and power spectral density, are investigated and compared with the results from the stationary analysis. The comparison highlights the importance of non-stationary considerations of typhoon events, and a transition from stationarity to non-stationarity for the analysis of wind effects. The analytical results could help enrich the database of non-stationary wind characteristics, and are expected to provide references for the wind-resistant analysis of engineering structures in similar areas.
System identification through nonstationary data using Time-Frequency Blind Source Separation
Guo, Yanlin; Kareem, Ahsan
2016-06-01
Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the
Energy Technology Data Exchange (ETDEWEB)
Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)
2014-07-28
We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The results of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.
International Nuclear Information System (INIS)
Singh, A.K.; Singh, Akhilesh Kumar
2011-01-01
Research highlights: → Structural studies reveal pseudocubic structure of PMW-xPT for the x ≤ 0.42, tetragonal for the x ≥ 0.72 and the coexistences of the two phases for intermediate compositions (0.46 ≤ x 0.68). → Temperature dependent dielectric constant for compositions in the two phase region shows two dielectric anomalies above room temperature and not just one as reported by earlier workers. → Rietveld structural analysis of PMW-xPT ceramics is presented for the first time to determine the fraction of the coexisting phases in MPB region. - Abstract: We present here the results of comprehensive X-ray diffraction and dielectric studies on several compositions of (1 - x)[Pb(Mg 0.5 W 0.5 )O 3 ]-xPbTiO 3 (PMW-xPT) solid solution across the morphotropic phase boundary. Rietveld analysis of the powder X-ray diffraction data reveals cubic (space group Fm3m) structure of PMW-xPT ceramics for the compositions with x ≤ 0.42, tetragonal (space group P4mm) structure for the compositions with x ≥ 0.72 and coexistence of the tetragonal and cubic phases for the intermediate compositions (0.46 ≤ x ≤ 0.68). Temperature dependence of the dielectric permittivity above room temperature exhibits diffuse nature of phase transitions for the compositions in the cubic and two phase region while the compositions with tetragonal structure at room temperature exhibit sharp ferroelectric to paraelectric phase transition. The PMW-xPT compositions with coexistence of tetragonal and cubic phases at room temperature exhibit two anomalies in the temperature dependence of the dielectric permittivity above room temperature. Using results of structural and dielectric studies a partial phase diagram of PMW-xPT ceramics is also presented.
Townsend, Alan R.; Porder, Stephen
2011-03-01
What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine
Directory of Open Access Journals (Sweden)
Mehmet Camurdan
1998-01-01
are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.
Huang, Weilin; Wang, Runqiu; Chen, Yangkang
2018-05-01
Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.
Early stages of wind wave and drift current generation under non-stationary wind conditions.
Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert
2016-04-01
Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we
Algueró , M; Stewart , M; Cain , M G; Ramos , P; Ricote , J; Calzada , M L
2010-01-01
Abstract The electrical properties of (1-x)Pb(Mg 1/3 Nb 2/3)O 3 -xPbTiO 3 films with composition in the morphotropic phase boundary region around x=0.35, submicron thickness and columnar microstructure, prepared on Si based substrates by chemical solution deposition are presented and discussed in relation to the properties of coarse and fine grained ceramics. The films show relaxor characteristics that are proposed to result from a grain size effect on the kinetics of the relaxor to ferroe...
Long, Zhi; Gao, Liqin; Li, Yankai; Kang, Baotao; Lee, Jin Yong; Ge, Junjie; Liu, Changpeng; Ma, Shuhua; Jin, Zhao; Ai, Hongqi
2017-11-08
The self-assembly powder (SAP) with varying Nafion content was synthesized and characterized by XRD, XPS, HRTEM, and mapping. It is observed that the oxygen from oxygen functional groups transfers to the surface of Pt and generate PtO during the process of self-assembly with the mechanism of micro galvanic cell, where Pt, carbon black, and Nafion act as the anode, cathode and electrolyte, respectively. The appearance of PtO on the surface of Pt leads to a turnover of Nafion structure, and therefore more hydrophilic sulfonic groups directly contact with Pt, and thus the triple-phase boundary (TPB) has been expanded.
Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals...
Non-stationary probabilities for the asymmetric exclusion process on ...
Indian Academy of Sciences (India)
rich picture of relaxation processes which provides an extension of notions of equi- librium statistical mechanics such as phase transitions and spontaneous symmetry breaking to the non-equilibrium case. The asymmetric exclusion process (ASEP) is the simplest model of non-equilibrium theory of many interacting particles ...
Yang, Tao; Ke, Xiaoqin; Wang, Yunzhi
2016-09-16
Recently it was found that in the lead-free (1-x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 (BZT-xBCT) system, the highest piezoelectric d33 coefficient appears at the tetragonal (T) - orthorhombic (O) phase boundary rather than the O - rhombohedral (R) phase boundary, but the physical origin of it is still unclear. In this work we construct the phase diagram of the BZT-xBCT system using a generic sixth-order Landau free energy polynomial and calculate the energy barrier (EB) for direct domain switching between two variants of the stable low-symmetry ferroelectric phase. We find that the EB at the T-O phase boundary is lower than that at the O-R phase boundary and EB may serve as a rigorous quantitative measure of the degree of polarization anisotropy through Landau potential. The calculations may shed some light on the physical origin of the highest piezoelectric coefficients as well as the softest elastic compliance at the T-O phase boundary observed in experiments.
International Nuclear Information System (INIS)
Mikhin, V.I.; Matukhin, N.M.
2000-01-01
The approach to generalization of the non-stationary heat exchange data for the central zones of the nuclear reactor fuel assemblies and the approximate thermal-model-testing criteria are proposed. The fuel assemblies of fast and water-cooled reactors with different fuel compositions have been investigated. The reason of the non-stationary heat exchange is the fuel-energy-release time dependence. (author)
International Nuclear Information System (INIS)
Kung, H.; Sass, S.L.
1992-01-01
This paper discusses the dislocation structure of small angle tilt and twist boundaries in ordered Ni 3 Al, with and without boron, investigated using transmission electron microscopy. Dislocation with Burgers vectors that correspond to anti-phase boundary (APB)-coupled superpartials were found in small angle twist boundaries in both boron-free and boron-doped Ni 3 Al, and a small angle tilt boundary in boron-doped Ni 3 Al. The boundary structures are in agreement with theoretical models proposed by Marcinkowski and co-workers. The APB energy determined from the dissociation of the grain boundary dislocations was lower than values reported for isolated APBs in Ni 3 Al. For small angle twist boundaries the presence of boron reduced the APB energy at the interface until it approached zero. This is consistent with the structure of these boundaries containing small regions of increased compositional disorder in the first atomic plane next to the interface
Evaluation of the Methods for Response Analysis under Non-Stationary Excitation
Directory of Open Access Journals (Sweden)
R.S. Jangid
1999-01-01
Full Text Available Response of structures to non-stationary ground motion can be obtained either by the evolutionary spectral analysis or by the Markov approach. In certain conditions, a quasi-stationary analysis can also be performed. The first two methods of analysis are difficult to apply for complex situations such as problems involving soil-structure interaction, non-classical damping and primary-secondary structure interaction. The quasi-stationary analysis, on the other hand, provides an easier solution procedure for such cases. Here-in, the effectiveness of the quasi-stationary analysis is examined with the help of the analysis of a single degree-of-freedom (SDOF system under a set of parametric variations. For this purpose, responses of the SDOF system to uniformly modulated non-stationary random ground excitation are obtained by the three methods and they are compared. In addition, the relative computational efforts for different methods are also investigated.
Detection of Unusual Events and Trends in Complex Non-Stationary Data Streams
International Nuclear Information System (INIS)
Perez, Rafael B.; Protopopescu, Vladimir A.; Worley, Brian Addison; Perez, Cristina
2006-01-01
The search for unusual events and trends hidden in multi-component, nonlinear, non-stationary, noisy signals is extremely important for a host of different applications, ranging from nuclear power plant and electric grid operation to internet traffic and implementation of non-proliferation protocols. In the context of this work, we define an unusual event as a local signal disturbance and a trend as a continuous carrier of information added to and different from the underlying baseline dynamics. The goal of this paper is to investigate the feasibility of detecting hidden intermittent events inside non-stationary signal data sets corrupted by high levels of noise, by using the Hilbert-Huang empirical mode decomposition method
A Novel Simulator of Nonstationary Random MIMO Channels in Rayleigh Fading Scenarios
Directory of Open Access Journals (Sweden)
Qiuming Zhu
2016-01-01
Full Text Available For simulations of nonstationary multiple-input multiple-output (MIMO Rayleigh fading channels in time-variant scattering environments, a novel channel simulator is proposed based on the superposition of chirp signals. This new method has the advantages of low complexity and implementation simplicity as the sum of sinusoids (SOS method. In order to reproduce realistic time varying statistics for dynamic channels, an efficient parameter computation method is also proposed for updating the frequency parameters of employed chirp signals. Simulation results indicate that the proposed simulator is effective in generating nonstationary MIMO channels with close approximation of the time-variant statistical characteristics in accordance with the expected theoretical counterparts.
Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia
Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya
2014-09-01
Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.
Elastic shells of revolution under nonstationary thermal loading using ring finite elements
International Nuclear Information System (INIS)
Yao Zhenhan
1986-01-01
The report deals with the analysis of elastic shells of revolution under nonstationary thermal loading using ring finite elements. First, a ring element for moderately thick shells is derived which should also be employed for thin shells when either higher Fourier components of the displacements, or deflection patterns with very steep gradients occur. Then, a ring element for the analysis of heat conduction in shells of revolution is derived, and algorithms for the numerical solution of linear stationary, nonlinear stationary, as well as linear nonstationary problems are presented. Finally, a ring element for the coupled thermoelastic analysis of shells of revolution is developed, and an algorithm for the solution of weakly coupled problems is given. (orig.) [de
A regional and nonstationary model for partial duration series of extreme rainfall
DEFF Research Database (Denmark)
Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan
2017-01-01
as the explanatory variables in the regional and temporal domain, respectively. Further analysis of partial duration series with nonstationary and regional thresholds shows that the mean exceedances also exhibit a significant variation in space and time for some rainfall durations, while the shape parameter is found...... of extreme rainfall. The framework is built on a partial duration series approach with a nonstationary, regional threshold value. The model is based on generalized linear regression solved by generalized estimation equations. It allows a spatial correlation between the stations in the network and accounts...... furthermore for variable observation periods at each station and in each year. Marginal regional and temporal regression models solved by generalized least squares are used to validate and discuss the results of the full spatiotemporal model. The model is applied on data from a large Danish rain gauge network...
Directory of Open Access Journals (Sweden)
A. Sakabekov
2016-01-01
Full Text Available We prove existence and uniqueness of the solution of the problem with initial and Maxwell-Auzhan boundary conditions for nonstationary nonlinear one-dimensional Boltzmann’s six-moment system equations in space of functions continuous in time and summable in square by a spatial variable. In order to obtain a priori estimation of the initial and boundary value problem for nonstationary nonlinear one-dimensional Boltzmann’s six-moment system equations we get the integral equality and then use the spherical representation of vector. Then we obtain the initial value problem for Riccati equation. We have managed to obtain a particular solution of this equation in an explicit form.
Forootan, Ehsan; Kusche, Jürgen
2016-04-01
). (iii) Dominant non-stationary patterns are recognized as independent complex patterns that can be used to represent the space and time amplitude and phase propagations. We present the results of CICA on simulated and real cases e.g., for quantifying the impact of large-scale ocean-atmosphere interaction on global mass changes. Forootan (PhD-2014) Statistical signal decomposition techniques for analyzing time-variable satellite gravimetry data, PhD Thesis, University of Bonn, http://hss.ulb.uni-bonn.de/2014/3766/3766.htm Forootan and Kusche (JoG-2012) Separation of global time-variable gravity signals into maximally independent components, Journal of Geodesy 86 (7), 477-497, doi: 10.1007/s00190-011-0532-5
Advantages of the non-stationary approach: test on eddy current signals
International Nuclear Information System (INIS)
Brunel, P.
1993-12-01
Conventional signal processing is often unsuitable for the interpretation of intrinsically non-stationary signals, such as surveillance or non destructive testing signals. In these cases, ''advanced'' methods are required. This report presents two applications of non-stationary signal processing methods to the complex signals obtained in eddy current non destructive testing of steam generator tubes. The first application consists in segmenting the absolute channel, which can be likened to a piecewise constant signal. The Page-Hinkley cumulative sum algorithm is used, enabling detection of unknown mean amplitude jumps in a piecewise constant signal disturbed by a white noise. Results are comparable to those obtained with the empirical method currently in use. As easy to implement as the latter, the Page-Hinkley algorithm has the added advantage of being well formalized and of identifying whether the jumps in mean are positive or negative. The second application concerns assistance in detecting characteristic fault transients in the differential channels, using the continuous wavelet transform. The useful signal and noise spectra are fairly close, but not strictly identical. With the continuous wavelet transform, these frequency differences can be turned to account. The method was tested on synthetic signals obtained by summing noise and real defect signals. Using the continuous wavelet transform reduces the minimum signal-to-noise ratio by 5 dB for detection of a transient as compared with direct detection on the original signal. Finally, a summary of non-stationary methods using our data is presented. The two investigations described confirm that non-stationary methods may be considered as interesting signal and image analysis tools, as an efficient complement to conventional methods. (author). 24 figs., 13 refs
International Nuclear Information System (INIS)
Kraus, B.; Tittel, W.; Gisin, N.; Nilsson, M.; Kroell, S.; Cirac, J. I.
2006-01-01
We propose a method for efficient storage and recall of arbitrary nonstationary light fields, such as, for instance, single photon time-bin qubits or intense fields, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening and relies on a hidden time-reversal symmetry of the optical Bloch equations describing the propagation of the light field. We briefly discuss experimental realizations of our proposal
On the dynamics of non-stationary binary stellar system with non-isotropic mass flow
International Nuclear Information System (INIS)
Bekov, A.A.; Bejsekov, A.N.; Aldibaeva, L.T.
2006-01-01
The motion of test body in the external gravitational field of the binary stellar systems with slowly variable some physical parameters of radiating components is considered on the base of restricted nonstationary photo-gravitational three and two bodies problem with non-isotropic mass flow. The family of polar and coplanar solutions are obtained. The solutions give the possibility of the dynamical and structure interpretation of binary young evolving stars and galaxies. (author)
Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator
International Nuclear Information System (INIS)
Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.
2004-01-01
Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed
2016-03-01
each IDF curve and subsequently used to force a calibrated and validated precipitation - runoff model. Probability-based, risk-informed hydrologic...ERDC/CHL CHETN-X-2 March 2016 Approved for public release; distribution is unlimited. Bayesian Inference of Nonstationary Precipitation Intensity...based means by which to develop local precipitation Intensity-Duration-Frequency (IDF) curves using historical rainfall time series data collected for
Effect of non-stationary climate on infectious gastroenteritis transmission in Japan
Onozuka, Daisuke
2014-01-01
Local weather factors are widely considered to influence the transmission of infectious gastroenteritis. Few studies, however, have examined the non-stationary relationships between global climatic factors and transmission of infectious gastroenteritis. We analyzed monthly data for cases of infectious gastroenteritis in Fukuoka, Japan from 2000 to 2012 using cross-wavelet coherency analysis to assess the pattern of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Sou...
A Non-Stationary Approach for Estimating Future Hydroclimatic Extremes Using Monte-Carlo Simulation
Byun, K.; Hamlet, A. F.
2017-12-01
There is substantial evidence that observed hydrologic extremes (e.g. floods, extreme stormwater events, and low flows) are changing and that climate change will continue to alter the probability distributions of hydrologic extremes over time. These non-stationary risks imply that conventional approaches for designing hydrologic infrastructure (or making other climate-sensitive decisions) based on retrospective analysis and stationary statistics will become increasingly problematic through time. To develop a framework for assessing risks in a non-stationary environment our study develops a new approach using a super ensemble of simulated hydrologic extremes based on Monte Carlo (MC) methods. Specifically, using statistically downscaled future GCM projections from the CMIP5 archive (using the Hybrid Delta (HD) method), we extract daily precipitation (P) and temperature (T) at 1/16 degree resolution based on a group of moving 30-yr windows within a given design lifespan (e.g. 10, 25, 50-yr). Using these T and P scenarios we simulate daily streamflow using the Variable Infiltration Capacity (VIC) model for each year of the design lifespan and fit a Generalized Extreme Value (GEV) probability distribution to the simulated annual extremes. MC experiments are then used to construct a random series of 10,000 realizations of the design lifespan, estimating annual extremes using the estimated unique GEV parameters for each individual year of the design lifespan. Our preliminary results for two watersheds in Midwest show that there are considerable differences in the extreme values for a given percentile between conventional MC and non-stationary MC approach. Design standards based on our non-stationary approach are also directly dependent on the design lifespan of infrastructure, a sensitivity which is notably absent from conventional approaches based on retrospective analysis. The experimental approach can be applied to a wide range of hydroclimatic variables of interest.
Bučar, Bojan
2007-01-01
The assumption that non-stationary sorption processes associated with wood canbe evaluated by analysis of their transient system response to the disturbance developed is undoubtedly correct. In general it is, in fact, possible to obtain by time analysis of the transient phenomenon - involving the transition into an arbitrary new state of equilibrium - all data required for a credible evaluation of the observed system. Evaluation of moisture movement during drying or moistening requires determ...
Non-stationary Condition Monitoring of large diesel engines with the AEWATT toolbox
DEFF Research Database (Denmark)
Pontoppidan, Niels Henrik; Larsen, Jan; Sigurdsson, Sigurdur
2005-01-01
We are developing a specialized toolbox for non-stationary condition monitoring of large 2-stroke diesel engines based on acoustic emission measurements. The main contribution of this toolbox has so far been the utilization of adaptive linear models such as Principal and Independent Component Ana......, the inversion of those angular timing changes called “event alignment”, has allowed for condition monitoring across operation load settings, successfully enabling a single model to be used with realistic data under varying operational conditions-...
Energy Technology Data Exchange (ETDEWEB)
Todorov, N S [Low Temperature Department of the Institute of Solid State Physics of the Bulgarian Academy of Sciences, Sofia
1981-04-01
It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article rests essentially on the ideology of the preceding articles, in particular article I.
Energy Technology Data Exchange (ETDEWEB)
Todorov, N S
1981-04-01
It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article IV rests essentially on the ideology of the preceding articles, in particular article I.
Sampling rare events in nonequilibrium and nonstationary systems.
Berryman, Joshua T; Schilling, Tanja
2010-12-28
Although many computational methods for rare event sampling exist, this type of calculation is not usually practical for general nonequilibrium conditions, with macroscopically irreversible dynamics and away from both stationary and metastable states. A novel method for calculating the time-series of the probability of a rare event is presented which is designed for these conditions. The method is validated for the cases of the Glauber-Ising model under time-varying shear flow, the Kawasaki-Ising model after a quench into the region between nucleation dominated and spinodal decomposition dominated phase change dynamics, and the parallel open asymmetric exclusion process. The method requires a subdivision of the phase space of the system: it is benchmarked and found to scale well for increasingly fine subdivisions, meaning that it can be applied without detailed foreknowledge of the physically important reaction pathways.
Gustof, P.; Hornik, A.
2016-09-01
In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.
Yu, Zhi-wu; Mao, Jian-feng; Guo, Feng-qi; Guo, Wei
2016-03-01
Rail irregularity is one of the main sources causing train-bridge random vibration. A new random vibration theory for the coupled train-bridge systems is proposed in this paper. First, number theory method (NTM) with 2N-dimensional vectors for the stochastic harmonic function (SHF) of rail irregularity power spectrum density was adopted to determine the representative points of spatial frequencies and phases to generate the random rail irregularity samples, and the non-stationary rail irregularity samples were modulated with the slowly varying function. Second, the probability density evolution method (PDEM) was employed to calculate the random dynamic vibration of the three-dimensional (3D) train-bridge system by a program compiled on the MATLAB® software platform. Eventually, the Newmark-β integration method and double edge difference method of total variation diminishing (TVD) format were adopted to obtain the mean value curve, the standard deviation curve and the time-history probability density information of responses. A case study was presented in which the ICE-3 train travels on a three-span simply-supported high-speed railway bridge with excitation of random rail irregularity. The results showed that compared to the Monte Carlo simulation, the PDEM has higher computational efficiency for the same accuracy, i.e., an improvement by 1-2 orders of magnitude. Additionally, the influences of rail irregularity and train speed on the random vibration of the coupled train-bridge system were discussed.
International Nuclear Information System (INIS)
Marshall, W.L.
1982-01-01
Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases or liquid-liquid immisibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators
Nonstationary random acoustic and electromagnetic fields as wave diffusion processes
International Nuclear Information System (INIS)
Arnaut, L R
2007-01-01
We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It o-hat and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases
International Nuclear Information System (INIS)
Zavatsky, S.; Phaneuf, P.; Topaz, D.; Ward, D.
1978-02-01
The NRC Office of Inspection and Enforcement (IE) has elected to evaluate the effectiveness and efficiency of its existing regional boundary alignment because of the anticipated future growth of nuclear power generating facilities and corresponding inspection requirements. This report documents a management study designed to identify, analyze, and evaluate alternative regional boundary configurations for the NRC/IE regions. Eight boundary configurations were chosen for evaluation. These configurations offered alternatives ranging from two to ten regions, and some included the concepts of subregional or satellite offices. Each alternative configuration was evaluated according to three major criteria: project workload, cost, and office location. Each major criterion included elements such as management control, program uniformity, disruption, costs, and coordination with other agencies. The conclusion reached was that regional configurations with regions of equal and relatively large workloads, combined with the concepts of subregional or satellite offices, may offer a significant benefit to the Office of Inspection and Enforcement and the Commission and are worthy of further study. A phased implementation plan, which is suitable to some configurations, may help mitigate the disruption created by realignment
A risk-based approach to flood management decisions in a nonstationary world
Rosner, Ana; Vogel, Richard M.; Kirshen, Paul H.
2014-03-01
Traditional approaches to flood management in a nonstationary world begin with a null hypothesis test of "no trend" and its likelihood, with little or no attention given to the likelihood that we might ignore a trend if it really existed. Concluding a trend exists when it does not, or rejecting a trend when it exists are known as type I and type II errors, respectively. Decision-makers are poorly served by statistical and/or decision methods that do not carefully consider both over- and under-preparation errors, respectively. Similarly, little attention is given to how to integrate uncertainty in our ability to detect trends into a flood management decision context. We show how trend hypothesis test results can be combined with an adaptation's infrastructure costs and damages avoided to provide a rational decision approach in a nonstationary world. The criterion of expected regret is shown to be a useful metric that integrates the statistical, economic, and hydrological aspects of the flood management problem in a nonstationary world.
Matérn-based nonstationary cross-covariance models for global processes
Jun, Mikyoung
2014-07-01
Many spatial processes in environmental applications, such as climate variables and climate model errors on a global scale, exhibit complex nonstationary dependence structure, in not only their marginal covariance but also their cross-covariance. Flexible cross-covariance models for processes on a global scale are critical for an accurate description of each spatial process as well as the cross-dependences between them and also for improved predictions. We propose various ways to produce cross-covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters vary over space, coupled with a differential operators approach for modeling large-scale nonstationarity. We compare their performance to the performance of some existing models in terms of the aic and spatial predictions in two applications: joint modeling of surface temperature and precipitation, and joint modeling of errors in climate model ensembles. © 2014 Elsevier Inc.
Distinguishing Stationary/Nonstationary Scaling Processes Using Wavelet Tsallis q-Entropies
Directory of Open Access Journals (Sweden)
Julio Ramirez Pacheco
2012-01-01
Full Text Available Classification of processes as stationary or nonstationary has been recognized as an important and unresolved problem in the analysis of scaling signals. Stationarity or nonstationarity determines not only the form of autocorrelations and moments but also the selection of estimators. In this paper, a methodology for classifying scaling processes as stationary or nonstationary is proposed. The method is based on wavelet Tsallis q-entropies and particularly on the behaviour of these entropies for scaling signals. It is demonstrated that the observed wavelet Tsallis q-entropies of 1/f signals can be modeled by sum-cosh apodizing functions which allocates constant entropies to a set of scaling signals and varying entropies to the rest and that this allocation is controlled by q. The proposed methodology, therefore, differentiates stationary signals from non-stationary ones based on the observed wavelet Tsallis entropies for 1/f signals. Experimental studies using synthesized signals confirm that the proposed method not only achieves satisfactorily classifications but also outperforms current methods proposed in the literature.
Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand.
Directory of Open Access Journals (Sweden)
Bernard Cazelles
2005-04-01
Full Text Available BACKGROUND: Several factors, including environmental and climatic factors, influence the transmission of vector-borne diseases. Nevertheless, the identification and relative importance of climatic factors for vector-borne diseases remain controversial. Dengue is the world's most important viral vector-borne disease, and the controversy about climatic effects also applies in this case. Here we address the role of climate variability in shaping the interannual pattern of dengue epidemics. METHODS AND FINDINGS: We have analysed monthly data for Thailand from 1983 to 1997 using wavelet approaches that can describe nonstationary phenomena and that also allow the quantification of nonstationary associations between time series. We report a strong association between monthly dengue incidence in Thailand and the dynamics of El Niño for the 2-3-y periodic mode. This association is nonstationary, seen only from 1986 to 1992, and appears to have a major influence on the synchrony of dengue epidemics in Thailand. CONCLUSION: The underlying mechanism for the synchronisation of dengue epidemics may resemble that of a pacemaker, in which intrinsic disease dynamics interact with climate variations driven by El Niño to propagate travelling waves of infection. When association with El Niño is strong in the 2-3-y periodic mode, one observes high synchrony of dengue epidemics over Thailand. When this association is absent, the seasonal dynamics become dominant and the synchrony initiated in Bangkok collapses.
Self-organising mixture autoregressive model for non-stationary time series modelling.
Ni, He; Yin, Hujun
2008-12-01
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.
Directory of Open Access Journals (Sweden)
Yin Yanshu
2017-12-01
Full Text Available In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.
A comparison of three approaches to non-stationary flood frequency analysis
Debele, S. E.; Strupczewski, W. G.; Bogdanowicz, E.
2017-08-01
Non-stationary flood frequency analysis (FFA) is applied to statistical analysis of seasonal flow maxima from Polish and Norwegian catchments. Three non-stationary estimation methods, namely, maximum likelihood (ML), two stage (WLS/TS) and GAMLSS (generalized additive model for location, scale and shape parameters), are compared in the context of capturing the effect of non-stationarity on the estimation of time-dependent moments and design quantiles. The use of a multimodel approach is recommended, to reduce the errors due to the model misspecification in the magnitude of quantiles. The results of calculations based on observed seasonal daily flow maxima and computer simulation experiments showed that GAMLSS gave the best results with respect to the relative bias and root mean square error in the estimates of trend in the standard deviation and the constant shape parameter, while WLS/TS provided better accuracy in the estimates of trend in the mean value. Within three compared methods the WLS/TS method is recommended to deal with non-stationarity in short time series. Some practical aspects of the GAMLSS package application are also presented. The detailed discussion of general issues related to consequences of climate change in the FFA is presented in the second part of the article entitled "Around and about an application of the GAMLSS package in non-stationary flood frequency analysis".
Energy Technology Data Exchange (ETDEWEB)
Ahn, Yong Nam, E-mail: ynahn81@gmail.com; Lee, Sung Hoon, E-mail: sunghoon.lee@corning.com; Lim, Sung Keun, E-mail: sk96.lim@samsung.com; Woo, Kwang Je, E-mail: kwangje.woo@corning.com; Kim, Hyunbin, E-mail: hyunbin.kim@corning.com
2015-03-15
Highlights: • Atomistic simulations of inversion domain boundary (IDB) in GaN were performed. • The existence of IDBs in GaN films leads to the reduction of the film stiffness. • A sudden reduction of IDB density induces a strong tensile stress within the films. • The density of IDB in GaN film can be controlled by adjusting GaCl/NH{sub 3} flow ratio. • A microstructure of GaN buffer layer for minimization of stress was proposed. - Abstract: Inversion domain boundaries (IDBs) are frequently found in GaN films grown on sapphire substrates. However, the lack of atomic-level understandings about the effects of the IDBs on the properties of GaN films has hindered to utilize the IDBs for the stress release that minimizes the crack-formation in GaN films. This study performed atomistic computational analyses to fundamentally understand the roles of the IDBs in the development of the stresses in the GaN films. A sudden reduction of the IDB density induces a strong intrinsic stress in the GaN films, possibly leading to the mud-cracking of the films. A gradual decrease in the IDB density was achieved by slowly reducing the GaCl flux during the growth process of GaN buffer layer on sapphire substrates, and allowed us to experimentally demonstrate the successful fabrication of 4-in. crack-free GaN films. This approach may contribute to the fabrication of larger crack-free GaN films.
International Nuclear Information System (INIS)
Ahn, Yong Nam; Lee, Sung Hoon; Lim, Sung Keun; Woo, Kwang Je; Kim, Hyunbin
2015-01-01
Highlights: • Atomistic simulations of inversion domain boundary (IDB) in GaN were performed. • The existence of IDBs in GaN films leads to the reduction of the film stiffness. • A sudden reduction of IDB density induces a strong tensile stress within the films. • The density of IDB in GaN film can be controlled by adjusting GaCl/NH 3 flow ratio. • A microstructure of GaN buffer layer for minimization of stress was proposed. - Abstract: Inversion domain boundaries (IDBs) are frequently found in GaN films grown on sapphire substrates. However, the lack of atomic-level understandings about the effects of the IDBs on the properties of GaN films has hindered to utilize the IDBs for the stress release that minimizes the crack-formation in GaN films. This study performed atomistic computational analyses to fundamentally understand the roles of the IDBs in the development of the stresses in the GaN films. A sudden reduction of the IDB density induces a strong intrinsic stress in the GaN films, possibly leading to the mud-cracking of the films. A gradual decrease in the IDB density was achieved by slowly reducing the GaCl flux during the growth process of GaN buffer layer on sapphire substrates, and allowed us to experimentally demonstrate the successful fabrication of 4-in. crack-free GaN films. This approach may contribute to the fabrication of larger crack-free GaN films
GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS
Institute of Scientific and Technical Information of China (English)
S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner
2003-01-01
Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.
DEFF Research Database (Denmark)
Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina
2003-01-01
.After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....
International Nuclear Information System (INIS)
Ferris, F.G.; Roden, E.E.
2000-01-01
The migration of 90 Sr in groundwater is a significant environmental concern at former nuclear weapons production sites in the US and abroad. Although retardation of 90 Sr transport relative to mean groundwater velocity is known to occur in contaminated aquifers, Sr 2+ does not sorb as strongly to iron oxides and other mineral phases as do other metal-radionuclides contaminants. Thus, some potential exists for extensive 90 Sr migration from sources of contamination. Chemical or biological processes capable of retarding or immobilizing Sr 2+ in groundwater environments are of interest from the standpoint of understanding controls on subsurface Sr 2+ migration. In addition, it may be possible to exploit such processes for remediation of subsurface Sr contamination. In this study the authors examined the potential for the solid phase sorption and incorporation of Sr 2+ into carbonate minerals formed during microbial Fe(III) oxide reduction as a first step toward evaluating whether this process could be used to promote retardation of 90 Sr migrations in anaerobic subsurface environments. The demonstration of Sr 2+ capture in carbonate mineral phases formed during bacterial HFO reduction and urea hydrolysis suggests that microbial carbonate mineral formation could contribute to Sr 2+ retardation in groundwater environments. This process may also provide a mechanism for subsurface remediation of Sr 2+ and other divalent metal contaminants that form insoluble carbonate precipitates
Non-stationary heat transfer in gels applied to biotehnology
Directory of Open Access Journals (Sweden)
Pokusaev Boris
2017-01-01
Full Text Available Unsteady heat transfer in agarose gels of various concentrations was studied in order to make a breakthrough in the technology of 3-D additive bioprinting. Data on the kinetics of the phase transformation was obtained using spectroscopy as a function of temperature during the formation of agarose hydrogel. The dynamics of aging was investigated for gels of different densities. The time dependence of the structural changes was obtained. Particular attention was paid to the changes in the structure of the gel due to the processes of evaporation of the liquid during the gel formation and during long-term storage. Experiments were performed to determine the dynamics of the temperature fields simultaneously with heat flux measurements during the formation of agarose gels from different initial concentrations. A technique based on experimental data for the computations of the thermophysical coefficients of agarose gels was developed.
Convective instability in a time-dependent buoyancy driven boundary layer
Energy Technology Data Exchange (ETDEWEB)
Brooker, A.M.H.; Patterson, J.C.; Graham, T.; Schoepf, W. [University of Western Australia, Nedlands (Australia). Centre for Water Research
2000-01-01
The stability of the parallel time-dependent boundary layer adjacent to a suddenly heated vertical wall is described. The flow is investigated through experiments in water, through direct numerical simulation and also through linear stability analysis. The full numerical simulation of the flow shows that small perturbations to the wall boundary conditions, that are also present in the experimental study, are responsible for triggering the instability. As a result, oscillatory behaviour in the boundary layer is observed well before the transition to a steady two-dimensional flow begins. The properties of the observed oscillations are compared with those predicted by a linear stability analysis of the unsteady boundary layer using a quasi-stationary assumption and also using non-stationary assumptions by the formulation of parabolized equations (PSE). (Author)
International Nuclear Information System (INIS)
Cox, B.; Ling, V.C.
1980-05-01
A piece of CW Zr-2.5 wt% Nb alloy pressure tube was hydrided at one end in 40 g/L LiOH solution at 573 K (after nickel-plating that end). The result was a solid hydride layer 0.6 mm thick plus approximately 130 ppm hydrogen in the core under the nickel plate. Thermal cycling under conditions similar to those likely to be experienced during a reactor trip did not cause any significant movement of the α+hydride/α phase boundary along the tube for up to 2688 cycles from 573 to 523 K. Supercharging of the core was observed in the nickel-plated area. Some conclusions have been drawn concerning the origin of the hydrogen in the nickel-plated area, and the factors controlling the supercharging process. (auth)
Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.
2013-12-01
We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.
Directory of Open Access Journals (Sweden)
R. Sander
2013-12-01
Full Text Available We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe field campaign at the Cape Verde Atmospheric Observatory (CVAO on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*. Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br and ion chromatography (SO42−, Cl−, Br−, NH4+, Na+, K+, Mg2+, and Ca2+. Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.
Czech Academy of Sciences Publication Activity Database
Buixaderas, Elena; Berta, Milan; Kozielski, L.; Gregora, Ivan
2011-01-01
Roč. 84, 5-6 (2011), s. 528-541 ISSN 0141-1594 R&D Projects: GA AV ČR KAN301370701; GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : Raman spectroscopy * PZT ceramics * phonons * ferroelectric phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2011 http://www.informaworld.com/smpp/content~db=all~content=a935088116~frm=titlelink?words=buixaderas
Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.
Kostoglou, Kyriaki; Debert, Chantel T; Poulin, Marc J; Mitsis, Georgios D
2014-05-01
We examined the time-varying characteristics of cerebral autoregulation and hemodynamics during a step hypercapnic stimulus by using recursively estimated multivariate (two-input) models which quantify the dynamic effects of mean arterial blood pressure (ABP) and end-tidal CO2 tension (PETCO2) on middle cerebral artery blood flow velocity (CBFV). Beat-to-beat values of ABP and CBFV, as well as breath-to-breath values of PETCO2 during baseline and sustained euoxic hypercapnia were obtained in 8 female subjects. The multiple-input, single-output models used were based on the Laguerre expansion technique, and their parameters were updated using recursive least squares with multiple forgetting factors. The results reveal the presence of nonstationarities that confirm previously reported effects of hypercapnia on autoregulation, i.e. a decrease in the MABP phase lead, and suggest that the incorporation of PETCO2 as an additional model input yields less time-varying estimates of dynamic pressure autoregulation obtained from single-input (ABP-CBFV) models. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.
Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V
2012-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.
Valenza, Gaetano; Faes, Luca; Citi, Luca; Orini, Michele; Barbieri, Riccardo
2018-05-01
Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characterized through discrete time series, and modeled with probability density functions predicting the time of the next physiological event as a function of the past history. Likewise, nonstationary interactions between heartbeat and blood pressure dynamics are characterized as well. Furthermore, we propose a new measure of information transfer, the instantaneous point-process information transfer (ipInfTr), which is directly derived from point-process-based definitions of the Kolmogorov-Smirnov distance. Analysis on synthetic data, as well as on experimental data gathered from healthy subjects undergoing postural changes confirms that ipTE, as well as ipInfTr measures are able to dynamically track changes in physiological systems coupling. This novel approach opens new avenues in the study of hidden, transient, nonstationary physiological states involving multivariate autonomic dynamics in cardiovascular health and disease. The proposed method can also be tailored for the study of complex multisystem physiology (e.g., brain-heart or, more in general, brain-body interactions).
Reduction of Non-stationary Noise using a Non-negative Latent Variable Decomposition
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Larsen, Jan
2008-01-01
We present a method for suppression of non-stationary noise in single channel recordings of speech. The method is based on a non-negative latent variable decomposition model for the speech and noise signals, learned directly from a noisy mixture. In non-speech regions an over complete basis...... is learned for the noise that is then used to jointly estimate the speech and the noise from the mixture. We compare the method to the classical spectral subtraction approach, where the noise spectrum is estimated as the average over non-speech frames. The proposed method significantly outperforms...
Energy Technology Data Exchange (ETDEWEB)
Lan, X.G. [Southwest Jiaotong University, Quantum Optoelectronics Laboratory, Chengdu (China); China West Normal University, Institute of Theoretical Physics, Nanchong (China); Jiang, Q.Q. [China West Normal University, Institute of Theoretical Physics, Nanchong (China); Wei, L.F. [Southwest Jiaotong University, Quantum Optoelectronics Laboratory, Chengdu (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Guangzhou (China)
2012-04-15
We apply the Damour-Ruffini-Sannan method to study the Hawking radiations of scalar and Dirac particles in non-stationary Kerr black holes under different tortoise coordinate transformations. We found that all the relevant Hawking radiation spectra show still the blackbody ones, while the Hawking temperatures are strongly related to the used tortoise coordinate transformations. The properties of these dependences are discussed analytically and numerically. Our results imply that proper selections of tortoise coordinate transformations should be important in the studies of Hawking radiations and the correct selection would be given by the experimental observations in the future. (orig.)
Heat transfer and hydrodynamics of nonstationary dispersed-film flow in complex shape channels
International Nuclear Information System (INIS)
Nigmatulin, B.I.; Klebanov, L.A.; Kroshilin, A.E.; Kroshilin, V.E.
1980-01-01
The mathematical model has been used to investigate the dispersed-film regime of a liquid flow and condition for the appearance of heat transfer crisis. One-dimensional motion equations are used for each component of the mixture. The model developed is used to describe the hydrodynamics and the crisis of heat transfer in rod bundles and round tubes under stationary and nonstationary conditions. The account of a separate flow of a liquid film and a vapourdrop nucleus permits to describe the main regularities of a dispersed film flow. A good agreement of calculation and experimental results is obtained [ru
Noise Reduction for Nonlinear Nonstationary Time Series Data using Averaging Intrinsic Mode Function
Directory of Open Access Journals (Sweden)
Christofer Toumazou
2013-07-01
Full Text Available A novel noise filtering algorithm based on averaging Intrinsic Mode Function (aIMF, which is a derivation of Empirical Mode Decomposition (EMD, is proposed to remove white-Gaussian noise of foreign currency exchange rates that are nonlinear nonstationary times series signals. Noise patterns with different amplitudes and frequencies were randomly mixed into the five exchange rates. A number of filters, namely; Extended Kalman Filter (EKF, Wavelet Transform (WT, Particle Filter (PF and the averaging Intrinsic Mode Function (aIMF algorithm were used to compare filtering and smoothing performance. The aIMF algorithm demonstrated high noise reduction among the performance of these filters.
Goychuk, I
2001-08-01
Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.
Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion
DEFF Research Database (Denmark)
Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.
1997-01-01
This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....
Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion
DEFF Research Database (Denmark)
Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.
This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....
Kharkov, N. S.
2017-11-01
Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).
Distributed Nonstationary Heat Model of Two-Channel Solar Air Heater
International Nuclear Information System (INIS)
Klychev, Sh. I.; Bakhramov, S. A.; Ismanzhanov, A. I.; Tashiev, N.N.
2011-01-01
An algorithm for a distributed nonstationary heat model of a solar air heater (SAH) with two operating channels is presented. The model makes it possible to determine how the coolant temperature changes with time along the solar air heater channel by considering its main thermal and ambient parameters, as well as variations in efficiency. Examples of calculations are presented. It is shown that the time within which the mean-day efficiency of the solar air heater becomes stable is significantly higher than the time within which the coolant temperature reaches stable values. The model can be used for investigation of the performances of solar water-heating collectors. (authors)
AUTOMATIC CONTROL OF PARAMETERS OF A NON-STATIONARY OBJECT WITH CROSS LINKS
Directory of Open Access Journals (Sweden)
A. Pavlov
2018-04-01
Full Text Available Many objects automatic control unsteady. This is manifested in the change of their parameters. Therefore, periodically adjust the required parameters of the controller. This work is usually carried out rarely. For a long time, regulators are working with is not the optimal settings. The consequence of this is the low quality of many industrial control systems. The solution problem is the use of robust controllers. ACS with traditional PI and PID controllers have a very limited range of normal operation modes due to the appearance of parametric disturbances due to changes in the characteristics of the automated unit and changes in the load on it. The situation is different when using in the architecture of artificial neural network controllers. It is known that when training a neural network, the adaptation procedure is often used. This makes it possible to greatly expand the area of normal operating modes of ACS with neural automatic regulators in comparison with traditional linear regulators. It is also possible to significantly improve the quality of control (especially for a non-stationary multidimensional object, provided that when designing the ACS at the stage of its simulation in the model of the regulatory object model, an adequate simulation model of the executive device. It is also possible to significantly improve the quality of control (especially for a non-stationary multidimensional regulatory object model, an adequate simulation model of the executive device. Especially actual implementation of all these requirements in the application of electric actuators. This article fully complies with these requirements. This is what makes it possible to provide a guaranteed quality of control in non-stationary ACS with multidimensional objects and cross-links between control channels. The possibility of using a known hybrid automatic regulator to stabilize the parameters of a two-channel non-stationary object with two cross-linked. A
Damage of first wall materials in fusion reactors under nonstationary thermal effects
International Nuclear Information System (INIS)
Maslaev, S.A.; Platonov, Yu.M.; Pimenov, V.N.
1991-01-01
The temperature distribution in the first wall of a fusion reactor was calculated for nonstationary thermal effects of the type of plasma destruction or the flow of 'running electrons' taking into account the melting of the surface layer of the material. The thickness of the resultant damaged layer in which thermal stresses were higher than the tensile strength of the material is estimated. The results were obtained for corrosion-resisting steel, aluminium and vanadium. Flowing down of the molten layer of the material of the first wall is calculated. (author)
Identification of the structure parameters using short-time non-stationary stochastic excitation
Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra
2011-07-01
In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
The role of initial values in nonstationary fractional time series models
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Morten Ørregaard
We consider the nonstationary fractional model $\\Delta^{d}X_{t}=\\varepsilon _{t}$ with $\\varepsilon_{t}$ i.i.d.$(0,\\sigma^{2})$ and $d>1/2$. We derive an analytical expression for the main term of the asymptotic bias of the maximum likelihood estimator of $d$ conditional on initial values, and we...... discuss the role of the initial values for the bias. The results are partially extended to other fractional models, and three different applications of the theoretical results are given....
Non-stationary ionization in the low ionosphere by gravitational wave action
International Nuclear Information System (INIS)
Nikitin, M.A.; Kashchenko, N.M.
1977-01-01
Non-stationary effects in the lower ionosphere caused by gravitation waves are analyzed. Time dependences are obtained for extremum electron concentrations, which describe the dynamics of heterogeneous layer formation from the initially homogeneous distribution under the effect of gravitation waves. Diffusion of plasma and its complex composition are not taken into account. The problem is solved for two particular cases of low and high frequency gravitation waves impact on the ionosphere. Only in the former case electron concentration in the lower ionosphere deviates considerably from the equilibrium
Time-frequency representation of a highly nonstationary signal via the modified Wigner distribution
Zoladz, T. F.; Jones, J. H.; Jong, J.
1992-01-01
A new signal analysis technique called the modified Wigner distribution (MWD) is presented. The new signal processing tool has been very successful in determining time frequency representations of highly non-stationary multicomponent signals in both simulations and trials involving actual Space Shuttle Main Engine (SSME) high frequency data. The MWD departs from the classic Wigner distribution (WD) in that it effectively eliminates the cross coupling among positive frequency components in a multiple component signal. This attribute of the MWD, which prevents the generation of 'phantom' spectral peaks, will undoubtedly increase the utility of the WD for real world signal analysis applications which more often than not involve multicomponent signals.
Faster Simulation Methods for the Non-Stationary Random Vibrations of Non-Linear MDOF Systems
DEFF Research Database (Denmark)
Askar, A.; Köylüoglu, H. U.; Nielsen, Søren R. K.
subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...
Faster Simulation Methods for the Nonstationary Random Vibrations of Non-linear MDOF Systems
DEFF Research Database (Denmark)
Askar, A.; Köylüo, U.; Nielsen, Søren R.K.
1996-01-01
subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...
Detection of unusual events and trends in complex non-stationary data streams
International Nuclear Information System (INIS)
Charlton-Perez, C.; Perez, R.B.; Protopopescu, V.; Worley, B.A.
2011-01-01
The search for unusual events and trends hidden in multi-component, nonlinear, non-stationary, noisy signals is extremely important for diverse applications, ranging from power plant operation to homeland security. In the context of this work, we define an unusual event as a local signal disturbance and a trend as a continuous carrier of information added to and different from the underlying baseline dynamics. The goal of this paper is to investigate the feasibility of detecting hidden events inside intermittent signal data sets corrupted by high levels of noise, by using the Hilbert-Huang empirical mode decomposition method.
Energy Technology Data Exchange (ETDEWEB)
Alguero, M; Ricote, J; Calzada, M L [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Stewart, M; Cain, M G [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Ramos, P [Departamento de Electronica, Universidad de Alcala. 28871 Alcala de Henares (Spain)
2010-05-26
The electrical properties of (1 - x)Pb(Mg{sub 1/3} Nb{sub 2/3})O{sub 3} - xPbTiO{sub 3} films with composition in the morphotropic phase boundary region around x = 0.35, submicrometre thickness and columnar microstructure, prepared on Si-based substrates by chemical solution deposition are presented and discussed in relation to the properties of coarse and fine grained ceramics. The films show relaxor characteristics that are proposed to result from a grain size effect on the kinetics of the relaxor to ferroelectric transition. The transition is slowed down for grain sizes in the submicrometre range, and as a consequence intermediate polar domain configurations with typical length scales in the submicrometre- and nanoscales are stabilized. A high saturation polarization can be attained under field, but fast polarization relaxation occurs after its removal, and negligible remanent values are obtained. At the same time, they also show spontaneous piezoelectricity and pyroelectricity. Self-polarization is thus present, which indicates the existence of an internal electric field that is most probably a substrate effect. Films would then be in a phase instability, at an intermediate state between the relaxor and ferroelectric ones, and under a bias electric field, which would explain the very high spontaneous pyroelectric response found.
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
Directory of Open Access Journals (Sweden)
F. Anctil
2008-05-01
Full Text Available The objective of this work was to compare time and frequency fluctuations of air and soil temperatures (2-, 5-, 10-, 20- and 50-cm below the soil surface using the continuous wavelet transform, with a particular emphasis on the daily cycle. The analysis of wavelet power spectra and cross power spectra provided detailed non-stationary accounts with respect to frequencies (or periods and to time of the structure of the data and also of the relationships that exist between time series. For this particular application to the temperature profile of a soil exposed to frost, both the air temperature and the 2-cm depth soil temperature time series exhibited a dominant power peak at 1-d periodicity, prominent from spring to autumn. This feature was gradually damped as it propagated deeper into the soil and was weak for the 20-cm depth. Influence of the incoming solar radiation was also revealed in the wavelet power spectra analysis by a weaker intensity of the 1-d peak. The principal divergence between air and soil temperatures, besides damping, occurred in winter from the latent heat release associated to the freezing of the soil water and the insulation effect of snowpack that cease the dependence of the soil temperature to the air temperature. Attenuation and phase-shifting of the 1-d periodicity could be quantified through scale-averaged power spectra and time-lag estimations. Air temperature variance was only partly transferred to the 2-cm soil temperature time series and much less so to the 20-cm soil depth.
Stochastic optimal control of non-stationary response of a single-degree-of-freedom vehicle model
Narayanan, S.; Raju, G. V.
1990-09-01
An active suspension system to control the non-stationary response of a single-degree-of-freedom (sdf) vehicle model with variable velocity traverse over a rough road is investigated. The suspension is optimized with respect to ride comfort and road holding, using stochastic optimal control theory. The ground excitation is modelled as a spatial homogeneous random process, being the output of a linear shaping filter to white noise. The effect of the rolling contact of the tyre is considered by an additional filter in cascade. The non-stationary response with active suspension is compared with that of a passive system.
Asymptotic Theory for the QMLE in GARCH-X Models with Stationary and Non-Stationary Covariates
DEFF Research Database (Denmark)
Han, Heejoon; Kristensen, Dennis
as captured by its long-memory parameter dx; in particular, we allow for both stationary and non-stationary covariates. We show that the QMLE'’s of the regression coefficients entering the volatility equation are consistent and normally distributed in large samples independently of the degree of persistence....... This implies that standard inferential tools, such as t-statistics, do not have to be adjusted to the level of persistence. On the other hand, the intercept in the volatility equation is not identifi…ed when the covariate is non-stationary which is akin to the results of Jensen and Rahbek (2004, Econometric...
Kozitskiy, Sergey
2018-05-01
Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection has been performed by using the previously derived system of complex Ginzburg-Landau type amplitude equations, valid in a neighborhood of Hopf bifurcation points. Simulation has shown that the state of spatiotemporal chaos develops in the system. It has the form of nonstationary structures that depend on the parameters of the system. The shape of structures does not depend on the initial conditions, and a limited number of spectral components participate in their formation.
An Integrated Real-Time Beamforming and Postfiltering System for Nonstationary Noise Environments
Directory of Open Access Journals (Sweden)
Gannot Sharon
2003-01-01
Full Text Available We present a novel approach for real-time multichannel speech enhancement in environments of nonstationary noise and time-varying acoustical transfer functions (ATFs. The proposed system integrates adaptive beamforming, ATF identification, soft signal detection, and multichannel postfiltering. The noise canceller branch of the beamformer and the ATF identification are adaptively updated online, based on hypothesis test results. The noise canceller is updated only during stationary noise frames, and the ATF identification is carried out only when desired source components have been detected. The hypothesis testing is based on the nonstationarity of the signals and the transient power ratio between the beamformer primary output and its reference noise signals. Following the beamforming and the hypothesis testing, estimates for the signal presence probability and for the noise power spectral density are derived. Subsequently, an optimal spectral gain function that minimizes the mean square error of the log-spectral amplitude (LSA is applied. Experimental results demonstrate the usefulness of the proposed system in nonstationary noise environments.
Quantum Radiation Properties of Dirac Particles in General Nonstationary Black Holes
Directory of Open Access Journals (Sweden)
Jia-Chen Hua
2014-01-01
Full Text Available Quantum radiation properties of Dirac particles in general nonstationary black holes in the general case are investigated by both using the method of generalized tortoise coordinate transformation and considering simultaneously the asymptotic behaviors of the first-order and second-order forms of Dirac equation near the event horizon. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is absent from the thermal radiation spectrum of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and nonthermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in nonthermal radiation for general nonstationary black holes.
Bayesian soft X-ray tomography using non-stationary Gaussian Processes
International Nuclear Information System (INIS)
Li, Dong; Svensson, J.; Thomsen, H.; Werner, A.; Wolf, R.; Medina, F.
2013-01-01
In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods
Bayesian soft X-ray tomography using non-stationary Gaussian Processes
Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.
2013-08-01
In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.
Directory of Open Access Journals (Sweden)
A. K. Nekrasov
2006-03-01
Full Text Available A general nonlinear theory for low-frequency electromagnetic field generation due to high-frequency nonuniform and nonstationary electromagnetic radiations in cold, uniform, multicomponent, dusty magnetoplasmas is developed. This theory permits us to consider the nonlinear action of all waves that can exist in such plasmas. The equations are derived for the dust grain velocities in the low-frequency nonlinear electric fields arising due to the presence of electromagnetic cyclotron waves travelling along the background magnetic field. The dust grains are considered to be magnetized as well as unmagnetized. Different regimes for the dust particle dynamics, depending on the spatio-temporal change of the wave amplitudes and plasma parameters, are discussed. It is shown that induced nonlinear electric fields can have both an electrostatic and electromagnetic nature. Conditions for maximum dust acceleration are found. The results obtained may be useful for understanding the possible mechanisms of dust grain dynamics in astrophysical, cosmic and laboratory plasmas under the action of nonuniform and nonstationary electromagnetic waves.
Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)
Lugovoi, P. Z.; Meish, V. F.
2017-09-01
Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.
A non-stationary cost-benefit based bivariate extreme flood estimation approach
Qi, Wei; Liu, Junguo
2018-02-01
Cost-benefit analysis and flood frequency analysis have been integrated into a comprehensive framework to estimate cost effective design values. However, previous cost-benefit based extreme flood estimation is based on stationary assumptions and analyze dependent flood variables separately. A Non-Stationary Cost-Benefit based bivariate design flood estimation (NSCOBE) approach is developed in this study to investigate influence of non-stationarities in both the dependence of flood variables and the marginal distributions on extreme flood estimation. The dependence is modeled utilizing copula functions. Previous design flood selection criteria are not suitable for NSCOBE since they ignore time changing dependence of flood variables. Therefore, a risk calculation approach is proposed based on non-stationarities in both marginal probability distributions and copula functions. A case study with 54-year observed data is utilized to illustrate the application of NSCOBE. Results show NSCOBE can effectively integrate non-stationarities in both copula functions and marginal distributions into cost-benefit based design flood estimation. It is also found that there is a trade-off between maximum probability of exceedance calculated from copula functions and marginal distributions. This study for the first time provides a new approach towards a better understanding of influence of non-stationarities in both copula functions and marginal distributions on extreme flood estimation, and could be beneficial to cost-benefit based non-stationary bivariate design flood estimation across the world.
Directory of Open Access Journals (Sweden)
P. Ribereau
2008-12-01
Full Text Available Since the pioneering work of Landwehr et al. (1979, Hosking et al. (1985 and their collaborators, the Probability Weighted Moments (PWM method has been very popular, simple and efficient to estimate the parameters of the Generalized Extreme Value (GEV distribution when modeling the distribution of maxima (e.g., annual maxima of precipitations in the Identically and Independently Distributed (IID context. When the IID assumption is not satisfied, a flexible alternative, the Maximum Likelihood Estimation (MLE approach offers an elegant way to handle non-stationarities by letting the GEV parameters to be time dependent. Despite its qualities, the MLE applied to the GEV distribution does not always provide accurate return level estimates, especially for small sample sizes or heavy tails. These drawbacks are particularly true in some non-stationary situations. To reduce these negative effects, we propose to extend the PWM method to a more general framework that enables us to model temporal covariates and provide accurate GEV-based return levels. Theoretical properties of our estimators are discussed. Small and moderate sample sizes simulations in a non-stationary context are analyzed and two brief applications to annual maxima of CO_{2} and seasonal maxima of cumulated daily precipitations are presented.
Identification of Non-Stationary Magnetic Field Sources Using the Matching Pursuit Method
Directory of Open Access Journals (Sweden)
Beata Palczynska
2017-05-01
Full Text Available The measurements of electromagnetic field emissions, performed on board a vessel have showed that, in this specific environment, a high level of non-stationary magnetic fields (MFs is observed. The adaptive time-frequency method can be used successfully to analyze this type of measured signal. It allows one to specify the time interval in which the individual frequency components of the signal occur. In this paper, the method of identification of non-stationary MF sources based on the matching pursuit (MP algorithm is presented. It consists of the decomposition of an examined time-waveform into the linear expansion of chirplet atoms and the analysis of the matrix of their parameters. The main feature of the proposed method is the modification of the chirplet’s matrix in a way that atoms, whose normalized energies are lower than a certain threshold, will be rejected. On the time-frequency planes of the spectrograms, obtained separately for each remaining chirlpet, it can clearly identify the time-frequency structures appearing in the examined signal. The choice of a threshold defines the computing speed and precision of the performed analysis. The method was implemented in the virtual application and used for processing real data, obtained from measurements of time-vary MF emissions onboard a ship.
Climate variability and nonstationary dynamics of Mycoplasma pneumoniae pneumonia in Japan.
Onozuka, Daisuke; Chaves, Luis Fernando
2014-01-01
A stationary association between climate factors and epidemics of Mycoplasma pneumoniae (M. pneumoniae) pneumonia has been widely assumed. However, it is unclear whether elements of the local climate that are relevant to M. pneumoniae pneumonia transmission have stationary signatures of climate factors on their dynamics over different time scales. We performed a cross-wavelet coherency analysis to assess the patterns of association between monthly M. pneumoniae cases in Fukuoka, Japan, from 2000 to 2012 and indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Monthly M. pneumoniae cases were strongly associated with the dynamics of both the IOD and ENSO for the 1-2-year periodic mode in 2005-2007 and 2010-2011. This association was non-stationary and appeared to have a major influence on the synchrony of M. pneumoniae epidemics. Our results call for the consideration of non-stationary, possibly non-linear, patterns of association between M. pneumoniae cases and climatic factors in early warning systems.
Climate variability and nonstationary dynamics of Mycoplasma pneumoniae pneumonia in Japan.
Directory of Open Access Journals (Sweden)
Daisuke Onozuka
Full Text Available BACKGROUND: A stationary association between climate factors and epidemics of Mycoplasma pneumoniae (M. pneumoniae pneumonia has been widely assumed. However, it is unclear whether elements of the local climate that are relevant to M. pneumoniae pneumonia transmission have stationary signatures of climate factors on their dynamics over different time scales. METHODS: We performed a cross-wavelet coherency analysis to assess the patterns of association between monthly M. pneumoniae cases in Fukuoka, Japan, from 2000 to 2012 and indices for the Indian Ocean Dipole (IOD and El Niño Southern Oscillation (ENSO. RESULTS: Monthly M. pneumoniae cases were strongly associated with the dynamics of both the IOD and ENSO for the 1-2-year periodic mode in 2005-2007 and 2010-2011. This association was non-stationary and appeared to have a major influence on the synchrony of M. pneumoniae epidemics. CONCLUSIONS: Our results call for the consideration of non-stationary, possibly non-linear, patterns of association between M. pneumoniae cases and climatic factors in early warning systems.
A review on prognostic techniques for non-stationary and non-linear rotating systems
Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph
2015-10-01
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-05-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods that can analyze multidimensional time series. One important attribute of this method is that it is not dependent on any statistical assumption and does not need local stationarity in the time series. In this paper, it is shown how the FEM-clustering method can be used to locate change points in the trend of temperature time series from in situ observations. This method is applied to the temperature time series of North Carolina (NC) and the results represent region-specific climate variability despite higher frequency harmonics in climatic time series. Next, we investigated the relationship between the climatic indices with the clusters/trends detected based on this clustering method. It appears that the natural variability of climate change in NC during 1950-2009 can be explained mostly by AMO and solar activity.
Around and about an application of the GAMLSS package to non-stationary flood frequency analysis
Debele, S. E.; Bogdanowicz, E.; Strupczewski, W. G.
2017-08-01
The non-stationarity of hydrologic processes due to climate change or human activities is challenging for the researchers and practitioners. However, the practical requirements for taking into account non-stationarity as a support in decision-making procedures exceed the up-to-date development of the theory and the of software. Currently, the most popular and freely available software package that allows for non-stationary statistical analysis is the GAMLSS (generalized additive models for location, scale and shape) package. GAMLSS has been used in a variety of fields. There are also several papers recommending GAMLSS in hydrological problems; however, there are still important issues which have not previously been discussed concerning mainly GAMLSS applicability not only for research and academic purposes, but also in a design practice. In this paper, we present a summary of our experiences in the implementation of GAMLSS to non-stationary flood frequency analysis, highlighting its advantages and pointing out weaknesses with regard to methodological and practical topics.
Online updating and uncertainty quantification using nonstationary output-only measurement
Yuen, Ka-Veng; Kuok, Sin-Chi
2016-01-01
Extended Kalman filter (EKF) is widely adopted for state estimation and parametric identification of dynamical systems. In this algorithm, it is required to specify the covariance matrices of the process noise and measurement noise based on prior knowledge. However, improper assignment of these noise covariance matrices leads to unreliable estimation and misleading uncertainty estimation on the system state and model parameters. Furthermore, it may induce diverging estimation. To resolve these problems, we propose a Bayesian probabilistic algorithm for online estimation of the noise parameters which are used to characterize the noise covariance matrices. There are three major appealing features of the proposed approach. First, it resolves the divergence problem in the conventional usage of EKF due to improper choice of the noise covariance matrices. Second, the proposed approach ensures the reliability of the uncertainty quantification. Finally, since the noise parameters are allowed to be time-varying, nonstationary process noise and/or measurement noise are explicitly taken into account. Examples using stationary/nonstationary response of linear/nonlinear time-varying dynamical systems are presented to demonstrate the efficacy of the proposed approach. Furthermore, comparison with the conventional usage of EKF will be provided to reveal the necessity of the proposed approach for reliable model updating and uncertainty quantification.
Self-adaptive change detection in streaming data with non-stationary distribution
Zhang, Xiangliang
2010-01-01
Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non-stationary distribution helps to alarm the anomalies, to clean the noises, and to report the new patterns. In this paper, we employ a novel approach for detecting changes in streaming data with the purpose of improving the quality of modeling the data streams. Through observing the outliers, this approach of change detection uses a weighted standard deviation to monitor the evolution of the distribution of data streams. A cumulative statistical test, Page-Hinkley, is employed to collect the evidence of changes in distribution. The parameter used for reporting the changes is self-adaptively adjusted according to the distribution of data streams, rather than set by a fixed empirical value. The self-adaptability of the novel approach enhances the effectiveness of modeling data streams by timely catching the changes of distributions. We validated the approach on an online clustering framework with a benchmark KDDcup 1999 intrusion detection data set as well as with a real-world grid data set. The validation results demonstrate its better performance on achieving higher accuracy and lower percentage of outliers comparing to the other change detection approaches. © 2010 Springer-Verlag.
Energy Technology Data Exchange (ETDEWEB)
Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)
1997-10-01
We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)
Boundary crossover in semi-infinite non-equilibrium growth processes
International Nuclear Information System (INIS)
Allegra, Nicolas; Fortin, Jean-Yves; Henkel, Malte
2014-01-01
The growth of stochastic interfaces in the vicinity of a boundary and the non-trivial crossover towards the behaviour deep in the bulk are analysed. The causal interactions of the interface with the boundary lead to a roughness larger near to the boundary than deep in the bulk. This is exemplified in the semi-infinite Edwards–Wilkinson model in one dimension, from both its exact solution and numerical simulations, as well as from simulations on the semi-infinite one-dimensional Kardar–Parisi–Zhang model. The non-stationary scaling of interface heights and widths is analysed and a universal scaling form for the local height profile is proposed. (paper)
Directory of Open Access Journals (Sweden)
Vladimir N. Vodyakov
2017-12-01
Full Text Available Introduction: Mathematical modeling allows assigning optimal parameters for the process of compression molding of plates and calculating the dimensions of the mold without costly and long-term experiments. The options ensure the required precision of pressing. The disadvantages of the known models are the assumptions about the process isothermicity and independence of the thermal-physical coefficients from temperature. The models do not take into account the dependence of the pressure in the cavity of the mold on the excess of the melt; the problem of calculating the dimensions of the mold cavity for given plate dimensions is not posed. The known models do not give a complete description of all stages of the process. The aim of this paper is to develop a perfect mathematical model without limitations for the compression molding of plates from a granulate of highly filled thermoplastic composites. Materials and Methods: The paper proposes a non-stationary mathematical model. The model takes into account the presence of physical states transitions and dependence of the thermophysical characteristics of composites on temperature. The model is based on the known equations of thermal physics and continuum mechanics. Results: Initial and boundary conditions, rheological equations, systems of equations for the material, thermal, and power balance are determined for three stages of the process. The calculation problems are determined too. A program of iterative numerical calculation has been developed because of the resulting system of equations has no analytical solution. A convergence of experimental and theoretical results with the correlation coefficient confirms the adequacy of the developed mathematical model and the calculation program. Discussion and Conclusions: The results of the study allow calculating the dimensions of the mold cavity, the initial granulate required mass, technological losses, the time functions of pressure and temperature