WorldWideScience

Sample records for nonsap-c nonlinear stress

  1. Assessment of non-linear analysis finite element program (NONSAP) for inelastic analysis

    International Nuclear Information System (INIS)

    Chang, T.Y.; Prachuktam, S.; Reich, M.

    1976-11-01

    An assessment on a nonlinear structural analysis finite element program called NONSAP is given with respect to its inelastic analysis capability for pressure vessels and components. The assessment was made from the review of its theoretical basis and bench mark problem runs. It was found that NONSAP has only limited capability for inelastic analysis. However, the program was written flexible enough that it can be easily extended or modified to suit the user's need. Moreover, some of the numerical difficulties in using NONSAP are pointed out

  2. Comparison of finite-element stress analysis with experimental copper sphere impacts

    International Nuclear Information System (INIS)

    Frantz, C.E.; Hecker, S.S.; Stout, M.G.; Browning, R.V.

    1980-07-01

    Three copper spheres were impacted on targets of varying surface finishes at 100 m/s. Impact face friction was varied for each test and the impact was photographed with a high-speed camera. Postimpact strains and deformation were measured. A finite-element computer code, NONSAP, was used to model the impact. The best agreement between computer prediction and experiment was obtained using isoparametric elements, a graded mesh, and actual high-strain-rate copper stress-strain data. Frictional conditions at the impact face were also modeled by altering the standard NONSAP code. The most critical test of NONSAP was accurate prediction of experimental impact strains. The best agreement we could obtain had a maximum point-to-point error of 20%, although in general, the comparison was much better. Results of this research indicate that we must know more about material and impact interface friction in order to obtain reliable numerical predictions

  3. Feasibility of Residual Stress Nondestructive Estimation Using the Nonlinear Property of Critical Refraction Longitudinal Wave

    Directory of Open Access Journals (Sweden)

    Yu-Hua Zhang

    2017-01-01

    Full Text Available Residual stress has significant influence on the performance of mechanical components, and the nondestructive estimation of residual stress is always a difficult problem. This study applies the relative nonlinear coefficient of critical refraction longitudinal (LCR wave to nondestructively characterize the stress state of materials; the feasibility of residual stress estimation using the nonlinear property of LCR wave is verified. The nonlinear ultrasonic measurements based on LCR wave are conducted on components with known stress state to calculate the relative nonlinear coefficient. Experimental results indicate that the relative nonlinear coefficient monotonically increases with prestress and the increment of relative nonlinear coefficient is about 80%, while the wave velocity only decreases about 0.2%. The sensitivity of the relative nonlinear coefficient for stress is much higher than wave velocity. Furthermore, the dependence between the relative nonlinear coefficient and deformation state of components is found. The stress detection resolution based on the nonlinear property of LCR wave is 10 MPa, which has higher resolution than wave velocity. These results demonstrate that the nonlinear property of LCR wave is more suitable for stress characterization than wave velocity, and this quantitative information could be used for residual stress estimation.

  4. A nonlinear magnetoelectric model for magnetoelectric layered composite with coupling stress

    International Nuclear Information System (INIS)

    Shi, Yang; Gao, Yuanwen

    2014-01-01

    Based on a linear piezoelectric relation and a nonlinear magnetostrictive constitutive relation, A nonlinear magnetoelectric (ME) effect model for flexural layered ME composites is established in in-plane magnetic field. In the proposed model, the true coupling stress and the equivalent piezomagnetic coefficient are taken into account and obtained through an iterative approach. Some calculations on nonlinear ME coefficient are conducted and discussed. Our results show that for both the flexural bilayer and trilayer composites, the true coupling stress in the composites first increase and then approach to a constant value with the increase of applied magnetic fields, affecting the nonlinear ME effect significantly. With consideration of the true coupling stress, the ME effect is smaller than that without consideration of the true coupling stress. Moreover, the proposed theoretical model predicts that the ME coefficient of the trilayer composite (does not generate the bending deflection) is much larger than that of bilayer composite (generates the bending deflection), which is in well agreement with the previous works. The influences of the applied magnetic field on the true coupling stress and fraction ratio corresponding to the extreme ME coefficients of layered structures are also investigated. - Highlights: • This paper develops a nonlinear model for layered ME composite. • The true coupling stress is obtained through an iterative approach. • The influences of coupling stress and flexural deformation are discussed. • The dependence of ME coefficient on magnetic field is studied

  5. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  6. Stress evaluation of metallic material under steady state based on nonlinear critically refracted longitudinal wave

    Science.gov (United States)

    Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng

    2018-06-01

    This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.

  7. Particles geometry influence in the thermal stress level in an SiC reinforced aluminum matrix composite considering the material non-linear behavior

    International Nuclear Information System (INIS)

    Miranda, Carlos A. de J.; Libardi, Rosani M.P.; Boari, Zoroastro de M.

    2009-01-01

    An analytical methodology was developed to predict the thermal stress level that occurs in a metallic matrix composite reinforced with SiC particles, when the temperature decreases from 600 deg C to 20 deg C during the fabrication process. This analytical development is based on the Eshelby method, dislocation mechanisms, and the Maxwell-Boltzmann distribution model. The material was assumed to have a linear elastic behavior. The analytical results from this formulation were verified against numerical linear analyses that were performed over a set of random non-uniform distribution of particles that covers a wide range of volumetric ratios. To stick with the analytical hypothesis, particles with round geometry were used. Each stress distribution, represented by the isostress curves at ΔT=-580 deg C, was analyzed with an image analyzer. A statistical procedure was applied to obtain the most probable thermal stress level. Analytical and numerical results compared very well. Plastic deformation as well as particle geometry can alter significantly the stress field in the material. To account for these effects, in this work, several numerical analyses were performed considering the non-linear behavior for the aluminum matrix and distinct particle geometries. Two distinct sets of data with were used. To allow a direct comparison, the first set has the same models (particle form, size and distribution) as used previously. The second set analyze quadrilateral particles and present very tight range of volumetric ratio, closer to what is found in actual SiC composites. A simple and fast algorithm was developed to analyze the new results. The comparison of these results with the previous ones shows, as expected, the strong influence of the elastic-plastic behavior of the aluminum matrix on the composite thermal stress distribution due to its manufacturing process and shows, also, a small influence of the particles geometry and volumetric ratio. (author)

  8. Geometrically Nonlinear Shell Analysis of Wrinkled Thin-Film Membranes with Stress Concentrations

    Science.gov (United States)

    Tessler, Alexander; Sleight, David W.

    2006-01-01

    Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns.

  9. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    International Nuclear Information System (INIS)

    Kim, Gyu Jin; Kwak, Hyo Gyoung; Park, Sun Jong

    2016-01-01

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members

  10. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  11. Finite element analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Smith, P.D.; Cook, W.A.; Anderson, C.A.

    1977-01-01

    Several present and proposed gas-cooled reactors use concrete pressure vessels. In addition, concrete is almost universally used for the secondary containment structures of water-cooled reactors. Regulatory agencies must have means of assuring that these concrete structures perform their containment functions during normal operation and after extreme conditions of transient overpressure and high temperature. The NONSAP nonlinear structural analysis program has been extensively modified to provide one analytical means of assessing the safety of reinforced concrete pressure vessels and containments. Several structural analysis codes were studied to evaluate their ability to model the nonlinear static and dynamic behavior of three-dimensional structures. The NONSAP code was selected because of its availability and because of the ease with which it can be modified. In particular, the modular structure of this code allows ready addition of specialized material models. Major modifications have been the development of pre- and post-processors for mesh generation and graphics, the addition of an out-of-core solver, and the addition of constitutive models for reinforced concrete subject to either long-term or short-term loads. Emphasis was placed on development of a three-dimensional analysis capability

  12. Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination.

    Science.gov (United States)

    Melillo, Paolo; Bracale, Marcello; Pecchia, Leandro

    2011-11-07

    This study investigates the variations of Heart Rate Variability (HRV) due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA). Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination.

  13. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides.

    Science.gov (United States)

    Krückel, Clemens J; Fülöp, Attila; Klintberg, Thomas; Bengtsson, Jörgen; Andrekson, Peter A; Torres-Company, Víctor

    2015-10-05

    In this paper we introduce a low-stress silicon enriched nitride platform that has potential for nonlinear and highly integrated optics. The manufacturing process of this platform is CMOS compatible and the increased silicon content allows tensile stress reduction and crack free layer growth of 700 nm. Additional benefits of the silicon enriched nitride is a measured nonlinear Kerr coefficient n(2) of 1.4·10(-18) m(2)/W (5 times higher than stoichiometric silicon nitride) and a refractive index of 2.1 at 1550 nm that enables high optical field confinement allowing high intensity nonlinear optics and light guidance even with small bending radii. We analyze the waveguide loss (∼1 dB/cm) in a spectrally resolved fashion and include scattering loss simulations based on waveguide surface roughness measurements. Detailed simulations show the possibility for fine dispersion and nonlinear engineering. In nonlinear experiments we present continuous-wave wavelength conversion and demonstrate that the material does not show nonlinear absorption effects. Finally, we demonstrate microfabrication of resonators with high Q-factors (∼10(5)).

  14. Methodology for assessing the interfacial sliding stress of a 2D woven SiC-SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Morvan, J.-M.; Baste, S. [Bordeaux-1 Univ., 33 - Talence (France)

    1999-03-01

    A micromechanical model is established to assess the value of the interfacial sliding stress as a function of the elastic and inelastic strains, the transverse crack density and the area upon which the sliding takes. The interfacial sliding stress is then measured during all the tensile test whether the damage occurs at the meso or at the microstructure level of a 2D SiC-SiC composite. The ultrasonic characterization through the complete determination of the stiffness tensor along a tensile test detects all the damage mechanisms and allows a strain partition under load which separates the various mechanisms responsible for the non-linear behavior of ceramic matrix composites (CMCs). It results that, according to the scale of the composite, the interfacial sliding stress exhibits a different value due to the nature of the bonding. (orig.) 13 refs.

  15. Nonlinear cosmological consistency relations and effective matter stresses

    International Nuclear Information System (INIS)

    Ballesteros, Guillermo; Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin

    2012-01-01

    We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias

  16. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study.

    Science.gov (United States)

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-09-01

    Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. This shows that the force level required for non-linear analysis is lesser than that of linear analysis.

  17. Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

    Science.gov (United States)

    Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George

    2017-03-01

    Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).

  18. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  19. Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory

    Science.gov (United States)

    Wang, Liming; Zheng, Shijie

    2018-02-01

    In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.

  20. Nonlinear dynamics of cortical responses to color in the human cVEP.

    Science.gov (United States)

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2017-09-01

    The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.

  1. An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings

    International Nuclear Information System (INIS)

    Zhou, Hao-Miao; Qu, Shao-Xing; Ou, Xiao-Wei; Xiao, Ying; Wu, Hua-Ping

    2013-01-01

    Based on the equivalent circuit method, this paper adopts the nonlinear magnetostrictive constitutive relations to establish an analytical nonlinear magnetoelectric coefficient model for magnetostrictive/piezoelectric/magnetostrictive laminated magnetoelectric composites. When the pre-stress is set to zero in the model, the predicted results of the magnetoelectric coefficient coincide well with the available experimental results both qualitatively and quantitatively. Using the model, we can qualitatively predict the influence of the pre-stress, magnetic bias fields and the volume fraction of the magnetostrictive material on the magnetoelectric coefficient. The predicted results show that the influences of the pre-stress on the magnetoelectric coefficient, which varies with the magnetic bias field, before and after reaching the magnetoelectric coefficient maximum, are opposite. That is, the influence of the pre-stress on curves of the magnetoelectric coefficient reverses when the magnetoelectric coefficient reaches its maximum. Therefore, the correct setting of the pre-stress can lower the applied magnetic bias field and improve the magnetoelectric coefficient. The established nonlinear magnetoelectric effect model can provide a theoretical basis for regulating the magnetoelectric coefficient by the pre-stress and magnetic bias field and make it possible to design high-precision miniature magnetoelectric devices. (paper)

  2. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    International Nuclear Information System (INIS)

    Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui

    2012-01-01

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C 1 , C 2 , and C 4 at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  3. Average thermal stress in the Al+SiC composite due to its manufacturing process

    International Nuclear Information System (INIS)

    Miranda, Carlos A.J.; Libardi, Rosani M.P.; Marcelino, Sergio; Boari, Zoroastro M.

    2013-01-01

    The numerical analyses framework to obtain the average thermal stress in the Al+SiC Composite due to its manufacturing process is presented along with the obtained results. The mixing of Aluminum and SiC powders is done at elevated temperature and the usage is at room temperature. A thermal stress state arises in the composite due to the different thermal expansion coefficients of the materials. Due to the particles size and randomness in the SiC distribution, some sets of models were analyzed and a statistical procedure used to evaluate the average stress state in the composite. In each model the particles position, form and size are randomly generated considering a volumetric ratio (VR) between 20% and 25%, close to an actual composite. The obtained stress field is represented by a certain number of iso stress curves, each one weighted by the area it represents. Systematically it was investigated the influence of: (a) the material behavior: linear x non-linear; (b) the carbide particles form: circular x quadrilateral; (c) the number of iso stress curves considered in each analysis; and (e) the model size (the number of particles). Each of above analyzed condition produced conclusions to guide the next step. Considering a confidence level of 95%, the average thermal stress value in the studied composite (20% ≤ VR ≤ 25%) is 175 MPa with a standard deviation of 10 MPa. Depending on its usage, this value should be taken into account when evaluating the material strength. (author)

  4. Linear and Non-Linear Dose-Response Functions Reveal a Hormetic Relationship Between Stress and Learning

    OpenAIRE

    Zoladz, Phillip R.; Diamond, David M.

    2008-01-01

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...

  5. Factors of Nonlinear-ultrasonic Detection and Its Application to HR3C Fireside Corrosion

    Directory of Open Access Journals (Sweden)

    QIN Peng

    2016-11-01

    Full Text Available Based on the discussion of the factors influencing the nonlinear ultrasonic testing, the feasibility of nondestructive evaluation of HR3C fireside corrosion was investigated using nonlinear ultrasonic testing. The results show that the number of pulse string is no more than 2df/c and the installation of Hanning window is helpful to reduce the disturbance of the system, in addition, the rough surface of the sample has a significant impact on the nonlinear parameter β. The nonlinear coefficient demonstrates a phased growth trend as corrosion time prolongs. At the initial stage of corrosion(within 50h,there are small increments within 20% in the nonlinear coefficient, however,the nonlinear coefficient β is increased obviously with the duration time to 150h. Compared with un-corroded sample, the amplification in the sample corroded for 200h reaches to 260%. The monotonous varieties in nonlinear coefficient are consistent with the aggravation of corrosion damage,hence,it is feasible to nondestructively evaluate HR3C fireside corrosion by means of ultrasonic nonlinear testing.

  6. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  7. Effect of nonlinear stress-strain relationship on bending strength of isotropic graphite

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Oku, Tatsuo

    1978-05-01

    Four-point bending tests were made on rectangular isotropic 7477PT graphite specimens of different sizes to observe the relation between load and outermost fiber strain. Analytical methods, allowing for nonlinear stress-strain relationships different between tension and compression, were developed for calculating the fiber stress distribution in a beam and the failure probability based on the Weibull statistical theory for bending fracture. With increase of the stress, the stress-strain curves for tension deviate from the linearity and also from those for compression. The true bending strengths of the rectangular bars are 10 -- 20 percent lower than elastic bending strengths. Revised Weibull theory gives failure probability distributions agreeing with measured ones, compared with the theory based on elastic behavior. (auth.)

  8. The third-order nonlinear optical susceptibility of C{sub 60}-derived nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiangang, Wan [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jinming, Dong [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jie, Jiang [Nanjing Univ., JS (China). Dept. of Physics; Xing, D Y [Nanjing Univ., JS (China). Dept. of Physics

    1997-02-01

    Using the extended Su-Schrieffer-Heeger (SSH) model and the sum-over-state (SOS) method, we have calculated the third-order nonlinear polarizability {gamma} and its dispersion spectra for C{sub 60}-derived nanotubes, which is one of the narrowest tubes. Our numerical calculations indicate that both symmetry and size of the nanotubes have great effect on the third-order nonlinear polarizability {gamma} spectra. We find that with increasing size, both static {gamma} values and dynamical response peak values increase. When the atom number of the C{sub 60}-derived nanotubes is 140, the static {gamma} value is about 65 times larger than that of C{sub 60}, and the highest peak value of {gamma} (at 3{omega} = 3.52 eV) is about three orders larger than that of C{sub 60}. So, C{sub 60}-derived nanotubes may become a kind of good nonlinear optical materials. (orig.)

  9. Fabrication and characterization of THUNDER actuators—pre-stress-induced nonlinearity in the actuation response

    International Nuclear Information System (INIS)

    Kim, Younghoon; Jiang, Qing; Cai, Ling; Usher, Timothy

    2009-01-01

    This paper documents an experimental and theoretical investigation into characterizing the mechanical configurations and performances of THUNDER actuators, a type of piezoelectric actuator known for their large actuation displacements, through fabrication, measurements and finite element analysis. Five groups of such actuators with different dimensions were fabricated using identical fabrication parameters. The as-fabricated arched configurations, resulting from the thermo-mechanical mismatch among the constituent layers, and their actuation performances were characterized using an experimental set-up based on a laser displacement sensor and through numerical simulations with ANSYS, a widely used commercial software program for finite element analysis. This investigation shows that the presence of large residual stresses within the piezoelectric ceramic layer, built up during the fabrication process, leads to significant nonlinear electromechanical coupling in the actuator response to the driving electric voltage, and it is this nonlinear coupling that is responsible for the large actuation displacements. Furthermore, the severity of the residual stresses, and thus the nonlinearity, increases with increasing substrate/piezoelectric thickness ratio and, to a lesser extent, with decreasing in-plane dimensions of the piezoelectric layer

  10. Non-linear impact of glutathione depletion on C. elegans life span and stress resistance

    Directory of Open Access Journals (Sweden)

    Nadine Urban

    2017-04-01

    Full Text Available The redox environment in cells and organisms is set by low-molecular mass and protein-bound thiols, with glutathione (GSH representing a major intracellular redox buffer. Subtle thiol oxidation elicits signal transduction processes and adaptive responses to cope with stressors, whereas highly oxidizing conditions may provoke cell death. We here tested how thiol depletion affects life span, stress resistance and stress signaling in the model organism Caenorhabditis elegans. Diethyl maleate (DEM, an α,β-unsaturated carbonyl compound that conjugates to GSH and other thiols, decreased C. elegans life span at a concentration of 1 mM. In contrast, low and moderate doses of DEM (10–100 µM increased mean and maximum life span and improved resistance against oxidative stress. DEM-induced life span extension was not detectable in worms deficient in either the FoxO orthologue, DAF-16, or the Nrf2 orthologue, SKN-1, pointing to a collaborative role of the two transcription factors in life span extension induced by thiol depletion. Cytoprotective target genes of DAF-16 and SKN-1 were upregulated after at least 3 days of exposure to 100 µM DEM, but not 1 mM DEM, whereas only 1 mM DEM caused upregulation of egl-1, a gene controlled by a p53-orthologue, CEP-1. In order to test whether depletion of GSH may elicit effects similar to DEM, we suppressed GSH biosynthesis in worms by attenuating γ-glutamylcysteine synthetase (gcs-1 expression through RNAi. The decline in GSH levels elicited by gcs-1 knockdown starting at young adult stage did not impair viability, but increased both stress resistance and life expectancy of the worms. In contrast, gcs-1 knockdown commencing right after hatching impaired nematode stress resistance and rendered young adult worms prone to vulval ruptures during egg-laying. Thus, modest decrease in GSH levels in young adult worms may promote stress resistance and life span, whereas depletion of GSH is detrimental to freshly

  11. Non-linear impact of glutathione depletion on C. elegans life span and stress resistance.

    Science.gov (United States)

    Urban, Nadine; Tsitsipatis, Dimitrios; Hausig, Franziska; Kreuzer, Katrin; Erler, Katrin; Stein, Vanessa; Ristow, Michael; Steinbrenner, Holger; Klotz, Lars-Oliver

    2017-04-01

    The redox environment in cells and organisms is set by low-molecular mass and protein-bound thiols, with glutathione (GSH) representing a major intracellular redox buffer. Subtle thiol oxidation elicits signal transduction processes and adaptive responses to cope with stressors, whereas highly oxidizing conditions may provoke cell death. We here tested how thiol depletion affects life span, stress resistance and stress signaling in the model organism Caenorhabditis elegans. Diethyl maleate (DEM), an α,β-unsaturated carbonyl compound that conjugates to GSH and other thiols, decreased C. elegans life span at a concentration of 1mM. In contrast, low and moderate doses of DEM (10-100µM) increased mean and maximum life span and improved resistance against oxidative stress. DEM-induced life span extension was not detectable in worms deficient in either the FoxO orthologue, DAF-16, or the Nrf2 orthologue, SKN-1, pointing to a collaborative role of the two transcription factors in life span extension induced by thiol depletion. Cytoprotective target genes of DAF-16 and SKN-1 were upregulated after at least 3 days of exposure to 100µM DEM, but not 1mM DEM, whereas only 1mM DEM caused upregulation of egl-1, a gene controlled by a p53-orthologue, CEP-1. In order to test whether depletion of GSH may elicit effects similar to DEM, we suppressed GSH biosynthesis in worms by attenuating γ-glutamylcysteine synthetase (gcs-1) expression through RNAi. The decline in GSH levels elicited by gcs-1 knockdown starting at young adult stage did not impair viability, but increased both stress resistance and life expectancy of the worms. In contrast, gcs-1 knockdown commencing right after hatching impaired nematode stress resistance and rendered young adult worms prone to vulval ruptures during egg-laying. Thus, modest decrease in GSH levels in young adult worms may promote stress resistance and life span, whereas depletion of GSH is detrimental to freshly hatched and developing worms

  12. Propagation of the nonlinear plastic stress waves in semi-infinite bar

    Directory of Open Access Journals (Sweden)

    Edward Włodarczyk

    2017-03-01

    Full Text Available This paper presents the propagation longitudinal nonlinear plastic stress in thin semi-infinite rod or in wire. The rod is characterized by a nonlinear strain hardening model within the scope a plastic strain. The modulus of strain hardening is a decreasing function of the strain. The frontal bar end is suddenly launching to the velocity V, and subsequently moves with this one. General solution of this boundary value problem of the Lagrangian coordinate (material description and of the Eulerian one (spatial description has been presented. There has been carried out the physical interpretation of the obtained results by means of Lagrangian and Eulerian methods. The results of this paper may be utilized in scientific researches and in engineering practice.

  13. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  14. Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials

    International Nuclear Information System (INIS)

    DesAutels, G. Logan; Finet, Marc; Ristich, Scott; Whitaker, Matt; Brewer, Chris; Juhl, Shane; Walker, Mark; Powers, Peter

    2008-01-01

    Semi-insulating and conducting SiC crystalline transparent substrates were studied after being processed by femtosecond (fs) laser radiation (780 nm at 160 fs). Z-scan and damage threshold experiments were performed on both SiC bulk materials to determine each sample's nonlinear and threshold parameters. 'Damage' in this text refers to an index of refraction modification as observed visually under an optical microscope. In addition, a study was performed to understand the damage threshold as a function of numerical aperture. Presented here for the first time, to the best of our knowledge, are the damage threshold, nonlinear index of refraction, and nonlinear absorption measured values

  15. A Study of Nonlinear Elasticity Effects on Permeability of Stress Sensitive Shale Rocks Using an Improved Coupled Flow and Geomechanics Model: A Case Study of the Longmaxi Shale in China

    Directory of Open Access Journals (Sweden)

    Chenji Wei

    2018-02-01

    Full Text Available Gas transport in shale gas reservoirs is largely affected by rock properties such as permeability. These properties are often sensitive to the in-situ stress state changes. Accurate modeling of shale gas transport in shale reservoir rocks considering the stress sensitive effects on rock petrophysical properties is important for successful shale gas extraction. Nonlinear elasticity in stress sensitive reservoir rocks depicts the nonlinear stress-strain relationship, yet it is not thoroughly studied in previous reservoir modeling works. In this study, an improved coupled flow and geomechanics model that considers nonlinear elasticity is proposed. The model is based on finite element methods, and the nonlinear elasticity in the model is validated with experimental data on shale samples selected from the Longmaxi Formation in Sichuan Basin China. Numerical results indicate that, in stress sensitive shale rocks, nonlinear elasticity affects shale permeability, shale porosity, and distributions of effective stress and pore pressure. Elastic modulus change is dependent on not only in-situ stress state but also stress history path. Without considering nonlinear elasticity, the modeling of shale rock permeability in Longmaxi Formation can overestimate permeability values by 1.6 to 53 times.

  16. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  17. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  18. An introduction to the analysis of multi-cavity prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Silva, M.C.A.T. da.

    1986-01-01

    The present work is a study of multi-cavity prestressed concrete pressure vessels (PCRV) for nuclear reactors. A review is made of the designs, analises and models of multi-cavity concrete pressure vessels. A preliminary evaluation of the NONSAP program for applications in complex three-dimensional structures such as a multi-cavity pressure vessel is also made. A model of a PCRV of a 1000 MW(e) high-temperature gas cooled reactor was selected for a three-dimensional analysis with the NONSAP program. The results obtained are compared with experimental data. (Author) [pt

  19. Nonlinear feedback drives homeostatic plasticity in H2O2 stress response

    Science.gov (United States)

    Goulev, Youlian; Morlot, Sandrine; Matifas, Audrey; Huang, Bo; Molin, Mikael; Toledano, Michel B; Charvin, Gilles

    2017-01-01

    Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties. DOI: http://dx.doi.org/10.7554/eLife.23971.001 PMID:28418333

  20. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F

    International Nuclear Information System (INIS)

    Mellet, N.; Maget, P.; Meshcheriakov, D.; Lütjens, H.

    2013-01-01

    The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899–902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew–Goldberger–Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value. (paper)

  1. SCARF-4, Nonlinear Stresses in Pressure Vessel Liner with Plastic Behaviour Simulation

    International Nuclear Information System (INIS)

    Chadwick, A.

    1976-01-01

    1 - Nature of physical problem solved: Calculates non-linear stresses in a pressure vessel liner, simulating plastic behaviour on both panels and shear connectors. 2 - Method of solution: Iterations on the relevant formulae to obtain values of forces and deflections, adding a displacement factor when yielding has occurred. 3 - Restrictions on the complexity of the problem: It is assumed that the left-hand end-load will stay constant throughout each loading cycle. Number of panels must be less than or equal to 62

  2. Quantification of Applied Stresses of C-Ring Specimens for Stress Corrosion Cracking Tests

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sun Jae; Rhee, Chang Kyu; Kuk, Il Hiun; Choi, Jong Ho

    1997-01-01

    For comparing their resistances for stress-corrosion cracking(SCC) in the K600-MA, K690-MA, and K600-TT tubes, C-ring specimens were fabricated with the various thermal-treatments to control the distributions of the precipitates like Cr-carbides. The bending stresses were analyzed to determine the amounts to make the stress quantitatively to all the C-ring samples, and then the stresses were calculated with the relation to the outer diameter(O.D) deflection(δ) of the C-rings. To measure accurately the bending strains of the C-ring specimens, the strain gauges were used and the compression test was also carried out. In the elastic region, the stresses in both the transverse and the circumferential directions were different with the locations of the strain gauges as attached at α= 30 .deg., 45 .deg., and 90 .deg. to the principal stress direction, but those in the longitudinal direction were independent of their attached locations. Calculated stresses from the strains obtained using the strain gauges were well agreed with the theoretical. In the plastic region over δ=1.0mm, the stresses for the TT tubes showed lower values of about 400MPa than those for the MA tubes. However, the stresses among the TT tubes showed almost the similar values in this region. Therefore, the states of the stresses applied to the C-ring specimens would be different with the material conditions, i.e, the chemical compositions, the thermal treatments such as MA and TT

  3. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning.

    Science.gov (United States)

    Zoladz, Phillip R; Diamond, David M

    2008-10-16

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.

  4. Nonlinear bias analysis and correction of microwave temperature sounder observations for FY-3C meteorological satellite

    Science.gov (United States)

    Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin

    2018-01-01

    The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.

  5. C code generation applied to nonlinear model predictive control for an artificial pancreas

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Jørgensen, John Bagterp

    2017-01-01

    This paper presents a method to generate C code from MATLAB code applied to a nonlinear model predictive control (NMPC) algorithm. The C code generation uses the MATLAB Coder Toolbox. It can drastically reduce the time required for development compared to a manual porting of code from MATLAB to C...

  6. Nonlinear response and avalanche behavior in metallic glasses

    Science.gov (United States)

    Riechers, B.; Samwer, K.

    2017-08-01

    The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

  7. Optimal Constant-Stress Accelerated Degradation Test Plans Using Nonlinear Generalized Wiener Process

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2016-01-01

    Full Text Available Accelerated degradation test (ADT has been widely used to assess highly reliable products’ lifetime. To conduct an ADT, an appropriate degradation model and test plan should be determined in advance. Although many historical studies have proposed quite a few models, there is still room for improvement. Hence we propose a Nonlinear Generalized Wiener Process (NGWP model with consideration of the effects of stress level, product-to-product variability, and measurement errors for a higher estimation accuracy and a wider range of use. Then under the constraints of sample size, test duration, and test cost, the plans of constant-stress ADT (CSADT with multiple stress levels based on the NGWP are designed by minimizing the asymptotic variance of the reliability estimation of the products under normal operation conditions. An optimization algorithm is developed to determine the optimal stress levels, the number of units allocated to each level, inspection frequency, and measurement times simultaneously. In addition, a comparison based on degradation data of LEDs is made to show better goodness-of-fit of the NGWP than that of other models. Finally, optimal two-level and three-level CSADT plans under various constraints and a detailed sensitivity analysis are demonstrated through examples in this paper.

  8. Temperature dependence of residual stress in TiC coated Mo

    International Nuclear Information System (INIS)

    Yoshizawa, I.; Fukutomi, M.; Kamada, K.

    1984-01-01

    The effects of fabrication temperature and heat treatment on the residual stress in TiC coated Mo have been studied by using X-ray diffractometry. TiC coatings on Mo single crystal substrates with (100) and (111) surfaces were carried out with the Activated Reactive Evaporation (ARE) method. It was found that all Mo substrates measured show tensile residual stresses, and their values decrease as the fabrication temperature increases from 300 to 700 0 C. On the other hand, TiC films measured showed compressive residual stresses, for both TiC/Mo(100) and TiC/Mo(111) specimens. These compressive stresses also decreased with increasing the fabrication temperature. The residual stresses measured were higher in TiC/Mo(100) than in TiC/Mo(111). It was found that the compressive stresses in as-grown TiC films change to the tensile stresses after annealing at 1700 0 C for 30 min. The preferred orientations of TiC films were observed to depend on the fabrication temperature. However, no epitaxial growth of TiC films was found as far as the present experiment was concerned. (orig.)

  9. Robust non-gradient C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...

  10. Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model

    Energy Technology Data Exchange (ETDEWEB)

    Shokoohfar, Ahmad; Rahai, Alireza, E-mail: rahai@aut.ac.ir

    2016-03-15

    Highlights: • This paper describes nonlinear analyses of a 1:4 scale model of a (PCCV). • Coupled temp-disp. analysis and concrete damage plasticity are considered. • Temperature has limited effects on correct failure mode estimation. • Higher pre-stressing forces have limited effects on ultimate radial displacements. • Anchorage details of liner plates leads to prediction of correct failure mode. - Abstract: This paper describes the nonlinear analyses of a 1:4 scale model of a pre-stressed concrete containment vessel (PCCV). The analyses are performed under pressure and high temperature effects with considering anchorage details of liner plate. The temperature-time history of the model test is considered as an input boundary condition in the coupled temp-displacement analysis. The constitutive model developed by Chang and Mander (1994) is adopted in the model as the basis for the concrete stress–strain relation. To trace the crack pattern of the PCCV concrete faces, the concrete damage plasticity model is applied. This study includes the results of the thermal and mechanical behaviors of the PCCV subject to temperature loading and internal pressure at the same time. The test results are compared with the analysis results. The analysis results show that the temperature has little impact on the ultimate pressure capacity of the PCCV. To simulate the exact failure mode of the PCCV, the anchorage details of the liner plates around openings should be maintained in the analytical models. Also the failure mode of the PCCV structure hasn’t influenced by hoop tendons pre-stressing force variations.

  11. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  12. Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics

    KAUST Repository

    Yavari, Arash

    2012-03-09

    We present a geometric theory of nonlinear solids with distributed dislocations. In this theory the material manifold-where the body is stress free-is a Weitzenböck manifold, that is, a manifold with a flat affine connection with torsion but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan\\'s moving frames we construct the material manifold for several examples of bodies with distributed dislocations. We also present non-trivial examples of zero-stress dislocation distributions. More importantly, in this geometric framework we are able to calculate the residual stress fields, assuming that the nonlinear elastic body is incompressible. We derive the governing equations of nonlinear dislocation mechanics covariantly using balance of energy and its covariance. © 2012 Springer-Verlag.

  13. Stress analysis of liners for prestressed concrete reactor pressure vessels with regard to non-linear behaviour of liner material and of anchor-characteristics

    International Nuclear Information System (INIS)

    Oberpichler, R.; Schnellenbach, G.

    1975-01-01

    The thin liner attached by anchors like a membrane to the interior wall of a prestressed concrete reactor pressure vessel (PCRV) has to provide the leak-tightness of the vessel. Furthermore the liner may serve as internal shuttering for placing of concrete as well as a support for the cooling system. The two-dimensional behaviour of the liner is investigated with regard to non-linear anchor-characteristics and non-linear material behaviour of the liner. The analysis is based on a plane stress model under the assumption of a membrane state of the liner. Calculations are performed by the dynamic relaxation method. With the aid of available non-linear stress-strain diagrams, describing the post-buckling behaviour, individual panels are considered as buckled ones. The adjacent unbuckled panels are calculated on other non-linear diagrams. Strains and stresses in the liner and additional shear loads in the anchors can be calculated with arbitrary sizing and spacing of the anchors. With respect to the parameters they are easily controlled. Since actual loads on the liner are defined by the PCRV-behaviour, an economical and safe design is possible. Finally an extreme case is calculated to assess the maximum value of the shear-forces assuming zero post-buckling capacity for the buckled panel. (Auth.)

  14. Nonlinear finite element analyses: advances and challenges in dental applications.

    Science.gov (United States)

    Wakabayashi, N; Ona, M; Suzuki, T; Igarashi, Y

    2008-07-01

    To discuss the development and current status of application of nonlinear finite element method (FEM) in dentistry. The literature was searched for original research articles with keywords such as nonlinear, finite element analysis, and tooth/dental/implant. References were selected manually or searched from the PUBMED and MEDLINE databases through November 2007. The nonlinear problems analyzed in FEM studies were reviewed and categorized into: (A) nonlinear simulations of the periodontal ligament (PDL), (B) plastic and viscoelastic behaviors of dental materials, (C) contact phenomena in tooth-to-tooth contact, (D) contact phenomena within prosthodontic structures, and (E) interfacial mechanics between the tooth and the restoration. The FEM in dentistry recently focused on simulation of realistic intra-oral conditions such as the nonlinear stress-strain relationship in the periodontal tissues and the contact phenomena in teeth, which could hardly be solved by the linear static model. The definition of contact area critically affects the reliability of the contact analyses, especially for implant-abutment complexes. To predict the failure risk of a bonded tooth-restoration interface, it is essential to assess the normal and shear stresses relative to the interface. The inclusion of viscoelasticity and plastic deformation to the program to account for the time-dependent, thermal sensitive, and largely deformable nature of dental materials would enhance its application. Further improvement of the nonlinear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.

  15. Oxidative stress in hepatitis C infected end-stage renal disease subjects.

    Science.gov (United States)

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-07-14

    Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p total peroxide level and oxidative stress index were significantly lower (all p total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  16. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  17. PRINCIPAL STRESSES IN NON-LINEAR ANALYSIS OF BAKUN CONCRETE FACED ROCKFILL DAM

    Directory of Open Access Journals (Sweden)

    Mohd Hilton Ahmad

    2017-11-01

    Full Text Available With rapid population growth and accelerating economic development, much of the world’s WATER which requires urgent attention to ensure sustainable use. Nowadays, Concrete Faced Rockfill Dam (CFRD is preferred among dam consultant due to its advantages. They are designed to withstand all applied loads; namely gravity load due to its massive weight and hydrostatic load due to water thrust from the reservoir. Bakun CFRD, which ranks as the second highest CFRD in the world when completed, is analyzed to its safety due to both loads mentioned earlier by using Finite Element Method. 2-D plane strain finite element analysis of non-linear Duncan-Chang hyperbolic Model which formulated by Duncan and Chang is used to study the structural response of the dam in respect to the deformation and stresses of Main dam of Bakun’s CFRD project. Dead-Birth-Ghost element technique was used to simulate sequences of construction of the dam as well as during reservoir fillings. The comparison of rigid and flexible foundation on the behaviour of the dam was discussed. The maximum and minimum principal stresses are the maximum and minimum possible values of the normal stresses. The maximum principal stress controls brittle fracture. In the finite element modeling the concrete slab on the upstream was represented through six-noded element, while the interface characteristic between dam body and concrete slab was modeled using interface element. The maximum settlement and stresses of the cross section was founded and the distribution of them were discussed and tabulated in form of contours.

  18. Model and prediction of stress relaxation of polyurethane fiber

    Science.gov (United States)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  19. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    Directory of Open Access Journals (Sweden)

    Koylu Ahmet O

    2006-07-01

    Full Text Available Abstract Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+ hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p 0.05/3. Conclusion Oxidative stress is increased in both hepatitis C (+ and hepatitis C (- hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  20. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  1. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    International Nuclear Information System (INIS)

    Mohammadimehr, M.; Mohammadi-Dehabadi, A.A.; Maraghi, Z. Khoddami

    2017-01-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  2. Stress Wave attenuation in SiC3D/Al Composite

    International Nuclear Information System (INIS)

    Yuan Chunyuan; Wang Yangwei; Li Guoju; Zhang Xu; Gao Jubin

    2013-01-01

    SiC 3D /Al composite is a kind of special composite with interpenetrating network microstructure. The attenuation properties of stress wave propagation along the SiC 3D /Al composite are studied by a Split Hopkinson Pressure Bar system and FEM simulations, and the attenuation mechanism is discussed in this paper. Results show that the attenuation rate of the stress wave in the composite is up to 1.73MPa·mm −1 . The reduction of the amplitude of waves is caused by that plenty of interfaces between SiC and Al within the composite acting with stress waves. When the incident plane wave reaches the SiC 3D /Al interface, reflection wave and transmission wave propagates in different directions along the irregular interface between SiC phase and aluminium phase due to the impedance mismatch of them, which leads to the divergence of stress wave. At the same time, some stress micro-focuses occurs in the aluminium phase for the complex wave superimposition, and some plastic deformation may take place within such micro-regions, which results in the consumption of stress wave energy. In conclusion, the stress wave attenuation is derived from divergence and consumption of stress wave.

  3. Classification of acute stress using linear and non-linear heart rate variability analysis derived from sternal ECG

    DEFF Research Database (Denmark)

    Tanev, George; Saadi, Dorthe Bodholt; Hoppe, Karsten

    2014-01-01

    Chronic stress detection is an important factor in predicting and reducing the risk of cardiovascular disease. This work is a pilot study with a focus on developing a method for detecting short-term psychophysiological changes through heart rate variability (HRV) features. The purpose of this pilot...... study is to establish and to gain insight on a set of features that could be used to detect psychophysiological changes that occur during chronic stress. This study elicited four different types of arousal by images, sounds, mental tasks and rest, and classified them using linear and non-linear HRV...

  4. [Job stress of nursing aides in Swiss nursing homes : Nonlinear canonical analysis].

    Science.gov (United States)

    Ziegler, A; Bernet, M; Metzenthin, P; Conca, A; Hahn, S

    2016-08-01

    Due to demographic changes, the demand for care in nursing homes for the elderly and infirmed is growing. At the same time nursing staff shortages are also increasing. Nursing aides are the primary care providers and comprise the largest staff group in Swiss nursing homes. They are exposed to various forms of job stress, which threaten job retention. The aim of this study was to discover which features of the work situation and which personal characteristics of the nursing aides were related to the workload. Data from nursing aides in Swiss nursing homes were investigated through a secondary analysis of a national quantitative cross-sectional study, using descriptive statistics and a nonlinear canonical correlation analysis. A total of 1054 nursing aides were included in the secondary analysis, 94.6 % of whom were women between the ages of 42 and 61 years. The job stress most frequently mentioned in the descriptive analysis, almost 60 % of the participants referred to it, was staff shortage. The nonlinear canonical correlation analysis revealed that many job strains are caused by social and organizational issues. In particular, a lack of support from supervisors was associated with staff not feeling appreciated. These job strains correlated with a high level of responsibility, the feeling of being unable to work independently and a feeling of being exploited. These strains were predominant in the nursing aides between 32 and 51 years old who had part time jobs but workloads of 80-90 %. Middle-aged nursing aides who worked to 80-90 % are particularly at risk to resign from the position prematurely. Measures need to be mainly implemented in the social and organizational areas. It can be assumed that a targeted individual support, recognition and promotion of nursing aides may decrease the level of job strain.

  5. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2017-08-01

    Full Text Available Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing, inducing dilation and resulting in nonlinear joint shear strength and shear stress vs. shear displacement behaviors. The Barton–Bandis (BB joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints. The BB model accounts for asperity roughness and strength through the joint roughness coefficient (JRC and joint wall compressive strength (JCS parameters. Nevertheless, many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr–Coulomb (M−C model, which is only appropriate for smooth and non-dilatant joints. This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior. To bridge the BB and the M−C models, this paper aims to provide a linearized implementation of the BB model using a tangential technique to obtain the equivalent M−C parameters that can satisfy the nonlinear shear behavior of rock joints. These equivalent parameters, namely the equivalent peak cohesion, friction angle, and dilation angle, are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing. The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre- and post-peak regions of shear displacement, respectively. Likewise, the pre- and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established. Verifications of the linearized implementation of the BB model show that the shear stress-shear displacement curves, the dilation behavior, and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.

  6. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    International Nuclear Information System (INIS)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-01-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity. (c) 2000 The American Physical Society

  7. Inelastic analysis of finite length and depth cracked tubes

    International Nuclear Information System (INIS)

    Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.

    1977-01-01

    Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdowns. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behavior and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional, as well as three-dimensional finite element analyses, were performed. The two-dimensional element and its formulations are similar to those of NONSAP. The three-dimensional isoparametric element with elastic-plastic material characteristics together with the large deformation formulations used in NFAP are described in the Report BNL-20684. The numerical accuracy of the program was investigated and checked with known solutions of benchmark problems. In addition to the three-dimensional element which was specifically inserted into NFAP for this problem, other features such as direct pressure inputs for isoparametric elements, automatic load increment adjustments for convergent non-linear solutions, and automatic bandwidth reduction schemes are incorporated into the program thus allowing for a more economical evaluation of three-dimensional inelastic analysis. In summary the analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions

  8. Probabilistic analysis of a materially nonlinear structure

    Science.gov (United States)

    Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.

    1990-01-01

    A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.

  9. Nonlinear Michelson interferometer for improved quantum metrology

    OpenAIRE

    Luis, Alfredo; Rivas, Ángel

    2015-01-01

    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...

  10. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  11. Homogenized global nonlinear constitutive model for RC panels under cyclic loadings

    International Nuclear Information System (INIS)

    Huguet, Miquel; Voldoire, Francois; Kotronis, Panagiotis; Erlicher, Silvano

    2014-01-01

    A new nonlinear stress resultant global constitutive model for RC panels is presented. Concrete damage, concrete stress transfer at cracks and bond-slip stress are the main nonlinear effects identified at the local scale that constitute the basis for the construction of the stress resultant global model through an analytical homogenization technique. The closed form solution is obtained using general functions for the previous phenomena. (authors)

  12. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    KAUST Repository

    Gorb, Yuliya; Walton, Jay R.

    2010-01-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging

  13. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    OpenAIRE

    Koylu Ahmet O; Aslan Mehmet; Bolukbas Filiz F; Bolukbas Cengiz; Horoz Mehmet; Selek Sahbettin; Erel Ozcan

    2006-01-01

    Abstract Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results T...

  14. Development of stress relaxation measurement by a small size C-ring specimen method

    International Nuclear Information System (INIS)

    Shimanuki, Shizuka; Nakata, Kiyotomo; Kasahara, Shigeki; Kuniya, Jiro

    2002-01-01

    A stress relaxation measurement method has been developed by using C-ring specimens, and a specimen size effect has been evaluated taking radiation-induced stress relaxation into consideration. C-ring specimens were stressed by forcing a wedge in the gap. Giving an appropriate eccentric configuration in the half of the ring opposite the gap, the stress gradient along the circumference was eliminated in the section and the stress level could be varied by changing the gap spacing. The validity of the C-ring test method was confirmed by thermally stress relaxation experiments at annealing temperatures from 300 to 600degC for 1 min to 200 h in carbon steel: considerable stress relaxation could be measured for all levels of applied stress even at relatively low annealing temperatures. The relaxation results obtained from the C-ring test were in good agreement with those from a uniaxial tensile stress relaxation test. The smaller C-ring specimen with about 40 mm diameter, which is required for radiation-induced stress relaxation test, also showed adequate accuracy on stress relaxation at 600 to 830degC in stainless steel, compared with the large size C-ring specimen test. (author)

  15. Micromechanism Underlying Nonlinear Stress-Dependent K0 of Clays at a Wide Range of Pressures

    Directory of Open Access Journals (Sweden)

    Xiang-yu Shang

    2015-01-01

    Full Text Available In order to investigate the mechanism underlying the reported nonlinear at-rest coefficient of earth pressure, K0 of clays at high pressure, a particle-scale model which can be used to calculate vertical and horizontal repulsion between clay particles has been proposed. This model has two initial states which represent the clays at low pressure and high pressure, and the particles in this model can undergo rotation and vertical translation. The computation shows that the majority of particles in a clay sample at high pressure state would experience rotation during one-dimensional compression. In addition, rotation of particles which tends to form a parallel structure causes an increase of the horizontal interparticle force, while vertical translation leads to a decrease in it. Finally, the link between interparticle force, microstructure, and macroscopic K0 is analyzed and it can be used to interpret well the nonlinear changes in K0 with both vertical consolidation stress and height-diameter ratio.

  16. LINEAR AND NONLINEAR VISCOELASTIC CHARACTERIZATION OF PROTON EXCHANGE MEMBRANES AND STRESS MODELING FOR FUEL CELL APPLICATIONS

    OpenAIRE

    Patankar, Kshitish A

    2009-01-01

    In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111...

  17. Elastic and Viscoelastic Stresses of Nonlinear Rotating Functionally Graded Solid and Annular Disks with Gradually Varying Thickness

    Directory of Open Access Journals (Sweden)

    Allam M. N. M.

    2017-12-01

    Full Text Available Analytical and numerical nonlinear solutions for rotating variable-thickness functionally graded solid and annular disks with viscoelastic orthotropic material properties are presented by using the method of successive approximations.Variable material properties such as Young’s moduli, density and thickness of the disk, are first introduced to obtain the governing equation. As a second step, the method of successive approximations is proposed to get the nonlinear solution of the problem. In the third step, the method of effective moduli is deduced to reduce the problem to the corresponding one of a homogeneous but anisotropic material. The results of viscoelastic stresses and radial displacement are obtained for annular and solid disks of different profiles and graphically illustrated. The calculated results are compared and the effects due to many parameters are discussed.

  18. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Broda, M.

    1998-01-01

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C fiber /SiC matrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2 ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [de

  19. Stress analysis of two-dimensional C/C composite components for HTGR's core restraint techanism

    International Nuclear Information System (INIS)

    Satoshi Hanawa; Taiju Shibata; Jyunya Sumita; Masahiro Ishihara; Tatsuo Iyoku; Kazuhiro Sawa

    2005-01-01

    Carbon fiber reinforced carbon matrix composite (C/C composite) is one of the most promising materials for HTGRs core components due to their high strength as well as high temperature resistibility. One of the most attractive applications of C/C composite is the core restraint mechanism. The core restraint mechanism is located around the reflector block and it works to tighten reactor core blocks so as to restrict un-supposition flow pass of coolant gas (bypass flow) in the core. The restriction of bypass flow reads to the high efficiency of coolant flow rate inside of the reactor core. For the future HTGRs and VHTR (Very High Temperature Reactor), it is important to develop the core restraint mechanism with C/C composite substitute for metallic materials as used for HTTR. For the application of C/C composite to core restraint mechanism, it is important to investigate the applicability of C/C composite in viewpoint of structural integrity. In the present study, supposing the application of 2D-C/C composite to core restraint mechanism, thermal stress behavior was analyzed by considering the thickness of the C/C composite and the gap between reflector block and core restraint. It was shown from the thermal stress analysis that the circumferential stress decreases with increasing the gap and that the restraint force increases with increasing the thickness. By optimizing the thickness of C/C composite and gap between reflector block and core restraint, the C/C composite is applicable to the core restraint mechanism. (authors)

  20. The demonstration of nonlinear analytic model for the strain field induced by thermal copper filled TSVs (through silicon via

    Directory of Open Access Journals (Sweden)

    M. H. Liao

    2013-08-01

    Full Text Available The thermo-elastic strain is induced by through silicon vias (TSV due to the difference of thermal expansion coefficients between the copper (∼18 ppm/ °C and silicon (∼2.8 ppm/ °C when the structure is exposed to a thermal ramp budget in the three dimensional integrated circuit (3DIC process. These thermal expansion stresses are high enough to introduce the delamination on the interfaces between the copper, silicon, and isolated dielectric. A compact analytic model for the strain field induced by different layouts of thermal copper filled TSVs with the linear superposition principle is found to have large errors due to the strong stress interaction between TSVs. In this work, a nonlinear stress analytic model with different TSV layouts is demonstrated by the finite element method and the analysis of the Mohr's circle. The characteristics of stress are also measured by the atomic force microscope-raman technique with nanometer level space resolution. The change of the electron mobility with the consideration of this nonlinear stress model for the strong interactions between TSVs is ∼2–6% smaller in comparison with those from the consideration of the linear stress superposition principle only.

  1. Finite element analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Smith, P.D.; Cook, W.A.; Anderson, C.A.

    1977-01-01

    This paper discusses the development of a finite element code suitable for the safety analysis of prestressed concrete reactor vessels. The project has involved modification of a general purpose computer code to handle reinforced concrete structures as well as comparison of results obtained with the code against published experimental data. The NONSAP nonlinear structural analysis program was selected for the ease with which it can be modified to encompass problems peculiar to nuclear reactors. Pre- and post-processors have been developed for mesh generation and for graphical display of response variables. An out-of-core assembler and solver have been developed for the analysis of large three dimensional problems. The constitutive model for short term loads forms an orthotropic stress-strain relationship in which the concrete and the reinforcing steel are treated as a composite. The variation of stiffness and strength of concrete under multiaxial stress states is accounted for. Cracks are allowed to form at element integration points based on a three dimensional failure envelope in stress space. Composite tensile and shear properties across a crack are modified to account for bond degradation and for dowel action of the reinforcement. The constitutive law for creep is base on the expansion of the usual creep compliance function in the form of a Dirichlet exponential series. Empirical creep data are then fit to the Dirichlet series approximation by means of a least squares procedure. The incremental deformation process is subsequently reduced to a series of variable stiffness elasticity problems in which the past stress history is represented by a finite number of hidden material variables

  2. Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart

    NARCIS (Netherlands)

    Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.; Eykyn, T. R.

    2016-01-01

    Hyperpolarized (13)C MR measurements have the potential to display non-linear kinetics. We have developed an approach to describe possible non-first-order kinetics of hyperpolarized [1-(13)C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass

  3. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables predic...... prediction of short term triaxial behaviour from uniaxial stress-strain curves. Key results from a nonlinear finite element calculation of a gas-filled cavity are given, and the general features are related to a simple nonlinear method of stress evaluation....

  4. Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory

    Directory of Open Access Journals (Sweden)

    Hamid M. Sedighi

    Full Text Available This paper investigates the dynamic pull-in instability of vibrating micro-beams undergoing large deflection under electrosatically actuation. The governing equation of motion is derived based on the modified couple stress theory. Homotopy Perturbation Method is employed to produce the high accuracy approximate solution as well as the second-order frequency- amplitude relationship. The nonlinear governing equation of micro beam vibrations predeformed by an electric field includes both even and odd nonlinearities. The influences of basic non-dimensional parameters on the pull-in instability as well as the natural frequency are studied. It is demonstrated that two terms in series expansions are sufficient to produce high accuracy solution of the micro-structure. The accuracy of proposed asymptotic approach is validated via numerical results. The phase portrait of the system exhibits periodic and homoclinic orbits.

  5. Mechanical behavior and stress effects in hard superconductors: a review

    International Nuclear Information System (INIS)

    Koch, C.C.; Easton, D.S.

    1977-11-01

    The mechanical properties of type II superconducting materials are reviewed as well as the effect of stress on the superconducting properties of these materials. The bcc alloys niobium-titanium and niobium-zirconium exhibit good strength and extensive ductility at room temperature. Mechanical tests on these alloys at 4.2 0 K revealed serrated stress-strain curves, nonlinear elastic effects and reduced ductility. The nonlinear behavior is probably due to twinning and detwinning or a reversible stress-induced martensitic transformation. The brittle A-15 compound superconductors, such as Nb 3 Sn and V 3 Ga, exhibit unusual elastic properties and structural instabilities at cryogenic temperatures. Multifilamentary composites consisting of superconducting filaments in a normal metal matrix are generally used for superconducting devices. The mechanical properties of alloy and compound composites, tapes, as well as composites of niobium carbonitride chemically vapor deposited on high strength carbon fibers are presented. Hysteretic stress-strain behavior in the metal matrix composites produces significant heat generation, an effect which may lead to degradation in the performance of high field magnets. Measurements of the critical current density, J/sub c/, under stress in a magnetic field are reported. Modest stress-reversible degradation in J/sub c/ was observed in niobium-titanium composites, while more serious degradation was found in Nb 3 Sn samples. The importance of mechanical behavior to device performance is discussed

  6. cHRV Uncovering Daily Stress Dynamics Using Bio-Signal from Consumer Wearables.

    Science.gov (United States)

    Hao, Tian; Chang, Henry; Ball, Marion; Lin, Kun; Zhu, Xinxin

    2017-01-01

    Knowing the dynamics of one's daily stress is essential to effective stress management in the context of smart and connected health. However, there lacks a practical and unobtrusive means to obtain real-time and longitudinal stress information. In this paper, we attempt to derive a convenient HRV-based (heart rate variability) biomarker named cHRV, which can be used to reliably reflect stress dynamics. cHRV's key advantage lies in its low maintenance and high practicality. It can be efficiently calculated only using data from photoplethysmography (PPG) sensors, the mainstream heart rate sensor embedded in most of the consumer wearables like Apple Watch. Benefiting from the proliferation of wearables, cHRV is ideal for day-to-day stress monitoring. To evaluate its feasibility and performance, we have conducted 14 in-lab controlled experiments. The result shows that the proposed cHRV has strong correlation with the stress dynamics (r > 0.95), therefore exhibits great potential for continuous stress assessment.

  7. Panel manipulation in social stress testing: The Bath Experimental Stress Test for Children (BEST-C).

    Science.gov (United States)

    Cheetham, Tara J; Turner-Cobb, Julie M

    2016-01-01

    Whilst acute stress paradigms in adults make use of adult panel members, similar paradigms modified for child participants have not manipulated the panel. Most work has utilised an audience of adult confederates, regardless of the age of the population being tested. The aim of this study was to trial a social stress test for children that provided a meaningful environment using age-matched child peers as panel actors. Thirty-three participants (7-11 years) underwent the Bath Experimental Stress Test for Children (BEST-C). Based on the Trier Social Stress Test (TSST), it comprises a shortened six-minute public speaking task and four-minute maths challenge. It differs from previous stress tests by using age-matched children on the panel, pre-recorded and presented as a live feed, and includes an expanded manipulation check of subjective experience. Salivary cortisol was assessed at four time points, pre-post stress testing; life events, daily hassles and coping strategies were measured through questionnaires. A simple numerical coding scheme was applied to post-test interview data. The BEST-C generated a typical stress and adaptation response in salivary cortisol (p=.032). Age and gender differences were observed during recovery. Cortisol responses mapped directly onto three distinct subjective response patterns: (i) expected response and recovery; (ii) expected response, no recovery; (iii) no response. The BEST-C, utilising child confederates of participant target age is a meaningful social stress test for children. This is the first social stress test developed specifically for children that manipulates panel characteristics by using child confederates and a pre-recorded sham panel. Greater cortisol responses to the test were also found to match subjective verbal accounts of the experience. It offers a meaningful acute stress paradigm with potential applications to other child and adolescent age groups. Furthermore, it leads the way in the use of panel manipulation

  8. Weyl geometry and the nonlinear mechanics of distributed point defects

    KAUST Repository

    Yavari, A.

    2012-09-05

    The residual stress field of a nonlinear elastic solid with a spherically symmetric distribution of point defects is obtained explicitly using methods from differential geometry. The material manifold of a solid with distributed point defects-where the body is stress-free-is a flat Weyl manifold, i.e. a manifold with an affine connection that has non-metricity with vanishing traceless part, but both its torsion and curvature tensors vanish. Given a spherically symmetric point defect distribution, we construct its Weyl material manifold using the method of Cartan\\'s moving frames. Having the material manifold, the anelasticity problem is transformed to a nonlinear elasticity problem and reduces the problem of computing the residual stresses to finding an embedding into the Euclidean ambient space. In the case of incompressible neo-Hookean solids, we calculate explicitly this residual stress field. We consider the example of a finite ball and a point defect distribution uniform in a smaller ball and vanishing elsewhere. We show that the residual stress field inside the smaller ball is uniform and hydrostatic. We also prove a nonlinear analogue of Eshelby\\'s celebrated inclusion problem for a spherical inclusion in an isotropic incompressible nonlinear solid. © 2012 The Royal Society.

  9. Oxidative stress-induced metabolic changes in mouse C2C12 myotubes studied with high-resolution 13C, 1H, and 31P NMR spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O

    2010-01-01

    In this study, stress in relation to slaughter was investigated in a model system by the use of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy for elucidating changes in the metabolites in C2C12 myotubes exposed to H(2)O(2)-induced stress. Oxidative stress resulted in lower...... to lower levels of the unlabeled ((12)C) lactate were identified in the (1)H spectra after stress exposure. These data indicate an increase in de novo synthesis of alanine, concomitant with a release of lactate from the myotubes to the medium at oxidative stress conditions. The changes in the metabolite...

  10. QseC Mediates Osmotic Stress Resistance and Biofilm Formation in Haemophilus parasuis

    Directory of Open Access Journals (Sweden)

    Lvqin He

    2018-02-01

    Full Text Available Haemophilus parasuis is known as a commensal organism discovered in the upper respiratory tract of swine where the pathogenic bacteria survive in various adverse environmental stress. QseC, a histidine protein kinase of the two-component regulatory systems CheY/QseC, is involved in the environmental adaptation in bacteria. To investigate the role of QseC in coping with the adverse environment stresses and survive in the host, we constructed a qseC mutant of H. parasuis serovar 13 strain (ΔqseC, MY1902. In this study, we found that QseC was involved in stress tolerance of H. parasuis, by the ΔqseC exhibited a decreased resistance to osmotic pressure, oxidative stress, and heat shock. Moreover, the ΔqseC weakened the ability to take up iron and biofilm formation. We also found that the QseC participate in sensing the epinephrine in environment to regulate the density of H. parasuis.

  11. Nonlinear oxidation kinetics of nickel cermets

    International Nuclear Information System (INIS)

    Galinski, Henning; Bieberle-Huetter, Anja; Rupp, Jennifer L.M.; Gauckler, Ludwig J.

    2011-01-01

    The oxidation of a cermet of screen-printed nickel (Ni) and gadolinia-doped ceria (CGO) with an approximate median porosity of 50 vol.% has been studied via in situ X-ray diffraction and focused ion beam nanotomography in the temperature range 773-848 K. The oxidation kinetics of Ni to NiO is found to be highly nonlinear with an apparent activation energy of 2.8(2) eV in this temperature range. The nonlinear oxidation kinetics found is in good agreement with theoretical works on oxide growth driven by nonlinear inbuilt fields. Stress-induced Kirkendall void formation has been identified as the physical process that enhances the oxidation of Ni/CGO cermets. Compressive stresses within the Ni matrix result from the thermal expansion mismatch of Ni and CGO and cause plastic deformation as they exceed the yield stress of the Ni matrix. The pore size distribution of Kirkendall voids formed has been measured by FIB nanotomography and shows a significant temperature dependence. It is shown that even one cycle of reoxidation changes irreversibly the microstructure of the cermet which can be interpreted as the onset and main contribution to the mechanical degradation of the cermet.

  12. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers

    International Nuclear Information System (INIS)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-01-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [es

  13. Residual stress analysis in carbon fiber-reinforced SiC ceramics; Eigenspannungsanalyse in kohlenstoffaserverstaerkten SiC-Keramiken

    Energy Technology Data Exchange (ETDEWEB)

    Broda, M.

    1998-12-31

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C{sub fiber}/SiC{sub matrix} specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface ({mu}m) have been measured using characteristic X-radiation and applying the sin {sup 2}{psi} method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250{mu}m) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [Deutsch] Im Rahmen der Arbeit werden systematische Eigenspannungsanalysen an langfaserverstaerkten SiC-Keramiken durchgefuehrt. Hierbei werden polymerpyrolytisch abgeleitete, laminierte C{sub Faser}/SiC{sub Matrix} Proben und Bauteile untersucht, welche industriell gefertigt wurden. Fuer die zerstoerungsfreie Eigenspannungsermittlung kommen verschiedene Beugungsverfahren zum Einsatz. Dadurch kann die Eigenspannungsverteilung in diesen Proben vollstaendig erfasst werden, d.h. der Eigenspannungszustand im Oberflaechenbereich ({mu}m) wird mit Hilfe charakteristischer Roentgenstrahlung unter Nutzung der sin{sup 2}{psi}-Methode als auch der Streuvektor-Methode beschrieben. Fuer die Analyse der Eigenspannungen im Volumen (cm) wird die Neutronenbeugung herangezogen. Um den Spannungszustand in den einzelnen Fasermatten (ca. 250 {mu}m) in Abhaengigkeit ihrer Lage

  14. Irradiation creep of the martensitic steel no. 1.4914 between 400 deg C and 600 deg C (Mol 5B)

    International Nuclear Information System (INIS)

    Herschbach, K.; Doser, W.

    1983-01-01

    The irradiation induced creep of the martensitic steel DIN No. 1.4914 was investigated in the temperature range from 400 to 600 deg C for stresses up to 200 Mpa using the Mol 5B irradiation rig. The results point to a behavior quite different from that observed in the austenitic steels as will be discussed in detail. The creep is thermally activated and non-linearly dependent upon the applied stress. (author)

  15. Extrinsic contribution to the non-linearity in a PZT disc

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Rafel [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Albareda, Alfons [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Garcia, Jose E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Tiana, Jordi [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Ringgaard, Erling [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark); Wolny, Wanda W [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark)

    2004-10-07

    Non-linear increases in elastic, piezoelectric (direct and reverse) and dielectric coefficients have been measured under a high electrical field or under high mechanical stress. The permittivity and reverse piezoelectric coefficient can be measured by applying a high voltage at a low frequency, while the elastic compliance and direct piezoelectric coefficient can be measured at the first radial resonance frequency in order to apply a high stress. The non-linear behaviour has been analysed at the radial resonance of a disc. In all the materials tested, the results show that there is a close relation between the non-linear increments of the different coefficients. An empirical model has been proposed in order to describe and understand these relations. It is assumed that either the strain or the electrical displacement is produced by intrinsic and extrinsic processes, but only the latter, which consist mainly in the motion of domain walls, contribute to the non-linearity. The model enables us to find the domain wall contribution to elastic, piezoelectric and dielectric non-linearities, and allows us to compare the amplitudes of the fields and stresses that produce the same displacement of domain walls.

  16. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Susana eMonteiro

    2015-02-01

    Full Text Available Exposure to chronic stress can have broad effects on health ranging from increased predisposition for neuropsychiatric disorders to deregulation of immune responses. The chronic unpredictable stress (CUS protocol has been widely used to study the impact of stress exposure in several animal models and consists in the random, intermittent and unpredictable exposure to a variety of stressors during several weeks. CUS has consistently been shown to induce behavioral and immunological alterations typical of the chronic stress response. Unfortunately C57BL/6 mice, one of the most widely used mouse strains, due to the great variety of genetically modified lines, seem to be resistant to the commonly used 4-week-long CUS protocol. The definition of an alternative CUS protocol allowing the use of C57BL/6 mice in chronic stress experiments is a need. Here we show that by extending the CUS protocol to 8 weeks is possible to induce a chronic stress response in C57BL/6 mice, as revealed by abrogated body weight gain, increased adrenals weight and an overactive hypothalamic-pituitary-adrenal (HPA axis with increased levels of serum corticosterone. Moreover, we also observed stress-associated behavioral alterations, including the potentiation of anxious-like and depressive-like behaviors and a reduction of exploratory behavior, as well as subtle stress-related changes in the cell population of the thymus and of the spleen.The present protocol for C57BL/6 mice consistently triggers the spectrum of CUS-induced changes observed in rats and, thus, will be highly useful to researchers that need to use this particular mouse strain as an animal model of neuropsychiatric disorders and/or immune deregulation related to chronic unpredictable stress.

  17. Riemann-Cartan geometry of nonlinear disclination mechanics

    KAUST Repository

    Yavari, A.

    2012-03-23

    In the continuous theory of defects in nonlinear elastic solids, it is known that a distribution of disclinations leads, in general, to a non-trivial residual stress field. To study this problem, we consider the particular case of determining the residual stress field of a cylindrically symmetric distribution of parallel wedge disclinations. We first use the tools of differential geometry to construct a Riemannian material manifold in which the body is stress-free. This manifold is metric compatible, has zero torsion, but has non-vanishing curvature. The problem then reduces to embedding this manifold in Euclidean 3-space following the procedure of a classical nonlinear elastic problem. We show that this embedding can be elegantly accomplished by using Cartan\\'s method of moving frames and compute explicitly the residual stress field for various distributions in the case of a neo-Hookean material. © 2012 The Author(s).

  18. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice.

    Science.gov (United States)

    Monteiro, Susana; Roque, Susana; de Sá-Calçada, Daniela; Sousa, Nuno; Correia-Neves, Margarida; Cerqueira, João José

    2015-01-01

    Exposure to chronic stress can have broad effects on health ranging from increased predisposition for neuropsychiatric disorders to deregulation of immune responses. The chronic unpredictable stress (CUS) protocol has been widely used to study the impact of stress exposure in several animal models and consists in the random, intermittent, and unpredictable exposure to a variety of stressors during several weeks. CUS has consistently been shown to induce behavioral and immunological alterations typical of the chronic stress-response. Unfortunately C57BL/6 mice, one of the most widely used mouse strains, due to the great variety of genetically modified lines, seem to be resistant to the commonly used 4-week-long CUS protocol. The definition of an alternative CUS protocol allowing the use of C57BL/6 mice in chronic stress experiments is a need. Here, we show that by extending the CUS protocol to 8 weeks is possible to induce a chronic stress-response in C57BL/6 mice, as revealed by abrogated body weight gain, increased adrenals weight, and an overactive hypothalamic-pituitary-adrenal axis with increased levels of serum corticosterone. Moreover, we also observed stress-associated behavioral alterations, including the potentiation of anxious-like and depressive-like behaviors and a reduction of exploratory behavior, as well as subtle stress-related changes in the cell population of the thymus and of the spleen. The present protocol for C57BL/6 mice consistently triggers the spectrum of CUS-induced changes observed in rats and, thus, will be highly useful to researchers that need to use this particular mouse strain as an animal model of neuropsychiatric disorders and/or immune deregulation related to CUS.

  19. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  20. Influence of ion irradiation on internal residual stress in DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Karaseov, Platon A., E-mail: platon.karaseov@rphf.spbstu.r [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Podsvirov, Oleg A.; Karabeshkin, Konstantin V. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Vinogradov, Andrei Ya. [Ioffe Physicotechnical Institute RAS, Polytechnicheskaya 26, 195252 St. Petersburg (Russian Federation); Azarov, Alexander Yu. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation); Karasev, Nikita N. [State University of Information Technologies, Mechanics and Optics, Sablinskaya Str. 14, 197101 St. Petersburg (Russian Federation); Titov, Andrei I.; Smirnov, Alexander S. [St. Petersburg State Polytechnic University, Polytechnicheskaya St. 29, 195251 St. Petersburg (Russian Federation)

    2010-10-01

    The dependence of internal residual stress in thin diamond-like carbon films grown on Si substrate by PECVD technique on most important growth parameters, namely RF-power, DC bias voltage and substrate temperature, is described. Results show that compressive stress reaches the highest value of 2.7 GPa at low RF-power and DC bias. Increase of substrate temperature from 250 to 350 {sup o}C leads to nonlinear increase of stress value. Inhomogeneity of residual stress along the film surface disappears when film is deposited at temperatures above 275 {sup o}C. Post-growth film irradiation by P{sup +} and In{sup +} ions cause decrease of compressive stress followed by its inversion to tensile. For all ion energy combinations used residual stress changes linearly with normalized fluence up to 0.2 DPA with slope (8.7 {+-} 1.3) GPa/DPA.

  1. Effect of Environment on the Stress- Rupture Behavior of a C/SiC Composite Studied

    Science.gov (United States)

    Verrilli, Michael J.; Kiser, J. Douglas; Opila, Elizabeth J.; Calomino, Anthony M.

    2002-01-01

    Advanced reusable launch vehicles will likely incorporate fiber-reinforced ceramic matrix composites (CMC's) in critical propulsion and airframe components. The use of CMC's is highly desirable to save weight, improve reuse capability, and increase performance. One of the candidate CMC materials is carbon-fiber-reinforced silicon carbide (C/SiC). In potential propulsion applications, such as turbopump rotors and nozzle exit ramps, C/SiC components will be subjected to a service cycle that includes mechanical loading under complex, high-pressure environments containing hydrogen, oxygen, and steam. Degradation of both the C fibers and the SiC matrix are possible in these environments. The objective of this effort was to evaluate the mechanical behavior of C/SiC in various environments relevant to reusable launch vehicle applications. Stress-rupture testing was conducted at the NASA Glenn Research Center on C/SiC specimens in air and steam-containing environments. Also, the oxidation kinetics of the carbon fibers that reinforce the composite were monitored by thermogravimetric analysis in the same environments and temperatures used for the stress-rupture tests of the C/SiC composite specimens. The stress-rupture lives obtained for C/SiC tested in air and in steam/argon mixtures are shown in the following bar chart. As is typical for most materials, lives obtained at the lower temperature (600 C) are longer than for the higher temperature (1200 C). The effect of environment was most pronounced at the lower temperature, where the average test duration in steam at 600 C was at least 30 times longer than the lives obtained in air. The 1200 C data revealed little difference between the lives of specimens tested in air and steam at atmospheric pressure.

  2. Nonlinear Dynamical Analysis for a Plain Bearing

    Directory of Open Access Journals (Sweden)

    Ali Belhamra

    2014-03-01

    Full Text Available This paper investigates the nonlinear dynamic behavior for a plain classic bearing (fluid bearing lubricated by a non-Newtonian fluid of a turbo machine rotating with high speed; this type of fluid contains additives viscosity (couple-stress fluid film. The solution of the nonlinear dynamic problem of this type of bearing is determined with a spatial discretisation of the modified Reynolds' equation written in dynamic mode by using the optimized short bearing theory and a temporal discretisation for equations of rotor motion by the help of Euler's explicit diagram. This study analyzes the dynamic behavior of a rotor supported by two couple-stress fluid film journal lubricant enhances the dynamic stability of the rotor-bearing system considerably compared to that obtained when using a traditional Newtonian lubricant. The analysis shows that the dynamic behavior of a shaft which turns with high velocities is strongly nonlinear even for poor eccentricities of unbalance; the presence of parameters of couple stress allows strongly attenuating the will synchrony (unbalance and asynchrony (whipping amplitudes of vibrations of the shaft which supports more severe conditions (large unbalances.

  3. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, a generalized auxiliary equation method is proposed to construct more general exact solutions to two types of NLPDEs. First, we present new family of solutions to a nonlinear Klein-Gordon equation, by using this auxiliary equation method including a new first-order nonlinear ODE with six-degree nonlinear term proposed by Sirendaoreji. Then, we apply an indirect F-function method very close to the F-expansion method to solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully nonlinear convection C(l,n,p). Taking advantage of the new first-order nonlinear ODE with six degree nonlinear term, this indirect F-function method is used to map the solutions of C(l,n,p) equations to those of that nonlinear ODE. As a result, we can successfully obtain in a unified way, many exact solutions

  4. Non-linear analysis of skew thin plate by finite difference method

    International Nuclear Information System (INIS)

    Kim, Chi Kyung; Hwang, Myung Hwan

    2012-01-01

    This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed

  5. Interaction of stress with the martensitic phase transition in A15 compounds

    International Nuclear Information System (INIS)

    Welch, D.O.

    1981-01-01

    Recently there has been a resurgence of interest in the effect of the martensitic phase transition which occurs in many A15 compounds on superconductivity and on elastic and anelastic behavior. Since in many practical applications, A15 compounds are subject to considerable stress and strain, it is of interest to examine the interaction of stress with the martensitic transition; this paper is an examination of the effects of stress predicted by a simple Landau model which successfully describes many features of the transition and the related temperature dependence of the elastic modulus (c 11 -c 12 )/2. The effect of stress on the temperature ranges of stability and metastability of various types of martensitic domain is discussed. The non-linearity of the stress-strain relation in a polycrystalline A15 is studied

  6. Effect of Environment on Stress-Rupture Behavior of a Carbon Fiber-Reinforced Silicon Carbide (C/SiC) Ceramic Matrix Composite

    Science.gov (United States)

    Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas

    2002-01-01

    Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.

  7. Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yuyang Du

    2018-04-01

    Full Text Available Araloside C (AsC is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 μM for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2α and ATF6, and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12. Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.

  8. Residual Stress Measurement of SiC tile/Al7075 Hybrid Composites by Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Bok; Lee, Jun Ho; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of); Lee, Sang Bok; Lee, Sang Kwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Muslihd, M. Rifai [Center for Advanced Materials Science and Technology, Tangerang (India)

    2016-05-15

    In this research, SiC which has low density, high compressive strength, and high elastic modulus was used to fabricate the armor plate. In addition, Al which has low density and high toughness was used for a metal matrix of the composites. If two materials are combined, the composite can be effective materials for light weight armor applications. However, the existence of a large difference in coefficients of thermal expansion (CTE) between SiC and Al matrix, SiC/Al composites can have residual stresses while cooled in the fabrication process. Previous research reported that residual stresses in the composites or microstructures have an effect on the fatigue life and their mechanical properties. Some researchers reported about the residual stresses in the SiCp/Al metal matrix composites by numerical simulation systems, X-ray diffraction, and destructive methods. In order to analyze the residual stress of SiC/Al composites, the neutron diffraction as the non-destructive method was performed in this research. The 50 vol.% SiC{sub p}/Al7075 composites and SiC tile inserted 50 vol.% SiC{sub p}/Al7075 hybrid composites were measured to analyze the residual stress of Al (111) and SiC (111). Both samples had the tensile residual stresses in the Al (111) and the compressive residual stresses in the SiC (111) due to the difference in CTE.

  9. A generalized nonlinear tempeature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev. C. F. Liang & A. R. Ferguson

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2003-01-01

    Full Text Available Temperature is a major factor that affects metabolic processes in living organisms. Thermal time has been widely used to account for the effects of temperature on crop growth and development. However, the thermal time approach has been criticized because it assumes a linear relationship between the rate of crop growth or development and temperature. The response of the rate of crop growth and development to temperature is nonlinear. The objective of this study was to develop a generalized nonlinear temperature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev. C. F. Liang & A. R. Ferguson. The nonlinear function has three coefficients (the cardinal temperatures, which were 0ºC, 25ºC, and 40ºC. Data of temperature response of relative growth rate, relative leaf area growth, net photosynthesis rate, and leaf appearance rate in kiwifruit (female cv. Hayward at two light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear and the thermal time functions. The results showed that the generalized nonlinear response function is better than the thermal time approach, and the temperature response of several growth and developmental parameters in kiwifruit can be described with the same response function.

  10. Communicating the deadly consequences of global warming for human heat stress

    Science.gov (United States)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  11. Communicating the deadly consequences of global warming for human heat stress.

    Science.gov (United States)

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  12. A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials

    International Nuclear Information System (INIS)

    Zhou Haomiao; Zhou Youhe; Zheng Xiaojing; Ye Qiang; Wei Jing

    2009-01-01

    In this paper, a new general nonlinear magnetostrictive constitutive model is proposed for soft ferromagnetic materials, and it can predict magnetostrictive strain and magnetization curves under various pre-stresses. From the viewpoint of magnetic domain, it is based on the important physical fact that a nonlinear part of the elastic strain produced by magnetic domain wall motion under a pre-stress is responsible for the change of the maximum magnetostrictive strain in accordance with the pre-stress. Then the reduction of magnetostrictive strain from the maximum is caused by the domain rotation. Meanwhile, the magnetization under various pre-stresses in this model is introduced by magnetostrictive effect under the same pre-stress. A simplified 3-D model is put forward by means of linearizing the nonlinear function, i.e. the nonlinear part of the elastic strain produced by domain wall motion, and by using the quartic of magnetization to describe domain rotation. Besides, for the convenience of engineering applications, two-dimensional (plate or film) and one-dimensional (rod) models are also given for isotropic materials and their application ranges are discussed too. In comparison with the experimental data of Kuruzar and Jiles, it is found that this model can predict magnetostrictive strain and magnetization curves under various pre-stresses. The numerical simulation further illustrates that the new model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves. Additionally, this model can be degenerated to the existing magnetostrictive constitutive model for giant magnetostrictive materials (GMM), i.e. a special soft ferromagnetic material

  13. ''C-ring'' stress corrosion cracking scoping experiment for Zircaloy spent fuel cladding

    International Nuclear Information System (INIS)

    Smith, H.D.

    1986-03-01

    This document describes the purpose and execution of the stress corrosion cracking scoping experiment using ''C-ring'' cladding specimens. The design and operation of the ''C-ring'' stressing apparatus is described and discussed. The experimental procedures and post-experiment sample evaluation are described

  14. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    Science.gov (United States)

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. © International & American Associations

  15. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis.

    Science.gov (United States)

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC 8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na

  16. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  17. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O

    2010-01-01

    to anaerobic metabolism due to inhibition of the aerobic pathway in the mitochondria. Conversely, lower levels of unlabeled ((12)C) lactate were apparent at increasing severity of stress, which indicate that lactate is released from the myotubes to the medium. In conclusion, the metabolites identified......In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR...... spectra showed reduced levels of the amino acids alanine, glutamate, and aspartate after heat or anoxic stress. The decreases were smallest at 42 degrees C, larger at 45 degrees C, and most pronounced after anoxic conditions. In addition, in both the (1)H and the (31)P NMR spectra, decreases in the high...

  18. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions for viscoelastoplastic multi-modulus materials is studied analytically in uniaxial isothermic case to reveal the model abilities and applicability scope and to develop techniques of its identification, tuning and fitting. The constitutive equation is aimed at adequate modeling of the rheological phenomena set which is typical for reonomic materials exhibiting non-linear hereditary properties, strong strain rate sensitivity, secondary creep, yielding at constant stress, tension compression asymmetry and such temperature effects as increase of material compliance, strain rate sensitivity and rates of dissipation, relaxation, creep and plastic strain accumulation with temperature growth. The model is applicable for simulation of mechanical behaviour of various polymers, their solutions and melts, solid propellants, sand-asphalt concretes, composite materials, titanium and aluminum alloys, ceramics at high temperature and so on. To describe the influence of temperature on material mechanical behavior (under isothermic conditions, two scalar material parameters of the model (viscosity coefficient and “modulus of elasticity” are considered as a functions of temperature level. The general restrictions on their properties which are necessary and sufficient for adequate qualitative description of the basic thermomechanical phenomena related to typical temperature influence on creep and relaxation curves, creep recovery curves, creep curves under step-wise loading and quasi-static stress-strain curves of viscoelastoplastic materials are obtained. The restrictions are derived using systematic analytical study of general qualitative features of the theoretic creep and relaxation curves, creep curves under step-wise loading, long-term strength curves and stress-strain curves at constant strain or stress rates generated by the constitutive equation (under minimal

  19. An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion

    Science.gov (United States)

    Huang, Jingqi; Zhao, Mi; Du, Xiuli; Dai, Feng; Ma, Chao; Liu, Jingbo

    2018-05-01

    The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σ c and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.

  20. The development and validation of a numerical integration method for non-linear viscoelastic modeling

    Science.gov (United States)

    Ramo, Nicole L.; Puttlitz, Christian M.

    2018-01-01

    Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558

  1. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    KAUST Repository

    Gorb, Yuliya

    2010-11-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.

  2. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.; Goriely, A.

    2013-01-01

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can

  3. Nonlinear dynamics of a flexible rotor supported by turbulent journal bearings with couple stress fluid

    International Nuclear Information System (INIS)

    Lo, C.-Y.; Chang-Jian, C.-W.

    2008-01-01

    This study presents a dynamic analysis of a rotor supported by two turbulent flow model journal bearings and lubricated with couple stress fluid under nonlinear suspension. The dynamics of the rotor center and bearing center is studied. The dynamic equations are solved using the Runge-Kutta method. The analysis methods employed in this study is inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincare maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The results show that the values of dimensionless parameters l* strongly influence dynamic motions of bearing and rotor centre. It is found that couple stress fluid improve the stability of the system when l* > 0.4 even if the flow of this system is turbulent. We also demonstrated that the dimensionless rotational speed ratios s and the dimensionless unbalance parameter β are also significant system parameters. The modeling results thus obtained by using the method proposed in this paper can be employed to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided

  4. The Geometric Nonlinear Generalized Brazier Effect

    DEFF Research Database (Denmark)

    Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Damkilde, Lars

    2016-01-01

    that the generalized Brazier effect is a local effect not influencing the overall mechanical behavior of the structure significantly. The offset is a nonlinear geometric beam-type Finite Element calculation, which takes into account the large displacements and rotations. The beam-type model defines the stresses which...... mainly are in the direction of the beam axis. The generalized Brazier effect is calculated as a linear load case based on these stresses....

  5. FEATURES APPLICATION CIRCUIT MOMENT FINITE ELEMENT (MSSE) NONLINEAR CALCULATIONS OF PLATES AND SHELLS

    OpenAIRE

    Bazhenov V.A.; Sacharov A.S.; Guliar A. I.; Pyskunov S.O.; Maksymiuk Y.V.

    2014-01-01

    Based MSSE created shell CE general type, which allows you to analyze the stress-strain state of axisymmetrical shells and plates in problems of physical and geometric nonlinearity. The principal nonlinear elasticity theory, algorithms for solving systems of nonlinear equations for determining the temperature and plastic deformation.

  6. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    International Nuclear Information System (INIS)

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao

    2015-01-01

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications

  7. Application of Deep Learning and Supervised Learning Methods to Recognize Nonlinear Hidden Pattern in Water Stress Levels from Spatiotemporal Datasets across Rural and Urban US Counties

    Science.gov (United States)

    Eisenhart, T.; Josset, L.; Rising, J. A.; Devineni, N.; Lall, U.

    2017-12-01

    In the wake of recent water crises, the need to understand and predict the risk of water stress in urban and rural areas has grown. This understanding has the potential to improve decision making in public resource management, policy making, risk management and investment decisions. Assuming an underlying relationship between urban and rural water stress and observable features, we apply Deep Learning and Supervised Learning models to uncover hidden nonlinear patterns from spatiotemporal datasets. Results of interest includes prediction accuracy on extreme categories (i.e. urban areas highly prone to water stress) and not solely the average risk for urban or rural area, which adds complexity to the tuning of model parameters. We first label urban water stressed counties using annual water quality violations and compile a comprehensive spatiotemporal dataset that captures the yearly evolution of climatic, demographic and economic factors of more than 3,000 US counties over the 1980-2010 period. As county-level data reporting is not done on a yearly basis, we test multiple imputation methods to get around the issue of missing data. Using Python libraries, TensorFlow and scikit-learn, we apply and compare the ability of, amongst other methods, Recurrent Neural Networks (testing both LSTM and GRU cells), Convolutional Neural Networks and Support Vector Machines to predict urban water stress. We evaluate the performance of those models over multiple time spans and combine methods to diminish the risk of overfitting and increase prediction power on test sets. This methodology seeks to identify hidden nonlinear patterns to assess the predominant data features that influence urban and rural water stress. Results from this application at the national scale will assess the performance of deep learning models to predict water stress risk areas across all US counties and will highlight a predominant Machine Learning method for modeling water stress risk using spatiotemporal

  8. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  9. Applications and algorithms for mixed integer nonlinear programming

    International Nuclear Information System (INIS)

    Leyffer, Sven; Munson, Todd; Linderoth, Jeff; Luedtke, James; Miller, Andrew

    2009-01-01

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Discrete decision variables model dichotomies, discontinuities, and general logical relationships. Nonlinear functions are required to accurately represent physical properties such as pressure, stress, temperature, and equilibrium. Problems involving both discrete variables and nonlinear constraint functions are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems faced by researchers and practitioners. In this paper, we describe relevant scientific applications that are naturally modeled as MINLPs, we provide an overview of available algorithms and software, and we describe ongoing methodological advances for solving MINLPs. These algorithmic advances are making increasingly larger instances of this important family of problems tractable.

  10. Initial report on stress-corrosion-cracking experiments using Zircaloy-4 spent fuel cladding C-rings

    International Nuclear Information System (INIS)

    Smith, H.D.

    1988-09-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is sponsoring C-ring stress corrosion cracking scoping experiments as a first step in evaluating the potential for stress corrosion cracking of spent fuel cladding in a potential tuff repository environment. The objective is to scope the approximate behavior so that more precise pressurized tube testing can be performed over an appropriate range of stress, without expanding the long-term effort needlessly. The experiment consists of stressing, by compression with a dead weight load, C-rings fabricated from spent fuel cladding exposed to an environment of Well J-13 water held at 90/degree/C. The results indicate that stress corrosion cracking occurs at the high stress levels employed in the experiments. The cladding C-rings, tested at 90% of the stress at which elastic behavior is obtained in these specimens, broke in 25 to 64 d when tested in water. This was about one third of the time required for control tests to break in air. This is apparently the first observation of stress corrosion under the test conditions of relatively low temperature, benign environment but very high stress. The 150 ksi test stress could be applied as a result of the particular specimen geometry. By comparison, the uniaxial tensile yield stress is about 100 to 120 ksi and the ultimate stress is about 150 ksi. When a general model that fits the high stress results is extrapolated to lower stress levels, it indicates that the C-rings in experiments now running at /approximately/80% of the yield strength should take 200 to 225 d to break. 21 refs., 24 figs., 5 tabs

  11. Nonlinear ion-acoustic waves and solitons in a magnetized plasma

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.

    1981-01-01

    A unified formulation is presented to study the nonlinear low-frequency electrostatic waves in a magnetized low-β plasma. It is found that there exist three types of nonlinear waves; (1) nonlinear ion-cyclotron periodic waves with a wave speed V/sub p/ > C/sub s/ (ion-acoustic velocity); (2) nonlinear ion-acoustic periodic waves with V/sub p/ < C/sub s/ costheta; and (3) ion-acoustic solitons with C/sub s/ costheta < V/sub p/ < C/sub s/, where theta is the angle between the wave vector and the magnetic field

  12. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.G., E-mail: Joshua.Stone@ga.com; Schleicher, R.; Deck, C.P.; Jacobsen, G.M.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) fiber, SiC matrix composites (SiC/SiC) are being considered as a cladding material for light water reactors in order to improve safety performance. Engineered, multi-layer cladding designs consisting of both monolithic SiC (mSiC) and SiC/SiC have been examined as promising concepts to meet both strength and impermeability requirements. A new model has been developed to calculate stresses and failure probabilities for multi-layer cladding consisting of SiC-based materials in reactor operating conditions. The results show that stresses in SiC-based cladding are dominated by temperature-dependent irradiation-induced swelling, with the largest stresses occurring during the cold shutdown conditions. Failure probabilities are driven by the resulting tensile stresses at the cladding inner wall, while the outer wall is subject to compressive stresses. This indicates that the inner SiC/SiC, outer mSiC concept has the lowest failure probability, as the pseudo-plastic deformation of the composite reduces tensile loading and the compressed monolith provides a reliable, impermeable barrier to fission product release.

  13. Stress Analysis of Composites.

    Science.gov (United States)

    1981-01-01

    8217, Finite Elements in Nonlinear Mechanics, 1., 109-130, Tapir Publishers, Norway (1978). 9. A.J. Barnard and P.W. Sharman, ’Elastic-Plastic Analysis Using...Hybrid Stress Finite Elements,’ Finite Elements in Nonlinear Mechanics, 1, 131-148, Tapir Publishers Norway, (1978). ’.........Pian, ’Variational

  14. FEATURES APPLICATION CIRCUIT MOMENT FINITE ELEMENT (MSSE NONLINEAR CALCULATIONS OF PLATES AND SHELLS

    Directory of Open Access Journals (Sweden)

    Bazhenov V.A.

    2014-06-01

    Full Text Available Based MSSE created shell CE general type, which allows you to analyze the stress-strain state of axisymmetrical shells and plates in problems of physical and geometric nonlinearity. The principal nonlinear elasticity theory, algorithms for solving systems of nonlinear equations for determining the temperature and plastic deformation.

  15. Multi-parameter crack tip stress state description for evaluation of nonlinear zone width in silicate composite specimens in component splitting/bending test geometry

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Frantík, P.; Sopek, J.; Malíková, L.; Seitl, Stanislav

    2015-01-01

    Roč. 38, č. 2 (2015), s. 200-214 ISSN 8756-758X R&D Projects: GA ČR(CZ) GAP104/11/0833 Institutional support: RVO:68081723 Keywords : near-crack tip fields * Williams series * higher-order terms * stress field * failure criterion * nonlinear zone * quasi-brittle fracture * splitting-bending geometry Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.838, year: 2015

  16. Stress-temperature-lifetime response of nicalon fiber-reinforced SiC composites in air

    International Nuclear Information System (INIS)

    Lin, Hua-Tay; Becher, P.F.

    1996-01-01

    Time-to-failure tests were conducted in four-point flexure and in air as a function of stress levels and temperatures to study the lifetime response of various Nicalon fiber-reinforced SiC (designated as Nic/SiC) composites with a graphitic interfacial coating. The results indicated that all of the Nic/SiC composites exhibit a similar stress-dependent failure at applied stress greater than a threshold value. In this case, the lifetimes of the composites increased with decrease in both stress level and test temperature. The lifetime of the composites appeared to be relatively insensitive to the thickness of graphitic interface layer and was enhanced somewhat by the addition of oxidation inhibitors. Electron microscopy and oxidation studies indicated that the life of the Nic/SiC composites was governed by the oxidation of the graphitic interfaces and the on of glass(es) in composites due to the oxidation of the fiber and matrix, inhibitor phases

  17. Numerical simulation of stress distribution in Al2 O3-TiC/Q235 diffusion bonded joints

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stress was also investigated. The results indicate that the gradients of the axial stress and shear stress are great near the joint edge. The maximal shear stress produces at the interface of the Al2O3-TiC and Ti interlayer. With the increase of Cu interlayer thickness, the magnitudes of the axial stress and shear stress first decrease and then increase. The distribution of the axial stress changes greatly with a little change in the shear stress. The shear fracture initiates at the interface of the Al2O3-TiC/ Ti interlayer with high shear stress and then propagates to the Al2O3-TiC side, which is consistent with the stress FEM calculating results.

  18. Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms.

    Directory of Open Access Journals (Sweden)

    Piper R Hunt

    Full Text Available Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that can generate free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. The C. elegans cap'n'collar (CNC transcription factor, SKN-1, mediates protective responses to oxidative stress. Genetic analysis showed that skn-1 activity is required for lifespan extension by low-dose plumbagin in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.

  19. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  20. Nonlinear Stress Relaxation of ``Quasi-monodisperse'' Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)

    Science.gov (United States)

    Watanabe, Hiroshi; Matsumiya, Yumi

    Viscoelastic relaxation was examined for entangled miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS). The terminal relaxation times of PI and PtBS therein, τPI and τPtBS, changed with the composition wPI and the molecular weights MPI and MPtBS. This ratio became unity when the wPI, MPI, and MPtBS values were chosen adequately. For example, in a blend with wPI = 0.75, MPI = 321k, and MPtBS = 91k at T = 40ûC, τPI/τPtBS = 1 and M/Me = 55 and 8.3 for PI and PtBS. Under small strains, this blend exhibited sharp, single-step terminal relaxation as similar to monodisperse homopolymers, thereby behaving as a ``quasi-monodisperse'' material. Under large step strains, the blend exhibited moderate nonlinear damping known as the type-A damping for entangled monodisperse homopolymers. Nevertheless, PI had M/Me = 55 in that blend, and homopolymers having such a large M/Me ratio exhibit very strong type-C damping. Thus, as compared to homopolymers, the nonlinearity was suppressed in the PI/PtBS blend having the large M/Me ratio. This suppression is discussed in relation to the slow Rouse retraction of the coexisting PtBS chains (having M/Me = 8.3 in the blend).

  1. Seismic analysis of piping with nonlinear supports

    International Nuclear Information System (INIS)

    Barta, D.A.; Huang, S.N.; Severud, L.K.

    1980-01-01

    The modeling and results of nonlinear time-history seismic analyses for three sizes of pipelines restrained by mechanical snubbes are presented. Numerous parametric analyses were conducted to obtain sensitivity information which identifies relative importance of the model and analysis ingredients. Special considerations for modeling the pipe clamps and the mechanical snubbers based on experimental characterization data are discussed. Comparisions are also given of seismic responses, loads and pipe stresses predicted by standard response spectra methods and the nonlinear time-history methods

  2. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Murugesan Chandrasekaran

    2016-08-01

    Full Text Available A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i identity of AMF species and AMF inoculation, (ii identity of host plants (C3 vs. C4 and plant functional groups, (iii soil texture and level of salinity and (iv experimental condition (greenhouse vs. field. Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC8 ds/m saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus intraradices had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K uptake. However, it showed negative effects in

  3. Comparative study on stress in AlGaN/GaN HEMT structures grown on 6H-SiC, Si and on composite substrates of the 6H-SiC/poly-SiC and Si/poly-SiC

    International Nuclear Information System (INIS)

    Guziewicz, M; Kaminska, E; Piotrowska, A; Golaszewska, K; Domagala, J Z; Poisson, M-A; Lahreche, H; Langer, R; Bove, P

    2008-01-01

    The stresses in GaN-based HEMT structures grown on both single crystal 6H SiC(0001) and Si(111) have been compared to these in the HEMT structures grown on new composite substrates engendered as a thin monocrystalline film attached to polycrystalline 3C-SiC substrate. By using HRXRD technique and wafer curvature method we show that stress of monocrystalline layer in composite substrates of the type mono-Si/poly-SiC is lower than 100 MPa and residual stress of epitaxial GaN buffer grown on the composite substrate does not exceed 0.31 GPa, but in the cases of single crystal SiC or Si substrates the GaN buffer stress is compressive in the range of -0.5 to -0.75 GPa. The total stress of the HEMT structure calculated from strains is consistent with the averaged stress of the multilayers stack measured by wafer curvature method. The averaged stress of HEMT structure grown on single crystals is higher than those in structures grown on composites substrates

  4. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress

    Science.gov (United States)

    Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.

    2017-08-01

    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.

  5. Nonlinear aspects of structural fatigue damage assessment and accumulation

    International Nuclear Information System (INIS)

    Leis, B.N.

    1977-01-01

    The present paper reviews a recently developed concept for structural fatigue analysis which is capable of accounting for nonlinearities in both the above noted transformations. It is shown that, for cases where the local stressing and straining is proportional, the multiplicity of initiation sites and mechanisms observed to dominate structural fatigue resistance can be explained in terms of these additional nonlinearities. The ability of current concepts for structural fatigue analysis which account for nonlinear action to handle situaions where nonproportional stressing occurs in fatigue critical locations is next examined. Limitations in the assumptions made in fatigue analysis are shown to essentially preclude the application of present technology to that class of problems. A new approach whereby the present fatigue analysis procedures based on a deformation-type plasticity analysis can be extended to handle the nonproportional cycling by their application on a 'memory event' by 'memory event' basis is postulated and discussed in the context of a simple component

  6. Neuro-Epigenetic Indications of Acute Stress Response in Humans: The Case of MicroRNA-29c.

    Directory of Open Access Journals (Sweden)

    Sharon Vaisvaser

    Full Text Available Stress research has progressively become more integrative in nature, seeking to unfold crucial relations between the different phenotypic levels of stress manifestations. This study sought to unravel stress-induced variations in expression of human microRNAs sampled in peripheral blood mononuclear cells and further assess their relationship with neuronal and psychological indices. We obtained blood samples from 49 healthy male participants before and three hours after performing a social stress task, while undergoing functional magnetic resonance imaging (fMRI. A seed-based functional connectivity (FC analysis was conducted for the ventro-medial prefrontal cortex (vmPFC, a key area of stress regulation. Out of hundreds of microRNAs, a specific increase was identified in microRNA-29c (miR-29c expression, corresponding with both the experience of sustained stress via self-reports, and alterations in vmPFC functional connectivity. Explicitly, miR-29c expression levels corresponded with both increased connectivity of the vmPFC with the anterior insula (aIns, and decreased connectivity of the vmPFC with the left dorso-lateral prefrontal cortex (dlPFC. Our findings further revealed that miR-29c mediates an indirect path linking enhanced vmPFC-aIns connectivity during stress with subsequent experiences of sustained stress. The correlative patterns of miR-29c expression and vmPFC FC, along with the mediating effects on subjective stress sustainment and the presumed localization of miR-29c in astrocytes, together point to an intriguing assumption; miR-29c may serve as a biomarker in the blood for stress-induced functional neural alterations reflecting regulatory processes. Such a multi-level model may hold the key for future personalized intervention in stress psychopathology.

  7. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  8. Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity

    Science.gov (United States)

    2015-08-13

    sufficient conditions for the compatibility of displacement gradient and the existence of stress functions on non-contractible bodies. The main...conditions. 15.  SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION...complex allows one to readily derive the necessary and sufficient conditions for the compatibility of displacement gradient and the existence of stress

  9. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  10. Effective potentials in nonlinear polycrystals and quadrature formulae

    Science.gov (United States)

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  11. Residual stress and mechanical properties of SiC ceramic by heat treatment

    International Nuclear Information System (INIS)

    Yoon, H.K.; Kim, D.H.; Shin, B.C.

    2007-01-01

    Full text of publication follows: Silicon carbide is a compound of relatively low density, high hardness, elevated thermal stability and good thermal conductivity, resulting in good thermal shock resistance. Because of these properties, SiC materials are widely used as abrasives and refractories. In this study, SiC single and poly crystals was grown by the sublimation method using the SiC seed crystal and SiC powder as the source material. Mechanical properties of SiC single and poly crystals are carried out by using the nano-indentation method and small punch test after the heat treatment. As a result, mechanical properties of SiC poly crystal had over double than single. And SiC single and poly crystals were occurred residual stress, but residual stress was shown relaxant properties by the effect of heat treatment. (authors)

  12. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Sung, C., E-mail: csung@physics.ucla.edu [University of California, Los Angeles, Los Angeles, California 90095 (United States); White, A. E.; Greenwald, M.; Howard, N. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Churchill, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Holland, C. [University of California, San Diego, La Jolla, California 92093 (United States); Theiler, C. [Ecole Polytechnique Fédérale de Lausanne, SPC, Lausanne 1015 (Switzerland)

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  13. Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis.

    Science.gov (United States)

    Song, Yu-Feng; Hogstrand, Christer; Wei, Chuan-Chuan; Wu, Kun; Pan, Ya-Xiong; Luo, Zhi

    2017-09-01

    The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca 2+ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca 2+ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipid metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress-cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Riemann-Cartan geometry of nonlinear disclination mechanics

    KAUST Repository

    Yavari, A.; Goriely, A.

    2012-01-01

    In the continuous theory of defects in nonlinear elastic solids, it is known that a distribution of disclinations leads, in general, to a non-trivial residual stress field. To study this problem, we consider the particular case of determining

  15. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    International Nuclear Information System (INIS)

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress

  16. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Costa, P.G. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Branco, L.G.S. [Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Leite-Panissi, C.R.A. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-09-19

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.

  17. On Maximally Dissipative Shock Waves in Nonlinear Elasticity

    OpenAIRE

    Knowles, James K.

    2010-01-01

    Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...

  18. Biosynthesis of vitamin C by yeast leads to increased stress resistance.

    Directory of Open Access Journals (Sweden)

    Paola Branduardi

    Full Text Available BACKGROUND: In industrial large scale bio-reactions micro-organisms are generally exposed to a variety of environmental stresses, which might be detrimental for growth and productivity. Reactive oxygen species (ROS play a key role among the common stress factors--directly--through incomplete reduction of O(2 during respiration, or indirectly--caused by other stressing factors. Vitamin C or L-ascorbic acid acts as a scavenger of ROS, thereby potentially protecting cells from harmful oxidative products. While most eukaryotes synthesize ascorbic acid, yeast cells produce erythro-ascorbic acid instead. The actual importance of this antioxidant substance for the yeast is still a subject of scientific debate. METHODOLOGY/PRINCIPAL FINDINGS: We set out to enable Saccharomyces cerevisiae cells to produce ascorbic acid intracellularly to protect the cells from detrimental effects of environmental stresses. We report for the first time the biosynthesis of L-ascorbic acid from D-glucose by metabolically engineered yeast cells. The amount of L-ascorbic acid produced leads to an improved robustness of the recombinant cells when they are subjected to stress conditions as often met during industrial fermentations. Not only resistance against oxidative agents as H(2O(2 is increased, but also the tolerance to low pH and weak organic acids at low pH is increased. CONCLUSIONS/SIGNIFICANCE: This platform provides a new tool whose commercial applications may have a substantial impact on bio-industrial production of Vitamin C. Furthermore, we propose S. cerevisiae cells endogenously producing vitamin C as a cellular model to study the genesis/protection of ROS as well as genotoxicity.

  19. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4

    Science.gov (United States)

    Huggins, Christopher J.; Mayekar, Manasi K.; Martin, Nancy; Saylor, Karen L.; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C.; Quiñones, Octavio A.

    2015-01-01

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg−/− mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg−/− mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg−/− mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells. PMID:26667036

  20. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    Science.gov (United States)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  1. Stress-related interdiffusion in dc sputtered TiN/B endash C endash N multilayers

    International Nuclear Information System (INIS)

    Fayeulle, S.; Nastasi, M.

    1998-01-01

    The diffusion in TiN/B endash C endash N multilayers during vacuum annealing at temperatures up to 1000thinsp degree C and/or 300 keV argon irradiation is studied. Changes in composition, stress field, bilayer repeat length, and interface quality are reported. The effect of stress on diffusion is proved by performing the same annealing or the same irradiation on a multilayer with and without compressive stress. During thermal annealing, demixing or phase separation is observed. On the contrary, during irradiation, mixing occurs. Both phenomena are enhanced in the presence of the stress field. copyright 1998 American Institute of Physics

  2. Residual stress in the first wall coating materials of TiC and TiN for fusion reactor

    International Nuclear Information System (INIS)

    Qiu Shaoyu

    1997-01-01

    Residual stresses measurement in the first wall coating of a fusion reactor of TiC and TiN films by X-ray diffraction 'sin 2 ψ methods' were described. The authors have studied on the effect of conditions of specimen preparation (such as coating method, substrate materials, film thickness and deposition temperature) on the residual stress of TiC and TiN films coated onto Mo, 316LSS and Pocographite by chemical vapor deposition (CVD) and physical vapor deposition (PVD) method. All films prepared in this study were found to have a compressive stresses and the CVD method gave lower residual stress than PVD method. TiC film coated on Mo substrate at 1100 degree C by CVD method showed that residual stress as the film thickness was raised from 14 μm to 60 μm, on the other hand, residual stress by PVD method exhibited a high compressive stresses, this kind of stress was principally the intrinsic stress, and a marked decrease in the residual with raising the deposition temperature (200 degree C∼650 degree C) was demonstrated. Origins of the residual stress were discussed by correlation with differences between thermal expansion coefficients, and also with fabrication methods

  3. Non-linear effects in the Snoek relaxation of Nb-O

    International Nuclear Information System (INIS)

    Hermida, E.B.; Povolo, F.

    1996-01-01

    Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)

  4. Nonlinear morphoelastic plates I: Genesis of residual stress

    KAUST Repository

    McMahon, J.

    2011-04-28

    Volumetric growth of an elastic body may give rise to residual stress. Here a rigorous analysis is given of the residual strains and stresses generated by growth in the axisymmetric Kirchhoff plate. Balance equations are derived via the Global Constraint Principle, growth is incorporated via a multiplicative decomposition of the deformation gradient, and the system is closed by a response function. The particular case of a compressible neo-Hookean material is analyzed, and the existence of residually stressed states is established. © SAGE Publications 2011.

  5. Nonlinear morphoelastic plates I: Genesis of residual stress

    KAUST Repository

    McMahon, J.; Goriely, A.; Tabor, M.

    2011-01-01

    Volumetric growth of an elastic body may give rise to residual stress. Here a rigorous analysis is given of the residual strains and stresses generated by growth in the axisymmetric Kirchhoff plate. Balance equations are derived via the Global Constraint Principle, growth is incorporated via a multiplicative decomposition of the deformation gradient, and the system is closed by a response function. The particular case of a compressible neo-Hookean material is analyzed, and the existence of residually stressed states is established. © SAGE Publications 2011.

  6. Nonlinear Stress-Strain Behavior of Plasma Sprayed Ceramic Coatings

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří; Kroupa, František

    2005-01-01

    Roč. 50, č. 3 (2005), s. 251-262 ISSN 0001-7043 R&D Projects: GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * ceramic coatings * Young’s modulus * nonlinear behavior * microcracks Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  7. A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys

    International Nuclear Information System (INIS)

    Jin Ke; Kou Yong; Zheng Xiaojing

    2012-01-01

    This paper presents a general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive alloys. The model considered here is thermodynamically motivated and based on the Gibbs free energy function. A nonlinear part of the elastic strain arising from magnetic domain rotation induced by the pre-stress is taken into account. Furthermore, the movement of the domain walls is incorporated to describe hysteresis based on Jiles–Atherton's model. Then a set of closed and analytical expressions of the constitutive law for the magnetostrictive rods and films are obtained, and the parameters appearing in the model can be determined by those measurable experiments in mechanics and physics. Comparing this model with other existing models in this field, the quantitative results show that the relationships obtained here are more effective to describe the effects of the pre-stress or in-plane residual stress and ambient temperature on the magnetization or the magnetostriction hysteresis loops. - Highlights: ► A general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive materials is proposed. ► Model is thermodynamically motivated and the reversible magnetic domain rotation and irreversible domain wall motion are taken. ► The predictions are in good accordance with the experimental data including both rods and films. ► Magnetostrictive alloys are sensitive to environment temperature and pre-stress or residual stress.

  8. Wave transmission in nonlinear lattices

    International Nuclear Information System (INIS)

    Hennig, D.; Tsironis, G.P.

    1999-01-01

    The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Fault creep and stress drops in saturated silt-clay gouge

    International Nuclear Information System (INIS)

    Bombolakis, E.G.; Hepburn, J.C.; Roy, D.C.

    1978-01-01

    An analysis of physicochemical processes in saturated silt-clay gouge indicates that this type of fault zone material can account for for the following phenomena: (1) the nonlinear mechanical behavior indicated by certain geophysical measurements along the San Andreas fault zone, (2) the low stress drops associated with earthquakes to several kilometers' depth, and (3) the recurrence of creep-induced instabilities at shallow depths along fault zones. A rheological model is described for a gouge consisting of colloidal size clay platelets with absorbed water, brittle silt size particles, and 'free' pore water. Recurrence of shallow earthquakes or accelerated creep is explained in the model by thixotropic hardening of the colloidal phase following shear deformation, i.e., by electrochemical reorientation of clay platelets from a dispersed structure to a face-to-edge type of structure during a quiescent period. The silt phase must support part of the effective mean stress for thixotropic hardening to occur at several kilometers' depth. The peak shear strength of the gouge in this case is expressed in functional form by S/sub p/=f[kappaP/sub e/+sigma-bar/sub c/ tan psi/sub e/; sigma-bar/sub s/ tan psi/sub s/], where kappa, P/sub e/, and psi/sub e/ are Hvorslev parameters; sigma-bar/sub c/ is the effective stress in the colloidal phase, acting normal to the shear zone; sigma-bar/sub s/ is the effective stress in the silt phase, acting normal to the shear zone; and psi/sub s/ is the 'friction angle' of the silt phase. The peak shear strength is time dependent owing to viscous type contacts between absorbed water layers surrounding the colloidal platelets. The time-dependent nature of S/sub p/ may be responsible for certain nonlinear behavior noted in fault zones and for the small stress drops associated with earthquakes occurring at several kilometers' depth

  10. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Levi W. Evans

    2017-01-01

    Full Text Available Saliva is easily obtainable for medical research and requires little effort or training for collection. Because saliva contains a variety of biological compounds, including vitamin C, malondialdehyde, amylase, and proteomes, it has been successfully used as a biospecimen for the reflection of health status. A popular topic of discussion in medical research is the potential association between oxidative stress and negative outcomes. Systemic biomarkers that represent oxidative stress can be found in saliva. It is unclear, however, if saliva is an accurate biospecimen as is blood and/or plasma. Exercise can induce oxidative stress, resulting in a trend of antioxidant supplementation to combat its assumed detriments. Vitamin C is a popular antioxidant supplement in the realm of sports and exercise. One potential avenue for evaluating exercise induced oxidative stress is through assessment of biomarkers like vitamin C and malondialdehyde in saliva. At present, limited research has been done in this area. The current state of research involving exercise-induced oxidative stress, salivary biomarkers, and vitamin C supplementation is reviewed in this article.

  11. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  12. Nonlinear Elasticity of Doped Semiconductors

    Science.gov (United States)

    2017-02-01

    AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  13. Calculations on the Nonlinear Second—Order Optical Polarizabilities for Series of Donor—C60 Molecules

    Institute of Scientific and Technical Information of China (English)

    刘孝娟; 封继康; 任爱民

    2003-01-01

    The equilibrium geometries and UV-visible spectra of a series of donor-C60 molecules were obtained by means of the AM1 and INDO/CI method,on the basis of accurate geometric and electronic structures.The nonlinear second-order optical polarizabilities were calculated using the method INDO/SDCI combined with the Sum-Over-States(SOS) expression.The calculatedβ(λ=1.34μm) values are 28.81,48.56,57.33,66.99,70.85,85.84,and 142.14(×10-30 esu) for the molecules A,B,C,D,E,F and G,respectively.The frontier orbitals were plot for the representative molecules in order to exhibit the intramolecular charge transfer.The results indicate the introduction of thienylethylene can enhance the NLO response and the dimethylaniline-substituted dithienyl-ethylene-C60 (molecule G) possesses the largest NLO second-order optical polarizability.The large β values can be attributed to the charge transfer between the substituents and C60,as well as within the three-dimensional conjugated sphere of C60.

  14. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    Science.gov (United States)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  15. Nonlinear analysis of pupillary dynamics.

    Science.gov (United States)

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  16. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events, especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  17. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events - especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  18. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    Science.gov (United States)

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  19. Nonlinear saturation controller for vibration supersession of a nonlinear composite beam

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Y. S. [Menofia University, Menouf (Egypt); Amer, Y. A. [Zagazig University, Zagazig (Egypt)

    2014-08-15

    In this paper, a study for nonlinear saturation controller (NSC) is presented that used to suppress the vibration amplitude of a structural dynamic model simulating nonlinear composite beam at simultaneous sub-harmonic and internal resonance excitation. The absorber exploits the saturation phenomenon that is known to occur in dynamical systems with quadratic non-linearities of the feedback gain and a two-to-one internal resonance. The analytical solution for the system and the nonlinear saturation controller are obtained using method of multiple time scales perturbation up to the second order approximation. All possible resonance cases were extracted at this approximation order and studied numerically. The stability of the system at the worst resonance case (Ω = 2ω{sub s} and ω{sub s} =2ω{sub C}) is investigated using both frequency response equations and phase-plane trajectories. The effects of different parameters on the system and the controller are studied numerically. The effect of some types of controller on the system is investigated numerically. The simulation results are achieved using Matlab and Maple programs.

  20. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics

    Directory of Open Access Journals (Sweden)

    Randy Strich

    2014-09-01

    Full Text Available Following exposure to cytotoxic agents, cellular damage is first recognized by a variety of sensor mechanisms. Thenceforth, the damage signal is transduced to the nucleus to install the correct gene expression program including the induction of genes whose products either detoxify destructive compounds or repair the damage they cause. Next, the stress signal is disseminated throughout the cell to effect the appropriate changes at organelles including the mitochondria. The mitochondria represent an important signaling platform for the stress response. An initial stress response of the mitochondria is extensive fragmentation. If the damage is prodigious, the mitochondria fragment (fission and lose their outer membrane integrity leading to the release of pro-apoptotic factors necessary for programmed cell death (PCD execution. As this complex biological process contains many moving parts, it must be exquisitely coordinated as the ultimate decision is life or death. The conserved C-type cyclin plays an important role in executing this molecular Rubicon by coupling changes in gene expression to mitochondrial fission and PCD. Cyclin C, along with its cyclin dependent kinase partner Cdk8, associates with the RNA polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8 repress many stress responsive genes. To relieve this repression, cyclin C is destroyed in cells exposed to pro-oxidants and other stressors. However, prior to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor (Med13, translocates from the nucleus to the cytoplasm where it interacts with the fission machinery and is both necessary and sufficient to induce extensive mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD indicating that it mediates both mitochondrial fission and cell death pathways. This review will summarize the role cyclin C plays in regulating stress-responsive transcription. In addition, we will detail

  1. Nonlinear effects of high temperature on buckling of structural elements

    International Nuclear Information System (INIS)

    Iyengar, N.G.R.

    1975-01-01

    Structural elements used in nuclear reactors are subjected to high temperatures. Since with increase in temperature there is a gradual fall in the elastic modulus and the stress-strain relationship is nonlinear at these operating load levels, a realistic estimate of the buckling load should include this nonlinearity. In this paper the buckling loads for uniform columns with circular and rectangular cross-sections and different boundary conditions under high temperature environment are estimated. The stress-strain relationship for the material has been assumed to follow inverse Ramberg-Osgood law. In view of the fact that no closed form solutions are possible, approximate methods like perturbation and Galerkin techniques are used. Further, the solution for general value for 'm' is quite involved. Results have been obtained with values for 'm' as 3 and 5. Studies reveal that the influence of material nonlinearity on the buckling load is of the softening type, and it increases with increase in the value of 'm'. The nonlinear effects are more for clamped boundaries than for simply supported boundaries. For the first mode analysis both the methods are powerful. It is, however, felt that for higher modes the Galerkin method might be better in view of its simplicity. This investigation may be considered as a step towards a more general solution

  2. Chronic Stress in Adolescents and Its Neurobiological and Psychopathological Consequences: An RDoC Perspective.

    Science.gov (United States)

    Sheth, Chandni; McGlade, Erin; Yurgelun-Todd, Deborah

    2017-01-01

    The Research Domain Criteria (RDoC) initiative provides a strategy for classifying psychopathology based on behavioral dimensions and neurobiological measures. Neurodevelopment is an orthogonal dimension in the current RDoC framework; however, it has not yet been fully incorporated into the RDoC approach. A combination of both a neurodevelopmental and RDoC approach offers a multidimensional perspective for understanding the emergence of psychopathology during development. Environmental influence (e.g., stress) has a profound impact on the risk for development of psychiatric illnesses. It has been shown that chronic stress interacts with the developing brain, producing significant changes in neural circuits that eventually increase the susceptibility for development of psychiatric disorders. This review highlights effects of chronic stress on the adolescent brain, as adolescence is a period characterized by a combination of significant brain alterations, high levels of stress, and emergence of psychopathology. The literature synthesized in this review suggests that chronic stress-induced changes in neurobiology and behavioral constructs underlie the shared vulnerability across a number of disorders in adolescence. The review particularly focuses on depression and substance use disorders; however, a similar argument can also be made for other psychopathologies, including anxiety disorders. The summarized findings underscore the need for a framework to integrate neurobiological findings from disparate psychiatric disorders and to target transdiagnostic mechanisms across disorders.

  3. Stress Introduction Rate Alters the Benefit of AcrAB-TolC Efflux Pumps.

    Science.gov (United States)

    Langevin, Ariel M; Dunlop, Mary J

    2018-01-01

    Stress tolerance studies are typically conducted in an all-or-none fashion. However, in realistic settings-such as in clinical or metabolic engineering applications-cells may encounter stresses at different rates. Therefore, how cells tolerate stress may depend on its rate of appearance. To address this, we studied how the rate of stress introduction affects bacterial stress tolerance by focusing on a key stress response mechanism. Efflux pumps, such as AcrAB-TolC of Escherichia coli , are membrane transporters well known for the ability to export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels. Although efflux pumps improve stress tolerance, pump overexpression can result in a substantial fitness cost to the cells. We hypothesized that the ideal pump expression level would involve a rate-dependent trade-off between the benefit of pumps and the cost of their expression. To test this, we evaluated the benefit of the AcrAB-TolC pump under different rates of stress introduction, including a step, a fast ramp, and a gradual ramp. Using two chemically diverse stresses, the antibiotic chloramphenicol and the jet biofuel precursor pinene, we assessed the benefit provided by the pumps. A mathematical model describing these effects predicted the benefit as a function of the rate of stress introduction. Our findings demonstrate that as the rate of introduction is lowered, stress response mechanisms provide a disproportionate benefit to pump-containing strains, allowing cells to survive beyond the original inhibitory concentrations. IMPORTANCE Efflux pumps are ubiquitous in nature and provide stress tolerance in the cells of species ranging from bacteria to mammals. Understanding how pumps provide tolerance has far-reaching implications for diverse fields, from medicine to biotechnology. Here, we investigated how the rate of stressor appearance impacts tolerance. We focused on two distinct substrates of AcrAB-TolC efflux pumps, the

  4. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators

    International Nuclear Information System (INIS)

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-01-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. (paper)

  5. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  6. Nonlinear FE analysis of reinforced concrete panels subjected to in-plane force

    International Nuclear Information System (INIS)

    Lee, H. P.; Lee, S. J.; Jun, Y. S.; Su, J. M.

    2003-01-01

    Reinforced concrete structures subjected to in-plane force exhibit strong nonlinear behaviour due to complex material properties, cracks, interactions between concrete and steel and shear transfer exists in crack surface. Especially if there is crack formations, nonlinear behaviour increases. Thus the prediction of nonlinear behaviour of reinforced concrete includes failure or crushing is very difficult task. Various constitutive equations for concrete stress-strain relationship to predict nonlinear behaviour of reinforced concrete have been proposed. But the study for reinforced concrete analysis model using plastic material model is still demanded. So the purpose of this research is to formulate standard 8-node shell element using plasticity material model for concrete and to analyze nonlinear behaviour of RC panel subjected to in-plane force

  7. Biaxial Stress Tests of Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Cho, M.S.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    Containment concrete specimens(4000, 5000psi) were tested under biaxial stress and presented basic physical properties and biaxial failure envelops for the concrete specimens. Failure behaviors of concrete under biaxial stress were assessed with stress-strain responses and failure modes. Here provided real test data to develop nonlinear finite element concrete models. (author). 15 refs., 46 figs., 4 tabs.

  8. Chronic vitamin C deficiency does not accelerate oxidative stress in ageing brains of guinea pigs

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille; Andersen, Stine Hasselholt; Miyashita, Namiyo

    2012-01-01

      Increased oxidative stress in the brain has consistently been implied in ageing and in several degenerative brain disorders. Acting as a pivotal antioxidant in the brain, vitamin C is preferentially retained during deficiency and may play an essential role in neuroprotection during ageing. Thus......, a lack of vitamin C could be associated with an increase in redox imbalance in the ageing brain. The present study compared oxidative stress of ageing to that of a long-term non-scorbutic vitamin C deficiency in guinea pigs. Adults (3-9 months old) were compared to old (36-42 months old) animals during...... a six-month dietary intervention by assessing vitamin C transport and redox homeostasis in the brain. In contrast to our hypothesis, chronic vitamin C deficiency did not affect the measured markers of oxidative stress in the brains of adult and aged animals. However, aged animals generally showed...

  9. Nonlinear phonons in high-Tc superconductors mixed crystals

    International Nuclear Information System (INIS)

    Gadzhiev, B.R.; Dzhavadov, N.A.

    1998-01-01

    The integrodifferential kinetic equation which is a generalization of the Landau-Ginzburg formalism is introduced. The peculiarities of nonlinear kinetics are investigated by entering the nonlocal function, which is a quantitative measure of time dispersion. The classification nonlocal function is made by its Hausdorff dimensionality d c . It is shown that in the case d c c =1, the relaxation equation is the equation of damping harmonic oscillator. In the case d c >1, the relaxation equation contains the time derivation arbitrary high order. After linearization of the corresponding dynamic equations near the corresponding nonlinear static equations the dispersion and then after spatial averaging, temperature and frequency dependency of corresponding dynamic susceptibility have been determined. It is shown that in the cases d c c >1 the temperature evolution system alongside with the soft mode is accompanied by the modes which depend nonlinearly on the temperature. The physical nature of quasiscattering in the incommensurate phases of layered crystals is studied. The obtained theoretical results are applied to the layered HTSC crystals. (author)

  10. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis

    NARCIS (Netherlands)

    Speelman, L.; Bosboom, E.M.H.; Schurink, G.W.H.; Buth, J.; Breeuwer, M.; Jacobs, M.J.; Vosse, van de F.N.

    2009-01-01

    Rupture risk estimation of abdominal aortic aneurysms (AAA) is currently based on the maximum diameter of the AAA. A more critical approach is based on AAA wall stress analysis. For that, in most cases, the AAA geometry is obtained from CT-data and treated as a stress free geometry. However, during

  11. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Farzad Tahmasbi

    Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  12. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    Science.gov (United States)

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  13. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    Science.gov (United States)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  14. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2013-09-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  15. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Bakandritsos, Aristides; Papagiannouli, Irene; Aloukos, Panagiotis; Couris, Stelios; Hola, Katerina; Zboril, Radek; Krysmann, Marta; Giannelis, Emmanuel P.

    2013-01-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  16. SAP crm integration testing

    OpenAIRE

    Černiavskaitė, Marija

    2017-01-01

    This Bachelor's thesis presents SAP CRM and integration systems testing analysis: investigation in SAP CRM and SAP PO systems, presentation of relationship between systems, introduction to third-party system (non-SAP) – Network Informational System (NIS) which has integration with SAP, presentation of best CRM testing practises, analysis and recommendation of integration testing. Practical integration testing is done in accordance to recommendations.

  17. Emotion and cognition in high and low stress sensitive mouse strains: a combined neuroendocrine and behavioral study in BALB/c and C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Vera Brinks

    2007-12-01

    Full Text Available Emotionally arousing experiences and stress influence cognitive processes and vice versa. Understanding the relations and interactions between these three systems forms the core of this study. We tested two inbred mouse strains (BALB/c, C57BL/6J; male; 3-month-old for glucocorticoid stress system markers (expression of MR and GR mRNA and protein in hippocampus, amygdala, and prefrontal cortex; blood plasma corticosterone, used behavioral tasks for emotions and cognitive performance (elevated plus maze, holeboard to assess the interdependence of these factors. We hypothesize that BALB/c mice have a stress-vulnerable neuroendocrine phenotype and that emotional expressions in BALB/c and C57BL/6J mice will differentially contribute to learning and memory. We applied factor analyses on emotional and cognitive parameters to determine the behavioral structure of BALB/c and C57BL/6J mice. Glucocorticoid stress system markers indeed show that BALB/c mice are more stress-vulnerable than C57BL/6J mice. Moreover, emotional and explorative factors differed between naïve BALB/c and C57BL/6J mice. BALB/c mice display high movement in anxiogenic zones and high risk assessment, while C57BL/6J mice show little movement in anxiogenic zones and display high vertical exploration. Furthermore, BALB/c mice are superior learners, showing learning related behavior which is highly structured and emotionally biased when exposed to a novel or changing situation. In contrast, C57BL/6J mice display a rather ‘‘chaotic’’ behavioral structure during learning in absence of an emotional factor. These results show that stress vulnerability coincides with more emotionality, which drives well orchestrated goal directed behavior to the benefit of cognition. Both phenotypes have their advantage depending on environmental demands.

  18. Translocation of 14C-photosynthates under normal and moisture stress conditions in finger millet (Eleusine coracana) gaertin

    International Nuclear Information System (INIS)

    Udayakumar, M.; Rama Rao, S.; Krishna Sastry, K.S.

    1981-01-01

    Translocation of photosynthates into different sinks was studied following feeding a single leaf with 14 CO 2 in 40 day old stressed and non-stressed plants of Eleusine coracana. The rate of efflux of 14 C-photosynthates was twice as much in non-stressed plants compared to stressed plants. Young developing leaves, stem apex and stem which are the potential sinks under non-stressed conditions received very little activity under stress conditions. Percent activity in the roots was enhanced under stress suggesting the pattern of translocation was altered under stress conditions. In the plants subjected to moisture stress, after feeding with 14 CO 2 the rate of efflux of 14 C-photosynthates from the fed leaf decreased and the pattern of translocation was altered. Though the effect of stress seems to be directly on the translocation system, the photosynthetic rate appears to be more sensitive to stress than translocation. (author)

  19. Nonlinear physics of shear Alfvén waves

    International Nuclear Information System (INIS)

    Zonca, Fulvio; Chen, Liu

    2014-01-01

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results

  20. Nonlinear physics of shear Alfvén waves

    Science.gov (United States)

    Zonca, Fulvio; Chen, Liu

    2014-02-01

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.

  1. Nonlinear constitutive relations for anisotropic elastic materials

    Science.gov (United States)

    Sokolova, Marina; Khristich, Dmitrii

    2018-03-01

    A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.

  2. Effects of heat stress on dynamic absorption process, tissue distribution and utilization efficiency of vitamin C in broilers

    International Nuclear Information System (INIS)

    Liu Guohua; Chen Guosheng; Cai Huiyi

    1998-01-01

    The experiment was conducted to determine the effects of heat stress on ascorbic acid nutritional physiology of broilers with radioisotope technology. 3 H-Vc was fed to broilers and then the blood, liver, kidney, breast muscle, and excreta were sampled to determine the dynamic absorption process, the tissue distribution and the utilization efficiency of vitamin C. The results indicated that the absorption, metabolism and mobilization of supplemented vitamin C in broilers with heat stress was faster than that in broilers without heat stress. However, the utilization efficiency of supplemented vitamin C in broilers with heat stress was not higher than that of broilers without heat stress

  3. A finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)

  4. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells

    International Nuclear Information System (INIS)

    Sekiya, Mika; Hiraishi, Ako; Touyama, Maiko; Sakamoto, Kazuichi

    2008-01-01

    SREBP1c (sterol regulatory element-binding protein 1c) is a metabolic-syndrome-associated transcription factor that controls fatty acid biosynthesis under glucose/insulin stimulation. Oxidative stress increases lipid accumulation, which promotes the generation of reactive oxygen species (ROS). However, we know little about the role of oxidative stress in fatty acid biosynthesis. To clarify the action of oxidative stress in lipid accumulation via SREBP1c, we examined SREBP1c activity in H 2 O 2 -treated mammalian cells. We introduced a luciferase reporter plasmid carrying the SREBP1c-binding site into HepG2 or COS-7 cells. With increasing H 2 O 2 dose, SREBP1c transcriptional activity increased in HepG2 cells but declined in COS-7 cells. RT-PCR analysis revealed that mRNA expression of SREBP1c gene or of SREBP1c-regulated genes rose H 2 O 2 dose-dependently in HepG2 cells but dropped in COS-7 cells. Lipid accumulation and levels of the nuclear form of SREBP1c increased in H 2 O 2 -stimulated HepG2 cells. ROS may stimulate lipid accumulation in HepG2 cells via SREBP1c activation

  5. Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces

    International Nuclear Information System (INIS)

    Jia, X L; Kitipornchai, S; Lim, C W; Yang, J

    2010-01-01

    This paper investigates the free vibration characteristics of micro-switches under combined electrostatic, intermolecular forces and axial residual stress, with an emphasis on the effect of geometric nonlinear deformation due to mid-plane stretching and the influence of Casimir force. The micro-switch considered in this study is made of either homogeneous material or non-homogeneous functionally graded material with two material phases. The Euler–Bernoulli beam theory with von Karman type nonlinear kinematics is applied in the theoretical formulation. The principle of virtual work is used to derive the nonlinear governing differential equation. The eigenvalue problem which describes free vibration of the micro-beam at its statically deflected state is then solved using the differential quadrature method. The natural frequencies and mode shapes of micro-switches for four different boundary conditions (i.e. clamped–clamped, clamped–simply supported, simply supported and clamped–free) are obtained. The solutions are validated through direct comparisons with experimental and other existing results reported in previous studies. A parametric study is conducted to show the significant effects of geometric nonlinearity, Casimir force, axial residual stress and material composition for the natural frequencies

  6. Nonlinear phenomena in the highly excited state of C60

    International Nuclear Information System (INIS)

    Byrne, H.J.; Maser, W.K.; Kaiser, M.; Akselrod, L.; Anders, J.; Ruehle, W.W.; Zhou, X.Q.; Mittelbach, A.; Roth, S.

    1993-01-01

    Under high intensity illumination, the optical and electronic properties of fullerenes are seen to undergo dramatic, nonlinear changes. The photoluminescence emission is seen to increase with approximately the third power of the input intensity above an apparent threshold intensity. Associated with this nonlinear increase is the emergence of a long lifetime emission component and a redshifting of the emission spectrum. Above the threshold intensity the photoconductive response increases with approximately the cube of the input power. In the highly excited state, the photoconductive response becomes relatively temperature independent compared to the thermally activated behaviour observed at low intensities. The characteristics of the temperature dependence are associated with a metallic-like phase in the highly excited state and therefore an optically driven insulator to metal transition is proposed as a description of the observed phenomena. (orig.)

  7. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-09-01

    This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

  8. Weyl geometry and the nonlinear mechanics of distributed point defects

    KAUST Repository

    Yavari, A.; Goriely, A.

    2012-01-01

    The residual stress field of a nonlinear elastic solid with a spherically symmetric distribution of point defects is obtained explicitly using methods from differential geometry. The material manifold of a solid with distributed point defects

  9. A solution to nonlinearity problems

    International Nuclear Information System (INIS)

    Neuffer, D.V.

    1989-01-01

    New methods of correcting dynamic nonlinearities resulting from the multipole content of a synchrotron or transport line are presented. In a simplest form, correction elements are places at the center (C) of the accelerator half-cells as well as near the focusing (F) and defocusing (D) quadrupoles. In a first approximation, the corrector strengths follow Simpson's Rule, forming an accurate quasi-local canceling approximation to the nonlinearity. The F, C, and D correctors may also be used to obtain precise control of the horizontal, coupled, and vertical motion. Correction by three or more orders of magnitude can be obtained, and simple solutions to a fundamental problem in beam transport have been obtained. 13 refs., 1 fig., 1 tab

  10. Residual stress in coated low-Z films of TiC and TiN. Pt. 2

    International Nuclear Information System (INIS)

    Yoshizawa, I.; Kabeya, Z.; Kamada, K.

    1984-01-01

    The correlations of the residual stresses with microstructures of TiC and TiN films deposited onto various substrates were examined by means of observations of SEM micrographs, X-ray back-reflected Debye rangs and diffraction line profile of X-ray spectrometer chart. It was found that specimens with lower residual stress generally show sharp line profile and good separation between Ksub(α1) and Ksub(α2) diffraction peaks in both TiN and TiC films, indicating better crystalline perfection. PVD coated TiC films on Mo and Inconel substrates show poor separation of Ksub(α1) and Ksub(α2) peaks, namely due to higher residual stresses in comparison with those of CVD coated TiN and TiC films on Mo or Inconel substrate. In CVD TiC/Pocographite system, with film thickness ranging from 10 to 100 μm, the grain size increase with increasing the thickness, except 100 μm thick specimen which has the smallest grain size in this group. However, the sharpness of diffraction profile is best in 20 μm thick film, and worst in 100 μm thick film. This is in good correlation with the amount of residual stress. (orig.)

  11. Nonlinear analysis of reinforced concrete beam with/without tension stiffening effect

    International Nuclear Information System (INIS)

    Dede, T.; Ayvaz, Y.

    2009-01-01

    The aim of this paper is to do materially nonlinear failure analysis of RC beam by using finite element method. In the finite element modeling, two different approaches and different tension stress-strain models with/without tension stiffening effect are used by considering two different mesh sizes. In the first approach, the material matrices of concrete and reinforcement are constructed separately, and then superimposed to obtain the element stiffness matrix. In the second approach, the reinforcement is assumed to be uniformly distributed throughout the beam. So, the beam is modeled as a single composite element with increasing the modulus of elasticity of concrete by considering the reinforcement ratio. For these two approaches, elastic-perfectly plastic stress-strain relationship is used for concrete in compression. For the concrete in tension, a stress-strain relationship with/without tension stiffening is used. It is concluded that the approaches and the models considered in this study can be effectively used in the materially nonlinear analysis of RC beams.

  12. A new nonlinear turbulence model based on Partially-Averaged Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Liu, J T; Wu, Y L; Cai, C; Liu, S H; Wang, L Q

    2013-01-01

    Partially-averaged Navier-Stokes (PANS) Model was recognized as a Reynolds-averaged Navier-Stokes (RANS) to direct numerical simulation (DNS) bridging method. PANS model was purported for any filter width-from RANS to DNS. PANS method also shared some similarities with the currently popular URANS (unsteady RANS) method. In this paper, a new PANS model was proposed, which was based on RNG k-ε turbulence model. The Standard and RNG k-ε turbulence model were both isotropic models, as well as PANS models. The sheer stress in those PANS models was solved by linear equation. The linear hypothesis was not accurate in the simulation of complex flow, such as stall phenomenon. The sheer stress here was solved by nonlinear method proposed by Ehrhard. Then, the nonlinear PANS model was set up. The pressure coefficient of the suction side of the NACA0015 hydrofoil was predicted. The result of pressure coefficient agrees well with experimental result, which proves that the nonlinear PANS model can capture the high pressure gradient flow. A low specific centrifugal pump was used to verify the capacity of the nonlinear PANS model. The comparison between the simulation results of the centrifugal pump and Particle Image Velocimetry (PIV) results proves that the nonlinear PANS model can be used in the prediction of complex flow field

  13. AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress.

    Science.gov (United States)

    Kfoury, Alain; Armaro, Marzia; Collodet, Caterina; Sordet-Dessimoz, Jessica; Giner, Maria Pilar; Christen, Stefan; Moco, Sofia; Leleu, Marion; de Leval, Laurence; Koch, Ute; Trumpp, Andreas; Sakamoto, Kei; Beermann, Friedrich; Radtke, Freddy

    2018-03-01

    Although c-Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the Nras Q61K INK4a -/- mouse melanoma model to show that c-Myc is essential for tumor initiation, maintenance, and metastasis. c-Myc-expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c-Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c-Myc-positive melanoma cells activated and became dependent on the metabolic energy sensor AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c-Myc-expressing melanoma cells, while AMPK activation protected against cell death of c-Myc-depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early-stage human melanoma samples revealed an inverse correlation between C-MYC and patient survival, suggesting that C-MYC expression levels could serve as a prognostic marker for early-stage disease. © 2018 The Authors.

  14. A Lattice-Misfit-Dependent Damage Model for Non-linear Damage Accumulations Under Monotonous Creep in Single Crystal Superalloys

    Science.gov (United States)

    le Graverend, J.-B.

    2018-05-01

    A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ' phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.

  15. Selection of mutants tolerant of oxidative stress from respiratory cultures of Lactobacillus plantarum C17.

    Science.gov (United States)

    Zotta, T; Ianniello, R G; Guidone, A; Parente, E; Ricciardi, A

    2014-03-01

    Lactobacillus plantarum is a lactic acid bacterium involved in the production of many fermented foods. Recently, several studies have demonstrated that aerobic or respiratory metabolism in this species leads to improved technological and stress response properties. We investigated respiratory growth, metabolite production and stress resistance of Lact. plantarum C17 during batch, fed-batch and chemostat cultivations under respiratory conditions. Sixty mutants were selected for their ability to tolerate oxidative stress using H2 O2 and menadione as selective agents and further screened for their capability to growth under anaerobic, respiratory and oxidative stress conditions. Dilution rate clearly affected the physiological state of cells and, generally, slow-growing cultures had improved survival to stresses, catalase production and oxygen uptake. Most mutants were more competitive in terms of biomass production and ROS degradation compared with wild-type strain (wt) C17 and two of these (C17-m19 and C17-m58) were selected for further experiments. This work confirms that, in Lact. plantarum, respiration and low growth rates confer physiological and metabolic advantages compared with anaerobic cultivation. Our strategy of natural selection successfully provides a rapid and inexpensive screening for a large number of strains and represents a food-grade approach of practical relevance in the production of starter and probiotic cultures. © 2013 The Society for Applied Microbiology.

  16. Oxidative stress pattern in hepatitis C patients co-infected with ...

    African Journals Online (AJOL)

    Oxidative stress pattern in hepatitis C patients co-infected with schistosomiasis. ... Supporting the view that oxidative damage plays a role in chronic HCV infection, also TNF-α establishes a positive auto regulatory loop that can amplify the inflammatory response and lead to chronic inflammation. More evidence indicates that ...

  17. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  18. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunfa, E-mail: chunfa.huang@case.edu [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Bruggeman, Leslie A. [Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Hydo, Lindsey M. [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Miller, R. Tyler [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States)

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  19. Comparison of physiological and anatomical changes of C3 (Oryza sativa [L.]) and C4 (Echinochloa crusgalli [L.]) leaves in response to drought stress

    Science.gov (United States)

    Hamim, Hamim; Banon, Sri; Dorly, Dorly

    2016-01-01

    The experiment aimed to analyse the different response of C3 (Oryza sativa L.) and C4 (Echinochloa crusgalli L.) species to drought stress based on physiological and anatomical properties. Seeds of rice (Oryza sativa) and Echinochloa (Echinochloa crusgalli) were grown in 15 cm (D) pot for 6 weeks under well-watered conditions. After 6 weeks the plants were divided into two groups, (1) well-watered which were watered daily, and (2) drought stress which were withheld from watering for 6 days. After 6 days of drought, the plants were then re-watered to analyse plant recovery. During drought period, the plants were analysed for growth, leaf relative water content (RWC), photosynthesis, and leaf anatomy. Drought stress significantly reduced leaf RWC of both species, but the reduction was bigger in rice than in Echinochloa. The maximum efficiency of photosynthesis (Fv/Fm) was decrease significantly in response to drought stress by about 48.04% in rice, while it was only 34.40% in Echinochloa. Anatomical analysis showed drought treatment tended to reduce leaf thickness in the area of bulliform cell, major- as well as intervein and xylem diameter, more in Echinochloa than in rice, suggesting that the decrease of vein and xylem diameter is among the anatomical parameters that is important to overcome from drought stress in Echinochloa. The number of chloroplast in the mesophyll cell and bundle sheath cell (BSC) was different between these two species, where in Echinochloa chloroplast was found in both mesophyll as well as BSC, while in rice it was only found in mesophyll cell, confirmed that Echinochloa is a C4 and rice is a C3 species. Interestingly, in Echinochloa, the number of chloroplast was significantly increased due to drought stress in BSC, but not in mesophyll cell. The number of starch granules also dramatically increased in response to drought in the mesophyll cells of rice and Echinochloa, and in the bundle sheath cell of Echinochloa which indicate that C3

  20. Equations of motion for anisotropic nonlinear elastic continuum in gravitational field

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1994-01-01

    Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs

  1. New Look at Nonlinear Aerodynamics in Analysis of Hypersonic Panel Flutter

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2017-01-01

    Full Text Available A simply supported plate fluttering in hypersonic flow is investigated considering both the airflow and structural nonlinearities. Third-order piston theory is used for nonlinear aerodynamic loading, and von Karman plate theory is used for modeling the nonlinear strain-displacement relation. The Galerkin method is applied to project the partial differential governing equations (PDEs into a set of ordinary differential equations (ODEs in time, which is then solved by numerical integration method. In observation of limit cycle oscillations (LCO and evolution of dynamic behaviors, nonlinear aerodynamic loading produces a smaller positive deflection peak and more complex bifurcation diagrams compared with linear aerodynamics. Moreover, a LCO obtained with the linear aerodynamics is mostly a nonsimple harmonic motion but when the aerodynamic nonlinearity is considered more complex motions are obtained, which is important in the evaluation of fatigue life. The parameters of Mach number, dynamic pressure, and in-plane thermal stresses all affect the aerodynamic nonlinearity. For a specific Mach number, there is a critical dynamic pressure beyond which the aerodynamic nonlinearity has to be considered. For a higher temperature, a lower critical dynamic pressure is required. Each nonlinear aerodynamic term in the full third-order piston theory is evaluated, based on which the nonlinear aerodynamic formulation has been simplified.

  2. Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress.

    Science.gov (United States)

    Yin, Bin; Tang, Shu; Sun, Jiarui; Zhang, Xiaohui; Xu, Jiao; Di, Liangjiao; Li, Zhihong; Hu, Yurong; Bao, Endong

    2018-02-13

    Heat stress is exacerbated by global warming and affects human and animal health, leading to heart damage caused by imbalances in reactive oxygen species (ROS) and the antioxidant system, acid-base chemistry, electrolytes and respiratory alkalosis. Vitamin C scavenges excess ROS, and sodium bicarbonate maintains acid-base and electrolyte balance, and alleviates respiratory alkalosis. Herein, we explored the ability of vitamin C alone and in combination with equimolar sodium bicarbonate (Vitamin C-Na) to stimulate endogenous antioxidants and heat shock proteins (HSPs) to relieve heat stress in H9C2 cells. Control, vitamin C (20 μg/ml vitamin C for 16 h) and vitamin C-Na (20 μg/ml vitamin C-Na for 16 h) groups were heat-stressed for 1, 3 or 5 h. Granular and vacuolar degeneration, karyopyknosis and damage to nuclei and mitochondria were clearly reduced in treatment groups, as were apoptosis, lactate dehydrogenase activity and ROS and malondialdehyde levels, while superoxide dismutase activity was increased. Additionally, CRYAB, Hsp27, Hsp60 and Hsp70 mRNA levels were upregulated at 3 h (p < 0.01), and protein levels were increased for CRYAB at 0 h (p < 0.05) and 1 h (p < 0.01), and for Hsp70 at 3 and 5 h (p < 0.01). Thus, pre-treatment with vitamin C or vitamin C-Na might protect H9C2 cells against heat damage by enhancing the antioxidant ability and upregulating CRYAB and Hsp70.

  3. Nonlinear Optical Properties of XPh4 (X = B-, C, N+, P+): A New Class of Molecules with a Negative Third-Order Polarizability

    KAUST Repository

    Gieseking, Rebecca L.; Ensley, Trenton R.; Hu, Honghua; Hagan, David J.; Risko, Chad; Van Stryland, Eric W.; Bredas, Jean-Luc

    2015-01-01

    Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.

  4. Nonlinear Optical Properties of XPh4 (X = B-, C, N+, P+): A New Class of Molecules with a Negative Third-Order Polarizability

    KAUST Repository

    Gieseking, Rebecca L.

    2015-06-22

    Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.

  5. Thermal effects, creep and nonlinear responde of concrete reactor vessels

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1978-01-01

    A new mathematical model for prediction of pore pressure and moisture transfer in concrete heated well beyond 100 0 C is outlined. The salient features of the model are:(1) the hypothesis taht the pore space available to capillary water grows with increasing temperature as well as increasing pressure in excess of saturation pressure, and (2) the hypothesis that moisture permeability increases by two orders of magnitude when passing 100 0 C. Permaability below 100 0 C is controlled by migration of adsorbed water through gel-pore sized necks on passages through the material; these necks are lost above 100 0 C and viscosity then governs. The driving force of moisture transfer may be considered as the gradient of pore pressure, which is defined as pressure of vapor rather than liquid water if concrete is not saturated. Thermodynamic properties of water may be used to determine sorption isotherms in saturated concrete. The theory is the necessary first step in rationally predicting thermal stresses and deformations, and assessing the danger of explosive spalling. However, analysis of creep and nonlinear triaxial behavior is also needed for this purpose. A brief review of recent achievements in these subjects is also given. (Author)

  6. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    Science.gov (United States)

    Tsvelodub, O. Yu; Bocharov, A. A.

    2017-09-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.

  7. Nonlinear Dynamic Response of an Unbalanced Flexible Rotor Supported by Elastic Bearings Lubricated with Piezo-Viscous Polar Fluids

    Directory of Open Access Journals (Sweden)

    Mustapha Lahmar

    2015-04-01

    Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.

  8. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    Science.gov (United States)

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  9. Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system.

    Directory of Open Access Journals (Sweden)

    Florian Reichmann

    Full Text Available Environmental enrichment (EE has a beneficial effect on rodent behaviour, neuronal plasticity and brain function. Although it may also improve stress coping, it is not known whether EE influences the brain response to an external (psychological stressor such as water avoidance stress (WAS or an internal (systemic stressor such as gastrointestinal inflammation. This study hence explored whether EE modifies WAS-induced activation of the mouse corticolimbic system and whether this stress response is altered by gastritis or colitis. Male C67BL/6N mice were housed under standard or enriched environment for 9 weeks, after which they were subjected to a 1-week treatment with oral iodoacetamide to induce gastritis or oral dextran sulfate sodium to induce colitis. Following exposure to WAS the expression of c-Fos, a marker of neuronal activation, was measured by immunocytochemistry. EE aggravated experimentally induced colitis, but not gastritis, as shown by an increase in the disease activity score and the colonic myeloperoxidase content. In the brain, EE enhanced the WAS-induced activation of the dentate gyrus and unmasked an inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression within this part of the hippocampus. Conversely, EE inhibited the WAS-evoked activation of the central amygdala and prevented the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this region. EE, in addition, blunted the WAS-induced activation of the infralimbic cortex and attenuated the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this area. These data reveal that EE has a region-specific effect on stress-induced c-Fos expression in the corticolimbic system, which is likely to improve stress resilience. The response of the prefrontal cortex - amygdala - hippocampus circuitry to psychological stress is also modified by the systemic stress of gut inflammation, and this interaction between external

  10. Effects of Muscle-Specific Oxidative Stress on Cytochrome c Release and Oxidation-Reduction Potential Properties.

    Science.gov (United States)

    Ke, Yiling; Mitacek, Rachel M; Abraham, Anupam; Mafi, Gretchen G; VanOverbeke, Deborah L; DeSilva, Udaya; Ramanathan, Ranjith

    2017-09-06

    Mitochondria play a significant role in beef color. However, the role of oxidative stress in cytochrome c release and mitochondrial degradation is not clear. The objective was to determine the effects of display time on cytochrome c content and oxidation-reduction potential (ORP) of beef longissimus lumborum (LL) and psoas major (PM) muscles. PM discolored by day 3 compared with LL. On day 0, mitochondrial content and mitochondrial oxygen consumption were greater in PM than LL. However, mitochondrial content and oxygen consumption were lower (P stress can affect cytochrome c release and ORP changes.

  11. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  12. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    International Nuclear Information System (INIS)

    Yoshida, Go J.; Saya, Hideyuki

    2014-01-01

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high / Fbw7 high / c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high / Fbw7 low / c-Myc high

  13. Cross-separatrix Coupling in Nonlinear Global Electrostatic Turbulent Transport in C-2U

    Science.gov (United States)

    Lau, Calvin; Fulton, Daniel; Bao, Jian; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar; TAE Team

    2017-10-01

    In recent years, the progress of the C-2/C-2U advanced beam-driven field-reversed configuration (FRC) experiments at Tri Alpha Energy, Inc. has pushed FRCs to transport limited regimes. Understanding particle and energy transport is a vital step towards an FRC reactor, and two particle-in-cell microturbulence codes, the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC), are being developed and applied toward this goal. Previous local electrostatic GTC simulations find the core to be robustly stable with drift-wave instability only in the scrape-off layer (SOL) region. However, experimental measurements showed fluctuations in both regions; one possibility is that fluctuations in the core originate from the SOL, suggesting the need for non-local simulations with cross-separatrix coupling. Current global ANC simulations with gyrokinetic ions and adiabatic electrons find that non-local effects (1) modify linear growth-rates and frequencies of instabilities and (2) allow instability to move from the unstable SOL to the linearly stable core. Nonlinear spreading is also seen prior to mode saturation. We also report on the progress of the first turbulence simulations in the SOL. This work is supported by the Norman Rostoker Fellowship.

  14. Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus

    Directory of Open Access Journals (Sweden)

    Joshua B. Benoit

    2011-04-01

    Full Text Available Recent emergence of bed bugs (Cimex spp. has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor allowing their prolonged survival when no host is available. High relative humidities are detrimental to bed bugs, leading to reduced survival in comparison to those held at lower relative humidities. Continual exposure of bed bugs, eggs and mobile stages, to temperatures below freezing and short term exposure (=1 h to temperatures below −16 to −18 °C results in mortality. The upper thermal limit for short term exposure of eggs, nymphs and adults is between 40–45 °C for the common (Cimex lectularius and tropical (C. hemipterus bed bugs. Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs. Eggs for C. lectularius and C. hemipterus are no longer viable when held below 10 °C or above 37 °C throughout embryogenesis. Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host. Cold, heat, water stress and blood feeding prompted the expression of heat shock proteins (Hsps. Pesticide application is a common human-induced stress for urban pests, and recent studies have documented pesticide resistance in many bed bug populations. High levels of traumatic insemination (mating of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ

  15. Evaluation of the clamping force in high tension bolt by using the ultrasonic nonlinearity

    International Nuclear Information System (INIS)

    Jang, Kyung Young; Cheon, Hae Wha; Ha, Hob; Park, Man Sick; Kim, No You

    2005-01-01

    High tension bolts have been used widely for the clamping of many kinds of large structure. Therefore, its estimation has been regarded as main issue in the maintenance of high tension bolts. This paper proposes a novel method using the ultrasonic nonlinearity, which is based on the dependency of sound speed on the stress. For this we introduce nonlinear elastic constants in the stress-strain relationship, and derive the sound speed as a linear function of stress. In order to verify the usefulness of the proposed method, two kinds of experiments are carried out: The first one is to measure the sound speed when the bolt is stressed by the tension tester. The result showed good agreement with the expected linear relationship between the sound speed and the axial stress. The second one is to measure the sound speed when the bolt is stressed by the torque wrench. The results showed that the sound speed was decreased when the torque was increased. From these results we can say that the proposed method is enough useful to evaluate the clamping force in the high tension bolt.

  16. Synthesis, crystal structure, growth, optical and third order nonlinear optical studies of 8HQ2C5N single crystal - An efficient third-order nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)

    2017-05-01

    A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be

  17. Low Nourishment of Vitamin C Induces Glutathione Depletion and Oxidative Stress in Healthy Young Adults.

    Science.gov (United States)

    Waly, Mostafa I; Al-Attabi, Zahir; Guizani, Nejib

    2015-09-01

    The present study was conducted to assess the status of vitamin C among healthy young adults in relation to serum antioxidant parameters [glutathione (GSH), thiols, and total antioxidant capacity, (TAC)], and oxidative stress markers [malondialdehyde (MDA), and nitrites plus nitrates (NN)]. A prospective study included 200 young adults, and their dietary intake was assessed by using food diaries. Fasting plasma vitamin C, serum levels of GSH, thiols, TAC, MDA, and NN were measured using biochemical assays. It was observed that 38% of the enrolled subjects, n=76, had an adequate dietary intake of vitamin C (ADI group). Meanwhile, 62%, n=124, had a low dietary intake of vitamin C (LDI group) as compared to the recommended dietary allowances. The fasting plasma level of vitamin C was significantly higher in the ADI group as compared to the LDI group. Oxidative stress in the sera of the LDI group was evidenced by depletion of GSH, low thiols levels, impairment of TAC, an elevation of MDA, and increased NN. In the ADI group, positive correlations were found between plasma vitamin C and serum antioxidant parameters (GSH, thiols, and TAC). Meanwhile, the plasma vitamin C was negatively correlated with serum MDA and NN levels. This study reveals a significant increase of oxidative stress status and reduced antioxidant capacity in sera from healthy young adults with low intake of the dietary antioxidant, vitamin C.

  18. Nonlinear Viscoelastic Mechanism for Aftershock Triggering and Decay

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2016-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. They also occur in other natural or experimental systems, for example, in solar flares, in fracture experiments on porous materials and acoustic emissions, after stock market crashes, in the volatility of stock prices returns, in internet traffic variability and e-mail spamming, to mention a few. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle control the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and

  19. Unconditional nonlinear exponential stability in the Benard problem; Stabilita' nonlineare esponenziale incondizionata nel problema di Be'nard per ina miscela: condizioni necessarie e sufficienti.

    Energy Technology Data Exchange (ETDEWEB)

    Mulione, G. [Catania, Univ. (Italy). Dip. di Matematica; Rionero, S. [Napoli, Univ. (Italy). Dip. di Matematica e applicazioni

    1998-07-01

    The Lyapunov direct method is applied to study nonlinear stability of a basic motionless state to imposed linear temperature and concentration fields of a binary fluid mixture heated and salted from below, in the Oberbeck-Boussinesq scheme. Stress-free and rigid surfaces are considered and absence of Hopf bifurcation is assumed. We prove the coincidence of the linear and (unconditional) nonlinear critical stability limits, when the ratio between the Schmidt and the Prandtl numbers is less or equal to 1. Precisely, we obtain necessary and sufficient conditions of unconditional nonlinear exponential stability of the basic motionless state. [Italian] Si applica il metodo diretto di Lyapunov allo studio della stabilita' non lineare esponenziale della soluzione di conduzione-diffusione di una miscela fluida binaria riscaldata e salata da sotto, nello schema di Oberbeck-Boussinesq. Si considerano superfici rigide e 'stress-free'; si supponeche non ci sia biforcazione di Hpf. Supposto che il rapporto fra i numeri di Schmidt e di Prandtl e' minore o uguale a 1, si prova la coincidenza tra i paramentri critici della stabilita' lineare e non lineare. Si ottengono condizioni necessarie e sufficienti di stabilita' non lineare esponenziale del moto base.

  20. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  1. A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.

  2. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy

    Institute of Scientific and Technical Information of China (English)

    Chung-Seok KIM; Cliff J.LISSENDEN

    2009-01-01

    The influence of γ' precipitate on the acoustic nonlinearity is investigated for a nickel-based superalloy,which is subjected to creep deformation.During creep deformation,the cuboidal γ' precipitate is preferentially coarsened in a direction perpendicular to the applied stress axis.The length and shape factor of the γ' precipitate increase with creep time.The increase of relative acoustic nonlinearity with increasing fraction of creep life is discussed in relation to the rafting of γ' precipitate,which is closely related to the scattering and distortion of the acoustic wave.

  3. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  4. Application of Nonlinear Elastic Resonance Spectroscopy For Damage Detection In Concrete: An Interesting Story

    Energy Technology Data Exchange (ETDEWEB)

    Byers, Loren W. [Los Alamos National Laboratory; Ten Cate, James A. [Los Alamos National Laboratory; Johnson, Paul A. [Los Alamos National Laboratory

    2012-06-28

    Nonlinear resonance ultrasound spectroscopy experiments conducted on concrete cores, one chemically and mechanically damaged by alkali-silica reactivity, and one undamaged, show that this material displays highly nonlinear wave behavior, similar to many other damaged materials. They find that the damaged sample responds more nonlinearly, manifested by a larger resonant peak and modulus shift as a function of strain amplitude. The nonlinear response indicates that there is a hysteretic influence in the stress-strain equation of state. Further, as in some other materials, slow dynamics are present. The nonlinear response they observe in concrete is an extremely sensitive indicator of damage. Ultimately, nonlinear wave methods applied to concrete may be used to guide mixing, curing, or other production techniques, in order to develop materials with particular desired qualities such as enhanced strength or chemical resistance, and to be used for damage inspection.

  5. Modeling of Nonlinear Beat Signals of TAE's

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-03-01

    Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core

  6. Non-linearities in tensile creep of concrete at early age

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars

    1997-01-01

    A meterial model for creep is proposed which takes into consideration some of the couplings in early age concrete. The model is in incremental form and reflect the hydration process where new layers of cement gel are formed in a stress free state. In the present context attention is on non......-linear creep at high stress levels. The parameteres in the model develop in time as a result of hydration. The creep model has been used to analyse the tensile experiments at different stress levels carried out in the HETEK project. The tests were made on dogbone shaped specimen and the test procedure...

  7. Mechanical characterization of Si-C(O) fiber/SiC (CVI) matrix composites with a BN-interphase

    International Nuclear Information System (INIS)

    Prouhet, S.; Camus, G.; Labrugere, C.; Guette, A.; Martin, E.

    1994-01-01

    The mechanical behavior of three CVI-processed 2D woven SiC/BN/SiC composite materials with different initial BN interphase thicknesses has been investigated by means of tensile and impact tests. The results have established the efficiency of a BN interphase in promoting a nonlinear/noncatastrophic tensile behavior and high impact resistance. The effect of the initial BN interphase thickness on the resulting mechanical behavior has also been demonstrated. AES and TEM has revealed the presence of a SiO 2 /C double layer at the BN/fiber interface, which might result from a decomposition undergone by the Si-C(O) Nicalon fiber during processing. It has been suggested that the influence of the initial BN interphase thickness on the mechanical properties of the composites results from both changes occurring in the composition and morphology of the interfacial zones and modifications of the interfacial forces due to accommodation of the radial residual clamping stress

  8. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes.

    Science.gov (United States)

    Maarman, Gerald J; Andrew, Brittany M; Blackhurst, Dee M; Ojuka, Edward O

    2017-04-01

    Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C 2 C 12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C 2 C 12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid. NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes. Copyright © 2017 the American Physiological Society.

  9. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  10. From non-linear magnetoacoustics and spin reorientation transition to magnetoelectric micro/nano-systems

    Science.gov (United States)

    Tiercelin, Nicolas; Preobrazhensky, Vladimir; BouMatar, Olivier; Talbi, Abdelkrim; Giordano, Stefano; Dusch, Yannick; Klimov, Alexey; Mathurin, Théo.; Elmazria, Omar; Hehn, Michel; Pernod, Philippe

    2017-09-01

    The interaction of a strongly nonlinear spin system with a crystalline lattice through magnetoelastic coupling results in significant modifications of the acoustic properties of magnetic materials, especially in the vicinity of magnetic instabilities associated with the spin-reorientation transition (SRT). The magnetoelastic coupling transfers the critical properties of the magnetic subsystem to the elastic one, which leads to a strong decrease of the sound velocity in the vicinity of the SRT, and allows a large control over acoustic nonlinearities. The general principles of the non-linear magneto-acoustics (NMA) will be introduced and illustrated in `bulk' applications such as acoustic wave phase conjugation, multi-phonon coupling, explosive instability of magneto-elastic vibrations, etc. The concept of the SRT coupled to magnetoelastic interaction has been transferred into nanostructured magnetoelastic multilayers with uni-axial anisotropy. The high sensitivity and the non-linear properties have been demonstrated in cantilever type actuators, and phenomena such as magneto-mechanical RF demodulation have been observed. The combination of the magnetic layers with piezoelectric materials also led to stress-mediated magnetoelectric (ME) composites with high ME coefficients, thanks to the SRT. The magnetoacoustic effects of the SRT have also been studied for surface acoustic waves propagating in the magnetoelastic layers and found to be promising for highly sensitive magnetic field sensors working at room temperature. On the other hand, mechanical stress is a very efficient way to control the magnetic subsystem. The principle of a very energy efficient stress-mediated magnetoelectric writing and reading in a magnetic memory is described.

  11. Linear and Nonlinear Infrasound Propagation to 1000 km

    Science.gov (United States)

    2015-12-15

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0017 TR-2016-0017 LINEAR AND NONLINEAR INFRASOUND PROPAGATION TO 1000 KM Catherine de Groot-Hedlin Scripps...Nonlinear Infrasound Propagation to 1000 km 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Catherine de Groot

  12. Probing hysteretic elasticity in weakly nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  13. Creep laws for refractory tungsten alloys between 900 and 1100 oC under low stress

    International Nuclear Information System (INIS)

    Gallet, D.; Dhers, J.; Levoy, R.; Polcik, P.

    2001-01-01

    Refractory metals and alloys with melting point above 2500 o C, are commonly used at temperature well above 1000 o C. Very few creep data exist at low temperature and low stress. In the present work, we studied the micro-creep deformation and the structure stability of different W and W alloys, W-B, W-La 2 O 3 , W-K, W-Re, in the temperature range 900-1100 o C and stress range 10-50 MPa, up to 500 hours. A Norton type law has been established for those materials. Stress exponents around 1.0 have been obtained. Activation energies have been determined, and are much lower than self diffusion energies for all materials tested. The main mechanism involved has been identified as Harper-Dorn creep, implying some dislocation rearrangement. The dopants are classified according to their efficiency in creep reduction and boron at 100 ppm has been found to be the most efficient, whereas at 10 ppm, it degrades the behavior of stress relieved tungsten. Furthermore, we have found that the addition of some elements may have an efficient effect as recrystallization inhibitor. (author)

  14. Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks

    International Nuclear Information System (INIS)

    Wang, W.X.; Diamond, P.H.; Hahm, T.S.; Ethier, S.; Rewoldt, G.; Tang, W.M.

    2010-01-01

    Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E - B shear. The ITG turbulence driven 'intrinsic' torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by 'intrinsic' torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a 'flow pinch' in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.

  15. Microscopic origin of nonlinear non-affine deformation in metallic glasses

    NARCIS (Netherlands)

    Zaccone, A.; Schall, P.; Terentjev, E.M.

    2014-01-01

    The atomic theory of elasticity of amorphous solids, based on the nonaffine response formalism, is extended into the nonlinear stress-strain regime by coupling with the underlying irreversible many-body dynamics. The latter is implemented in compact analytical form using a qualitative method for the

  16. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  17. Co-administration of Vitamins E and C protects against stress ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the effect of co- administration of vitamins E and C on exhaustive exercise induced-stress in regards to hepatorenal function in rats native to low altitude (LA) and high altitude (HA). In both LA and HA areas, native wistar rats of each area were divided into three groups of 6 rats each, ...

  18. The Effect of Residual Stress on the Electromechanical Behavior of Electrostatic Microactuators

    Directory of Open Access Journals (Sweden)

    Ming-Hung Hsu

    2008-01-01

    Full Text Available This work simulates the nonlinear electromechanical behavior of different electrostatic microactuators. It applies the differential quadrature method, Hamilton's principle, and Wilson-θ integration method to derive the equations of motion of electrostatic microactuators and find a solution to these equations. Nonlinear equation difficulties are overcome by using the differential quadrature method. The stresses of electrostatic actuators are determined, and the residual stress effects of electrostatic microactuators are simulated.

  19. Deposition of low stress, high transmittance SiC as an x-ray mask membrane using ECR plasma CVD

    CERN Document Server

    Lee, S Y; Lim, S T; Ahn, J H

    1998-01-01

    SiC for x-ray mask membrane is deposited by Electron Cyclotron Resonance plasma Chemical Vapor Deposition from SiH sub 4 /CH sub 4 Ar mixtures. Stoichiometric SiC is deposited at SiH sub 4 /CH sub 4 ratio of 0.4, deposition temperature of 600.deg.C and microwave power of 500 W with +- 5% thickness uniformity, As-deposited film has compressive residual stress, very smooth surface (31 A rms) and high optical transmittance of 90% at 633 nm wavelength. The microstructure of this film consists of the nanocrystalline particle (100 A approx 200A) embedded in amorphous matrix. Residual stress can be turned to tensile stress via Rapid Thermal Annealing in N sub 2 atmosphere, while suppressing structural change during annealing, As a result, smooth (37 A rms) SiC film with moderate tensile stress and high optical transmittance (85% at 633 nm wavelength) is obtained.

  20. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    Science.gov (United States)

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  1. Non-linear imaging techniques visualize the lipid profile of C. elegans

    Science.gov (United States)

    Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George

    2015-07-01

    The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.

  2. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  3. Stress and estrous cycle affect strategy but not performance of female C57BL/6J mice

    NARCIS (Netherlands)

    ter Horst, J.P.; Kentrop, J.; de Kloet, E.R.; Oitzl, M.S.

    2013-01-01

    Stress induces a switch in learning strategies of male C57BL/6J mice from predominantly spatial to more stimulus-response learning. To study generalization of these findings over sex, we investigated female C57BL/6J mice at three phases of the estrous cycle under non stress and acute (10 min)

  4. Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact

    International Nuclear Information System (INIS)

    Li Qing; Wang Tianshu; Ma Xingrui

    2009-01-01

    Flexible-body modeling with geometric nonlinearities remains a hot topic of research by applications in multibody system dynamics undergoing large overall motions. However, the geometric nonlinear effects on the impact dynamics of flexible multibody systems have attracted significantly less attention. In this paper, a point-surface impact problem between a rigid ball and a pivoted flexible beam is investigated. The Hertzian contact law is used to describe the impact process, and the dynamic equations are formulated in the floating frame of reference using the assumed mode method. The two important geometric nonlinear effects of the flexible beam are taken into account, i.e., the longitudinal foreshortening effect due to the transverse deformation, and the stress stiffness effect due to the axial force. The simulation results show that good consistency can be obtained with the nonlinear finite element program ABAQUS/Explicit if proper geometric nonlinearities are included in the floating frame formulation. Specifically, only the foreshortening effect should be considered in a pure transverse impact for efficiency, while the stress stiffness effect should be further considered in an oblique case with much more computational effort. It also implies that the geometric nonlinear effects should be considered properly in the impact dynamic analysis of more general flexible multibody systems

  5. Nonlinear upconversion based infrared spectroscopy on ZSM-5 zeolite

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Beato, Pablo; Tidemand-Lichtenberg, Peter

    2017-01-01

    We present a spectroscopic measurement of zeolite ZSM-5 in the mid-IR following the methanol attachment to active sites at 200 °C. The spectra are measured using nonlinear frequency upconversion to the near-IR spectral region.......We present a spectroscopic measurement of zeolite ZSM-5 in the mid-IR following the methanol attachment to active sites at 200 °C. The spectra are measured using nonlinear frequency upconversion to the near-IR spectral region....

  6. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  7. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  8. Multi-scale-nonlinear interactions among micro-turbulence, double tearing instability and zonal flows

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient

  9. Nonlinear and anisotropic tensile properties of graft materials used in soft tissue applications.

    Science.gov (United States)

    Yoder, Jonathon H; Elliott, Dawn M

    2010-05-01

    The mechanical properties of extracellular matrix grafts that are intended to augment or replace soft tissues should be comparable to the native tissue. Such grafts are often used in fiber-reinforced tissue applications that undergo multi-axial loading and therefore knowledge of the anisotropic and nonlinear properties are needed, including the moduli and Poisson's ratio in two orthogonal directions within the plane of the graft. The objective of this study was to measure the tensile mechanical properties of several marketed grafts: Alloderm, Restore, CuffPatch, and OrthADAPT. The degree of anisotropy and non-linearity within each graft was evaluated from uniaxial tensile tests and compared to their native tissue. The Alloderm graft was anisotropic in both the toe- and linear-region of the stress-strain response, was highly nonlinear, and generally had low properties. The Restore and CuffPatch grafts had similar stress-strain responses, were largely isotropic, had a linear-region modulus of 18MPa, and were nonlinear. OrthADAPT was anisotropic in the linear-region (131 MPA vs 47MPa in the toe-region) and was highly nonlinear. The Poisson ratio for all grafts was between 0.4 and 0.7, except for the parallel orientation of Restore which was greater than 1.0. Having an informed understanding of how the available grafts perform mechanically will allow for better assessment by the physician for which graft to apply depending upon its application. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. 14C-incorporation into sugars and organic acids of water-stressed maize leaves

    International Nuclear Information System (INIS)

    Becker, T.; Fock, H.

    1986-01-01

    The incorporation of 14 C into sugars and some organic acids of maize leaves has been studied in relation to the leaf water potential by feeding 14 CO 2 (370 ppm) for 1,2 and 4 min during steady state photosynthesis at 25 0 C (PAR = 800 μmol m -2 s -1 ). The relative specific radioactivity (RSA) of the sugars was low (0.2% after 4 min) at -0.62 MPa (control) and decreased by about 50% when psi dropped to -0.95 MPa. The authors conclude that the low rate of photosynthetic sugar synthesis in maize leaves decreased during water stress. The RSA of malate was extremely low at -0.62 MPa (0.02%). This result may be the consequence of the large pool size of malate in maize leaves. The authors presume that there are two malate pools present in maize leaves, a small metabolic pool and a larger storage pool. The RSA of malate decreased during the stress period. This is consistent with the decline in net CO 2 uptake during water stress. The pool sizes of citrate and isocitrate increased when psi dropped to -0.95 MPa. As practically no radioactivity was detected in these organic acids, they conclude that these compounds are synthesized from unlabelled precursors during water stress

  11. Symmetry and exact solutions of nonlinear spinor equations

    International Nuclear Information System (INIS)

    Fushchich, W.I.; Zhdanov, R.Z.

    1989-01-01

    This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)

  12. Antioxidant Potential of ulva rigida c. Agardh Extract: Protection from Oxidative Stress Hypothyroidism

    Directory of Open Access Journals (Sweden)

    S. TAŞ

    2014-06-01

    Full Text Available The purpose of this study was to evaluate the effects of Ulva rigida C. Agardh, one of the green algae, on and antioxidative system in the propylthiouracil (PTU-induced hypothyroid rats. Thirty-two rats randomly divided into four groups: control (C, control+U. rigida extract (C+UR, hypothyroid (H and hypothyroid+U. rigida extract (H+UR. U. rigida (2% was administered in drinking water for 5 weeks after the induction of hypothyroidism. Hypothyroid rats were under oxidative stress as reflected by icreased plasma and tissue malondialdehyde (MDA levels. U. rigida reduced serum total cholesterol and,- triglyceride levels and plasma and heart skeletal muscle, liver and,- kidney tissue MDA levels in the H+UR group. Serum total cholesterol and tissues MDA levels were reduced in the C+UR group. Whole blood glutathione peroxidase and erythrocyte superoxide dismutase activities were increased in the H+UR and C+UR groups compared with those of te respective control groups. Paraoxonase and arylesterase activities were lower in the H group and U. rigida increased paraoxonase and arylesterase activities in C+UR and H+UR groups. We conclude that hypothyroidism is associated with oxidative stress and, U. rigida extract might have a potential use as a protective antioxidant agent in hypothroidism.

  13. A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load: prospective results from the Whitehall II cohort study.

    Science.gov (United States)

    Dich, Nadya; Doan, Stacey N; Kivimäki, Mika; Kumari, Meena; Rod, Naja Hulvej

    2014-11-01

    Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional response to major life events and allostatic load, a multisystem indicator of physiological dysregulation. Study sample was 6764 British civil service workers from the Whitehall II cohort. Negative emotional response was assessed by self-report at baseline. Allostatic load was calculated using cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological dysregulation. Allostatic load also increased with age, but the association between negative emotional response and allostatic load remained stable over time. These results provide evidence for a more nuanced understanding of the role of negative emotions in long-term physical health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Electronic structure, stability and non-linear optical properties of aza-fullerenes C60-2nN2n(n=1–12

    Directory of Open Access Journals (Sweden)

    K. Srinivasu

    2012-12-01

    Full Text Available Through ab initio based density functional theory calculations, we have investigated the electronic structure, stability and non-linear optical properties of a series of nitrogen substituted fullerenes (azafullerenes with the general formula C60-2nN2n (n=1–12. For each system, we have considered different possible isomers and the minimum energy isomer is subjected to further detailed investigations. We have calculated different properties such as HOMO-LUMO gaps, vertical ionization potentials, vertical electron affinities, etc. to verify the stability of the considered fullerenes. From the Hessian calculations, it is observed that all the fullerenes are not only associated with real vibrational frequencies, but the minimum frequencies are also found to be considerably large which further confirms the stability of the considered fullerenes. We find that the presence of unperturbed C6 rings enhances the stability of the fullerene whereas, the -N-C-N- fragments are found to destabilize the structure. At lower doping concentration, the stabilization due to C6 is more predominant and as the doping concentration is increased, the destabilization due to nitrogen-nitrogen repulsion plays a more important role. Our calculated polarizability and hyperpolarizability parameters of C60 are found to be in good agreement with the earlier reported results. On nitrogen doping, considerable variation is observed in the non-linear optical coefficients, which can be helpful in designing new photonic devices.

  15. Nonlinear tension-bending deformation of a shape memory alloy rod

    International Nuclear Information System (INIS)

    Shang, Zejin; Wang, Zhongmin

    2012-01-01

    Based on the measured shape memory alloy (SMA) stress–strain curve and the nonlinear large deformation theory of extensible beams (or rods), the first-order nonlinear governing equations of a SMA cantilever straight rod are established. They consist of a boundary-value problem of ordinary differential equations with a strong nonlinearity, in which seven unknown functions are contained and the arc length of the deformed axis is considered as one of the basic unknown functions. The shooting method combining with the Newton–Raphson iteration method is applied to solve the equations numerically. For a SMA cantilever rod subjected to a transverse uniformly distributed force, the deformation characteristics curves, the maximum strain and the maximum stress distribution curves along the longitudinal direction of rod, and the relation curves between deformation characteristic parameters and transverse uniformly force under different slenderness ratios are obtained. The effects of material nonlinearity, geometrical nonlinearity and slenderness ratio on the tension-bending deformation of the SMA cantilever rod are investigated. The numerical simulation results are in good agreement with the experimental data from the literature, verifying the soundness of the entire numerical simulation scheme. (paper)

  16. A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams

    Science.gov (United States)

    Lubbers, Luuk A.; van Hecke, Martin; Coulais, Corentin

    2017-09-01

    Wide beams can exhibit subcritical buckling, i.e. the slope of the force-displacement curve can become negative in the postbuckling regime. In this paper, we capture this intriguing behaviour by constructing a 1D nonlinear beam model, where the central ingredient is the nonlinearity in the stress-strain relation of the beams constitutive material. First, we present experimental and numerical evidence of a transition to subcritical buckling for wide neo-Hookean hyperelastic beams, when their width-to-length ratio exceeds a critical value of 12%. Second, we construct an effective 1D energy density by combining the Mindlin-Reissner kinematics with a nonlinearity in the stress-strain relation. Finally, we establish and solve the governing beam equations to analytically determine the slope of the force-displacement curve in the postbuckling regime. We find, without any adjustable parameters, excellent agreement between the 1D theory, experiments and simulations. Our work extends the understanding of the postbuckling of structures made of wide elastic beams and opens up avenues for the reverse-engineering of instabilities in soft and metamaterials.

  17. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

    Directory of Open Access Journals (Sweden)

    Sveta Chakrabarti

    2014-09-01

    Full Text Available The p38 mitogen-activated protein (MAP kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c.

  18. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine.

    Science.gov (United States)

    Chakrabarti, Sveta; Poidevin, Mickaël; Lemaitre, Bruno

    2014-09-01

    The p38 mitogen-activated protein (MAP) kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS) in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c.

  19. Mission-profile-based stress analysis of bond-wires in SiC power modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2016-01-01

    This paper proposes a novel mission-profile-based reliability analysis approach for stress on bond wires in Silicon Carbide (SiC) MOSFET power modules using statistics and thermo-mechanical FEM analysis. In the proposed approach, both the operational and environmental thermal stresses are taken...... into account. The approach uses a two-dimension statistical analysis of the operating conditions in a real one-year mission profile sampled at time frames 5 minutes long. For every statistical bin corresponding to a given operating condition, the junction temperature evolution is estimated by a thermal network...... and the mechanical stress on bond wires is consequently extracted by finite-element simulations. In the final step, the considered mission profile is translated in a stress sequence to be used for Rainflow counting calculation and lifetime estimation....

  20. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  1. A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray

    International Nuclear Information System (INIS)

    Tamaoki, Masanori; Matsuyama, Takashi; Nakajima, Nobuyoshi; Aono, Mitsuko; Kubo, Akihiro; Saji, Hikaru

    2004-01-01

    Plants in the field are subjected to numerous environmental stresses. Lengthy continuation of such environmental stresses or a rapid increase in their intensity is harmful to vegetation. Assessments of the phytotoxicity of various stresses have been performed in many countries, although they have largely been based on estimates of leaf injury. We developed a novel method of detecting plant stresses that is more sensitive and specific than those previously available. This method is based on the detection of mRNA expression changes in 205 ozone-responsive Arabidopsis expressed sequence tags (ESTs) by cDNA macroarray analysis. By using this method, we illustrated shifts in gene expression in response to stressors such as drought, salinity, UV-B, low temperature, high temperature, and acid rain, as distinct from those in response to ozone. We also made a mini-scale macroarray with 12 ESTs for diagnosis of the above environmental stresses in plants. These results illustrate the potential of our cDNA macroarray for diagnosis of various stresses in plants

  2. Simulations of nonlinear continuous wave pressure fields in FOCUS

    Science.gov (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  3. Reconstruction of the residual stresses in a hyperelastic body using ultrasound techniques

    KAUST Repository

    Joshi, Sunnie; Walton, Jay R.

    2013-01-01

    This paper focuses on a novel approach for characterizing the residual stress field in soft tissue using ultrasound interrogation. A nonlinear inverse spectral technique is developed that makes fundamental use of the finite strain nonlinear response

  4. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song [College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Tian, GuiYun, E-mail: tian280@hotmail.com [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); School of Electrical and Electronic Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle NE1 7RU (United Kingdom); Dobmann, Gerd; Wang, Ping [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness. - Highlights: • The skewness of magnetic Barkhausen noise profile is proposed as a new feature for applied stress determination. • The skewness is sensitive to applied stress and independent to excitation frequency. • Domain wall energy and pinning distance influence the relaxation time of domain wall, which leads to a non-linear behavior of skewness under compressive stress.

  5. Long-Term Aging Diagnosis of Rotor Steel Using Acoustic Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of); Park, Ik Keun; Hyun, Chang Yong [Seoul National University of Science and Tecnology, Seoul (Korea, Republic of)

    2011-12-15

    The long-term aging of ferritic 2.25CrMo steel was characterized using the acoustic nonlinear effect in order to apply to diagnose the degradation behavior of structural materials. We measured the acoustic nonlinearity parameter for each thermally aged specimen by the higher harmonic-generation technique. The acoustic nonlinearity parameter increased with aging time due to equilibrium M6C carbide precipitation, and has a favorable linear relation with Rockwell hardness. This study suggests that acoustic nonlinearity testing may be applicable to diagnostics on strength degradation in rotor steels.

  6. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    This paper presents the results of an investigation of the role of localized effects within the geometrically nonlinear domain on structural sandwich panels with a "compliant" core. Special emphasis is focused on the nonlinear response near concentrated loads and stiffened core regions. The adopted...... nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...... of the panel from a strength problem controlled by stress constraints into a stability problem with unstable limit point behavior when force-controlled loads are applied. The stability problem emerge as the nonlinear response develops with the formation of a small number of buckling waves in the compressed...

  7. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    Science.gov (United States)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  8. Analytical investigation of multicavity prestressed concrete pressure vessels for elastic loading conditions

    International Nuclear Information System (INIS)

    Fanning, D.N.

    1978-09-01

    A three-dimensional finite-element analysis of a commercial high-temperature gas-cooled reactor (HTGR) was made using the finite-element code STATIC-SAP. Four loading conditions were analyzed elastically to evaluate the behavior of the concentric core prestressed concrete reactor vessel (PCRV) of the HTGR. The results of the analysis were evaluated in accordance with Section III, Division 2, of the ASME Code for Reactor Vessels and Containments. The calculated maximum stresses were found to be well within the Code-allowable values. The analysis was preceded by an evaluation of candidate computer codes using comparisons of experimental data with analytical results for the Ohbayashi-Gumi multicavity PCRV model. This vessel was chosen as a basis for comparison because of its geometrical similarity to the large multicavity PCRV and the anticipated availability of a complete set of the original experimental data. The three-dimensional finite-element codes NONSAP and STATIC-SAP were used for the analysis of the Ohbayashi-Gumi vessel

  9. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  10. Modeling the flow in a 90 deg. rectangular duct using one Reynolds-stress and two eddy-viscosity models

    International Nuclear Information System (INIS)

    Yakinthos, K.; Vlahostergios, Z.; Goulas, A.

    2008-01-01

    A new effort to model the flow in a 90 deg. rectangular duct by adopting three low-Reynolds-number turbulence models, two eddy-viscosity models (a linear and a non-linear) and a Reynolds-stress model, is presented. The complex flow development is a challenge for the application of turbulence models in order to assess their capability to capture the secondary flow and the developing vortices due to curvature and strong pressure gradient effects. The numerical results show that both the non-linear eddy-viscosity and the Reynolds-stress models can provide good results, especially for the velocity distributions. The superiority of the Reynolds-stress model is shown primarily in the Reynolds-stress distributions, which have the best quality among the predictions from the other models. On the other hand, the main advantage of the non-linear model is its simplicity and the smaller needed CPU cost, compared to the Reynolds-stress model. Additionally, in some stations of the flow development, the non-linear model provides good velocity distributions. The linear model gives lower quality predictions for the Reynolds-stress distributions, although it is capable in providing quite satisfactory results for the velocity distributions

  11. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  12. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  13. The stress corrosion cracking of hard 2 1/4 CrMo steel in water at 2000 and 3000C

    International Nuclear Information System (INIS)

    Hurst, P.; Appleton, D.A.; Hurley, J.R.F.; Pennington, C.

    1983-01-01

    An account is given of experiments performed in 200 0 or 300 0 C water to evaluate the susceptibility of the quench-hardened steel to stress corrosion cracking. The work has covered self-stressed specimens (U-bends and C-rings), and constant load tests tensile specimens and tube/tube plate welds of the type used for the UK Prototype Fast Reactor. At 200 0 C, the effects have been examined of strength, stress and oxygen level; at 300 0 C the effect of quenching temperature (1400 or 1050 0 C) has been studied. Different mechanisms may be responsible at the two test temperatures. Hydrogen absorption in the region of any localised corrosion is believed to be mechanistically significant in the case of 200 0 C cracking, but general embrittlement does not occur. At 300 0 C the cracking has been linked with the increased probability of grain boundary segregation arising from the higher quenching temperature. The value of shot-peening as a means of inducing surface compressive stress, and hence reducing the risk of cracking, has been demonstrated and the factors that could counter-act its usefulness have been identified. (author)

  14. Comparison of a nonlinear dynamic model of a piping system to test data

    International Nuclear Information System (INIS)

    Blakely, K.D.; Howard, G.E.; Walton, W.B.; Johnson, B.A.; Chitty, D.E.

    1983-01-01

    Response of a nonlinear finite element model of the Heissdampfreaktor recirculation piping loop (URL) was compared to measured data, representing the physical benchmarking of a nonlinear model. Analysis-test comparisons of piping response are presented for snapback tests that induced extreme nonlinear behavior of the URL system. Nonlinearities in the system are due to twelve swaybraces (pipe supports) that possessed nonlinear force-deflection characteristics. These nonlinearities distorted system damping estimates made by using the half-power bandwidth method on Fourier transforms of measured accelerations, with the severity of distortion increasing with increasing degree of nonlinearity. Time domain methods, which are not so severely affected by the presence of nonlinearities, were used to compute system damping ratios. Nonlinear dynamic analyses were accurately and efficiently performed using the pseudo-force technique and the finite element program MSC/NASTRAN. Measured damping was incorporated into the model for snapback simulations. Acceleration time histories, acceleration Fourier transforms, and swaybrace force time histories of the nonlinear model, plus several linear models, were compared to test measurements. The nonlinear model predicted three-fourths of the measured peak accelerations to within 50%, half of the accelerations to within 25%, and one-fifth of the accelerations to within 10%. This nonlinear model predicted accelerations (in the time and frequency domains) and swaybrace forces much better than did any of the linear models, demonstrating the increased accuracy resulting from properly simulating nonlinear support behavior. In addition, earthquake response comparisons were made between the experimentally validated nonlinear model and a linear model. Significantly lower element stresses were predicted for the nonlinear model, indicating the potential usefulness of nonlinear simulations in piping design assessments. (orig.)

  15. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  16. Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO

    2008-01-01

    The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.

  17. Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks

    Science.gov (United States)

    Sebastian, Resmi; Sitharam, T. G.

    2018-01-01

    Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.

  18. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...

  19. Nonlinear analysis of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Connor, J.J.

    1975-01-01

    The numerical procedures for predicting the nonlinear behavior of a prestressed concrete reactor vessel over its design life are discussed. The numerical models are constructed by combining three-dimensional isoparametric finite elements which simulate the concrete, thin shell elements which simulate steel linear plates, and layers of reinforcement steel, and axial elements for discrete prestressing cables. Nonlinearity under compressive stress, multi-dimensional cracking, shrinkage and stress/temperature induced creep of concrete are considered in addition to the elasti-plastic behavior of the liner and reinforcing steel. Various failure theories for concrete have been proposed recently. Also, there are alternative strategies for solving the discrete system equations over the design life, accounting for test loads, pressure and temperature operational loads, creep unloading and abnormal loads. The proposed methods are reviewed, and a new formulation developed by the authors is described. A number of comparisons with experimental tests results and other numerical schemes are presented. These examples demonstrate the validity of the formulation and also provide valuable information concerning the cost and accuracy of the various solution strategies i.e., total vs. incremental loading and initial vs. tangent stiffness. Finally, the analysis of an actual PCRV is described. Stress contours and cracking patterns in the region of cutouts corresponding to operational pressure and temperature loads are illustrated. The effects of creep, unloading, and creep recovery are then shown. Lastly, a strategy for assessing the performance over its design life is discussed

  20. Generalized nonlinear Proca equation and its free-particle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, F.D. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Plastino, A.R. [Universidad Nacional Buenos Aires-Noreoeste, CeBio y Secretaria de Investigacion, Junin (Argentina)

    2016-06-15

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ{sup μ}(vector x,t), involves an additional field Φ{sup μ}(vector x,t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E{sup 2} = p{sup 2}c{sup 2} + m{sup 2}c{sup 4} for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. (orig.)

  1. Nonlinear elasticity in resonance experiments

    Science.gov (United States)

    Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel

    2018-04-01

    Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

  2. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    Science.gov (United States)

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Water stress and nitrogen limitation effects on corn (Zea mays L.) competition with a C3 and a C4 weed.

    Science.gov (United States)

    Zand, E; Soufizadeh, S; Eskandari, A

    2006-01-01

    To examine how drought and nitrogen limitation might affect crop competitive ability with C3 or C4 weeds, a two year experiment was conducted at the research field of Plant Pest and Disease Research Institute, Karaj, in 2002 and 2003. Irrigation interval (every 7d and 14d (moderate drought stress)), nitrogen rate (recommended and 1/4 recommended), and crop-weed competition (corn, corn-common lambsquarters (Chenopodium album L.), corn-redroot pigweed (Amaranthus retroflexus L.), and corn-common lambsquarters-redroot pigweed) were studied in a split-factorial design with 4 replications, with irrigation interval as the main plot, and factorial combination of the other two factors as the sub-plot. Grain yield, harvest index (HI), water and nitrogen use efficiencies (WUE and NUE, respectively) were measured at harvest. Drought and nitrogen deficiency reduced corn grain yield and HI (except for corn-redroot pigweed and corn-common lambsquarters treatments under drought stress). Redroot pigweed was found inhibitorier to corn compared to common lambsquarters in all irrigation and nitrogen levels. Corn WUE reduced under drought condition and competition, but drought caused less reduction in corn WUE when it competed with common lambsquarters compared to redroot pigweed. This shows that drought has more negative effect on C3 weeds (probably due to higher reduction in stomatal conductance and increment in photo-respiration under these conditions compared to a C4 plant). The same result was obtained for corn NUE under nitrogen limitation and competition. In other words, nitrogen deficiency had more inhibitory effect on common lambsquarters competitive ability compared with redroot pigweed. Totally, it was concluded that drought stress and nitrogen deficiency, as the two results of climate change, had more negative effect on C3 weeds compared with C4.

  4. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang

    2016-09-06

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  5. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2016-01-01

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  6. Nonlinear Viscoelastic Rheology and the Occurrence of Aftershocks

    Science.gov (United States)

    Shcherbakov, R.; Zhang, X.

    2017-12-01

    Aftershocks are ubiquitous in nature. They are the manifestation of relaxation phenomena observed in various physical systems. In one prominent example, they typically occur after large earthquakes. The observed aftershock sequences usually obey several well defined non-trivial empirical laws in magnitude, temporal, and spatial domains. In many cases their characteristics follow scale-invariant distributions. The occurrence of aftershocks displays a prominent temporal behavior due to time-dependent mechanisms of stress and/or energy transfer. There are compelling evidences that the lower continental crust and upper mantle are governed by various solid state creep mechanisms. Among those mechanisms a power-law viscous flow was suggested to explain the postseismic surface deformation after large earthquakes. In this work, we consider a slider-block model to mimic the behavior of a seismogenic fault. In the model, we introduce a nonlinear viscoelastic coupling mechanism to capture the essential characteristics of crustal rheology and stress interaction between the blocks and the medium. For this purpose we employ nonlinear Kelvin-Voigt elements consisting of an elastic spring and a dashpot assembled in parallel to introduce viscoelastic coupling between the blocks and the driving plate. By mapping the model into a cellular automaton we derive the functional form of the stress transfer mechanism in the model. We show that the nonlinear viscoelasticity plays a critical role in triggering of aftershocks. It explains the functional form of the Omori-Utsu law and gives physical interpretation of its parameters. The proposed model also suggests that the power-law rheology of the fault gauge and underlying lower crust and upper mantle controls the decay rate of aftershocks. To verify this, we analyze several prominent aftershock sequences to estimate their decay rates and correlate with the rheological properties of the underlying lower crust and mantle, which were estimated

  7. Experimental evaluation of the pure configurational stress assumption in the flow dynamics of entangled polymer melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Bejenariu, Anca Gabriela; Hassager, Ole

    2010-01-01

    to the flow in the non-linear flow regime. This has allowed highly elastic measurements within the limit of pure orientational stress, as the time of the flow was considerably smaller than the Rouse time. A Doi-Edwards [J. Chem. Soc., Faraday Trans. 2 74, 1818-1832 (1978)] type of constitutive model...... with the assumption of pure configurational stress was accurately able to predict the startup as well as the reversed flow behavior. This confirms that this commonly used theoretical picture for the flow of polymeric liquids is a correct physical principle to apply. c 2010 The Society of Rheology. [DOI: 10.1122/1.3496378]...

  8. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    Science.gov (United States)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  9. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    Science.gov (United States)

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  11. Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study.

    Science.gov (United States)

    Wang, Lin; Meng, Jie; Cao, Weipeng; Li, Qizhai; Qiu, Yuqing; Sun, Baoyun; Li, Lei M

    2014-06-01

    The nanoparticle gadolinium endohedral metallofullerenol [Gd@C82(OH)22]n is a new candidate for cancer treatment with low toxicity. However, its anti-cancer mechanisms remain mostly unknown. In this study, we took a systems biology view of the gene expression profiles of human breast cancer cells (MCF-7) and human umbilical vein endothelial cells (ECV304) treated with and without [Gd@C82(OH)22]n, respectively, measured by the Agilent Gene Chip G4112F. To properly analyze these data, we modified a suit of statistical methods we developed. For the first time we applied the sub-sub normalization to Agilent two-color microarrays. Instead of a simple linear regression, we proposed to use a one-knot SPLINE model in the sub-sub normalization to account for nonlinear spatial effects. The parameters estimated by least trimmed squares- and S-estimators show similar normalization results. We made several kinds of inferences by integrating the expression profiles with the bioinformatic knowledge in KEGG pathways, Gene Ontology, JASPAR, and TRANSFAC. In the transcriptional inference, we proposed the BASE2.0 method to infer a transcription factor's up-regulation and down-regulation activities separately. Overall, [Gd@C82(OH)22]n induces more differentiation in MCF-7 cells than in ECV304 cells, particularly in the reduction of protein processing such as protein glucosylation, folding, targeting, exporting, and transporting. Among the KEGG pathways, the ErbB signaling pathway is up-regulated, whereas protein processing in endoplasmic reticulum (ER) is down-regulated. CHOP, a key pro-apoptotic gene downstream of the ER stress pathway, increases to nine folds in MCF-7 cells after treatment. These findings indicate that ER stress may be one important factor that induces apoptosis in MCF-7 cells after [Gd@C82(OH)22]n treatment. The expression profiles of genes associated with ER stress and apoptosis are statistically consistent with other profiles reported in the literature, such as

  12. Determining stress fields of shearer-loader picks

    Energy Technology Data Exchange (ETDEWEB)

    Luszczkiewicz, J; Sikora, W

    1987-06-01

    Analyzes factors which influence stress distribution in the NK-4 shearer-loader picks during coal cutting. The AFT optically active cover, 0.0015 mm thick, was used. The pick with the AFT cover was loaded using a force of 33 kN. Isoclinic lines showing stress distribution were photographed. Effects of pick design and its holder type on stress distribution were investigated. Investigations showed that distribution of normal stresses in a pick shaft has a non-linear character. The hole in a pick shaft increased stress concentration in that shaft section. Eliminating the hole reduced stress concentration. Reducing shaft length by about 20 mm did not increase stresses in that shaft zone. 15 refs.

  13. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  14. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    Science.gov (United States)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  15. Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice.

    Science.gov (United States)

    Iñiguez, Sergio D; Riggs, Lace M; Nieto, Steven J; Dayrit, Genesis; Zamora, Norma N; Shawhan, Kristi L; Cruz, Bryan; Warren, Brandon L

    2014-05-01

    Abstract Exposure to stress is highly correlated with the emergence of mood-related illnesses. Because major depressive disorder often emerges in adolescence, we assessed the effects of social defeat stress on responses to depressive-like behaviors in juvenile mice. To do this, postnatal day (PD) 35 male c57BL/6 mice were exposed to 10 days of social defeat stress (PD35-44), while control mice were handled daily. Twenty-four hours after the last episode of defeat (PD45), separate groups of mice were tested in the social interaction, forced swimming, sucrose preference, and elevated plus-maze behavioral assays (n = 7-12 per group). Also, we examined body weight gain across days of social defeat and levels of blood serum corticosterone 40 min after the last episode of defeat stress. Our data indicates that defeated mice exhibited a depressive-like phenotype as inferred from increased social avoidance, increased immobility in the forced swim test, and reduced sucrose preference (a measure of anhedonia), when compared to non-defeated controls. Defeated mice also displayed an anxiogenic-like phenotype when tested on the elevated plus-maze. Lastly, stressed mice displayed lower body weight gain, along with increased blood serum corticosterone levels, when compared to non-stressed controls. Overall, we show that in adolescent male c57BL/6 mice, social defeat stress induces a depression- and anxiety-like phenotype 24 h after the last episode of stress. These data suggest that the social defeat paradigm may be used to examine the etiology of stress-induced mood-related disorders during adolescence.

  16. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  17. Complexity analyses show two distinct types of nonlinear dynamics in short heart period variability recordings

    Science.gov (United States)

    Porta, Alberto; Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Cysarz, Dirk; Van Leeuwen, Peter; Takahashi, Anielle C. M.; Catai, Aparecida M.; Gnecchi-Ruscone, Tomaso

    2015-01-01

    Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales. PMID:25806002

  18. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  19. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    Science.gov (United States)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-04-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.

  20. Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hvidsten, Sverre

    1999-07-01

    Condition assessment of XLPE power cables is becoming increasingly important for the utilities, due to a large number of old cables in service with high probability of failure caused by water tree degradation. The commercial available techniques are generally based upon measurements of the dielectric response, either by time (polarisation/depolarisation current or return voltage) or frequency domain measurements. Recently it has been found that a high number of water trees in XLPE insulated cables causes the dielectric response to increase more than linearly with increasing test voltage. This nonlinear feature of water tree degraded XLPE insulation has been suggested to be of a great importance, both for diagnostic purposes, and for fundamental understanding of the water tree phenomenon itself. The main purpose of this thesis have been to study the nonlinear feature of the dielectric response measured on watertreed XLPE insulation. This has been performed by dielectric response measurements in both time and frequency domain, numerical calculations of losses of simplified water tree models, and fmally water content and water permeation measurements on single water trees. The dielectric response measurements were performed on service aged cable samples and laboratory aged Rogowski type objects. The main reason for performing laboratory ageing was to facilitate diagnostic testing as a function of ageing time of samples containing mainly vented water trees. A new method, based upon inserting NaC1 particles at the interface between the upper semiconductive screen and the insulation, was found to successfully enhance initiation and growth of vented water trees. AC breakdown strength testing show that it is the vented water trees that reduce the breakdown level of both the laboratory aged test objects and service aged cable samples. Vented water treeing was found to cause the dielectric response to become nonlinear at a relatively low voltage level. However, the measured

  1. Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies

    Science.gov (United States)

    Sozio, Fabio; Yavari, Arash

    2017-01-01

    In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.

  2. Recovery from nonlinear creep provides a window into physics of polymer glasses

    Science.gov (United States)

    Caruthers, James; Medvedev, Grigori

    Creep under constant applied stress is one of the most basic mechanical experiments, where it exhibits extremely rich relaxation behavior for polymer glasses. As many as five distinct stages of nonlinear creep are observed, where the rate of creep dramatically slows down, accelerates and then slows down again. Modeling efforts to-date has primarily focused on predicting the intricacies of the nonlinear creep curve. We argue that as much attention should be paid to the creep recovery response, when the stress is removed. The experimental creep recovery curve is smooth, where the rate of recovery is initially quite rapid and then progressively decreases. In contrast, the majority of the traditional constitutive models predict recovery curves that are much too abrupt. A recently developed stochastic constitutive model that takes into account the dynamic heterogeneity of glasses produces a smooth creep recovery response that is consistent with experiment.

  3. Dynamical heterogeneities and mechanical non-linearities: Modeling the onset of plasticity in polymer in the glass transition.

    Science.gov (United States)

    Masurel, R J; Gelineau, P; Lequeux, F; Cantournet, S; Montes, H

    2017-12-27

    In this paper we focus on the role of dynamical heterogeneities on the non-linear response of polymers in the glass transition domain. We start from a simple coarse-grained model that assumes a random distribution of the initial local relaxation times and that quantitatively describes the linear viscoelasticity of a polymer in the glass transition regime. We extend this model to non-linear mechanics assuming a local Eyring stress dependence of the relaxation times. Implementing the model in a finite element mechanics code, we derive the mechanical properties and the local mechanical fields at the beginning of the non-linear regime. The model predicts a narrowing of distribution of relaxation times and the storage of a part of the mechanical energy --internal stress-- transferred to the material during stretching in this temperature range. We show that the stress field is not spatially correlated under and after loading and follows a Gaussian distribution. In addition the strain field exhibits shear bands, but the strain distribution is narrow. Hence, most of the mechanical quantities can be calculated analytically, in a very good approximation, with the simple assumption that the strain rate is constant.

  4. Preliminary calculations of stress change of fuel pin using SiC/SiC composites for GFR with changing of thermal conductivity degradation by irradiation

    International Nuclear Information System (INIS)

    Lee, J. K.; Naganuma, M.

    2006-01-01

    Gas cooled Fast Reactor (GFR) is being researched as a candidate concept of Generation IV international Forum. As a main feature of GFR, it should be maintained high temperature and pressure of coolant gas for heat transfer efficiency. Such a demanding environment requires high-temperature-resistant structural materials distinguished from traditional steel material. Consequently, ceramics are promising candidate material of core components. Especially, Silicon Carbide fiber reinforced Silicon Carbide composites (SiC/SiC) have encouraging characteristics such as refractoriness, low activation and toughness. Application of new material to core components must be explained by the viewpoint of engineering validity. Therefore, present study surveyed that current report for mechanical strength and thermal conductivity of SiC/SiC composites. According to the reports, neutron irradiation environment degraded mechanical properties of SiC/SiC composites. To confirm applicability to core components, model of fuel pin using SiC/SiC composites was assumed with feasible mechanical properties. Furthermore, it was calculated and estimated that the stress caused by temperature variation of inner and outer side of assumed model of cladding tube. Stress was calculated by changing of input date such as thickness of cladding tube, temperature variation, thermal conductivity and linear power. In the range of this study, the most important factor was identified as degradation of thermal conductivity by irradiation. It caused a significant stress and limited a geometrical design of fuel pin. It was discussed that the differences of heat transfer between isotropic and anisotropic materials like a metal and composites. These results should be helpful not only to determine a design factor of core component but also to indicate an improvement direction of SiC/SiC composites. Through these work, reliability and safety of GFR will be increased

  5. Waves in nonlinear pre-stressed materials

    CERN Document Server

    Schneider, Wilhelm; Saccomandi, G

    2007-01-01

    The papers in this book provide a unique state-of-the-art multidisciplinary overview on the subject of waves in pre-stressed materials through the interaction of several topics, ranging from the mathematical modelling of incremental material response (elastic and inelastic), to the analysis of the governing differential equations and boundary-value problems, and to computational methods for the solution to these problems, with particular reference to industrial, geophysical, and biomechanical applications. A complete view on the title subject is proposed, including: The basic and fundamental theoretical issues (mechanical modelling, exact solutions, asymptotic methods, numerical treatment); A unified introduction to wave propagation (small on large and large on large); A look toward classical (such as geophysics and the mechanics of rubber-like solids) and emergent (such as biomechanics) applications.

  6. The application of large amplitude oscillatory stress in a study of fully formed fibrin clots

    Science.gov (United States)

    Lamer, T. F.; Thomas, B. R.; Curtis, D. J.; Badiei, N.; Williams, P. R.; Hawkins, K.

    2017-12-01

    The suitability of controlled stress large amplitude oscillatory shear (LAOStress) for the characterisation of the nonlinear viscoelastic properties of fully formed fibrin clots is investigated. Capturing the rich nonlinear viscoelastic behaviour of the fibrin network is important for understanding the structural behaviour of clots formed in blood vessels which are exposed to a wide range of shear stresses. We report, for the first time, that artefacts due to ringing exist in both the sample stress and strain waveforms of a LAOStress measurement which will lead to errors in the calculation of nonlinear viscoelastic properties. The process of smoothing the waveforms eliminates these artefacts whilst retaining essential rheological information. Furthermore, we demonstrate the potential of LAOStress for characterising the nonlinear viscoelastic properties of fibrin clots in response to incremental increases of applied stress up to the point of fracture. Alternating LAOStress and small amplitude oscillatory shear measurements provide detailed information of reversible and irreversible structural changes of the fibrin clot as a consequence of elevated levels of stress. We relate these findings to previous studies involving large scale deformations of fibrin clots. The LAOStress technique may provide useful information to help understand why some blood clots formed in vessels are stable (such as in deep vein thrombosis) and others break off (leading to a life threatening pulmonary embolism).

  7. Relationships between climate at origin and seedling traits in eight Panafrican provenances of Vitellaria paradoxa C.F. Gaertn. under imposed drought stress

    DEFF Research Database (Denmark)

    Bayala, J.; Sanon, Z.; Bazié, P.

    2018-01-01

    The morphological responses of seedlings of eight African provenances of Vitellaria paradoxa (Shea tree or Karité) to imposed draught stress were compared under nursery experimental conditions. The potted seedlings were subjected to three different watering regimes (87 days after sowing): no water...... stress (100% of the field capacity, C), moderate water stress (75% of C) and severe water stress (50% of C). Before the application of the stress, we observed genotypical differences in the morphological variables at the scale of leaves and of above-ground parts. The six-month water stress affected...

  8. Learning During Stressful Times

    Science.gov (United States)

    Shors, Tracey J.

    2012-01-01

    Stressful life events can have profound effects on our cognitive and motor abilities, from those that could be construed as adaptive to those not so. In this review, I discuss the general notion that acute stressful experience necessarily impairs our abilities to learn and remember. The effects of stress on operant conditioning, that is, learned helplessness, as well as those on classical conditioning procedures are discussed in the context of performance and adaptation. Studies indicating sex differences in learning during stressful times are discussed, as are those attributing different responses to the existence of multiple memory systems and nonlinear relationships. The intent of this review is to highlight the apparent plasticity of the stress response, how it might have evolved to affect both performance and learning processes, and the potential problems with interpreting stress effects on learning as either good or bad. An appreciation for its plasticity may provide new avenues for investigating its underlying neuronal mechanisms. PMID:15054128

  9. Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel

    International Nuclear Information System (INIS)

    Bhadeshia, H.K.D.H.; David, S.A.; Vitek, J.M.; Reed, R.W.

    1991-01-01

    The kinetics of the bainitic transformation in a polycrystalline Fe-Cr-Mo-C alloy designed for applications in energy generation systems has been studied, with particular attention to the influence of mild tensile stresses on transformation behaviour. The steel was found to exhibit the incomplete reaction phenomenon, in which transformation to bainite stops well before the residual austenite acquires its paraequilibrium carbon concentration. It was found that even in the absence of an applied stress, the growth of bainitic ferrite caused anisotropic changes in specimen dimensions, consistent with the existence of crystallographic texture in its austenitic condition and, significantly, with the nature of the invariant-plane strain shape change that accompanies the growth of bainitic ferrite. Thus, transformation induced plasticity could be detected in fine grained polycrystalline samples, even in the absence of applied stress. The application of an external stress was found to alter radically the transformation behaviour, with clear evidence that the stress tends to favour the development of certain crystallographic variants of bainite, even though the stress may be well below the single phase yield strength. It is concluded that the transformation is influenced significantly by stresses as low as 45 MN m -2 , even though the effect may not be obvious in metallographic studies. The results are analysed and discussed in terms of the mechanism of the bainite transformation. (author)

  10. Comparison of the Contact stress and friction behavior of SiC and ZrO2 materials

    International Nuclear Information System (INIS)

    Lindberg, L.J.; Richerson, D.W.

    1985-01-01

    Studies were performed to further elucidate the friction and contact- stress characteristics of structural ceramic materials. New data for fully stabilized and partially stabilized zirconia ceramics are compared with prior test results for sintered SiC. The comparison provides further evidence that the high temperature friction characteristics of sinstered SiC are strongly influenced by the presence of a viscous surface layer. The results also show that a ceramic material with lower coefficient of friction and higher fracture toughness has increased resistance to strength-reducing surface damage due to contact stress

  11. Nonlinear optics response of semiconductor quantum wells under high magnetic fields

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-07-01

    Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW's as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H → ∞. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed

  12. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  13. Nonlinear Optics: Materials, Fundamentals, and Applications. Postdeadline papers

    Science.gov (United States)

    1992-08-01

    The Nonlinear Optics: Materials, Fundamentals, and Applications conference was held on 17-21 Aug. 1992. The following topics were addressed: subpicosecond time resolved four-wave mixing spectroscopy in heteroepitaxial ZnSe thin layers; anisotropic two-photon transition in GaAs/AlGaAs multiple quantum well waveguides; two picosecond, narrow-band, tunable, optical parametric systems using BBO and LBO; second generation in an optically active liquid: experimental observation of a fourth-order optical nonlinearity due to molecular chirality; optical image recognition system implemented with a 3-D memory disk; phase-matched second-harmonic generation in waveguides of polymeric Langmuir-Blodgett films; fluence dependent dynamics observed in the resonant third-order optical response of C60 and C70 films; temporal modulation of spatial optical solitons: a variational approach; measurements of light-scattering noise during two-wave mixing in a Kerr medium; excess noise introduced by beam propagation through an atomic vapor; an approach to all-optical switching based on second-order nonlinearities; multilayer, nonlinear ARROW waveguides for surface emitted sum-frequency mixing; energy scaling of SBS phase conjugate mirrors to 4J; vector versus scalar theory for the double phase conjugate mirror; cross-talk and error probability in counter-beam lambda-multiplexed digital holograms; and modal growth of SHG in doped silica thin film waveguides.

  14. Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25 C and 480 C under various stress states, including RIA loading conditions

    International Nuclear Information System (INIS)

    Le Saux, M.; Carassou, S.; Averty, X.; Le Saux, M.; Besson, J.; Poussard, C.

    2010-01-01

    The anisotropic plastic behavior and the fracture of as-received and hydrided Cold-Worked Stress Relieved Zircaloy-4 cladding tubes are investigated under thermal-mechanical loading conditions representative of Pellet-Clad Mechanical Interaction during Reactivity Initiated Accidents in Pressurized Water Reactors. In order to study the combined effects of temperature, hydrogen content, loading direction and stress state, Axial Tensile, Hoop Tensile, Expansion Due to Compression and hoop Plane Strain Tensile tests are performed at room temperature, 350 C and 480 C on the material containing various hydrogen contents up to 1200 wt. ppm (hydrides are circumferential and homogeneously distributed). These tests are combined with digital image correlation and metallographic and fractographic observations at different scales. The flow stress of the material decreases with increasing temperature. The material is either strengthened or softened by hydrogen depending on temperature and hydrogen content. Plastic anisotropy depends on temperature but not on hydrogen content. The ductility of the material decreases with increasing hydrogen content at room temperature due to damage nucleation by hydride cracking. The plastic strain that leads to hydride fracture at room temperature decreases with increasing hydrogen content. The influence of stress triaxiality on hydride cracking is negligible in the studied range. The influence of hydrogen on material ductility is negligible at 350 C and 480 C since hydrides do not crack at these temperatures. The ductility of the material increases with increasing temperature. The evolution of material ductility is associated with a change in both the macroscopic fracture mode of the specimens and the microscopic failure mechanisms. (authors)

  15. X-ray study of residual stress distribution of ground ceramics

    International Nuclear Information System (INIS)

    Sakaida, Yoshihisa; Tanaka, Keisuke; Ikuhara, Yuichi; Suzuki, Kenzi.

    1997-01-01

    The residual stress distribution of ground ceramics was determined from the eigen strain existing in the ground surface. The eigen strain of ground ceramics was tensile, and exponentially decreased with the distance from the surface. The residual stress distribution is given as a superposition of an exponential function of compression and a linear function. It is found that the actual residual stress distribution can be approximated by a compressive exponential function because the magnitude of tensile residual stress is negligibly small compared to the compressive residual stress. In the experiments, the diffraction angle was measured on ground silicon nitride for a wide range of sin 2 ψ using the glancing incidence X-ray diffraction technique. A strong nonlinearity was found in the 2θ-sin 2 ψ diagram at very high ψ-angles. From the analysis of nonlinearity, the residual stress distribution was determined. The residual stress distribution of silicon nitride coincided with the distribution calculated from the eigen strain distribution. Transmission electron microscopy was used to clarify the origin of generation of the residual stress. Both strain contrasts and microcracks were observed below the ground surface ; straight dislocations were also observed within silicon nitride grains near the ground surface. (author)

  16. An improved approach for remotely sensing water stress impacts on forest C uptake.

    Science.gov (United States)

    Sims, Daniel A; Brzostek, Edward R; Rahman, Abdullah F; Dragoni, Danilo; Phillips, Richard P

    2014-09-01

    Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought. © 2014 John Wiley & Sons

  17. Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dayyani, Z.; Dehghani, M.H.; Hajkhalili, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, A. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2018-02-15

    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T > T{sub c}, we have no phase transition. When T = T{sub c}, the system admits a second-order phase transition, while for T = T{sub f} < T{sub c} the system experiences a first-order transition. Interestingly, for T{sub f} < T < T{sub c} we observe a zeroth-order phase transition in the presence of a dilaton field. This novel zeroth-order phase transition occurs due to a finite jump in the Gibbs free energy which is generated by the dilaton-electromagnetic coupling constant, α, for a certain range of pressure. (orig.)

  18. Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival.

    Directory of Open Access Journals (Sweden)

    Cheng-Gang Zou

    Full Text Available BACKGROUND: Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrated that the expression of prC was up-regulated by oxidants (H(2O(2 or menadione and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. CONCLUSIONS/SIGNIFICANCE: These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel

  19. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Nonlinear image filtering within IDP++

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.; Wieting, M.G.; Brase, J.M.

    1995-02-09

    IDP++, image and data processing in C++, is a set of a signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide ``information hiding.`` Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We here some examples of the nonlinear filter library within IDP++. Specifically, the results of MIN, MAX median, {alpha}-trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RR) and synthetic aperture radar (SAR) data set.

  1. Effects of two-scale transverse crack systems on the non-linear behaviour of a 2D SiC-SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Morvan, J.-M.; Baste, S. [Bordeaux-1 Univ., 33 - Talence (France). Lab. de Mecanique Physique

    1998-07-31

    By using both an ultrasonic device and an extensometer, it is possible to know which stiffness coefficients change during the damage process of a material and which part of the global strain is either elastic or inelastic. The influence of the two damage mechanisms is described for a woven 2D SiC-SiC composite. It appears that the two scales of this composite have a great influence on its behaviour. Two elementary mechanisms occur at both scales of the material: at the mesostructure level consisting of the bundles as well as of the inter-bundle matrix and at the microstructure level made from both the fibres and the intra-bundle matrix. The inelastic strains are sensitive to this two-scale effect: an increment of strain at constant stress that comes to saturation corresponding to the inter-bundle damage process and a strain which needs an increase in stress as cracking occurs at the fibres scale. With the help of a model that predicts the compliance changes caused by a crack system in a solid, it is possible to predict the crack density variation at both scales as well as the geometry of the various crack systems during monotonous loading. Furthermore, when the crack opening is taken into account, it appears that the inelastic strain is governed by the transverse crack density. (orig.) 12 refs.

  2. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Group A protein phosphatases 2Cs (PP2Cs are essential components of abscisic acid (ABA signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process.

  3. Several loadings and stresses of first wall of SiC with metal liner on conceptual design of moving ring reactor 'KARIN-1'

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Tachibana, Eizaburo; Watanabe, Kenji; Fujiie, Yoichi.

    1983-01-01

    On conceptual design of moving ring reactor ''KARIN-I'' (Output: 1850 MWe), the first wall of SiC with metal liner is considered by reason that SiC ceramics has specific features of excellent radiation damage resistance in fast neutron spectra and a very low residual radioactivity, and that the thin metal liner has good compatibility with liquid lithium and good vaccum-tight, however, a extent electromagnetic interaction. The electromagnetic force applied on the metal liner and several pressure losses of liquid lithum flow are estimated, and these forces correspond to the fluid mechanical loading on SiC first wall. Thermal loading by neutron flux is calculated on the first wall to obtain temperature distributions along the flow direction and toward the wall thickness. At the outlet of the burning section, the surface temperature of SiC rises to the value of 825 0 C on plasma side and on the metal liner, it rises to the value of 540 0 C. Finally, the stress analysis is performed. The thermal stress is about one order larger than the stress induced by the fluid mechanical loading. At the inlet of the burning section, the average tensile stress of 22.4kg/mm 2 is induced on the outer side of SiC wall, and on the inner side, the average compressive stress of -26.1kg/mm 2 is induced. At the outlet of the burning section, the tensile stress is found to oscillate between 25.5kg/mm 2 and 27.3kg/mm 2 on the outer side of SiC wall by frequency of 1 Hz, and on the inner side, the compressive stress also oscillates between -21.6kg/mm 2 and -29.0kg/mm 2 by the same frequency. These stresses are within the value of fracture stress, (72.5kg/mm 2 ). Difficult residual problems on the first wall are also discussed. (author)

  4. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be us...

  5. A solution approach for non-linear analysis of concrete members

    International Nuclear Information System (INIS)

    Hadi, N. M.; Das, S.

    1999-01-01

    Non-linear solution of reinforced concrete structural members, at and beyond its maximum strength poses complex numerical problems. This is due to the fact that concrete exhibits strain softening behaviour once it reaches its maximum strength. This paper introduces an improved non-linear solution capable to overcome the numerical problems efficiently. The paper also presents a new concept of modeling discrete cracks in concrete members by using gap elements. Gap elements are placed in between two adjacent concrete elements in tensile zone. The magnitude of elongation of gap elements, which represents the width of the crack in concrete, increases edith the increase of tensile stress in those elements. As a result, transfer of local from one concrete element to adjacent elements reduces. Results of non-linear finite element analysis of three concrete beams using this new solution strategy are compared with those obtained by other researchers, and a good agreement is achieved. (authors). 13 refs. 9 figs.,

  6. Nonlinear surface impedance of YBCO thin films: Measurements, modeling, and effects in devices

    International Nuclear Information System (INIS)

    Oates, D.E.; Koren, G.; Polturak, E.

    1995-01-01

    High-T c thin films continue to be of interest for passive device applications at microwave frequencies, but nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear surface impedance Z s in a number of YBa 2 Cu 3 O 7-x thin films as a function of frequency from 1 to 18 GHz, rf surface magnetic field H rf to 1500 Oe, and temperature from 4 K to T c . The results at low H rf are shown to agree quantitatively with a modified coupled-grain model and at high H rf with hysteresis-loss calculations using the Bean critical-state model applied to a thin strip. The loss mechanisms are extrinsic properties resulting from defects in the films. We also report preliminary measurements of the nonlinear impedance of Josephson junctions, and the results are related to the models of nonlinear Z s . The implications of nonlinear Z s for devices are discussed using the example of a five-pole bandpass filter

  7. Nonlinear morphoelastic plates II: Exodus to buckled states

    KAUST Repository

    McMahon, J.

    2011-05-11

    Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.

  8. Nonlinear morphoelastic plates II: Exodus to buckled states

    KAUST Repository

    McMahon, J.; Goriely, A.; Tabor, M.

    2011-01-01

    Morphoelasticity is the theory of growing elastic materials. The theory is based on the multiplicative decomposition of the deformation gradient and provides a formulation of the deformation and stresses induced by growth. Following a companion paper, a general theory of growing non-linear elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with simple examples is given. Second, the stability of growing Kirchhoff plates is analyzed. © SAGE Publications 2011.

  9. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana.

    Science.gov (United States)

    Migicovsky, Zoe; Kovalchuk, Igor

    2014-01-01

    Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants.

  10. Electron non-linearities in Langmuir waves with application to beat-wave experiments

    International Nuclear Information System (INIS)

    Bell, A.R.; Gibbon, P.

    1988-01-01

    Non-linear Langmuir waves are examined in the context of the beat-wave accelerator. With a background of immobile ions the waves in one dimension are subject to the relativistic non-linearity of Rosenbluth, M.N. and Liu, C.S., Phys. Rev. Lett., 1972, 29, 701. In two or three dimensions, other electron non-linearities occur which involve electric and magnetic fields. The quasi-linear equations for these non-linearities are developed and solved numerically in a geometry representative of laser-driven beat waves. (author)

  11. The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans.

    Science.gov (United States)

    Iannacone, Michael J; Beets, Isabel; Lopes, Lindsey E; Churgin, Matthew A; Fang-Yen, Christopher; Nelson, Matthew D; Schoofs, Liliane; Raizen, David M

    2017-01-17

    In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans , stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1 , which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo , is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness.

  12. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration.

    Science.gov (United States)

    Veskoukis, Aristidis S; Goutianos, Georgios; Paschalis, Vassilis; Margaritelis, Nikos V; Tzioura, Aikaterini; Dipla, Konstantina; Zafeiridis, Andreas; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.

  13. Modified dynamic Stark shift and depopulation rate of an atom inside a Kerr nonlinear blackbody

    International Nuclear Information System (INIS)

    Yin Miao; Cheng Ze

    2009-01-01

    We investigate the dynamic Stark shift and atomic depopulation rate induced by real photons in a Kerr nonlinear blackbody. We found that the dynamic Stark shift and atomic depopulation rate are equally modified by a nonlinear contribution factor and a linear contribution factor under a transition temperature T c . The nonlinear contribution factor depends on the Kerr nonlinear coefficient as well as the absolute temperature. Below T c , the absolute values of the dynamic Stark shift and depopulation rate of a single atomic state (not the ground state) are correspondingly larger than those in a normal blackbody whose interior is filled with a nonabsorbing linear medium. Above T c , the dynamic Stark shift and atomic depopulation rate are correspondingly equal to those in a normal blackbody with a nonabsorbing linear medium in its interior.

  14. Fully nonlinear and exact perturbations of the Friedmann world model: non-flat background

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyerim, E-mail: hr@kasi.ac.kr [Korea Astronomy and Space Science Institute, Daejeon, 305-348 (Korea, Republic of)

    2014-07-01

    We extend the fully non-linear and exact cosmological perturbation equations in a Friedmann background universe to include the background curvature. The perturbation equations are presented in a gauge ready form, so any temporal gauge condition can be adopted freely depending on the problem to be solved. We consider the scalar, and vector perturbations without anisotropic stress. As an application, we analyze the equations in the special case of irrotational zero-pressure fluid in the comoving gauge condition. We also present the fully nonlinear formulation for a minimally coupled scalar field.

  15. Self-Organized Biological Dynamics and Nonlinear Control

    Science.gov (United States)

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  16. Nonlinear triple-point problems on time scales

    Directory of Open Access Journals (Sweden)

    Douglas R. Anderson

    2004-04-01

    Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0c-a}{c-b}$ and $bin(a,csubsetmathbb{T}$.

  17. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    Science.gov (United States)

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  18. Hysteresis, Discrete Memory, and Nonlinear Wave Propagation in Rock: A New Paradigm

    International Nuclear Information System (INIS)

    Guyer, R.A.; McCall, K.R.; Boitnott, G.N.

    1995-01-01

    The structural elements in a rock are characterized by their density in Preisach-Mayergoyz space (PM space). This density is found for a Berea sandstone from stress-strain data and used to study the response of the sandstone to elaborate pressure protocols. Hysteresis with discrete memory, in agreement with experiment, is found. The relationship between strain, quasistatic modulus, and dynamic modulus is established. Nonlinear wave propagation, the production of copious harmonics, and nonlinear attenuation are demonstrated. PM space is shown to be the central construct in a new paradigm for the description of the elastic behavior of consolidated materials

  19. A putatively functional polymorphism in the HTR2C gene is associated with depressive symptoms in white females reporting significant life stress.

    Directory of Open Access Journals (Sweden)

    Beverly H Brummett

    Full Text Available Psychosocial stress is well known to be positively associated with subsequent depressive symptoms. Cortisol response to stress may be one of a number of biological mechanisms that links psychological stress to depressive symptoms, although the precise causal pathway remains unclear. Activity of the x-linked serotonin 5-HTR2C receptor has also been shown to be associated with depression and with clinical response to antidepressant medications. We recently demonstrated that variation in a single nucleotide polymorphism on the HTR2C gene, rs6318 (Ser23Cys, is associated with different cortisol release and short-term changes in affect in response to a series of stress tasks in the laboratory. Based on this observation, we decided to examine whether rs6318 might moderate the association between psychosocial stress and subsequent depressive symptoms. In the present study we use cross-sectional data from a large population-based sample of young adult White men (N = 2,366 and White women (N = 2,712 in the United States to test this moderation hypothesis. Specifically, we hypothesized that the association between self-reported stressful life events and depressive symptoms would be stronger among homozygous Ser23 C females and hemizygous Ser23 C males than among Cys23 G carriers. In separate within-sex analyses a genotype-by-life stress interaction was observed for women (p = .022 but not for men (p = .471. Homozygous Ser23 C women who reported high levels of life stress had depressive symptom scores that were about 0.3 standard deviations higher than female Cys23 G carriers with similarly high stress levels. In contrast, no appreciable difference in depressive symptoms was observed between genotypes at lower levels of stress. Our findings support prior work that suggests a functional SNP on the HTR2C gene may confer an increased risk for depressive symptoms in White women with a history of significant life stress.

  20. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  1. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits.

    Science.gov (United States)

    Sedlic, Filip; Kovac, Zdenko

    2017-10-01

    Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term "mirror J-shaped curves" for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits

    Directory of Open Access Journals (Sweden)

    Filip Sedlic

    2017-10-01

    Full Text Available Finite disarrangements of important (vital physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise. Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents.

  3. NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    Some astrophysical sources of gravitational waves can produce a 'memory effect', which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor's contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an 'effective-one-body' (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to redshifts z ∼< 2. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to 'gravitate'.

  4. Nonlinear analysis techniques of block masonry walls in nuclear power plants

    International Nuclear Information System (INIS)

    Hamid, A.A.; Harris, H.G.

    1986-01-01

    Concrete masonry walls have been used extensively in nuclear power plants as non-load bearing partitions serving as pipe supports, fire walls, radiation shielding barriers, and similar heavy construction separations. When subjected to earthquake loads, these walls should maintain their structural integrity. However, some of the walls do not meet design requirements based on working stress allowables. Consequently, utilities have used non-linear analysis techniques, such as the arching theory and the energy balance technique, to qualify such walls. This paper presents a critical review of the applicability of non-linear analysis techniques for both unreinforced and reinforced block masonry walls under seismic loading. These techniques are critically assessed in light of the performance of walls from limited available test data. It is concluded that additional test data are needed to justify the use of nonlinear analysis techniques to qualify block walls in nuclear power plants. (orig.)

  5. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers; Las tensiones residuales y las propiedades mecánicas de compuestos multicapa de Si3N4/SiC con diferentes capas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-11-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [Spanish] Se ha investigado el efecto de las tensiones residuales en la resistencia, dureza y trabajo de fractura de los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC. Puede ser una manera eficaz de diseñar y optimizar las propiedades mecánicas de los compuestos multicapa de Si3N4/SiC mediante el control de las propiedades de las capas de SiC. Los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC se fabricaron por medio de colado en cinta en medio acuoso y sinterización sin presión. Las tensiones residuales se calcularon mediante el uso de la simulación ANSYS, los valores máximos de las fuerzas de tracción y compresión fueron 553,2 MPa y −552,1 MPa, respectivamente. Se observó una fractura escalonada a partir de las superficies de fractura. La fracción de capas de deslaminación aumenta con la tensión residual, lo que puede mejorar la fiabilidad de los materiales. La fuerza de tracción residual era beneficiosa para la mejora de la dureza y el trabajo de fractura, pero la resistencia de los compuestos disminuyó.

  6. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza

    2014-10-01

    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  7. Nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.

    1992-01-01

    In this paper we summarize the progress made over the last year in three different areas of research: (a) shear flow generation and reduced transport in fluids and plasma, (b) nonlinear dynamics and visualization of 3D flows, and (c) application of wavelet analysis to the study of fractal dimensions in experimental and numerical data

  8. Nonlinearity and disorder: Classification and stability of nonlinear impurity modes

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole

    2001-01-01

    We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...... the case of a power-law nonlinearity in detail. We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including the mode decay or switching to a new stable state, and collapse at the impurity site....

  9. Effects of water stress on the distribution of 14C-assimilates in young apple trees (mauls pumila mill.)

    International Nuclear Information System (INIS)

    Dong Jiankang; Deng Ximin; Zeng Xiang

    1994-01-01

    Young apple trees were treated by water stress and 14 CO 2 was fed to leaves. Distribution of assimilates in source and sink organs was determined. The results show that plant water deficit increased the proportion of 14 C-assimilates remained in source leaves, and decreased the proportion of 13 C-assimilates exported into the developing fruits. Water stress also significantly decreased the photosynthetic rate of leaves and the growth rate of plants

  10. Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation

    International Nuclear Information System (INIS)

    Wiseman, A.G.; Will, C.M.

    1991-01-01

    Christodoulou has found a new nonlinear contribution to the net change in the wave form caused by the passage of a burst of gravity waves (''memory of the burst''). We argue that this effect is nothing but the gravitational wave form generated by the stress energy in the burst itself. We derive an explicit formula for this effect in terms of a retarded-time integral of products of time derivatives of wave-zone gravitational wave forms. The resulting effect corresponds in size to a correction 2.5 post-Newtonian orders [O((Gm/rc 2 ) 5/2 ) =(O(v/c) 5 )] beyond the quadrupole approximation, and is therefore negligible for all but the most relativistic of systems. For gravitational bremsstrahlung from two stars moving at 300 km s -1 , the effect is much less than 10 -10 of the usual linear quadrupole wave form, while for a system of coalescing binary compact objects we estimate that the effect is of order 10 -1 for two neutron stars

  11. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  12. Nonlinear dynamics and bifurcation characteristics of shape memory alloy thin films subjected to in-plane stochastic excitation

    International Nuclear Information System (INIS)

    Zhu, Zhi-Wen; Zhang, Qing-Xin; Xu, Jia

    2014-01-01

    A kind of shape memory alloy (SMA) hysteretic nonlinear model was developed, and the nonlinear dynamics and bifurcation characteristics of the SMA thin film subjected to in-plane stochastic excitation were investigated. Van der Pol difference item was introduced to describe the hysteretic phenomena of the SMA strain–stress curves, and the nonlinear dynamic model of the SMA thin film subjected to in-plane stochastic excitation was developed. The conditions of global stochastic stability of the system were determined in singular boundary theory, and the probability density function of the system response was obtained. Finally, the conditions of stochastic Hopf bifurcation were analyzed. The results of theoretical analysis and numerical simulation indicate that self-excited vibration is induced by the hysteretic nonlinear characteristics of SMA, and stochastic Hopf bifurcation appears when the bifurcation parameter was changed; there are two limit cycles in the stationary probability density of the dynamic response of the system in some cases, which means that there are two vibration amplitudes whose probabilities are both very high, and jumping phenomena between the two vibration amplitudes appear with the change in conditions. The results obtained in this current paper are helpful for the application of the SMA thin film in stochastic vibration fields. - Highlights: • Hysteretic nonlinear model of shape memory alloy was developed. • Van der Pol item was introduced to interpret hysteretic strain–stress curves. • Nonlinear dynamic characteristics of the shape memory alloy film were analyzed. • Jumping phenomena were observed in the change of the parameters

  13. Slope Safety Calculation With A Non-Linear Mohr Criterion Using Finite Element Method

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2005-01-01

    Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data...

  14. [Establishment of Social Stress Induced Depression-like Animal Model in Mice of C57BL/6 Strain and Behavioral Assessments].

    Science.gov (United States)

    Li, Mi-hui; Wu, Xiao; Wei Ying; Dong, Jing-cheng

    2016-02-01

    To establish social stress induced depression-like model in mice of C57BL/6 strain, and to assess its reliability using differenf behavioral methods. Totally 20 male mice of C57BL/6 strain were divided into the normal group and the stress model group by random digit table,10 in each group. Another 10 CD1 mice were subjected to social stress. Mice in the normal control group received no stress, while those in the model group received social stress for 10 successive days. Behavioral assessment was performed using social interaction test (SIT), the elevated plus-maze (EPM) test, tail suspension test (TST), respectively. Serum cortisol level was detected by ELISA to assess the reliability of the model. In the social interaction test when the social target (CDI mice) was inexistent, mice in the normal control group spent longer time in the social interaction zone and less time in the corner zone (P stress induced depression-like animal model in mice of C57BL/6 straineasquite reliable and possibly suitable to be used in integrative medicine research of combination of disease and syndrome model.

  15. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  16. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress.

    Science.gov (United States)

    Zeferino, C P; Komiyama, C M; Pelícia, V C; Fascina, V B; Aoyagi, M M; Coutinho, L L; Sartori, J R; Moura, A S A M T

    2016-01-01

    The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair

  17. Effects of temperature and Mo2C layer on stress and structural properties in CVD diamond film grown on Mo foil

    International Nuclear Information System (INIS)

    Long, Fen; Wei, Qiuping; Yu, Z.M.; Luo, Jiaqi; Zhang, Xiongwei; Long, Hangyu; Wu, Xianzhe

    2013-01-01

    Highlights: •Polycrystalline diamond films were grown on Mo foil substrates by HF-CVD. •We investigated the temperature dependence of the film stress for each sample. •We show that how the thermal stress and intrinsic stress affects the total stress. •The stress of Mo foil substrate obtained by XRD was investigated in this study. •The effect of Mo 2 C interface layer for stress of multilayer system was considered. -- Abstract: Polycrystalline diamond films have been prepared by hot-filament-assisted chemical vapor deposition (HFCVD) on Mo foils. The morphology, growth rate, phase composition, element distribution and residual stress of the films at different temperature were investigated by field-emission scanning electron microscopy, Raman spectrum, field emission electron probe microanalysis and X-ray diffraction. Results show that the residual stress of the diamond films is compressive. The thermal stress plays a decisive role in the total stress, while the intrinsic stress can change the trend of the total stress. The residual stress of substrate gradually changes from tensile stress to compressive stress with the increase of the deposited temperature. A Mo 2 C interlayer is formed during deposition process, and this layer has an important influence on the stresses of films and substrates

  18. Oxidative stress induces nuclear translocation of C-terminus of α-synuclein in dopaminergic cells

    International Nuclear Information System (INIS)

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu

    2006-01-01

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of α-synuclein. However, the role of α-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the α-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 μM H 2 O 2 treatment induced the translocation of α-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of α-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of α-synuclein, while full-length α-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no β-sheet structures. Our present results indicated that 200 μM H 2 O 2 treatment induces the intranuclear accumulation of the C-terminal fragment of α-synuclein in dopaminergic neurons, whose role remains to be investigated

  19. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  20. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    Science.gov (United States)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  1. The matrix nonlinear Schrodinger equation in dimension 2

    DEFF Research Database (Denmark)

    Zuhan, L; Pedersen, Michael

    2001-01-01

    In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press....

  2. Hidden regularity for a strongly nonlinear wave equation

    International Nuclear Information System (INIS)

    Rivera, J.E.M.

    1988-08-01

    The nonlinear wave equation u''-Δu+f(u)=v in Q=Ωx]0,T[;u(0)=u 0 ,u'(0)=u 1 in Ω; u(x,t)=0 on Σ= Γx]0,T[ where f is a continuous function satisfying, lim |s| sup →+∞ f(s)/s>-∞, and Ω is a bounded domain of R n with smooth boundary Γ, is analysed. It is shown that there exist a solution for the presented nonlinear wave equation that satisfies the regularity condition: |∂u/∂ η|ε L 2 (Σ). Moreover, it is shown that there exist a constant C>0 such that, |∂u/∂ η|≤c{ E(0)+|v| 2 Q }. (author) [pt

  3. Comparative effects of enzogenol and vitamin C supplementation versus vitamin C alone on endothelial function and biochemical markers of oxidative stress and inflammation in chronic smokers.

    Science.gov (United States)

    Young, Joanna M; Shand, Brett I; McGregor, Patrice M; Scott, Russell S; Frampton, Christopher M

    2006-01-01

    Chronic smoking is associated with endothelial dysfunction and inflammation, with oxidative stress contributing to both these processes. In this study, we investigated the effect of combined antioxidant treatment with Enzogenol, a flavonoid extract from the bark of Pinus radiata and vitamin C, over and above vitamin C alone, on endothelial function, plasma markers of inflammation and oxidative stress, blood pressure (BP) and anthropometrics. Forty-four chronic smokers without established cardiovascular disease were assigned randomly to receive either 480 mg Enzogenol and 60 mg vitamin C, or 60 mg vitamin C alone daily for 12 weeks. Endothelial function in the brachial artery was assessed by flow-mediated vasodilation (FMD). FMD improved in both treatment groups (p effect on macrovascular endothelial function over and above that seen in the vitamin C alone group. However, Enzogenol did demonstrate additional favourable effects on protein oxidative damage and fibrinogen levels.

  4. Reconstruction of the residual stresses in a hyperelastic body using ultrasound techniques

    KAUST Repository

    Joshi, Sunnie

    2013-09-01

    This paper focuses on a novel approach for characterizing the residual stress field in soft tissue using ultrasound interrogation. A nonlinear inverse spectral technique is developed that makes fundamental use of the finite strain nonlinear response of the material to a quasi-static loading. The soft tissue is modeled as a nonlinear, prestressed and residually stressed, isotropic, slightly compressible elastic body with a rectangular geometry. A boundary value problem is formulated for the residually stressed and prestressed soft tissue, the boundary of which is subjected to a quasi-static pressure, and then an idealized model for the ultrasound interrogation is constructed by superimposing small amplitude time harmonic infinitesimal vibrations on static finite deformation via an asymptotic construction. The model is studied, through a semi-inverse approach, for a specific class of deformations that leads to a system of second order differential equations with homogeneous boundary conditions of Sturm-Liouville type. By making use of the classical theory of inverse Sturm-Liouville problems, and root finding and optimization techniques, several inverse spectral algorithms are developed to approximate the residual stress distribution in the body, given the first few eigenfrequencies of several induced static pressures. © 2013 Elsevier Ltd. All rights reserved.

  5. Kinetic theory of nonlinear viscous flow in two and three dimensions

    NARCIS (Netherlands)

    Ernst, M.H.; Cichocki, B.; Dorfman, J.R.; Sharma, J.; Beijeren, H. van

    1978-01-01

    On the basis of a nonlinear kinetic equation for a moderately dense system of hard spheres and disks it is shown that shear and normal stresses in a steady-state, uniform shear flow contain singular contributions of the form ¦X¦3/2 for hard spheres, or ¦X¦ log ¦X¦ for hard disks. HereX is

  6. Earthquake analysis with nonlinear soil-structure interaction and nonlinear supports of components

    International Nuclear Information System (INIS)

    Hansson, V.

    1990-01-01

    For the determination of the seismic response of a structure the soil-structure interaction in most cases is modelled by a mass-spring-damper-system. Normally design concepts for components and piping are based on linear calculations and stress limitations. A concept for a reactor building for the HTR 100 consisted of a relatively high structure compared with the dimensions of the foundation. The structure was comparatively deep embedded in the soil, so here the embedment influences significantly the soil-structure interaction. The assembly of reactor vessel, heat exchanger and circulators has a height of about 37 m. Supports are arranged at different levels. Due to temperature deformations of the vessel and of the support constructions small gaps at the supports may only be avoided by complicated constructions of the supports. Nonlinear analyses were performed for soil, building and component with all supports. The finite element analyses used time histories. In order to describe the radiation damping the hysteresis of the soil with 1 percent material damping was considered. Nonlinearities in the interface of soil and foundation and due to gaps and friction at the supports were taken into account. The stiffness of the support constructions influences reactions and accelerations to a high extent. Properly chosen stiffnesses of the support constructions lead to a behaviour similar to linear elastic behaviour. 13 figs

  7. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    International Nuclear Information System (INIS)

    Yu Tsvelodub, O

    2016-01-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. Weakly nonlinear steady-state traveling solutions of the equation with wave numbers in a vicinity of neutral wave numbers are constructed analytically. The nature of the wave branching from the undisturbed solution is investigated. Steady-state traveling solutions, whose wave numbers within the instability area are far from neutral wave numbers, are found numerically. (paper)

  8. Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (Al-Mg-Si-Cu

    Directory of Open Access Journals (Sweden)

    JongBeom Kim

    2013-01-01

    Full Text Available The nonlinear ultrasonic technique has been known to be more sensitive to minute variation of elastic properties in material than the conventional linear ultrasonic method. In this study, the ultrasonic nonlinear characteristics in the heat-treated aluminum alloy (Al-Mg-Si-Cu have been evaluated. For this, the specimens were heat treated for various heating period up to 50 hours at three different heating temperatures: 250°C, 300°C, and 350°C. The ultrasonic nonlinear characteristics of each specimen were evaluated by measuring the ultrasonic nonlinear parameter β from the amplitudes of fundamental and second harmonic frequency components in the transmitted ultrasonic wave. After the ultrasonic test, tensile strengths and elongations were obtained by the tensile test to compare with the parameter β. The heating time showing a peak in the parameter β was identical to that showing critical change in the tensile strength and elongation, and such peak appeared at the earlier heating time in the higher heating temperature. These results suggest that the ultrasonic nonlinear parameter β can be used for monitoring the variations in elastic properties of aluminum alloys according to the heat treatment.

  9. Cyclic Thermal Stress-Induced Degradation of Cu Metallization on Si3N4 Substrate at -40°C to 300°C

    Science.gov (United States)

    Lang, Fengqun; Yamaguchi, Hiroshi; Nakagawa, Hiroshi; Sato, Hiroshi

    2015-01-01

    The high-temperature reliability of active metal brazed copper (AMC) on Si3N4 ceramic substrates used for fabricating SiC high-temperature power modules was investigated under harsh environments. The AMC substrate underwent isothermal storage at 300°C for up to 3000 h and a thermal cycling test at -40°C to 300°C for up to 3000 cycles. During isothermal storage at 300°C, the AMC substrate exhibited high reliability, characterized by very little deformation of the copper (Cu) layer, low crack growth, and low oxidation rate of the Cu layer. Under thermal cycling conditions at -40°C to 300°C, no detachment of the Cu layer was observed even after the maximum 3000 cycles of the experiment. However, serious deformation of the Cu layer occurred and progressed as the number of thermal cycles increased, thus significantly roughening the surface of the Cu metallized layer. The cyclic thermal stress led to a significant increase in the crack growth and oxidation of the Cu layer. The maximum depth of the copper oxides reached up to 5/6 of the Cu thickness. The deformation of the Cu layer was the main cause of the decrease of the bond strength under thermal cycling conditions. The shear strength of the SiC chips bonded on the AMC substrate with a Au-12 wt.%Ge solder decreased from the original 83 MPa to 14 MPa after 3000 cycles. Therefore, the cyclic thermal stress destroyed the Cu oxides and enhanced the oxidation of the Cu layer.

  10. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    Science.gov (United States)

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2018-04-02

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dynamic modeling of geometrically nonlinear electrostatically actuated microbeams (Corotational Finite Element formulation and analysis)

    Energy Technology Data Exchange (ETDEWEB)

    Borhan, H; Ahmadian, M T [Sharif University of Technology, Center of Excellence for Design, Robotics and Automation, School of Mechanical Engineering, PO Box 11365-9567, Tehran (Iran, Islamic Republic of)

    2006-04-01

    In this paper, a complete nonlinear finite element model for coupled-domain MEMS devices with electrostatic actuation and squeeze film effect is developed. For this purpose, a corotational finite element formulation for the dynamic analysis of planer Euler beams is employed. In this method, the internal nodal forces due to deformation and intrinsic residual stresses, the inertial nodal forces, and the damping effect of squeezed air film are systematically derived by consistent linearization of the fully geometrically nonlinear beam theory using d'Alamber and virtual work principles. An incremental-iterative method based on the Newmark direct integration procedure and the Newton-Raphson algorithm is used to solve the nonlinear dynamic equilibrium equations. Numerical examples are presented and compared with experimental findings which indicate properly good agreement.

  12. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    Science.gov (United States)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  13. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  14. Vacuum polarization in the spacetime of a charged nonlinear black hole

    International Nuclear Information System (INIS)

    Berej, Waldemar; Matyjasek, Jerzy

    2002-01-01

    Building on general formulas obtained from the approximate renormalized effective action, the approximate stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling in the spacetime of a charged black hole that is the solution of the coupled equations of nonlinear electrodynamics and general relativity is constructed and analyzed. It is shown that, in a few limiting cases, the analytical expressions relating the obtained tensor to the general renormalized stress-energy tensor evaluated in the geometry of the Reissner-Nordstroem black hole can be derived. A detailed numerical analysis with special emphasis put on minimal coupling is presented, and the results are compared with those obtained earlier for a conformally coupled field. Some novel features of the renormalized stress-energy tensor are discussed

  15. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  16. Performance assessment of a non-linear eddy-viscosity turbulence model applied to the anisotropic wake flow of a low-pressure turbine blade

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Sideridis, A.; Yakinthos, K.; Goulas, A.

    2012-01-01

    Highlights: ► We model the wake flow produced by a LPT blade using a non-linear turbulence model. ► We use two interpolation schemes for the convection terms with different accuracy. ► We investigate the effect of each term of the non-linear constitutive expression. ► The results are compared with available experimental measurements. ► The model predicts with a good accuracy the velocity and stress distributions. - Abstract: The wake flow produced by a low-pressure turbine blade is modeled using a non-linear eddy-viscosity turbulence model. The theoretical benefit of using a non-linear eddy-viscosity model is strongly related to the capability of resolving highly anisotropic flows in contrast to the linear turbulence models, which are unable to correctly predict anisotropy. The main aim of the present work is to practically assess the performance of the model, by examining its ability to capture the anisotropic behavior of the wake-flow, mainly focusing on the measured velocity and Reynolds-stress distributions and to provide accurate results for the turbulent kinetic energy balance terms. Additionally, the contribution of each term of its non-linear constitutive expression for the Reynolds stresses is also investigated, in order to examine their direct effect on the modeling of the wake flow. The assessment is based on the experimental measurements that have been carried-out by the same group in Thessaloniki, Sideridis et al. (2011). The computational results show that the non-linear eddy viscosity model is capable to predict, with a good accuracy, all the flow and turbulence parameters while it is easy to program it in a computer code thus meeting the expectations of its originators.

  17. Role of the substrate in monolithic AlGaAs nonlinear nanoantennas

    Directory of Open Access Journals (Sweden)

    Gili Valerio Flavio

    2017-06-01

    Full Text Available We report the effect of the aluminum oxide substrate on the emission of monolithic AlGaAs-on-insulator nonlinear nanoantennas. By coupling nonlinear optical measurements with electron diffraction and microscopy observations, we find that the oxidation-induced stress causes negligible crystal deformation in the AlGaAs nanostructures and only plays a minor role in the polarization state of the harmonic field. This result highlights the reliability of the wet oxidation of thick AlGaAs optical substrates and further confirms the bulk χ(2 origin of second harmonic generation at 1.55 μm in these nanoantennas, paving the way for the development of AlGaAs-on-insulator monolithic metasurfaces.

  18. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.

    Science.gov (United States)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  19. Bending of a nonlinear beam reposing on an unilateral foundation

    Directory of Open Access Journals (Sweden)

    Machalová J.

    2011-06-01

    Full Text Available This article is going to deal with bending of a nonlinear beam whose mathematical model was proposed by D. Y. Gao in (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches,Mech. Research Communication, 23 (1 1996. The model is based on the Euler-Bernoulli hypothesis and under assumption of nonzero lateral stress component enables moderately large deflections but with small strains. This is here extended by the unilateralWinkler foundation. The attribution unilateral means that the foundation is not connected with the beam. For this problem we demonstrate a mathematical formulation resulting from its natural decomposition which leads to a saddle-point problem with a proper Lagrangian. Next we are concerned with methods of solution for our problem by means of the finite element method as the paper (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech. Research Communication, 23 (1 1996 has no mention of it. The main alternatives are here the solution of a system of nonlinear nondifferentiable equations or finding of a saddle point through the use of the augmented Lagrangian method. This is illustrated by an example in the final part of the article.

  20. Nonlinear graphene plasmonics

    Science.gov (United States)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  1. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  2. Influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Tianbing, E-mail: tianbing_1988@sina.com [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China); Li, Huiqu; Tang, Pengjun; He, Xiaolei; Li, Peiyong [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China)

    2016-08-15

    15% vol. SiC{sub p}/2009 composites prepared by powder metallurgy were quenched in room temperature water and 20% polyethylene glycol (PEG) solution respectively, then aged naturally. The influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites were investigated by means of scanning/transmission electron microscope, hardness and tensile test. The results showed that the number of precipitated phase in water quenched composites increased, with much finer in size and more homogeneous in distribution compared with 20% PEG quenched one. Meanwhile, the density of dislocation in composites by water quenching was also much higher. Intergranular corrosion did not occur with the two quenching agents. The 20% PEG quenched composites exhibited slight lower hardness and higher electrical conductivity than that of water quenched one. The two quenched composites showed same level in tensile strength, but the yield strength of water-quenched composites was higher (8 MPa, 3%). The usage of 20% PEG reduced thermal stress and minimized warping deformation of the parts, it is a more suitable quenching agent for SiC{sub p}/2009 composites in engineering application fields. - Highlights: •SiC{sub p}/2009 composites quenched by water and 20% PEG solution were investigated. •Aging precipitation behavior of SiC{sub p}/2009 composites is sensitive to quenchant. •Influence of quenching agent on properties of SiC{sub p}/2009 composites are minimal. •Quenching with 20% PEG reduces thermal stress of SiC{sub p}/2009 composites remarkably. •20% PEG is a more suitable quenching agent for SiC{sub p}/2009 composites than water.

  3. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 μmol mol−1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  4. Photosynthesis of C3 and C4 Species in Response to Increased CO2 Concentration and Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIM

    2005-12-01

    Full Text Available Photosynthetic gas exchange in response to increased carbon dioxide concentration ([CO2] and drought stress of two C3 (wheat and kale and two C4 species (Echinochloa crusgallii and Amaranthus caudatus were analysed. Plants were grown in controlled growth chambers with ambient (350 mol mol-1 and doubled ambient [CO2]. Drought was given by withholding water until the plants severely wilted, whereas the control plants were watered daily. Even though stomatal conductance (Gs of C4 species either under ambient or double [CO2] was lower than those in C3, doubled [CO2] decreased Gs of all species under well watered conditions. As a result, the plants grown under doubled [CO2] transpired less water than those grown under ambient [CO2]. Photosynthesis (Pn of the C4 species was sustained during moderate drought when those of the C3 species decreased significantly. Doubled [CO2] increased photosynthesis of C3 but not of C4 species. Increased [CO2] was only able to delay Pn reduction of all species due to the drought, but not remove it completely. The positive effects of increased [CO2] during moderate drought and the disappearance of it under severe drought suggesting that metabolic effect may limit photosynthesis under severe drought.

  5. Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Torres, Pedro J.

    2007-01-01

    Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear Schroedinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons, and discuss other applications of interest to the field of nonlinear matter waves

  6. Effect of hyperbaric oxygen and vitamin C and E supplementation on biomarkers of oxidative stress in healthy men

    DEFF Research Database (Denmark)

    Bader, Nicolle; Bosy-Westphal, Anja; Koch, Andreas

    2007-01-01

    The objectives of the present study were to evaluate the effect of normobaric and hyperbaric O2 (HBO) on plasma antioxidants and biomarkers of oxidative stress in plasma and urine and to investigate the effect of a 4-week vitamin C plus E supplementation on HBO-induced oxidative stress. Nineteen...... healthy men were exposed to HBO (100 % O2; 240 kPa) before and after 4 weeks' supplementation with 500 mg vitamin C plus 165 mg alpha-tocopherol equivalents. Exposure to 21 % O2 at 100 kPa served as intra-individual controls (control). Samples for the analysis of plasma antioxidants and oxidative stress...... biomarkers were collected before and immediately after each treatment. The present results showed that when compared with 'control', a single exposure to HBO resulted in a decrease of plasma vitamin C (P = 0.027) and an increase of lipid peroxides (P = 0.0008) and urinary 8-oxo-deoxyguanosine (8-oxod...

  7. Chlorella vulgaris reduces the impact of stress on hypothalamic-pituitary-adrenal axis and brain c-fos expression.

    Science.gov (United States)

    Souza Queiroz, Julia; Marín Blasco, Ignacio; Gagliano, Humberto; Daviu, Nuria; Gómez Román, Almudena; Belda, Xavier; Carrasco, Javier; Rocha, Michelle C; Palermo Neto, João; Armario, Antonio

    2016-03-01

    Predominantly emotional stressors activate a wide range of brain areas, as revealed by the expression of immediate early genes, such as c-fos. Chlorella vulgaris (CV) is considered a biological response modifier, as demonstrated by its protective activities against infections, tumors and stress. We evaluated the effect of acute pretreatment with CV on the peripheral and central responses to forced swimming stress in adult male rats. Pretreatment with CV produced a significant reduction of stress-related hypothalamic-pituitary-adrenal activation, demonstrated by decreased corticotrophin releasing factor gene expression in the hypothalamic paraventricular nucleus (PVN) and lower ACTH response. Hyperglycemia induced by the stressor was similarly reduced. This attenuated neuroendocrine response to stress occurred in parallel with a diminished c-fos expression in most evaluated areas, including the PVN. The data presented in this study reinforce the usefulness of CV to diminish the impact of stressors, by reducing the HPA response. Although our results suggest a central effect of CV, further studies are necessary to understand the precise mechanisms underpinning this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Preparation and Dielectric Properties of SiC/LSR Nanocomposites for Insulation of High Voltage Direct Current Cable Accessories.

    Science.gov (United States)

    Shang, Nanqiang; Chen, Qingguo; Wei, Xinzhe

    2018-03-08

    The conductivity mismatch in the composite insulation of high voltage direct current (HVDC) cable accessories causes electric field distribution distortion and even insulation breakdown. Therefore, a liquid silicone rubber (LSR) filled with SiC nanoparticles is prepared for the insulation of cable accessories. The micro-morphology of the SiC/LSR nanocomposites is observed by scanning electron microscopy, and their trap parameters are characterized using thermal stimulated current (TSC) tests. Moreover, the dielectric properties of SiC/LSR nanocomposites with different SiC concentrations are tested. The results show that the 3 wt % SiC/LSR sample has the best nonlinear conductivity, more than one order of magnitude higher than that of pure LSR with improved temperature and nonlinear conductivity coefficients. The relative permittivity increased 0.2 and dielectric loss factor increased 0.003, while its breakdown strength decreased 5 kV/mm compared to those of pure LSR. Moreover, the TSC results indicate the introduction of SiC nanoparticles reduced the trap level and trap density. Furthermore, the SiC nanoparticles filling significantly increased the sensitivity of LSR to electric field stress and temperature changes, enhancing the conductivity and electric field distribution within the HVDC cable accessories, thus improving the reliability of the HVDC cable accessories.

  9. Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses

    International Nuclear Information System (INIS)

    Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.

    1998-01-01

    The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent

  10. Molecular characteristics of stress overshoot for polymer melts under start-up shear flow.

    Science.gov (United States)

    Jeong, Sohdam; Kim, Jun Mo; Baig, Chunggi

    2017-12-21

    Stress overshoot is one of the most important nonlinear rheological phenomena exhibited by polymeric liquids undergoing start-up shear at sufficient flow strengths. Despite considerable previous research, the fundamental molecular characteristics underlying stress overshoot remain unknown. Here, we analyze the intrinsic molecular mechanisms behind the overshoot phenomenon using atomistic nonequilibrium molecular dynamics simulations of entangled linear polyethylene melts under shear flow. Through a detailed analysis of the transient rotational chain dynamics, we identify an intermolecular collision angular regime in the vicinity of the chain orientation angle θ ≈ 20° with respect to the flow direction. The shear stress overshoot occurs via strong intermolecular collisions between chains in the collision regime at θ = 15°-25°, corresponding to a peak strain of 2-4, which is an experimentally well-known value. The normal stress overshoot appears at approximately θ = 10°, at a corresponding peak strain roughly equivalent to twice that for the shear stress. We provide plausible answers to several basic questions regarding the stress overshoot, which may further help understand other nonlinear phenomena of polymeric systems.

  11. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  12. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  13. Effects of cyclic tensile loading on stress corrosion cracking susceptibility for sensitized Type 304 stainless steel in 290 C high purity water

    International Nuclear Information System (INIS)

    Takaku, H.; Tokiwai, M.; Hirano, H.

    1979-01-01

    The effects of load waveform on intergranular stress corrosion cracking (IGSCC) susceptibility have been examined for sensitized Type 304 stainless steels in a 290 C high purity water loop. Concerning the strain rate in the trapezoidal stress waveform, it was found that IGSCC susceptibility was higher for smaller values of the strain rate. It was also shown that IGSCC susceptibility became higher when the holding time at the upper stress was prolonged, and when the upper stress was high. The occurrence of IGSCC for sensitized Type 304 stainless steel became easy due to the application of cyclic tensile stress in 290 C high purity water

  14. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    KAUST Repository

    Alquraishi, May Majed; Gehring, Christoph A; Marondedze, Claudius

    2016-01-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  15. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    KAUST Repository

    Alquraishi, May Majed

    2016-06-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  16. Nonlinear growth dynamics and the origin of fluctuating asymmetry

    Science.gov (United States)

    Emlen, J.M.; Freeman, D.C.; Graham, J.H.

    1993-01-01

    The nonlinear, complex nature of biosynthesis magnifies the impacts of small, random perturbations on organism growth, leading to distortions in adaptive allometries and, in particular, to fluctuating asymmetry. These distortions can be partly checked by cell-cell and inter-body part feedback during growth and development, though the latter mechanism also may lead to complex patterns in right-left asymmetry. Stress can be expected to increase the degree to which random growth perturbations are magnified and may also result in disruption of the check mechanisms, thus exaggerating fluctuating asymmetry.The processes described not only provide one explanation for the existence of fluctuating asymmetry and its augmentation under stress, but suggest additional effects of stress as well. Specifically, stress is predicted to lead to decreased fractal dimension of bone sutures and branching structures in animals, and in increased dimension of growth trace patterns such as those found in mollusc shells and fish otoliths and scales.A basic yet broad primer on fractals and chaos is provided as background for the theoretical development in this manuscript.

  17. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  18. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells.

    Science.gov (United States)

    Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2018-02-07

    We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.

  19. Direct, CMOS In-Line Process Flow Compatible, Sub 100 °C Cu-Cu Thermocompression Bonding Using Stress Engineering

    Science.gov (United States)

    Panigrahi, Asisa Kumar; Ghosh, Tamal; Kumar, C. Hemanth; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-03-01

    Diffusion of atoms across the boundary between two bonding layers is the key for achieving excellent thermocompression Wafer on Wafer bonding. In this paper, we demonstrate a novel mechanism to increase the diffusion across the bonding interface and also shows the CMOS in-line process flow compatible Sub 100 °C Cu-Cu bonding which is devoid of Cu surface treatment prior to bonding. The stress in sputtered Cu thin films was engineered by adjusting the Argon in-let pressure in such a way that one film had a compressive stress while the other film had tensile stress. Due to this stress gradient, a nominal pressure (2 kN) and temperature (75 °C) was enough to achieve a good quality thermocompression bonding having a bond strength of 149 MPa and very low specific contact resistance of 1.5 × 10-8 Ω-cm2. These excellent mechanical and electrical properties are resultant of a high quality Cu-Cu bonding having grain growth between the Cu films across the boundary and extended throughout the bonded region as revealed by Cross-sectional Transmission Electron Microscopy. In addition, reliability assessment of Cu-Cu bonding with stress engineering was demonstrated using multiple current stressing and temperature cycling test, suggests excellent reliable bonding without electrical performance degradation.

  20. Direct, CMOS In-Line Process Flow Compatible, Sub 100 °C Cu-Cu Thermocompression Bonding Using Stress Engineering

    Science.gov (United States)

    Panigrahi, Asisa Kumar; Ghosh, Tamal; Kumar, C. Hemanth; Singh, Shiv Govind; Vanjari, Siva Rama Krishna

    2018-05-01

    Diffusion of atoms across the boundary between two bonding layers is the key for achieving excellent thermocompression Wafer on Wafer bonding. In this paper, we demonstrate a novel mechanism to increase the diffusion across the bonding interface and also shows the CMOS in-line process flow compatible Sub 100 °C Cu-Cu bonding which is devoid of Cu surface treatment prior to bonding. The stress in sputtered Cu thin films was engineered by adjusting the Argon in-let pressure in such a way that one film had a compressive stress while the other film had tensile stress. Due to this stress gradient, a nominal pressure (2 kN) and temperature (75 °C) was enough to achieve a good quality thermocompression bonding having a bond strength of 149 MPa and very low specific contact resistance of 1.5 × 10-8 Ω-cm2. These excellent mechanical and electrical properties are resultant of a high quality Cu-Cu bonding having grain growth between the Cu films across the boundary and extended throughout the bonded region as revealed by Cross-sectional Transmission Electron Microscopy. In addition, reliability assessment of Cu-Cu bonding with stress engineering was demonstrated using multiple current stressing and temperature cycling test, suggests excellent reliable bonding without electrical performance degradation.

  1. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang

    2017-08-16

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  2. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2017-01-01

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  3. Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells

    Directory of Open Access Journals (Sweden)

    Humberto Breves Coda

    2009-01-01

    Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.

  4. Stress-Softening Formulae of Polymer Bearings

    Directory of Open Access Journals (Sweden)

    M. H. B. M. Shariff

    2015-01-01

    Full Text Available The motivation for this work was the absence of closed form solutions that can reasonably describe the axial deformation behaviour of stress-softening polymer bearings. In this paper, new closed form solutions that exhibit Mullins phenomenon are developed. We show that the apparent Young modulus depends on the shape factor and the minimal infinitesimal strain. We furthermore found that, in a nonlinear deformation, the shape factor plays an important role in stress softening. The solutions are design friendly and are consistent with expected results.

  5. C1 metabolism plays an important role during formaldehyde metabolism and detoxification in petunia under liquid HCHO stress.

    Science.gov (United States)

    Zhang, Wei; Tang, Lijuan; Sun, Huiqun; Han, Shuang; Wang, Xinjia; Zhou, Shengen; Li, Kunzhi; Chen, Limei

    2014-10-01

    Petunia hybrida is a model ornamental plant grown worldwide. To understand the HCHO-uptake efficiency and metabolic mechanism of petunia, the aseptic petunia plants were treated in HCHO solutions. An analysis of HCHO-uptake showed that petunia plants effectively removed HCHO from 2, 4 and 6 mM HCHO solutions. The (13)C NMR analyses indicated that H(13)CHO was primarily used to synthesize [5-(13)C]methionine (Met) via C1 metabolism in petunia plants treated with 2 mM H(13)CHO. Pretreatment with cyclosporin A (CSA) or l-carnitine (LC), the inhibitors of mitochondrial permeability transition pores, did not affect the synthesis of [5-(13)C]Met in petunia plants under 2 mM H(13)CHO stress, indicating that the Met-generated pathway may function in the cytoplasm. Under 4 or 6 mM liquid H(13)CHO stress, H(13)CHO metabolism in petunia plants produced considerable amount of H(13)COOH and [2-(13)C]glycine (Gly) through C1 metabolism and a small amount of [U-(13)C]Gluc via the Calvin Cycle. Pretreatment with CSA or LC significantly inhibited the production of [2-(13)C]Gly in 6 mM H(13)CHO-treated petunia plants, which suggests that chloroplasts and peroxisomes might be involved in the generation of [2-(13)C]Gly. These results revealed that the C1 metabolism played an important role, whereas the Calvin Cycle had only a small contribution during HCHO metabolism and detoxification in petunia under liquid HCHO stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Effect of salt-stresses on the hormonal regulation of growth, photosynthesis and distribution of 14C - assimilates in bean plants

    International Nuclear Information System (INIS)

    Starck, Z.; Karwowska, R.

    1978-01-01

    The experiments were carried out to study the effect of salt-stresses and ABA on the growth photosynthesis and translocation of assimilates in bean plants. It was planned to reduce the content of GA 3 and cytokinins and increase ABA content in salinized plants. The results show that salt-stress (NaCl and concentrated nutrient solution), reduces all the investigated processes in a different degree. NaCl-stress retarded most seriously growth of apical part and blades in contrast to 7-times concentrated nutrient solution decreasing mainly the rate of root and blade growth. Photosynthesis and 14 C-translocation of 14 C-assimilates were retarded more seriously by NaCl than by 7-times concentrated nutrient solution. In the case of seriously stressed plants GA 3 and cytokinins (more effectively) reversed the negative effect of stress conditions both on the photosynthesis and on the 14 C-translocation. On the basis of the obtained results, it seems that changes in the rate of investigated processes in salinized plants are due to hormonal disturbances which cause directly or indirectly retardation of photosynthesis and translocation of assimilates. (author)

  7. Effect of salt-stresses on the hormonal regulation of growth, photosynthesis and distribution of 14C-assimilates in bean plants

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available The experiments were carried out to study the effect of salt-stresses and ABA on the growth, photosynthesis and translocation of assimilates in bean plants. It was planed to reduce the content of GA3 and cytokinins and increase ABA content in salinized plants. The results show that salt-stress (NaCl and concentrated nutrient solution, reduce all the investigated processes in a different degree. NaCl-stress retarded most seriously growth of apical part and blades in contrast to 7-times concentrated nutrient solution decreasing mainly the rate of root and blade growth. Photosynthesis and 14C-translocation of 14C-assimilates were retarded more seriously by NaCl than by 7-times concentrated nutrient. solution. In the case of seriously stressed plants GA3 and cytokinins (more effectively reversed the ,negative effect of stress conditions both on the photosynthesis and on the 14C-tramslocation. On the basis of the obtained results, it seemes that changes in the rate of investigated processes in salinized plants are due to hormonal disturbances which cause directly or indirectly retardation of photosynthesis and trans-location of assimilates.

  8. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  9. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  10. Transcriptome response to thermal stress in two key zooplankton species, Calanus finmarchicus and C. Glacialis

    DEFF Research Database (Denmark)

    Smolina, I.; Kollias, S.; Møller, Eva Friis

    and C. glacialis from Greenland were subjected to heat stress (+5C and +10C) for 4 hours and 6 days. Total RNA was extracted from animals under the different experimental conditions and the transcriptome was sequenced on an Ion Torrent. Sequencing of transcriptome libraries ofC. finmarchicus and C...

  11. Self-guiding light in layered nonlinear media

    DEFF Research Database (Denmark)

    Bergé, L.; Mezentsev, V. K.; Juul Rasmussen, Jens

    2000-01-01

    We study the propagation of intense optical beams in layered Kerr media. With appropriate shapes, beams with a power close to the self-focusing threshold are shown to propagate over long distances as quasistationary waveguides in cubic media supporting a periodic nonlinear refractive index. (C...

  12. Influence of stress change on the fatigue behavior and fatigue life of aluminum oxide-dispersion-strengthening copper alloy at room temperature and 350degC

    International Nuclear Information System (INIS)

    Kawagoishi, Norio; Kondo, Eiji; Nisitani, Hironobu; Shimamoto, Atsunori; Tashiro, Rieko

    2004-01-01

    In order to investigate the influence of stress change on the fatigue behavior and fatigue life of an aluminum oxide-dispersion-strengthening copper alloy at elevated temperature, rotating bending fatigue tests were carried out under two-step loading at room temperature and 350degC. Both of static strength and fatigue strength decreased at 350degC. However, at the same relative stress σ a /σ B , fatigue life was longer at 350degC than at room temperature. Although the cumulative ratios Σ(N/N f ) were nearly unity for both the low to high and the high to low block loadings at room temperature, Miner's rule did not hold at 350degC. These results were related to the stress dependence on the log l-N/N f relation. That is, the crack length initiated at the same N/N f was larger in higher stress level at 350degC, whereas there was no stress dependence in the relation at room temperature. The stress dependence on the relation at 350degC was caused by the suppression of crack initiation due to the surface oxidation. (author)

  13. Nonlinear photonic metasurfaces

    Science.gov (United States)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  14. Effect of different periods of chronic heat stress with or without vitamin C supplementation on bone and selected serum parameters of broiler chickens.

    Science.gov (United States)

    Mosleh, Najmeh; Shomali, Tahoora; Nematollahi, Fahimeh; Ghahramani, Zahra; Ahrari Khafi, Mohammad Saeid; Namazi, Fatemeh

    2018-04-01

    This study evaluates the effect of different periods of chronic heat stress (CHS) on selected bone and serum parameters of broiler chickens with or without vitamin C administration. Ninety 23-day-old chickens were randomly allocated into seven groups: (1) control, (2) short-term CHS (5 days), (3) short-term CHS + vitamin C (12 g/100 l drinking water of a 50% product), (4) medium-term CHS (10 days), (5) medium-term CHS + vitamin C, (6) long-term CHS (20 days) and (7) long-term CHS + vitamin C. In heat-stressed groups the temperature was increased to 39 ± 1°C for 8 h/day. At the end of the experiment, blood samples were collected and shank, keel and tibia bones were removed. CHS was not associated with a drastic change in serum Ca and corticosterone, or bone characteristics (both cortical and trabecular bones in radiographical and histological evaluation), or birds' performance. Oxidative stress was present especially with short-term CHS. CHS, especially for short or medium periods, showed a tendency to increase serum vitamin C and administration of this vitamin did not make a significant change in its serum levels although it ameliorated oxidative stress. In conclusion, it seems that CHS is not associated with an appreciable change in broiler performance, bone characteristics, or selected serum parameters; and simultaneous vitamin C administration at the dosage of 12 g/100 l in drinking water has no beneficial effect apart from reducing oxidative stress especially in short-term chronically heat-stressed birds.

  15. Absorption and translocation of 59Fe and 14C-rhodotorulate in iron-stressed tomato

    International Nuclear Information System (INIS)

    Miller, G.W.; Shigematsu, A.; Motoji, N.; Shibabe, S.

    1990-01-01

    Tomato plants, cultivars FER and Earlygirl (both iron efficient and able to use rhodotorulate- 59 Fe), were grown under low Fe conditions for 9 days. Rhodotorulate- 14 C, isolated from Rhodotorula pilimanae cultured with 14 C-sucrose, and rhodotorulate- 59 Fe were added to the Fe-stressed plants for 6-, 24- or 48-h periods. It was evident from autoradiograms and tissue sampling that 59 Fe and 14 C were abundant in roots, stems and leaves. The 14 C autoradiograms showed especially high density in the small, younger leaves, as was found also with 59 Fe. Unlike synthetic chelates, rhodotorulate (or metabolised derivatives) was readily absorbed by the roots and translocated to the leaves. (author)

  16. Quantum Nonlinear Optics

    CERN Document Server

    Hanamura, Eiichi; Yamanaka, Akio

    2007-01-01

    This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.

  17. Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells.

    Science.gov (United States)

    Michels, Susanne; Ganjam, Goutham K; Martins, Helena; Schratt, Gerhard M; Wöhr, Markus; Schwarting, Rainer K W; Culmsee, Carsten

    2018-01-01

    Affective disorders such as major depression and bipolar disorder are among the most prevalent forms of mental illness and their etiologies involve complex interactions between genetic and environmental risk factors. Over the past ten years, several genome wide association studies (GWAS) have identified CACNA1C as one of the strongest genetic risk factors for the development of affective disorders. However, its role in disease pathogenesis is still largely unknown. Vulnerability to affective disorders also involves diverse environmental risk factors such as perinatal insults, childhood maltreatment, and other adverse pathophysiological or psychosocial life events. At the cellular level, such environmental influences may activate oxidative stress pathways, thereby altering neuronal plasticity and function. Mitochondria are the key organelles of energy metabolism and, further, highly important for the adaptation to oxidative stress. Accordingly, multiple lines of evidence including post-mortem brain and neuro-imaging studies suggest that psychiatric disorders are accompanied by mitochondrial dysfunction. In this study, we investigated the effects of Cacna1c downregulation in combination with glutamate-induced oxidative stress on mitochondrial function, Ca 2+ homeostasis, and cell viability in mouse hippocampal HT22 cells. We found that the siRNA-mediated knockdown of Cacna1c preserved mitochondrial morphology, mitochondrial membrane potential, and ATP levels after glutamate treatment. Further, Cacna1c silencing inhibited excessive mitochondrial reactive oxygen species formation and calcium influx, and protected the HT22 cells from oxidative cell death. Overall, our findings suggest that the GWAS-confirmed psychiatric risk gene CACNA1C plays a major role in oxidative stress pathways with particular impact on mitochondrial integrity and function.

  18. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-) : cystine supplier and beyond.

    Science.gov (United States)

    Conrad, Marcus; Sato, Hideyo

    2012-01-01

    The oxidative stress-inducible cystine/glutamate exchange system, system x (c) (-) , transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system x (c) (-) has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system x (c) (-) may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system x (c) (-) research up to now.

  19. Nonlinear finite element analysis of the plantar fascia due to the windlass mechanism.

    Science.gov (United States)

    Cheng, Hsin-Yi Kathy; Lin, Chun-Li; Chou, Shih-Wei; Wang, Hsien-Wen

    2008-08-01

    Tightening of plantar fascia by passively dorsiflexing the toes during walking has functional importance. The purpose of this research was to evaluate the influence of big toe dorsiflexion angles upon plantar fascia tension (the windlass effect) with a nonlinear finite element approach. A two-dimensional finite element model of the first ray was constructed for biomechanical analysis. In order to imitate the windlass effect and to evaluate the mechanical responses of the plantar fascia under various conditions, 12 model simulations--three dorsiflexion angles of the big toe (45 degrees, 30 degrees, and 15 degrees), two plantar fascia properties (linear, nonlinear), and two weightbearing conditions (with body weight, without body weight)--were designed and analyzed. Our results demonstrated that nonlinear modeling of the plantar fascia provides a more sophisticated representation of experimental data than the linear one. Nonlinear plantar fascia setting also predicted a higher stress distribution along the fiber directions especially with larger toe dorsiflexion angles (45 degrees>30 degrees>15 degrees). The plantar fascia stress was found higher near the metatarsal insertion and faded as it moved toward the calcaneal insertion. Passively dorsiflexing the big toe imposes tension onto the plantar fascia. Windlass mechanism also occurs during stance phase of walking while the toes begin to dorsiflex. From a biomechanical standpoint, the plantar fascia tension may help propel the body upon its release at the point of push off. A controlled stretch via dorsiflexing the big toe may have a positive effect on treating plantar fasciitis by providing proper guidance for collagen regeneration. The windlass mechanism is also active during the stance phase of walking when the toes begin to dorsiflex.

  20. Normal stresses in semiflexible polymer hydrogels

    Science.gov (United States)

    Vahabi, M.; Vos, Bart E.; de Cagny, Henri C. G.; Bonn, Daniel; Koenderink, Gijsje H.; MacKintosh, F. C.

    2018-03-01

    Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As shown recently, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semiflexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.

  1. Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity

    Science.gov (United States)

    Zabavnikova, T. A.; Kadashevich, Yu. I.; Pomytkin, S. P.

    2018-05-01

    A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.

  2. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction

    International Nuclear Information System (INIS)

    Vaidyanathan, R.; Dunand, D.C.

    1999-01-01

    Superelastic NiTi (51.0 at.% Ni) specimens reinforced with 0, 10 and 20 vol.% TiC particles were deformed under uniaxial compression while neutron diffraction spectra were collected. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. The evolution of austenite/martensite phase fractions and of elastic strains in the reinforcing TiC particles and the austenite matrix were obtained by Rietveld refinement during the loading cycle as the austenite transforms to martensite (and its subsequent back transformation during unloading). Phase fractions and strains are discussed in terms of load transfer in composites where the matrix undergoes a stress-induced phase transformation. (orig.)

  3. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming-Song; Li, Kuo-Kuo [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Central South University, Light Alloy Research Institute, Changsha (China); Chen, Jian [Changsha University of Science and Technology, School of Energy and Power Engineering, Key Laboratory of Efficient and Clean Energy Utilization, Changsha (China)

    2016-09-15

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  4. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Li, Kuo-Kuo; Lin, Y.C.; Chen, Jian

    2016-01-01

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  5. Comparison between the results of stress relaxation - and creep tests in a stainless steel 316 at 8000C

    International Nuclear Information System (INIS)

    Miranda, P.E.V. de.

    1978-07-01

    A sequence of stress relaxation tests from the same initial stress showed an estabilization of the relaxed fraction of stress of a 316 stainless steel at 800 0 C. This represents the exhaustion of the deformation process of the material at this temperature. Results from the relaxation tests were obtained by utilizing a recently proposed model. The slope in from the log epsilon sup(.) x logσ/E curve obtained by relaxation (n = 6,80) closely matched that determined by creep tests (n = 6,50). This presents a possibility of determined by stress relaxation of the parameters usually calculated by creep. (Author) [pt

  6. A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis

    Science.gov (United States)

    Chillara, Vamshi Krishna

    2017-11-01

    We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.

  7. Dicty_cDB: Contig-U15854-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 737759 ) Osmo01894 F. cylindrus osmotic stress library Fra... 42 9e-06 3 ( CX582318 ) TTE00021703 Amplicon Express - Conjugati...lone:XL459m21ex, 5' end. 42 0.11 2 ( CK275852 ) EST721930 potato abiotic stress cDNA library Sola... 40 0.12...HD_XGC_Emb4 Xenopus laevis c... 42 0.12 2 ( CK272208 ) EST718286 potato abiotic stress cDNA library Sola... ...12 2 ( CK265018 ) EST711096 potato abiotic stress cDNA library Sola... 40 0.12 2 ( DV607474 ) EST1210470 Glo... Xenopus l... 42 0.13 2 ( CK278382 ) EST724460 potato abiotic stress cDNA library Sola... 40 0.14 2 ( DV6190

  8. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....

  9. Effect of Selenium, Zinc, Vitamin C and E on Boar Ejaculate Quality at Heat Stress

    Directory of Open Access Journals (Sweden)

    Pavel Horký

    2016-01-01

    Full Text Available The aim of experiment was to test effect of selected antioxidants (selenium, zinc, vitamin C and E to reduce the impact of heat stress at boars. In the experiment, boars of Duroc breed were tested. The first control group (n = 10 was not supplemented with antioxidants. The second experimental group (n = 10 was supplemented with antioxidants in the following quantities of 0.5 mg of selenium (seleno-methionine, 100 mg of zinc (zinc-methionine, 70 mg of vitamin E (alpha‑tocopherol and 350 mg of vitamin C (ascorbic acid per kilogram of their feed. The experiment was carried out for 120 days and took place in summer (June to September. During the experiment, average and maximum daily temperatures, where boars were stabled, were monitored. Average daily temperature ranged from 12 to 28 °C. Maximum temperature during the day was from 13 to 32 °C. The evaluation of the semen quality has revealed increased number of abnormal spermatozoa in the control group of boars by 39 % (P < 0.05. There were observed no significant changes at other monitored parameters (ejaculate volume, total count of produced sperm, motility and sperm concentration. The results show that the addition of selenium, zinc, vitamin C and E may reduce the effect of heat stress to some extent at breeding boars.

  10. Separation of stress-free AlN/SiC thin films from Si substrate

    International Nuclear Information System (INIS)

    Redkov, A V; Osipov, A V; Mukhin, I S; Kukushkin, S A

    2016-01-01

    We separated AlN/SiC film from Si substrate by chemical etching of the AlN/SiC/Si heterostructure. The film fully repeats the size and geometry of the original sample and separated without destroying. It is demonstrated that a buffer layer of silicon carbide grown by a method of substitution of atoms may have an extensive hollow subsurface structure, which makes it easier to overcome the differences in the coefficients of thermal expansion during the growth of thin films. It is shown that after the separation of the film from the silicon substrate, mechanical stresses therein are almost absent. (paper)

  11. Nonlinear Finite Element Analysis of a General Composite Shell

    Science.gov (United States)

    1988-12-01

    for (t) in Equation (B.15) (Appendix B) and writes it as a function of displacements for I the nonlinear problem one obtains [8] 3 29 (*(a)) - [K(a...linked to the main program before execution. Isubroutine upress(t,pa,pb,iunit, ielt ,x,y,z,live,press) c c Pressure distribution subroutine for c...then compiled and linked to the main program before execution. I SUBROUTINE UPRESS(T,PA,PB,IUNIT, IELT ,X,Y,Z,LIVE,PRESS) C c Pressure distribution

  12. A nonlinear efficient layerwise finite element model for smart piezolaminated composites under strong applied electric field

    International Nuclear Information System (INIS)

    Kapuria, S; Yaqoob Yasin, M

    2013-01-01

    In this work, we present an electromechanically coupled efficient layerwise finite element model for the static response of piezoelectric laminated composite and sandwich plates, considering the nonlinear behavior of piezoelectric materials under strong electric field. The nonlinear model is developed consistently using a variational principle, considering a rotationally invariant second order nonlinear constitutive relationship, and full electromechanical coupling. In the piezoelectric layer, the electric potential is approximated to have a quadratic variation across the thickness, as observed from exact three dimensional solutions, and the equipotential condition of electroded piezoelectric surfaces is modeled using the novel concept of an electric node. The results predicted by the nonlinear model compare very well with the experimental data available in the literature. The effect of the piezoelectric nonlinearity on the static response and deflection/stress control is studied for piezoelectric bimorph as well as hybrid laminated plates with isotropic, angle-ply composite and sandwich substrates. For high electric fields, the difference between the nonlinear and linear predictions is large, and cannot be neglected. The error in the prediction of the smeared counterpart of the present theory with the same number of primary displacement unknowns is also examined. (paper)

  13. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    Science.gov (United States)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  14. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    International Nuclear Information System (INIS)

    Hocking, Erica G; Wereley, Norman M

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30–80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible. (paper)

  15. Acute restraint stress decreases c-fos immunoreactivity in hilar mossy cells of the adult dentate gyrus

    Science.gov (United States)

    Moretto, Jillian N.; Duffy, Áine M.

    2017-01-01

    Although a great deal of information is available about the circuitry of the mossy cells (MCs) of the dentate gyrus (DG) hilus, their activity in vivo is not clear. The immediate early gene c-fos can be used to gain insight into the activity of MCs in vivo, because c-fos protein expression reflects increased neuronal activity. In prior work, it was identified that control rats that were perfusion-fixed after removal from their home cage exhibited c-fos immunoreactivity (ir) in the DG in a spatially stereotyped pattern: ventral MCs and dorsal granule cells (GCs) expressed c-fos protein (Duffy et al., Hippocampus 23:649–655, 2013). In this study, we hypothesized that restraint stress would alter c-fos-ir, because MCs express glucocorticoid type 2 receptors and the DG is considered to be involved in behaviors related to stress or anxiety. We show that acute restraint using a transparent nose cone for just 10 min led to reduced c-fos-ir in ventral MCs compared to control rats. In these comparisons, c-fos-ir was evaluated 30 min after the 10 min-long period of restraint, and if evaluation was later than 30 min c-fos-ir was no longer suppressed. Granule cells (GCs) also showed suppressed c-fos-ir after acute restraint, but it was different than MCs, because the suppression persisted for over 30 min after the restraint. We conclude that c-fos protein expression is rapidly and transiently reduced in ventral hilar MCs after a brief period of restraint, and suppressed longer in dorsal GCs. PMID:28190104

  16. Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel—Effects of 475 °C Embrittlement and Process Orientation

    Directory of Open Access Journals (Sweden)

    Cem Örnek

    2016-07-01

    Full Text Available The effect of 475 °C embrittlement and microstructure process orientation on atmospheric-induced stress corrosion cracking (AISCC of grade 2205 duplex stainless steel has been investigated. AISCC tests were carried out under salt-laden, chloride-containing deposits, on U-bend samples manufactured in rolling (RD and transverse directions (TD. The occurrence of selective corrosion and stress corrosion cracking was observed, with samples in TD displaying higher propensity towards AISCC. Strains and tensile stresses were observed in both ferrite and austenite, with similar magnitudes in TD, whereas, larger strains and stresses in austenite in RD. The occurrence of 475 °C embrittlement was related to microstructural changes in the ferrite. Exposure to 475 °C heat treatment for 5 to 10 h resulted in better AISCC resistance, with spinodal decomposition believed to enhance the corrosion properties of the ferrite. The austenite was more susceptible to ageing treatments up to 50 h, with the ferrite becoming more susceptible with ageing in excess of 50 h. Increased susceptibility of the ferrite may be related to the formation of additional precipitates, such as R-phase. The implications of heat treatment at 475 °C and the effect of process orientation are discussed in light of microstructure development and propensity to AISCC.

  17. Unidirectional reflection and invisibility in nonlinear media with an incoherent nonlinearity

    Science.gov (United States)

    Mostafazadeh, Ali; Oflaz, Neslihan

    2017-11-01

    We give explicit criteria for the reflectionlessness, transparency, and invisibility of a finite-range potential in the presence of an incoherent (intensity-dependent) nonlinearity that is confined to the range of the potential. This allows us to conduct a systematic study of the effects of such a nonlinearity on a locally periodic class of finite-range potentials that display perturbative unidirectional invisibility. We use our general results to examine the effects of a weak Kerr nonlinearity on the behavior of these potentials and show that the presence of nonlinearity destroys the unidirectional invisibility of these potentials. If the strength of the Kerr nonlinearity is so weak that the first-order perturbation theory is reliable, the presence of nonlinearity does not affect the unidirectional reflectionlessness and transmission reciprocity of the potential. We show that the expected violation of the latter is a second order perturbative effect.

  18. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  19. Non-linear thermal fluctuations in a diode

    NARCIS (Netherlands)

    Kampen, N.G. van

    As an example of non-linear noise the fluctuations in a circuit consisting of a diode and a condenser C are studied. From the master equation for this system the following results are derived. 1. (i) The equilibrium distribution of the voltage is rigorously Gaussian, the average voltage being

  20. A Non-Linear Upscaling Approach for Wind Turbines Blades Based on Stresses

    NARCIS (Netherlands)

    Castillo Capponi, P.; Van Bussel, G.J.W.; Ashuri, T.; Kallesoe, B.

    2011-01-01

    The linear scaling laws for upscaling wind turbine blades show a linear increase of stresses due to the weight. However, the stresses should remain the same for a suitable design. Application of linear scaling laws may lead to an upscaled blade that may not be any more a feasible design. In this

  1. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  2. Towards exact solutions of the non-linear Heisenberg-Pauli-Weyl spinor equation

    International Nuclear Information System (INIS)

    Mielke, E.W.

    1980-03-01

    In ''color geometrodynamics'' fundamental spinor fields are assumed to obey a GL(2f,C) x GL(2c,C) gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl type. Quark confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor ''gluons'' of strong gravity. This hypothesis is incorporated into the model by considering the nonlinear Dirac equation in a curved space-time of hadronic dimensions. Disregarding internal degrees of freedom, it is then feasible, for a particular background space-time, to obtain exact solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are made. (author)

  3. Creep relaxation of fuel pin bending and ovalling stresses

    International Nuclear Information System (INIS)

    Chan, D.P.; Jackson, R.J.

    1979-06-01

    Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in close agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20% CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to low levels

  4. Simulation of thermal stresses in SiC-Al2O3 composite tritium penetration barrier by finite-element analysis

    International Nuclear Information System (INIS)

    Liu, Hongbing; Tao, Jie; Gautreau, Yoann; Zhang, Pingze; Xu, Jiang

    2009-01-01

    Tritium penetration barrier (TPB) composed of Al 2 O 3 and SiC on 316L stainless steel was proposed to improve the tritium penetration resistance of the substrate in this work. At the same time, the concept of functionally graded materials (FGM) was applied to manage to decrease residual stresses between Al 2 O 3 and 316L stainless steel substrate due to the mismatch of their thermal expansion coefficients. The effects of system architecture on the residual stresses developed in the composite coatings were investigated numerically by means of finite-element analysis (FEA). Modeling results showed that the presence of the graded properties and the compositions within the coating did reduce the stress discontinuity at the interfaces between the coating and the substrate. Also, the magnitudes of the residual stresses on the coating surface and at the coating/substrate interface were dependent on the Al 2 O 3 and SiC coating thickness.

  5. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    Science.gov (United States)

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  6. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  7. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  8. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    Science.gov (United States)

    Bache, Morten; Lavrinenko, Andrei V.

    2017-09-01

    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.

  9. Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    Generating few-cycle energetic and broadband mid-IR pulses is an urgent current challenge in nonlinear optics. Cascaded second-harmonic generation (SHG) gives access to an ultrafast and octave-spanning self-defocusing nonlinearity: when ΔkL >> 2π the pump experiences a Kerr-like nonlinear index...

  10. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

    International Nuclear Information System (INIS)

    Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

    2005-01-01

    The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules

  11. Ultrafast nonlinear optical studies of equiaxed CuNbO3 microstructures

    Science.gov (United States)

    Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.

    2017-08-01

    Diverse microstructures of monoclinic copper niobate (m-CuNbO3) were synthesized by solid-state reaction (900 °C, 3-12 h). FESEM data demonstrated that agglomerated clusters grew as an elongated grains which migrated to form web-shaped equiaxed structure and dissected to form individual equiaxed microstructure. With femtosecond laser excitation (800 nm, 150 fs), open aperture Z-scan data revealed the presence of two-photon absorption. The nonlinear refractive index (n2) toggled between positive and negative nonlinearity for different microstructures. Web-shaped equiaxed structure kindled both the nonlinear absorption (βeff = 2.0 × 10-12 m/W), nonlinear refraction (n2 = 3.16 × 10-17 m2/W) and a strong optical limiting action (onset limiting threshold of 22.24 μJ/cm2).

  12. Mathematical model of polyethylene pipe bending stress state

    Science.gov (United States)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  13. Study on the near-field non-linearity (SMILE) of high power diode laser arrays

    Science.gov (United States)

    Zhang, Hongyou; Jia, Yangtao; Li, Changxuan; Zah, Chung-en; Liu, Xingsheng

    2018-02-01

    High power laser diodes have been found a wide range of industrial, space, medical applications, characterized by high conversion efficiency, small size, light weight and a long lifetime. However, due to thermal induced stress, each emitter in a semiconductor laser bar or array is displaced along p-n junction, resulting of each emitter is not in a line, called Near-field Non-linearity. Near-field Non-linearity along laser bar (also known as "SMILE") determines the outcome of optical coupling and beam shaping [1]. The SMILE of a laser array is the main obstacle to obtain good optical coupling efficiency and beam shaping from a laser array. Larger SMILE value causes a larger divergence angle and a wider line after collimation and focusing, respectively. In this letter, we simulate two different package structures based on MCC (Micro Channel Cooler) with Indium and AuSn solders, including the distribution of normal stress and the SMILE value. According to the theoretical results, we found the distribution of normal stress on laser bar shows the largest in the middle and drops rapidly near both ends. At last, we did another experiment to prove that the SMILE value of a laser bar was mainly affected by the die bonding process, rather than the operating condition.

  14. Experimental study of the third-order nonlinearity of atomic and molecular gases using 10-μm laser pulses

    Science.gov (United States)

    Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.

    2018-04-01

    We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.

  15. BO2-functionalized B3N3C54 heterofullerene as a possible candidate for molecular spintronics and nonlinear optics

    Science.gov (United States)

    Srivastava, Ambrish Kumar; Pandey, Sarvesh Kumar; Misra, Neeraj

    2016-04-01

    BO2-substituted B3N3C54 heterofullerene was studied using density functional theory, and its electronic, magnetic and nonlinear optical properties are discussed. The substitution was considered at the B and N sites of the heterofullerene, in lower and higher spin states. We notice that BO2 substitution at the B sites of B3N3C54 heterofullerene leads to interesting properties, such as a smaller energy gap (0.66 eV) and a high spin magnetic moment (3 μ B). The density-of-states curves, molecular orbitals and spin density surfaces have been used to explain these facts. In addition, the first-order mean hyperpolarizability of B3N3C54 heterofullerene has been found to be significantly large (3.6 × 103 a.u.), which is due to smaller transition energy in the crucial excited state. This is reflected by the absorption spectra calculated using the time-dependent density functional theory method. These findings may be exploited to design novel materials for possible spintronic and electro-optical applications.

  16. Nonlinear analysis of end slabs in prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Abdulrahman, H.O.

    1978-01-01

    A procedure for the nonlinear analysis of end slabs is prestressed concrete reactor vessels (PCRVs), based on the finite element method, is presented. The applicability of the procedure to the ultimate load analysis of small-scale models of the primary containment of nuclear reactors is shown. Material nonlinearity only is considered. The procedure utilizes the four-node linear quadrilateral isoparametric element with the choice of incorporating the nonconforming modes. This element is used for modeling the vessel as an axisymmetric solid. Concrete is assumed to be an isotropic material in the elastic range. The compressive stresses are judged according to a special form of the Mohr-Coulomb criterion. The nonlinear problem was solved using a generalized Newton-Raphson procedure. A detailed example problem of a pressure vessel with penetrations is presented. This is followed by a summary of the other cases studied. The solutions obtained match very closely the measured response of the test vessels under increasing internal pressure up to failure. The procedure is thus adequate for the assessment of the ultimate load behavior and failure of actual pressure vessels with a moderate demand on human and computational resources

  17. Roles of ATR1 paralogs YMR279c and YOR378w in boron stress tolerance

    International Nuclear Information System (INIS)

    Bozdag, Gonensin Ozan; Uluisik, Irem; Gulculer, Gulce Sila; Karakaya, Huseyin C.; Koc, Ahmet

    2011-01-01

    Highlights: → ATR1 paralog YMR279c plays role in boron detoxification. → YMR279c overexpression lowers cytoplasmic boron levels. → ATR1 paralog YOR378w has no roles in boron stress response. -- Abstract: Boron is a necessary nutrient for plants and animals, however excess of it causes toxicity. Previously, Atr1 and Arabidopsis Bor1 homolog were identified as the boron efflux pump in yeast, which lower the cytosolic boron concentration and help cells to survive in the presence of toxic amount of boron. In this study, we analyzed ATR1 paralogs, YMR279c and YOR378w, to understand whether they participate in boron stress tolerance in yeast. Even though these genes share homology with ATR1, neither their deletion rendered cells boron sensitive nor their expression was significantly upregulated by boron treatment. However, expression of YMR279, but not YOR378w, from the constitutive GAPDH promoter on a high copy plasmid provided remarkable boron resistance by decreasing intracellular boron levels. Thus our results suggest the presence of a third boron exporter, YMR279c, which functions similar to ATR1 and provides boron resistance in yeast.

  18. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  19. Residual stress analysis on materials with steep stress gradient by using X-ray incidence at higher angles

    International Nuclear Information System (INIS)

    Ohya, Shin-ichi; Yoshioka, Yasuo; Maeno, Shigeki

    1996-01-01

    X-ray stress measurements for isotropic polycrystalline are materials are usually carried out by the sin 2 ψ method under the assumption of no stress gradient in X-ray penetration depth. When a steep stress gradient exists in the vicinity of surface layer, however, non-linear sin 2 ψ relation is observed and the sin 2 ψ method cannot be applied on such cases. Although several X-ray stress analyzers have been developed for materials with steep stress gradient in the surface layer, it is desirable to use diffraction data at higher incident angles of ψ 0 as possible as close on 90 degrees in order to determine the both values of surface stress and stress gradient with high accuracy. In the present study, an X-ray stress analyzer based on Ω geometry was fabricated to enable X-ray incidence at higher angle of ψ 0 . The X-ray detector was positioned on -η side against X-ray incident beam. Both of the residual surface stress and stress gradient were determined by use of the COSψ method on shot-peened steel and silicon nitride specimens. This prototype stress analyzer was found effective to perform a biaxial or triaxial stress analysis. (author)

  20. From nonlinear Schroedinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    International Nuclear Information System (INIS)

    Yang Xiao; Du Dianlou

    2010-01-01

    The Poisson structure on C N xR N is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schroedinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  1. Waves and Structures in Nonlinear Nondispersive Media General Theory and Applications to Nonlinear Acoustics

    CERN Document Server

    Gurbatov, S N; Saichev, A I

    2012-01-01

    "Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...

  2. Role of Oxidative Stress in Hepatocarcinogenesis Induced by Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Kyoko Tsukiyama-Kohara

    2012-11-01

    Full Text Available Hepatitis C virus (HCV easily establishes chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. During the progression of HCV infections, reactive oxygen species (ROS are generated, and these ROS then induce significant DNA damage. The role of ROS in the pathogenesis of HCV infection is still not fully understood. Recently, we found that HCV induced the expression of 3β-hydroxysterol ∆24-reductase (DHCR24. We also found that a HCV responsive region is present in the 5'-flanking genomic promoter region of DHCR24 and the HCV responsive region was characterized as (−167/−140. Moreover, the transcription factor Sp1 was found to bind to this region in response to oxidative stress under the regulation of ataxia telangiectasia mutated (ATM kinase. Overexpression of DHCR24 impaired p53 activity by suppression of acetylation and increased interaction with MDM2. This impairment of p53 suppressed the hydrogen peroxide-induced apoptotic response in hepatocytes. Thus, a target of oxidative stress in HCV infection is DHCR24 through Sp1, which suppresses apoptotic responses and increases tumorigenicity.

  3. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.; Kirkwood, K. M.; Vlassopoulos, D.; Leal, L. G.; Nikopoulou, A.; Hadjichristidis, Nikolaos; Coppola, S.

    2016-01-01

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  4. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.

    2016-03-31

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  5. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on {sup 13}C natural abundances

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, Valentin H., E-mail: v.klaus@uni-muenster.de [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Hölzel, Norbert [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Prati, Daniel; Schmitt, Barbara [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Schöning, Ingo; Schrumpf, Marion; Solly, Emily F. [Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena (Germany); Hänsel, Falk [University Marburg, Environmental Informatics, Faculty of Geography, Deutschhausstr. 12, 35037 Marburg (Germany); Fischer, Markus [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Kleinebecker, Till [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany)

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ{sup 13}C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier {sup 13}C due to closing stomata leading to an enrichment of {sup 13}C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ{sup 13}C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ{sup 13}C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ{sup 13}C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future

  6. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on "1"3C natural abundances

    International Nuclear Information System (INIS)

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F.; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-01-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ"1"3C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier "1"3C due to closing stomata leading to an enrichment of "1"3C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ"1"3C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ"1"3C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ"1"3C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. - Highlights

  7. Implementation of a Stress-dependent Strength Material Model in PLAXIS 3D

    DEFF Research Database (Denmark)

    Knudsen, Bjørn S.; Østergaard, Martin Underlin; Clausen, Johan

    To perform tests on bucket foundations, full-scale testing is rarely used since it is rather expensive. Instead small-scale testing is done to examine the static and dynamic behaviour of such structures. In the laboratory at Aalborg University, small-scale testing of offshore support structures can...... be performed in a pressure tank, where a pressure can be applied in order to simulate deep water situations. Since the test set-up is downscaled 15 to 30 times compared to real-life structures, stresses and strains will be downscaled too. For soils, normally a Mohr-Coulomb failure criterion is used......, and in the region of small stresses, a non-linear behaviour is observed - unlike the linear behaviour normally assumed in Mohr-Coulomb. To better model this non-linearity, a stress-dependent model for the strength of the soil material is sought to be implemented in PLAXIS 3D through FORTRAN to improve...

  8. A Procedure for 3-D Contact Stress Analysis of Spiral Bevel Gears

    Science.gov (United States)

    Kumar, A.; Bibel, G.

    1994-01-01

    Contact stress distribution of spiral bevel gears using nonlinear finite element static analysis is presented. Procedures have been developed to solve the nonlinear equations that identify the gear and pinion surface coordinates based on the kinematics of the cutting process and orientate the pinion and the gear in space to mesh with each other. Contact is simulated by connecting GAP elements along the intersection of a line from each pinion point (parallel to the normal at the contact point) with the gear surface. A three dimensional model with four gear teeth and three pinion teeth is used to determine the contact stresses at two different contact positions in a spiral bevel gearset. A summary of the elliptical contact stress distribution is given. This information will be helpful to helicopter and aircraft transmission designers who need to minimize weight of the transmission and maximize reliability.

  9. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

    Directory of Open Access Journals (Sweden)

    Paniego Norma

    2008-01-01

    Full Text Available Abstract Background Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. Results Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. Conclusion

  10. Mechanical nonlinearity elimination with a micromechanical clamped-free semicircular beams resonator

    Science.gov (United States)

    Chen, Dongyang; Chen, Xuying; Wang, Yong; Liu, Xinxin; Guan, Yangyang; Xie, Jin

    2018-04-01

    This paper reports a micro-machined clamped-free semicircular beam resonator aiming to eliminate the nonlinearity that widely exists in traditional mechanical resonators. Cubic coefficients over vibration displacement due to axial extension of the beams are analyzed through theoretical modelling, and the corresponding frequency effect is demonstrated. With the device working in the elastic vibration mode, the cubic coefficients are eliminated by using a free end to release the nonlinear extension of beams and thus the inside axial stress. The amplitude-frequency (A-f) effect is overcome in a large region of source power, and the coefficient of frequency softening is linearized in a large region of polarization voltage. As a result, the resonator can be driven at larger vibration amplitude to achieve a high signal to noise ratio and power handling performance.

  11. Evaluation of Fracture Stress for the SiC Layer of TRISO-Coated Fuel Particles by A Modified Crush Testing

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Kim, Jin Weon; Miller, James Henry; Snead, Lance Lewis; Hunn, John D.

    2010-01-01

    Fracture stress data for the chemical vapor deposition (CVD) SiC coatings of tri-isotropic (TRISO) carbon/silicon carbide coated fuel particles were obtained using a newly developed testing and evaluation method, and their relationship with microstructure investigated. A crush testing technique using a blanket foil at load-transferring contact has been developed for hemispherical shell SiC specimens based on finite element (FE) analysis results. Mean fracture stress varied with test material in the range of 330-650 MPa, and was connected to the combined characteristics of inner surface roughness and porosity.

  12. On-line scheme for parameter estimation of nonlinear lithium ion battery equivalent circuit models using the simplified refined instrumental variable method for a modified Wiener continuous-time model

    International Nuclear Information System (INIS)

    Allafi, Walid; Uddin, Kotub; Zhang, Cheng; Mazuir Raja Ahsan Sha, Raja; Marco, James

    2017-01-01

    Highlights: •Off-line estimation approach for continuous-time domain for non-invertible function. •Model reformulated to multi-input-single-output; nonlinearity described by sigmoid. •Method directly estimates parameters of nonlinear ECM from the measured-data. •Iterative on-line technique leads to smoother convergence. •The model is validated off-line and on-line using NCA battery. -- Abstract: The accuracy of identifying the parameters of models describing lithium ion batteries (LIBs) in typical battery management system (BMS) applications is critical to the estimation of key states such as the state of charge (SoC) and state of health (SoH). In applications such as electric vehicles (EVs) where LIBs are subjected to highly demanding cycles of operation and varying environmental conditions leading to non-trivial interactions of ageing stress factors, this identification is more challenging. This paper proposes an algorithm that directly estimates the parameters of a nonlinear battery model from measured input and output data in the continuous time-domain. The simplified refined instrumental variable method is extended to estimate the parameters of a Wiener model where there is no requirement for the nonlinear function to be invertible. To account for nonlinear battery dynamics, in this paper, the typical linear equivalent circuit model (ECM) is enhanced by a block-oriented Wiener configuration where the nonlinear memoryless block following the typical ECM is defined to be a sigmoid static nonlinearity. The nonlinear Weiner model is reformulated in the form of a multi-input, single-output linear model. This linear form allows the parameters of the nonlinear model to be estimated using any linear estimator such as the well-established least squares (LS) algorithm. In this paper, the recursive least square (RLS) method is adopted for online parameter estimation. The approach was validated on experimental data measured from an 18650-type Graphite

  13. Fundamental topics for thermo-elastic stress analyses

    International Nuclear Information System (INIS)

    Biermann, M.

    1989-01-01

    This paper delivers a consistent collection of theoretical fundamentals needed to perform rather sound experimental stress analyses on thermo-elastic materials. An exposition of important concepts of symmetry and so-called peer groups, yielding the very base for a rational description of materials, goes ahead and is followed by an introduction to the constitutive theory of simple materials. Neat distinction is made between stress contributions determined by deformational and thermal impressions, on the one part, and stress constraints not accessible to strain gauging, on the other part. The mathematical formalism required for establishing constitutive equations is coherently developed from scratch and aided, albeit not subrogated, by intuition. The main intention goes to turning some of the recent advances in the nonlinear field theories of thermomechanics to practical account. A full success therein, obviously, results under the restriction to thermo-elasticity. In adverting to more particular subjects, the elementary static effects of nonlinear isotropic elasticity are pointed out. Due allowance is made for thermal effects likely to occur in heat conducting materials also beyond the isothermal or isentropic limit cases. Linearization of the constitutive equations for anisotropic thermo-elastic materials is then shown to entail the formulas of the classical theory. (orig./MM) [de

  14. Nonlinear Approaches in Engineering Applications

    CERN Document Server

    Jazar, Reza

    2012-01-01

    Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...

  15. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  16. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-01-01

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  17. Finite Element Model for Nonlinear Analysis of Reinforced Concrete Beams and Plane Frames

    Directory of Open Access Journals (Sweden)

    R.S.B. STRAMANDINOLI

    Full Text Available Abstract In this work, a two-dimensional finite element (FE model for physical and geometric nonlinear analysis of reinforced concrete beams and plane frames, developed by the authors, is presented. The FE model is based on the Euler-Bernoulli Beam Theory, in which shear deformations are neglected. The bar elements have three nodes with a total of seven degrees of freedom. Three Gauss-points are utilized for the element integration, with the element section discretized into layers at each Gauss point (Fiber Model. It is assumed that concrete and reinforcing bars are perfectly bonded, and each section layer is assumed to be under a uniaxial stress-state. Nonlinear constitutive laws are utilized for both concrete and reinforcing steel layers, and a refined tension-stiffening model, developed by the authors, is included. The Total Lagrangean Formulation is adopted for geometric nonlinear consideration and several methods can be utilized to achieve equilibrium convergence of the nonlinear equations. The developed model is implemented into a computer program named ANEST/CA, which is validated by comparison with some tests on RC beams and plane frames, showing an excellent correlation between numerical and experimental results.

  18. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Science.gov (United States)

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  19. Seismic evaluation of a large nuclear pump bearing using non-linear dynamic analysis

    International Nuclear Information System (INIS)

    Huber, K.A.; Hugins, M.S.

    1983-01-01

    Hydrostatic bearings of a large vertical pump using sodium as the lubricant were critically examined to determine their ability to withstand seismic loads. Initial linear dynamics analyses predicted journal displacements to exceed bearing clearance by a ratio of 3:1. Equivalent time-history excitations were then developed from the response spectra to determine the number, magnitude, and duration of the bearing impact loads. Predicted loads were further reduced by 50% by modeling non-linear bearing characteristics normally present but not generally included in conventional linear analyses. Results are presented of the comprehensive design evaluation performed, based on these non-linear predictions, that assess stress, wear, and fatigue to demonstrate hydrostatic bearing integrity

  20. Nonlinear attenuation of S-waves and Love waves within ambient rock

    Science.gov (United States)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.