WorldWideScience

Sample records for nonribosomal peptide antibiotics

  1. Structural pattern matching of nonribosomal peptides

    Directory of Open Access Journals (Sweden)

    Leclère Valérie

    2009-03-01

    Full Text Available Abstract Background Nonribosomal peptides (NRPs, bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents. NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The NORINE database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database. Results We developed an efficient method that allows for a quick search for a structural pattern in the NORINE database. The method identifies all peptides containing a pattern substructure of a given size. This amounts to solving a variant of the maximum common subgraph problem on pattern and peptide graphs, which is done by computing cliques in an appropriate compatibility graph. Conclusion The method has been incorporated into the NORINE database, available at http://bioinfo.lifl.fr/norine. Less than one second is needed to search for a pattern in the entire database.

  2. Nonribosomal biosynthesis of backbone-modified peptides

    Science.gov (United States)

    Niquille, David L.; Hansen, Douglas A.; Mori, Takahiro; Fercher, David; Kries, Hajo; Hilvert, Donald

    2018-03-01

    Biosynthetic modification of nonribosomal peptide backbones represents a potentially powerful strategy to modulate the structure and properties of an important class of therapeutics. Using a high-throughput assay for catalytic activity, we show here that an L-Phe-specific module of an archetypal nonribosomal peptide synthetase can be reprogrammed to accept and process the backbone-modified amino acid (S)-β-Phe with near-native specificity and efficiency. A co-crystal structure with a non-hydrolysable aminoacyl-AMP analogue reveals the origins of the 40,000-fold α/β-specificity switch, illuminating subtle but precise remodelling of the active site. When the engineered catalyst was paired with downstream module(s), (S)-β-Phe-containing peptides were produced at preparative scale in vitro (~1 mmol) and high titres in vivo (~100 mg l-1), highlighting the potential of biosynthetic pathway engineering for the construction of novel nonribosomal β-frameworks.

  3. The Insect Pathogen Serratia marcescens Db10 Uses a Hybrid Non-Ribosomal Peptide Synthetase-Polyketide Synthase to Produce the Antibiotic Althiomycin

    Science.gov (United States)

    Challis, Gregory L.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.

    2012-01-01

    There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1–alb6. Bioinformatic analysis of the proteins encoded by alb1–6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line (Alb4/5/6), tailoring enzymes (Alb2/3) and an export/resistance protein (Alb1), and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2–Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism. PMID:23028578

  4. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases

    DEFF Research Database (Denmark)

    Knudsen, Michael; Søndergaard, Dan Ariel; Tofting-Olesen, Claus

    2016-01-01

    Motivation: By using a class of large modular enzymes known as Non-Ribosomal Peptide Synthetases (NRPS), bacteria and fungi are capable of synthesizing a large variety of secondary metabolites, many of which are bioactive and have potential, pharmaceutical applications as e.g.~antibiotics. There ...

  5. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria

    NARCIS (Netherlands)

    Chevrette, Marc G.; Aicheler, Fabian; Kohlbacher, Oliver; Currie, Cameron R.; Medema, M.H.

    2017-01-01

    Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables

  6. Structural basis of nonribosomal peptide macrocyclization in fungi.

    Science.gov (United States)

    Zhang, Jinru; Liu, Nicholas; Cacho, Ralph A; Gong, Zhou; Liu, Zhu; Qin, Wenming; Tang, Chun; Tang, Yi; Zhou, Jiahai

    2016-12-01

    Nonribosomal peptide synthetases (NRPSs) in fungi biosynthesize important pharmaceutical compounds, including penicillin, cyclosporine and echinocandin. To understand the fungal strategy of forging the macrocyclic peptide linkage, we determined the crystal structures of the terminal condensation-like (C T ) domain and the holo thiolation (T)-C T complex of Penicillium aethiopicum TqaA. The first, to our knowledge, structural depiction of the terminal module in a fungal NRPS provides a molecular blueprint for generating new macrocyclic peptide natural products.

  7. Bioinformatics Tools for the Discovery of New Nonribosomal Peptides

    DEFF Research Database (Denmark)

    Leclère, Valérie; Weber, Tilmann; Jacques, Philippe

    2016-01-01

    -dimensional structure of the peptides can be compared with the structural patterns of all known NRPs. The presented workflow leads to an efficient and rapid screening of genomic data generated by high throughput technologies. The exploration of such sequenced genomes may lead to the discovery of new drugs (i......This chapter helps in the use of bioinformatics tools relevant to the discovery of new nonribosomal peptides (NRPs) produced by microorganisms. The strategy described can be applied to draft or fully assembled genome sequences. It relies on the identification of the synthetase genes...... and the deciphering of the domain architecture of the nonribosomal peptide synthetases (NRPSs). In the next step, candidate peptides synthesized by these NRPSs are predicted in silico, considering the specificity of incorporated monomers together with their isomery. To assess their novelty, the two...

  8. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Shivankar Agrawal

    2017-11-01

    Full Text Available Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs. Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.

  9. De novo design and engineering of non-ribosomal peptide synthetases

    Science.gov (United States)

    Bozhüyük, Kenan A. J.; Fleischhacker, Florian; Linck, Annabell; Wesche, Frank; Tietze, Andreas; Niesert, Claus-Peter; Bode, Helge B.

    2018-03-01

    Peptides derived from non-ribosomal peptide synthetases (NRPSs) represent an important class of pharmaceutically relevant drugs. Methods to generate novel non-ribosomal peptides or to modify peptide natural products in an easy and predictable way are therefore of great interest. However, although the overall modular structure of NRPSs suggests the possibility of adjusting domain specificity and selectivity, only a few examples have been reported and these usually show a severe drop in production titre. Here we report a new strategy for the modification of NRPSs that uses defined exchange units (XUs) and not modules as functional units. XUs are fused at specific positions that connect the condensation and adenylation domains and respect the original specificity of the downstream module to enable the production of the desired peptides. We also present the use of internal condensation domains as an alternative to other peptide-chain-releasing domains for the production of cyclic peptides.

  10. Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus

    DEFF Research Database (Denmark)

    O'Hanlon, Karen A.; Gallagher, Lorna; Schrettl, Markus

    2012-01-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end produc...

  11. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...... are often organized in enzyme complexes. In these complexes, partner NRPSs interact via communication-mediating domains (COM domains). In order to test whether functional interaction between separate NRPS modules is possible in yeast we constructed a yeast strain expressing two modules with compatible COM...

  12. Structure Elucidation and Activity of Kolossin A, the D-/L-Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase.

    Science.gov (United States)

    Bode, Helge B; Brachmann, Alexander O; Jadhav, Kirtikumar B; Seyfarth, Lydia; Dauth, Christina; Fuchs, Sebastian W; Kaiser, Marcel; Waterfield, Nick R; Sack, Holger; Heinemann, Stefan H; Arndt, Hans-Dieter

    2015-08-24

    The largest continuous bacterial nonribosomal peptide synthetase discovered so far is described. It consists of 15 consecutive modules arising from an uninterrupted, fully functional gene in the entomopathogenic bacterium Photorhabdus luminescens. The identification of its cryptic biosynthesis product was achieved by using a combination of genome analysis, promoter exchange, isotopic labeling experiments, and total synthesis of a focused collection of peptide candidates. Although it belongs to the growing class of D-/ L-peptide natural products, the encoded metabolite kolossin A was found to be largely devoid of antibiotic activity and is likely involved in interspecies communication. A stereoisomer of this peculiar natural product displayed high activity against Trypanosoma brucei rhodesiense, a recalcitrant parasite that causes the deadly disease African sleeping sickness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra

    Czech Academy of Sciences Publication Activity Database

    Novák, Jiří; Lemr, Karel; Schug, K. A.; Havlíček, Vladimír

    2015-01-01

    Roč. 26, č. 10 (2015), s. 1780-1786 ISSN 1044-0305 R&D Projects: GA ČR(CZ) GAP206/12/1150 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : De novo sequencing * Nonribosomal peptides * Linear Subject RIV: CE - Biochemistry Impact factor: 3.031, year: 2015

  14. A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria

    Science.gov (United States)

    Actinobacteria such as streptomycetes are renowned for their ability to produce bioactive natural products including nonribosomal peptides (NRPs) and polyketides (PKs). The advent of genome sequencing has revealed an even larger genetic repertoire for secondary metabolism with most of the small mole...

  15. Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases

    Science.gov (United States)

    Liu, Ye; Zheng, Tengfei; Bruner, Steven D.

    2011-01-01

    Summary Phosphopantetheine-modified carrier domains play a central role in the template-directed, biosynthesis of several classes of primary and secondary metabolites. Fatty acids, polyketides and nonribosomal peptides are constructed on multidomain enzyme assemblies using phosphopantetheinyl thioester-linked carrier domains to traffic and activate building blocks. The carrier domain is a dynamic component of the process, shuttling pathway intermediates to sequential enzyme active sites. Here we report an approach to structurally fix carrier domain/enzyme constructs suitable for X-ray crystallographic analysis. The structure of a two-domain construct of E. coli EntF was determined with a conjugated phosphopantetheinyl-based inhibitor. The didomain structure is locked in an active orientation relevant to the chemistry of nonribosomal peptide biosynthesis. This structure provides details into the interaction of phosphopantetheine arm with the carrier domain and the active site of the thioesterase domain. PMID:22118682

  16. Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery.

    Directory of Open Access Journals (Sweden)

    Thibault Caradec

    Full Text Available Nonribosomal peptides represent a large variety of natural active compounds produced by microorganisms. Due to their specific biosynthesis pathway through large assembly lines called NonRibosomal Peptide Synthetases (NRPSs, they often display complex structures with cycles and branches. Moreover they often contain non proteogenic or modified monomers, such as the D-monomers produced by epimerization. We investigate here some sequence specificities of the condensation (C and epimerization (E domains of NRPS that can be used to predict the possible isomeric state (D or L of each monomer in a putative peptide. We show that C- and E- domains can be divided into 2 sub-regions called Up-Seq and Down-Seq. The Up-Seq region corresponds to an InterPro domain (IPR001242 and is shared by C- and E-domains. The Down-Seq region is specific to the enzymatic activity of the domain. Amino-acid signatures (represented as sequence logos previously described for complete C-and E-domains have been restricted to the Down-Seq region and amplified thanks to additional sequences. Moreover a new Down-Seq signature has been found for Ct-domains found in fungi and responsible for terminal cyclization of the peptides. The identification of these signatures has been included in a workflow named Florine, aimed to predict nonribosomal peptides from NRPS sequence analyses. In some cases, the prediction of isomery is guided by genus-specific rules. Florine was used on a Pseudomonas genome to allow the determination of the type of pyoverdin produced, the update of syringafactin structure and the identification of novel putative products.

  17. A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus.

    Science.gov (United States)

    Reeves, Emer P; Reiber, Kathrin; Neville, Claire; Scheibner, Olaf; Kavanagh, Kevin; Doyle, Sean

    2006-07-01

    Aspergillus fumigatus is an important human fungal pathogen. The Aspergillus fumigatus genome contains 14 nonribosomal peptide synthetase genes, potentially responsible for generating metabolites that contribute to organismal virulence. Differential expression of the nonribosomal peptide synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed. The pattern of pes1 expression differed from that of a putative siderophore synthetase gene, sidD, and so is unlikely to be involved in iron acquisition. The Pes1 protein (expected molecular mass 698 kDa) was partially purified and identified by immunoreactivity, peptide mass fingerprinting (36% sequence coverage) and MALDI LIFT-TOF/TOF MS (four internal peptides sequenced). A pes1 disruption mutant (delta pes1) of Aspergillus fumigatus strain 293.1 was generated and confirmed by Southern and western analysis, in addition to RT-PCR. The delta pes1 mutant also showed significantly reduced virulence in the Galleria mellonella model system (P < 0.001) and increased sensitivity to oxidative stress (P = 0.002) in culture and during neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered conidial surface morphology and hydrophilicity, compared to Aspergillus fumigatus 293.1. It is concluded that pes1 contributes to improved fungal tolerance against oxidative stress, mediated by the conidial phenotype, during the infection process.

  18. A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

    Science.gov (United States)

    Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean

    2005-04-01

    Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.

  19. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay.

    Science.gov (United States)

    Duckworth, Benjamin P; Wilson, Daniel J; Aldrich, Courtney C

    2016-01-01

    Adenylation is a crucial enzymatic process in the biosynthesis of nonribosomal peptide synthetase (NRPS) derived natural products. Adenylation domains are considered the gatekeepers of NRPSs since they select, activate, and load the carboxylic acid substrate onto a downstream peptidyl carrier protein (PCP) domain of the NRPS. We describe a coupled continuous kinetic assay for NRPS adenylation domains that substitutes the PCP domain with hydroxylamine as the acceptor molecule. The pyrophosphate released from the first-half reaction is then measured using a two-enzyme coupling system, which detects conversion of the chromogenic substrate 7-methylthioguanosine (MesG) to 7-methylthioguanine. From profiling substrate specificity of unknown or engineered adenylation domains to studying chemical inhibition of adenylating enzymes, this robust assay will be of widespread utility in the broad field NRPS enzymology.

  20. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria.

    Science.gov (United States)

    Chevrette, Marc G; Aicheler, Fabian; Kohlbacher, Oliver; Currie, Cameron R; Medema, Marnix H

    2017-10-15

    Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables prioritization and dereplication, and integration with other data types in discovery efforts. However, insufficient training data and a lack of clarity regarding prediction quality have impeded optimal use. Here, we introduce prediCAT, a new phylogenetics-inspired algorithm, which quantitatively estimates the degree of predictability of each A-domain. We then systematically benchmarked all algorithms on a newly gathered, independent test set of 434 A-domain sequences, showing that active-site-motif-based algorithms outperform whole-domain-based methods. Subsequently, we developed SANDPUMA, a powerful ensemble algorithm, based on newly trained versions of all high-performing algorithms, which significantly outperforms individual methods. Finally, we deployed SANDPUMA in a systematic investigation of 7635 Actinobacteria genomes, suggesting that NRP chemical diversity is much higher than previously estimated. SANDPUMA has been integrated into the widely used antiSMASH biosynthetic gene cluster analysis pipeline and is also available as an open-source, standalone tool. SANDPUMA is freely available at https://bitbucket.org/chevrm/sandpuma and as a docker image at https://hub.docker.com/r/chevrm/sandpuma/ under the GNU Public License 3 (GPL3). chevrette@wisc.edu or marnix.medema@wur.nl. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  2. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants

    Directory of Open Access Journals (Sweden)

    Niran Roongsawang

    2010-12-01

    Full Text Available Lipopeptide biosurfactants (LPBSs consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive and Pseudomonas (Gram-negative have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs. Production of active‑form NRPSs requires not only transcriptional induction and translation but also post‑translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.

  3. Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes.

    Science.gov (United States)

    Herbst, Dominik A; Boll, Björn; Zocher, Georg; Stehle, Thilo; Heide, Lutz

    2013-01-18

    The biosynthesis of nonribosomally formed peptides (NRPs), which include important antibiotics such as vancomycin, requires the activation of amino acids through adenylate formation. The biosynthetic gene clusters of NRPs frequently contain genes for small, so-called MbtH-like proteins. Recently, it was discovered that these MbtH-like proteins are required for some of the adenylation reactions in NRP biosynthesis, but the mechanism of their interaction with the adenylating enzymes has remained unknown. In this study, we determined the structure of SlgN1, a 3-methylaspartate-adenylating enzyme involved in the biosynthesis of the hybrid polyketide/NRP antibiotic streptolydigin. SlgN1 contains an MbtH-like domain at its N terminus, and our analysis defines the parameters required for an interaction between MbtH-like domains and an adenylating enzyme. Highly conserved tryptophan residues of the MbtH-like domain critically contribute to this interaction. Trp-25 and Trp-35 form a cleft on the surface of the MbtH-like domain, which accommodates the alanine side chain of Ala-433 of the adenylating domain. Mutation of Ala-433 to glutamate abolished the activity of SlgN1. Mutation of Ser-23 of the MbtH-like domain to tyrosine resulted in strongly reduced activity. However, the activity of this S23Y mutant could be completely restored by addition of the intact MbtH-like protein CloY from another organism. This suggests that the interface found in the structure of SlgN1 is the genuine interface between MbtH-like proteins and adenylating enzymes.

  4. Bioactivities by a crude extract from the Greenlandic Pseudomonas sp. In5 involves the nonribosomal peptides, nunamycin and nunapeptin

    DEFF Research Database (Denmark)

    Frydenlund Michelsen, Charlotte; Jensen, Helle; Venditto, Vincent J.

    2015-01-01

    Bioactive microbial metabolites provide a successful source of novel compounds with pharmaceutical potentials. The bacterium Pseudomonas sp. In5 is a biocontrol strain isolated from a plant disease suppressive soil in Greenland, which produces two antimicrobial nonribosomal peptides (NRPs), nunap......), nunapeptin and nunamycin. In this study, we used in vitro antimicrobial and anticancer bioassays to evaluate the potential bioactivities of both a crude extract derived from Pseudomonas sp. In5 and NRPs purified from the crude extract....

  5. Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1.

    Science.gov (United States)

    Sharma, Richa; Singh, Varun P; Singh, Deepika; Yusuf, Farnaz; Kumar, Anil; Vishwakarma, Ram A; Chaubey, Asha

    2016-11-01

    Trichoderma is an anamorphic filamentous fungal genus with immense potential for production of small valuable secondary metabolites with indispensable biological activities. Microbial dynamics of a psychrotrophic strain Trichoderma velutinum ACR-P1, isolated from unexplored niches of the Shiwalik region, bestowed with rich biodiversity of microflora, was investigated for production of nonribosomal peptides (NRPs) by metabolite profiling by intact-cell mass spectrometry (ICMS) employing matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometer. Being the first report on NRPs production by T. velutinum, studies on optimization of growth conditions by Response Surface Methodology (RSM) for production of NRPs by ACR-P1 was carried out strategically. Multifold enhancement in the yield of NRPs belonging to subfamily SF4 with medium chain of amino acid residues having m/z 1437.9, 1453.9, and 1452.0 at pH 5.9 at 20 °C and of subfamily SF1 with long-chain amino acid residues having m/z 1770.2, 1784.2, 1800.1, 1802.1, and 1815.1 was achieved at pH 7.0 at 25 °C. Complexities of natural mixtures were thus considerably reduced under respective optimized culture conditions accelerating the production of novel microbial natural products by saving time and resources.

  6. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Directory of Open Access Journals (Sweden)

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  7. The expression of selected non-ribosomal peptide synthetases in Aspergillus fumigatus is controlled by the availability of free iron.

    Science.gov (United States)

    Reiber, Kathrin; Reeves, Emer P; Neville, Claire M; Winkler, Robert; Gebhardt, Peter; Kavanagh, Kevin; Doyle, Sean

    2005-07-01

    Three non-ribosomal peptide synthetase genes, termed sidD, sidC and sidE, have been identified in Aspergillus fumigatus. Gene expression analysis by RT-PCR confirms that expression of both sidD and C was reduced by up to 90% under iron-replete conditions indicative of a likely role in siderophore biosynthesis. SidE expression was less sensitive to iron levels. In addition, two proteins purified from mycelia grown under iron-limiting conditions corresponded to SidD ( approximately 200 kDa) and SidC (496 kDa) as determined by MALDI ToF peptide mass fingerprinting and MALDI LIFT-ToF/ToF. Siderophore synthetases are unique in bacteria and fungi and represent an attractive target for antimicrobial chemotherapy.

  8. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes

    Czech Academy of Sciences Publication Activity Database

    Bakal, Tomáš; Goo, K.-S.; Najmanová, Lucie; Plháčková, Kamila; Kadlčík, Stanislav; Ulanová, Dana

    2015-01-01

    Roč. 108, č. 5 (2015), s. 1267-1274 ISSN 0003-6072 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Nonribosomal peptide synthetase * Adenylation domain * Actinomycetes Subject RIV: EE - Microbiology, Virology Impact factor: 1.944, year: 2015

  9. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus......Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment......, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter). As a consequence of widespread multi-drug resistance, researchers have sought for alternative sources of antimicrobials. Antimicrobial peptides are produced by almost all living organisms as part of their defense or innate immune...

  10. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Science.gov (United States)

    Amoutzias, Grigoris D.; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-01-01

    Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds. PMID:27092515

  11. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  12. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M. (UMM); (HWMRI)

    2016-09-05

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.

  13. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    Science.gov (United States)

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Sundlov, Jesse A.; Gulick, Andrew M., E-mail: gulick@hwi.buffalo.edu [University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States)

    2013-08-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  15. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    International Nuclear Information System (INIS)

    Sundlov, Jesse A.; Gulick, Andrew M.

    2013-01-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described

  16. How Nature Morphs Peptide Scaffolds into Antibiotics

    Science.gov (United States)

    Nolan, Elizabeth M.; Walsh, Christopher T.

    2010-01-01

    The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens. PMID:19058272

  17. Inactivation of the Major Hemolysin Gene Influences Expression of the Nonribosomal Peptide Synthetase Gene swrA in the Insect Pathogen Serratia sp. Strain SCBI.

    Science.gov (United States)

    Petersen, Lauren M; LaCourse, Kaitlyn; Schöner, Tim A; Bode, Helge; Tisa, Louis S

    2017-11-01

    Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens The role of the major hemolysin gene in the insect pathogen Serratia sp. strain SCBI was investigated using both forward and reverse-genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in a loss of hemolysis but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility and increased antimicrobial activity. Reverse transcription-quantitative PCR (qRT-PCR) analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA , which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly varied antibiotic activity, motility, virulence, and hemolysis phenotypes that were dependent on the site of disruption within this 17.75-kb gene. When introduced into E. coli , swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences the expression of swrA , these results suggest that swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI. IMPORTANCE The opportunistic Gram-negative bacteria of the genus Serratia are widespread in the environment and can cause human illness. A comparative genomics analysis between Serratia marcescens and a new Serratia species from South Africa, termed Serratia sp. strain SCBI, shows that these two organisms are closely related but differ in pathogenesis. S. marcescens kills Caenorhabditis nematodes, while Serratia sp. SCBI is not harmful and forms a beneficial association with them. This distinction presented the opportunity to investigate potential differences

  18. Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species.

    Science.gov (United States)

    Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Takahashi-Nakaguchi, Azusa; Matsuzawa, Tetsuhiro; Suzuki, Ken-ichiro; Fujita, Nobuyuki; Gonoi, Tohru

    2014-04-30

    Actinobacteria of the genus Nocardia usually live in soil or water and play saprophytic roles, but they also opportunistically infect the respiratory system, skin, and other organs of humans and animals. Primarily because of the clinical importance of the strains, some Nocardia genomes have been sequenced, and genome sequences have accumulated. Genome sizes of Nocardia strains are similar to those of Streptomyces strains, the producers of most antibiotics. In the present work, we compared secondary metabolite biosynthesis gene clusters of type-I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) among genomes of representative Nocardia species/strains based on domain organization and amino acid sequence homology. Draft genome sequences of Nocardia asteroides NBRC 15531(T), Nocardia otitidiscaviarum IFM 11049, Nocardia brasiliensis NBRC 14402(T), and N. brasiliensis IFM 10847 were read and compared with published complete genome sequences of Nocardia farcinica IFM 10152, Nocardia cyriacigeorgica GUH-2, and N. brasiliensis HUJEG-1. Genome sizes are as follows: N. farcinica, 6.0 Mb; N. cyriacigeorgica, 6.2 Mb; N. asteroides, 7.0 Mb; N. otitidiscaviarum, 7.8 Mb; and N. brasiliensis, 8.9 - 9.4 Mb. Predicted numbers of PKS-I, NRPS, and PKS-I/NRPS hybrid clusters ranged between 4-11, 7-13, and 1-6, respectively, depending on strains, and tended to increase with increasing genome size. Domain and module structures of representative or unique clusters are discussed in the text. We conclude the following: 1) genomes of Nocardia strains carry as many PKS-I and NRPS gene clusters as those of Streptomyces strains, 2) the number of PKS-I and NRPS gene clusters in Nocardia strains varies substantially depending on species, and N. brasiliensis strains carry the largest numbers of clusters among the species studied, 3) the seven Nocardia strains studied in the present work have seven common PKS-I and/or NRPS clusters, some of whose products are yet to be studied

  19. Publisher Correction: Resistance to nonribosomal peptide antibiotics mediated by D-stereospecific peptidases.

    Science.gov (United States)

    Li, Yong-Xin; Zhong, Zheng; Hou, Peng; Zhang, Wei-Peng; Qian, Pei-Yuan

    2018-03-07

    In the version of this article originally published, the links and files for the Supplementary Information, including Supplementary Tables 1-5, Supplementary Figures 1-25, Supplementary Note, Supplementary Datasets 1-4 and the Life Sciences Reporting Summary, were missing in the HTML. The error has been corrected in the HTML version of this article.

  20. An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens

    Czech Academy of Sciences Publication Activity Database

    Juguet, M.; Lautru, S.; Francou, F.-X.; Nezbedová, Šárka; Leblond, P.; Gondry, M.; Pernodet, J. L.

    2009-01-01

    Roč. 16, č. 4 (2009), s. 421-431 ISSN 1074-5521 Institutional research plan: CEZ:AV0Z50200510 Keywords : ADENYLATION DOMAINS * ESCHERICHIA-COLI * FUNCTIONAL-ANALYSIS Subject RIV: CE - Biochemistry Impact factor: 6.523, year: 2009

  1. Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus.

    Science.gov (United States)

    Sun, Wei-Wen; Guo, Chun-Jun; Wang, Clay C C

    2016-04-01

    Genome sequencing of the fungus Aspergillus terreus uncovered a number of silent core structural biosynthetic genes encoding enzymes presumed to be involved in the production of cryptic secondary metabolites. There are five nonribosomal peptide synthetase (NRPS)-like genes with the predicted A-T-TE domain architecture within the A. terreus genome. Among the five genes, only the product of pgnA remains unknown. The Tet-on system is an inducible, tunable and metabolism-independent expression system originally developed for Aspergillus niger. Here we report the adoption of the Tet-on system as an effective gene activation tool in A. terreus. Application of this system in A. terreus allowed us to uncover the product of the cryptic NRPS-like gene, pgnA. Furthermore expression of pgnA in the heterologous Aspergillus nidulans host suggested that the pgnA gene alone is necessary for phenguignardic acid (1) biosynthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. An Sfp-type PPTase and associated polyketide and nonribosomal peptide synthases in Agrobacterium vitis are essential for induction of tobacco hypersensitive response and grape necrosis.

    Science.gov (United States)

    Zheng, Desen; Burr, Thomas J

    2013-07-01

    An Sfp-type phosphopantetheinyl transferase (PPTase) encoding gene F-avi5813 in Agrobacterium vitis F2/5 was found to be required for the induction of a tobacco hypersensitive response (HR) and grape necrosis. Sfp-type PPTases are post-translation modification enzymes that activate acyl-carry protein (ACP) domains in polyketide synthases (PKS) and peptidyl-carrier protein (PCP) domains of nonribosomal peptide synthases (NRPS). Mutagenesis of PKS and NRPS genes in A. vitis led to the identification of a PKS gene (F-avi4330) and NRPS gene (F-avi3342) that are both required for HR and necrosis. The gene immediately downstream of F-avi4330 (F-avi4329) encoding a predicted aminotransferase was also found to be required for HR and necrosis. Regulation of F-avi4330 and F-avi3342 by quorum-sensing genes avhR, aviR, and avsR and by a lysR-type regulator, lhnR, was investigated. It was determined that F-avi4330 expression is positively regulated by avhR, aviR, and lhnR and negatively regulated by avsR. F-avi3342 was found to be positively regulated by avhR, aviR, and avsR and negatively regulated by lhnR. Our results suggest that a putative hybrid peptide-polyketide metabolite synthesized by F-avi4330 and F-avi3342 is associated with induction of tobacco HR and grape necrosis. This is the first report that demonstrates that NRPS and PKS play essential roles in conferring the unique ability of A. vitis to elicit a non-host-specific HR and host-specific necrosis.

  3. Inhibition of Grape Crown Gall by Agrobacterium vitis F2/5 Requires Two Nonribosomal Peptide Synthetases and One Polyketide Synthase.

    Science.gov (United States)

    Zheng, Desen; Burr, Thomas J

    2016-02-01

    Agrobacterium vitis nontumorigenic strain F2/5 is able to inhibit crown gall disease on grapevines. The mechanism of grape tumor inhibition (GTI) by F2/5 has not been fully determined. In this study, we demonstrate that two nonribosomal peptide synthetase (NRPS) genes (F-avi3342 and F-avi5730) and one polyketide synthase gene (F-avi4330) are required for GTI. Knockout of any one of them resulted in F/25 losing GTI capacity. We previously reported that F-avi3342 and F-avi4330 but not F-avi5730 are required for induction of grape tissue necrosis and tobacco hypersensitive response. F-avi5730 is predicted to encode a single modular NRPS. It is located in a cluster that is homologous to the siderophore vicibactin biosynthesis locus in Rhizobium species. Individual disruption of F-avi5730 and two immediate downstream genes, F-avi5731 and F-avi5732, all resulted in reduced siderophore production; however, only F-avi5730 was found to be required for GTI. Complemented F-avi5730 mutant (ΔF-avi5730(+)) restored a wild-type level of GTI activity. It was determined that, over time, populations of ΔF-avi4330, ΔF-avi3342, and ΔF-avi5730 at inoculated wound sites on grapevine did not differ from those of ΔF-avi5730(+) indicating that loss of GTI was not due to reduced colonization of wound sites by mutants.

  4. Are antimicrobial peptides an alternative for conventional antibiotics?

    International Nuclear Information System (INIS)

    Kamysz, W.

    2005-01-01

    Antimicrobial peptides are widespread in living organisms and constitute an important component of innate immunity to microbial infections. By the early 1980' s , more than 800 different antimicrobial peptides had been isolated from mammals, amphibians, fish, insects, plants and bacterial species. In humans, they are produced by granulocytes, macrophages and most epithelial and endothelial cells. Newly discovered antibiotics have antibacterial, antifungal, antiviral and even antiprotozoal activity. Occasionally, a single antibiotic may have a very wide spectrum of activity and may show activity towards various kinds of microorganisms. Although antimicrobial activity is the most typical function of peptides, they are also characterized by numerous other properties. They stimulate the immune system, have anti-neoplastic properties and participate in cell signalling and proliferation regulation. As antimicrobial peptides from higher eukaryotes differ structurally from conventional antibiotics produced by bacteria and fungi, they offer novel templates for pharmaceutical compounds, which could be used effectively against the increasing number of resistant microbes. (author)

  5. Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin.

    Science.gov (United States)

    Palomo, Sara; González, Ignacio; de la Cruz, Mercedes; Martín, Jesús; Tormo, José Rubén; Anderson, Matthew; Hill, Russell T; Vicente, Francisca; Reyes, Fernando; Genilloud, Olga

    2013-03-28

    Forty four marine actinomycetes of the family Microccocaceae isolated from sponges collected primarily in Florida Keys (USA) were selected from our strain collection to be studied as new sources for the production of bioactive natural products. A 16S rRNA gene based phylogenetic analysis showed that the strains are members of the genera Kocuria and Micrococcus. To assess their biosynthetic potential, the strains were PCR screened for the presence of secondary metabolite genes encoding nonribosomal synthetase (NRPS) and polyketide synthases (PKS). A small extract collection of 528 crude extracts generated from nutritional microfermentation arrays was tested for the production of bioactive secondary metabolites against clinically relevant strains (Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and Candida albicans). Three independent isolates were shown to produce a new anti-MRSA bioactive compound that was identified as kocurin, a new member of the thiazolyl peptide family of antibiotics emphasizing the role of this family as a prolific resource for novel drugs.

  6. Non-ribosomal peptide synthetases

    Indian Academy of Sciences (India)

    2017-01-19

    Jan 19, 2017 ... knowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic ..... The predictive power of the bioinformatics sequence analy- .... identified these motifs manually, though NaPDoS, anti-.

  7. Invited Lecture: From Host Defence Peptides to New Antibiotics

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    Antimicrobial peptides hold promise as the next generation of antimicrobial agents. However, the potential is weakened by their susceptibility to proteolytic degradation, poor bioavailabillity , toxicity and high cost. Our research interest is in determining the structure/activity relationships o...... the elucidation of their structure/activity relationships, and our efforts towards developing them into antibiotics....

  8. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  9. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum.

    Directory of Open Access Journals (Sweden)

    Jan Mareš

    Full Text Available A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea. Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides.

  10. Glycopeptide antibiotic biosynthesis.

    Science.gov (United States)

    Yim, Grace; Thaker, Maulik N; Koteva, Kalinka; Wright, Gerard

    2014-01-01

    Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.

  11. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics

    Directory of Open Access Journals (Sweden)

    Wataru Aoki

    2013-08-01

    Full Text Available Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety.

  12. The old is new again: asparagine oxidation in calcium-dependent antibiotic biosynthesis.

    Science.gov (United States)

    Worthington, Andrew S; Burkart, Michael D

    2007-03-20

    Non-ribosomal peptides are built from both proteinogenic and non-proteinogenic amino acids. The latter resemble amino acids but contain modifications not found in proteins. The recent characterization of a non-heme Fe(2+) and alpha-ketoglutarate-dependent oxygenase that stereospecifically generates beta-hydroxyasparagine, an unnatural amino acid building block for the biosynthesis of calcium-dependent antibiotic, a lipopeptide antibiotic. This work improves our understanding of how these non-proteinogenic amino acids are synthesized.

  13. Antibiotic and synergistic effect of Leu-Lys rich peptide against antibiotic resistant microorganisms isolated from patients with cholelithiasis.

    Science.gov (United States)

    Jeong, Nari; Kim, Jin-Young; Park, Seong-Cheol; Lee, Jong-Kook; Gopal, Ramamourthy; Yoo, Suyeon; Son, Byoung Kwan; Hahm, Joon Soo; Park, Yoonkyung; Hahm, Kyung-Soo

    2010-09-03

    Pseudomonas aeruginosa has eventually developed resistance against flomoxef sodium, isepamicin and cefpiramide. Therefore, in this study, the antibacterial activity and synergistic effects of the amphipathic-derived P5-18mer antimicrobial peptide were tested against pathogens associated with cholelithiasis that have developed resistance against commonly used antibiotics. The results were then compared with the activities of the amphipathic-derived peptide, P5-18mer, melittin and common antibiotics. Growth inhibition of planktonic bacteria was tested using the National Committee for Clinical Laboratory Standards (NCCLS). The bactericidal activity of the antimicrobial peptides was measured using time-kill curves. Synergistic effects were evaluated by testing the effects of P5-18mer alone and in combination with flomoxef sodium, isepamicin or cefpiramide at 0.5xMIC. P5-18mer peptide displayed strong activity against pathogens and flomoxef sodium, isepamicin and cefpiramide-resistant bacteria cell lines obtained from a patient with gallstones; however, it did not exert cytotoxicity against the human keratinocyte HaCat cell line. In addition, the results of time-kill curves indicated that P5-18mer peptide exerted bactericidal activity against four strains of P. aeruginosa. Finally, the use of P5-18mer and antibiotics exerted synergistic effects against cell lines that were resistant to commonly used antibiotics. These results indicate that this class of peptides has a rapid microbicidal effect on flomoxef sodium, isepamicin and cefpiramide-resistant strains of P. aeruginosa. Therefore, these peptides may be used as a lead drug for the treatment of acquired pathogens from patients with cholelithiasis who are affected with antibiotic-resistant bacteria. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Nonribosomal peptide synthesis in Bacillus subtilis

    NARCIS (Netherlands)

    Duitman, Erwin Hans

    2003-01-01

    Numerous microorganisms, both prokaryotes and eukaryotes, have developed various strategies, which enable them to adapt and survive the often adverse circumstances present in their natural environment ... Zie: Summary and general conclusions

  15. Improving the representation of peptide-like inhibitor and antibiotic molecules in the Protein Data Bank.

    Science.gov (United States)

    Dutta, Shuchismita; Dimitropoulos, Dimitris; Feng, Zukang; Persikova, Irina; Sen, Sanchayita; Shao, Chenghua; Westbrook, John; Young, Jasmine; Zhuravleva, Marina A; Kleywegt, Gerard J; Berman, Helen M

    2014-06-01

    With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide-like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide-like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single-component molecules, their peptide-like composition was captured in a new representation, called the subcomponent sequence. A novel concept called "group" was developed for representing complex peptide-like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide-like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide-like inhibitors and antibiotics accurately and consistently. © 2013 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  16. Peptide antibiotics: discovery, modes of action, and applications

    National Research Council Canada - National Science Library

    Dutton, Christopher J

    2002-01-01

    ... and the application of biotechnology to many aspects of their development. While the origins of the peptides covered in this book are diverse, common themes can be readily identified. Peptides originally found in frogs and insects are now produced by bacterial fermentation, and site-directed mutagenesis has been brought to bear to produce novel ...

  17. Cloning and heterologous expression of the antibiotic peptide (ABP) genes from Rhizopus oligosporus NBRC 8631.

    Science.gov (United States)

    Yamada, Osamu; Sakamoto, Kazutoshi; Tominaga, Mihoko; Nakayama, Tasuku; Koseki, Takuya; Fujita, Akiko; Akita, Osamu

    2005-03-01

    We carried out protein sequencing of purified Antibiotic Peptide (ABP), and cloned two genes encoding this peptide as abp1 and abp2, from Rhizopus oligosporus NBRC 8631. Both genes contain an almost identical 231-bp segment, with only 3 nucleotide substitutions, encoding a 77 amino acid peptide. The abp gene product comprises a 28 amino acid signal sequence and a 49 amino acid mature peptide. Northern blot analysis showed that at least one of the abp genes is transcribed in R. oligosporus NBRC 8631. A truncated form of abp1 encoding only the mature peptide was fused with the alpha-factor signal peptide and engineered for expression in Pichia pastoris SMD1168H. Culture broth of the recombinant Pichia displayed ABP activity against Bacillus subtilis NBRC 3335 after induction of heterologous gene expression. This result indicates that mature ABP formed the active structure without the aid of other factors from R. oligosporus, and was secreted.

  18. Ultrastructural changes in mollicutes induced by the peptide antibiotic herbicolin A

    DEFF Research Database (Denmark)

    Birkelund, Svend; Freundt, A; Christiansen, Gunna

    1986-01-01

    Electron microscopy of negatively stained mycoplasma, ureaplasma, and acholeplasma cells showed ultrastructural changes after 10 min of treatment of the organisms with the peptide antibiotic herbicolin A in concentrations ranging from 10 micrograms/ml for Mycoplasma capricolum to 600 micrograms....../ml for Ureaplasma urealyticum. The morphological changes were shown to be reversible at low concentrations of the antibiotic but irreversible at high concentrations....

  19. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs.

    Science.gov (United States)

    Cherkasov, Artem; Hilpert, Kai; Jenssen, Håvard; Fjell, Christopher D; Waldbrook, Matt; Mullaly, Sarah C; Volkmer, Rudolf; Hancock, Robert E W

    2009-01-16

    Increased multiple antibiotic resistance in the face of declining antibiotic discovery is one of society's most pressing health issues. Antimicrobial peptides represent a promising new class of antibiotics. Here we ask whether it is possible to make small broad spectrum peptides employing minimal assumptions, by capitalizing on accumulating chemical biology information. Using peptide array technology, two large random 9-amino-acid peptide libraries were iteratively created using the amino acid composition of the most active peptides. The resultant data was used together with Artificial Neural Networks, a powerful machine learning technique, to create quantitative in silico models of antibiotic activity. On the basis of random testing, these models proved remarkably effective in predicting the activity of 100,000 virtual peptides. The best peptides, representing the top quartile of predicted activities, were effective against a broad array of multidrug-resistant "Superbugs" with activities that were equal to or better than four highly used conventional antibiotics, more effective than the most advanced clinical candidate antimicrobial peptide, and protective against Staphylococcus aureus infections in animal models.

  20. Challenges and Future Prospects of Antibiotic Therapy: From Peptides to Phages Utilization

    Directory of Open Access Journals (Sweden)

    Santi M. Mandal

    2014-05-01

    Full Text Available Bacterial infections are raising serious concern across the globe. The effectiveness of conventional antibiotics is decreasing due to global emergence of multi-drug-resistant (MDR bacterial pathogens. This process seems to be primarily caused by an indiscriminate and inappropriate use of antibiotics in non-infected patients and in the food industry. New classes of antibiotics with different actions against MDR pathogens need to be developed urgently. In this context, this review focuses on several ways and future directions to search for the next generation of safe and effective antibiotics compounds including antimicrobial peptides, phage therapy, phytochemicals, metalloantibiotics, LPS and efflux pump inhibitors to control the infections caused by MDR pathogens.

  1. Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics.

    Science.gov (United States)

    Park, Je Won; Nam, Sang-Jip; Yoon, Yeo Joon

    2017-06-15

    Nature has a talent for inventing a vast number of natural products, including hybrids generated by blending different scaffolds, resulting in a myriad of bioactive chemical entities. Herein, we review the highlights and recent trends (2010-2016) in the combinatorial biosynthesis of sugar-containing antibiotics where nature's structural diversification capabilities are exploited to enable the creation of new anti-infective and anti-proliferative drugs. In this review, we describe the modern combinatorial biosynthetic approaches for polyketide synthase-derived complex and aromatic polyketides, non-ribosomal peptide synthetase-directed lipo-/glycopeptides, aminoglycosides, nucleoside antibiotics, and alkaloids, along with their therapeutic potential. Finally, we present the feasible nexus between combinatorial biosynthesis, systems biology, and synthetic biology as a toolbox to provide new antibiotics that will be indispensable in the post-antibiotic era. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Trojan-Horse Peptide-Carboxymethyl-Cytidine Antibiotic from Bacillus amyloliquefaciens.

    Science.gov (United States)

    Serebryakova, Marina; Tsibulskaya, Darya; Mokina, Olga; Kulikovsky, Alexey; Nautiyal, Manesh; Van Aerschot, Arthur; Severinov, Konstantin; Dubiley, Svetlana

    2016-12-07

    Microcin C and related antibiotics are Trojan-horse peptide-adenylates. The peptide part is responsible for facilitated transport inside the sensitive cell, where it gets processed to release a toxic warhead-a nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. Adenylation of peptide precursors is carried out by MccB THIF-type NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented ability to attach a terminal cytidine monophosphate to cognate precursor peptide in cellular and cell free systems. The cytosine moiety undergoes an additional modification-carboxymethylation-that is carried out by the C-terminal domain of MccB and the MccS enzyme that produces carboxy-SAM, which serves as a donor of the carboxymethyl group. We show that microcin C-like compounds carrying terminal cytosines are biologically active and target aspartyl-tRNA synthetase, and that the carboxymethyl group prevents resistance that can occur due to modification of the warhead. The results expand the repertoire of known enzymatic modifications of peptides that can be used to obtain new biological activities while avoiding or limiting bacterial resistance.

  3. Antimicrobial Activity and Stability of Short and Long Based Arachnid Synthetic Peptides in the Presence of Commercial Antibiotics.

    Science.gov (United States)

    Arenas, Ivan; Villegas, Elba; Walls, Oliver; Barrios, Humberto; Rodríguez, Ramon; Corzo, Gerardo

    2016-02-17

    Four antimicrobial peptides (AMPs) named Pin2[G], Pin2[14], P18K and FA1 were chemically synthesized and purified. The four peptides were evaluated in the presence of eight commercial antibiotics against four microorganisms of medical importance: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The commercial antibiotics used were amoxicillin, azithromycin, ceftriaxone, gentamicin, levofloxacin, sulfamethoxazole, trimethoprim and vancomycin. The best AMP against P. aeruginosa was the peptide FA1, and the best AMP against S. aureus was Pin2[G]. Both FA1 and Pin2[G] were efficient against E. coli, but they were not effective against K. pneumoniae. As K. pneumoniae was resistant to most of the commercial antibiotics, combinations of the AMPs FA1 and Pin2[G] were prepared with these antibiotics. According to the fractional inhibitory concentration (FIC) index, the best antimicrobial combinations were obtained with concomitant applications of mixtures of FA1 with levofloxacin and sulfamethoxazole. However, combinations of FA1 or Pin2[G] with other antibiotics showed that total inhibitory effect of the combinations were greater than the sum of the individual effects of either the antimicrobial peptide or the antibiotic. We also evaluated the stability of the AMPs. The AMP Pin2[G] manifested the best performance in saline buffer, in supernatants of bacterial growth and in human blood plasma. Nevertheless, all AMPs were cleaved using endoproteolytic enzymes. These data show advantages and disadvantages of AMPs for potential clinical treatments of bacterial infections, using them in conjunction with commercial antibiotics.

  4. Diminished Antimicrobial Peptide and Antifungal Antibiotic Activities against Candida albicans in Denture Adhesive

    Directory of Open Access Journals (Sweden)

    Amber M. Bates

    2017-02-01

    Full Text Available The underlying causes of denture stomatitis may be related to the long-term use of adhesives, which may predispose individuals to oral candidiasis. In this study, we hypothesize that antimicrobial peptides and antifungal antibiotics have diminished anti-Candida activities in denture adhesive. To show this, nine antimicrobial peptides and five antifungal antibiotics with and without 1.0% denture adhesive were incubated with Candida albicans strains ATCC 64124 and HMV4C in radial diffusion assays. In gels with 1.0% adhesive, HNP-1, HBD2, HBD3, IP-10, LL37 (only one strain, histatin 5 (only one strain, lactoferricin B, and SMAP28 showed diminished activity against C. albicans. In gels with 1.0% adhesive, amphotericin B and chlorhexidine dihydrochloride were active against both strains of C. albicans. These results suggest that denture adhesive may inactivate innate immune mediators in the oral cavity increasing the risk of C. albicans infections, but inclusion of antifungal antibiotics to denture adhesive may aid in prevention or treatment of Candida infections and denture stomatitis.

  5. Biofilm infections between Scylla and Charybdis: interplay of host antimicrobial peptides and antibiotics

    Directory of Open Access Journals (Sweden)

    Chernysh S

    2018-04-01

    Full Text Available Sergey Chernysh,* Natalia Gordya,* Dmitry Tulin, Andrey Yakovlev Laboratory of Insect Biopharmacology and Immunology, Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia *These authors contributed equally to this work Purpose: The aim of this study is to improve the anti-biofilm activity of antibiotics. We hypothesized that the antimicrobial peptide (AMP complex of the host’s immune system can be used for this purpose and examined the assumption on model biofilms. Methods: FLIP7, the AMP complex of the blowfly Calliphora vicina containing a combination of defensins, cecropins, diptericins and proline-rich peptides was isolated from the hemolymph of bacteria-challenged maggots. The complex interaction with antibiotics of various classes was studied in biofilm and planktonic cultures of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii by the checkerboard method using trimethyl tetrazolium chloride cell viability and crystal violet biofilm eradication assays supplemented with microscopic analysis. Results: We found that FLIP7 demonstrated: high synergy (fractional inhibitory concentration index <0.25 with meropenem, amikacin, kanamycin, ampicillin, vancomycin and cefotaxime; synergy with clindamycin, erythromycin and chloramphenicol; additive interaction with oxacillin, tetracycline, ciprofloxacin and gentamicin; and no interaction with polymyxin B. The interaction in planktonic cell models was significantly weaker than in biofilms of the same strains. The analysis of the dose–effect curves pointed to persister cells as a likely target of FLIP7 synergistic effect. The biofilm eradication assay showed that the effect also caused total destruction of S. aureus and E. coli biofilm materials. The effect allowed reducing the effective anti-biofilm concentration of the antibiotic to a level well below the one clinically achievable (2–3 orders of magnitude in

  6. Polycyclic Polyprenylated Acylphloroglucinols: An Emerging Class of Non-Peptide-Based MRSA- and VRE-Active Antibiotics.

    Science.gov (United States)

    Guttroff, Claudia; Baykal, Aslihan; Wang, Huanhuan; Popella, Peter; Kraus, Frank; Biber, Nicole; Krauss, Sophia; Götz, Friedrich; Plietker, Bernd

    2017-12-11

    In the past 20 years, peptide-based antibiotics, such as vancomycin, teicoplanin, and daptomycin, have often been considered as second-line antibiotics. However, in recent years, an increasing number of reports on vancomycin resistance in pathogens appeared, which forces researchers to find novel lead structures for potent new antibiotics. Herein, we report the total synthesis of a defined endo-type B PPAP library and their antibiotic activity against multiresistant S. aureus and various vancomycin-resistant Enterococci. Four new compounds that combine high activities and low cytotoxicity were identified, indicating that the PPAP core might become a new non-peptide-based lead structure in antibiotic research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Wu X

    2017-03-01

    Full Text Available Xiaozhe Wu,1 Zhan Li,1 Xiaolu Li,2,3 Yaomei Tian,1 Yingzi Fan,1 Chaoheng Yu,1 Bailing Zhou,1 Yi Liu,4 Rong Xiang,5 Li Yang1 1State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 2International Center for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 3Department of Plastic and Burn Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 4Department of Microbial Examination, Sichuan Center for Disease Control and Prevention, Chengdu, 5Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001 and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin on clinical bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The AZT-resistance genes (ermA, ermB, ermC, mefA, and msrA were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L. When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7–AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus

  8. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    Science.gov (United States)

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. A Chimeric Peptide Composed of a Dermaseptin Derivative and an RNA III-Inhibiting Peptide Prevents Graft-Associated Infections by Antibiotic-Resistant Staphylococci

    Science.gov (United States)

    Balaban, Naomi; Gov, Yael; Giacometti, Andrea; Cirioni, Oscar; Ghiselli, Roberto; Mocchegiani, Federico; Orlando, Fiorenza; D'Amato, Giuseppina; Saba, Vittorio; Scalise, Giorgio; Bernes, Sabina; Mor, Amram

    2004-01-01

    Staphylococcal bacteria are a prevalent cause of infections associated with foreign bodies and indwelling medical devices. Bacteria are capable of escaping antibiotic treatment through encapsulation into biofilms. RNA III-inhibiting peptide (RIP) is a heptapeptide that inhibits staphylococcal biofilm formation by obstructing quorum-sensing mechanisms. K4-S4(1-13)a is a 13-residue dermaseptin derivative (DD13) believed to kill bacteria via membrane disruption. We tested each of these peptides as well as a hybrid construct, DD13-RIP, for their ability to inhibit bacterial proliferation and suppress quorum sensing in vitro and for their efficacy in preventing staphylococcal infection in a rat graft infection model with methicillin-resistant Staphylococcus aureus (MRSA) or S. epidermidis (MRSE). In vitro, proliferation assays demonstrated that RIP had no inhibitory effect, while DD13-RIP and DD13 were equally effective, and that the chimeric peptide but not DD13 was slightly more effective than RIP in inhibiting RNA III synthesis, a regulatory RNA molecule important for staphylococcal pathogenesis. In vivo, the three peptides reduced graft-associated bacterial load in a dose-dependent manner, but the hybrid peptide was most potent in totally preventing staphylococcal infections at the lowest dose. In addition, each of the peptides acted synergistically with antibiotics. The data indicate that RIP and DD13 act in synergy by attacking bacteria simultaneously by two different mechanisms. Such a chimeric peptide may be useful for coating medical devices to prevent drug-resistant staphylococcal infections. PMID:15215107

  10. Antibiotics

    Science.gov (United States)

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  11. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots.

    Directory of Open Access Journals (Sweden)

    Natalia Gordya

    Full Text Available Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms' resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable.

  12. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots.

    Science.gov (United States)

    Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey

    2017-01-01

    Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms' resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable.

  13. Use of synthetic analogues in confirmation of structure of the peptide antibiotics Maltacines

    Science.gov (United States)

    Hagelin, Gunnar; Indrevoll, Bård; Hoeg-Jensen, Thomas

    2007-12-01

    Maltacines comprise a family of cyclic peptide lactone antibiotics produced by a strain of Bacillus subtilis. The previously proposed amino acid sequences of the linear ring-opened molecules show similarity to the lipopeptide antibiotic Fengycin IX that is also produced by a strain of B. subtilisE There were some discrepancies in the Maltacin data that could not be explained. To address this and gain more information into the structure of the linear ring-opened Maltacines, the two members D1c, E1b and Fengycin IX acid were synthesised and their MS2, MS3 and MS4 spectra compared. The similarity of the product ion spectra of Maltacin and Fengycin IX acid revealed that proline occupies an internal position in Maltacin. This finding led to revision of the interpretation of the amino acid sequences of the Maltacines. The proposed new structures of the Maltacines shows that the cyclic part of the molecules is the same as in Fengycin IX acid and Fengycin XII acid, but they have unique N-terminal sequences not found in Fengycins, and thus represent novel lipopeptide antibiotics.

  14. Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides.

    Science.gov (United States)

    Azmi, Fazren; Skwarczynski, Mariusz; Toth, Istvan

    2016-01-01

    Virtually every living organism produces gene-encoded antimicrobial peptides (AMPs) that provide an immediate defence against pathogen invasion. Many AMPs have been isolated and used as antibiotics that are effective against multidrug-resistant bacteria. Although encouraging, AMPs have such poor drug-like properties that their application for clinical use is restricted. In turn, this has diverted research to the development of synthetic molecules that retain the therapeutic efficacy of AMPs but are endowed with greater biological stability and safety profiles. Most of the synthetic molecules, either based on a peptidic or non-peptidic scaffold, have been designed to mimic the amphiphilic properties of native AMPs, which are widely believed to be the key determinant of their antibacterial activity. In this review, the structural, chemical and biophysical features that govern the biological activities of various synthetic designs are discussed extensively. Recent innovative approaches from the literature that exhibit novel concepts towards the development of new synthetic antibacterial agents, including the engineered delivery platform incorporated with AMP mimetics, are also emphasised.

  15. Antimicrobial Activity and Stability of Short and Long Based Arachnid Synthetic Peptides in the Presence of Commercial Antibiotics

    Directory of Open Access Journals (Sweden)

    Ivan Arenas

    2016-02-01

    Full Text Available Four antimicrobial peptides (AMPs named Pin2[G], Pin2[14], P18K and FA1 were chemically synthesized and purified. The four peptides were evaluated in the presence of eight commercial antibiotics against four microorganisms of medical importance: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The commercial antibiotics used were amoxicillin, azithromycin, ceftriaxone, gentamicin, levofloxacin, sulfamethoxazole, trimethoprim and vancomycin. The best AMP against P. aeruginosa was the peptide FA1, and the best AMP against S. aureus was Pin2[G]. Both FA1 and Pin2[G] were efficient against E. coli, but they were not effective against K. pneumoniae. As K. pneumoniae was resistant to most of the commercial antibiotics, combinations of the AMPs FA1 and Pin2[G] were prepared with these antibiotics. According to the fractional inhibitory concentration (FIC index, the best antimicrobial combinations were obtained with concomitant applications of mixtures of FA1 with levofloxacin and sulfamethoxazole. However, combinations of FA1 or Pin2[G] with other antibiotics showed that total inhibitory effect of the combinations were greater than the sum of the individual effects of either the antimicrobial peptide or the antibiotic. We also evaluated the stability of the AMPs. The AMP Pin2[G] manifested the best performance in saline buffer, in supernatants of bacterial growth and in human blood plasma. Nevertheless, all AMPs were cleaved using endoproteolytic enzymes. These data show advantages and disadvantages of AMPs for potential clinical treatments of bacterial infections, using them in conjunction with commercial antibiotics.

  16. 99mTc-Alafosfalin: an antibiotic peptide infection imaging agent

    International Nuclear Information System (INIS)

    Tsopelas, C.; Penglis, S.; Ruszkiewicz, A.; Bartholomeusz, F.D.L.

    2003-01-01

    The radiolabeled antibiotic peptide 99m Tc-alafosfalin was assessed as an infection imaging agent in a rat model by comparison with 99m Tc-DTPA and 99m Tc-leukocytes. 99m Tc-alafosfalin was prepared via an instant cold kit and 99m Tc-leukocytes were prepared using 99m Tc-stannous fluoride colloid in an ex vivo labeling procedure of whole blood. In separate experiments, the three radiotracers were administered to rats infected with staphylococcus aureus. Quantitative biodistribution studies were performed as well as scintigraphic images and histopathology. 99m Tc-alafosfalin is a stable product, obtained in high radiochemical purity (>95%). This agent was mainly renally excreted, with low liver, spleen and bone uptake, and resulted in a mean ratio of infected/non-infected thighs of 4.3/1.0 at 4 hr post radiotracer injection. 99m Tc-DTPA gave a corresponding ratio of 1.9/1.0 and 99m Tc-leukocytes gave 20.0/1.0 at the same time point. An in vitro assay found the level of 99m Tc-alafosfalin binding to staphylococcus aureas higher than 99m Tc-DTPA (10% versus 1% respectively). 99m Tc-alafosfalin accumulates at sites of infection in a rat model better than the perfusion molecule 99m Tc-DTPA, yet less than 99m Tc-leukocytes. The distribution characteristics of this 99m Tc-antibiotic peptide would be an advantage in imaging abdominal and soft tissue infection

  17. Antibiotic activity and synergistic effect of antimicrobial peptide against pathogens from a patient with gallstones

    International Nuclear Information System (INIS)

    Park, Yoonkyung; Park, Soon Nang; Park, Seong-Cheol; Park, Joon Yong; Park, Yong Ha; Hahm, Joon Soo; Hahm, Kyung-Soo

    2004-01-01

    HP (2-20) is a peptide derived from the N-terminus of Helicobacter pylori ribosomal protein L1 that has been shown to have antimicrobial activity against various species of bacteria. When we tested the effects of HP (2-20), we found that this peptide displayed strong activity against pathogens from a patient with gallstones, but it did not have hemolytic activity against human erythrocytes. We also found that HP (2-20) had potent activity against cefazolin sodium-resistant bacterial cell lines, and that HP (2-20) and cefazolin sodium had synergistic effects against cell lines resistant to the latter. To investigate the mechanism of action of HP (2-20), we performed fluorescence activated flow cytometry using pathogens from the patient with gallstones. As determined by propidium iodide (PI) staining, pathogenic bacteria treated with HP (2-20) showed higher fluorescence intensity than untreated cells, similar to melittin-treated cells, and that HP (2-20) acted in an energy- and salt-dependent manner. Scanning electron microscopy showed that HP (2-20) caused significant morphological alterations in the cell surface of pathogens from the patient with gallstones. By determining their 16S rDNA sequences, we found that both the pathogens from the patient with gallstones and the cefazolin sodium-resistant cell lines showed 100% homology with sequences from Pseudomonas aeruginosa. Taken together, these results suggest that HP (2-20) has antibiotic activity and that it may be used as a lead drug for the treatment of acquired pathogens from patients with gallstones and antibiotic-resistant cell lines

  18. The antibiotic peptide 99'MTc-alafosfalin detects inflamed bowel in rats

    International Nuclear Information System (INIS)

    Tsopelas, C.; Bartholomeusz, D.; Penglis, S.; Ruszkiewicz, A.

    2002-01-01

    Full text: Radiolabelled leucocyte scans are established as an accurate method of detecting inflammatory bowel disease and focal infection but involve complex in vitro cell labelling techniques. As antibiotic peptides accumulate at sites of inflammation, we studied the localisation of the antibiotic dipeptide 99m Tc-alafosfalin in a rat model of colitis and compared it to the non-specific marker 99m Tc-DTPA. Distal colitis was induced in female Sprague-Dawley rats (175g) 4 days following the rectal infusion of 1 ml trinitrobenzylsulphonic acid (80mg/ml; 30% aq. ethanol). Six colitic and 6 control rats were each injected intravenously with 5MBq 99m Tc-alafosfalin (>90% radiolabelling efficiency) and 5MBq 99m Tc-DTPA and organ and target site uptake measured by scintigraphy and quantitative counting of excised tissue (% injected dose/gram tissue) at 1 and 4 hours. Colitis was confirmed by histological examination of rectal specimens. The scans and tissue counts showed significant focal accumulation of 99m Tc-alafosfalin in inflamed rectum compared to normal bowel (p 99m Tc-alafosfalin compared to 99m Tc-DTPA (p=0.03). Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Studies on the biosynthesis of the modified-peptide antibiotic, nosiheptide

    International Nuclear Information System (INIS)

    Houck, D.R.

    1986-01-01

    The biosynthesis of nosiheptide, a highly modified-peptide antibiotic, was studied by feeding 14 C- and 13 C-labeled precursors to the producing organism, Streptomyces actuosus. To this end, methods were developed for the fermentation of S. Actuosus, and the isolation of nosiheptide. Nosiheptide was produced in a synthetic medium at levels of 175 to 200 mg/L. In addition, a HPLC method was developed for rapid and accurate assay of nosiheptide in fermentation broths. During the fermentation studies, nosiheptide production was found to be inhibited by tryptophan, cysteine, ammonia, and phosphate. Feeding experiments with DL-[3- 13 C]cysteine, L-[3- 13 C]serine, DL-[1- 13 C]serine, L-[CH 3 - 13 C]methionine, and L-[2,1'- 13 C 2 ]tryptophan uncovered the biosynthetic precursors of the residues in nosiheptide. The double-quantum NMR technique known as INADEQUATE was used to analyze nosiheptide biosynthesized from [U- 13 Cnumber]glycerol. This experiment permitted unambiguous 13 C-NMR assignments to be made, as well as elucidation of the biochemically maintained 13 C- 13 C connectivities in the conversion of the labeled glycerol to nosiheptide. Making some reasonable assumptions, a logical peptide precursor of nosiheptide is proposed: H 2 N-ser-cys-thr-thr-cys-glu-cys-cys-cys-ser-cys-ser-CO 2

  20. Genome Sequence of Dickeya solani, a New soft Rot Pathogen of Potato, Suggests its Emergence May Be Related to a Novel Combination of Non-Ribosomal Peptide/Polyketide Synthetase Clusters

    Directory of Open Access Journals (Sweden)

    Linda Garlant

    2013-12-01

    Full Text Available Soft rot Enterobacteria in the genera Pectobacterium and Dickeya cause rotting of many crop plants. A new Dickeya isolate has been suggested to form a separate species, given the name Dickeya solani. This bacterium is spreading fast and replacing the closely related, but less virulent, potato pathogens. The genome of D. solani isolate D s0432-1 shows highest similarity at the nucleotide level and in synteny to D. dadantii strain 3937, but it also contains three large polyketide/fatty acid/non-ribosomal peptide synthetase clusters that are not present in D. dadantii 3937. These gene clusters may be involved in the production of toxic secondary metabolites, such as oocydin and zeamine. Furthermore, the D. solani genome harbors several specific genes that are not present in other Dickeya and Pectobacterium species and that may confer advantages for adaptation to new environments. In conclusion, the fast spreading of D. solani may be related to the acquisition of new properties that affect its interaction with plants and other microbes in the potato ecosystem.

  1. Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design.

    Directory of Open Access Journals (Sweden)

    Guiying Ling

    Full Text Available Cathelicidins, a class of gene-encoded effector molecules of vertebrate innate immunity, provide a first line of defense against microbial invasions. Although cathelicidins from mammals, birds, reptiles and fishes have been extensively studied, little is known about cathelicidins from amphibians. Here we report the identification and characterization of two cathelicidins (cathelicidin-RC1 and cathelicidin-RC2 from the bullfrog Rana catesbeiana. The cDNA sequences (677 and 700 bp, respectively encoding the two peptides were successfully cloned from the constructed lung cDNA library of R. catesbeiana. And the deduced mature peptides are composed of 28 and 33 residues, respectively. Structural analysis indicated that cathelicidin-RC1 mainly assumes an amphipathic alpha-helical conformation, while cathelicidin-RC2 could not form stable amphipathic structure. Antimicrobial and bacterial killing kinetic analysis indicated that the synthetic cathelicidin-RC1 possesses potent, broad-spectrum and rapid antimicrobial potency, while cathelicidin-RC2 exhibited very weak antimicrobial activity. Besides, the antimicrobial activity of cathelicidin-RC1 is salt-independent and highly stable. Scanning electron microscopy (SEM analysis indicated that cathelicidin-RC1 kills microorganisms through the disruption of microbial membrane. Moreover, cathelicidin-RC1 exhibited low cytotoxic activity against mammalian normal or tumor cell lines, and low hemolytic activity against human erythrocytes. The potent, broad-spectrum and rapid antimicrobial activity combined with the salt-independence, high stability, low cytotoxic and hemolytic activities make cathelicidin-RC1 an ideal template for the development of novel peptide antibiotics.

  2. Collision-induced dissociation of noncovalent complexes between vancomycin antibiotics and peptide ligand stereoisomers: evidence for molecular recognition in the gas phase

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Delforge, D; Remacle, J

    1999-01-01

    In solution, the antibiotics of the vancomycin group bind stereospecifically to peptides with the C-terminal sequence: -L-Lys-D-Ala-D-Ala, Substitution by a L-Ala at either of the two C-terminal residues causes a dramatic decrease in the binding affinity to the antibiotics. This solution behavior...... is clearly reflected in electrospray ionization (ESI) mass spectra obtained from equimolar mixtures of an antibiotic, an isotopically labelled peptide ligand and an unlabelled peptide stereoisomer. Using collision-induced dissociation (CID) we have probed the gas phase stability of isomeric (1:1) noncovalent...

  3. Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium

    DEFF Research Database (Denmark)

    Hansen, Jørgen T.; Sørensen, Jens L.; Giese, Henriette

    2012-01-01

    Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework...... and NRPS genes in sequenced Fusarium species and their known products. With the rapid increase in the number of sequenced fungal genomes a systematic classification will greatly aid the scientific community in obtaining an overview of the number of different NRPS and PKS genes and their potential...

  4. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms.

    Science.gov (United States)

    Dosler, Sibel; Mataraci, Emel

    2013-11-01

    Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin+daptomycin/ciprofloxacin, indolicidin+teicoplanin, and CAMA+ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Intracellular activity of the peptide antibiotic NZ2114: studies with Staphylococcus aureus and human THP-1 monocytes, and comparison with daptomycin and vancomycin

    DEFF Research Database (Denmark)

    Brinch, Karoline Sidelmann; Tulkens, Paul M; Van Bambeke, Francoise

    2010-01-01

    Staphylococcus aureus survives inside eukaryotic cells. Our objective was to assess the activity of NZ2114, a novel peptidic antibiotic, against intracellular S. aureus in comparison with established antistaphylococcal agents acting on the bacterial envelope with a distinct mechanism.......Staphylococcus aureus survives inside eukaryotic cells. Our objective was to assess the activity of NZ2114, a novel peptidic antibiotic, against intracellular S. aureus in comparison with established antistaphylococcal agents acting on the bacterial envelope with a distinct mechanism....

  6. Structural Features Governing the Activity of Lactoferricin-Derived Peptides That Act in Synergy with Antibiotics against Pseudomonas aeruginosa In Vitro and In Vivo▿ †

    Science.gov (United States)

    Sánchez-Gómez, Susana; Japelj, Bostjan; Jerala, Roman; Moriyón, Ignacio; Fernández Alonso, Mirian; Leiva, José; Blondelle, Sylvie E.; Andrä, Jörg; Brandenburg, Klaus; Lohner, Karl; Martínez de Tejada, Guillermo

    2011-01-01

    Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals. PMID:20956602

  7. Structural features governing the activity of lactoferricin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo.

    Science.gov (United States)

    Sánchez-Gómez, Susana; Japelj, Bostjan; Jerala, Roman; Moriyón, Ignacio; Fernández Alonso, Mirian; Leiva, José; Blondelle, Sylvie E; Andrä, Jörg; Brandenburg, Klaus; Lohner, Karl; Martínez de Tejada, Guillermo

    2011-01-01

    Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals.

  8. Functional characterization of a three-component regulatory system involved in quorum sensing-based regulation of peptide antibiotic production in Carnobacterium maltaromaticum

    Directory of Open Access Journals (Sweden)

    Quadri Luis EN

    2006-10-01

    Full Text Available Abstract Background Quorum sensing is a form of cell-to-cell communication that allows bacteria to control a wide range of physiological processes in a population density-dependent manner. Production of peptide antibiotics is one of the processes regulated by quorum sensing in several species of Gram-positive bacteria, including strains of Carnobacterium maltaromaticum. This bacterium and its peptide antibiotics are of interest due to their potential applications in food preservation. The molecular bases of the quorum sensing phenomenon controlling peptide antibiotic production in C. maltaromaticum remain poorly understood. The present study was aimed at gaining a deeper insight into the molecular mechanism involved in quorum sensing-mediated regulation of peptide antibiotic (bacteriocin production by C. maltaromaticum. We report the functional analyses of the CS (autoinducer-CbnK (histidine protein kinase-CbnR (response regulator three-component regulatory system and the three regulated promoters involved in peptide antibiotic production in C. maltaromaticum LV17B. Results CS-CbnK-CbnR system-dependent activation of carnobacterial promoters was demonstrated in both homologous and heterologous hosts using a two-plasmid system with a β-glucuronidase (GusA reporter read-out. The results of our analyses support a model in which the CbnK-CbnR two-component signal transduction system is necessary and sufficient to transduce the signal of the peptide autoinducer CS into the activation of the promoters that drive the expression of the genes required for production of the carnobacterial peptide antibiotics and the immunity proteins that protect the producer bacterium. Conclusions The CS-CbnK-CbnR triad forms a three-component regulatory system by which production of peptide antibiotics by C. maltaromaticum LV17B is controlled in a population density-dependent (or cell proximity-dependent manner. This regulatory mechanism would permit the bacterial

  9. Interference of the antimicrobial peptide lactoferricin B with the action of various antibiotics against Escherichia coli and Staphylococcus aureus.

    Science.gov (United States)

    Vorland, L H; Osbakk, S A; Perstølen, T; Ulvatne, H; Rekdal, O; Svendsen, J S; Gutteberg, T J

    1999-01-01

    The antimicrobial peptide, lactoferricin, can be generated upon gastric pepsin cleavage of lactoferrin. We have examined the interaction of lactoferricin of bovine origin, Lf-cin B, with the antibiotics penicillin G, vancomycin, gentamicin, colistin, D-cycloserine and erythromycin against E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923. We demonstrated synergism between Lf-cin B and erythromycin against E. coli, and partial synergism between Lf-cin B and penicillin G, vancomycin and gentamicin against E. coli. Only penicillin G acted in partial synergism with Lf-cin B against S. aureus. Lf-cin B antagonized vancomycin and gentamicin against S. aureus in low concentration. We conclude that Lf-cin B may facilitate the uptake of antibiotics across the cell envelope.

  10. Anticancer Activity of Bacterial Proteins and Peptides.

    Science.gov (United States)

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  11. Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin.

    Science.gov (United States)

    Clark, D P; Durell, S; Maloy, W L; Zasloff, M

    1994-04-08

    Antimicrobial peptides comprise a diverse class of molecules used in host defense by plants, insects, and animals. In this study we have isolated a novel antimicrobial peptide from the skin of the bullfrog, Rana catesbeiana. This 20 amino acid peptide, which we have termed Ranalexin, has the amino acid sequence: NH2-Phe-Leu-Gly-Gly-Leu-Ile-Lys-Ile-Val-Pro-Ala-Met-Ile-Cys-Ala-Val-Thr- Lys-Lys - Cys-COOH, and it contains a single intramolecular disulfide bond which forms a heptapeptide ring within the molecule. Structurally, Ranalexin resembles the bacterial antibiotic, polymyxin, which contains a similar heptapeptide ring. We have also cloned the cDNA for Ranalexin from a metamorphic R. catesbeiana tadpole cDNA library. Based on the cDNA sequence, it appears that Ranalexin is initially synthesized as a propeptide with a putative signal sequence and an acidic amino acid-rich region at its amino-terminal end. Interestingly, the putative signal sequence of the Ranalexin cDNA is strikingly similar to the signal sequence of opioid peptide precursors isolated from the skin of the South American frogs Phyllomedusa sauvagei and Phyllomedusa bicolor. Northern blot analysis and in situ hybridization experiments demonstrated that Ranalexin mRNA is first expressed in R. catesbeiana skin at metamorphosis and continues to be expressed into adulthood.

  12. Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Gaomin Liu

    2018-05-01

    Full Text Available The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N-terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro, chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18 showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infections.

  13. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    Science.gov (United States)

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics.

    Science.gov (United States)

    Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim

    2015-04-01

    Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000

  15. Structure, synthesis, and molecular cloning of dermaseptins B, a family of skin peptide antibiotics.

    Science.gov (United States)

    Charpentier, S; Amiche, M; Mester, J; Vouille, V; Le Caer, J P; Nicolas, P; Delfour, A

    1998-06-12

    Analysis of antimicrobial activities that are present in the skin secretions of the South American frog Phyllomedusa bicolor revealed six polycationic (lysine-rich) and amphipathic alpha-helical peptides, 24-33 residues long, termed dermaseptins B1 to B6, respectively. Prepro-dermaseptins B all contain an almost identical signal peptide, which is followed by a conserved acidic propiece, a processing signal Lys-Arg, and a dermaseptin progenitor sequence. The 22-residue signal peptide plus the first 3 residues of the acidic propiece are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The 25-residue amino-terminal region of prepro-dermaseptins B shares 50% identity with the corresponding region of precursors for D-amino acid containing opioid peptides or for antimicrobial peptides originating from the skin of distantly related frog species. The remarkable similarity found between prepro-proteins that encode end products with strikingly different sequences, conformations, biological activities and modes of action suggests that the corresponding genes have evolved through dissemination of a conserved "secretory cassette" exon.

  16. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    Science.gov (United States)

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    NARCIS (Netherlands)

    Kwakman, P. H. S.; de Boer, L.; Ruyter-Spira, C. P.; Creemers-Molenaar, T.; Helsper, J. P. F. G.; Vandenbroucke-Grauls, C. M. J. E.; Zaat, S. A. J.; te Velde, A. A.

    2011-01-01

    Honey has potent activity against both antibiotic-sensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We

  18. Antimicrobial peptide HAL-2/39 as a possible replacement of antibiotics in bone cement

    Czech Academy of Sciences Publication Activity Database

    Volejníková, Andrea; Nešuta, Ondřej; Čeřovský, Václav

    2017-01-01

    Roč. 15, č. 1 (2017), s. 43-44 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] R&D Projects: GA MZd(CZ) NV16-27726A Institutional support: RVO:61388963 Keywords : antimicrobial peptides * bacterial resistance Subject RIV: EE - Microbiology, Virology

  19. Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics.

    Science.gov (United States)

    Shaheen, Mohamed; Li, Jingru; Ross, Avena C; Vederas, John C; Jensen, Susan E

    2011-12-23

    Polymyxins are cationic lipopeptide antibiotics active against many species of Gram-negative bacteria. We sequenced the gene cluster for polymyxin biosynthesis from Paenibacillus polymyxa PKB1. The 40.8 kb gene cluster comprises three nonribosomal peptide synthetase-encoding genes and two ABC transporter-like genes. Disruption of a peptide synthetase gene abolished all antibiotic production, whereas deletion of one or both transporter genes only reduced antibiotic production. Computational analysis of the peptide synthetase modules suggested that the enzyme system produces variant forms of polymyxin B (1 and 2), with D-2,4-diaminobutyrate instead of L-2,4-diaminobutyrate in amino acid position 3. Two antibacterial metabolites were resolved by HPLC and identified by high-resolution mass spectrometry and MS/MS sequencing as the expected variants 3 and 4 of polymyxin B(1) (1) and B(2) (2). Stereochemical analysis confirmed the presence of both D-2,4-diaminobutyrate and L-2,4-diaminobutyrate residues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  1. Liquid storage of boar semen: Current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders.

    Science.gov (United States)

    Schulze, M; Dathe, M; Waberski, D; Müller, K

    2016-01-01

    Antibiotics are of great importance in boar semen extenders to ensure long shelf life of spermatozoa and to reduce transmission of pathogens into the female tract. However, the use of antibiotics carries a risk of developing resistant bacterial strains in artificial insemination laboratories and their spread via artificial insemination. Development of multiresistant bacteria is a major concern if mixtures of antibiotics are used in semen extenders. Minimal contamination prevention techniques and surveillance of critical hygiene control points proved to be efficient in reducing bacterial load and preventing development of antibiotic resistance. Nevertheless, novel antimicrobial concepts are necessary for efficient bacterial control in extended boar semen with a minimum risk of evoking antibiotic resistance. Enhanced efforts have been made in recent years in the design and use of antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. The male genital tract harbors a series of endogenic substances with antimicrobial activity and additional functions relevant to the fertilization process. However, exogenic AMPs often exert dose- and time-dependent toxic effects on mammalian spermatozoa. Therefore, it is important that potential newly designed AMPs have only minor impacts on eukaryotic cells. Recently, synthetic magainin derivatives and cyclic hexapeptides were tested for their application in boar semen preservation. Bacterial selectivity, proteolytic stability, thermodynamic resistance, and potential synergistic interaction with conventional antibiotics propel predominantly cyclic hexapeptides into highly promising, leading candidates for further development in semen preservation. The time scale for the development of resistant pathogens cannot be predicted at this moment. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. NMR studies of the solution conformation and dynamics of the tyrocidine peptide antibiotics

    International Nuclear Information System (INIS)

    Zhou, N.

    1985-01-01

    The tyrocidine B and tyrocidine C 1 H NMR spectra in DMSO-d 6 were assigned by using 2D 1 H- 1 H correlation spectroscopy and 1D double resonance experiments. Based on the proton chemical shifts, 3 J/sub NH-Nα/ coupling constants, the chemical shift temperature dependence, and 1D and 2D 1 H- 1 H NOE values, a backbone conformation consisting of an anti-parallel β-pleated sheet, a type I β-turn and a type II' β-turn was suggested for both tyrocidines B and C. Seven out of ten side chains were determined to exist predominantly in one classical Chi 1 rotamer; while the residues Val 1 and Leu 3 had two Chi 1 rotamers which were significantly populated. Chi 2 angles were determined for residues Phe 4 , Trp 6 , DPhe 7 (D Trp 7 ) and Asn 8 . The natural abundance 13 C spectra of tyrocidine B and tyrocidine C were assigned by using 1 H- 13 C correlation spectroscopy. A study of the effect of soluble paramagnetic nitroxide compounds on tyrocidine A proton T 1 values were performed which confirmed the proposed tyrocidine A conformation. It also proved that these nitroxide compounds are very useful in studying proton solvent exposure, and therefore in delineating hydrogen bonding. A proton NMR study of the opioid peptide dynorphin-(1-13) in aqueous solution was reported which was consistent with a non-ordered molecule in the solution

  3. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains.

    Science.gov (United States)

    Morici, P; Florio, W; Rizzato, C; Ghelardi, E; Tavanti, A; Rossolini, G M; Lupetti, A

    2017-10-01

    The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.

  4. LyeTxI-b, a Synthetic Peptide Derived From Lycosa erythrognatha Spider Venom, Shows Potent Antibiotic Activity in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Pablo V. M. Reis

    2018-04-01

    Full Text Available The antimicrobial peptide LyeTxI isolated from the venom of the spider Lycosa erythrognatha is a potential model to develop new antibiotics against bacteria and fungi. In this work, we studied a peptide derived from LyeTxI, named LyeTxI-b, and characterized its structural profile and its in vitro and in vivo antimicrobial activities. Compared to LyeTxI, LyeTxI-b has an acetylated N-terminal and a deletion of a His residue, as structural modifications. The secondary structure of LyeTxI-b is a well-defined helical segment, from the second amino acid to the amidated C-terminal, with no clear partition between hydrophobic and hydrophilic faces. Moreover, LyeTxI-b shows a potent antimicrobial activity against Gram-positive and Gram-negative planktonic bacteria, being 10-fold more active than the native peptide against Escherichia coli. LyeTxI-b was also active in an in vivo model of septic arthritis, reducing the number of bacteria load, the migration of immune cells, the level of IL-1β cytokine and CXCL1 chemokine, as well as preventing cartilage damage. Our results show that LyeTxI-b is a potential therapeutic model for the development of new antibiotics against Gram-positive and Gram-negative bacteria.

  5. [Optimization of cultural condition of genetic engineering strain for antibiotic peptide adenoregulin and research on its fed-batch cultivation].

    Science.gov (United States)

    Zhou, Yu-Xun; Cao, Wei; Wei, Dong-Zhi; Luo, Qing-Ping; Wang, Jin-Zhi

    2005-07-01

    33 amino acid antibiotic peptide adenoregulin (ADR), which were firstly isolated from the skin of South America arboreal frog Phyllomedusa bicolor, forms alpha-helix amphipathic structure in apolar medium and has a wide spectrum of antimicrobial activity and high potency of lytic ability. Adr gene was cloned in pET32a and transformed into Escherichia coli BL21(DE3) . The cultural and inductive conditions of E. coli BL21(DE3)/pET32a-adr have been optimized. The effect of three factors which were time point of induction, concentration of IPTG in the culture and time of induction on the expression level of Trx-ADR was investigated. The results indicated that the expression level was affected by the time point of induction most predominantly. 9 veriaties of media in which BL21 (DE3)/pET32a-adr was cultured and induced were tested to achieve high expression level of target protein. It was found that glucose in the medium played an important role in keeping stable and high expression level of Trx-ADR. The optimal inductive condition is as follows: the culture medium is 2 x YT + 0.5% glucose, the time point of induction is OD600 = 0.9, the final concentration of IPTG in the culture is 0.1 mmol/L and the induction time is 4 h. BL21 (DE3)/pET32a-adr was cultivated according to the strategy of constant pH at early stage and exponential feeding at later stage to obtain high cell density. During the entire fed-batch phase, by controlling the feeding of glucose, the specific growth rate of the culture was controlled at about 0.15 h(-1), the accumulation of acetic acid was controlled at low level (<2 g/L), but the plasmid stability could not be maintained well. At the end of the cultivation, 40% of the bacteria in the culture lost their plasmids. As a result, the expression level of the target protein declined dramatically, but 90% of Trx-ADR was in soluble form. The expressed fusion protein showed no antibacterial activity, while the native form of ADR lysed from Trx-ADR showed

  6. RNA-seq analysis of antibiotic-producing Bacillus subtilis SC-8 in response to signal peptide PapR of Bacillus cereus.

    Science.gov (United States)

    Yeo, In-Cheol; Lee, Nam Keun; Yang, Byung Wook; Hahm, Young Tae

    2014-01-01

    Bacillus subtilis SC-8 produces an antibiotic that has narrow antagonistic activity against bacteria in the Bacillus cereus group. In B. cereus group bacteria, peptide-activating PlcR (PapR) plays a significant role in regulating the transcription of virulence factors. When B. subtilis SC-8 and B. cereus are co-cultured, PapR is assumed to stimulate antibiotic production by B. subtilis SC-8. To better understand the effect of PapR on this interspecies interaction, the global transcriptome profile of B. subtilis SC-8 was analyzed in the presence of PapR. Significant changes were detected in 12.8 % of the total transcripts. Genes related to amino acid transport and metabolism (16.5 %) and transcription (15 %) were mainly upregulated, whereas genes involved in carbohydrate transport and metabolism (12.7 %) were markedly downregulated. The expression of genes related to transcription, including several transcriptional regulators and proteins involved in tRNA biosynthesis, was increased. The expression levels of genes associated with several transport systems, such as antibiotic, cobalt, and iron complex transporters, was also significantly altered. Among the downregulated genes were transcripts associated with spore formation, the subtilosin A gene cluster, and nitrogen metabolism.

  7. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins.

    Science.gov (United States)

    Amiche, M; Ducancel, F; Mor, A; Boulain, J C; Menez, A; Nicolas, P

    1994-07-08

    The dermaseptins are a family of broad spectrum antimicrobial peptides, 27-34 amino acids long, involved in the defense of the naked skin of frogs against microbial invasion. They are the first vertebrate peptides to show lethal effects against the filamentous fungi responsible for severe opportunistic infections accompanying immunodeficiency syndrome and the use of immunosuppressive agents. A cDNA library was constructed from skin poly(A+) RNA of the arboreal frog Phyllomedusa bicolor and screened with an oligonucleotide probe complementary to the COOH terminus of dermaseptin b. Several clones contained a full-length DNA copy of a 443-nucleotide mRNA that encoded a 78-residue dermaseptin b precursor protein. The deduced precursor contained a putative signal sequence at the NH2 terminus, a 20-residue spacer sequence extremely rich (60%) in glutamic and aspartic acids, and a single copy of a dermaseptin b progenitor sequence at the COOH terminus. One clone contained a complete copy of adenoregulin, a 33-residue peptide reported to enhance the binding of agonists to the A1 adenosine receptor. The mRNAs encoding adenoregulin and dermaseptin b were very similar: 70 and 75% nucleotide identities between the 5'- and 3'-untranslated regions, respectively; 91% amino acid identity between the signal peptides; 82% identity between the acidic spacer sequences; and 38% identity between adenoregulin and dermaseptin b. Because adenoregulin and dermaseptin b have similar precursor designs and antimicrobial spectra, adenoregulin should be considered as a new member of the dermaseptin family and alternatively named dermaseptin b II. Preprodermaseptin b and preproadenoregulin have considerable sequence identities to the precursors encoding the opioid heptapeptides dermorphin, dermenkephalin, and deltorphins. This similarity extended into the 5'-untranslated regions of the mRNAs. These findings suggest that the genes encoding the four preproproteins are all members of the same family

  8. Subtle differences in molecular recognition between modified glycopeptide antibiotics and bacterial receptor peptides identified by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Staroske, T; Roepstorff, P

    1999-01-01

    showing that electrospray ionization mass spectrometry (ESI-MS) can be used in the rapid quantitative analysis of mixtures of vancomycin-group antibiotics and their bacterial cell-wall receptors allowing the identification of even subtle differences in binding constants. Differences in affinities...

  9. Mechanistic and structural basis of stereospecific Cbeta-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide.

    Science.gov (United States)

    Strieker, Matthias; Kopp, Florian; Mahlert, Christoph; Essen, Lars-Oliver; Marahiel, Mohamed A

    2007-03-20

    Non-ribosomally synthesized lipopeptide antibiotics of the daptomycin type are known to contain unnatural beta-modified amino acids, which are essential for bioactivity. Here we present the biochemical and structural basis for the incorporation of 3-hydroxyasparagine at position 9 in the 11-residue acidic lipopeptide lactone calcium-dependent antibiotic (CDA). Direct hydroxylation of l-asparagine by AsnO, a non-heme Fe(2+)/alpha-ketoglutarate-dependent oxygenase encoded by the CDA biosynthesis gene cluster, was validated by Fmoc derivatization of the reaction product and LC/MS analysis. The 1.45, 1.92, and 1.66 A crystal structures of AsnO as apoprotein, Fe(2+) complex, and product complex, respectively, with (2S,3S)-3-hydroxyasparagine and succinate revealed the stereoselectivity and substrate specificity of AsnO. The comparison of native and product-complex structures of AsnO showed a lid-like region (residues F208-E223) that seals the active site upon substrate binding and shields it from sterically demanding peptide substrates. Accordingly, beta-hydroxylated asparagine is synthesized prior to its incorporation into the growing CDA peptide. The AsnO structure could serve as a template for engineering novel enzymes for the synthesis of beta-hydroxylated amino acids.

  10. Immediate and heterogeneous response of the LiaFSR two-component system of Bacillus subtilis to the peptide antibiotic bacitracin.

    Science.gov (United States)

    Kesel, Sara; Mader, Andreas; Höfler, Carolin; Mascher, Thorsten; Leisner, Madeleine

    2013-01-01

    Two-component signal transduction systems are one means of bacteria to respond to external stimuli. The LiaFSR two-component system of Bacillus subtilis consists of a regular two-component system LiaRS comprising the core Histidine Kinase (HK) LiaS and the Response Regulator (RR) LiaR and additionally the accessory protein LiaF, which acts as a negative regulator of LiaRS-dependent signal transduction. The complete LiaFSR system was shown to respond to various peptide antibiotics interfering with cell wall biosynthesis, including bacitracin. Here we study the response of the LiaFSR system to various concentrations of the peptide antibiotic bacitracin. Using quantitative fluorescence microscopy, we performed a whole population study analyzed on the single cell level. We investigated switching from the non-induced 'OFF' state into the bacitracin-induced 'ON' state by monitoring gene expression of a fluorescent reporter from the RR-regulated liaI promoter. We found that switching into the 'ON' state occurred within less than 20 min in a well-defined switching window, independent of the bacitracin concentration. The switching rate and the basal expression rate decreased at low bacitracin concentrations, establishing clear heterogeneity 60 min after bacitracin induction. Finally, we performed time-lapse microscopy of single cells confirming the quantitative response as obtained in the whole population analysis for high bacitracin concentrations. The LiaFSR system exhibits an immediate, heterogeneous and graded response to the inducer bacitracin in the exponential growth phase.

  11. The first N-terminal unprotected (Gly-Aib)n peptide: H-Gly-Aib-Gly-Aib-OtBu.

    Science.gov (United States)

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2015-12-01

    Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α-aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N-terminal protected. Deprotection of the N- or C-terminus of peptides may alter the hydrogen-bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid tert-butyl ester, C16H30N4O5, describes the first N-terminal-unprotected (Gly-Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N-H group of Aib4. This hydrogen bond is found in all tetrapeptides and N-terminal-protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry-related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right-handed helical region (and the left-handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.

  12. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs

    Directory of Open Access Journals (Sweden)

    Alhosna Benjdia

    2017-11-01

    Full Text Available Ribosomally-synthesized and post-translationally modified peptides (RiPPs are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.

  13. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae.

    Science.gov (United States)

    Garcia-Gonzalez, Eva; Müller, Sebastian; Hertlein, Gillian; Heid, Nina; Süssmuth, Roderich D; Genersch, Elke

    2014-10-01

    Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    Science.gov (United States)

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production

    Directory of Open Access Journals (Sweden)

    Juwairiah Remali

    2017-11-01

    Full Text Available Background Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy carbonyl phenazine-1-carboxylic acid (HCPCA extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35% consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis. Discussion The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites.

  16. Heterologous production of non-ribosomal peptide LLD-ACV in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; Chen, Xiao; Huang, Le

    2009-01-01

    production of ACV was observed. To improve ACV synthesis, several factors were investigated. Codon optimization of the 5′ end of pcbAB did not significantly increase ACV production. However, a 30-fold enhancement was achieved by lowering the cultivation temperature from 30 to 20 °C. When ACVS and PPTase...... encoding genes were integrated into the yeast genome, a 6-fold decrease in ACV production was observed indicating that gene copy number was one of the rate-limiting factors for ACV production in yeast....

  17. Lincosamide Synthetase-A Unique Condensation System Combining Elements of Nonribosomal Peptide Synthetase and Mycothiol Metabolism

    Czech Academy of Sciences Publication Activity Database

    Janata, Jiří; Kadlčík, Stanislav; Koběrská, Markéta; Ulanová, Dana; Kameník, Zdeněk; Novák, Petr; Kopecký, Jan; Novotná, Jitka; Radojevič, Bojana; Plháčková, Kamila; Gažák, Radek; Najmanová, Lucie

    2015-01-01

    Roč. 10, č. 3 (2015) E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : BIOSYNTHETIC GENE-CLUSTER * MOLECULAR-WEIGHT THIOL * PHOSPHOPANTETHEINYL TRANSFERASE Subject RIV: EE - Microbiology, Virology Impact factor: 3.057, year: 2015

  18. Targeted Disruption of Nonribosomal Peptide Synthetase pes3 Augments the Virulence of Aspergillus fumigatus

    DEFF Research Database (Denmark)

    O'Hanlon, Karen A.; Cairns, Timothy; Stack, Deirdre

    2011-01-01

    metabolite profiling revealed that Pes3 does not produce a secreted or intracellularly stored NRP in A. fumigatus. Macrophage infections and histological analysis of infected murine tissue indicate that Δpes3 heightened virulence appears to be mediated by aberrant innate immune recognition of the fungus....... Proteome alterations in A. fumigatus Δpes3 strongly suggest impaired germination capacity. Uniquely, our data strongly indicate a structural role for the Pes3-encoded NRP, a finding that appears to be novel for an NRP synthetase....

  19. Cell wall peptidolipids of Mycobacterium avium: from genetic prediction to exact structure of a nonribosomal peptide

    Science.gov (United States)

    Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide, yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis and...

  20. Old and New Glycopeptide Antibiotics: Action and Resistance

    Directory of Open Access Journals (Sweden)

    Elisa Binda

    2014-11-01

    Full Text Available Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycopeptides are glycosylated non-ribosomal peptides produced by a diverse group of soil actinomycetes. They target Gram-positive bacteria by binding to the acyl-D-alanyl-D-alanine (D-Ala-D-Ala terminus of the growing peptidoglycan on the outer surface of the cytoplasmatic membrane. Glycopeptide-resistant organisms avoid such a fate by replacing the D-Ala-D-Ala terminus with D-alanyl-D-lactate (D-Ala-D-Lac or D-alanyl-D-serine (D-Ala-D-Ser, thus markedly reducing antibiotic affinity for the cellular target. Resistance has manifested itself in enterococci and staphylococci largely through the expression of genes (named van encoding proteins that reprogram cell wall biosynthesis and, thus, evade the action of the antibiotic. These resistance mechanisms were most likely co-opted from the glycopeptide producing actinomycetes, which use them to avoid suicide during antibiotic production, rather than being orchestrated by pathogen bacteria upon continued treatment. van-like gene clusters, similar to those described in enterococci, were in fact identified in many glycopeptide-producing actinomycetes, such as Actinoplanes teichomyceticus, which produces teicoplanin, and Streptomyces toyocaensis, which produces the A47934 glycopeptide. In this paper, we describe the natural and semi-synthetic glycopeptide antibiotics currently used as last resort drugs for Gram-positive infections and compare the van gene-based strategies of glycopeptide resistance among the pathogens and

  1. Two-dimensional 1H NMR experiments show that the 23-residue magain in antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution

    International Nuclear Information System (INIS)

    Gesell, Jennifer; Zasloff, Michael; Opella, Stanley J.

    1997-01-01

    Magainin2 is a 23-residue antibiotic peptide that disrupts the ionic gradient across certain cell membranes. Two-dimensional 1H NMR spectroscopy was used to investigate the structure of the peptide in three of the membrane environments most commonly employed in biophysical studies. Sequence-specific resonance assignments were determined for the peptide in perdeuterated dodecylphosphocholine (DPC) and sodium dodecylsulfate micelles and confirmed for the peptide in 2,2,2-trifluoroethanol solution. The secondary structure is shown to be helical in all of the solvent systems. The NMR data were used as a set of restraints for a simulated annealing protocol that generated a family of three-dimensional structures of the peptide in DPC micelles, which superimposed best between residues 4 and 20. For these residues, the mean pairwise rms difference for the backbone atoms is 0.47 ± 0.10A from the average structure. The calculated peptide structures appear to be curved,with the bend centered at residues Phe12 and Gly13

  2. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products.

    Directory of Open Access Journals (Sweden)

    Marnix H Medema

    2014-09-01

    Full Text Available Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X.

  3. Annotating and Interpreting Linear and Cyclic Peptide Tandem Mass Spectra.

    Science.gov (United States)

    Niedermeyer, Timo Horst Johannes

    2016-01-01

    Nonribosomal peptides often possess pronounced bioactivity, and thus, they are often interesting hit compounds in natural product-based drug discovery programs. Their mass spectrometric characterization is difficult due to the predominant occurrence of non-proteinogenic monomers and, especially in the case of cyclic peptides, the complex fragmentation patterns observed. This makes nonribosomal peptide tandem mass spectra annotation challenging and time-consuming. To meet this challenge, software tools for this task have been developed. In this chapter, the workflow for using the software mMass for the annotation of experimentally obtained peptide tandem mass spectra is described. mMass is freely available (http://www.mmass.org), open-source, and the most advanced and user-friendly software tool for this purpose. The software enables the analyst to concisely annotate and interpret tandem mass spectra of linear and cyclic peptides. Thus, it is highly useful for accelerating the structure confirmation and elucidation of cyclic as well as linear peptides and depsipeptides.

  4. Antibiotics and Antibiotic Resistance

    Science.gov (United States)

    ... all that ails you. Antibiotics, also known as antimicrobial drugs, are drugs that fight infections caused by bacteria. ... Information for Consumers and Health Professionals Information by drug class Antimicrobial Resistance Animal and Veterinary Related Resources Further information ...

  5. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics

    Czech Academy of Sciences Publication Activity Database

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, J.; Veverka, Václav; Čeřovský, Václav

    2016-01-01

    Roč. 79, č. 4 (2016), s. 1073-1083 ISSN 0163-3864 R&D Projects: GA TA ČR(CZ) TA04010638; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : alpha-helical peptides * in vitro activity * Pseudomonas aeruginosa Subject RIV: CC - Organic Chemistry Impact factor: 3.281, year: 2016

  6. Antimicrobial Peptides: An Introduction.

    Science.gov (United States)

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  7. Synthetic membrane-targeted antibiotics.

    Science.gov (United States)

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  8. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity.

    Science.gov (United States)

    Kim, Eun Young; Rajasekaran, Ganesan; Shin, Song Yub

    2017-08-18

    KR-12-a5 is a 12-meric α-helical antimicrobial peptide (AMP) with dual antimicrobial and anti-inflammatory activities designed from human cathelicidin LL-37. We designed and synthesized a series of d-amino acid-substituted analogs of KR-12-a5 with the aim of developing novel α-helical AMPs that possess higher cell selectivity than KR-12-a5, while maintaining the anti-inflammatory activity. d-amino acid incorporation into KR-12-a5 induced a significant improvement in the cell selectivity by 2.6- to 13.6-fold as compared to KR-12-a5, while maintaining the anti-inflammatory activity. Among the three analogs, KR-12-a5 (6- D L) with d-amino acid in the polar-nonpolar interface (Leu 6 ) showed the highest cell selectivity (therapeutic index: 61.2). Similar to LL-37, KR-12-a5 and its analogs significantly inhibited the expression and secretion of NO, TNF-α, IL-6 and MCP-1 from LPS-stimulated RAW264.7 cells. KR-12-a5 and its analogs showed a more potent antimicrobial activity against antibiotic-resistant bacteria, including clinically isolated MRSA, MDRPA, and VREF than LL-37 and melittin. Furthermore, compared to LL-37, KR-12-a5 and its analogs showed greater synergistic effects with conventional antibiotics, such as chloramphenicol, ciprofloxacin, and oxacillin against MDRPA; KR-12-a5 and its analogs had a FICI range between 0.25 and 0.5, and LL-37 had a range between 0.75 and 1.5. KR-12-a5 and its analogs were found to be more effective anti-biofilm agents against MDRPA than LL-37. In addition, KR-12-a5 and its analogs maintained antimicrobial activity in physiological salts and human serum. SYTOX Green uptake and membrane depolarization studies revealed that KR-12-a5 and its analogs kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that KR-12-a5 and its analogs can be developed further as novel antimicrobial/anti-inflammatory agents to treat antibiotic-resistant infections. Copyright

  9. Structure, toxicity and antibiotic activity of gramicidin S and derivatives

    NARCIS (Netherlands)

    J.W. Swierstra (Jasper); V. Kapoerchan; A. Knijnenburg; A.F. van Belkum (Alex); M. Overhand

    2016-01-01

    textabstractDevelopment of new antibiotics is declining whereas antibiotic resistance is rising, heralding a post-antibiotic era. Antimicrobial peptides such as gramicidin S (GS), exclusively topically used due to its hemolytic side-effect, could still be interesting as therapeutic compounds. By

  10. Forgotten antibiotics

    DEFF Research Database (Denmark)

    Pulcini, Céline; Bush, Karen; Craig, William A

    2012-01-01

    In view of the alarming spread of antimicrobial resistance in the absence of new antibiotics, this study aimed at assessing the availability of potentially useful older antibiotics. A survey was performed in 38 countries among experts including hospital pharmacists, microbiologists, and infectious...

  11. Antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Marianne Frieri

    2017-07-01

    Full Text Available Summary: Antimicrobial resistance in bacterial pathogens is a challenge that is associated with high morbidity and mortality. Multidrug resistance patterns in Gram-positive and -negative bacteria are difficult to treat and may even be untreatable with conventional antibiotics. There is currently a shortage of effective therapies, lack of successful prevention measures, and only a few new antibiotics, which require development of novel treatment options and alternative antimicrobial therapies. Biofilms are involved in multidrug resistance and can present challenges for infection control. Virulence, Staphylococcus aureus, Clostridium difficile infection, vancomycin-resistant enterococci, and control in the Emergency Department are also discussed. Keywords: Antibiotic resistance, Biofilms, Infections, Public health, Emergency Department

  12. Evaluation of 99mTc-labeled antibiotics for infection detection

    International Nuclear Information System (INIS)

    Lambrecht, F.Y.

    2011-01-01

    One of the fields of research in nuclear medicine is the development of new radiopharmaceuticals for imaging infection and inflammation in humans. For this development, several antimicrobial peptides, antibiotics, antibiotic peptide and chemotactic peptides, etc., have been radiolabeled with different radionuclides ( 67 Ga, 99m Tc, 111 In, 18 F, 131 I, etc.) and their imaging potentials studied. Actually, it is very important to distinguish between infection and inflammation. In this respect, radiolabeled antibiotics have advantages because many of the properties of the ideal infection-specific agent through antibiotics localizes in infection site. In this review, only 99m Tc-labeled antibiotics are evaluated and discussed. (author)

  13. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of resistant pathogens.

  14. Antimicrobial Peptides for Therapeutic Applications: A Review

    Directory of Open Access Journals (Sweden)

    Tsogbadrakh Mishig-Ochir

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.

  15. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  16. Combating Antibiotic Resistance

    Science.gov (United States)

    ... Bacteria Phasing Out Certain Antibiotic Use in Farm Animals FDA: Cutting-Edge Technology Sheds Light on Antibiotic Resistance For More Information Antibiotics and Antibiotic Resistance Antimicrobial Resistance Information for Consumers and Health Professionals CDC: ...

  17. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  18. Prescribing Antibiotics

    DEFF Research Database (Denmark)

    Pedersen, Inge Kryger; Jepsen, Kim Sune

    2018-01-01

    The medical professions will lose an indispensable tool in clinical practice if even simple infections cannot be cured because antibiotics have lost effectiveness. This article presents results from an exploratory enquiry into “good doctoring” in the case of antibiotic prescribing at a time when...... the knowledge base in the healthcare field is shifting. Drawing on in-depth interviews about diagnosing and prescribing, the article demonstrates how the problem of antimicrobial resistance is understood and engaged with by Danish general practitioners. When general practitioners speak of managing “non......-medical issues,” they refer to routines, clinical expertise, experiences with their patients, and decision-making based more on contextual circumstances than molecular conditions—and on the fact that such conditions can be hard to assess. This article’s contribution to knowledge about how new and global health...

  19. Anti-inflammatory Properties of Antimicrobial Peptides and Peptidomimetics

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Franzyk, Henrik

    2017-01-01

    Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) neutralization constitute potential non-antibiotic treatment strategies for sepsis - a systemic infection-induced inflammatory response. Studies on LPS- and LTA-neutralizing compounds are abundant in literature, and a number of peptides...

  20. Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Etzerodt, Thomas Povl; Gjetting, Torben

    2014-01-01

    The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the "antibiotic era''. Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further opti...

  1. Lysobacter species: a potential source of novel antibiotics.

    Science.gov (United States)

    Panthee, Suresh; Hamamoto, Hiroshi; Paudel, Atmika; Sekimizu, Kazuhisa

    2016-11-01

    Infectious diseases threaten global health due to the ability of microbes to acquire resistance against clinically used antibiotics. Continuous discovery of antibiotics with a novel mode of action is thus required. Actinomycetes and fungi are currently the major sources of antibiotics, but the decreasing rate of discovery of novel antibiotics suggests that the focus should be changed to previously untapped groups of microbes. Lysobacter species have a genome size of ~6 Mb with a relatively high G + C content of 61-70 % and are characterized by their ability to produce peptides that damage the cell walls or membranes of other microbes. Genome sequence analysis revealed that each Lysobacter species has gene clusters for the production of 12-16 secondary metabolites, most of which are peptides, thus making them 'peptide production specialists'. Given that the number of antibiotics isolated is much lower than the number of gene clusters harbored, further intensive studies of Lysobacter are likely to unearth novel antibiotics with profound biomedical applications. In this review, we summarize the structural diversity, activity and biosynthesis of lysobacterial antibiotics and highlight the importance of Lysobacter species for antibiotic production.

  2. A novel chimeric peptide with antimicrobial activity.

    Science.gov (United States)

    Alaybeyoglu, Begum; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2015-04-01

    Beta-lactamase-mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co-administration of beta-lactam type antibiotics and beta-lactamase inhibitors. Antimicrobial peptides are promising broad-spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46-Tyr51 beta-hairpin loop of beta-lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta-lactamase. Here, our goal was to modify this peptide for improved beta-lactamase inhibition and cellular uptake. Motivated by the cell-penetrating pVEC sequence, which includes a hydrophobic stretch at its N-terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N-terminus to facilitate uptake. Activity measurements of the peptide based on the 45-53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta-lactamase inhibitor with a K(i) value of 58 μM. Incubation of beta-lactam-resistant cells with peptide decreased the number of viable cells, while it had no effect on beta-lactamase-free cells, indicating that this peptide had antimicrobial activity via beta-lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N-terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta-lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  3. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  4. Amphiphilic Peptide Interactions with Complex Biological Membranes : Effect of peptide properties on antimicrobial and anti-inflammatory effects

    OpenAIRE

    Singh, Shalini

    2016-01-01

    With increasing problem of resistance development in bacteria against conventional antibiotics, as well as problems associated with diseases either triggered or enhanced by infection, there is an urgent need to identify new types of effective therapeutics for the treatment of infectious diseases and its consequences. Antimicrobial and anti-inflammatory peptides have attracted considerable interest as potential new antibiotics in this context. While antimicrobial function of such peptides is b...

  5. Construction of hybrid peptide synthetases by module and domain fusions.

    Science.gov (United States)

    Mootz, H D; Schwarzer, D; Marahiel, M A

    2000-05-23

    Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min(-1) and 2.1 min(-1). The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides.

  6. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Hansen, Malene Plejdrup; Hoffmann, Tammy C; McCullough, Amanda R

    2015-01-01

    hygiene, and possibly vaccination and exercise, may be effective. Also, a large range of complementary and alternative medicines (e.g. zinc, vitamin C and probiotics) are proposed for preventing and treating ARIs, but evidence for efficacy is scarce. General practitioners' (GPs) attitudes towards...... wrong. Shared decision making might be a solution, as it enables clinician and patient to participate jointly in making a health decision, having discussed the options together with the evidence for their harms as well as benefits. Furthermore, GPs' diagnostic uncertainty - often leading...... will greatly improve the use of antibiotics for ARIs. However, used in concert, combinations are likely to enable clinicians and health care systems to implement the strategies that will reduce antimicrobial resistance in the future....

  7. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  8. Demographics of antibiotic persistence

    DEFF Research Database (Denmark)

    Kollerova, Silvia; Jouvet, Lionel; Steiner, Ulrich

    Persister cells, cells that can survive antibiotic exposure but lack heritable antibiotic resistance, are assumed to play a crucial role for the evolution of antibiotic resistance. Persistence is a stage associated with reduced metabolic activity. Most previous studies have been done on batch...... even play a more prominent role for the evolution of resistance and failures of medical treatment by antibiotics as currently assumed....

  9. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes

    Czech Academy of Sciences Publication Activity Database

    Vopálenská, I.; Váchová, Libuše; Palková, Z.

    2015-01-01

    Roč. 72, OCT 2015 (2015), s. 160-167 ISSN 0956-5663 R&D Projects: GA TA ČR(CZ) TA01011461; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Yeast biosensor * Copper ion detection * Purine synthesis pathway Subject RIV: DJ - Water Pollution ; Quality Impact factor: 7.476, year: 2015

  10. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani

    DEFF Research Database (Denmark)

    Romans-Fuertes, Patricia; Sondergaard, Teis Esben; Sandmann, Manuela Ilse Helga

    2016-01-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate kno...... and Trichoderma virens, which suggests that the ability to produce compounds related to destruxin and sansalvamide is widespread....

  11. Screening And Optimizing Antimicrobial Peptides By Using SPOT-Synthesis

    Science.gov (United States)

    López-Pérez, Paula M.; Grimsey, Elizabeth; Bourne, Luc; Mikut, Ralf; Hilpert, Kai

    2017-04-01

    Peptide arrays on cellulose are a powerful tool to investigate peptide interactions with a number of different molecules, for examples antibodies, receptors or enzymes. Such peptide arrays can also be used to study interactions with whole cells. In this review, we focus on the interaction of small antimicrobial peptides with bacteria. Antimicrobial peptides (AMPs) can kill multidrug-resistant (MDR) human pathogenic bacteria and therefore could be next generation antibiotics targeting MDR bacteria. We describe the screen and the result of different optimization strategies of peptides cleaved from the membrane. In addition, screening of antibacterial activity of peptides that are tethered to the surface is discussed. Surface-active peptides can be used to protect surfaces from bacterial infections, for example implants.

  12. Antimicrobial activity of GN peptides and their mode of action

    DEFF Research Database (Denmark)

    Mojsoska, Biljana; Nielsen, Hanne Mørck; Jenssen, Håvard

    2016-01-01

    peptides due to their characteristics as naturally derived compounds with antimicrobial activity. In this study, we aimed at characterizing the mechanism of action of a small set of in silico optimized peptides. Following determination of peptide activity against E. coli, S. aureus, and P. aeruginosa......Increasing prevalence of bacteria that carries resistance towards conventional antibiotics has prompted the investigation into new compounds for bacterial intervention to ensure efficient infection control in the future. One group of potential lead structures for antibiotics is antimicrobial...

  13. Antibiotics in the clinical pipeline in 2013.

    Science.gov (United States)

    Butler, Mark S; Blaskovich, Mark A; Cooper, Matthew A

    2013-10-01

    The continued emergence of multi-drug-resistant bacteria is a major public health concern. The identification and development of new antibiotics, especially those with new modes of action, is imperative to help treat these infections. This review lists the 22 new antibiotics launched since 2000 and details the two first-in-class antibiotics, fidaxomicin (1) and bedaquiline (2), launched in 2011 and 2012, respectively. The development status, mode of action, spectra of activity, historical discovery and origin of the drug pharmacophore (natural product, natural product derived, synthetic or protein/mammalian peptide) of the 49 compounds and 6 β-lactamase/β-lactam combinations in active clinical development are discussed, as well as compounds that have been discontinued from clinical development since 2011. New antibacterial pharmacophore templates are also reviewed and analyzed.

  14. The role of antimicrobial peptides in animal defenses

    Science.gov (United States)

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  15. Evaluation of ⁹⁹(m)Tc-labeled antibiotics for infection detection.

    Science.gov (United States)

    Lambrecht, Fatma Yurt

    2011-01-01

    One of the fields of research in nuclear medicine is the development of new radiopharmaceuticals for imaging infection and inflammation in humans. For this development, several antimicrobial peptides, antibiotics, antibiotic peptide and chemotactic peptides, etc., have been radiolabeled with different radionuclides (⁶⁷Ga, ⁹⁹(m)Tc, ¹¹¹In, ¹⁸F, ¹³¹I, etc.) and their imaging potentials studied. Actually, it is very important to distinguish between infection and inflammation. In this respect, radiolabeled antibiotics have advantages because many of the properties of the ideal infection-specific agent through antibiotics localizes in infection site. In this review, only ⁹⁹(m)Tc-labeled antibiotics are evaluated and discussed.

  16. The antibiotic resistome.

    Science.gov (United States)

    Wright, Gerard D

    2010-08-01

    Antibiotics are essential for the treatment of bacterial infections and are among our most important drugs. Resistance has emerged to all classes of antibiotics in clinical use. Antibiotic resistance has, proven inevitable and very often it emerges rapidly after the introduction of a drug into the clinic. There is, therefore, a great interest in understanding the origins, scope and evolution of antibiotic resistance. The review discusses the concept of the antibiotic resistome, which is the collection of all genes that directly or indirectly contribute to antibiotic resistance. The review seeks to assemble current knowledge of the resistome concept as a means of understanding the totality of resistance and not just resistance in pathogenic bacteria. The concept of the antibiotic resistome provides a framework for the study and understanding of how resistance emerges and evolves. Furthermore, the study of the resistome reveals strategies that can be applied in new antibiotic discoveries.

  17. The antibacterial peptide ABP-CM4: the current state of its production and applications.

    Science.gov (United States)

    Li, Jian Feng; Zhang, Jie; Xu, Xing Zhou; Han, Yang Yang; Cui, Xian Wei; Chen, Yu Qing; Zhang, Shuang Quan

    2012-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as a promising candidate for a new antibiotic. For pharmaceutical applications, a large quantity of antimicrobial peptides needs to be produced economically. In this communication, the progress in the structural characteristics, heterologous production, and biological evaluation of ABP-CM4 are reviewed.

  18. Nunamycin and Nunapeptin: Two novel cyclic peptides are key components of the antimicrobial activity of the Greenlandic isolate Pseudomonas fluorescens In5

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Phippen, Christopher; Nielsen, Kristian F.

    Pseudomonas spp. are a rich source of secondary metabolites including bioactive non-ribosomal peptides (NRPs) and polyketides. NRPs are synthesised in large assembly lines by multi-domain modular enzymes known as NRP-synthetases (NRPS). Nunamycin and nunapeptin are two cyclic NRPs synthesised...... by the Greenlandic isolate P. fluorescens In5. Nunamycin shows antifungal activity against the basidiomycete Rhizoctonia solani whereas the only partially structure elucidated nunapeptin appears most active against the ascomycete Fusarium graminearum and the oomycete Pythium aphanidermatum. Originally isolated from...

  19. Know When Antibiotics Work

    Centers for Disease Control (CDC) Podcasts

    2015-04-15

    This podcast provides a brief background about antibiotics and quick tips to help prevent antibiotic resistance.  Created: 4/15/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  20. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you've been diagnosed with an infectious disease.

  1. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Systemic antibiotics in periodontics.

    Science.gov (United States)

    Slots, Jørgen

    2004-11-01

    This position paper addresses the role of systemic antibiotics in the treatment of periodontal disease. Topical antibiotic therapy is not discussed here. The paper was prepared by the Research, Science and Therapy Committee of the American Academy of Periodontology. The document consists of three sections: 1) concept of antibiotic periodontal therapy; 2) efficacy of antibiotic periodontal therapy; and 3) practical aspects of antibiotic periodontal therapy. The conclusions drawn in this paper represent the position of the American Academy of Periodontology and are intended for the information of the dental profession.

  3. Peptide stabilized amphotericin B nanodisks

    Science.gov (United States)

    Tufteland, Megan; Pesavento, Joseph B.; Bermingham, Rachelle L.; Hoeprich, Paul D.; Ryan, Robert O.

    2007-01-01

    Nanometer scale apolipoprotein A-I stabilized phospholipid disk complexes (nanodisks; ND) have been formulated with the polyene antibiotic amphotericin B (AMB). The present studies were designed to evaluate if a peptide can substitute for the function of the apolipoprotein component of ND with respect to particle formation and stability. An 18-residue synthetic amphipathic α-helical peptide, termed 4F (Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2), solubilized vesicles comprised of egg phosphatidylcholine (egg PC), dipentadecanoyl PC or dimyristoylphosphatidylcholine (DMPC) at rates greater than or equal to solubilization rates observed with human apolipoprotein A-I (apoA-I; 243 amino acids). Characterization studies revealed that interaction with DMPC induced a near doubling of 4F tryptophan fluorescence emission quantum yield (excitation 280 nm) and a ~7 nm blue shift in emission wavelength maximum. Inclusion of AMB in the vesicle substrate resulted in formation of 4F AMB-ND. Spectra of AMB containing particles revealed the antibiotic is a highly effective quencher of 4F tryptophan fluorescence emission, giving rise to a Ksv = 7.7 × 104. Negative stain electron microscopy revealed that AMB-ND prepared with 4F possessed a disk shaped morphology similar to ND prepared without AMB or prepared with apoA-I. In yeast and pathogenic fungi growth inhibition assays, 4F AMB-ND was as effective as apoA-I AMB-ND. The data indicate that AMB-ND generated using an amphipathic peptide in lieu of apoA-I form a discrete population of particles that possess potent biological activity. Given their intrinsic versatility, peptides may be preferred for scale up and clinical application of AMB-ND. PMID:17293004

  4. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species

    DEFF Research Database (Denmark)

    Röhrich, Christian René; Jaklitsch, Walter Michael; Voglmayr, Hermann

    2014-01-01

    Approximately 950 individual sequences of nonribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocreathat belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are......Approximately 950 individual sequences of nonribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocreathat belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus...

  5. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  6. Designing Antibacterial Peptides with Enhanced Killing Kinetics

    Directory of Open Access Journals (Sweden)

    Faiza H. Waghu

    2018-02-01

    Full Text Available Antimicrobial peptides (AMPs are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide.

  7. Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia

    NARCIS (Netherlands)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    BACKGROUND: Antibiotic resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multi-drug resistant bacterial infections. Antimicrobial peptides (AMPs) have been

  8. Antibiotics and Breastfeeding.

    Science.gov (United States)

    de Sá Del Fiol, Fernando; Barberato-Filho, Silvio; de Cássia Bergamaschi, Cristiane; Lopes, Luciane Cruz; Gauthier, Timothy P

    2016-01-01

    During the breastfeeding period, bacterial infections can occur in the nursing mother, requiring the use of antibiotics. A lack of accurate information may lead health care professionals and mothers to suspend breastfeeding, which may be unnecessary. This article provides information on the main antibiotics that are appropriate for clinical use and the interference of these antibiotics with the infant to support medical decisions regarding the discontinuation of breastfeeding. We aim to provide information on the pharmacokinetic factors that interfere with the passage of antibiotics into breast milk and the toxicological implications of absorption by the infant. Publications related to the 20 most frequently employed antibiotics and their transfer into breast milk were evaluated. The results demonstrate that most antibiotics in clinical use are considered suitable during breastfeeding; however, the pharmacokinetic profile of each drug must be observed to ensure the resolution of the maternal infection and the safety of the infant. © 2016 S. Karger AG, Basel.

  9. High Antibiotic Consumption

    DEFF Research Database (Denmark)

    Malo, Sara; José Rabanaque, María; Feja, Cristina

    2014-01-01

    Heavy antibiotic users are those individuals with the highest exposure to antibiotics. They play an important role as contributors to the increasing risk of antimicrobial resistance. We applied different methods to identify and characterize the group of heavy antibiotic users in Spain as well...... as their exposure to antibiotics. Data on outpatient prescribing of antimicrobials (ATC J01) in 2010 were obtained from a prescription database covering Aragón (northeastern Spain). The antimicrobial consumption at the individual level was analysed both according to the volume of DDD and the number of packages...... purchased per year. Heavy antibiotic users were identified according to Lorenz curves and characterized by age, gender, and their antimicrobial prescription profile. Lorenz curves demonstrated substantial differences in the individual use of antimicrobials. Heavy antibiotic users (5% of individuals...

  10. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    Directory of Open Access Journals (Sweden)

    Liliana I. Barbosa-Santillán

    2016-01-01

    Full Text Available We present an Identify Selective Antibacterial Peptides (ISAP approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides. Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2. ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.

  11. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  12. Diversity, evolution and medical applications of insect antimicrobial peptides

    OpenAIRE

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-01-01

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolutio...

  13. Synergistic Efficacy of Aedes aegypti Antimicrobial Peptide Cecropin A2 and Tetracycline against Pseudomonas aeruginosa

    OpenAIRE

    Zheng, Zhaojun; Tharmalingam, Nagendran; Liu, Qingzhong; Jayamani, Elamparithi; Kim, Wooseong; Fuchs, Beth Burgwyn; Zhang, Rijun; Vilcinskas, Andreas; Mylonakis, Eleftherios

    2017-01-01

    The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pat...

  14. Structure of polysaccharide antibiotics

    International Nuclear Information System (INIS)

    Matutano, L.

    1966-01-01

    Study of the structure of antibiotics having two or several sugars in their molecule. One may distinguish: the polysaccharide antibiotics themselves, made up of two or several sugars either with or without nitrogen, such as streptomycin, neomycins, paromomycine, kanamycin, chalcomycin; the hetero-polysaccharide antibiotics made up of one saccharide part linked to an aglycone of various type through a glucoside: macrolide, pigment, pyrimidine purine. Amongst these latter are: erythromycin, magnamycin, spiramycin, oleandomycin, cinerubin and amicetin. The sugars can either play a direct role in biochemical reactions or act as a dissolving agent, as far as the anti-microbe power of these antibiotics is concerned. (author) [fr

  15. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you’ve been diagnosed with an infectious disease.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  16. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods,

  17. Biofilm Induced Tolerance Towards Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Folkesson, Anders; Haagensen, Janus Anders Juul; Zampaloni, Claudia

    2008-01-01

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due...... to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics...... of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically...

  18. Prediction, production and characterization of post-translationally modified antimicrobial peptides

    NARCIS (Netherlands)

    van Heel, Auke Johan

    2016-01-01

    Pathogenic bacteria are rapidly becoming resistant to the currently used antibiotics therefore we need novel antibiotics, preferably with new mechanisms of action. One potential source are the so called antimicrobial peptides that are produced by many different organisms. To gain access to these

  19. [Antibiotics: present and future].

    Science.gov (United States)

    Bérdy, János

    2013-04-14

    The author discuss the up to date interpretation of the concept of antibiotics and antibiotic research, as well as the present role of various natural, semisynthetic and synthetic antibiotic compounds in various areas of the human therapy. The origin and the total number of all antibiotics and applied antibiotics in the practice, as well as the bioactive microbial metabolites (antibiotics) in other therapeutical, non-antibiotic fields (including agriculture) are also reviewed. The author discusses main problems, such as increasing (poly)resistance, virulence of pathogens and the non-scientific factors (such as a decline of research efforts and their sociological, economic, financial and regulatory reasons). A short summary of the history of Hungarian antibiotic research is also provided. The author briefly discusses the prospects in the future and the general advantages of the natural products over synthetic compounds. It is concluded that new approaches for the investigation of the unlimited possibilities of the living world are necessary. The discovery of new types or simply neglected (micro)organisms and their biosynthetic capabilities, the introduction of new biotechnological and genetic methods (genomics, metagenom, genome mining) are absolutely required in the future.

  20. The future of antibiotics

    Science.gov (United States)

    2014-01-01

    Antibiotic resistance continues to spread even as society is experiencing a market failure of new antibiotic research and development (R&D). Scientific, economic, and regulatory barriers all contribute to the antibiotic market failure. Scientific solutions to rekindle R&D include finding new screening strategies to identify novel antibiotic scaffolds and transforming the way we think about treating infections, such that the goal is to disarm the pathogen without killing it or modulate the host response to the organism without targeting the organism for destruction. Future economic strategies are likely to focus on ‘push’ incentives offered by public-private partnerships as well as increasing pricing by focusing development on areas of high unmet need. Such strategies can also help protect new antibiotics from overuse after marketing. Regulatory reform is needed to re-establish feasible and meaningful traditional antibiotic pathways, to create novel limited-use pathways that focus on highly resistant infections, and to harmonize regulatory standards across nations. We need new antibiotics with which to treat our patients. But we also need to protect those new antibiotics from misuse when they become available. If we want to break the cycle of resistance and change the current landscape, disruptive approaches that challenge long-standing dogma will be needed. PMID:25043962

  1. History of Antibiotics Research.

    Science.gov (United States)

    Mohr, Kathrin I

    2016-01-01

    For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms

  2. Antimicrobial and immunomodulatory activities of PR-39 derived peptides.

    Directory of Open Access Journals (Sweden)

    Edwin J A Veldhuizen

    Full Text Available The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics.

  3. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides

    Science.gov (United States)

    Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.

    2014-01-01

    The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622

  4. Antimicrobial Peptides: Multifunctional Drugs for Different Applications

    Directory of Open Access Journals (Sweden)

    Lea-Jessica Albrecht

    2012-02-01

    Full Text Available Antimicrobial peptides (APs are an important part of the innate immune system in epithelial and non-epithelial surfaces. So far, many different antimicrobial peptides from various families have been discovered in non-vertebrates and vertebrates. They are characterized by antibiotic, antifungal and antiviral activities against a variety of microorganisms. In addition to their role as endogenous antimicrobials, APs participate in multiple aspects of immunity. They are involved in septic and non-septic inflammation, wound repair, angiogenesis, regulation of the adaptive immune system and in maintaining homeostasis. Due to those characteristics AP could play an important role in many practical applications. Limited therapeutic efficiency of current antimicrobial agents and the emerging resistance of pathogens require alternate antimicrobial drugs. The purpose of this review is to highlight recent literature on functions and mechanisms of APs. It also shows their current practical applications as peptide therapeutics and bioactive polymers and discusses the possibilities of future clinical developments.

  5. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation

    DEFF Research Database (Denmark)

    Harris, Abigail K P; Williamson, Neil R; Slater, Holly

    2004-01-01

    The prodigiosin biosynthesis gene cluster (pig cluster) from two strains of Serratia (S. marcescens ATCC 274 and Serratia sp. ATCC 39006) has been cloned, sequenced and expressed in heterologous hosts. Sequence analysis of the respective pig clusters revealed 14 ORFs in S. marcescens ATCC 274...... and 15 ORFs in Serratia sp. ATCC 39006. In each Serratia species, predicted gene products showed similarity to polyketide synthases (PKSs), non-ribosomal peptide synthases (NRPSs) and the Red proteins of Streptomyces coelicolor A3(2). Comparisons between the two Serratia pig clusters and the red cluster...... from Str. coelicolor A3(2) revealed some important differences. A modified scheme for the biosynthesis of prodigiosin, based on the pathway recently suggested for the synthesis of undecylprodigiosin, is proposed. The distribution of the pig cluster within several Serratia sp. isolates is demonstrated...

  6. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Bleich, Rachel; Watrous, Jeramie D; Dorrestein, Pieter C; Bowers, Albert A; Shank, Elizabeth A

    2015-03-10

    Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called "secondary" metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin's antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects--acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes.

  7. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  8. Optimization of antibacterial peptides by genetic algorithms and cheminformatics

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Jenssen, Håvard; Cheung, Warren A.

    2011-01-01

    Pathogens resistant to available drug therapies are a pressing global health problem. Short, cationic peptides represent a novel class of agents that have lower rates of drug resistance than derivatives of current antibiotics. Previously, we created a software system utilizing artificial neural...... 47 of the top rated 50 peptides chosen from an in silico library of nearly 100 000 sequences. Here, we report a method of generating candidate peptide sequences using the heuristic evolutionary programming method of genetic algorithms (GA), which provided a large (19-fold) improvement...

  9. The effect of a beta-lactamase inhibitor peptide on bacterial membrane structure and integrity: a comparative study.

    Science.gov (United States)

    Alaybeyoglu, Begum; Uluocak, Bilge Gedik; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2017-05-01

    Co-administration of beta-lactam antibiotics and beta-lactamase inhibitors has been a favored treatment strategy against beta-lactamase-mediated bacterial antibiotic resistance, but the emergence of beta-lactamases resistant to current inhibitors necessitates the discovery of novel non-beta-lactam inhibitors. Peptides derived from the Ala46-Tyr51 region of the beta-lactamase inhibitor protein are considered as potent inhibitors of beta-lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell-penetrating peptides could guide the design of beta-lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta-lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell-penetrating peptide pVEC, our approach involved the addition of the N-terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta-lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta-lactam antibiotic ampicillin, and the beta-lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N-terminus of the beta-lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N-terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European

  10. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    NARCIS (Netherlands)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This

  11. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  12. Bacteriocins: New generation of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    P. Motahari

    2017-06-01

    Full Text Available Antibiotics are used as a first-choice to inhibit microbial growth since the discovery in the first half of the 19th century. Nevertheless, the widespread use of antibiotics has resulted in the emergence of antibiotic-resistant strains that is one of our century problems. Concerns about antibiotic resistant is so serious which huge budget is allocated for discovery of alternative drugs in many countries. Bacteriocin is one of these compounds which was first discovered in 1925, released into the medium by E. coli. Bacteriocins are antimicrobial peptides or proteins ribosomally synthesized by many bacterial species. The use of this antimicrobial molecules in food industry obviate consumers need to safe food with least interference of chemical substances. Nisin, the most well-known bacteriocin, is the first bacteriocin found its way to food industry. Despite the widespread application of bacteriocins, resistance is seen in some species. Although it’s exact mechanism is not clear. So according to the today’s world need to find effective methods to control pathogens, studies of bacteriocins as a substitute for antibiotics are so important. The present review has studied the structure and activity of five classes of bacteriocins from gene to function in gram positive bacteria.

  13. Selection of antibiotic resistance at very low antibiotic concentrations

    OpenAIRE

    Sandegren, Linus

    2014-01-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are fou...

  14. Antibiotic alternatives: the substitution of antibiotics in animal husbandry?

    OpenAIRE

    Cheng, Guyue; Hao, Haihong; Xie, Shuyu; Wang, Xu; Dai, Menghong; Huang, Lingli; Yuan, Zonghui

    2014-01-01

    It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really ...

  15. Antibiotic-Resistant Gonorrhea

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Gonorrhea Note: Javascript is disabled or is not supported ... on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Recommend on Facebook Tweet Share Compartir Low Resolution ...

  16. Antibiotics for uncomplicated diverticulitis

    DEFF Research Database (Denmark)

    Shabanzadeh, Daniel M; Wille-Jørgensen, Peer

    2012-01-01

    Diverticulitis is an inflammatory complication to the very common condition diverticulosis. Uncomplicated diverticulitis has traditionally been treated with antibiotics with reference to the microbiology, extrapolation from trials on complicated intra-abdominal infections and clinical experience....

  17. Antibiotics for sore throat.

    Science.gov (United States)

    Spinks, Anneliese; Glasziou, Paul P; Del Mar, Chris B

    2013-11-05

    Sore throat is a common reason for people to present for medical care. Although it remits spontaneously, primary care doctors commonly prescribe antibiotics for it. To assess the benefits of antibiotics for sore throat for patients in primary care settings. We searched CENTRAL 2013, Issue 6, MEDLINE (January 1966 to July week 1, 2013) and EMBASE (January 1990 to July 2013). Randomised controlled trials (RCTs) or quasi-RCTs of antibiotics versus control assessing typical sore throat symptoms or complications. Two review authors independently screened studies for inclusion and extracted data. We resolved differences in opinion by discussion. We contacted trial authors from three studies for additional information. We included 27 trials with 12,835 cases of sore throat. We did not identify any new trials in this 2013 update. 1. Symptoms Throat soreness and fever were reduced by about half by using antibiotics. The greatest difference was seen at day three. The number needed to treat to benefit (NNTB) to prevent one sore throat at day three was less than six; at week one it was 21. 2. Non-suppurative complications The trend was antibiotics protecting against acute glomerulonephritis but there were too few cases to be sure. Several studies found antibiotics reduced acute rheumatic fever by more than two-thirds within one month (risk ratio (RR) 0.27; 95% confidence interval (CI) 0.12 to 0.60). 3. Suppurative complications Antibiotics reduced the incidence of acute otitis media within 14 days (RR 0.30; 95% CI 0.15 to 0.58); acute sinusitis within 14 days (RR 0.48; 95% CI 0.08 to 2.76); and quinsy within two months (RR 0.15; 95% CI 0.05 to 0.47) compared to those taking placebo. 4. Subgroup analyses of symptom reduction Antibiotics were more effective against symptoms at day three (RR 0.58; 95% CI 0.48 to 0.71) if throat swabs were positive for Streptococcus, compared to RR 0.78; 95% CI 0.63 to 0.97 if negative. Similarly at week one the RR was 0.29 (95% CI 0.12 to 0

  18. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  19. Antibiotics produced by Streptomyces.

    Science.gov (United States)

    Procópio, Rudi Emerson de Lima; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de

    2012-01-01

    Streptomyces is a genus of Gram-positive bacteria that grows in various environments, and its shape resembles filamentous fungi. The morphological differentiation of Streptomyces involves the formation of a layer of hyphae that can differentiate into a chain of spores. The most interesting property of Streptomyces is the ability to produce bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, immunosuppressants, and especially antibiotics. The production of most antibiotics is species specific, and these secondary metabolites are important for Streptomyces species in order to compete with other microorganisms that come in contact, even within the same genre. Despite the success of the discovery of antibiotics, and advances in the techniques of their production, infectious diseases still remain the second leading cause of death worldwide, and bacterial infections cause approximately 17 million deaths annually, affecting mainly children and the elderly. Self-medication and overuse of antibiotics is another important factor that contributes to resistance, reducing the lifetime of the antibiotic, thus causing the constant need for research and development of new antibiotics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  20. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  1. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  2. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  3. The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin

    Science.gov (United States)

    Ravichandran, Akshaya; Gu, Ganyu; Escano, Jerome; Lu, Shi-En; Smith, Leif

    2014-01-01

    Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinate the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides. PMID:23394257

  4. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  5. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Edward Geisinger

    2015-02-01

    Full Text Available Acinetobacter baumannii is an opportunistic pathogen of increasing importance due to its propensity for intractable multidrug-resistant infections in hospitals. All clinical isolates examined contain a conserved gene cluster, the K locus, which determines the production of complex polysaccharides, including an exopolysaccharide capsule known to protect against killing by host serum and to increase virulence in animal models of infection. Whether the polysaccharides determined by the K locus contribute to intrinsic defenses against antibiotics is unknown. We demonstrate here that mutants deficient in the exopolysaccharide capsule have lowered intrinsic resistance to peptide antibiotics, while a mutation affecting sugar precursors involved in both capsule and lipopolysaccharide synthesis sensitizes the bacterium to multiple antibiotic classes. We observed that, when grown in the presence of certain antibiotics below their MIC, including the translation inhibitors chloramphenicol and erythromycin, A. baumannii increases production of the K locus exopolysaccharide. Hyperproduction of capsular exopolysaccharide is reversible and non-mutational, and occurs concomitantly with increased resistance to the inducing antibiotic that is independent of the presence of the K locus. Strikingly, antibiotic-enhanced capsular exopolysaccharide production confers increased resistance to killing by host complement and increases virulence in a mouse model of systemic infection. Finally, we show that augmented capsule production upon antibiotic exposure is facilitated by transcriptional increases in K locus gene expression that are dependent on a two-component regulatory system, bfmRS. These studies reveal that the synthesis of capsule, a major pathogenicity determinant, is regulated in response to antibiotic stress. Our data are consistent with a model in which gene expression changes triggered by ineffectual antibiotic treatment cause A. baumannii to transition

  6. Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in Ethylmalonyl-CoA Supply and Tailoring Reactions

    DEFF Research Database (Denmark)

    Robertsen, Helene L.; Musiol-Kroll, Ewa M.; Ding, Ling

    2018-01-01

    Kirromycin is the main product of the soil-dwelling Streptomyces collinus Tü 365. The elucidation of the biosynthetic pathway revealed that the antibiotic is synthesised via a unique combination of trans-/cis-AT type I polyketide synthases and non-ribosomal peptide synthetases (PKS I/NRPS). This ...

  7. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Flores-Villaseñor, Héctor; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Nazmi, Kamram; de la Garza, Mireya; Zazueta-Beltrán, Jorge; León-Sicairos, Nidia; Bolscher, Jan G M

    2010-06-01

    Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria is thus needed. This study therefore aimed to evaluate the ability of bovine lactoferrin (LF), peptides from two antimicrobial domains lactoferricin B (LFcin17-30) and lactoferrampin (LFampin265-284) and a chimeric construct (LFchimera) containing both peptides, as potential bactericidal agents against clinical isolates of antibiotic-resistant Staphylococcus aureus and Escherichia coli. Results in kinetics of growth show that LF chimera and peptides inhibited the growth of both bacterial species. By confocal microscopy and flow cytometry it was observed that LF and FITC-labeled peptides are able to interact with these bacteria and cause membrane permeabilization, as monitored by propidium iodide staining, these effects were decreased by preincubation with lipopolysaccharide in E. coli. By electron microscopy, a clear cellular damage was observed in bacteria after treatments with LFchimera and peptides, suggesting that interaction and membrane disruption are probably involved as a mechanism of action. In conclusion, results show that LFchimera, LF and peptides have potential as bactericidal agents in the antibiotic-resistant strains of S. aureus and E. coli and also the work strongly suggest that LFcin17-30 and LFampin265-284 acts synergistically with antibiotics against multidrug resistant EPEC and MRSA in vitro.

  8. Direct mass spectrometric screening of antibiotics from bacterial surfaces using liquid extraction surface analysis.

    Science.gov (United States)

    Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš

    2012-10-30

    There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Antibiotics for acute bronchitis.

    Science.gov (United States)

    Smith, Susan M; Fahey, Tom; Smucny, John; Becker, Lorne A

    2017-06-19

    The benefits and risks of antibiotics for acute bronchitis remain unclear despite it being one of the most common illnesses seen in primary care. To assess the effects of antibiotics in improving outcomes and to assess adverse effects of antibiotic therapy for people with a clinical diagnosis of acute bronchitis. We searched CENTRAL 2016, Issue 11 (accessed 13 January 2017), MEDLINE (1966 to January week 1, 2017), Embase (1974 to 13 January 2017), and LILACS (1982 to 13 January 2017). We searched the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov on 5 April 2017. Randomised controlled trials comparing any antibiotic therapy with placebo or no treatment in acute bronchitis or acute productive cough, in people without underlying pulmonary disease. At least two review authors extracted data and assessed trial quality. We did not identify any new trials for inclusion in this 2017 update. We included 17 trials with 5099 participants in the primary analysis. The quality of trials was generally good. At follow-up there was no difference in participants described as being clinically improved between the antibiotic and placebo groups (11 studies with 3841 participants, risk ratio (RR) 1.07, 95% confidence interval (CI) 0.99 to 1.15). Participants given antibiotics were less likely to have a cough (4 studies with 275 participants, RR 0.64, 95% CI 0.49 to 0.85; number needed to treat for an additional beneficial outcome (NNTB) 6) and a night cough (4 studies with 538 participants, RR 0.67, 95% CI 0.54 to 0.83; NNTB 7). Participants given antibiotics had a shorter mean cough duration (7 studies with 2776 participants, mean difference (MD) -0.46 days, 95% CI -0.87 to -0.04). The differences in presence of a productive cough at follow-up and MD of productive cough did not reach statistical significance.Antibiotic-treated participants were more likely to be improved according to clinician's global assessment (6 studies

  10. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  11. Optimization and high-throughput screening of antimicrobial peptides.

    Science.gov (United States)

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  12. A Mig-14-like protein (PA5003) affects antimicrobial peptide recognition in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jochumsen, Nicholas; Liu, Yang; Molin, Søren

    2011-01-01

    The evolution of antibiotic resistance in pathogenic bacteria is a growing global health problem which is gradually making the treatment of infectious diseases less efficient. Antimicrobial peptides are small charged molecules found in organisms from the complete phylogenetic spectrum. The peptides...... are attractive candidates for novel drug development due to their activity against bacteria that are resistant to conventional antibiotics, and reports of peptide resistance are rare in the clinical setting. Paradoxically, many clinically relevant bacteria have mechanisms that can recognize and respond...... to the presence of cationic antimicrobial peptides (CAMPs) in the environment by changing the properties of the microbial surface thereby increasing the tolerance of the microbes towards the peptides. In Pseudomonas aeruginosa an essential component of this inducible tolerance mechanism is the lipopolysaccharide...

  13. The leader peptide of mutacin 1140 has distinct structural components compared to related class I lantibiotics.

    Science.gov (United States)

    Escano, Jerome; Stauffer, Byron; Brennan, Jacob; Bullock, Monica; Smith, Leif

    2014-12-01

    Lantibiotics are ribosomally synthesized peptide antibiotics composed of an N-terminal leader peptide that promotes the core peptide's interaction with the post translational modification (PTM) enzymes. Following PTMs, mutacin 1140 is transported out of the cell and the leader peptide is cleaved to yield the antibacterial peptide. Mutacin 1140 leader peptide is structurally unique compared to other class I lantibiotic leader peptides. Herein, we further our understanding of the structural differences of mutacin 1140 leader peptide with regard to other class I leader peptides. We have determined that the length of the leader peptide is important for the biosynthesis of mutacin 1140. We have also determined that mutacin 1140 leader peptide contains a novel four amino acid motif compared to related lantibiotics. PTM enzyme recognition of the leader peptide appears to be evolutionarily distinct from related class I lantibiotics. Our study on mutacin 1140 leader peptide provides a basis for future studies aimed at understanding its interaction with the PTM enzymes. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  15. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  16. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  17. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  19. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  20. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  1. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  2. Antibiotics and antibiotic resistance in agroecosystems: State of the science

    Science.gov (United States)

    We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly su...

  3. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    Science.gov (United States)

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  4. Overdosing on Antibiotics

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Du, a Beijing resident in her 60s, believes that an antibiotic is a panacea for the maladies of her now 6-year-old grand- daughter Guoguo. Du began to take care of her granddaugh- ter since the child was merely 2 months old, for the gid's parents were busy. She is comfortable with her caretaker duties except when the girl runs high fevers. Then, the anxious grandma will feed the girl antibiotics or take her to a private child clinic nearby for intravenous infusion.

  5. Antibiotics in Animal Products

    Science.gov (United States)

    Falcão, Amílcar C.

    The administration of antibiotics to animals to prevent or treat diseases led us to be concerned about the impact of these antibiotics on human health. In fact, animal products could be a potential vehicle to transfer drugs to humans. Using appropri ated mathematical and statistical models, one can predict the kinetic profile of drugs and their metabolites and, consequently, develop preventive procedures regarding drug transmission (i.e., determination of appropriate withdrawal periods). Nevertheless, in the present chapter the mathematical and statistical concepts for data interpretation are strictly given to allow understanding of some basic pharma-cokinetic principles and to illustrate the determination of withdrawal periods

  6. Anti-Mycobacterial Peptides: From Human to Phage

    Directory of Open Access Journals (Sweden)

    Tieshan Teng

    2015-01-01

    Full Text Available Mycobacterium tuberculosis is the major pathogen of tuberculosis (TB. With the growing problem of M. tuberculosis resistant to conventional antibiotics, especially multi-drug resistant tuberculosis (MDR-TB and extensively-drug resistant tuberculosis (XDR-TB, the need for new TB drugs is now more prominent than ever. Among the promising candidates for anti-TB drugs, anti-mycobacterial peptides have a few advantages, such as low immunogenicity, selective affinity to prokaryotic negatively charged cell envelopes, and diverse modes of action. In this review, we summarize the recent progress in the anti-mycobacterial peptides, highlighting the sources, effectiveness and bactericidal mechanisms of these antimicrobial peptides. Most of the current anti-mycobacterial peptides are derived either from host immune cells, bacterial extraction, or mycobacteriophages. Besides trans-membrane pore formation, which is considered to be the common bactericidal mechanism, many of the anti-mycobacterial peptides have the second non-membrane targets within mycobacteria. Additionally, some antimicrobial peptides play critical roles in innate immunity. However, a few obstacles, such as short half-life in vivo and resistance to antimicrobial peptides, need overcoming before clinical applications. Nevertheless, the multiple functions of anti-mycobacterial peptides, especially direct killing of pathogens and immune-modulators in infectious and inflammatory conditions, indicate that they are promising candidates for future drug development.

  7. Improving antibiotic use in daily hospital practice : The antibiotic checklist

    NARCIS (Netherlands)

    van Daalen, F.V.

    2018-01-01

    Better use of current antibiotic agents is necessary to help control antimicrobial resistance (AMR). Antibiotic stewardship programs (ASPs) are introduced to coordinate activities to measure and improve appropriate antibiotic use in daily hospital practice. This thesis shows how the introduction of

  8. Antimicrobial peptide capsids of de novo design.

    Science.gov (United States)

    De Santis, Emiliana; Alkassem, Hasan; Lamarre, Baptiste; Faruqui, Nilofar; Bella, Angelo; Noble, James E; Micale, Nicola; Ray, Santanu; Burns, Jonathan R; Yon, Alexander R; Hoogenboom, Bart W; Ryadnov, Maxim G

    2017-12-22

    The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.

  9. Diversity, evolution and medical applications of insect antimicrobial peptides.

    Science.gov (United States)

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-05-26

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides.The article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Authors.

  10. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  11. EDITORIAL THE TREASURE CALLED ANTIBIOTICS

    African Journals Online (AJOL)

    pneumonia, typhoid fever, plaque, tuberculosis, typhus, syphilis, etc. were rampant.1 ... the bacteria to resist the effect of antibiotic for which they were initially ... research and development of new antibiotics, vaccines, diagnostic and other tools.

  12. Antibiotic resistance reservoirs

    NARCIS (Netherlands)

    Versluis, Dennis

    2016-01-01

    One of the major threats to human health in the 21st century is the emergence of pathogenic bacteria that are resistant to multiple antibiotics, thereby limiting treatment options. An important route through which pathogens become resistant is via acquisition of resistance genes from

  13. Mechanisms of Antibiotic Resistance

    Science.gov (United States)

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  14. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the

  15. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents.

    Science.gov (United States)

    Mahlapuu, Margit; Håkansson, Joakim; Ringstad, Lovisa; Björn, Camilla

    2016-01-01

    Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.

  16. Deep Learning Improves Antimicrobial Peptide Recognition.

    Science.gov (United States)

    Veltri, Daniel; Kamath, Uday; Shehu, Amarda

    2018-03-24

    Bacterial resistance to antibiotics is a growing concern. Antimicrobial peptides (AMPs), natural components of innate immunity, are popular targets for developing new drugs. Machine learning methods are now commonly adopted by wet-laboratory researchers to screen for promising candidates. In this work we utilize deep learning to recognize antimicrobial activity. We propose a neural network model with convolutional and recurrent layers that leverage primary sequence composition. Results show that the proposed model outperforms state-of-the-art classification models on a comprehensive data set. By utilizing the embedding weights, we also present a reduced-alphabet representation and show that reasonable AMP recognition can be maintained using nine amino-acid types. Models and data sets are made freely available through the Antimicrobial Peptide Scanner vr.2 web server at: www.ampscanner.com. amarda@gmu.edu for general inquiries and dan.veltri@gmail.com for web server information. Supplementary data are available at Bioinformatics online.

  17. Antimicrobial Peptides in Biomedical Device Manufacturing

    Directory of Open Access Journals (Sweden)

    Martijn Riool

    2017-08-01

    Full Text Available Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints, and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures, and wound care, biomaterial-associated infections (BAI are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured/3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel

  18. Antimicrobial Peptides in Biomedical Device Manufacturing

    Science.gov (United States)

    Riool, Martijn; de Breij, Anna; Drijfhout, Jan W.; Nibbering, Peter H.; Zaat, Sebastian A. J.

    2017-08-01

    Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures and wound care, biomaterial-associated infections (BAI) are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs) are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant) planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured / 3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel and safe

  19. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  20. When and How to Take Antibiotics

    Science.gov (United States)

    ... bacterial balance, it may cause stomach upsets, diarrhea, vaginal infections, or other problems. If you take antibiotics unnecessarily ... before taking antibiotics? Antibiotics often lead to a vaginal yeast infection. Because antibiotics kill the normal bacteria in the ...

  1. A highly conserved basidiomycete peptide synthetase produces a trimeric hydroxamate siderophore.

    Science.gov (United States)

    Brandenburger, Eileen; Gressler, Markus; Leonhardt, Robin; Lackner, Gerald; Habel, Andreas; Hertweck, Christian; Brock, Matthias; Hoffmeister, Dirk

    2017-08-25

    The model white-rot basidiomycete Ceriporiopsis ( Gelatoporia ) subvermispora B encodes putative natural product biosynthesis genes. Among them is the gene for the seven-domain nonribosomal peptide synthetase CsNPS2. It is a member of the as-yet uncharacterized fungal type VI siderophore synthetase family which is highly conserved and widely distributed among the basidiomycetes. These enzymes include only one adenylation (A) domain, i.e., one complete peptide synthetase module and two thiolation/condensation (T-C) di-domain partial modules which, together, constitute an AT 1 C 1 T 2 C 2 T 3 C 3 domain setup. The full-length CsNPS2 enzyme (274.5 kDa) was heterologously produced as polyhistidine fusion in Aspergillus niger as soluble and active protein. N 5 -acetyl- N 5 -hydroxy-l-ornithine (l-AHO) and N 5 - cis -anhydromevalonyl- N 5 -hydroxy-l-ornithine (l-AMHO) were accepted as substrates, as assessed in vitro using the substrate-dependent [ 32 P]ATP-pyrophosphate radioisotope exchange assay. Full-length holo -CsNPS2 catalyzed amide bond formation between three l-AHO molecules to release the linear l-AHO trimer, called basidioferrin, as product in vitro , which was verified by LC-HRESIMS. Phylogenetic analyses suggest that type VI family siderophore synthetases are widespread in mushrooms and have evolved in a common ancestor of basidiomycetes. Importance : The basidiomycete nonribosomal peptide synthetase CsNPS2 represents a member of a widely distributed but previously uninvestigated class (type VI) of fungal siderophore synthetases. Genes orthologous to CsNPS2 are highly conserved across various phylogenetic clades of the basidiomycetes. Hence, our work serves as a broadly applicable model for siderophore biosynthesis and iron metabolism in higher fungi. Also, our results on the amino acid substrate preference of CsNPS2 supports further understanding of the substrate selectivity of fungal adenylation domains. Methodologically, this report highlights the

  2. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    DEFF Research Database (Denmark)

    Leibovici, Leonard; Paul, Mical; Garner, Paul

    2016-01-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies....... This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should...... controlled trials or systematic reviews....

  3. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  4. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  5. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Martinez, Jose Luis

    2009-01-01

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  6. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  7. Folding and membrane insertion of the pore-forming peptide gramicidin occur as a concerted process.

    Science.gov (United States)

    Hicks, Matthew R; Damianoglou, Angeliki; Rodger, Alison; Dafforn, Timothy R

    2008-11-07

    Many antibiotic peptides function by binding and inserting into membranes. Understanding this process provides an insight into the fundamentals of both membrane protein folding and antibiotic peptide function. For the first time, in this work, flow-aligned linear dichroism (LD) is used to study the folding of the antibiotic peptide gramicidin. LD provides insight into the combined processes of peptide folding and insertion and has the advantage over other similar techniques of being insensitive to off-membrane aggregation events. By combining LD data with conventional measurements of protein fluorescence and circular dichroism, the mechanism of gramicidin insertion is elucidated. The mechanism consists of five separately assignable steps that include formation of a water-insoluble gramicidin aggregate, dissociation from the aggregate, partitioning of peptide to the membrane surface, oligomerisation on the surface and concerted insertion and folding of the peptide to the double-helical form of gramicidin. Measurement of the rates of each step shows that although changes in the fluorescence signal cease 10 s after the initiation of the process, the insertion of the peptide into the membrane is actually not complete for a further 60 min. This last membrane insertion phase is only apparent by measurement of LD and circular dichroism signal changes. In summary, this study demonstrates the importance of multi-technique approaches, including LD, in studies of membrane protein folding.

  8. Bacterial resistance and susceptibility to antimicrobial peptides and peptidomimetics

    DEFF Research Database (Denmark)

    Citterio, Linda

    Bacterial resistance to conventional antibiotics has become a global challenge and there is urgent need for new and alternative compounds. Antimicrobial peptides (AMPs) are under investigation as novel antibiotics. These are part of the immune defense of all living organisms; hence, they represen...... be a threat to our immunity may be overestimated. In conclusion, this PhD project supports the belief that bacteria hold the potential to develop resistance to each novel antibacterial agent. Nevertheless, strategies to circumvent resistance exist and must be pursued....

  9. Machine learning in the rational design of antimicrobial peptides.

    Science.gov (United States)

    Rondón-Villarreal, Paola; Sierra, Daniel A; Torres, Rodrigo

    2014-01-01

    One of the most important public health issues is the microbial and bacterial resistance to conventional antibiotics by pathogen microorganisms. In recent years, many researches have been focused on the development of new antibiotics. Among these, antimicrobial peptides (AMPs) have raised as a promising alternative to combat antibioticresistant microorganisms. For this reason, many theoretical efforts have been done in the development of new computational tools for the rational design of both better and effective AMPs. In this review, we present an overview of the rational design of AMPs using machine learning techniques and new research fields.

  10. Generic antibiotics in Japan.

    Science.gov (United States)

    Fujimura, Shigeru; Watanabe, Akira

    2012-08-01

    Generic drugs have been used extensively in many developed countries, although their use in Japan has been limited. Generic drugs reduce drug expenses and thereby national medical expenditure. Because generic drugs provide advantages for both public administration and consumers, it is expected that they will be more widely used in the future. However, the diffusion rate of generic drugs in Japan is quite low compared with that of other developed countries. An investigation on generic drugs conducted by the Ministry of Health, Labour and Welfare in Japan revealed that 17.2 % of doctors and 37.2 % of patients had not used generic drugs. The major reasons for this low use rate included distrust of off-patent products and lower drug price margin compared with the brand name drug. The generic drugs available in the market include external drugs such as wet packs, antihypertensive agents, analgesics, anticancer drugs, and antibiotics. Among them, antibiotics are frequently used in cases of acute infectious diseases. When the treatment of these infections is delayed, the infection might be aggravated rapidly. The pharmacokinetics-pharmacodynamics (PK-PD) theory has been adopted in recent chemotherapy, and in many cases, the most appropriate dosage and administration of antibiotics are determined for individual patients considering renal function; high-dosage antibiotics are used preferably for a short duration. Therefore, a highly detailed antimicrobial agent is necessary. However, some of the generic antibiotics have less antibacterial potency or solubility than the brand name products. We showed that the potency of the generic products of vancomycin and teicoplanin is lower than that of the branded drugs by 14.6 % and 17.3 %, respectively. Furthermore, we confirmed that a generic meropenem drug for injection required about 82 s to solubilize in saline, whereas the brand product required only about 21 s. It was thought that the cause may be the difference in size of bulk

  11. Sensitizing pathogens to antibiotics using the CRISPR-Cas system.

    Science.gov (United States)

    Goren, Moran; Yosef, Ido; Qimron, Udi

    2017-01-01

    The extensive use of antibiotics over the last century has resulted in a significant artificial selection pressure for antibiotic-resistant pathogens to evolve. Various strategies to fight these pathogens have been introduced including new antibiotics, naturally-derived enzymes/peptides that specifically target pathogens and bacteriophages that lyse these pathogens. A new tool has recently been introduced in the fight against drug-resistant pathogens-the prokaryotic defense mechanism-clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system. The CRISPR-Cas system acts as a nuclease that can be guided to cleave any target DNA, allowing sophisticated, yet feasible, manipulations of pathogens. Here, we review pioneering studies that use the CRISPR-Cas system to specifically edit bacterial populations, eliminate their resistance genes and combine these two strategies in order to produce an artificial selection pressure for antibiotic-sensitive pathogens. We suggest that intelligent design of this system, along with efficient delivery tools into pathogens, may significantly reduce the threat of antibiotic-resistant pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. NOVEL ANTIBIOTIC RESISTANCE DETERMINANTS FROM AGRICULTURAL SOIL EXPOSED TO ANTIBIOTICS WIDELY USED IN HUMAN MEDICINE AND ANIMAL FARMING.

    Science.gov (United States)

    Lau, Calvin Ho-Fung; van Engelen, Kalene; Gordon, Stephen; Renaud, Justin; Topp, Edward

    2017-06-16

    Antibiotic resistance has emerged globally as one of the biggest threats to human and animal health. Although the excessive use of antibiotics is recognized for accelerating the selection for resistance, there is a growing body of evidence suggesting that natural environments are "hotspots" for the development of both ancient and contemporary resistance mechanisms. Given that pharmaceuticals can be entrained onto agricultural land through anthropogenic activities, this could be a potential driver for the emergence and dissemination of resistance in soil bacteria. Using functional metagenomics, we interrogated the "resistome" of bacterial communities found in a collection of Canadian agricultural soil, some of which had been receiving antibiotics widely used in human medicine (macrolides) or food animal production (sulfamethazine, chlortetracycline and tylosin) for up to 16 years. Of the 34 new antibiotic resistance genes (ARGs) recovered, the majority were predicted to encode for (multi)drug efflux systems, while a few share little to no homology with established resistance determinants. We characterized several novel gene products, including putative enzymes that can confer high-level resistance against aminoglycosides, sulfonamides, and broad range of beta-lactams, with respect to their resistance mechanisms and clinical significance. By coupling high-resolution proteomics analysis with functional metagenomics, we discovered an unusual peptide, PPP AZI 4 , encoded within an alternative open-reading frame not predicted by bioinformatics tools. Expression of the proline-rich PPP AZI 4 can promote resistance against different macrolides but not other ribosomal-targeting antibiotics, implicating a new macrolide-specific resistance mechanism that could be fundamentally linked to the evolutionary design of this peptide. IMPORTANCE Antibiotic resistance is a clinical phenomenon with an evolutionary link to the microbial pangenome. Genes and protogenes encoding for

  13. Antibiotic use and microbiome function.

    Science.gov (United States)

    Ferrer, Manuel; Méndez-García, Celia; Rojo, David; Barbas, Coral; Moya, Andrés

    2017-06-15

    Our microbiome should be understood as one of the most complex components of the human body. The use of β-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of administration, duration and dose, as well as the level of resistance that each microbiota develops. We have begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different antibiotic interventions, and that their influence on both microbial composition and metabolism may differ. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing to rise; however, their effects on our microbiota have been reported for only a limited number of them. This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has been linked to changes in the composition of our microbial communities, with a particular focus on the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and viruses most influenced by the main antibiotic treatments prescribed nowadays. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Prescribing antibiotics in general practice:

    DEFF Research Database (Denmark)

    Sydenham, Rikke Vognbjerg; Pedersen, Line Bjørnskov; Plejdrup Hansen, Malene

    Objectives The majority of antibiotics are prescribed from general practice. The use of broad-spectrum antibiotics increases the risk of development of bacteria resistant to antibiotic treatment. In spite of guidelines aiming to minimize the use of broad-spectrum antibiotics we see an increase...... in the use of these agents. The overall aim of the project is to explore factors influencing the decision process and the prescribing behaviour of the GPs when prescribing antibiotics. We will study the impact of microbiological testing on the choice of antibiotic. Furthermore the project will explore how...... the GPs’ prescribing behaviour is influenced by selected factors. Method The study consists of a register-based study and a questionnaire study. The register-based study is based on data from the Register of Medicinal Product Statistics (prescribed antibiotics), Statistics Denmark (socio-demographic data...

  15. Antibiotics and oral contraceptives.

    Science.gov (United States)

    DeRossi, Scott S; Hersh, Elliot V

    2002-10-01

    With the exception of rifampin-like drugs, there is a lack of scientific evidence supporting the ability of commonly prescribed antibiotics, including all those routinely employed in outpatient dentistry, to either reduce blood levels and/or the effectiveness of oral contraceptives. To date, all clinical trials studying the effects of concomitant antibiotic therapy (with the exception of rifampin and rifabutin) have failed to demonstrate an interaction. Like all drugs, oral contraceptives are not 100% effective with the failure rate in the typical United States population reported to be as high as 3%. It is thus possible that the case reports of unintended pregnancies during antibiotic therapy may simply represent the normal failure rate of these drugs. Considering that both drug classes are prescribed frequently to women of childbearing potential, one would expect a much higher rate of oral contraceptive failure in this group of patients if a true drug:drug interaction existed. On the other hand, if the interaction does exist but is a relatively rare event, occurring in, say, 1 in 5000 women, clinical studies such as those described in this article would not detect the interaction. The pharmacokinetic studies of simultaneous antibiotic and oral contraceptive ingestion, and the retrospective studies of pregnancy rates among oral contraceptive users exposed to antibiotics, all suffer from one potential common weakness, i.e., their relatively small sample size. Sample sizes in the pharmacokinetic trials ranged from 7 to 24 participants, whereas the largest retrospective study of pregnancy rates still evaluated less than 800 total contraceptive users. Still, the incidence of such a rare interaction would not differ from the accepted normal failure rate of oral contraceptive therapy. The medico-legal ramifications of what looks like at best a rare interaction remains somewhat "murky." On one hand, we have medico-legal experts advising the profession to exercise caution

  16. Peptides in melanoma therapy.

    Science.gov (United States)

    Mocellin, Simone

    2012-01-01

    Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.

  17. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  18. Surveillance of antibiotic resistance

    Science.gov (United States)

    Johnson, Alan P.

    2015-01-01

    Surveillance involves the collection and analysis of data for the detection and monitoring of threats to public health. Surveillance should also inform as to the epidemiology of the threat and its burden in the population. A further key component of surveillance is the timely feedback of data to stakeholders with a view to generating action aimed at reducing or preventing the public health threat being monitored. Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility test results undertaken by microbiology laboratories on bacteria isolated from clinical samples sent for investigation. Correlation of these data with demographic and clinical data for the patient populations from whom the pathogens were isolated gives insight into the underlying epidemiology and facilitates the formulation of rational interventions aimed at reducing the burden of resistance. This article describes a range of surveillance activities that have been undertaken in the UK over a number of years, together with current interventions being implemented. These activities are not only of national importance but form part of the international response to the global threat posed by antibiotic resistance. PMID:25918439

  19. Biosynthetic Tailoring of Microcin E492m: Post-Translational Modification Affords an Antibacterial Siderophore-Peptide Conjugate

    Science.gov (United States)

    Nolan, Elizabeth M.; Fischbach, Michael A.; Koglin, Alexander; Walsh, Christopher T.

    2008-01-01

    The present work reveals that four proteins, MceCDIJ, encoded by the MccE492 gene cluster are responsible for the remarkable post-translational tailoring of Microcin E492 (MccE492), an 84-residue protein toxin secreted by Klebsiella pneumonaie RYC492 that targets neighboring gram-negative species. This modification results in attachment of a linearized and monoglycosylated derivative of enterobactin, a nonribosomal peptide and iron scavenger (siderophore), to the MccE492m C-terminus. MceC and MceD derivatize enterobactin by C-glycosylation at the C5 position of a N-(2,3-dihydroxybenzoyl) serine (DHB-Ser) moiety and regiospecific hydrolysis of an ester linkage in the trilactone scaffold, respectively. MceI and MceJ form a protein complex that attaches C-glycosylated enterobactins to the C-terminal serine residue of both aC10 model peptide and full-length MccE492. In the enzymatic product, the terminal serine residue is covalently attached to the C4′ oxygen of the glucose moiety. Non-enzymatic and base-catalyzed migration of the peptide to the C6′ position affords the C6′ glycosyl ester linkage observed in the mature toxin, MccE492m, isolated from bacterial cultures. PMID:17973380

  20. The synthesis of a novel octapeptidolipid antibiotic

    International Nuclear Information System (INIS)

    Levitt, R.R.

    1986-05-01

    The bacillomycins comprise a group of antifungal polypeptide antibiotic compounds closely related in terms of their physico-chemical properties, amino acid and β-amino fatty acid compositions. Iturin A, which belongs to the bacillomycins, consists of seven amino acids. Attempts to produce a β-NC 15 fatty acid in acceptable yield proved unsuccessful and was later discarded in favour of the preparation of a β-NC 14 fatty acid. The different experimental procedures used and results obtained when preparing both fatty acids are detailed. The method developed in preparing the β-NC 14 fatty acid affords a new general synthetic route for the production of β-amino fatty acids in good yield. The strategy considered in selecting which amino acid to commence the peptide synthesis with, the use in the Merrifield procedure of N-protected amino acids, coupling reagents, deprotecting and cleaving agents, and the HPLC purification procedures used for the linear and cyclic octapeptides, are all described. The 1 H-NMR spectrum of the synthetic cyclic compound compared favourably with the spectrum of natural iturin A and these results are also presented. This dissertation presents the total synthesis of a novel octapeptidolipid antifungal antibiotic (iturin A analogue), utilising the Merrifield solid phase procedure. The biological activity of the synthesised and purified linear and cyclic iturin A analogues were compared with that of bacillomycin S. The test for biological activity and results obtained are described and illustrated with photographic plates

  1. Synthesis of a novel octapeptidolipid antibiotic

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, R R

    1986-01-01

    The bacillomycins comprise a group of antifungal polypeptide antibiotic compounds closely related in terms of their physico-chemical properties, amino acid and ..beta..-amino fatty acid compositions. Iturin A, which belongs to the bacillomycins, consists of seven amino acids. Attempts to produce a ..beta..-NC/sub 15/ fatty acid in acceptable yield proved unsuccessful and was later discarded in favour of the preparation of a ..beta..-NC/sub 14/ fatty acid. The different experimental procedures used and results obtained when preparing both fatty acids are detailed. The method developed in preparing the ..beta..-NC/sub 14/ fatty acid affords a new general synthetic route for the production of ..beta..-amino fatty acids in good yield. The strategy considered in selecting which amino acid to commence the peptide synthesis with, the use in the Merrifield procedure of N-protected amino acids, coupling reagents, deprotecting and cleaving agents, and the HPLC purification procedures used for the linear and cyclic octapeptides, are all described. The /sup 1/H-NMR spectrum of the synthetic cyclic compound compared favourably with the spectrum of natural iturin A and these results are also presented. This dissertation presents the total synthesis of a novel octapeptidolipid antifungal antibiotic (iturin A analogue), utilising the Merrifield solid phase procedure. The biological activity of the synthesised and purified linear and cyclic iturin A analogues were compared with that of bacillomycin S. The test for biological activity and results obtained are described and illustrated with photographic plates.

  2. Identification and characterization of histidine-rich peptides from hard ticks Ixodes ricinus and Ixodes scapularis.

    OpenAIRE

    DORŇÁKOVÁ, Veronika

    2011-01-01

    Antimicrobial (cationic) proteins play an important role in innate imunity. Such proteins can possess antibacterial, antiendotoxic or fungicidal abilities. The rising resistence of microbes to common antibiotics evokes acute need of studying more endogenous proteins to reveal new potential antibiotics. Ticks, the blood-feeding ectoparasites with effectual defense system, present an endless source of newly described and unknown antimicrobial peptides/proteins with significant theurapeutic pote...

  3. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  4. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  5. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  7. A study of antibiotic prescribing

    DEFF Research Database (Denmark)

    Jaruseviciene, L.; Radzeviciene-Jurgute, R.; Jurgutis, A.

    2012-01-01

    Background. Globally, general practitioners (GPs) write more than 90% of all antibiotic prescriptions. This study examines the experiences of Lithuanian and Russian GPs in antibiotic prescription for upper respiratory tract infections, including their perceptions of when it is not indicated...... clinically or pharmacologically. Methods. 22 Lithuanian and 29 Russian GPs participated in five focus group discussions. Thematic analysis was used to analyse the data. Results. We identified four main thematic categories: patients' faith in antibiotics as medication for upper respiratory tract infections......; patient potential to influence a GP's decision to prescribe antibiotics for upper respiratory tract infections; impediments perceived by GPs in advocating clinically grounded antibiotic prescribing with their patients, and strategies applied in physician-patient negotiation about antibiotic prescribing...

  8. Antibiotics in late clinical development.

    Science.gov (United States)

    Fernandes, Prabhavathi; Martens, Evan

    2017-06-01

    Most pharmaceutical companies have stopped or have severely limited investments to discover and develop new antibiotics to treat the increasing prevalence of infections caused by multi-drug resistant bacteria, because the return on investment has been mostly negative for antibiotics that received marketing approved in the last few decades. In contrast, a few small companies have taken on this challenge and are developing new antibiotics. This review describes those antibiotics in late-stage clinical development. Most of them belong to existing antibiotic classes and a few with a narrow spectrum of activity are novel compounds directed against novel targets. The reasons for some of the past failures to find new molecules and a path forward to help attract investments to fund discovery of new antibiotics are described. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Antibiotic prevention of postcataract endophthalmitis

    DEFF Research Database (Denmark)

    Kessel, Line; Flesner, Per; Andresen, Jens

    2015-01-01

    Endophthalmitis is one of the most feared complications after cataract surgery. The aim of this systematic review was to evaluate the effect of intracameral and topical antibiotics on the prevention of endophthalmitis after cataract surgery. A systematic literature review in the MEDLINE, CINAHL......, Cochrane Library and EMBASE databases revealed one randomized trial and 17 observational studies concerning the prophylactic effect of intracameral antibiotic administration on the rate of endophthalmitis after cataract surgery. The effect of topical antibiotics on endophthalmitis rate was reported by one...... with the use of intracameral antibiotic administration of cefazolin, cefuroxime and moxifloxacin, whereas no effect was found with the use of topical antibiotics or intracameral vancomycin. Endophthalmitis occurred on average in one of 2855 surgeries when intracameral antibiotics were used compared to one...

  10. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  11. The antibiotic resistome: what's new?

    Science.gov (United States)

    Perry, Julie Ann; Westman, Erin Louise; Wright, Gerard D

    2014-10-01

    The antibiotic resistome is dynamic and ever expanding, yet its foundations were laid long before the introduction of antibiotics into clinical practice. Here, we revisit our theoretical framework for the resistome concept and consider the many factors that influence the evolution of novel resistance genes, the spread of mobile resistance elements, and the ramifications of these processes for clinical practice. Observing the trends and prevalence of genes within the antibiotic resistome is key to maintaining the efficacy of antibiotics in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Usage of antibiotics in hospitals].

    Science.gov (United States)

    Ternák, G; Almási, I

    1996-12-29

    The authors publish the results of a survey conducted among hospital records of patients discharged from eight inpatient's institutes between 1-31st of January 1995 to gather information on the indications and usage of antibiotics. The institutes were selected from different part of the country to represent the hospital structure as much as possible. Data from the 13,719 documents were recorded and analysed by computer program. It was found that 27.6% of the patients (3749 cases) received antibiotic treatment. 407 different diagnosis and 365 different surgical procedures (as profilaxis) were considered as indications of antibiotic treatment (total: 4450 indications for 5849 antibiotic treatment). The largest group of patients receiving antibiotics was of antibiotic profilaxis (24.56%, 1093 cases), followed by lower respiratory tract infections (19.89%, 849 cases), uroinfections (10.53%, 469 cases) and upper respiratory tract infections. Relatively large group of patients belonged to those who had fever or subfebrility without known reason (7.35%, 327 cases) and to those who did not have any proof in their document indicating the reasons of antibiotic treatment (6.4%, 285 cases). We can not consider the antibiotic indications well founded in those groups of patients (every sixth or every fifth cases). The most frequently used antibiotics were of [2-nd] generation cefalosporins. The rate of nosocomial infections were found as 6.78% average. The results are demonstrated on diagrams and table.

  13. Diversity, evolution and medical applications of insect antimicrobial peptides

    Science.gov (United States)

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged

    2016-01-01

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160593

  14. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to

  15. Antibiotic resistance in animals.

    Science.gov (United States)

    Barton, Mary D; Pratt, Rachael; Hart, Wendy S

    2003-01-01

    There is currently no systematic surveillance or monitoring of antibiotic resistance in Australian animals. Registration of antibiotics for use in animals is tightly controlled and has been very conservative. Fluoroquinolones have not been registered for use in food producing animals and other products have been removed from the market because of human health concerns. In the late 1970s, the Animal Health Committee coordinated a survey of resistance in Salmonella and Escherichia coli isolates from cattle, pigs and poultry and in bovine Staphylococcus aureus. Some additional information is available from published case reports. In samples collected prior to the withdrawal of avoparcin from the market, no vancomycin resistant Enterococcus faecium or Enterococcus faecalis were detected in samples collected from pigs, whereas some vanA enterococci, including E. faecium and E. faecalis, were found in chickens. No vanB enterococci were detected in either species. Virginiamycin resistance was common in both pig and poultry isolates. Multiple resistance was common in E. coli and salmonellae isolates. No fluoroquinolone resistance was found in salmonellae, E. coli or Campylobacter. Beta-lactamase production is common in isolates from bovine mastitis, but no methicillin resistance has been detected. However, methicillin resistance has been reported in canine isolates of Staphylococcus intermedius and extended spectrum beta-lactamase producing E. coli has been found in dogs.

  16. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    International Nuclear Information System (INIS)

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance

  17. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    International Nuclear Information System (INIS)

    Rodina, N P; Yudenko, A N; Terterov, I N; Eliseev, I E

    2013-01-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested

  18. Antibiotics, pediatric dysbiosis, and disease.

    Science.gov (United States)

    Vangay, Pajau; Ward, Tonya; Gerber, Jeffrey S; Knights, Dan

    2015-05-13

    Antibiotics are by far the most common medications prescribed for children. Recent epidemiological data suggests an association between early antibiotic use and disease phenotypes in adulthood. Antibiotic use during infancy induces imbalances in gut microbiota, called dysbiosis. The gut microbiome's responses to antibiotics and its potential link to disease development are especially complex to study in the changing infant gut. Here, we synthesize current knowledge linking antibiotics, dysbiosis, and disease and propose a framework for studying antibiotic-related dysbiosis in children. We recommend future studies into the microbiome-mediated effects of antibiotics focused on four types of dysbiosis: loss of keystone taxa, loss of diversity, shifts in metabolic capacity, and blooms of pathogens. Establishment of a large and diverse baseline cohort to define healthy infant microbiome development is essential to advancing diagnosis, interpretation, and eventual treatment of pediatric dysbiosis. This approach will also help provide evidence-based recommendations for antibiotic usage in infancy. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Biotherapeutics as alternatives to antibiotics

    Science.gov (United States)

    Increasing pressure to limit antibiotic use in agriculture is heightening the need for alternative methods to reduce the adverse effects of clinical and subclinical disease on livestock performance that are currently managed by in-feed antibiotic usage. Immunomodulators have long been sought as such...

  20. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  1. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the cyanobacterium Cylindrospermum alatosporum

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jan; Hájek, Jan; Urajová, P.; Kopecký, J.; Hrouzek, P.

    2014-01-01

    Roč. 9, č. 11 (2014), e111904 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA14-18067S Institutional support: RVO:60077344 Keywords : cyanobacteria * lipopeptides * biosynthesis Subject RIV: CE - Biochemistry Impact factor: 3.234, year: 2014

  2. A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the beta-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum

    Czech Academy of Sciences Publication Activity Database

    Mareš, J.; Hájek, J.; Urajová, Petra; Kopecký, Jiří; Hrouzek, Pavel

    2014-01-01

    Roč. 9, č. 11 (2014) E-ISSN 1932-6203 R&D Projects: GA MŠk ED2.1.00/03.0110; GA ČR GA14-18067S Institutional support: RVO:61388971 Keywords : blue green alga * FAAL * Cylindrospermum alatosporum Subject RIV: CE - Biochemistry Impact factor: 3.234, year: 2014

  3. Reversible antibiotic tolerance induced in Staphylococcus aureus by concurrent drug exposure

    DEFF Research Database (Denmark)

    Haaber, Jakob Krause; Friberg, Cathrine; McCreary, Mark

    2015-01-01

    UNLABELLED: Resistance of Staphylococcus aureus to beta-lactam antibiotics has led to increasing use of the glycopeptide antibiotic vancomycin as a life-saving treatment for major S. aureus infections. Coinfection by an unrelated bacterial species may necessitate concurrent treatment with a second...... antibiotic that targets the coinfecting pathogen. While investigating factors that affect bacterial antibiotic sensitivity, we discovered that susceptibility of S. aureus to vancomycin is reduced by concurrent exposure to colistin, a cationic peptide antimicrobial employed to treat infections by Gram......-negative pathogens. We show that colistin-induced vancomycin tolerance persists only as long as the inducer is present and is accompanied by gene expression changes similar to those resulting from mutations that produce stably inherited reduction of vancomycin sensitivity (vancomycin-intermediate S. aureus [VISA...

  4. Antibiotic prophylaxis for patients undergoing elective endoscopic ...

    African Journals Online (AJOL)

    Antibiotic prophylaxis for patients undergoing elective endoscopic retrograde cholangiopancreatography. M Brand, D Bisoz. Abstract. Background. Antibiotic prophylaxis for endoscopic retrograde cholangiopancreatography (ERCP) is controversial. We set out to assess the current antibiotic prescribing practice among ...

  5. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  6. The Prehistory of Antibiotic Resistance.

    Science.gov (United States)

    Perry, Julie; Waglechner, Nicholas; Wright, Gerard

    2016-06-01

    Antibiotic resistance is a global problem that is reaching crisis levels. The global collection of resistance genes in clinical and environmental samples is the antibiotic "resistome," and is subject to the selective pressure of human activity. The origin of many modern resistance genes in pathogens is likely environmental bacteria, including antibiotic producing organisms that have existed for millennia. Recent work has uncovered resistance in ancient permafrost, isolated caves, and in human specimens preserved for hundreds of years. Together with bioinformatic analyses on modern-day sequences, these studies predict an ancient origin of resistance that long precedes the use of antibiotics in the clinic. Understanding the history of antibiotic resistance is important in predicting its future evolution. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Antibiotics for acute maxillary sinusitis

    DEFF Research Database (Denmark)

    Ahovuo-Saloranta, Anneli; Borisenko, Oleg V; Kovanen, Niina

    2008-01-01

    BACKGROUND: Expert opinions vary on the appropriate role of antibiotics for sinusitis, one of the most commonly diagnosed conditions among adults in ambulatory care. OBJECTIVES: We examined whether antibiotics are effective in treating acute sinusitis, and if so, which antibiotic classes...... are the most effective. SEARCH STRATEGY: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2007, Issue 3); MEDLINE (1950 to May 2007) and EMBASE (1974 to June 2007). SELECTION CRITERIA: Randomized controlled trials (RCTs) comparing antibiotics with placebo...... or antibiotics from different classes for acute maxillary sinusitis in adults. We included trials with clinically diagnosed acute sinusitis, whether or not confirmed by radiography or bacterial culture. DATA COLLECTION AND ANALYSIS: At least two review authors independently screened search results, extracted...

  8. Antibiotic prescribing for acute bronchitis

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2016-01-01

    INTRODUCTION: Acute bronchitis is a self-limiting infectious disease characterized by acute cough with or without sputum but without signs of pneumonia. About 90% of cases are caused by viruses. AREAS COVERED: Antibiotics for acute bronchitis have been associated with an approximately half......-day reduction in duration of cough. However, at follow-up there are no significant differences in overall clinical improvement inpatients treated with antibiotics compared with those receiving placebo. Despite this, antibiotics are administered to approximately two thirds of these patients. This review...... discusses the reason for this antibiotic overprescription. Other therapies targeted to control symptoms have also demonstrated a marginal or no effect. EXPERT COMMENTARY: Clinicians should be aware of the marginal effectiveness of antibiotic therapy. Some strategies like the use of rapid tests, delayed...

  9. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  10. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  11. Enteropathogens and antibiotics.

    Science.gov (United States)

    González-Torralba, Ana; García-Esteban, Coral; Alós, Juan-Ignacio

    2018-01-01

    Infectious gastroenteritis remains a public health problem. The most severe cases are of bacterial origin. In Spain, Campylobacter and Salmonella are the most prevalent bacterial genus, while Yersinia and Shigella are much less frequent. Most cases are usually self-limiting and antibiotic therapy is not generally indicated, unless patients have risk factors for severe infection and shigellosis. Ciprofloxacin, third generation cephalosporins, azithromycin, ampicillin, cotrimoxazole and doxycycline are the most recommended drugs. The susceptibility pattern of the different bacteria determines the choice of the most appropriate treatment. The aim of this review is to analyse the current situation, developments, and evolution of resistance and multidrug resistance in these 4 enteric pathogens. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  13. Optimizing Antibiotic Use in Nursing Homes Through Antibiotic Stewardship.

    Science.gov (United States)

    Sloane, Philip D; Huslage, Kirk; Kistler, Christine E; Zimmerman, Sheryl

    2016-01-01

    Antibiotic stewardship is becoming a requirement for nursing homes. Programs should be interdisciplinary and multifaceted; should have support from nursing home administrators; and should aim to promote antibiotics only when needed, not just in case. Recommended components include use of evidence-based guidelines; ongoing monitoring of antibiotic prescriptions, cultures, and study results; monitoring of health outcomes; use of nursing home-specific antibiograms; regular reporting and feedback to medical providers and nurses; and education of residents and families. ©2016 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.

  14. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens...... and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  15. Efficacy of antibacterial peptides against peptide-resistant MRSA is restored by permeabilisation of bacteria membranes

    Directory of Open Access Journals (Sweden)

    Joshua Thomas Ravensdale

    2016-11-01

    Full Text Available Clinical application of antimicrobial peptides, as with conventional antibiotics, may be compromised by the development of bacterial resistance. This study investigated antimicrobial peptide resistance in methicillin resistant Staphylococcus aureus, including aspects related to the resilience of the resistant bacteria towards the peptides, the stability of resistance when selection pressures are removed, and whether resistance can be overcome by using the peptides with other membrane-permeabilising agents. Genotypically variant strains of S. aureus became equally resistant to the antibacterial peptides melittin and bac8c when grown in sub-lethal concentrations. Subculture of a melittin-resistant strain without melittin for 8 days lowered the minimal lethal concentration of the peptide from 170 µg ml-1 to 30 g ml-1. Growth for 24 h in 12 g ml-1 melittin restored the MLC to 100 g ml-1. Flow cytometry analysis of cationic fluorophore binding to melittin-naïve and melittin-resistant bacteria revealed that resistance coincided with decreased binding of cationic molecules, suggesting a reduction in nett negative charge on the membrane. Melittin was haemolytic at low concentrations but the truncated analogue of melittin, mel12-26, was confirmed to lack haemolytic activity. Although a previous report found that mel12-26 retained full bactericidal activity, we found it to lack significant activity when added to culture medium. However, electroporation in the presence of 50 µg ml-1 of mel12-26, killed 99.3% of the bacteria. Similarly, using a low concentration of the non-ionic detergent Triton X-100 to permeabilize bacteria to mel12-26 markedly increased its bactericidal activity. The observation that bactericidal activity of the non-membranolytic peptide mel12-26 was enhanced when the bacterial membrane was permeablised by detergents or electroporation, suggests that its principal mechanism in reducing bacterial survival may be through

  16. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  17. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Aljassim, Nada I.; Ansari, Mohd Ikram; Mackie, Roderick

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  18. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  19. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  20. Antibiotics and inflammatory bowel diseases.

    Science.gov (United States)

    Scribano, Maria Lia; Prantera, Cosimo

    2013-01-01

    Inflammatory bowel diseases are characterized by an altered composition of gut microbiota (dysbiosis) that may contribute to their development. Antibiotics can alter the bacterial flora, and a link between antibiotic use and onset of Crohn's disease (CD), but not ulcerative colitis, has been reported. The hypothesis that Mycobacterium avium subspecies paratuberculosis (MAP) could be an etiologic agent of CD has not been confirmed by a large study on patients treated by an association of antibiotics active against MAP. The observations supporting a role of intestinal microbiota in CD pathogenesis provide the rationale for a therapeutic manipulation of the intestinal flora through the employment of antibiotics. However, current data do not strongly support a therapeutic benefit from antibiotics, and there is still controversy regarding their use as primary therapy for treatment of acute flares of CD, and for postoperative recurrence prevention. Nevertheless, clinical practice and some studies suggest that a subgroup of patients with colonic involvement, early disease, and abnormal laboratory test of inflammation may respond better to antibiotic treatment. Since their long-term use is frequently complicated by a high rate of side effects, the use of antibiotics that work locally appears to be promising.

  1. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  2. Macrolide antibiotics for bronchiectasis.

    Science.gov (United States)

    Kelly, Carol; Chalmers, James D; Crossingham, Iain; Relph, Nicola; Felix, Lambert M; Evans, David J; Milan, Stephen J; Spencer, Sally

    2018-03-15

    Bronchiectasis is a chronic respiratory disease characterised by abnormal and irreversible dilatation and distortion of the smaller airways. Bacterial colonisation of the damaged airways leads to chronic cough and sputum production, often with breathlessness and further structural damage to the airways. Long-term macrolide antibiotic therapy may suppress bacterial infection and reduce inflammation, leading to fewer exacerbations, fewer symptoms, improved lung function, and improved quality of life. Further evidence is required on the efficacy of macrolides in terms of specific bacterial eradication and the extent of antibiotic resistance. To determine the impact of macrolide antibiotics in the treatment of adults and children with bronchiectasis. We identified trials from the Cochrane Airways Trials Register, which contains studies identified through multiple electronic searches and handsearches of other sources. We also searched trial registries and reference lists of primary studies. We conducted all searches on 18 January 2018. We included randomised controlled trials (RCTs) of at least four weeks' duration that compared macrolide antibiotics with placebo or no intervention for the long-term management of stable bronchiectasis in adults or children with a diagnosis of bronchiectasis by bronchography, plain film chest radiograph, or high-resolution computed tomography. We excluded studies in which participants had received continuous or high-dose antibiotics immediately before enrolment or before a diagnosis of cystic fibrosis, sarcoidosis, or allergic bronchopulmonary aspergillosis. Our primary outcomes were exacerbation, hospitalisation, and serious adverse events. Two review authors independently screened the titles and abstracts of 103 records. We independently screened the full text of 40 study reports and included 15 trials from 30 reports. Two review authors independently extracted outcome data and assessed risk of bias for each study. We analysed

  3. Peptides actively transported across the tympanic membrane: Functional and structural properties.

    Directory of Open Access Journals (Sweden)

    Arwa Kurabi

    Full Text Available Otitis media (OM is the most common infectious disease of children under six, causing more antibiotic prescriptions and surgical procedures than any other pediatric condition. By screening a bacteriophage (phage library genetically engineered to express random peptides on their surfaces, we discovered unique peptides that actively transport phage particles across the intact tympanic membrane (TM and into the middle ear (ME. Herein our goals were to characterize the physiochemical peptide features that may underlie trans-TM phage transport; assess morphological and functional effects of phage peptides on the ME and inner ear (IE; and determine whether peptide-bearing phage transmigrate from the ME into the IE. Incubation of five peptide-bearing phage on the TM for over 4hrs resulted in demonstrably superior transport of one peptide, in level and in exponential increase over time. This suggests a preferred peptide motif for TM active transport. Functional and structural comparisons revealed unique features of this peptide: These include a central lysine residue, isoelectric point of 0.0 at physiological pH and a hydrophobic C-terminus. When the optimal peptide was applied to the TM independent of phage, similar transport was observed, indicating that integration into phage is not required. When 109 particles of the four different trans-TM phage were applied directly into the ME, no morphological effects were detected in the ME or IE when compared to saline or wild-type (WT phage controls. Comparable, reversible hearing loss was observed for saline controls, WT phage and trans-TM peptide phage, suggesting a mild conductive hearing loss due to ME fluid. Perilymph titers after ME incubation established that few copies of trans-TM peptide phage crossed into the IE. The results suggest that, within the parameters tested, trans-TM peptides are safe and could be used as potential agents for noninvasive delivery of drugs, particles and gene therapy

  4. Antibiotic Sensitivity of Micrococcus radiodurans

    Science.gov (United States)

    Hawiger, J.; Jeljaszewicz, J.

    1967-01-01

    A wild-type strain of Micrococcus radiodurans and its nonpigmented mutant W1 were tested for sensitivity to 10 antibiotics selected from the standpoint of their mechanism of action. Representatives of groups of antibiotics inhibiting deoxyribonucleic acid (DNA) synthesis, DNA-dependent ribonucleic acid synthesis, protein synthesis, and cell wall synthesis were selected. M. radiodurans and its mutant exhibited full susceptibility to all antibiotics tested (mitomycin C, actinomycin D, chloramphenicol, dihydrostreptomycin, erythromycin, neomycin, kanamycin, benzylpenicillin, bacitracin, and vancomycin), the degree of susceptibility being of the same order as that of a standard strain of Staphylococcus aureus 209 P, with the exception of dihydrostreptomycin. PMID:4166078

  5. Systemic antibiotic therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anoop Kapoor

    2012-01-01

    Full Text Available Systemic antibiotics in conjunction with scaling and root planing (SRP, can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  6. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  7. Prophylactic antibiotics versus post- operative antibiotics in herniorraphy

    Directory of Open Access Journals (Sweden)

    Abedulla Khan Kayamkani

    2015-07-01

    Full Text Available Postoperative surgical site infections are a major source of illness.  Infection results in longer hospital stay and higher costs.  Uses of preoperative antibiotics have been standardized and are being used routinely in most clinical surgeries and include controversial areas like breast surgery and herniorraphy. Objective of the study is to find out the benefit of prophylactic use of antibiotics in the management of herniorraphy.This project was carried out in a multispeciality tertiary care teaching hospital from 1st-30th April in 2002. Group 1 patients were treated prophylactically half an hour before surgery with single dose of I.V. antibiotics (injection.  Ampicillin 1gm + injection.  Gentamicin 80mg. Group 2 patients were treated post surgery with capsule. Ampicillin 500mg 4 times a day for 7 days and injection. Gentamicin twice a day for first 4 days. In case of group 1 patients only one out of 20 patients (5% was infected.  Whereas in-group 2 patients 5 out of 20 patients (25% were infected. The cost of prophylactic antibiotic treatment was Rs. 25.56 per patient.  The postoperative antibiotic treatment cost was Rs. 220.4 per patient.  That means postoperative treatment is around 8.62 times costlier than prophylactic treatment.             From this study it is evident that prophylactic (preoperative treatment is better than postoperative treatment with antibiotics.

  8. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions.

    Science.gov (United States)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-09-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized controlled trials or systematic reviews. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  11. Antibiotic managment in renal failure.

    Science.gov (United States)

    Winter, R E

    1976-06-01

    This is a brief compilation of the work of many investigators. It includes facts about toxicity and recommendations about antibiotic management in patients with renal failure. As new data are accrued, changes in these recommendations will be necessary.

  12. Antibiotic prophylaxis in obstetric procedures.

    Science.gov (United States)

    van Schalkwyk, Julie; Van Eyk, Nancy

    2010-09-01

    To review the evidence and provide recommendations on antibiotic prophylaxis for obstetrical procedures. Outcomes evaluated include need and effectiveness of antibiotics to prevent infections in obstetrical procedures. Published literature was retrieved through searches of Medline and The Cochrane Library on the topic of antibiotic prophylaxis in obstetrical procedures. Results were restricted to systematic reviews, randomized controlled trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis and articles published from January 1978 to June 2009 were incorporated in the guideline. Current guidelines published by the American College of Obstetrics and Gynecology were also incorporated. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The evidence obtained was reviewed and evaluated by the Infectious Diseases Committee of the Society of Obstetricians and Gynaecologists of Canada under the leadership of the principal authors, and recommendations were made according to guidelines developed by the Canadian Task Force on Preventive Health Care (Table 1). Implementation of this guideline should reduce the cost and harm resulting from the administration of antibiotics when they are not required and the harm resulting from failure to administer antibiotics when they would be beneficial. SUMMARY STATEMENTS: 1. Available evidence does not support the use of prophylactic antibiotics to reduce infectious morbidity following operative vaginal delivery. (II-1) 2. There is insufficient evidence to argue for or against the use of prophylactic antibiotics to reduce infectious morbidity for manual removal of the placenta. (III) 3. There is insufficient evidence to argue for or against the use of

  13. Use of antibiotics in children

    DEFF Research Database (Denmark)

    Pottegård, Anton; Broe, A.; Aabenhus, R.

    2015-01-01

    Background: We aimed to describe the use of systemic antibiotics among children in Denmark. Methods: National data on drug use in Denmark were extracted from the Danish National Prescription Database. We used prescription data for all children in Denmark aged 0 to 11 years from January 1, 2000...... to December 31, 2012. Results: We obtained data on 5,884,301 prescriptions for systemic antibiotics issued to 1,206,107 children. The most used single substances were phenoxymethylpenicillin (45%), amoxicillin (34%) and erythromycin (6%). The highest incidence rate of antibiotic treatment episodes......-1. There was little evidence of heavy users. Conclusion: Prescribing rate of antibiotics to children in Denmark remained stable at a high level from 2000 to 2012. An increase in the use of broad-spectrum beta-lactam penicillin was noted, but otherwise the prescribing pattern adhered well to National guidelines...

  14. The determinants of the antibiotic resistance process.

    Science.gov (United States)

    Franco, Beatriz Espinosa; Altagracia Martínez, Marina; Sánchez Rodríguez, Martha A; Wertheimer, Albert I

    2009-01-01

    The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community. To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem. We conducted a MedLine search using the key words "determinants", "antibiotic", and "antibiotic resistance" to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded. The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance. Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.

  15. [Self-medication with antibiotics in Poland

    NARCIS (Netherlands)

    Olczak, A.; Grzesiowski, P.; Hryniewicz, W.; Haaijer-Ruskamp, F.M.

    2006-01-01

    Antibiotic resistance, the important public health threat, depends on antibiotic overuse/misuse. Self-medication with antibiotics is of serious medical concern. The aim of the study, as a part of SAR project (Self-medication with antibiotic in Europe) was to survey the incidence of this phenomenon.

  16. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  17. Expedient antibiotics production: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  18. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  19. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    of these are currently being used in quantitative structure--activity relationship (QSAR) studies for AMP optimization. Additionally, some key commercial computational tools are discussed, and both successful and less successful studies are referenced, illustrating some of the challenges facing AMP scientists. Through...... examples of different peptide QSAR studies, this review highlights some of the missing links and illuminates some of the questions that would be interesting to challenge in a more systematic fashion. Expert opinion: Computer-aided peptide QSAR using molecular descriptors may provide the necessary edge...

  20. Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium.

    Science.gov (United States)

    Silva, Tânia; Moreira, Ana C; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2017-01-01

    Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium -harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis , M. leprae , M. avium , etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we

  1. Selective algicidal action of peptides against harmful algal bloom species.

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Park

    Full Text Available Recently, harmful algal bloom (HAB, also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal

  2. Dielectrophoretic assay of bacterial resistance to antibiotics

    International Nuclear Information System (INIS)

    Johari, Juliana; Huebner, Yvonne; Hull, Judith C; Dale, Jeremy W; Hughes, Michael P

    2003-01-01

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  3. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid.

    Science.gov (United States)

    Kennedy, David A; Vembu, Nagarajan; Fronczek, Frank R; Devocelle, Marc

    2011-12-02

    Reported is the synthesis of azo mutual prodrugs of the nonsteroidal anti-inflammatory agents (NSAIDs) 4-aminophenylacetic acid (4-APAA) or 5-aminosalicylic acid (5-ASA) with peptides, including an antibiotic peptide temporin analogue modified at the amino terminal by an α-aminoisobutyric acid (Aib) residue. These prodrugs are designed for colonic delivery of two agents to treat infection and inflammation by the bacterial pathogen Clostridium difficile . © 2011 American Chemical Society

  4. Macrolide antibiotics and the airway: antibiotic or non-antibiotic effects?

    LENUS (Irish Health Repository)

    Murphy, D M

    2010-03-01

    The macrolides are a class of antibiotics widely prescribed in infectious disease. More recently, there has been considerable interest in potential indications for these agents, in addition to their simple antibacterial indications, in a number of lung pathophysiologies.

  5. DAMPD: A manually curated antimicrobial peptide database

    KAUST Repository

    Seshadri Sundararajan, Vijayaraghava

    2011-11-21

    The demand for antimicrobial peptides (AMPs) is rising because of the increased occurrence of pathogens that are tolerant or resistant to conventional antibiotics. Since naturally occurring AMPs could serve as templates for the development of new anti-infectious agents to which pathogens are not resistant, a resource that contains relevant information on AMP is of great interest. To that extent, we developed the Dragon Antimicrobial Peptide Database (DAMPD, http://apps.sanbi.ac.za/dampd) that contains 1232 manually curated AMPs. DAMPD is an update and a replacement of the ANTIMIC database. In DAMPD an integrated interface allows in a simple fashion querying based on taxonomy, species, AMP family, citation, keywords and a combination of search terms and fields (Advanced Search). A number of tools such as Blast, ClustalW, HMMER, Hydrocalculator, SignalP, AMP predictor, as well as a number of other resources that provide additional information about the results are also provided and integrated into DAMPD to augment biological analysis of AMPs. The Author(s) 2011. Published by Oxford University Press.

  6. DAMPD: A manually curated antimicrobial peptide database

    KAUST Repository

    Seshadri Sundararajan, Vijayaraghava; Gabere, Musa Nur; Pretorius, Ashley; Adam, Saleem; Christoffels, Alan; Lehvaslaiho, Minna; Archer, John A.C.; Bajic, Vladimir B.

    2011-01-01

    The demand for antimicrobial peptides (AMPs) is rising because of the increased occurrence of pathogens that are tolerant or resistant to conventional antibiotics. Since naturally occurring AMPs could serve as templates for the development of new anti-infectious agents to which pathogens are not resistant, a resource that contains relevant information on AMP is of great interest. To that extent, we developed the Dragon Antimicrobial Peptide Database (DAMPD, http://apps.sanbi.ac.za/dampd) that contains 1232 manually curated AMPs. DAMPD is an update and a replacement of the ANTIMIC database. In DAMPD an integrated interface allows in a simple fashion querying based on taxonomy, species, AMP family, citation, keywords and a combination of search terms and fields (Advanced Search). A number of tools such as Blast, ClustalW, HMMER, Hydrocalculator, SignalP, AMP predictor, as well as a number of other resources that provide additional information about the results are also provided and integrated into DAMPD to augment biological analysis of AMPs. The Author(s) 2011. Published by Oxford University Press.

  7. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Science.gov (United States)

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  8. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Akira Yoshimi

    2018-04-01

    Full Text Available A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb. The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species.

  9. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae.

    Science.gov (United States)

    Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu

    2018-01-01

    A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata . It consists of 10 amino acid residues, including five N -methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae . The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR , were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae , gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata . Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae , although there may be unknown factors limiting productivity in this species.

  10. Simultaneous delivery of antibiotics neomycin and ampicillin in drinking water inhibits fermentation of resistant starch in rats.

    Science.gov (United States)

    Carvajal-Aldaz, Diana G; Guice, Justin L; Page, Ryan C; Raggio, Anne M; Martin, Roy J; Husseneder, Claudia; Durham, Holiday A; Geaghan, James; Janes, Marlene; Gauthier, Ted; Coulon, Diana; Keenan, Michael J

    2017-03-01

    Antibiotics ampicillin 1 g/L and neomycin 0.5 g/L were added to drinking water before or during feeding of resistant starch (RS) to rats to inhibit fermentation. In a preliminary study, antibiotics and no RS were given prior to rats receiving a transplant of cecal contents via gavage from donor rats fed RS (without antibiotics) or a water gavage before feeding resistant starch to both groups. Antibiotics given prior to feeding RS did not prevent later fermentation of RS regardless of either type of gavage. In the second study, antibiotics were given simultaneously with feeding of RS. This resulted in inhibition of fermentation of RS with cecal contents pH >8 and low amounts of acetate and butyrate. Rats treated with antibiotics had reduced Bifidobacteria spp., but similar Bacteroides spp. to control groups to reduce acetate and butyrate and preserve the production of propionate. Despite reduced fermentation, rats given antibiotics had increased glucagon-like peptide 1 (GLP-1) and cecum size, measures that are usually associated with fermentation. A simultaneous delivery of antibiotics inhibited fermentation of RS. However, increased GLP-1 and cecum size would be confounding effects in assessing the mechanism for beneficial effects of dietary RS by knocking out fermentation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Antibiotic resistance: A global crisis].

    Science.gov (United States)

    Alós, Juan-Ignacio

    2015-12-01

    The introduction of antibiotics into clinical practice represented one of the most important interventions for the control of infectious diseases. Antibiotics have saved millions of lives and have also brought a revolution in medicine. However, an increasing threat has deteriorated the effectiveness of these drugs, that of bacterial resistance to antibiotics, which is defined here as the ability of bacteria to survive in antibiotic concentrations that inhibit/kill others of the same species. In this review some recent and important examples of resistance in pathogens of concern for mankind are mentioned. It is explained, according to present knowledge, the process that led to the current situation in a short time, evolutionarily speaking. It begins with the resistance genes, continues with clones and genetic elements involved in the maintenance and dissemination, and ends with other factors that contribute to its spread. Possible responses to the problem are also reviewed, with special reference to the development of new antibiotics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. Consumer attitudes and use of antibiotics.

    Science.gov (United States)

    Vanden Eng, Jodi; Marcus, Ruthanne; Hadler, James L; Imhoff, Beth; Vugia, Duc J; Cieslak, Paul R; Zell, Elizabeth; Deneen, Valerie; McCombs, Katherine Gibbs; Zansky, Shelley M; Hawkins, Marguerite A; Besser, Richard E

    2003-09-01

    Recent antibiotic use is a risk factor for infection or colonization with resistant bacterial pathogens. Demand for antibiotics can be affected by consumers' knowledge, attitudes, and practices. In 1998-1999, the Foodborne Diseases Active Surveillance Network (FoodNet( conducted a population-based, random-digit dialing telephone survey, including questions regarding respondents' knowledge, attitudes, and practices of antibiotic use. Twelve percent had recently taken antibiotics; 27% believed that taking antibiotics when they had a cold made them better more quickly, 32% believed that taking antibiotics when they had a cold prevented more serious illness, and 48% expected a prescription for antibiotics when they were ill enough from a cold to seek medical attention. These misguided beliefs and expectations were associated with a lack of awareness of the dangers of antibiotic use; 58% of patients were not aware of the possible health dangers. National educational efforts are needed to address these issues if patient demand for antibiotics is to be reduced.

  13. Adverse consequences of neonatal antibiotic exposure.

    Science.gov (United States)

    Cotten, Charles M

    2016-04-01

    Antibiotics have not only saved lives and improved outcomes, but they also influence the evolving microbiome. This review summarizes reports on neonatal infections and variation in antibiotic utilization, discusses the emergence of resistant organisms, and presents data from human neonates and animal models demonstrating the impact of antibiotics on the microbiome, and how microbiome alterations impact health. The importance of antibiotic stewardship is also discussed. Infections increase neonatal morbidity and mortality. Furthermore, the clinical presentation of infections can be subtle, prompting clinicians to empirically start antibiotics when infection is a possibility. Antibiotic-resistant infections are a growing problem. Cohort studies have identified extensive center variations in antibiotic usage and associations between antibiotic exposures and outcomes. Studies of antibiotic-induced microbiome alterations and downstream effects on the developing immune system have increased our understanding of the mechanisms underlying the associations between antibiotics and adverse outcomes. The emergence of resistant microorganisms and recent evidence linking antibiotic practice variations with health outcomes has led to the initiation of antibiotic stewardship programs. The review encourages practitioners to assess local antibiotic use with regard to local microbiology, and to adopt steps to reduce infections and use antibiotics wisely.

  14. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  15. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-11-01

    Full Text Available Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L. to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg−1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, blaCTX-M, and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  16. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure.

    Science.gov (United States)

    Zhang, Hao; Li, Xunan; Yang, Qingxiang; Sun, Linlin; Yang, Xinxin; Zhou, Mingming; Deng, Rongzhen; Bi, Linqian

    2017-11-03

    Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi ( Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg -1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tet X, bla CTX-M , and sul 1 and sul 2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  17. Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol.

    Science.gov (United States)

    Wakabayashi, Hiroyuki; Teraguchi, Susumu; Tamura, Yoshitaka

    2002-10-01

    This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations.

  18. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  19. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  20. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  1. Forces shaping the antibiotic resistome.

    Science.gov (United States)

    Perry, Julie A; Wright, Gerard D

    2014-12-01

    Antibiotic resistance has become a problem of global scale. Resistance arises through mutation or through the acquisition of resistance gene(s) from other bacteria in a process called horizontal gene transfer (HGT). While HGT is recognized as an important factor in the dissemination of resistance genes in clinical pathogens, its role in the environment has been called into question by a recent study published in Nature. The authors found little evidence of HGT in soil using a culture-independent functional metagenomics approach, which is in contrast to previous work from the same lab showing HGT between the environment and human microbiome. While surprising at face value, these results may be explained by the lack of selective pressure in the environment studied. Importantly, this work suggests the need for careful monitoring of environmental antibiotic pollution and stringent antibiotic stewardship in the fight against resistance. © 2014 WILEY Periodicals, Inc.

  2. Antibiotic Policies in the Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Nese Saltoglu

    2003-08-01

    Full Text Available The antimicrobial management of patients in the Intensive Care Units are complex. Antimicrobial resistance is an increasing problem. Effective strategies for the prevention of antimicrobial resistance in ICUs have focused on limiting the unnecessary use of antibiotics and increasing compliance with infection control practices. Antibiotic policies have been implemented to modify antibiotic use, including national or regional formulary manipulations, antibiotic restriction forms, care plans, antibiotic cycling and computer assigned antimicrobial therapy. Moreover, infectious diseases consultation is a simple way to limit antibiotic use in ICU units. To improve rational antimicrobial using a multidisiplinary approach is suggested. [Archives Medical Review Journal 2003; 12(4.000: 299-309

  3. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics. Copyright © 2014. Published by Elsevier Ltd.

  4. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei.

    Science.gov (United States)

    Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; Veerman, Enno C I; Tungpradabkul, Sumalee; Wongratanacheewin, Surasakdi; Kanthawong, Sakawrat; Taweechaisupapong, Suwimol

    2013-07-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17-30 and LFampin268-284, a shorter fragment of LFampin265-284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 10(5) CFU/ml, could be killed by 5-10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.

  5. Adsorption of antibiotics on microplastics.

    Science.gov (United States)

    Li, Jia; Zhang, Kaina; Zhang, Hua

    2018-06-01

    Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (K d ) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg -1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with K f correlated positively with octanol-water partition coefficients (Log K ow ). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. [Antibiotics in the critically ill].

    Science.gov (United States)

    Kolak, Radmila R

    2010-01-01

    Antibiotics are one the most common therapies administered in the intensive care unit setting. This review outlines the strategy for optimal use of antimicrobial agents in the critically ill. In severely ill patients, empirical antimicrobial therapy should be used when a suspected infection may impair the outcome. It is necessary to collect microbiological documentation before initiating empirical antimicrobial therapy. In addition to antimicrobial therapy, it is recommended to control a focus of infection and to modify factors that promote microbial growth or impair the host's antimicrobial defence. A judicious choice of antimicrobial therapy should be based on the host characteristics, the site of injection, the local ecology, and the pharmacokinetics/pharmacodynamics of antibiotics. This means treating empirically with broad-spectrum antimicrobials as soon as possible and narrowing the spectrum once the organism is identified (de-escalation), and limiting duration of therapy to the minimum effective period. Despite theoretical advantages, a combined antibiotic therapy is nor more effective than a mono-therapy in curing infections in most clinical trials involving intensive care patients. Nevertheless, textbooks and guidelines recommend a combination for specific pathogens and for infections commonly caused by these pathogens. Avoiding unnecessary antibiotic use and optimizing the administration of antimicrobial agents will improve patient outcomes while minimizing risks for the development of bacterial resistance. It is important to note that each intensive care unit should have a program in place which monitors antibiotic utilisation and its effectiveness. Only in this way can the impact of interventions aimed at improving antibiotic use be evaluated at the local level.

  7. Antibiotics for whooping cough (pertussis).

    Science.gov (United States)

    Altunaiji, S; Kukuruzovic, R; Curtis, N; Massie, J

    2007-07-18

    Whooping cough is a highly contagious disease. Infants are at highest risk of severe disease and death. Erythromycin for 14 days is currently recommended for treatment and contact prophylaxis, but is of uncertain benefit. To study the benefits and risks of antibiotic treatment of and contact prophylaxis against whooping cough. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), the Database of Abstracts of Reviews of Effects (DARE) (The Cochrane Library Issue 1, 2007); MEDLINE (January 1966 to March 2007); EMBASE (January 1974 to March 2007). All randomised and quasi-randomised controlled trials of antibiotics for treatment of, and contact prophylaxis against, whooping cough. Three to four review authors independently extracted data and assessed the quality of each trial. Thirteen trials with 2197 participants met the inclusion criteria: 11 trials investigated treatment regimens; 2 investigated prophylaxis regimens. The quality of the trials was variable.Short-term antibiotics (azithromycin for three to five days, or clarithromycin or erythromycin for seven days) were as effective as long-term (erythromycin for 10 to 14 days) in eradicating Bordetella pertussis (B. pertussis) from the nasopharynx (relative risk (RR) 1.02, 95% confidence interval (CI) 0.98 to 1.05), but had fewer side effects (RR 0.66, 95% CI 0.52 to 0.83). Trimethoprim/sulfamethoxazole for seven days was also effective. Nor were there differences in clinical outcomes or microbiological relapse between short and long-term antibiotics. Contact prophylaxis of contacts older than six months of age with antibiotics did not significantly improve clinical symptoms or the number of cases developing culture-positive B. pertussis. Although antibiotics were effective in eliminating B. pertussis, they did not alter the subsequent clinical course of the illness. There is insufficient evidence to determine the benefit of prophylactic treatment of pertussis contacts.

  8. The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Sørensen, Ole E; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur

    2013-01-01

    Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2). This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections.

  9. A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Panteleev, Pavel V; Balandin, Sergey V; Ivanov, Vadim T; Ovchinnikova, Tatiana V

    2017-01-01

    Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play the key role in host defense. Because of the low resistance rate, AMPs have caught extensive attention as possible alternatives to conventional antibiotics. Over the last years, it has become evident that biological functions of AMPs are beyond direct killing of microbial cells. This review focuses on a relatively small family of animal host defense peptides with the β-hairpin structure stabilized by disulfide bridges. Their small size, rigid structure, stability to proteases, and plethora of biological functions, including antibacterial, antifungal, antiviral, anticancer, endotoxin-binding, metabolism- and immune- modulating activities, make natural β-hairpin AMPs an attractive molecular basis for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Recent updates of carbapenem antibiotics.

    Science.gov (United States)

    El-Gamal, Mohammed I; Brahim, Imen; Hisham, Noorhan; Aladdin, Rand; Mohammed, Haneen; Bahaaeldin, Amany

    2017-05-05

    Carbapenems are among the most commonly used and the most efficient antibiotics since they are relatively resistant to hydrolysis by most β-lactamases, they target penicillin-binding proteins, and generally have broad-spectrum antibacterial effect. In this review, we described the initial discovery and development of carbapenems, chemical characteristics, in vitro/in vivo activities, resistance studies, and clinical investigations for traditional carbapenem antibiotics in the market; imipenem-cilastatin, meropenem, ertapenem, doripenem, biapenem, panipenem/betamipron in addition to newer carbapenems such as razupenem, tebipenem, tomopenem, and sanfetrinem. We focused on the literature published from 2010 to 2016. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    . Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years....... Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly...... expand our understanding of the interplay between antibiotics and the microbiome....

  12. The Pharmacodynamics of Antibiotic Treatment

    Directory of Open Access Journals (Sweden)

    Imran Mudassar

    2006-01-01

    Full Text Available We derive models of the effects of periodic, discrete dosing or constant dosing of antibiotics on a bacterial population whose growth is checked by nutrient-limitation and possibly by host defenses. Mathematically rigorous results providing sufficient conditions for treatment success, i.e. the elimination of the bacteria, as well as for treatment failure, are obtained. Our models can exhibit bi-stability where the infection-free state and an infection-state are locally stable when antibiotic dosing is marginal. In this case, treatment success may occur only for sub-threshold level infections.

  13. Antibiotic concentrations in intestinal mucosa.

    Science.gov (United States)

    Malmborg, A S

    1985-01-01

    The concentrations in the intestinal mucosa after the initial dose of cefoxitin, piperacillin and clindamycin have been studied. The antibiotics were given at the induction of anesthesia as prophylaxis to patients undergoing elective colorectal surgery. The concentrations of the antibiotics in serum and intestinal mucosa taken during the operation were determined by the microbiological agar diffusion method. Therapeutic concentrations in intestinal mucosa were maintained during the major part of the operation period. The mean mucosa/serum concentration ratios were for cefoxitin 0.4, for piperacillin 0.5 and for clindamycin 1.2.

  14. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites.

    Science.gov (United States)

    Wittmann-Liebold, B; Uhlein, M; Urlaub, H; Müller, E C; Otto, A; Bischof, O

    1995-01-01

    Contact sites between protein and rRNA in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus were investigated at the molecular level using UV and 2-iminothiolane as cross-linkers. Thirteen ribosomal proteins (S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29, and L36) from these organisms were cross-linked in direct contact with the RNAs, and the peptide stretches as well as amino acids involved were identified. Further, the binding sites of puromycin and spiramycin were established at the peptide level in several proteins that were found to constitute the antibiotic-binding sites. Peptide stretches of puromycin binding were identified from proteins S7, S14, S18, L18, AND L29; those of spiramycin attachment were derived from proteins S12, S14, L17, L18, L27, and L35. Comparison of the RNA-peptide contact sites with the peptides identified for antibiotic binding and with those altered in antibiotic-resistant mutants clearly showed identical peptide areas to be involved and, hence, demonstrated the functional importance of these peptides. Further evidence for a functional implication of ribosomal proteins in the translational process came from complementation experiments in which protein L2 from Halobacterium marismortui was incorporated into the E. coli ribosomes that were active. The incorporated protein was present in 50S subunits and 70S particles, in disomes, and in higher polysomes. These results clearly demonstrate the functional implication of protein L2 in protein biosynthesis. Incorporation studies with a mutant of HmaL2 with a replacement of histidine-229 by glycine completely abolished the functional activity of the ribosome. Accordingly, protein L2 with histidine-229 is a crucial element of the translational machinery.

  15. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  16. Antibiotics prescription in Nigerian dental healthcare services.

    Science.gov (United States)

    Azodo, C C; Ojehanon, P I

    2014-09-01

    Inappropriate antibiotics prescription in dental healthcare delivery that may result in the emergence of antibiotic-resistant bacteria, is a worldwide concern. The objective of the study was to determine the antibiotics knowledge and prescription patterns among dentists in Nigeria. A total of 160 questionnaires were distributed to dentists attending continuing education courses organized by two organizations in Southern and Northern parts of Nigeria. Data analysis was done using SPSS version 17.0. A total of 146 questionnaires were returned, properly filled, out of 160 questionnaires, giving an overall response rate 91.3%. The clinical factors predominantly influenced the choice of therapeutic antibiotics among the respondents. In this study, the most commonly prescribed antibiotics among the respondents was a combination of amoxicillin and metronidazole. Of the respondents, 136 (93.2%) of them considered antibiotic resistance as a major problem in Nigeria and 102 (69.9%) have experienced antibiotics resistance in dental practice. The major reported conditions for prophylactic antibiotics among the respondents were diabetic mellitus, HIV/AIDS, history of rheumatic fever, other heart anomalies presenting with heart murmur and presence of prosthetic hip. The knowledge of adverse effects of antibiotics was greatest for tooth discoloration which is related to tetracycline. Data from this study revealed the most commonly prescribed antibiotics as a combination of amoxicillin and metronidazole. There existed gaps in prophylactic antibiotic prescription, consideration in the choice of therapeutic antibiotics and knowledge of adverse effects of antibiotics among the studied dentists.

  17. Probiotic approach to prevent antibiotic resistance.

    Science.gov (United States)

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-01-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.

  18. Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid

    Czech Academy of Sciences Publication Activity Database

    Vobruba, Šimon; Kadlčík, Stanislav; Gažák, Radek; Janata, Jiří

    2017-01-01

    Roč. 12, č. 12 (2017), č. článku e0189684. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GJ17-13436Y; GA MŠk(CZ) LQ1604 Institutional support: RVO:61388971 Keywords : NONRIBOSOMAL PEPTIDE SYNTHETASES * BIOSYNTHETIC GENE-CLUSTER * LINCOSAMIDE ANTIBIOTICS Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.806, year: 2016

  19. The effect of antibiotics on diatom communities

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    Effect of antibiotics (penicillin (P), streptomycin (S) and chloramphenicol (C)) on benthic diatom communities was evaluated using a modified extinction–dilution method. The high antibiotic combinations (2PSC and PSC) reduced diatoms by 99...

  20. Assessment of antibiotic susceptibilities, genotypic characteristics ...

    African Journals Online (AJOL)

    Jane

    2011-09-28

    Sep 28, 2011 ... Staphylococcus aureus and Salmonella Typhimurium ... This study was designed to evaluate the antibiotic susceptibilities, genotypic characteristics and ..... Distribution of reference and virulence genes among antibiotic-sensitive S. aureus (SAS), .... environmental factors such as temperature, water activity,.

  1. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... Form Controls Cancel Submit Search The CDC Antibiotic / Antimicrobial Resistance Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Antibiotic / Antimicrobial Resistance About Antimicrobial Resistance Biggest Threats Emerging Drug ...

  2. Original Paper Multicenter study on antibiotic susceptibility ...

    African Journals Online (AJOL)

    Multicenter study on antibiotic susceptibility/resistance trends in the western region of Cameroon ... antibiotic era, IDs used to be serious threats because of lack or insufficient ...... antimicrobial use in livestock; AMR. Control., 116-122. Vandini ...

  3. What Can Be Done about Antibiotic Resistance?

    Science.gov (United States)

    ... Us General Background: What can be done about Antibiotic Resistance? What can I do? Are antibacterial agents, such as antibacterial soaps, a solution? Are antibiotics regulated? Is there any international action on the ...

  4. Antibiotic Prescription in Danish General Practice

    DEFF Research Database (Denmark)

    Sydenham, Rikke Vognbjerg; Plejdrup Hansen, Malene; Pedersen, Line Bjørnskov

    2016-01-01

    1. Background & Aim The overall aim of the project is to describe antibiotic consumption in Danish general practice with emphasis on specific types of antibiotics. The project will shed light on the impact of microbiological diagnostic methods (MDM) on the choice of antibiotic and the project...... will explore how the GPs prescription behaviour is influenced by selected factors. Antibiotics are essential when treating potentially lethal infections. An increasing development of resistant bacteria is considered one of the primary threats to public health. The majority of antibiotics (90%) are prescribed...... from general practice. The prescription of broad-spectrum antibiotics can cause unnecessary side effects for the individual and increases the risk of development of bacteria resistant to antibiotic treatment. Both the prescription of broad-spectrum antibiotics and the level of resistant bacteria...

  5. Antibiotic Resistance in Human Chronic Periodontitis Microbiota

    NARCIS (Netherlands)

    Rams, Thomas E.; Degener, John E.; van Winkelhoff, Arie J.

    Background: Patients with chronic periodontitis (CP) may yield multiple species of putative periodontal bacterial pathogens that vary in their antibiotic drug susceptibility. This study determines the occurrence of in vitro antibiotic resistance among selected subgingival periodontal pathogens in

  6. Antibiotic treatment of biofilm infections

    DEFF Research Database (Denmark)

    Ciofu, Oana; Rojo-Molinero, Estrella; Macià, María D.

    2017-01-01

    Bacterial biofilms are associated with a wide range of infections, from those related to exogenous devices, such as catheters or prosthetic joints, to chronic tissue infections such as those occurring in the lungs of cystic fibrosis patients. Biofilms are recalcitrant to antibiotic treatment due ...

  7. EAMJ Antibiotic May 2010.indd

    African Journals Online (AJOL)

    2010-05-01

    May 1, 2010 ... ANTIBIOTIC RESISTANT SALMONELLA AND ESCHERICHIA COLI ISOLATED FROM INDIGENOUS GALLUS. DOMESTICUS IN ... in line of resistance was Amp 32.86%, followed by Aug (11.43%), low or moderate ... Salmonellaentericashould be done to identify infected flocks as a regulatory procedure.

  8. PREVALENCE AND ANTIBIOTIC RESISTANCE OF ...

    African Journals Online (AJOL)

    9 mars 2015 ... strategy to prevent the spread of this resistance. Keywords: Staphylococci; Staphylococcus aureus; Oxacillin; Antibiotic resistance; Disc diffusion. Author Correspondence, e-mail: mn.boukhatem@yahoo.fr. ICID: 1142924. Journal of Fundamental and Applied Sciences. ISSN 1112-9867. Available online at.

  9. Prophylactic Antibiotics and Wound Infection

    OpenAIRE

    Elbur, Abubaker Ibrahim; M.A., Yousif; El-Sayed, Ahmed S.A.; Abdel-Rahman, Manar E.

    2013-01-01

    Introduction: Surgical site infections account for 14%-25% of all nosocomial infections. The main aims of this study were to audit the use of prophylactic antibiotic, to quantify the rate of post-operative wound infection, and to identify risk factors for its occurrence in general surgery.

  10. Endophytes as sources of antibiotics.

    Science.gov (United States)

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Abiotic degradation of antibiotic ionophores

    DEFF Research Database (Denmark)

    Bohn, Pernille; Bak, Søren A; Björklund, Erland

    2013-01-01

    Hydrolytic and photolytic degradation were investigated for the ionophore antibiotics lasalocid, monensin, salinomycin, and narasin. The hydrolysis study was carried out by dissolving the ionophores in solutions of pH 4, 7, and 9, followed by incubation at three temperatures of 6, 22, and 28 °C f...... because they absorb light of environmentally irrelevant wavelengths....

  12. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    Science.gov (United States)

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents. © 2015 John Wiley & Sons A/S.

  13. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  14. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Ebbensgaard, Anna Elisabeth; Mordhorst, Hanne; Overgaard, Michael Toft

    2015-01-01

    The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various...... AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram...

  15. The determinants of the antibiotic resistance process

    Directory of Open Access Journals (Sweden)

    Beatriz Espinosa Franco

    2009-04-01

    Full Text Available Beatriz Espinosa Franco1, Marina Altagracia Martínez2, Martha A Sánchez Rodríguez1, Albert I Wertheimer31Facultad de Estudios Superiores Zaragoza (UNAM, Mexico; 2Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico; 3Temple University, Philadelphia, Pennsylvania, USABackground: The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community.Objectives: To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem.Methods: We conducted a MedLine search using the key words “determinants”, “antibiotic”, and “antibiotic resistance” to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded.Results: The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance.Conclusions: Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.Keywords: antibiotic drug resistance

  16. Antibiotics: Use and misuse in pediatric dentistry

    OpenAIRE

    F C Peedikayil

    2011-01-01

    Antibiotics are commonly used in dentistry for prophylactic as well as for therapeutic purposes. Most often antibiotics are used in unwarranted situations, which may give rise to resistant bacterial strains. Dentists want to make their patients well and to prevent unpleasant complications. These desires, coupled with the belief that many oral problems are infectious, stimulate the prescribing of antibiotics. Good knowledge about the indications of antibiotics is the need of the hour in prescr...

  17. Empiric antibiotic prescription among febrile under-five Children in ...

    African Journals Online (AJOL)

    limiting viral infection and therefore, would not require antibiotics. Over prescription of antibiotics increases antibiotics exposure and development of resistance among patients. There is need to evaluate empiric antibiotic prescription in order to limit ...

  18. Trends in Antibiotic Prescribing in Adults in Dutch General Practice

    NARCIS (Netherlands)

    M.B. Haeseker (Michiel); N.H.T.M. Dukers-Muijrers (Nicole); C.J.P.A. Hoebe (Christian); C.A. Bruggeman (Cathrien); J.W.L. Cals (Jochen); A. Verbon (Annelies)

    2012-01-01

    textabstractBackground: Antibiotic consumption is associated with adverse drug events (ADE) and increasing antibiotic resistance. Detailed information of antibiotic prescribing in different age categories is scarce, but necessary to develop strategies for prudent antibiotic use. The aim of this

  19. Implementation of an antibiotic checklist increased appropriate antibiotic use in the hospital on Aruba

    NARCIS (Netherlands)

    van Daalen, Frederike Vera; Lagerburg, Anouk; de Kort, Jaclyn; Sànchez Rivas, Elena; Geerlings, Suzanne Eugenie

    2017-01-01

    No interventions have yet been implemented to improve antibiotic use on Aruba. In the Netherlands, the introduction of an antibiotic checklist resulted in more appropriate antibiotic use in nine hospitals. The aim of this study was to introduce the antibiotic checklist on Aruba, test its

  20. Shift in antibiotic prescribing patterns in relation to antibiotic expenditure in paediatrics

    NARCIS (Netherlands)

    Kimpen, JLL; van Houten, M.A.

    In paediatrics, antibiotics are among the most commonly prescribed drugs. Because of an overall rise in health care costs, lack of uniformity in drug prescribing and the emergence of antibiotic resistance, monitoring and control of antibiotic use is of growing concern and strict antibiotic policies

  1. Do topical antibiotics help corneal epithelial trauma?

    OpenAIRE

    King, J. W.; Brison, R. J.

    1993-01-01

    Topical antibiotics are routinely used in emergency rooms to treat corneal trauma, although no published evidence supports this treatment. In a noncomparative clinical trial, 351 patients with corneal epithelial injuries were treated without antibiotics. The infection rate was 0.7%, suggesting that such injuries can be safely and effectively managed without antibiotics. A comparative clinical trial is neither warranted nor feasible.

  2. [Antibiotic therapy in patients with renal insufficiency].

    Science.gov (United States)

    Luckhaupt, H; Rose, K G

    1985-06-01

    For the otolaryngologist (ENT specialist), too, antibiotics are among the most frequently prescribed drugs. This article gives the essential fundamentals for the antibiotic treatment of patients with restricted kidney functions, as well as advice for antibiotic therapy in clinics and in medical practice.

  3. Overcoming the current deadlock in antibiotic research.

    Science.gov (United States)

    Schäberle, Till F; Hack, Ingrid M

    2014-04-01

    Antibiotic-resistant bacteria are on the rise, making it harder to treat bacterial infections. The situation is aggravated by the shrinking of the antibiotic development pipeline. To finance urgently needed incentives for antibiotic research, creative financing solutions are needed. Public-private partnerships (PPPs) are a successful model for moving forward. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Antibiotic susceptibility profiles of oral pathogens

    NARCIS (Netherlands)

    Veloo, A. C. M.; Seme, K.; Raangs, Gerwin; Rurenga, P.; Singadji, Z.; Wekema - Mulder, G.; van Winkelhoff, A. J.

    2012-01-01

    Periodontitis is a bacterial disease that can be treated with systemic antibiotics. The aim of this study was to establish the antibiotic susceptibility profiles of five periodontal pathogens to six commonly used antibiotics in periodontics. A total of 247 periodontal bacterial isolates were tested

  5. New business models for antibiotic innovation.

    Science.gov (United States)

    So, Anthony D; Shah, Tejen A

    2014-05-01

    The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.

  6. [Potentialization of antibiotics by lytic enzymes].

    Science.gov (United States)

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  7. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  8. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    Science.gov (United States)

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  9. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses.

    Science.gov (United States)

    Sancho, S; Briz, M; Yeste, M; Bonet, S; Bussalleu, E

    2017-10-01

    The presence of bacteria adversely affects boar sperm quality of seminal doses intended for artificial insemination. Currently, the most common measure to prevent bacteriospermia is the addition of antibiotics in semen extenders; however, mounting evidence shows that microbial resistance exists. A promising alternative to replace antibiotics are antimicrobial peptides. In this study, the effects of the antimicrobial peptide protegrine 1 (PG1) on the sperm viability and bacterial load of boar seminal doses were evaluated. Three different concentrations of PG1 (2.5, 25 and 100 μg/ml) were tested over a storing period of 10 days at 17°C. Sperm viability was analysed by fluorescence microscopy (SYBR14/propidium iodide), and bacterial load was assessed by plating 100 μl of each sample in Luria-Bertani medium and incubated at 37°C for 72 hr under aerobic conditions. Protegrine 1 was effective in controlling the bacterial load in all the assessed concentrations (p < .05), reaching the lowest values at the highest concentrations of the antimicrobial peptide. Nevertheless, sperm viability was significantly (p < .05) reduced by all tested concentrations of this peptide, the most cytotoxic effects being observed at the highest PG1 concentrations. Despite these results, the use of PG1 as an alternative to antibiotics cannot be totally discarded, as further studies using the truncated form of this peptide are needed. © 2017 Blackwell Verlag GmbH.

  10. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  11. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  12. Antibiotics from bacillus subtilis AECL90 - effect of trace elements and carbohydrates on antibiotic production

    International Nuclear Information System (INIS)

    Malik, M.A.; Shaukat, G.A.; Ahmed, M.S.

    1990-01-01

    Three types of antibiotics S, X and F characteristically bioactive against staphylococcic, xanthomonas and fungi are elaborated by Bacillus Subtilis AECL 69 when grown in molasses peptone malt extract sucrose. No antibiotic production was observed when molasses was omitted from the growth medium. A mineral salt mixture was devised that could replace molasses and restore the production of antibiotics. Influence of various carbohydrates on the production of antibiotics was also studied. Mannose and mannitol had inhibitory effect on the antibiotic production. (author)

  13. Intraventricular antibiotics for bacterial meningitis in neonates.

    Science.gov (United States)

    Shah, Sachin S; Ohlsson, Arne; Shah, Vibhuti S

    2012-07-11

    Neonatal meningitis may be caused by bacteria, especially gram-negative bacteria, which are difficult to eradicate from the cerebrospinal fluid (CSF) using safe doses of antibiotics. In theory, intraventricular administration of antibiotics would produce higher antibiotic concentrations in the CSF than intravenous administration alone, and eliminate the bacteria more quickly. However, ventricular taps may cause harm. To assess the effectiveness and safety of intraventricular antibiotics (with or without intravenous antibiotics) in neonates with meningitis (with or without ventriculitis) as compared to treatment with intravenous antibiotics alone. The Cochrane Library, Issue 2, 2007; MEDLINE; EMBASE; CINAHL and Science Citation Index were searched in June 2007. The Oxford Database of Perinatal Trials was searched in June 2004. Pediatric Research (abstracts of proceedings) were searched (1990 to April 2007) as were reference lists of identified trials and personal files. No language restrictions were applied.This search was updated in May 2011. Selection criteria for study inclusion were: randomised or quasi-randomised controlled trials in which intraventricular antibiotics with or without intravenous antibiotics were compared with intravenous antibiotics alone in neonates (antibiotics compared to the group receiving intravenous antibiotics alone (RR 3.43; 95% CI 1.09 to 10.74; RD 0.30; 95% CI 0.08 to 0.53); NNTH 3; 95% CI 2 to 13). Duration of CSF culture positivity did not differ significantly (MD -1.20 days; 95% CI -2.67 to 0.27). In one trial that enrolled infants with gram-negative meningitis and ventriculitis, the use of intraventricular antibiotics in addition to intravenous antibiotics resulted in a three-fold increased RR for mortality compared to standard treatment with intravenous antibiotics alone. Based on this result, intraventricular antibiotics as tested in this trial should be avoided. Further trials comparing these interventions are not justified in

  14. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2.

    Science.gov (United States)

    Gavrish, Ekaterina; Sit, Clarissa S; Cao, Shugeng; Kandror, Olga; Spoering, Amy; Peoples, Aaron; Ling, Losee; Fetterman, Ashley; Hughes, Dallas; Bissell, Anthony; Torrey, Heather; Akopian, Tatos; Mueller, Andreas; Epstein, Slava; Goldberg, Alfred; Clardy, Jon; Lewis, Kim

    2014-04-24

    Languishing antibiotic discovery and flourishing antibiotic resistance have prompted the development of alternative untapped sources for antibiotic discovery, including previously uncultured bacteria. Here, we screen extracts from uncultured species against Mycobacterium tuberculosis and identify lassomycin, an antibiotic that exhibits potent bactericidal activity against both growing and dormant mycobacteria, including drug-resistant forms of M. tuberculosis, but little activity against other bacteria or mammalian cells. Lassomycin is a highly basic, ribosomally encoded cyclic peptide with an unusual structural fold that only partially resembles that of other lasso peptides. We show that lassomycin binds to a highly acidic region of the ClpC1 ATPase complex and markedly stimulates its ATPase activity without stimulating ClpP1P2-catalyzed protein breakdown, which is essential for viability of mycobacteria. This mechanism, uncoupling ATPase from proteolytic activity, accounts for the bactericidal activity of lassomycin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Selectivity in the potentiation of antibacterial activity of α-peptide/β-peptoid peptidomimetics and antimicrobial peptides by human blood plasma

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M.; Franzyk, Henrik

    2013-01-01

    Antimicrobial peptides (AMPs) are promising leads for novel antibiotics; however, their activity is often compromised under physiological conditions. The purpose of this study was to determine the activity of alpha-peptide/beta-peptoid peptidomimetics and AMPs against Escherichia coli and Staphyl......Antimicrobial peptides (AMPs) are promising leads for novel antibiotics; however, their activity is often compromised under physiological conditions. The purpose of this study was to determine the activity of alpha-peptide/beta-peptoid peptidomimetics and AMPs against Escherichia coli...... and Staphylococcus aureus in the presence of human blood-derived matrices and immune effectors. The minimum inhibitory concentration (MIC) of two peptidomimetics against E. coli decreased by up to one order of magnitude when determined in 50% blood plasma as compared to MHB media. The MIC of a membrane-active AMP......, LL-I/3, also decreased, whereas two intracellularly acting AMPs were not potentiated by plasma. Blood serum had no effect on activity against E. coli and neither matrix had an effect on activity against S. aureus. Unexpectedly, physiological concentrations of human serum albumin did not influence...

  16. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  17. Antibiotic effectiveness: balancing conservation against innovation.

    Science.gov (United States)

    Laxminarayan, Ramanan

    2014-09-12

    Antibiotic effectiveness is a natural societal resource that is diminished by antibiotic use. As with other such assets, keeping it available requires both conservation and innovation. Conservation encompasses making the best use of current antibiotic effectiveness by reducing demand through vaccination, infection control, diagnostics, public education, incentives for clinicians to prescribe fewer antibiotics, and restrictions on access to newer, last-resort antibiotics. Innovation includes improving the efficacy of current drugs and replenishing effectiveness by developing new drugs. In this paper, I assess the relative benefits and costs of these two approaches to maintaining our ability to treat infections. Copyright © 2014, American Association for the Advancement of Science.

  18. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review.

    Science.gov (United States)

    Gadde, U; Kim, W H; Oh, S T; Lillehoj, Hyun S

    2017-06-01

    With the increase in regulations regarding the use of antibiotic growth promoters and the rise in consumer demand for poultry products from 'Raised Without Antibiotics' or 'No Antibiotics Ever' flocks, the quest for alternative products or approaches has intensified in recent years. A great deal of research has focused on the development of antibiotic alternatives to maintain or improve poultry health and performance. This review describes the potential for the various alternatives available to increase animal productivity and help poultry perform to their genetic potential under existing commercial conditions. The classes of alternatives described include probiotics, prebiotics, synbiotics, organic acids, enzymes, phytogenics, antimicrobial peptides, hyperimmune egg antibodies, bacteriophages, clay, and metals. A brief description of the mechanism of action, efficacy, and advantages and disadvantages of their uses are also presented. Though the beneficial effects of many of the alternatives developed have been well demonstrated, the general consensus is that these products lack consistency and the results vary greatly from farm to farm. Furthermore, their mode of action needs to be better defined. Optimal combinations of various alternatives coupled with good management and husbandry practices will be the key to maximize performance and maintain animal productivity, while we move forward with the ultimate goal of reducing antibiotic use in the animal industry.

  19. Local Antibiotic Delivery Systems: Current and Future Applications for Diabetic Foot Infections.

    Science.gov (United States)

    Markakis, Konstantinos; Faris, Alan Robert; Sharaf, Hamed; Faris, Barzo; Rees, Sharon; Bowling, Frank L

    2018-03-01

    Foot infections are common among diabetic patients with peripheral neuropathy and/or peripheral arterial disease, and it can be the pivotal event leading to a minor or major amputation of the lower extremity. Treatment of diabetic foot infections, especially deep-seated ones, remains challenging, in part because impaired blood perfusion and the presence of biofilms can impair the effectiveness of systemic antibiotics. The local application of antibiotics is an emerging field in the treatment of diabetic foot infections, with demonstrable advantages. These include delivery of high concentrations of antibiotics in the affected area, limited systemic absorption, and thus negligible side effects. Biodegradable vehicles, such as calcium sulfate beads, are the prototypical system, providing a good elution profile and the ability to be impregnated with a variety of antibiotics. These have largely superseded the nonbiodegradable vehicles, but the strongest evidence available is for calcium bead implantation for osteomyelitis management. Natural polymers, such as collagen sponge, are an emerging class of delivery systems, although thus far, data on diabetic foot infections are limited. There is recent interest in the novel antimicrobial peptide pexiganan in the form of cream, which is active against most of the microorganisms isolated in diabetic foot infections. These are promising developments, but randomized trials are required to ascertain the efficacy of these systems and to define the indications for their use. Currently, the role of topical antibiotic agents in treating diabetic foot infections is limited and outside of routine practice.

  20. Identification of Four New agr Quorum Sensing-Interfering Cyclodepsipeptides from a Marine Photobacterium

    DEFF Research Database (Denmark)

    Kjærulff, Louise; Nielsen, Anita; Månsson, Maria

    2013-01-01

    During our search for new natural products from the marine environment, we discovered a wide range of cyclic peptides from a marine Photobacterium, closely related to P. halotolerans. The chemical fingerprint of the bacterium showed primarily non-ribosomal peptide synthetase (NRPS)-like compounds......, including the known pyrrothine antibiotic holomycin and a wide range of peptides, from diketopiperazines to cyclodepsipeptides of 500–900 Da. Purification of components from the pellet fraction led to the isolation and structure elucidation of four new cyclodepsipeptides, ngercheumicin F, G, H, and I...

  1. Antibiotic prescribing in dental practice in Belgium.

    Science.gov (United States)

    Mainjot, A; D'Hoore, W; Vanheusden, A; Van Nieuwenhuysen, J-P

    2009-12-01

    To assess the types and frequency of antibiotic prescriptions by Belgian dentists, the indications for antibiotic prescription, and dentists' knowledge about recommended practice in antibiotic use. In this cross-sectional survey, dental practitioners were asked to record information about all antibiotics prescribed to their patients during a 2-week period. The dental practitioners were also asked to complete a self-administered questionnaire regarding demographic data, prescribing practices, and knowledge about antibiotic use. A random sample of 268 Belgian dentists participated in the survey. During the 2-week period, 24 421 patient encounters were recorded; 1033 patients were prescribed an antibiotic (4.2%). The median number of prescriptions per dentist for the 2 weeks was 3. Broad spectrum antibiotics were most commonly prescribed: 82% of all prescriptions were for amoxycillin, amoxycillin-clavulanic acid and clindamycin. Antibiotics were often prescribed in the absence of fever (92.2%) and without any local treatment (54.2%). The most frequent diagnosis for which antibiotics were prescribed was periapical abscess (51.9%). Antibiotics were prescribed to 63.3% of patients with periapical abscess and 4.3% of patients with pulpitis. Patterns of prescriptions were confirmed by the data from the self-reported practice. Discrepancies between observed and recommended practice support the need for educational initiatives to promote rational use of antibiotics in dentistry in Belgium.

  2. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Rafi eRashid

    2016-06-01

    Full Text Available Antimicrobial peptides (AMPs are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs target anionic lipids (e.g. phosphatidylglycerol (PG and cardiolipins (CL in the cell membrane and anionic components (e.g. lipopolysaccharide (LPS and lipoteichoic acid (LTA of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g. lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1 CAMP disruption mechanisms, (2 delocalization of membrane proteins and lipids by CAMPs, and (3 CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging and non-detergent-based membrane domain extraction.

  3. Evaluation of Novel Antimicrobial Peptides as Topical Anti-Infectives with Broad Spectrum Activity Against Combat-Related Bacterial and Fungal Wound Infections

    Science.gov (United States)

    2016-10-01

    Inc. Vallejo, CA 94592 REPORT DATE: October 2016 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort...2016 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2015 - 29 Sep 2016 4. TITLE AND SUBTITLE Evaluation of Novel Antimicrobial Peptides as Topical...antibiotics and early debridement has been associated with a large reduction in burn wound infections. Current topical antibiotics include

  4. [Prophylactic antibiotics for immunocompromised children].

    Science.gov (United States)

    Poirée, M; Picard, C; Aguilar, C; Haas, H

    2013-11-01

    Infections are the most common cause of morbidity and mortality in pediatric immunocompromised children. The emergence of pan-drug resistant bacteria is particularly concerning for these patients. The risk of infection can be reduced by educational rules, immunizing these patients and sometimes antibiotic prophylaxis. But the individual level of risk is very difficult to assess. Using antibiotics may lead to adverse effects such as allergic reactions, cross-reactions with other drugs, development of super-infections, pseudomembranous colitis and overall development of antibioticresistant bacterial strains. Recommendations for preventing infections in these patients exist for specific case such as inherited disorder or stem cell transplantation. In others cases it depends on physicians' habits: the increase of bacterial resistance could lead to reduce the prescriptions non evidence based and not included in official guidelines. Pneumococcal and meningococcal vaccinations might change guidelines and habits. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Bacterial biofilms and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Liliana Caldas-Arias

    2015-04-01

    Full Text Available Biofilms give to bacteria micro-environmental benefits; confers protection against antimicrobials. Bacteria have antibiotic resistance by conventional and unusual mechanisms leading to delayed wound healing, to increase recurrent chronic infections and nosocomial contamination of medical devices. Objective: This narrative review aims to introduce the characteristics of Bacteria-biofilms, antimicrobial resistance mechanisms and potential alternatives for prevention and control of its formation. Methods: Search strategy was performed on records: PubMed / Medline, Lilacs, Redalyc; with suppliers such as EBSCO and thesaurus MeSH and DeCS. Conclusions: Knowledge and research performance of biofilm bacteria are relevant in the search of technology for detection and measuring sensitivity to antibiotics. The identification of Bacterial-biofilms needs no-traditional microbiological diagnosis.

  6. Designing Safer and Greener Antibiotics

    Directory of Open Access Journals (Sweden)

    Nicholas Gathergood

    2013-09-01

    Full Text Available Since the production of the first pharmaceutically active molecules at the beginning of the 1900s, drug molecules and their metabolites have been observed in the environment in significant concentrations. In this review, the persistence of antibiotics in the environment and their associated effects on ecosystems, bacterial resistance and health effects will be examined. Solutions to these problems will also be discussed, including the pharmaceutical industries input, green chemistry, computer modeling and representative ionic liquid research.

  7. Prophylactic antibiotics in transurethral prostatectomy

    DEFF Research Database (Denmark)

    Qvist, N; Christiansen, H.M.; Ehlers, D

    1984-01-01

    The study included 88 patients with sterile urine prior to transurethral prostatectomy. Forty-five received a preoperative dose of 2 g of cefotaxime (Claforan) and the remaining 43 were given 10 ml of 0.9% NaCl. The two groups did not differ in frequency of postoperative urinary infection (greate...... of infection and the few side effects of the infections that did occur, prophylactic treatment with an antibiotic is not indicated for transurethral prostatectomy in patients with sterile urine....

  8. Probiotics and antibiotics in IBD.

    Science.gov (United States)

    Sokol, Harry

    2014-01-01

    The involvement of the gut microbiota in the pathogenesis of IBD is supported by many findings and is thus now commonly acknowledged. The imbalance in the composition of the microbiota (dysbiosis) observed in IBD patients is one of the strongest arguments and provides the rationale for a therapeutic manipulation of the gut microbiota. The tools available to achieve this goal include fecal microbiota transplantation, but antibiotics and probiotics have been the most used one until now. Although antibiotics have shown some efficacy in inducing remission in Crohn's disease (CD) and ulcerative colitis (UC), as well as preventing postoperative relapse in CD, they are not currently recommended for the treatment of IBD except for septic complications, notably because of long-term tolerance and ecological issues. Some probiotics have been shown to be as good as 5-aminosalicylic acid to maintain remission in mild-to-moderate UC, but have been disappointing until now in CD in all tested indications. In pouchitis, antibiotics and probiotics have shown efficacy for inducing and maintaining remission, respectively. Targeting the gut microbiota in IBD is an attractive strategy. Current efforts to better understand the host-microbiota interactions in physiological as well as disease settings might lead to the development of rational-based treatments. © 2014 S. Karger AG, Basel.

  9. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  11. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  12. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  13. Antimicrobial Peptide Trichokonin VI-Induced Alterations in the Morphological and Nanomechanical Properties of Bacillus subtilis

    OpenAIRE

    Su, Hai-Nan; Chen, Zhi-Hua; Song, Xiao-Yan; Chen, Xiu-Lan; Shi, Mei; Zhou, Bai-Cheng; Zhao, Xian; Zhang, Yu-Zhong

    2012-01-01

    Antimicrobial peptides are promising alternative antimicrobial agents compared to conventional antibiotics. Understanding the mode of action is important for their further application. We examined the interaction between trichokonin VI, a peptaibol isolated from Trichoderma pseudokoningii, and Bacillus subtilis, a representative Gram-positive bacterium. Trichokonin VI was effective against B. subtilis with a minimal inhibitory concentration of 25 µM. Trichokonin VI exhibited a concentration- ...

  14. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment.

    Science.gov (United States)

    Shao, Sicheng; Hu, Yongyou; Cheng, Jianhua; Chen, Yuancai

    2018-05-28

    Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.

  15. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sørensen, Mette Aamand

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides....... The current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...

  16. Vascular targeting with peptide libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, R. [La Jolla Cancer Research Center The Burnham Inst., La Jolla CA (United States)

    1999-06-01

    The authors have developed an 'in vivo' selection system in which phage capable of selective homing to different tissues are recovered from a phage display peptide library following intravenous administration. Using this strategy, they have isolate several organ and tumor-homing peptides. They have shown that each of those peptides binds of different receptors that are selectively expressed on the vasculature of the target tissue. The tumor-homing peptides bind to receptors that are up regulated in tumor angiogenic vasculature. Targeted delivery of doxorubicin to angiogenic vasculature using these peptides in animals models decrease toxicity and increased the therapeutic efficacy of the drug. Vascular targeting may facilitate the development of other treatment strategies that rely on inhibition of angio genesis and lead to advances to extend the potential for targeting of drugs, genes and radionuclides in the context of many diseases.

  17. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  18. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  19. Preclinical advantages of intramuscularly administered peptide A3-APO over existing therapies in Acinetobacter baumannii wound infections.

    Science.gov (United States)

    Ostorhazi, Eszter; Rozgonyi, Ferenc; Sztodola, Andras; Harmos, Ferenc; Kovalszky, Ilona; Szabo, Dora; Knappe, Daniel; Hoffmann, Ralf; Cassone, Marco; Wade, John D; Bonomo, Robert A; Otvos, Laszlo

    2010-11-01

    The designer antibacterial peptide A3-APO is efficacious in mouse models of Escherichia coli and Acinetobacter baumannii systemic infections. Here we compare the efficacy of the peptide with that of imipenem and colistin in A. baumannii wound infections after burn injury. CD-1 mice were inflicted with burn wounds and different inocula of A. baumannii, isolated from an injured soldier, were placed into the wound sites. The antibiotics were given intramuscularly (im) one to five times. Available free peptide in the blood and the systemic toxicity of colistin and A3-APO were studied in healthy mice. While toxicity of colistin was observed at 25 mg/kg bolus drug administration, the lowest toxic dose of A3-APO was 75 mg/kg. In the A. baumannii blast injury models, 5 mg/kg A3-APO improved survival and reduced bacterial counts in the blood as well as in the wounds and improved wound appearance significantly better than any other antibiotic treatment. The free peptide concentration in the blood did not reach 1 µg/mL. Peptide A3-APO, with an intramuscular therapeutic index of 15, is more efficacious and less toxic than any existing burn injury infection therapy modality against multidrug-resistant Gram-negative pathogens. A3-APO administered by the im route probably binds to a biopolymer that promotes the peptide's biodistribution.

  20. Peptidomic approach identifies cruzioseptins, a new family of potent antimicrobial peptides in the splendid leaf frog, Cruziohyla calcarifer.

    Science.gov (United States)

    Proaño-Bolaños, Carolina; Zhou, Mei; Wang, Lei; Coloma, Luis A; Chen, Tianbao; Shaw, Chris

    2016-09-02

    Phyllomedusine frogs are an extraordinary source of biologically active peptides. At least 8 families of antimicrobial peptides have been reported in this frog clade, the dermaseptins being the most diverse. By a peptidomic approach, integrating molecular cloning, Edman degradation sequencing and tandem mass spectrometry, a new family of antimicrobial peptides has been identified in Cruziohyla calcarifer. These 15 novel antimicrobial peptides of 20-32 residues in length are named cruzioseptins. They are characterized by having a unique shared N-terminal sequence GFLD- and the sequence motifs -VALGAVSK- or -GKAAL(N/G/S) (V/A)V- in the middle of the peptide. Cruzioseptins have a broad spectrum of antimicrobial activity and low haemolytic effect. The most potent cruzioseptin was CZS-1 that had a MIC of 3.77μM against the Gram positive bacterium, Staphylococcus aureus and the yeast Candida albicans. In contrast, CZS-1 was 3-fold less potent against the Gram negative bacterium, Escherichia coli (MIC 15.11μM). CZS-1 reached 100% haemolysis at 120.87μM. Skin secretions from unexplored species such as C. calcarifer continue to demonstrate the enormous molecular diversity hidden in the amphibian skin. Some of these novel peptides may provide lead structures for the development of a new class of antibiotics and antifungals of therapeutic use. Through the combination of molecular cloning, Edman degradation sequencing, tandem mass spectrometry and MALDI-TOF MS we have identified a new family of 15 antimicrobial peptides in the skin secretion of Cruziohyla calcarifer. The novel family is named "Cruzioseptins" and contains cationic amphipathic peptides of 20-32 residues. They have a broad range of antimicrobial activity that also includes effective antifungals with low haemolytic activity. Therefore, C. calcarifer has proven to be a rich source of novel peptides, which could become leading structures for the development of novel antibiotics and antifungals of clinical

  1. Antibiotic resistance increases with local temperature

    Science.gov (United States)

    MacFadden, Derek R.; McGough, Sarah F.; Fisman, David; Santillana, Mauricio; Brownstein, John S.

    2018-06-01

    Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502-4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.

  2. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.

    Science.gov (United States)

    Piotrowska, Urszula; Sobczak, Marcin; Oledzka, Ewa

    2017-12-01

    Micro-organism resistance is an important challenge in modern medicine due to the global uncontrolled use of antibiotics. Natural and synthetic antimicrobial peptides (AMPs) symbolize a new family of antibiotics, which have stimulated research and clinical interest as new therapeutic options for infections. They represent one of the most promising antimicrobial substances, due to their broad spectrum of biological activity, against bacteria, fungi, protozoa, viruses, yeast and even tumour cells. Besides, being antimicrobial, AMPs have been shown to bind and neutralize bacterial endotoxins, as well as possess immunomodulatory, anti-inflammatory, wound-healing, angiogenic and antitumour properties. In contrast to conventional antibiotics, which have very defined and specific molecular targets, host cationic peptides show varying, complex and very rapid mechanisms of actions that make it difficult to form an effective antimicrobial defence. Importantly, AMPs display their antimicrobial activity at micromolar concentrations or less. To do this, many peptide-based drugs are commercially available for the treatment of numerous diseases, such as hepatitis C, myeloma, skin infections and diabetes. Herein, we present an overview of the general mechanism of AMPs action, along with recent developments regarding carriers of AMPs and their potential applications in medical fields. © 2017 John Wiley & Sons A/S.

  3. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs.

    Directory of Open Access Journals (Sweden)

    Mohamed F Mohamed

    Full Text Available Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan with minimum inhibitory concentration50 (MIC50 of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF3K (two cell penetrating peptides were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin

  4. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in

  5. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  6. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Impact of pharmacist intervention on antibiotic use and prophylactic antibiotic use in urology clean operations.

    Science.gov (United States)

    Zhou, Y; Ma, L-Y; Zhao, X; Tian, S-H; Sun, L-Y; Cui, Y-M

    2015-08-01

    The use of prophylactic antibiotics in clean operations was routine in China before 2011. Along with the appeal for using antibiotics rationally by WHO in 2011, China launched a national special rectification scheme on clinical use of antibiotics from April that year. The scheme, aimed at achieving rational use of antibiotics, made pharmacists part of the responsible medical team. Our objective was to describe the impacts of pharmacist intervention on the use of antibiotics, particularly in urology clean operations. Pharmacists participated in antibiotic stewardship programmes of the hospital and urological clinical work and conducted real-time interventions at the same time from 2011 to 2013. Data on the use of antibiotics between 2010 and 2013 in urology were collected. Comparison of the 2013 data with those of 2010 showed that antibiotic use density [AUD= DDDs*100/(The number of patients who were treated the same period*Average days in hospital). DDDs = Total drug consumption (g)/DDD. DDD is the Defined Daily Dose] decreased by 57·8(58·8%); average antibiotic cost decreased by 246·94 dollars; the cost of antibiotics as a percentage of total drug cost decreased by 27·7%; the rate of use of antibiotics decreased from 100% to 7·3%. The study illustrates how an antibiotic stewardship programme with pharmacist participation including real-time interventions can promote improved antibiotic-prescribing and significantly decrease costs. © 2015 John Wiley & Sons Ltd.

  8. Distinct Profiling of Antimicrobial Peptide Families

    KAUST Repository

    Khamis, Abdullah M.

    2014-11-10

    Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family.

  9. Antimicrobial peptides: Possible anti-infective agents.

    Science.gov (United States)

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Distinct Profiling of Antimicrobial Peptide Families

    KAUST Repository

    Khamis, Abdullah M.; Essack, Magbubah; Gao, Xin; Bajic, Vladimir B.

    2014-01-01

    Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family.

  11. [New antibiotics produced by Bacillus subtilis strains].

    Science.gov (United States)

    Malanicheva, I A; Kozlov, D G; Efimenko, T A; Zenkova, V A; Kastrukha, G S; Reznikova, M I; Korolev, A M; Borshchevskaia, L N; Tarasova, O D; Sineokiĭ, S P; Efremenkova, O V

    2014-01-01

    Two Bacillus subtilis strains isolated from the fruiting body of a basidiomycete fungus Pholiota squarrosa exhibited a broad range of antibacterial activity, including those against methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and Leuconostoc mes6nteroides VKPM B-4177 resistant to glycopep-> tide antibiotics, as well as antifungal activity. The strains were identified as belonging to the "B. subtilis" com- plex based on their morphological and physiological characteristics, as well as by sequencing of the 16S rRNA gene fragments. Both strains (INA 01085 and INA 01086) produced insignificant amounts of polyene antibiotics (hexaen and pentaen, respectively). Strain INA 01086 produced also a cyclic polypeptide antibiotic containing Asp, Gly, Leu, Pro, Tyr, Thr, Trp, and Phe, while the antibiotic of strain INA 01085 contained, apart from these, two unidentified nonproteinaceous amino acids. Both polypeptide antibiotics were new compounds efficient against gram-positive bacteria and able to override the natural bacterial antibiotic resistance.

  12. [Anti-amebic effect of polyenic antibiotics].

    Science.gov (United States)

    Liubimova, L K; Ovnanian, K O; Ivanova, L N

    1985-03-01

    All-Union Research technological Institute of Antibiotics and Medical Enzymes, Leningrad. Institute of Epidemiology, Virology and medical parasitology, Ministry of Health of the Armenian SSR. The effect of polyenic antibiotics made in the USSR on development of E. histolytica and E. moshkovski was studied. The following antibiotics were used: levorin and its derivatives, mycoheptin, amphotericin B, amphoglucamine and nystatin. The antibiotics were compared with emetine and metronidazole. Some drugs of the imidazole group were also included into the study. On the whole 15 drugs were tested for their antiamebic activity. All the polyenic antibiotics showed a high antiamebic activity. Levorin and its derivatives were the most active. Their MICs ranged from 0.1 to 5.38 micrograms/ml. The most active of the new imidazoles was 100 times less effective than sodium levorin. The studies show that the polyenic antibiotics have an antiamebic activity and a broad antiprotozoal spectrum.

  13. The environmental release and fate of antibiotics.

    Science.gov (United States)

    Manzetti, Sergio; Ghisi, Rossella

    2014-02-15

    Antibiotics have been used as medical remedies for over 50 years and have recently emerged as new pollutants in the environment. This review encompasses the fate of several antibiotics in the environment, including sulfonamides, nitrofurans, terfenadines, cephalosporins and cyclosporins. It investigates the cycle of transfer from humans and animals including their metabolic transformation. The results show that antibiotic metabolites are of considerable persistence and are localized to ground-water and drinking water supplies. Furthermore, the results also show that several phases of the cycle of antibiotics in the environment are not well understood, such as how low concentrations of antibiotic metabolites in the diet affect humans and animals. This review also shows that improved wastewater decontamination processes are remediating factors for these emerging pollutants. The results obtained here may help legislators and authorities in understanding the fate and transformation of antibiotics in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    Science.gov (United States)

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  15. Antibiotic use for irreversible pulpitis.

    Science.gov (United States)

    Agnihotry, Anirudha; Fedorowicz, Zbys; van Zuuren, Esther J; Farman, Allan G; Al-Langawi, Jassim Hasan

    2016-02-17

    Irreversible pulpitis, which is characterised by acute and intense pain, is one of the most frequent reasons that patients attend for emergency dental care. Apart from removal of the tooth, the customary way of relieving the pain of irreversible pulpitis is by drilling into the tooth, removing the inflamed pulp (nerve) and cleaning the root canal. However, a significant number of dentists continue to prescribe antibiotics to stop the pain of irreversible pulpitis.This review updates the previous version published in 2013. To assess the effects of systemic antibiotics for irreversible pulpitis. We searched the Cochrane Oral Health Group's Trials Register (to 27 January 2016); the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 12); MEDLINE via Ovid (1946 to 27 January 2016); EMBASE via Ovid (1980 to 27 January 2016), ClinicalTrials.gov (to 27 January 2016) and the WHO International Clinical Trials Registry Platform (to 27 January 2016). There were no language restrictions in the searches of the electronic databases. Randomised controlled trials which compared pain relief with systemic antibiotics and analgesics, against placebo and analgesics in the acute preoperative phase of irreversible pulpitis. Two review authors screened studies and extracted data independently. We assessed the quality of the evidence of included studies using GRADEpro software. Pooling of data was not possible and a descriptive summary is presented. One trial assessed at low risk of bias, involving 40 participants was included in this update of the review. The quality of the body of evidence was rated low for the different outcomes. There was a close parallel distribution of the pain ratings in both the intervention and placebo groups over the seven-day study period. There was insufficient evidence to claim or refute a benefit for penicillin for pain intensity. There was no significant difference in the mean total number of ibuprofen tablets over the

  16. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  17. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs) Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    Science.gov (United States)

    Lee, Judy T. Y.; Wang, Guangshun; Tam, Yu Tong; Tam, Connie

    2016-01-01

    Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics. PMID:27891122

  18. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    Directory of Open Access Journals (Sweden)

    Judy Tsz Ying Lee

    2016-11-01

    Full Text Available Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs. Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics.

  19. The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Alicia Boto

    2018-02-01

    Full Text Available Host-defense peptides, also called antimicrobial peptides (AMPs, whose protective action has been used by animals for millions of years, fulfill many requirements of the pharmaceutical industry, such as: (1 broad spectrum of activity; (2 unlike classic antibiotics, they induce very little resistance; (3 they act synergically with conventional antibiotics; (4 they neutralize endotoxins and are active in animal models. However, it is considered that many natural peptides are not suitable for drug development due to stability and biodisponibility problems, or high production costs. This review describes the efforts to overcome these problems and develop new antimicrobial drugs from these peptides or inspired by them. The discovery process of natural AMPs is discussed, as well as the development of synthetic analogs with improved pharmacological properties. The production of these compounds at acceptable costs, using different chemical and biotechnological methods, is also commented. Once these challenges are overcome, a new generation of versatile, potent and long-lasting antimicrobial drugs is expected.

  20. [INHALED ANTIBIOTICS IN TREATMENT OF NOSOCOMIAL PNEUMONIA].

    Science.gov (United States)

    Kuzovlev, A N; Moroz, V V; Golubev, A M

    2015-01-01

    Nosocomial pneumonia is the most common infection in intensive care units. Currently the problem of resistance of noso-comial pathogens to miost of antibiotics is crucial. Using of inhaled antibiotics in combination with intravenous drugs is eff ective and safe method for treatment of nosocomial pneumonia. The literature review describes current opportunities of ihhaled antibiotic therapy of nosocomial pneumonia, descriptions of drugs, the advantages and disadvantages of this treatment. Special attention is paid for using inhaled aminoglycosides for nosocomial pneumonia.

  1. Generation of Hybrid Peptide-Silver Nanoparticles for Antibacterial and Antifouling Applications

    KAUST Repository

    Seferji, Kholoud

    2018-05-01

    An alarming increase of antibiotic-resistant bacterial strains has made the demand for novel antibacterial agents, for example, more effective antibiotics, highly crucial. One of the oldest antimicrobial agents is elementary silver which has been used for thousands of years. Even in our days, elementary silver is used for medical purposes, such as for burns, wounds, and microbial infections. We have taken the effectiveness of elementary silver into consideration to generate novel antibacterial and antifouling agents. Our innovative antibacterial agents are hybrid peptide silver nanoparticles (CH-01-AgNPs) that are created de novo and in situ from a silver nitrate solution (AgNO3) in the presence of ultrashort self-assembling peptides compounds. The nucleation of CH-01-AgNPs is initiated by irradiating the peptide solution mixed with the AgNO3 solution using ultraviolet (UV) light at a wavelength of 254 nm, in the absence of any reducing or capping agents. Obviously, the peptide itself serves as the reducing agent. The ultrashort peptides are four amino acids in length with an innate ability to self-assemble into nanofibrous scaffolds. Using these ultrashort peptides CH-01 we were able to create hybrid peptide silver nanoparticles CH-01-AgNPs with a diameter of 4-6 nm. The synthesized CH-01-AgNPs were further characterized using ultraviolet-visible spectroscopy, transmission electron microscopy, dynamic light scattering, and X-ray photoelectron spectroscopy. The antibacterial and antifouling activity of CH-01-AgNPs were then investigated using either gram-negative bacteria, such as antibiotic-resistant Top10 Escherichia coli and Pseudomonas aeruginosa PDO300, or gram-positive bacteria, such as Staphylococcus aureus CECT 976. The hybrid nanoparticles demonstrated very promising antibacterial and antifouling activity with higher antibacterial and antifouling activity as commercial silver nanoparticles. Quantitative Polymerase Chain Reaction (qPCR) results showed

  2. Peptide secretion in the cutaneous glands of South American tree frog Phyllomedusa bicolor: an ultrastructural study.

    Science.gov (United States)

    Lacombe, C; Cifuentes-Diaz, C; Dunia, I; Auber-Thomay, M; Nicolas, P; Amiche, M

    2000-09-01

    The development of the dermal glands of the arboreal frog Phyllomedusa bicolor was investigated by immunocytochemistry and electron microscopy. The 3 types of glands (mucous, lipid and serous) differed in size and secretory activity. The mucous and serous glands were apparent in the tadpole skin, whereas the lipid glands developed later in ontogenesis. The peptide antibiotics dermaseptins and the D-amino acid-containing peptide opioids dermorphins and deltorphins are abundant in the skin secretions of P. bicolor. Although these peptides differ in their structure and activity they are derived from precursors that have very similar preproregions. We used an antibody to the common preproregion of preprodermaseptins and preprodeltorphins and immunofluorescence analysis to show that only the serous glands are specifically involved in the biosynthesis and secretion of dermaseptins and deltorphins. Scanning and transmission electron microscopy revealed that the serous glands of P bicolor have morphological features, especially the secretory granules, which differ from those of the glands in Xenopus laevis skin.

  3. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  4. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  5. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...... to haemodynamic changes in the pro-peptides copeptin, proadrenomedullin and pro-atrial natriuretic peptide (proANP) in patients with cirrhosis. MATERIALS AND METHODS: Fifty-four cirrhotic patients and 15 controls were characterized haemodynamically during a liver vein catheterization. Copeptin, proadrenomedullin...... pressure (R=0·32, P0·31, Ppeptide is elevated in cirrhosis. Copeptin, proadrenomedullin and proANP are related to portal pressure and seem associated with systemic haemodynamics. These propeptides may...

  6. AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Qiuyu Wang

    2018-02-01

    Full Text Available Lipopolysaccharides (LPS are major outer membrane components of Gram-negative bacteria and produce strong inflammatory responses in animals. Most antibiotics have shown little clinical anti-endotoxin activity while some antimicrobial peptides have proved to be effective in blocking LPS. Here, the anti-LPS activity of the synthetic peptide AWRK6, which is derived from antimicrobial peptide dybowskin-2CDYa, has been investigated in vitro and in vivo. The positively charged α-helical AWRK6 was found to be effective in blocking the binding of LBP (LPS binding protein with LPS in vitro using ELISA. In a murine endotoxemia model, AWRK6 offered satisfactory protection efficiency against endotoxemia death, and the serum levels of LPS, IL-1β, IL-6, and TNF-α were found to be attenuated using ELISA. Further, histopathological analysis suggested that AWRK6 could improve the healing of liver and lung injury in endotoxemia mice. The results of real-time PCR and Western blotting showed that AWRK6 significantly reversed LPS-induced TLR4 overexpression and IκB depression, as well as the enhanced IκB phosphorylation. Additionally, AWRK6 did not produce any significant toxicity in vivo and in vitro. In summary, AWRK6 showed efficacious protection from LPS challenges in vivo and in vitro, by blocking LPS binding to LBP, without obvious toxicity, providing a promising strategy against LPS-induced inflammatory responses.

  7. Bactericidal antibiotics induce programmed metabolic toxicity

    Directory of Open Access Journals (Sweden)

    Aislinn D. Rowan

    2016-03-01

    Full Text Available The misuse of antibiotics has led to the development and spread of antibiotic resistance in clinically important pathogens. These resistant infections are having a significant impact on treatment outcomes and contribute to approximately 25,000 deaths in the U.S. annually. If additional therapeutic options are not identified, the number of annual deaths is predicted to rise to 317,000 in North America and 10,000,000 worldwide by 2050. Identifying therapeutic methodologies that utilize our antibiotic arsenal more effectively is one potential way to extend the useful lifespan of our current antibiotics. Recent studies have indicated that modulating metabolic activity is one possible strategy that can impact the efficacy of antibiotic therapy. In this review, we will address recent advances in our knowledge about the impacts of bacterial metabolism on antibiotic effectiveness and the impacts of antibiotics on bacterial metabolism. We will particularly focus on two studies, Lobritz, et al. (PNAS, 112(27: 8173-8180 and Belenky et al. (Cell Reports, 13(5: 968–980 that together demonstrate that bactericidal antibiotics induce metabolic perturbations that are linked to and required for bactericidal antibiotic toxicity.

  8. Antibiotic research and development: business as usual?

    Science.gov (United States)

    Harbarth, S; Theuretzbacher, U; Hackett, J

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is that it is scientifically challenging to discover new antibiotics that are active against the antibiotic-resistant bacteria of current clinical concern. However, the main hurdle is diminishing economic incentives. Increased global calls to minimize the overuse of antibiotics, the cost of meeting regulatory requirements and the low prices of currently marketed antibiotics are strong deterrents to antibacterial drug development programmes. New economic models that create incentives for the discovery of new antibiotics and yet reconcile these incentives with responsible antibiotic use are long overdue. DRIVE-AB is a €9.4 million public-private consortium, funded by the EU Innovative Medicines Initiative, that aims to define a standard for the responsible use of antibiotics and to develop, test and recommend new economic models to incentivize investment in producing new anti-infective agents. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Ileumycin, a new antibiotic against Glomerella Cingulata.

    Science.gov (United States)

    Kawakami, Y; Matsuwaka, S; Otani, T; Kondo, H; Nakamura, S

    1978-02-01

    A new antifungal antibiotic, named ileumycin, was isolated from culture broth of streptomyces H 698-SY2, which was identified as S. lavendulae. The antibiotic was recovered from the culture filtrate by adsorption on Amberlite XAD-II and elution with aqueous methanol and was further purified by ion-exchange column chromatography on SE-cellulose and followed by partition chromatography on silica gel. The antibiotic was named ileumycin, because isoleucine was detected in the acid hydrolyzate of the antibiotic. Ileumycin exhibited antimicrobial activity against only a few species of fungi.

  10. ASP Strategies and Appropriate Antibiotic Use

    Science.gov (United States)

    Lee, Brian R; Tribble, Alison; Handy, Lori; Gerber, Jeffrey S; Hersh, Adam L; Kronman, Matthew; Terrill, Cindy; Newland, Jason

    2017-01-01

    Abstract Background The Infectious Diseases Society of America (IDSA) recommends hospitals implement antimicrobial stewardship programs (ASP) in order to decrease inappropriate antibiotic use due to the rise in antibiotic-resistant infections. Data are limited on the extent to which different ASP strategies influence appropriate antibiotic use. Methods We conducted an online survey in 2016 of U.S. Children’s Hospitals to collect hospital-level information on dedicated ASP effort, ASP monitoring activities, use of audit-feedback, formulary restrictions, rapid diagnostics, etc. During the same period the ASP teams at these hospitals completed 3 point prevalence surveys that documented details on all admitted patients 0–17 years receiving any antibiotics, determined what ASP modifications could be made, and if the antibiotic was appropriate. We employed hierarchical, multivariable logit models to examine which ASP-related, hospital-level strategies were associated with appropriate antibiotic use. Results Thirty hospitals participated. A total of 6,921 patients were included, representing 10,068 total antibiotics. Of these orders, 8,554 (85.0%) were categorized as appropriate, though this varied across sites (range: 68-92%). Additionally, 78.2% of antibiotics did not have recommended modifications. Appropriate antibiotic use was significantly higher for hospitals that relied on rapid diagnostics (aOR: 1.6; P Terrill, Merck: Grant Investigator, Research grant Allergan: Grant Investigator, Research grant. J. Newland, Merck: Grant Investigator, Research grant. Allergan: Grant Investigator, Research grant

  11. Antibiotic Dosing in Continuous Renal Replacement Therapy.

    Science.gov (United States)

    Shaw, Alexander R; Mueller, Bruce A

    2017-07-01

    Appropriate antibiotic dosing is critical to improve outcomes in critically ill patients with sepsis. The addition of continuous renal replacement therapy makes achieving appropriate antibiotic dosing more difficult. The lack of continuous renal replacement therapy standardization results in treatment variability between patients and may influence whether appropriate antibiotic exposure is achieved. The aim of this study was to determine if continuous renal replacement therapy effluent flow rate impacts attaining appropriate antibiotic concentrations when conventional continuous renal replacement therapy antibiotic doses were used. This study used Monte Carlo simulations to evaluate the effect of effluent flow rate variance on pharmacodynamic target attainment for cefepime, ceftazidime, levofloxacin, meropenem, piperacillin, and tazobactam. Published demographic and pharmacokinetic parameters for each antibiotic were used to develop a pharmacokinetic model. Monte Carlo simulations of 5000 patients were evaluated for each antibiotic dosing regimen at the extremes of Kidney Disease: Improving Global Outcomes guidelines recommended effluent flow rates (20 and 35 mL/kg/h). The probability of target attainment was calculated using antibiotic-specific pharmacodynamic targets assessed over the first 72 hours of therapy. Most conventional published antibiotic dosing recommendations, except for levofloxacin, reach acceptable probability of target attainment rates when effluent rates of 20 or 35 mL/kg/h are used. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  12. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  13. Dissemination of health information through social networks: twitter and antibiotics.

    Science.gov (United States)

    Scanfeld, Daniel; Scanfeld, Vanessa; Larson, Elaine L

    2010-04-01

    This study reviewed Twitter status updates mentioning "antibiotic(s)" to determine overarching categories and explore evidence of misunderstanding or misuse of antibiotics. One thousand Twitter status updates mentioning antibiotic(s) were randomly selected for content analysis and categorization. To explore cases of potential misunderstanding or misuse, these status updates were mined for co-occurrence of the following terms: "cold + antibiotic(s)," "extra + antibiotic(s)," "flu + antibiotic(s)," "leftover + antibiotic(s)," and "share + antibiotic(s)" and reviewed to confirm evidence of misuse or misunderstanding. Of the 1000 status updates, 971 were categorized into 11 groups: general use (n = 289), advice/information (n = 157), side effects/negative reactions (n = 113), diagnosis (n = 102), resistance (n = 92), misunderstanding and/or misuse (n = 55), positive reactions (n = 48), animals (n = 46), other (n = 42), wanting/needing (n = 19), and cost (n = 8). Cases of misunderstanding or abuse were identified for the following combinations: "flu + antibiotic(s)" (n = 345), "cold + antibiotic(s)" (n = 302), "leftover + antibiotic(s)" (n = 23), "share + antibiotic(s)" (n = 10), and "extra + antibiotic(s)" (n = 7). Social media sites offer means of health information sharing. Further study is warranted to explore how such networks may provide a venue to identify misuse or misunderstanding of antibiotics, promote positive behavior change, disseminate valid information, and explore how such tools can be used to gather real-time health data. 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  14. World alliance against antibiotic resistance: The WAAAR declaration against antibiotic resistance.

    Science.gov (United States)

    Carlet, Jean

    2015-01-01

    We must change how antibiotics are used and adopt proactive strategies, similar to those used to save endangered species. Preservation of the efficacy of antibiotics and to stabilization of antibiotic-susceptible bacterial ecosystems should be global goals. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  15. Newly approved antibiotics and antibiotics reserved for resistant infections: Implications for emergency medicine.

    Science.gov (United States)

    Mazer-Amirshahi, Maryann; Pourmand, Ali; May, Larissa

    2017-01-01

    Millions of patients are evaluated every year in the emergency department (ED) for bacterial infections. Emergency physicians often diagnose and prescribe initial antibiotic therapy for a variety of bacterial infections, ranging from simple urinary tract infections to severe sepsis. In life-threatening infections, inappropriate choice of initial antibiotic has been shown to increase morbidity and mortality. As such, initiation of appropriate antibiotic therapy on the part of the emergency physician is critical. Increasing rates of antibiotic resistance, drug allergies, and antibiotic shortages further complicates the choice of antibiotics. Patients may have a history of prior resistant infections or culture data indicating that common first-line antibiotics used in the ED may be ineffective. In recent years, there have been several new antibiotic approvals as well as renewed interest in second and third line antibiotics because of the aforementioned concerns. In addition, several newly approved antibiotics have the advantage of being administered once weekly or even as a single infusion, which has the potential to decrease hospitalizations and healthcare costs. This article reviews newly approved antibiotics and antibiotics used to treat resistant infections with a focus on implications for emergency medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    DEFF Research Database (Denmark)

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro

    2013-01-01

    Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic resistance...

  17. Antibiotic interaction with phospholipid monolayers

    International Nuclear Information System (INIS)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G.

    2002-01-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids

  18. [Health economics and antibiotic therapy].

    Science.gov (United States)

    Leclercq, P; Bigdéli, M

    1995-01-01

    In the field of antibiotic therapy, particularly the methods of economic evaluation hold one's attention within the wide range of health economics' applications. Several tools allow a comparison of the outcomes of alternative strategies and thereby guide choices to the most appropriate solutions. After a brief recall of the methods classically used to evaluate health care strategy, the authors stress the importance and difficulty of fixing and applying a correct and satisfactory procedure for evaluation. An evaluation example of antibiotic therapy allows to illustrate the application of the principles confronting a field in which competition is intense and economic stakes stay large--a fact which naturally yields to seek after objective decision making criteria. The health care policies drawn by public authorities as well as the marketing strategies of the health sector trade are partly based on such evaluations. If these techniques are not intended for the practitioner in the first place, they should not be indifferent to him since they influence health authorities and thereby indirectly affect the therapeutic freedom of the physician.

  19. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G

    2002-12-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.

  20. Minocycline: far beyond an antibiotic

    Science.gov (United States)

    Garrido-Mesa, N; Zarzuelo, A; Gálvez, J

    2013-01-01

    Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia, traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, multiple sclerosis and spinal cord injury. Moreover, other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic approach for many of the diseases described herein. PMID:23441623

  1. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  2. Cardioprotective peptides from marine sources.

    Science.gov (United States)

    Harnedy, Padraigín A; FitzGerald, Richard J

    2013-05-01

    Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.

  3. Antimicrobial peptides from Capsicum sp.

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... Key words: Antimicrobial peptides, Capsicum sp, Capsicum chinense, chili pepper, agronomical options, ..... of this human activity is resumed by the simple phrase: produce .... It will be interesting to scale the AMPs extraction.

  4. Crystallization and preliminary X-ray analysis of the bacillaene synthase trans-acting acyltransferase PksC

    International Nuclear Information System (INIS)

    Cuskin, Fiona; Solovyova, Alexandra S.; Lewis, Richard J.; Race, Paul R.

    2011-01-01

    The expression, purification and crystallization of the trans-acting acyltransferase PksC from the bacillaene hybrid polyketide synthase/nonribosomal peptide synthetase is described. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 and diffracted to 1.44 Å resolution. The antibiotic bacillaene is biosynthesized in Bacillus subtilis by a hybrid type 1 modular polyketide synthase/nonribosomal peptide synthetase of the trans-acyltransferase (trans-AT) class. Within this system, the essential acyl-group loading activity is provided by the action of three free-standing trans-acting acyltransferases. Here, the recombinant expression, purification and crystallization of the bacillaene synthase trans-acting acyltransferase PksC are reported. A diffraction data set has been collected from a single PksC crystal to 1.44 Å resolution and the crystal was found to belong to the orthorhombic space group P2 1 2 1 2 1

  5. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  6. Optimizing antibiotic selection in treating COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Attiya Siddiqi

    2008-03-01

    Full Text Available Attiya Siddiqi, Sanjay SethiDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Veterans Affairs Western New York Health Care System and University of Buffalo, State University of New York, Buffalo, New York, USAAbstract: Our understanding of the etiology, pathogenesis and consequences of acute exacerbations of chronic obstructive pulmonary disease (COPD has increased substantially in the last decade. Several new lines of evidence demonstrate that bacterial isolation from sputum during acute exacerbation in many instances reflects a cause-effect relationship. Placebo-controlled antibiotic trials in exacerbations of COPD demonstrate significant clinical benefits of antibiotic treatment in moderate and severe episodes. However, in the multitude of antibiotic comparison trials, the choice of antibiotics does not appear to affect the clinical outcome, which can be explained by several methodological limitations of these trials. Recently, comparison trials with nontraditional end-points have shown differences among antibiotics in the treatment of exacerbations of COPD. Observational studies that have examined clinical outcome of exacerbations have repeatedly demonstrated certain clinical characteristics to be associated with treatment failure or early relapse. Optimal antibiotic selection for exacerbations has therefore incorporated quantifying the risk for a poor outcome of the exacerbation and choosing antibiotics differently for low risk and high risk patients, reserving the broader spectrum drugs for the high risk patients. Though improved outcomes in exacerbations with antibiotic choice based on such risk stratification has not yet been demonstrated in prospective controlled trials, this approach takes into account concerns of disease heterogeneity, antibiotic resistance and judicious antibiotic use in exacerbations.Keywords: COPD, exacerbation, bronchitis, antibiotics

  7. Biosynthesis of Antibiotic Leucinostatins in Bio-control Fungus Purpureocillium lilacinum and Their Inhibition on Phytophthora Revealed by Genome Mining.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2016-07-01

    Full Text Available Purpureocillium lilacinum of Ophiocordycipitaceae is one of the most promising and commercialized agents for controlling plant parasitic nematodes, as well as other insects and plant pathogens. However, how the fungus functions at the molecular level remains unknown. Here, we sequenced two isolates (PLBJ-1 and PLFJ-1 of P. lilacinum from different places Beijing and Fujian. Genomic analysis showed high synteny of the two isolates, and the phylogenetic analysis indicated they were most related to the insect pathogen Tolypocladium inflatum. A comparison with other species revealed that this fungus was enriched in carbohydrate-active enzymes (CAZymes, proteases and pathogenesis related genes. Whole genome search revealed a rich repertoire of secondary metabolites (SMs encoding genes. The non-ribosomal peptide synthetase LcsA, which is comprised of ten C-A-PCP modules, was identified as the core biosynthetic gene of lipopeptide leucinostatins, which was specific to P. lilacinum and T. ophioglossoides, as confirmed by phylogenetic analysis. Furthermore, gene expression level was analyzed when PLBJ-1 was grown in leucinostatin-inducing and non-inducing medium, and 20 genes involved in the biosynthesis of leucionostatins were identified. Disruption mutants allowed us to propose a putative biosynthetic pathway of leucinostatin A. Moreover, overexpression of the transcription factor lcsF increased the production (1.5-fold of leucinostatins A and B compared to wild type. Bioassays explored a new bioactivity of leucinostatins and P. lilacinum: inhibiting the growth of Phytophthora infestans and P. capsici. These results contribute to our understanding of the biosynthetic mechanism of leucinostatins and may allow us to utilize P. lilacinum better as bio-control agent.

  8. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  9. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  10. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  11. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course...... with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. clinicaltrials.gov NCT01633762....

  12. Alternatives to antibiotics as growth promoters for use in swine production: a review

    Science.gov (United States)

    2013-01-01

    In the past two decades, an intensive amount of research has been focused on the development of alternatives to antibiotics to maintain swine health and performance. The most widely researched alternatives include probiotics, prebiotics, acidifiers, plant extracts and neutraceuticals such as copper and zinc. Since these additives have been more than adequately covered in previous reviews, the focus of this review will be on less traditional alternatives. The potential of antimicrobial peptides, clay minerals, egg yolk antibodies, essential oils, eucalyptus oil-medium chain fatty acids, rare earth elements and recombinant enzymes are discussed. Based on a thorough review of the literature, it is evident that a long and growing list of compounds exist which have been tested for their ability to replace antibiotics as feed additives in diets fed to swine. Unfortunately, the vast majority of these compounds produce inconsistent results and rarely equal antibiotics in their effectiveness. Therefore, it would appear that research is still needed in this area and that the perfect alternative to antibiotics does not yet exist. PMID:24034214

  13. Identification and Structural Characterization of Naturally-Occurring Broad-Spectrum Cyclic Antibiotics Isolated from Paenibacillus

    Science.gov (United States)

    Knolhoff, Ann M.; Zheng, Jie; McFarland, Melinda A.; Luo, Yan; Callahan, John H.; Brown, Eric W.; Croley, Timothy R.

    2015-08-01

    The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MSn spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.

  14. Customized Peptide Biomaterial Synthesis via an Environment-Reliant Auto-Programmer Stigmergic Approach

    Directory of Open Access Journals (Sweden)

    Ravindra V. Badhe

    2018-04-01

    Full Text Available Stigmergy, a form of self-organization, was employed here to engineer a self-organizing peptide capable of forming a nano- or micro-structure and that can potentially be used in various drug delivery and biomedical applications. These self-assembling peptides exhibit several desirable qualities for drug delivery, tissue engineering, cosmetics, antibiotics, food science, and biomedical surface engineering. In this study, peptide biomaterial synthesis was carried out using an environment-reliant auto-programmer stigmergic approach. A model protein, α-gliadin (31, 36, and 38 kD, was forced to attain a primary structure with free –SH groups and broken down enzymatically into smaller fragments using chymotrypsin. This breakdown was carried out at different environment conditions (37 and 50 °C, and the fragments were allowed to self-organize at these temperatures. The new peptides so formed diverged according to the environmental conditions. Interestingly, two peptides (with molecular weights of 13.8 and 11.8 kD were isolated when the reaction temperature was maintained at 50 °C, while four peptides with molecular weights of 54, 51, 13.8, and 12.8 kD were obtained when the reaction was conducted at 37 °C. Thus, at a higher temperature (50 °C, the peptides formed, compared to the original protein, had lower molecular weights, whereas, at a lower temperature (37 °C, two peptides had higher molecular weights and two had lower molecular weights.

  15. Cell-penetrating recombinant peptides for potential use in agricultural pest control applications.

    Science.gov (United States)

    Hughes, Stephen R; Dowd, Patrick F; Johnson, Eric T

    2012-09-28

    Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs) because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs) are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX) from the wolf spider (Lycosa carolinensis). One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda) larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  16. Potential role of an antimicrobial peptide, KLK in inhibiting lipopolysaccharide-induced macrophage inflammation.

    Directory of Open Access Journals (Sweden)

    Pornpimon Jantaruk

    Full Text Available Antimicrobial peptides (AMPs are attractive alternatives to antibiotics. Due to their immune modulatory properties, AMPs are at present emerging as promising agents for controlling inflammatory-mediated diseases. In this study, anti-inflammatory potential of an antimicrobial peptide, KLK (KLKLLLLLKLK and its analogs was evaluated in lipopolysaccharide (LPS-induced RAW 264.7 macrophages. The results herein demonstrated that KLK peptide as well as its analogs significantly inhibited the pro-inflammatory mediator nitric oxide (NO, interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α production in LPS-stimulated RAW 264.7 macrophages in dose-dependent manners, and such inhibitory effects were not due to direct cytotoxicity. When considering inhibition potency, KLK among the test peptides exhibited the most effective activity. The inhibitory activity of KLK peptide also extended to include suppression of LPS-induced production of prostaglandin E2 (PGE2. KLK significantly decreased mRNA and protein expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as mRNA expression of IL-1β and TNF-α. Moreover, KLK inhibited nuclear translocation of nuclear factor-κB (NF-κB p65 and blocked degradation and phosphorylation of inhibitor of κB (IκB. Taken together, these results suggested that the KLK peptide inhibited inflammatory response through the down-regulation of NF-κB mediated activation in macrophages. Since peptide analogs with different amino acid sequences and arrangement were investigated for their anti-inflammatory activities, the residues/structures required for activity were also discussed. Our findings therefore proved anti-inflammatory potential of the KLK peptide and provide direct evidence for therapeutic application of KLK as a novel anti-inflammatory agent.

  17. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  18. Antibiotic susceptibility of probiotic strains: Is it reasonable to combine probiotics with antibiotics?

    Science.gov (United States)

    Neut, C; Mahieux, S; Dubreuil, L J

    2017-11-01

    The main goal of this study was to determine the in vitro susceptibility of strains collected from marketed probiotics to antibiotics used to treat community-acquired infections. The minimum inhibitory concentrations (MICs) of 16 antibiotics were determined using a gradient strip (E test) or the agar dilution method for fidaxomicin. The probiotics demonstrated various antibiotic patterns. Bacterial probiotics are generally susceptible to most prescribed antibiotics orally administered, whereas yeast probiotics, such as Saccharomyces boulardii, are resistant. Special attention must be paid to co-prescriptions of antibiotics and probiotics to ensure that the probiotic strain is not susceptible. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Antibiotics for acute otitis media in children

    NARCIS (Netherlands)

    Venekamp, R.P.; Sanders, S.; Glasziou, P.P.; Mar, C.B. Del; Rovers, M.M.

    2013-01-01

    BACKGROUND: Acute otitis media (AOM) is one of the most common diseases in early infancy and childhood. Antibiotic use for AOM varies from 56% in the Netherlands to 95% in the USA, Canada and Australia. OBJECTIVES: To assess the effects of antibiotics for children with AOM. SEARCH METHODS: We

  20. Antibiotic research and development: business as usual?

    NARCIS (Netherlands)

    Harbarth, S.; Theuretzbacher, U.; Hackett, J.; Hulscher, M.; et al.,

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is

  1. Natural bioactive compounds: antibiotics | Dezfully | Journal of ...

    African Journals Online (AJOL)

    Antibiotics are powerful therapeutic agents that are produced by diverse living organisms. Over the last several decades, natural bioactive products particularly antibiotics have continued to play a significant role in drug discovery and has expanded the process for developing drugs with high degree of therapeutic index and ...

  2. Antibiotic RX in Hospitals: Proceed with Caution

    Centers for Disease Control (CDC) Podcasts

    2014-03-04

    This podcast is based on the March 2014 CDC Vital Signs report. Antibiotics save lives, but poor prescribing practices can put patients at risk for health problems. Learn how to protect patients by protecting antibiotics.  Created: 3/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/4/2014.

  3. ANTIBIOTIC USE AND INFECTION IN SNAKEBITE VICTIMS

    African Journals Online (AJOL)

    Objectives. To determine the incidence of infection in snakebite patients, the bacterial species involved, and the indication for antibiotics. Method. A prospective trial was undertaken at Eshowe. Hospital, KwaZulu-Natal, involving 363 snakebite patients. (records available for 310 patients). It was protocol not to give antibiotics ...

  4. Nanoformulation and antibiotic releasing property of cefotaxime ...

    African Journals Online (AJOL)

    The objective of this study was to design nano-antibiotic to enhance their release from biomaterial agents. Cefotaxime was used as a model antibiotic substance in this carrier system. These nanoparticles were preformulated using different concentrations of polycaprolactone (PCL) and poly (vinyl alcohol) as coating material ...

  5. Snort Sniffle Sneeze: No Antibiotics Please

    Centers for Disease Control (CDC) Podcasts

    2009-09-29

    Antibiotics aren't always the answer for sneezes or sore throats. This podcast discusses ways to feel better without antibiotics.  Created: 9/29/2009 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2009.

  6. Antibiotics: Pharmacists Can Make the Difference

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    In this podcast, a pharmacist counsels a frustrated father about appropriate antibiotic use and symptomatic relief options for his son's cold.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  7. Incidence and antibiotic susceptibility pattern of Staphylococcus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... antibiotic sensitivity test results of suspected cases of urinary tract infection (UTI) of the University of ... (4.4%), Pseudomonas aeruginosa (2.0%) and Candida albican (1.0%). ... and oxfloxacin could be the drug of choice in the treatment of S. aureus. ... appropriate empirical antibiotics that could be of use.

  8. Antibiotic resistance: a physicist’s view

    Science.gov (United States)

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  9. Antibiotic information application offers nurses quick support

    NARCIS (Netherlands)

    Wentzel, Jobke; van Drie-Pierik, Regine; Nijdam, Lars; Geesing, Jos; Sanderman, Robbert; van Gemert-Pijnen, Julia E. W. C.

    2016-01-01

    Background: Nurses can be crucial contributors to antibiotic stewardship programs (ASPs), interventions aimed at improving antibiotic use, but nurse empowerment in ASPs adds to their job complexity. Nurses work in complex settings with high cognitive loads, which ask for easily accessible

  10. Antibiotic information application offers nurses quick support

    NARCIS (Netherlands)

    Wentzel, M.J.; Drie-Pierik, Regine; Nijdam, Lars; Geesing, Jos; Sanderman, Robbert; van Gemert-Pijnen, Julia E.W.C.

    2016-01-01

    Background Nurses can be crucial contributors to antibiotic stewardship programs (ASPs), interventions aimed at improving antibiotic use, but nurse empowerment in ASPs adds to their job complexity. Nurses work in complex settings with high cognitive loads, which ask for easily accessible

  11. Interplay between gut microbiota and antibiotics

    NARCIS (Netherlands)

    Jesus Bello Gonzalez, de Teresita

    2016-01-01

    The human body is colonized by a vast number of microorganisms collectively defined as the microbiota. In the gut, the microbiota has important roles in health and disease, and can serve as a host of antibiotic resistance genes. Disturbances in the ecological balance, e.g. by antibiotics, can

  12. Genetic architecture of intrinsic antibiotic susceptibility.

    Directory of Open Access Journals (Sweden)

    Hany S Girgis

    2009-05-01

    Full Text Available Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired.To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance.Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.

  13. Antibiotic residues and resistance in the environment

    NARCIS (Netherlands)

    Pikkemaat, M.G.; Yassin, H.; Fels-Klerkx, H.J.; Berendsen, B.J.A.

    2016-01-01

    Antibiotic usage has benefited the animal industry and helped providing affordable animal proteins to the growing human population. However, since extensive use of antibiotics results in the inhibition of susceptible organisms while selecting for the resistant ones, agricultural use is contributing

  14. Analysis of antibiotic consumption in burn patients

    Directory of Open Access Journals (Sweden)

    Soleymanzadeh-Moghadam, Somayeh

    2015-06-01

    Full Text Available Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of and were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used.The results indicated that is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR microorganisms, but it can also decrease the cost of treatment.

  15. Alternatives to antibiotics: why and how

    Science.gov (United States)

    The antibiotic resistance problem is the mobilization of genes that confer resistance to medically important antibiotics into human pathogens. The acquisition of such resistance genes by pathogens prevents disease treatment, increases health care costs, and increases morbidity and mortality. As ant...

  16. Antibiotics: Precious Goods in Changing Times.

    Science.gov (United States)

    Sass, Peter

    2017-01-01

    Antibiotics represent a first line of defense of diverse microorganisms, which produce and use antibiotics to counteract natural enemies or competitors for nutritional resources in their nearby environment. For antimicrobial activity, nature has invented a great variety of mechanisms of antibiotic action that involve the perturbation of essential bacterial structures or biosynthesis pathways of macromolecules such as the bacterial cell wall, DNA, RNA, or proteins, thereby threatening the specific microbial lifestyle and eventually even survival. However, along with highly inventive modes of antibiotic action, nature also developed a comparable set of resistance mechanisms that help the bacteria to circumvent antibiotic action. Microorganisms have evolved specific adaptive responses that allow appropriately reacting to the presence of antimicrobial agents, ensuring survival during antimicrobial stress. In times of rapid development and spread of antibiotic (multi-)resistance, we need to explore new, resistance-breaking strategies to counteract bacterial infections. This chapter intends to give an overview of common antibiotics and their target pathways. It will also discuss recent advances in finding new antibiotics with novel modes of action, illustrating that nature's repertoire of innovative new antimicrobial agents has not been fully exploited yet, and we still might find new drugs that help to evade established antimicrobial resistance strategies.

  17. Antibiotic prophylaxis in clean general surgery

    International Nuclear Information System (INIS)

    Ahmed, M.; Asghar, I.; Mansoor, N.

    2007-01-01

    To find out the incidence of surgical site infection in clean general surgery cases operated without prophylactic antibiotics. One hundred and twenty-four clean surgical cases operated without antibiotic prophylaxis between July 2003 and December 2004, were studied and these were compared with similar number of cases who received antibiotics. The data was collected and analyzed using software SPSS (version 10.0). Chi-square and student-t test were used to analyze the association between antibiotics and wound infection. The most frequent operation was repair of various hernias, 69.3% in group A and 75% in group B. More operations were carried out between 21-30 years, 38.7% in group A and 41.9% in group B. Surgical site infection occurred in one patient (0.8%) in each group. Chi-square test (0.636) applied to group A and B showed no association of infection and administration/ no administration of antibiotics (p > 0.25). The t-test applied on group A and B (t=0) also showed no significant difference between administration of antibiotics/ no-antibiotics and infection (p > 0.25). The use of prophylactic antibiotic in clean, non implant and elective cases is unnecessary. (author)

  18. Awareness of Rational Medication Use and Antibiotic Self ...

    African Journals Online (AJOL)

    Knowledge on dose, frequency, duration and side-effects of antibiotics among students was ... highlights the need for interventions to assure rational use of antibiotics. Keywords: Antibiotics ... higher education [11-16]. Global tendency is.

  19. Making Antibiotic Choices: Formula Derivation and Usage in the ...

    African Journals Online (AJOL)

    formulae was demonstrated in the rational selection of antibiotics most appropriate in the empirical ... antibiotics provides a suitable means of making antibiotic choices in the empirical treatment of ... decisions are made on their choices.

  20. The causes and consequences of antibiotic resistance evolution in microbial pathogens

    DEFF Research Database (Denmark)

    Jochumsen, Nicholas

    pleiotropy as they conferred a decreased growth rate in the absence of colistin and also rendered the colistin resistant strains susceptible towards all tested classes of β-lactams. The results suggest that colistin/β-lactam combination therapy could be used to reduce the risk of resistance evolution during......The evolution of antimicrobial resistance in bacterial pathogens is a growing global health problem that is gradually making the successful treatment of infectious diseases more difficult. Antimicrobial peptides have been proposed as promising candidates for future drug development as they retain...... activity against bacteria resistant to conventional antibiotics and because resistance evolution is expected to be unlikely since the peptides have complex modes of action due to their interaction with the bacterial membrane. The work presented in this thesis has involved studies to increase our...