Mesons in the Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
WANG Li; PING Jia-Lun
2007-01-01
The quark-antiquark (q(-q)) spectrum is studied by solving the Schrǒdinger equation in the framework of non-relativistic constituent quark model. An overall good fit to the experimental data of meson is obtained. The interactions between quark and antiquark consist of quadratic colour confinement-exchange, one-gluon-exchange, and Goldstone-boson-exchange potentials.
The Thomas-Fermi Quark Model: Non-Relativistic Aspects
Liu, Quan
2012-01-01
Non-relativistic aspects of the Thomas-Fermi statistical quark model are developed. A review is given and our modified approach to spin in the model is explained. Our results are limited so far to two inequivalent simultaneous wave functions which can apply to multiple degenerate flavors. An explicit spin interaction is introduced, which requires the introduction of a generalized spin "flavor". Although the model is designed to be most reliable for many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of octet and decouplet baryons. The low energy fit allows us to investigate the six-quark doubly strange H-dibaryon state, possible 6 quark nucleon-nucleon resonances and flavor symmetric strange states of higher quark content.
Δ - Δ resonance in the nonrelativistic quark model
Cvetič, M.; Golli, B.; Mankoč-Borštnik, N.; Rosina, M.
1980-06-01
The Δ - Δ resonance is treated in the nonrelativistic quark model. The trial wave function is a colour singlet including N-N, Δ - Δ and coloured baryon channels. The effective Δ - Δ potential is repulsive at all distances for T=0, S=1, L=0,2,4 while for T=3, S=0, L=0 and T=0, S=3, L=0 it has a minimum. The GCM calculation gives for the latter state the binding emergy ∼ -40 MeV.
NN Interaction in Chiral Constituent Quark Models
Valcarce, A; González, P
2003-01-01
We review the actual state in the description of the NN interaction by means of chiral constituent quark models. We present a series of relevant features that are nicely explained within the quark model framework.
Nuclear Structure Functions from Constituent Quark Model
Arash, F; Arash, Firooz; Atashbar-Tehrani, Shahin
1999-01-01
We have used the notion of the constituent quark model of nucleon, where a constituent quark carries its own internal structure, and applied it to determine nuclear structure functions ratios. It is found that the description of experimental data require the inclusion of strong shadowing effect for $x<0.01$. Using the idea of vector meson dominance model and other ingredients this effect is calculated in the context of the constituent quark model. It is rather striking that the constituent quark model, used here, gives a good account of the data for a wide range of atomic mass number from A=4 to A=204.
Quark confinement in a constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Langfeld, K.; Rho, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique
1995-07-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.
Chiral symmetry and the constituent quark model
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Baryons in chiral constituent quark model
Glozman, L Ya
1996-01-01
Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.
The effect of instanton-induced interaction on -wave meson spectra in constituent quark model
Indian Academy of Sciences (India)
Bhavyashri; S Sarangi; Godfrey Saldanha; K B Vijaya Kumar
2008-01-01
The mass spectrum of the -wave mesons is considered in a non-relativistic constituent quark model. The full Hamiltonian used in the investigation includes the kinetic energy, the confinement potential, the one-gluon-exchange potential (OGEP) and the instanton-induced quark-antiquark interaction (III). A good description of the mass spectrum is obtained. The respective role of III and OGEP in the P-wave meson spectrum is discussed.
Gluonic structure of the constituent quark
Energy Technology Data Exchange (ETDEWEB)
Kochelev, Nikolai, E-mail: kochelev@theor.jinr.ru [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 (Russian Federation); Lee, Hee-Jung [Department of Physics Education, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Zhang, Baiyang; Zhang, Pengming [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)
2016-06-10
Based on both the constituent quark picture and the instanton model for QCD vacuum, we calculate the unpolarized and polarized gluon distributions in the constituent quark and in the nucleon. Our approach consists of the two main steps. At the first step, we calculate the gluon distributions inside the constituent quark generated by the perturbative quark–gluon interaction, the non-perturbative quark–gluon interaction, and the non-perturbative quark–gluon–pion anomalous chromomagnetic interaction. The non-perturbative interactions are related to the existence of the instantons, strong topological fluctuations of gluon fields, in the QCD vacuum. At the second step, the convolution model is applied to derive the gluon distributions in the nucleon. A very important role of the pion field in producing the unpolarized and the polarized gluon distributions in the hadrons is discovered. We discuss a possible solution of the proton spin problem.
Decaying hadrons within constituent-quark models
Kleinhappel, Regina
2012-01-01
Within conventional constituent-quark models hadrons come out as stable bound states of the valence (anti)quarks. Thereby the resonance character of hadronic excitations is completely ignored. A more realistic description of hadron spectra can be achieved by including explicit mesonic degrees of freedom, which couple directly to the constituent quarks. We will present a coupled-channel formalism that describes such hybrid systems in a relativistically invariant way and allows for the decay of excited hadrons. The formalism is based on the point-form of relativistic quantum mechanics. If the confining forces between the (anti)quarks are described by instantaneous interactions it can be formally shown that the mass-eigenvalue problem for a system that consists of dynamical (anti)quarks and mesons reduces to a hadronic eigenvalue problem in which the eigenstates of the pure confinement problem (bare hadrons) are coupled via meson loops. The only point where the quark substructure enters are form factors at the m...
Distributions and correlations of constituent quarks in jets
Institute of Scientific and Technical Information of China (English)
黄瑞典; 蔡勖; 钱婉燕; 杨纯斌
2011-01-01
In the frame of the quark recombination model, we study the momentum distributions and correlations of constituent quarks in jets by analyzing the final state hadrons generated by PYTHIA for the hard parton fragmentation processes in vacuum. Parameterizat
From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model
Żenczykowski, Piotr
2015-01-01
We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained pha...
Symmetries of Nonrelativistic Phase Space and the Structure of Quark-Lepton Generation
Zenczykowski, Piotr
2009-01-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x^2+p^2 constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space ...
Baryons in a chiral constituent quark model
Glozman, L Ya
1998-01-01
In the low-energy regime light and strange baryons should be considered as systems of constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons as well as by vector and scalar mesons. The flavor-spin structure and sign of the short-range part of the spin-spin force reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. There is a cancellation of the tensor force from pseudoscalar- and vector-exchanges in baryons. The spin-orbit interactions from $\\rho$-like and $\\omega$-like exchanges also cancel each other in baryons while they produce a big spin-orbit force in NN system. A unified description of light and strange baryon spectra calculated in a semirelativistic framework is presented. It is demonstrated that the same short-range part of spin-spin interaction between the constituent quarks induces a strong short-range repulsion in $NN...
Symmetries of nonrelativistic phase space and the structure of quark-lepton generation
Źenczykowski, Piotr
2009-06-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x2 + p2 constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space singles out an element which might be associated with the concept of lepton mass. This element is transformed into a corresponding element for a single coloured quark, leading to a generalization of the concept of mass and a different starting point for the discussion of quark unobservability.
Symmetries of nonrelativistic phase space and the structure of quark-lepton generation
Energy Technology Data Exchange (ETDEWEB)
Zenczykowski, Piotr, E-mail: piotr.zenczykowski@ifj.edu.p [Division of Theoretical Physics, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland)
2009-06-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x{sup 2} + p{sup 2} constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space singles out an element which might be associated with the concept of lepton mass. This element is transformed into a corresponding element for a single coloured quark, leading to a generalization of the concept of mass and a different starting point for the discussion of quark unobservability.
Light baryons in a constituent quark model with chiral dynamics
Glozman, L Ya; Plessas, W
1996-01-01
It is shown from rigorous three-body Faddeev calculations that the masses of all 14 lowest states in the N and \\Delta spectra can be described within a constituent quark model with a Goldstone-boson-exch ange interaction plus linear confinement between the constituent quarks.
Constituent gluons and the static quark potential
Greensite, Jeff
2015-01-01
We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.
Constituent gluons and the static quark potential
Energy Technology Data Exchange (ETDEWEB)
Greensite, Jeff [San Francisco State Univ., CA (United States); Szczepaniak, Adam P. [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.
Distributions and correlations of constituent quarks in jets
Institute of Scientific and Technical Information of China (English)
HUANG Rui-Dian; CAI Xu; QIAN Wan-Yan; YANG Chun-Bin
2011-01-01
In the frame of the quark recombination model, we study the momentum distributions and cor- relations of constituent quarks in jets by analyzing the final state hadrons generated by PYTHIA for the hard parton fragmentation processes in vacuum. Parameterizations for the distributions are tabulated.
Dowdall, R J; Davies, C T H; Horgan, R R; Monahan, C J; Shigemitsu, J
2013-05-31
We present the first lattice QCD calculation of the decay constants f(B) and f(B(s)) with physical light quark masses. We use configurations generated by the MILC Collaboration including the effect of u, d, s, and c highly improved staggered quarks in the sea at three lattice spacings and with three u/d quark mass values going down to the physical value. We use improved nonrelativistic QCD (NRQCD) for the valence b quarks. Our results are f(B)=0.186(4) GeV, f(B(s))=0.224(4) GeV, f(B(s))/f(B)=1.205(7), and M(B(s))-M(B)=85(2) MeV, superseding earlier results with NRQCD b quarks. We discuss the implications of our results for the standard model rates for B((s))→μ(+)μ(-) and B→τν.
Effective Q-Q Interactions in Constituent Quark Models
Glozman, L Ya; Plessas, W; Varga, K; Wagenbrun, R F
1998-01-01
We study the performance of some recent potential models suggested as effective interactions between constituent quarks. In particular, we address constituent quark models for baryons with hybrid Q-Q interactions stemming from one-gluon plus meson exchanges. Upon recalculating two of such models we find them to fail in describing the N and \\Delta spectra. Our calculations are based on accurate solutions of the three-quark systems in both a variational Schrödinger and a rigorous Faddeev approach. It is argued that hybrid {Q-Q} interactions encounter difficulties in describing baryon spectra due to the specific contributions from one-gluon and pion exchanges together. In contrast, a chiral constituent quark model with a Q-Q interaction solely derived from Goldstone-boson exchange is capable of providing a unified description of both the N and \\Delta spectra in good agreement with phenomenology.
Successes and failures of the constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Lipkin, H.J.
1982-01-01
Our approach considers the model as a possible bridge between QCD and the experimental data and examines its predictions to see where these succeed and where they fail. We also attempt to improve the model by looking for additional simple assumptions which give better fits to the experimental data. But we avoid complicated models with too many ad hoc assumptions and too many free parameters; these can fit everything but teach us nothing. We define our constituent quark model by analogy with the constituent electron model of the atom and the constituent nucleon model of the nucleus. In the same way that an atom is assumed to consist only of constituent electrons and a central Coulomb field and a nucleus is assumed to consist only of constituent nucleons hadrons are assumed to consist only of their constituent valence quarks with no bag, no glue, no ocean, nor other constituents. Although these constituent models are oversimplified and neglect other constituents we push them as far as we can. Atomic physics has photons and vacuum polarization as well as constituent electrons, but the constituent model is adequate for calculating most features of the spectrum when finer details like the Lamb shift are neglected. 54 references.
A Euclidean bridge to the relativistic constituent quark model
Hobbs, T J; Miller, Gerald A
2016-01-01
${\\bf Background}$ Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). ${\\bf Purpose}$ Seeking to bridge these complementary worldviews, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. ${\\bf Method}$ To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark $+$ scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of ...
Constituent quark masses from modified perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Cabo Montes de Oca, A. [Instituto de Cibernetica, Matematica y Fisica, La Habana (Cuba); International Institute for Theoretical and Applied Physics (IITAP), UNESCO and Iowa State University, Ames, IA (United States); Rigol Madrazo, M. [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba)
2002-03-01
A recently proposed modified perturbative expansion for QCD incorporating gluon condensation is employed to evaluate the quark and gluon self-energy corrections in first approximation. The results predict mass values of 1/3 of the nucleon mass for the light quarks u, d, and s and a monotonously growing variation with the current mass. The only phenomenological input is that left angle G{sup 2} right angle is evaluated up to order g{sup 2} as a function of the unique parameter C defining the modified propagator, and then C is fixed to give a current estimate of left angle g{sup 2}G{sup 2} right angle. The light quarks u and d as a result are found to be confined and the s, c, b and t ones show damped propagation modes, suggesting a model for the large differences in stability between the nucleons and the higher resonances. The above properties of quark modes diverge from the fully confinement result following from the similar gluon propagator previously considered by Munczek and Nemirovski. On the other hand, the condensate effects on the gluon self-energy furnish a tachyonic mass shell as predicted by the Fukuda analysis of gluon condensation in QCD. (orig.)
Meson cloud effects on the pion quark distribution function in the chiral constituent quark model
Watanabe, Akira; Suzuki, Katsuhiko
2016-01-01
We investigate the valence quark distribution function of the pion $v^{\\pi}(x,Q^2)$ in the framework of the chiral constituent quark model and evaluate the meson cloud effects on $v^{\\pi}(x,Q^2)$. We explicitly demonstrate how the meson cloud effects affect $v^{\\pi}(x,Q^2)$ in detail. We find that the meson cloud correction causes an overall 32\\% reduction of the valence quark distribution and an enhancement at the small Bjorken $x$ regime. Besides, we also find that the dressing effect of the meson cloud will make the valence quark distribution to be softer in the large $x$ region.
Constituent quark models and pentaquark baryons
Maltman, K
2004-01-01
We discuss certain general features of the pentaquark picture for the theta, its 10bar_F partner, Xi_{3/2}, and possible heavy quark analogues. Models employing spin-dependent interactions based on either effective Goldstone boson exchange or effective color magnetic exchange are also used to shed light on possible corrections to the Jaffe-Wilczek and Karliner-Lipkin scenarios. Some model-dependent features of the pentaquark picture (splitting patterns and relative decay couplings) are also discussed in the context of these models.
Constituent quark model description of charmonium phenomenology
Segovia, J; Fernandez, F; Hernandez, E
2013-01-01
We review how quark models are able to describe the phenomenology of the charm meson sector. The spectroscopy and decays of charmonium and open charm mesons are described in a particular quark model and compared with the data and the results of other existing models in the literature. A quite reasonable global description of the heavy meson spectra is reached. A new assignment of the $\\psi(4415)$ resonance as a 3D state leaving aside the 4S state to the X(4360) is tested through the analysis of the resonance structure in $e^{+}e^{-}$ exclusive reactions around the $\\psi(4415)$ energy region. We make tentative assignments of some of the $XYZ$ mesons. To elucidate the structure of the $1^{+}$ $c\\bar{s}$ states, i.e. $D_{s1}(2460)$ and $D_{s1}(2536)$, we study the strong decay properties of the $D_{s1}(2536)$ meson. We also perform a calculation of the branching fractions for the semileptonic decays of $B$ and $B_{s}$ mesons into final states containing orbitally excited charmed and charmed-strange mesons, which...
Euclidean bridge to the relativistic constituent quark model
Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.
2017-03-01
Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.
Exploration of hyperfine interaction between constituent quarks via eta productions
He, Jun; Xu, H S
2011-01-01
In this work, the different exchange freedom, one gluon, one pion or Goldstone boson, in constituent quark model is investigated, which is responsible to the hyperfine interaction between constituent quarks, via the combined analysis of the eta production processes, $\\pi^{-}p\\rightarrow\\eta n$ and $\\gamma p\\rightarrow\\eta p$. With the Goldstone-boson exchange, as well as the one-gluon or one-pion exchange, both the spectrum and observables, such as, the differential cross section and polarized beam asymmetry, are fitted to the suggested values of Particle Data Group and the experimental data. The first two types of exchange freedoms give acceptable description of the spectrum and observables while the one pion exchange can not describe the observables and spectrum simultaneously, so can be excluded. The experimental data for the two processes considered here strongly support the mixing angles for two lowest S11 sates and D13 states as about -30 and 6 degree respectively.
Dibaryons with two strange quarks and one heavy flavor in a constituent quark model
Park, Aaron; Park, Woosung; Lee, Su Houng
2016-09-01
We investigate the symmetry property and the stability of dibaryons containing two strange quarks and one heavy flavor with isospin I =1/2 . We construct the wave function of the dibaryon in two ways. First, we directly construct the color and spin state of the dibaryon starting from the four possible S U (3 ) flavor states. Second, we consider the states composed of five light quarks and then construct the wave function of the dibaryon by adding one heavy quark. The stability of the dibaryon against the strong decay into two baryons is discussed by using the variational method in a constituent quark model with a confining and hyperfine potential. We find that, for all configurations with spin S =0 , 1, 2, the ground states of the dibaryons are the sum of two baryons, and there is no compact bound state that is stable against the strong decay.
Dibaryons with two strange quarks and one heavy flavor in a constituent quark model
Park, Aaron; Lee, Su Houng
2016-01-01
We investigate the symmetry property and the stability of dibaryons containing two strange quarks and one heavy flavor with $I=\\frac{1}{2}$. We construct the wave function of the dibaryon in two ways. First, we directly construct the color and spin state of the dibaryon starting from the four possible SU(3) flavor state. Second, we consider the states composed of five light quarks, and then construct the wave function of the dibaryon by adding one heavy quark. The stability of the dibaryon against the strong decay into two baryons is discussed by using variational method in a constituent quark model with confining and hyperfine potential. We find that for all configurations with S=0,1,2, the ground states of the dibaryons are the sum of two baryons, and there are no compact bound state that is stable against the strong decay.
Constituent quark and baryon spectra from a modified Perturbative QCD
Cabo-Montes de Oca, Alejandro; Cabo Montes de Oca, Alejandro; Madrazo, Marcos Rigol
2000-01-01
A recently proposed perturbative expansion for QCD incorporating gluon condensation is employed to evaluate the quark and gluon self-energy corrections in the simplest approximations. The results predict mass values of the order of 1/3 of the nucleon mass for the light quarks u,d and s and a monotonously growing variation with the current mass values. The mass spectrum of the ground states within the various groups of baryonic resonances and a class of vector meson ones is well predicted by the simple addition of the calculated constituent quark masses. In connection with the self-energy, it follows that the gluonic mass shell becomes tachyonic in the considered approximation. In order to obtain the above mentioned results was evaluated as a function of the condensate paramater up to order g^2 and then this parameter fixed to give the accepted numerical value of . The discussion leads us to conjecture that the procedure, after also introducing quark condensates in the same token as the gluonic ones, could a...
Double parton distributions in Light-Front constituent quark models
Rinaldi, Matteo; Traini, Marco; Vento, Vicente
2014-01-01
Double parton distribution functions (dPDF), accessible in high energy proton-proton and proton nucleus collisions, encode information on how partons inside a proton are correlated among each other and could represent a tool to explore the 3D proton structure. In recent papers, double parton correlations have been studied in the valence quark region, by means of constituent quark models. This framework allows to understand clearly the dynamical origin of the correlations and to establish which, among the features of the results, are model independent. Recent relevant results, obtained in a relativistic light-front scheme, able to overcome some drawbacks of previous calculations, such as the poor support, will be presented. Peculiar transverse momentum correlations, generated by the correct treatment of the boosts, are obtained. The role of spin correlations will be also shown. In this covariant approach, the symmetries of the dPDFs are unambiguously reproduced. The study of the QCD evolution of the model resu...
A Euclidean bridge to the relativistic constituent quark model
Hobbs, Timothy; Alberg, Mary; Miller, Gerald
2017-01-01
We explore the potential of a Euclidean constituent quark model (ECQM) to bridge the lingering gap between Euclidean and Minkowski field theories in studies of nucleon structure. Specifically, we develop our ECQM using a simplified quark-scalar diquark picture of the nucleon as a first calculation. Our treatment in Euclidean space necessitates a hyperspherical formalism involving polynomial expansions of diquark propagators in order to marry our ECQM with results from Bethe-Salpeter Equation (BSE) analyses. From this framework, we define and compute a new quantity - a Euclidean density function (EDF) - an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation. Work supported by DOE grant DE-FG02-97ER-41014 and NSF Grant No. 1516105.
Double parton correlations in Light-Front constituent quark models
Directory of Open Access Journals (Sweden)
Rinaldi Matteo
2015-01-01
Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.
Parton Distribution in Pseudoscalar Mesons with a Light-Front Constituent Quark Model
de Melo, J P B C; Tsushima, Kazuo
2015-01-01
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $\\bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.
Generalized SU(3) Nambu-Jona-Lasinio model. Pt. 2; From current to constituent quarks
Energy Technology Data Exchange (ETDEWEB)
Vogl, U.; Lutz, M.; Klimt, S.; Weise, W. (Regensburg Univ. (Germany, F.R.). Inst. fuer Physik 1 - Theoretische Physik)
1990-10-08
We investigate the properties of constituent quarks, i.e. quarks dressed by their strong interactions, in a generalized Nambu-Jona-Lasinio model with N{sub f}=3 flavours. In the Hartree-Fock approximation, the step from structureless current quarks to massive constituent quarks is made through dynamical mass generation which implies spontaneous chiral symmetry breaking. We study, in particular, the quark scalar, vector and axial vector currents within this framework. We demonstrate that, a low energy and momentum transfers, single valence quarks are strongly screened by quark-antiquark polarization effects. For the electromagnetic currents, we recover relationships familiar from the vector meson dominance model. For the axial current, screening by J{sup {pi}}=1{sup +} quark-antiquark modes leads to an effective quark axial vector constant g{sub A}<1 which satisfies the Goldberger-Treiman relation at the quark level. The spin content of the proton is also discussed in this framework. We calculate quark magnetic moments and electromagnetic form factors and discuss their related sizes. (orig.).
Constituent quarks and the gluonic contribution to the spin of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Eldahoumi, Gamal
2009-01-15
The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)
Gell-Mann, M.
In these lectures I want to speak about at least two interpretations of the concept of quarks for hadrons and the possible relations between them. First I want to talk about quarks as "constituent quarks". These were used especially by G. Zweig (1964) who referred to them as aces. One has a sort of a simple model by which one gets elementary results about the low-lying bound and resonant states of mesons and baryons, and certain crude symmetry properties of these states, by saying that the hadrons act as if they were made up of subunits, the constituent quarks q. These quarks are arranged in an isotopic spin doublet u, d and an isotopic spin singlet s, which has the same charge as d and acts as if it had a slightly higher mass…
Pion generalized parton distributions within a fully covariant constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Fanelli, Cristiano [Massachusetts Institute of Technology, Cambridge, MA (United States). Lab. for Nuclear Science; Pace, Emanuele [' ' Tor Vergata' ' Univ., Rome (Italy). Physics Dept.; INFN Sezione di TorVergata, Rome (Italy); Romanelli, Giovanni [Rutherford-Appleton Laboratory, Didcot (United Kingdom). STFC; Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Salmistraro, Marco [Rome La Sapienza Univ. (Italy). Physics Dept.; I.I.S. G. De Sanctis, Rome (Italy)
2016-05-15
We extend the investigation of the generalized parton distribution for a charged pion within a fully covariant constituent quark model, in two respects: (1) calculating the tensor distribution and (2) adding the treatment of the evolution, needed for achieving a meaningful comparison with both the experimental parton distribution and the lattice evaluation of the so-called generalized form factors. Distinct features of our phenomenological covariant quark model are: (1) a 4D Ansatz for the pion Bethe-Salpeter amplitude, to be used in the Mandelstam formula for matrix elements of the relevant current operators, and (2) only two parameters, namely a quark mass assumed to be m{sub q} = 220 MeV and a free parameter fixed through the value of the pion decay constant. The possibility of increasing the dynamical content of our covariant constituent quark model is briefly discussed in the context of the Nakanishi integral representation of the Bethe-Salpeter amplitude. (orig.)
Strangeness -2 and -3 Baryons in a Constituent Quark Model
Energy Technology Data Exchange (ETDEWEB)
Muslema Pervin; Winston Roberts
2007-09-19
We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.
Extended Goldstone-boson-exchange constituent quark model
Wagenbrunn, R F; Plessas, W; Varga, K
2000-01-01
We discuss an updated version of the Goldstone-boson-exchange chiral quark model extended to include in addition to pseudoscalar meson exchanges also vector and scalar meson exchanges. The latter ingredients are viewed as effective parametrizations of multiple Goldstone-boson exchanges in baryons. The extended model allows for an accurate description of all light and strange baryon spectra and at the same time produces the right properties for deducing baryon-baryon interactions.
Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model
Dahiya, Harleen
2016-01-01
We have analysed the phenomenological dependence of the spin independent ($F_1^{p,n}$ and $F_2^{p,n}$) and the spin dependent ($g_1^{p,n}$) structure functions of the nucleon on the the Bjorken scaling variable $x$ using the unpolarized distribution functions of the quarks $q(x)$ and the polarized distribution functions of the quarks $\\Delta q(x)$ respectively. The chiral constituent quark model ($\\chi$CQM), which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of $p$ and $n$. In light of the improved precision of the world data, the $p$ and $n$ longitudinal spin asymmetries ($A_1^p(x)$ and $A_1^n(x)$) have been calculated. The implication of the presence of the sea quarks has been discussed for ratio of polarized to unpolarized quark distribution functions for up and down quarks in the $p$ and $n$ $\\frac{\\Delta u^p(x)}{u^p(x)}$, $\\frac{\\Delta d...
Le Yaouanc, A; Morénas, V; Oliver, L; Pène, O; Raynal, J C
2000-01-01
The detailed way in which duality between sum of exclusive states and the free quark model description operates in semileptonic total decay widths, is analysed. It is made very explicit by the use of the non relativistic harmonic oscillator quark model in the SV limit, and a simple interaction current with the lepton pair. In particular, the Voloshin sum rule is found to eliminate the mismatches of order $\\delta m/m_b^2$.
The baryon spectrum and the hypercentral Constituent Quark Model
Giannini, M M
2015-01-01
The description of the baryon spectrum is performed using the hypercentral Consituent Quark Model (hCQM), mainly in comparison with the harmonic oscillator (h.o.). Recentlly many new states, at various levels of confidence have been observed, leading to a softening of the missing resonance problem in the case of positive parity states. However, the number of negative states is higher that predicted by the commonly used h.o. scheme and therefore one is forced to take into account also the higher energy shells, which contain an overall number of states much greater than the observed one. It is shown that, thanks to the peculiar level scheme of the hCQM, the recently observed negative parity states can be considered as belonging to the lower shells, keeping the missing resonance problem within more acceptable limits.
Nucleon and gamma N -> Delta lattice form factors in a constituent quark model
Ramalho, G
2008-01-01
A covariant quark model, based both on the spectator formalism and on Vector Meson Dominance, and previously calibrated by the physical data, is here extended to the unphysical region of the lattice data by means of one single extra adjustable parameter - the constituent quark mass in the chiral limit. We calculated the Nucleon (N) and the Gamma N -> Delta form factors in the universe of values for that parameter described by quenched lattice QCD. A qualitative description of the Nucleon and Gamma N -> Delta form factors lattice data is achieved for light pion masses.
Calculation of the Isgur-Wise function from a light-front constituent quark model
Simula, S
1996-01-01
The space-like elastic form factor of heavy-light pseudoscalar mesons is investigated within a light-front constituent quark model in order to evaluate the Isgur-Wise form factor. The relativistic composition of the constituent quark spins is properly taken into account using the Melosh rotations, and various heavy-meson wave function are considered, including the eigenfunctions of an effective light-front mass operator reproducing meson mass spectra. It is shown that in a wide range of values of the recoil the Isgur-Wise form factor exhibits a moderate dependence upon the choice of the heavy-meson wave function and is mainly governed by the effects of the confinement scale.
The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model
Stancu, F; Glozman, L Ya; Stancu, Fl.
1997-01-01
We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks. The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly dominant configuration is $\\mid s^4p^2[42]_O [51]_{FS}>$ due to its specific flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a strong effective repulsion at zero separation between nucleons in both $^3S_1$ and $^1S_0$ channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function at short range will be however strongly suppressed. We discuss the mechanism leading to the effective short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon exchange interaction.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model
Megias, E; Salcedo, L L
2013-01-01
Based on first principle QCD arguments, it has been argued in arXiv:1204.2424[hep-ph] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop hep-ph/0412308, hep-ph/0607338. The existence of exotic states in the spectrum is discussed.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model *,**
Directory of Open Access Journals (Sweden)
Megías E.
2014-03-01
Full Text Available Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed.
On Possible S-Wave Bound States for an N-(N) System Within a Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
CHANG Chao-Hsi; PANG Hou-Rong
2005-01-01
We try to apply a constituent quark model (a variety chiral constituent quark model) and the resonating group approach for the multi-quark problems to compute the effective potential between the NN- in S-wave (the quarks in the nucleons N and N-, and the two nucleons relatively as well, are in S wave) so as to see the possibility if there may be a tight bound state of six quarks as indicated by a strong enhancement at threshold of pp- in J/ψ and B decays. The effective potential which we obtain in terms of the model and approach shows if the experimental enhancement is really caused by a tight S-wave bound state of six quarks, then the quantum number of the bound state is very likely to be I = 1, JPC= 0-+.
Sigma terms of octet baryons in the extended chiral constituent quark model
An, C S
2014-01-01
{\\bf Background:} Quantitative insight into the respective roles played by the valence flavors and the sea quark-antiquark pairs in the baryons is crucial in deepening our comprehension of nonperturbative QCD. {\\bf Purpose:} Study the meson-baryon $\\sigma$-terms for the ground-state octet baryons $B \\equiv N,~\\Lambda,~\\Sigma,~\\Xi$. {\\bf Methods:} Within an extended chiral constituent quark model, we investigate contributions from all possible five-quark components to the $\\sigma$-terms. The probabilities of the quark-antiquark components in the baryons wave functions are calculated by taking the baryons to be admixtures of three- and five-quark components, with the relevant transitions handled {\\it via} the $^{3}P_{0}$ mechanism. {\\bf Results:} Predictions are obtained by using input parameters taken from the literature. Numerical results for the meson-nucleon and the dimensionless ${\\sigma}$-terms, $\\bar {\\sigma}_{Bl}$ and $\\bar {\\sigma}_{Bs}$, are reported. {\\bf Conclusions:} Our results turn out to be, in ...
Nucleon Structure Function F2 in the Resonance Region and Quark-Hadron Duality
Institute of Scientific and Technical Information of China (English)
DONG Yu-Bing; LI Ming-Fei
2003-01-01
Based on a simple nonrelativistic constituent quark model, the nucleon structure function F2 in theresonance region is estimated by taking the contributions from low-lying nucleon resonances into account. Calculatedresults are employed to study quark-hardon duality in the nucleon electron scattering process by comparing them to thescaling behavior from the data in deep inelastic scattering region.
Charge radii of octet and decuplet baryons in chiral constituent quark model
Indian Academy of Sciences (India)
Neetika Sharma; Harleen Dahiya
2013-09-01
The charge radii of the spin-$\\dfrac{1}{2}^{+}$ octet and spin-$\\dfrac{3}{2}^{+}$ decuplet baryons have been calculated in the framework of chiral constituent quark model ( CQM) using a general parametrization method (GPM). Our results are not only comparable with the latest experimental studies but also agree with other phenomenological models. The effects of (3) symmetry breaking pertaining to the strangeness contribution and GPM parameters pertaining to the one-, two- and three-quark contributions have also been investigated in detail and are found to be the key parameters in understanding the non-zero values for the neutral octet $(n, \\sum^{0}, \\Xi, )$ and decuplet $(^{0}, \\sum^{*0}, \\Xi^{*0})$ baryons.
Chiral symmetry, constituent quarks and quasi-elastic electron-nucleus scattering
Henley, E. M.; Krein, G.
1989-11-01
The effects of chiral symmetry breaking are examined for quasi-elastic electron scattering on nuclei. Nucleons are assumed to be composed of constituent quarks with masses that depend on density. This density dependence is determined on the basis of the Nambu-Jona-Lasinio model. It is found that the effects of chiral symmetry breaking are in the right direction and the right order of magnitude to explain the discrepancies between theory and experiment. On leave from Departamento de Fisica, Universidade Federal de Santa Maria, 97100 Santa Maria, R.S., Brazil.
Nucleon shape and electromagnetic form factors in the chiral constituent quark model
Dahiya, Harleen
2010-01-01
The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.
Differential elliptic flow of identified hadrons and constituent quark number scaling at FAIR
Bhaduri, Partha Pratim; Chattopadhyay, Subhasis
2010-01-01
Differential elliptic flow $v_2(p_{T})$ for identified hadrons has been investigated in the FAIR energy regime, employing a hadronic-string transport model (UrQMD) as well as a partonic transport model (AMPT). It has been observed that both the models show a mass ordering of $v_2$ at low $p_{T}$ and a switch over resulting a baryon-meson crossing at intermediate $p_{T}$. AMPT generates higher $v_2$ values compared to UrQMD. In addition, constituent quark number scaling behavior of elliptic fl...
NN S-Wave Elastic Cross Section and Possible Bound States in a Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
PANG Hou-Rong; PING Jia-Lun; WANG Fan
2008-01-01
In the framework of a chiral constituent quark model, considering the contributions of π annihilation and one-gluon annihilation, the proton-antiproton s-wave elastic scattering cross section experimental data can be reproduced by adjusting properly one-gluon annihilation coupling constant. After fixing the model parameters, we perform a dynamical calculation for all possible s-wave nucleon-antinucleon states. The results show that there is no s-wave bound state as indicated by a strong enhancement at threshold of pp in J/ψ and B decay.
Solitons as baryons and qualitons as constituent quarks in two-dimensional QCD
Blas, H
2008-01-01
We study the soliton type solutions arising in two-dimensional quantum chromodynamics (QCD$_{2}$). The so-called generalized sine-Gordon model (GSG) arises as the low-energy effective action of bosonized QCD$_{2}$ for unequal quark mass parameters, and it has been shown that the relevant solitons describe the normal and exotic baryonic spectrum of QCD$_{2}$ [JHEP(03)(2007)(055)]. In the first part of this chapter we classify the soliton and kink type solutions of the sl(3) GSG model. Related to the GSG model we consider the sl(3) affine Toda model coupled to matter fields (Dirac spinors) (ATM). It has been shown the confinement of the spinors inside the solitons and kinks of the GSG model providing an extended hadron model for "quark" confinement [JHEP(01)(2007)(027)]. In the second part of this chapter we discuss the appearance of the constituent quarks in the context of bosonized QCD$_{2}$ and the relevance of the $sl(2)$ ATM model in order to describe the confinement of the color degrees of freedom. We hav...
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model ***
Megías, E.; Ruiz Arriola, E.; Salcedo, L. L.
2014-03-01
Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed. Presented by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2011-25948), DGI (FIS2011-24149), Junta de Andalucía grant FQM-225, Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Spanish MINECO's Centro de Excelencia Severo Ochoa Program grant SEV-2012-0234, and the Juan de la Cierva Program.
Relativistic effects on the neutron charge form factor in the constituent quark model
Cardarelli, F
1999-01-01
The neutron charge form factor GEn(Q**2) is investigated within a constituent quark model formulated on the light-front. It is shown that, if the quark initial motion is neglected in the Melosh rotations, the Dirac neutron form factor F1n(Q**2) receives a relativistic correction which cancels exactly against the Foldy term in GEn(Q**2), as it has been recently argued by Isgur. Moreover, at the same level of approximation the ratio of the proton to neutron magnetic form factors GMp(Q**2)/GMn(Q**2) is still given by the naive SU(6)-symmetry expectation, -3/2. However, it is also shown that the full Melosh rotations break SU(6) symmetry, giving rise to GEn(Q**2) neq 0 and GMp(Q**2)/GMn(Q**2) neq -3/2 even when a SU(6)-symmetric canonical wave function is assumed. It turns out that relativistic effects alone cannot explain simultaneously the experimental data on GEn(Q**2) and GMp(Q**2)/GMn(Q**2).
Energy Technology Data Exchange (ETDEWEB)
Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)
2017-03-15
The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)
On the constituent counting rule for hard exclusive processes involving multi-quark states
Guo, Feng-Kun; Meißner, Ulf-G.; Wang, Wei
2017-05-01
At high energy, the cross section at finite scattering angle of a hard exclusive process falls off as a power of the Manderstam variable s. If all involved quark-gluon compositions undergo hard momentum transfers, the fall-off scaling is determined by the underlying valence structures of the initial and final hadrons, known as the constituent counting rule. In spite of the complication due to helicity conservation, it has been argued that when applied to exclusive process with exotic multiquark states, the counting rule is a powerful way to determine the valence degrees of freedom inside hadron exotics. In this work, we demonstrate that for hadrons with hidden flavors, the naive application of the constituent counting rule to exclusive process with hadron exotic multiquark states is problematic, since it is not mandatory for all components to participate in hard scattering at the scale . We illustrate the problems in the viewpoint based on effective field theory. We clarify the misleading results that may be obtained from the constituent counting rule in exclusive processes with exotic candidates such as , , X(3872), etc. Supported in part by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311), Thousand Talents Plan for Young Professionals, Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (2015VMA076), National Natural Science Foundation of China (11575110, 11655002), Natural Science Foundation of Shanghai (15DZ2272100, 15ZR1423100), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF111CJ1), and by Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education.
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Nonrelativistic Geodesic Motion
Mangiarotti, L
1999-01-01
We show that any second order dynamic equation on a configuration space $X\\to R$ of nonrelativistic mechanics can be seen as a geodesic equation with respect to some (nonlinear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. We compare relativistic and nonrelativistic geodesic equations, and study the Jacobi vector fields along nonrelativistic geodesics.
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
Jung, Ju-Hyun
2016-01-01
We present a microscopic description of the strong $\\pi NN$, $\\pi N\\Delta$ and $\\pi\\Delta\\Delta$ vertices. Our starting point is a constituent-quark model supplemented by an additional $3q\\pi$ non-valence component. In the spirit of chiral constituent-quark models, quarks are allowed to emit and reabsorb a pion. This multichannel system is treated in a relativistically invariant way within the framework of point-form quantum mechanics. Starting with a common $SU(6)$ spin-flavor-symmetric wave function for $N$ and $\\Delta$, we calculate the strength of the $\\pi NN$, $\\pi N\\Delta$ and $\\pi\\Delta\\Delta$ couplings and the corresponding vertex form factors. Our results are in accordance with phenomenological fits of these quantities that have been obtained within purely hadronic multichannel models for baryon resonances.
Renormalization group for non-relativistic fermions.
Shankar, R
2011-07-13
A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.
Non-relativistic particles in a thermal bath
Directory of Open Access Journals (Sweden)
Vairo Antonio
2014-04-01
Full Text Available Heavy particles are a window to new physics and new phenomena. Since the late eighties they are treated by means of effective field theories that fully exploit the symmetries and power counting typical of non-relativistic systems. More recently these effective field theories have been extended to describe non-relativistic particles propagating in a medium. After introducing some general features common to any non-relativistic effective field theory, we discuss two specific examples: heavy Majorana neutrinos colliding in a hot plasma of Standard Model particles in the early universe and quarkonia produced in heavy-ion collisions dissociating in a quark-gluon plasma.
Mitchell, J T; Tannenbaum, M J; Stankus, P W
2016-01-01
Several methods of generating three constituent-quarks in a nucleon are evaluated which explicitly maintain the nucleon's center of mass and desired radial distribution and can be used within Monte Carlo Glauber frameworks. The geometric models provided by each method are used to generate distributions over the Number of Constituent Quark Participants ($N_{qp}$) in $p+p$, $d+$Au and Au$+$Au collisions. The results are compared with each other and to a previous result of $N_{qp}$ calculations, without this explicit constraint, used in measurements of $\\sqrt{s_{_{NN}}}$=200 GeV $p+p$, $d+$Au and Au$+$Au collisions at RHIC.
Institute of Scientific and Technical Information of China (English)
DONG Yu-Bing; FENG Qing-Guo
2002-01-01
Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.
Energy Technology Data Exchange (ETDEWEB)
Barbara Pasquini, Peter Schweitzer
2011-06-01
We present results for leading-twist azimuthal asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to naively time-reversal odd transverse-momentum dependent parton distribution functions from the light-cone constituent quark model. We carefully discuss the range of applicability of the model, especially with regard to positivity constraints and evolution effects. We find good agreement with available experimental data from COMPASS and HERMES, and present predictions to be tested in forthcoming experiments at Jefferson Lab.
Surprises with Nonrelativistic Naturalness
Horava, Petr
2016-01-01
We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of fundamental physics involving gravity: The cosmological constant problem and the Higgs mass hierarchy problem.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
More On Nonrelativistic Diffeomorphism Invariance
Andreev, Oleg
2014-01-01
Certain aspects of nonrelativistic diffeomorphisms in 2+1 dimensions are investigated. These include a nonrelativistic limit of some relativistic actions in 3 dimensions, the Seiberg-Witten map, a modification of the viscosity tensor in particular due to a non-uniform magnetic field, a redefinition of background fields, and 1/R terms on Riemann surfaces of constant curvature.
Quark structure of chiral solitons
Diakonov, D
2004-01-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
B{sup ¯}{sub s}→K semileptonic decay from an Omnès improved constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Albertus, C. [Departamento de Física Atómica, Nuclear y Molecular e Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avenida de Fuentenueva s/n, E-18071 Granada (Spain); Hernández, E. [Departamento de Física Fundamental e IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain); Hidalgo-Duque, C.; Nieves, J. [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Apartado 22085, E-46071 Valencia (Spain)
2014-11-10
We study the f{sup +} form factor for the semileptonic B{sup ¯}{sub s}→K{sup +}ℓ{sup −}ν{sup ¯}{sub ℓ} decay in a constituent quark model. The valence quark estimate is supplemented with the contribution from the B{sup ¯⁎} pole that dominates the high q{sup 2} region. We use a multiply-subtracted Omnès dispersion relation to extend the quark model predictions from its region of applicability near q{sub max}{sup 2}=(M{sub B{sub s}}−M{sub K}){sup 2}∼23.75 GeV{sup 2} to all q{sup 2} values accessible in the physical decay. To better constrain the dependence of f{sup +} on q{sup 2}, we fit the subtraction constants to a combined input from previous light cone sum rule by Duplancic and Melic (2008) [11] and the present quark model results. From this analysis, we obtain Γ(B{sup ¯}{sub s}→K{sup +}ℓ{sup −}ν{sup ¯}{sub ℓ})=(5.47{sub −0.46}{sup +0.54})|V{sub ub}|{sup 2}×10{sup −9} MeV, which is about 10% and 20% higher than the predictions based on Lattice QCD and QCD light cone sum rules respectively. The former predictions, for both the form factor f{sup +}(q{sup 2}) and the differential decay width, lie within the 1σ band of our estimated uncertainties for all q{sup 2} values accessible in the physical decay, except for a quite small region very close to q{sub max}{sup 2}. Differences with the light cone sum results for the form factor f{sup +} are larger than 20% in the region above q{sup 2}=15 GeV{sup 2}.
Quark Models and Quark Phenomenology
Lipkin, Harry Jeannot
1997-01-01
Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966. A model of colored quarks interacting with a one-gluon-exchange potential explained the systematics of the meson and baryon spectrum and gave a hadron mass formula in surprising agreement with experiment. The simple quark model dismissed as heresy and witchcraft by the establishment predicted quantum numbers of an enormous number of hadronic states as well as relations between masses, reaction cross sections and electromagnetic properties, all unexplained by other approaches. Further developments leading to QCD included confinement in the large $N_c$ limit, duality, dual resonance and string models, high energy scattering systematics, unified treatment of mesons and baryons, no exotics and no free quarks.
Study of the $ar{D}$N Interaction in a QCD Coulomb Gauge Quark Model
Directory of Open Access Journals (Sweden)
Vizcarra V.E.
2010-04-01
Full Text Available We study the $ar{D}$N interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a conﬁning Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperﬁne interaction consistent with a ﬁnite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an eﬀective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range mesonbaryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by eﬀective Lagrangians are incorporated. The derived eﬀective $ar{D}$N potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.
Young, Robert D.
1973-01-01
Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)
Young, Robert D.
1973-01-01
Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)
Semileptonic Decays of Heavy Omega Baryons in a Quark Model
Pervin, M; Capstick, S; Pervin, Muslema
2006-01-01
The semileptonic decays of $\\Omega_c$ and $\\Omega_b$ are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy $\\Lambda$ baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For $\\Omega_b$ to $\\Omega_c$ the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured $\\lcle$ rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of $\\ob$ to pairs of ground and excited $\\omc$ states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elas...
Phenomenology with Lattice NRQCD b Quarks
Colquhoun, Brian; Dowdall, Rachel J; Koponen, Jonna; Lepage, G Peter; Lytle, Andrew T
2015-01-01
The HPQCD collaboration has used radiatively-improved NonRelativistic QCD (NRQCD) for $b$ quarks in bottomonium to determine the decay rate of $\\Upsilon$ and $\\Upsilon^\\prime$ mesons to leptons in lattice QCD. Using time-moments of vector bottomonium current-current correlators, we are also able to determine the $b$ quark mass in the $\\overline{\\mathrm{MS}}$ scheme. We use the same NRQCD $b$ quarks and Highly Improved Staggered Quark (HISQ) light quarks -- with masses down to their physical values -- to give a complete picture of heavy-light meson decay constants including those for vector mesons. We also study the semileptonic $B\\rightarrow\\pi\\ell\
Baryons in the unquenched quark model
Bijker, R; Lopez-Ruiz, M A; Santopinto, E
2016-01-01
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a $^{3}P_{0}$ quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and $\\beta$ decays of octet baryons.
Non-Relativistic Spacetimes with Cosmological Constant
Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.
1998-01-01
Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...
Relativistic and non-relativistic geodesic equations
Energy Technology Data Exchange (ETDEWEB)
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Semileptonic Decays of Heavy Lambda Baryons in a Quark Model
Energy Technology Data Exchange (ETDEWEB)
Winston Roberts; Muslema Pervin; Simon Capstick
2005-03-01
The semileptonic decays of {Lambda}{sub c} and {Lambda}{sub b} are treated in the framework of a constituent quark model. Both nonrelativistic and semirelativistic Hamiltonians are used to obtain the baryon wave functions from a fit to the spectra, and the wave functions are expanded in both the harmonic oscillator and Sturmian bases. The latter basis leads to form factors in which the kinematic dependence on q{sup 2} is in the form of multipoles, and the resulting form factors fall faster as a function of q{sup 2} in the available kinematic ranges. As a result, decay rates obtained in the two models using the Sturmian basis are significantly smaller than those obtained using the harmonic oscillator basis. In the case of the {Lambda}{sub c}, decay rates calculated using the Sturmian basis are closer to the experimentally reported rates. However, we find a semileptonic branching fraction for the {Lambda}{sub c} to decay to excited {Lambda}* states of 11% to 19%, in contradiction with what is assumed in available experimental analyses. Our prediction for the {Lambda}{sub b} semileptonic decays is that decays to the ground state {Lambda}{sub c} provide a little less than 70% of the total semileptonic decay rate. For the decays {Lambda}{sub b} {yields} {Lambda}{sub c}, the analytic form factors we obtain satisfy the relations expected from heavy-quark effective theory at the non-recoil point, at leading and next-to-leading orders in the heavy-quark expansion. In addition, some features of the heavy-quark limit are shown to naturally persist as the mass of the heavy quark in the daughter baryon is decreased.
Lamb Shift in Nonrelativistic Quantum Electrodynamics.
Grotch, Howard
1981-01-01
The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)
Holographic thermalization from nonrelativistic branes
Roychowdhury, Dibakar
2016-05-01
In this paper, based on the fundamental principles of gauge/gravity duality and considering a global quench, we probe the physics of thermalization for certain special classes of strongly coupled nonrelativistic quantum field theories that are dual to an asymptotically Schrödinger D p brane space time. In our analysis, we note that during the prelocal stages of the thermal equilibrium the entanglement entropy has a faster growth in time compared to its relativistic cousin. However, it shows a linear growth during the postlocal stages of thermal equilibrium where the so-called tsunami velocity associated with the linear growth of the entanglement entropy saturates to that of its value corresponding to the relativistic scenario. Finally, we explore the saturation region and it turns out that one must constraint certain parameters of the theory in a specific way in order to have discontinuous transitions at the point of saturation.
$\\eta_c$ production at the LHC challenges nonrelativistic-QCD factorization
Butenschoen, Mathias; Kniehl, Bernd A
2014-01-01
We analyze the first measurement of $\\eta_c$ production, performed by the LHCb Collaboration, in the nonrelativistic-QCD (NRQCD) factorization framework at next-to-leading order (NLO) in the strong-coupling constant $\\alpha_s$ and the relative velocity $v$ of the bound quarks including the feeddown from $h_c$ mesons. Converting the long-distance matrix elements (LDMEs) extracted by various groups from $J/\\psi$ yield and polarization data to the $\\eta_c$ case using heavy-quark spin symmetry, we find that the resulting NLO NRQCD predictions greatly overshoot the LHCb data, while the color-singlet model provides an excellent description.
η(c) production at the LHC challenges nonrelativistic QCD factorization.
Butenschoen, Mathias; He, Zhi-Guo; Kniehl, Bernd A
2015-03-06
We analyze the first measurement of η_{c} production, performed by the LHCb Collaboration, in the nonrelativistic QCD (NRQCD) factorization framework at next-to-leading order (NLO) in the strong-coupling constant α_{s} and the relative velocity v of the bound quarks including the feeddown from h_{c} mesons. Converting the long-distance matrix elements extracted by various groups from J/ψ yield and polarization data to the η_{c} case using heavy-quark spin symmetry, we find that the resulting NLO NRQCD predictions greatly overshoot the LHCb data, while the color-singlet model provides an excellent description.
Static quark-antiquark potential
Energy Technology Data Exchange (ETDEWEB)
Deo, B.B.; Barik, B.K.
1983-01-01
A heavy-quark--antiquark potential is suggested which connects asymptotic freedom and quark confinement in a unified manner by formal methods of field theory using some plausible assumptions. The potential has only one additional adjustable parameter B which is proportional to (M/sub q//m/sub q/), where M/sub q/ and m/sub q/ are the constituent and current quark masses, respectively.
Do non-relativistic neutrinos oscillate?
Akhmedov, Evgeny
2017-07-01
We study the question of whether oscillations between non-relativistic neutrinos or between relativistic and non-relativistic neutrinos are possible. The issues of neutrino production and propagation coherence and their impact on the above question are discussed in detail. It is demonstrated that no neutrino oscillations can occur when neutrinos that are non-relativistic in the laboratory frame are involved, except in a strongly mass-degenerate case. We also discuss how this analysis depends on the choice of the Lorentz frame. Our results are for the most part in agreement with Hinchliffe's rule.
Semileptonic Decays of Heavy Omega Baryons in a Quark Model
Energy Technology Data Exchange (ETDEWEB)
Muslema Pervin; Winston Roberts; Simon Capstick
2006-03-24
The semileptonic decays of {Omega}{sub c} and {Omega}{sub b} are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy {Lambda} baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For {Omega}{sub b} to {Omega}{sub c} the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured {Lambda}{sub c}{sup +} {yields} {Lambda}e{sup +}{nu} rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of {Omega}{sub b} to pairs of ground and excited {Omega}{sub c} states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of {Omega}{sub Q} vary minimally within the models we use. We obtain an average value of (84 {+-} 2%) for the fraction of {Omega}{sub c} {yields} {Xi}{sup (*)} decays to ground states, and 91% for the fraction of {Omega}{sub c} {yields} {Omega}{sup (*)} decays to the ground state {Omega}. The elastic fraction of {Omega}{sub b} {yields} {Omega}{sub c} ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models.
One-parameter nonrelativistic supersymmetry for microtubules
Rosu, H C
2003-01-01
The simple supersymmetric model of Caticha [PRA 51, 4264 (1995)], as used by Rosu [PRE 55, 2038 (1997)] for microtubules, is generalized to the case of Mielnik's one-parameter nonrelativistic susy [JMP 25, 3387 (1984)
The QCD string with quarks; 1, spinless quarks
Dubin, A Yu; Simonov, Yu A
1993-01-01
Starting from the QCD Lagrangian we derive the effective action for massive quark and antiquark at large distances, corresponding to the minimal area low of the Wilson loop. The path integral method is used to quantize the system and the spectrum is obtained with asymptotically linear Regge trajectories. Two dynamical regimes distinguished by the string energy--momentum distribution are found: at large orbital excitations ($l\\gg 1$) the system behaves as a string and yields the Regge slope of $\\frac{1}{2 \\pi \\sigma}$, while at small $l$ one obtains a potential-like regime for relativistic or nonrelativistic system . The problem of relative time is clarified. It is shown that in the valence quark approximation one can reduce the initial four-dimensional dynamics to the three-dimensional one. The limiting case of a pure string (without quark kinetic terms) is studied and the spectrum of the straight-line string is obtained.
The quark revolution and the ZGS - new quarks physics since the ZGS
Energy Technology Data Exchange (ETDEWEB)
Lipkin, H.J. [Weizmann Institute of Science, Rehovot (Israel)]|[Tel Aviv Univ. (Israel)
1994-12-31
Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966 but was dismissed as heresy. ZGS experiments played an important role in the quark revolution. This role is briefly reviewed and subsequent progress in quark physics is described.
Predicting charmonium and bottomonium spectra with a quark harmonic oscillator
Norbury, J. W.; Badavi, F. F.; Townsend, L. W.
1986-01-01
The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.
Predicting charmonium and bottomonium spectra with a quark harmonic oscillator
Norbury, J. W.; Badavi, F. F.; Townsend, L. W.
1986-01-01
The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.
Temporal mesonic correlators at NLO for any quark mass
Burnier, Y
2013-01-01
We present NLO results for thermal imaginary-time correlators in the vector and scalar channels as a function of the quark mass. The range of quark masses for which a non-relativistic approximation works in the temperature range considered is estimated, and charm quarks turn out to be a borderline case. Comparing with simulation data from fine lattices, we find good agreement in the vector channel but a substantial discrepancy in the scalar one. An explanation for the discrepancy is suggested in terms of physics of the quark-antiquark threshold region. Perturbative predictions for the bottom scalar spectral function around the threshold are also briefly reviewed.
Noninertial effects on nonrelativistic topological quantum scattering
Mota, H. F.; Bakke, K.
2017-08-01
We investigate noninertial effects on the scattering problem of a nonrelativistic particle in the cosmic string spacetime. By considering the nonrelativistic limit of the Dirac equation we are able to show, in the regime of small rotational frequencies, that the phase shift has two contribution: one related to the noninertial reference frame, and the other, due to the cosmic string conical topology. We also show that both the incident wave and the scattering amplitude are altered as a consequence of the noninertial reference frame and depend on the rotational frequency.
Spin & Statistics in Nonrelativistic Quantum Mechanics, II
Kuckert, B; Kuckert, Bernd; Mund, Jens
2004-01-01
Recently a sufficient and necessary condition for Pauli's spin- statistics connection in nonrelativistic quantum mechanics has been established [quant-ph/0208151]. The two-dimensional part of this result is extended to n-particle systems and reformulated and further simplified in a more geometric language.
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Heavy quark threshold dynamics in higher order
Energy Technology Data Exchange (ETDEWEB)
Piclum, J.H.
2007-05-15
In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)
Quark and pion effective couplings from polarization effects
Braghin, Fabio L
2016-01-01
A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks. Within a longwavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant pion self interaction terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found correspondin...
Bottom mass from nonrelativistic sum rules at NNLL
Energy Technology Data Exchange (ETDEWEB)
Stahlhofen, Maximilian
2013-01-15
We report on a recent determination of the bottom quark mass from nonrelativistic (large-n) {Upsilon} sum rules with renormalization group improvement (RGI) at next-to-next-to-leading logarithmic (NNLL) order. The comparison to previous fixed-order analyses shows that the RGI computed in the vNRQCD framework leads to a substantial stabilization of the theoretical sum rule moments with respect to scale variations. A single moment fit (n=10) to the available experimental data yields M{sub b}{sup 1S}=4.755{+-}0.057{sub pert}{+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass. The quoted uncertainties refer to the perturbative error and the uncertainties associated with the strong coupling and the experimental input.
Nonrelativistic quantum X-ray physics
Hau-Riege, Stefan P
2015-01-01
Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sou...
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Supersymmetric solutions for non-relativistic holography
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College, London (United Kingdom)]|[Institute for Mathematical Sciences, Imperial College, London (United Kingdom)
2009-01-15
We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z{>=}4 and z{>=}3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)
Quantifying zig-zag motion of quarks
Antonov, D
2010-01-01
Quark condensate is calculated in terms of the effective string tension and the constituent quark mass. For 3 colors and 2 light flavors, the constituent mass is bounded from below by the value of 460 MeV. This value is only accessible when the string tension decreases linearly with the Schwinger proper time. For this reason, the Hausdorff dimension of a light-quark trajectory is equal to 4, indicating that these trajectories are similar to branched polymers, which can describe a weak first-order deconfinement phase transition in SU(3) Yang-Mills theory. Using this indication, we develop a gluon-chain model based on such trajectories.
Low-excited charm and charm-strange baryons revisited in the quark-diquark picture
Chen, Bing; Liu, Xiang; Matsuki, Takayuki
2016-01-01
Assuming a heavy quark-light diquark picture, we systematically study the mass spectra and strong decays of $1P$ and $2S$ charm and charm-strange baryons by the nonrelativistic constituent quark models. Most of the existing charm and charm-strange baryons can be well explained as $1P$ and $2S$ states in the diquark picture. As for the well-determined states, including $\\Sigma_c(2455)^{0,+,++}$, $\\Sigma_c(2520)^{0,+,++}$, $\\Xi^\\prime_c(2580)^{0,+}$, $\\Xi_c(2645)^{0,+}$, $\\Lambda_c(2595)^+$, $\\Lambda_c(2625)^+$, $\\Xi_c(2790)^{0,+}$, and $\\Xi_c(2815)^{0,+}$, the theoretical results are in good agreement with the experimental data. $\\Sigma_c(2800)^{0,+,++}$ can be assigned to a $\\Sigma_{c2}(3/2^-)$ or $\\Sigma_{c2}(5/2^-)$ state. We prefer to interpret the signal $\\Sigma_c(2850)^0$ as a $2S(1/2^+)$ state although the possibility can not be thoroughly excluded at present that this is the same state as $\\Sigma_c(2800)^0$. $\\Lambda_c(2765)^+$ (or $\\Sigma_c(2765)^+$) could be explained as the $\\Lambda_c^+(2S)$ state a...
A Diquark-Quark Model with Its Use in Nucleon Form Factors
Institute of Scientific and Technical Information of China (English)
WANG Hong-Min; ZHANG Ben-Ai
2005-01-01
The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark.The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.
Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking
Griffin, Tom; Horava, Petr; Yan, Ziqi
2015-01-01
Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.
Production and decay of heavy top quarks
Energy Technology Data Exchange (ETDEWEB)
Kauffman, R.P.
1989-08-01
Experimental evidence indicates that the top quark exists and has a mass between 50 and 200 GeV/c{sup 2}. The decays of a top quark with a mass in this range are studied with emphasis placed on the mass region near the threshold for production of real W bosons. Topics discussed are: (1) possible enhancement of strange quark production when M{sub W} + m{sub s} < m{sub t} < M{sub W} + m{sub b}; (2) exclusive decays of T mesons to B and B{asterisk} mesons using the non-relativistic quark model; (3) polarization of intermediate W's in top quark decay as a source of information on the top quark mass. The production of heavy top quarks in an e{sup +}e{sup {minus}} collider with a center-of-mass energy of 2 TeV is studied. The effective-boson approximation for photons, Z{sup 0}'s and W's is reviewed and an analogous approximation for interfaces between photons and Z{sup 0}'s is developed. The cross sections for top quark pair production from photon-photon, photon-Z{sup 0}, Z{sup 0}Z{sup 0}, and W{sup +}W{sup {minus}} fusion are calculated using the effective-boson approximation. Production of top quarks along with anti-bottom quarks via {gamma}W{sup +} and Z{sup 0}W{sup +} fusion is studied. An exact calculation of {gamma}e{sup +} {yields} {bar {nu}}t{bar b} is made and compared with the effective-W approximation. 31 refs., 46 figs.
Mass of nonrelativistic meson from leading twist distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Braguta, V. V., E-mail: braguta@mail.ru [Institute for High Energy Physics (Russian Federation)
2011-01-15
In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.
Faessler, A; Holstein, Barry R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem
2006-01-01
We calculate magnetic moments of light baryons and N -> Delta gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.
Electromagnetic properties of nucleons and hyperons in a Lorentz covariant quark model
Faessler, A; Holstein, B R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem
2006-01-01
We calculate magnetic moments of nucleons and hyperons and N -> Delta + gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.
Quark and pion effective couplings from polarization effects
Energy Technology Data Exchange (ETDEWEB)
Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)
2016-05-15
A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
Nonrelativistic effective field theory for axions
Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong
2016-10-01
Axions can be described by a relativistic field theory with a real scalar field ϕ whose self-interaction potential is a periodic function of ϕ . Low-energy axions, such as those produced in the early Universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field ψ whose effective potential is a function of ψ*ψ . We determine the coefficients in the expansion of the effective potential to fifth order in ψ*ψ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to truncate the expansion of the effective potential in powers of ψ*ψ , we develop a sequence of systematically improvable approximations to the effective potential that resum terms of all orders in ψ*ψ .
Vortex dynamics in nonrelativistic Abelian Higgs model
Directory of Open Access Journals (Sweden)
A.A. Kozhevnikov
2015-11-01
Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.
Thermal quantum electrodynamics of nonrelativistic charged fluids.
Buenzli, Pascal R; Martin, Philippe A; Ryser, Marc D
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r(-6) decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Thermal quantum electrodynamics of nonrelativistic charged fluids
Buenzli, Pascal R.; Martin, Philippe A.; Ryser, Marc D.
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r-6 decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Microscopic picture of non-relativistic classicalons
Energy Technology Data Exchange (ETDEWEB)
Berkhahn, Felix; Müller, Sophia; Niedermann, Florian; Schneider, Robert, E-mail: felix.berkhahn@physik.lmu.de, E-mail: sophia.x.mueller@physik.uni-muenchen.de, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 Munich (Germany)
2013-08-01
A theory of a non-relativistic, complex scalar field with derivatively coupled interaction terms is investigated. This toy model is considered as a prototype of a classicalizing theory and in particular of general relativity, for which the black hole constitutes a prominent example of a classicalon. Accordingly, the theory allows for a non-trivial solution of the stationary Gross-Pitaevskii equation corresponding to a black hole in the case of GR. Quantum fluctuations on this classical background are investigated within the Bogoliubov approximation. It turns out that the perturbative approach is invalidated by a high occupation of the Bogoliubov modes. Recently, it was proposed that a black hole is a Bose-Einstein condensate of gravitons that dynamically ensures to stay at the verge of a quantum phase transition. Our result is understood as an indication for that claim. Furthermore, it motivates a non-linear numerical analysis of the model.
Nonrelativistic Quantum Mechanics with Fundamental Environment
Gevorkyan, Ashot S.
2011-03-01
Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.
Nonrelativistic Effective Field Theory for Axions
Braaten, Eric; Zhang, Hong
2016-01-01
Axions can be described by a relativistic field theory with a real scalar field $\\phi$ whose self-interaction potential is a periodic function of $\\phi$. Low-energy axions, such as those produced in the early universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field $\\psi$ whose effective potential is a function of $\\psi^*\\psi$. We determine the coefficients in the expansion of the effective potential to fifth order in $\\psi^*\\psi$ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to expand the effective potential in powers of $\\psi^*\\psi$, we develop a sequence of systematically improvable approximations to the effective potential that include terms of all orders in $\\psi^*\\psi$.
Gravity duals for nonrelativistic conformal field theories.
Balasubramanian, Koushik; McGreevy, John
2008-08-08
We attempt to generalize the anti-de Sitter/conformal field theory correspondence to nonrelativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and, more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with a negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and find two-point correlators of the correct form. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.
Semileptonic ( → ) decay in a ﬁeld theoretic quark model
Indian Academy of Sciences (India)
R K Das; A R Panda; R K Sahoo; M R Swain
2002-03-01
The semileptonic decay width of heavy baryons such as ( → ) has been estimated in the framework of a nonrelativistic ﬁeld theoretic quark model where four component quark ﬁeld operators along with a harmonic oscillator wave function are used to describe translationally invariant hadronic states. The present estimation does not make an explicit use of heavy quark symmetry and has a reasonable agreement with the experimentally measured decay width, polarisation ratio and form factors with the harmonic oscillator radii and quark momentum distribution inside the hadron as free parameters.
Lattice heavy quark effective theory and the isgur-wise function
Hashimoto, S
1996-01-01
We compute the Isgur-Wise function using heavy quark effective theory formulated on the lattice. The non-relativistic kinetic energy term of the heavy quark is included to the action as well as terms remaining in the infinite quark mass limit. The classical velocity of the heavy quark is renormalized on the lattice and we determine the renormalized velocity non-perturbatively using the energy-momentum dispersion relation. The slope parameter of the Isgur-Wise function at zero recoil is obtained at \\beta=6.0 on a 24^3\\times 48 lattice for three values of m_{Q}.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Gomis, Joaquim; Not, Daniel
2017-02-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Not, Daniel
2016-01-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Quark Number Scaling in Fluid Dynamics and Hadronization via Quarkyonic Matter
Directory of Open Access Journals (Sweden)
Zschocke S.
2011-04-01
Full Text Available NCQ scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model from ideal, deconfined and chirally symmetric Quark Gluon Plasma (QGP, to final non-interacting hadrons. In this transition the quarks gain constituent quark mass while the background Bag-field breaks up. The constituent quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down. Then the resulting temperatures and flow velocities of baryons and mesons will be different. In a simplified model, we reproduce the constituent quark number scaling.
Hwang, Sungmin
2017-03-01
We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO) via the effective string theory (EST). Full systematics of effective field theory (EFT) are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.
Covariant geometric quantization of non-relativistic Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
We provide geometric quantization of the vertical cotangent bundle V^*Q equipped with the canonical Poisson structure. This is a momentum phase space of non-relativistic mechanics with the configuration bundle Q -> R. The goal is the Schrodinger representation of V^*Q. We show that this quantization is equivalent to the fibrewise quantization of symplectic fibres of V^*Q -> R, that makes the quantum algebra of non-relativistic mechanics an instantwise algebra. Quantization of the classical evolution equation defines a connection on this instantwise algebra, which provides quantum evolution in non-relativistic mechanics as a parallel transport along time.
New approach to nonrelativistic diffeomorphism invariance and its applications
Banerjee, Rabin
2015-01-01
A comprehensive account of a new structured algorithm for obtaining nonrelativistic diffeomorphism invariances in both space and spacetime by gauging the Galilean symmetry in a generic nonrelativistic field theoretical model is provided. % where the original (global) symmetry is localised. Various applications like the obtention of nonrelativistic diffeomorphism invariance, the introduction of Chern-Simons term and its role in fractional quantum Hall effect, induction of diffeomorphism in irrotational fluid model, abstraction of Newton-Cartan geometry and the emergence of Horava-Lifshitz gravity are discussed in details.
Precise top-quark mass from the diphoton mass spectrum
Kawabata, Sayaka
2016-01-01
We calculate the $gg\\to\\gamma\\gamma$ amplitude by including the $t\\bar t$ bound-state effects near their mass threshold. In terms of the non-relativistic expansion of the amplitude, the LO contribution is a constant (energy-independent) term in the one-loop amplitude. We include the NLO contribution described by the non-relativistic Green function and part of the NNLO contribution. Despite a missing NLO piece which can be accomplished with the two-loop-level amplitude via massive quarks, the shape of the diphoton mass spectrum is predicted with a good accuracy. Thanks to the simple and clean nature of the observable, its experimental measurement can be a superior method to determine the top-quark mass at hadron colliders.
Menke, Sven; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronises, analyses of events containing top quarks allow to probe the properties of bare quarks and to test perturbative QCD. This talk will focus on recent precision top-quark measurements by the ATLAS Collaboration: Single top-quark and top-quark pair production cross sections including differential distributions will be presented, as well as measurements of top-quark pair production in association with a W or Z boson and measurements of top quark properties such as the spin correlation and W boson helicity in top quark pair events.
Instanton effects on the heavy-quark static potential
Yakhshiev, U. T.; Kim, Hyun-Chul; Turimov, B.; Musakhanov, M. M.; Hiyama, Emiko
2017-08-01
We investigate instanton effects on the heavy-quark potential, including its spin-dependent part, based on the instanton liquid model. Starting with the central potential derived from the instanton vacuum, we obtain the spin-dependent part of the heavy-quark potential. We discuss the results of the heavy-quark potential from the instanton vacuum. Finally, we solve the nonrelativistic two-body problem, associated with the heavy-quark potential from the instanton vacuum. The instanton effects on the quarkonia spectra are marginal but are required for quantitative description of the spectra. Supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Korean government (Ministry of Education, Science and Technology, MEST), Grant Numbers 2016R1D1A1B03935053 (UY) and 2015R1D1A1A01060707 (HChK) and The work was also partly Supported by RIKEN iTHES Project
Chiral Dynamics of Baryons in a Lorentz Covariant Quark Model
Faessler, A; Lyubovitskij, V E; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
We develop a manifestly Lorentz covariant chiral quark model for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons. The approach is based on a non-linear chirally symmetric Lagrangian, which involves effective degrees of freedom - constituent quarks and the chiral (pseudoscalar meson) fields. In a first step, this Lagrangian can be used to perform a dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other heavy states using the calculational technique of infrared dimensional regularization of loop diagrams. We calculate the dressed transition operators with a proper chiral expansion which are relevant for the interaction of quarks with external fields in the presence of a virtual meson cloud. In a second step, these dressed operators are used to calculate baryon matrix elements. Applications are worked out for the masses of the baryon octet, the meson-nucleon sigma terms, the magnetic moments of the baryon octet, the nucleon charge...
Symmetry and Covariance of Non-relativistic Quantum Mechanics
Omote, Minoru; kamefuchi, Susumu
2000-01-01
On the basis of a 5-dimensional form of space-time transformations non-relativistic quantum mechanics is reformulated in a manifestly covariant manner. The resulting covariance resembles that of the conventional relativistic quantum mechanics.
Nonrelativistic limit of solution of radial quasipotential equations
Energy Technology Data Exchange (ETDEWEB)
Minh, Vu.X.; Kadyshevskii, V.G.; Zhidkov, E.P.
1986-10-01
For the S-wave case, solutions of relativistic radial quasipotential equations that degenerate in the limit c ..-->.. infinity into the Jost solutions of the corresponding nonrelativistic radial Schrodinger equations are found.
Corrections to the Nonrelativistic Ground Energy of a Helium Atom
Institute of Scientific and Technical Information of China (English)
段一士; 刘玉孝; 张丽杰
2004-01-01
Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.
Effective field theories for baryons with two- and three-heavy quarks
Vairo, Antonio
2010-01-01
Baryons made of two or three heavy quarks can be described in the modern language of non-relativistic effective field theories. These, besides allowing a rigorous treatment of the systems, provide new insight in the nature of the three-body interaction in QCD.
Binding of Quarks and the $\\pi N$ $\\sigma$-term
Glozman, L Ya
1996-01-01
It is shown that the binding effect that is associated with the short range part of the Goldstone boson exchange interaction between constituent quarks provides a good description of the $\\pi N$ $\\sigma$-term.
Spectrum of heavy baryons in the quark model
Yoshida, Tetsuya; Hosaka, Atsushi; Oka, Makoto; Sadato, Katsunori
2015-01-01
Single- and double- heavy baryons are studied in the constituent quark model. The model Hamiltonian is chosen as a standard one with two exceptions : (1) The color-Coulomb term depend on quark masses, and (2) an antisymmetric $LS$ force is introduced. Model parameters are fixed by the strange baryon spectra, $\\Lambda$ and $\\Sigma$ baryons. The masses of the observed charmed and bottomed baryons are, then, fairly well reproduced. Our focus is on the low-lying negative-parity states, in which the heavy baryons show specific excitation modes reflecting the mass differences of heavy and light quarks. By changing quark masses from the SU(3) limit to the strange quark mass, further to the charm and bottom quark masses, we demonstrate that the spectra change from the SU(3) symmetry patterns to the heavy quark symmetry ones.
Contribution of Quark Structure Term in Nucleon Electric and Magnetic Form Factors
Institute of Scientific and Technical Information of China (English)
WANG Hong-Min; ZHANG Ben-Ai
2004-01-01
The constituent quarks in the nucleon have always been considered as a point-like particle in the relativistic constituent quark model. However its calculation results of GnE agree poorly with the new experimental data. The electromagnetic structure of light front constituent quarks is considered in this paper. We find that the calculation results have good agreement with the new experimental data of GnE after considering the contribution of the quark structure term. This treatment seems to be able to improve the fit to experimental data of Gep/GMp, /Q2F2p/kpF1p,and Gen/GMn as well.
The mass spectrum of double heavy baryons in new potential quark models
Directory of Open Access Journals (Sweden)
Kovalenko Vladimir
2017-01-01
Full Text Available A new approach to study the mass spectrum of double heavy baryons (QQ′q containing strange and charmed quarks is proposed. It is based on the separation of variables in the Schrodinger equation in the prolate spheroidal coordinates. Two nonrelativistic potential models are considered. In the first model, the interaction potential of the quarks is the sum of the Coulomb and non-spherically symmetrical linear confinement potential. In the second model it is assumed that the quark confinement provided by a spherically symmetric harmonic oscillator potential. In both models the mass spectrum is calculated, and a comparison with previous results from other models is performed.
Semileptonic decays of $\\Lambda_b$ baryons in the relativistic quark model
Faustov, R N
2016-01-01
Semileptonic $\\Lambda_b$ decays are investigated in the framework of the relativistic quark model based on the quasipotential approach and the quark-diquark picture of baryons. The decay form factors are expressed through the overlap integrals of the initial and final baryon wave functions. All calculations are done without employing nonrelativistic and heavy quark expansions. The momentum transfer dependence of the decay form factors is explicitly determined in the whole accessible kinematical range without any extrapolations or model assumptions. Both the heavy-to-heavy $\\Lambda_b\\to\\Lambda_c\\ell\
Niggli, Ernst; Egger, Marcel
2002-05-01
Elementary subcellular Ca2+ signals arising from the opening of single ion channels may offer the possibility to examine the stochastic behavior and the microscopic chemical reaction rates of these channel proteins in their natural environment. Such an analysis can yield detailed information about the molecular function that cannot be derived from recordings obtained from an ensemble of channels. In this review, we summarize experimental evidence suggesting that Ca2+ sparks, elementary Ca2+ signaling events of cardiac and skeletal muscle excitation contraction coupling, may be comprised of a number of smaller Ca2+ signaling events, the Ca2+ quarks.
Quark mass effects in quark number susceptibilities
Graf, Thorben
2016-01-01
The quark degrees of freedom of the QGP with special focus on mass effects are investigated. A next-to-leading-order perturbation theory approach with quark mass dependence is applied and compared to lattice QCD results.
Fields and fluids on curved non-relativistic spacetimes
Geracie, Michael; Roberts, Matthew M
2015-01-01
We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...
Non-Relativistic Limit of the Dirac Equation
Ajaib, Muhammad Adeel
2016-01-01
We show that the first order form of the Schrodinger equation proposed in [1] can be obtained from the Dirac equation in the non-relativistic limit. We also show that the Pauli Hamiltonian is obtained from this equation by requiring local gauge invariance. In addition, we study the problem of a spin up particle incident on a finite potential barrier and show that the known quantum mechanical results are obtained. Finally, we consider the symmetric potential well and show that the quantum mechanical expression for the quantized energy levels of a particle is obtained with periodic boundary conditions. Based on these conclusions, we propose that the equation introduced in [1] is the non-relativistic limit of the Dirac equation and more appropriately describes spin 1/2 particles in the non-relativistic limit.
Quark confinement and the fractional quantum Hall effect
Institute of Scientific and Technical Information of China (English)
WANG Hai-Jun; GENG Wen-Tong
2008-01-01
Working in the physics of Wilson factor and Aharonov-Bohm effect,we find in the fluxtubequark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional quantum Hall effect(FQHE)in condensed matter.This similarity yields the result that the constituent quarks of baryon have the"filling factor"1/3.thus the previous conjecture that quark confinement is a correlation effect is confirmed.Moreover,by deriving a Hamiltonian of the system analogous to that of FQHE,we predict an energy gap for the ground state of a heavy three-quark system.
Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach
Espinosa, Olivier R; Lepe, S; Méndez, F
2001-01-01
The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.
Nonrelativistic factorizable scattering theory of multicomponent Calogero-Sutherland model
Ahn, C; Nam, S; Ahn, Changrim; Lee, Kong Ju Bock; Nam, Soonkeon
1995-01-01
We relate two integrable models in (1+1) dimensions, namely, multicomponent Calogero-Sutherland model with particles and antiparticles interacting via the hyperbolic potential and the nonrelativistic factorizable S-matrix theory with SU(N)-invariance. We find complete solutions of the Yang-Baxter equations without implementing the crossing symmetry, and one of them is identified with the scattering amplitudes derived from the Schr\\"{o}dinger equation of the Calogero-Sutherland model. This particular solution is of interest in that it cannot be obtained as a nonrelativistic limit of any known relativistic solutions of the SU(N)-invariant Yang-Baxter equations.
On the Failure of Multiconfiguration Methods in the Nonrelativistic Limit
Esteban, Maria J; Savin, Andreas
2009-01-01
The multiconfiguration Dirac-Fock method allows to calculate the state of relativistic electrons in atoms or molecules. This method has been known for a long time to provide certain wrong predictions in the nonrelativistic limit. We study in full mathematical details the nonlinear model obtained in the nonrelativistic limit for Be-like atoms. We show that the method with sp+pd configurations in the J=1 sector leads to a symmetry breaking phenomenon in the sense that the ground state is never an eigenvector of L^2 or S^2. We thereby complement and clarify some previous studies.
Dynamically Running Mass of Light Quark and QCD Vacuum Condensates
Institute of Scientific and Technical Information of China (English)
ZHOULi-Juan; PINGRong-Gang
2004-01-01
Based on Dyson-Schwinger equations (DSEs) in “rainbow”approximation, the dynamically running mass of light quark and QCD vacuum condensate are investigated. The structure of non-local quark vacuum condensate, the values of local vacuum condensate of quarks and quark-gluon mixture, and dynamical transition of quark mass from current quark to constituent quark are illustrated. At the same time, according to the knowledge and experience learned from an extensive study of the solutions of DSEs， a parameterized form of confining quark propagator is suggested for a practical use. The new parameterized form of quark propagator is analytic everywhere in the finite complex p2-plane and has no Lehmann representation. The predictions for p2-dependence of effective quark masses, Mr(p2), defined by the self-energy functions Af(p2) and Bf(p2), both from the numerical solutions of DSEs and from its parameterized form, are shown dynamically. Our conclusion is that all numerical results are consistent with empirical values used in(QCD sum rules and lattice QCD calculations. For a qualitative study, the parameterized form is a sumciently good approximation to confining quark propagator.
Dynamically Running Mass of Light Quark and QCD Vacuum Condensates
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; PING Rong-Gang; MA Wei-Xing
2004-01-01
Based on Dyson-Schwinger equations (DSEs) in "rainbow" approximation, the dynamically running mass of light quark and QCD vacuum condensate are investigated. The structure of non-local quark vacuum condensate, the values of local vacuum condensate of quarks and quark-gluon mixture, and dynamical transition of quark mass from current quark to constituent quark are illustrated. At the same time, according to the knowledge and experience learned from an extensive study of the solutions of DSEs, a parameterized form of confining quark propagator is suggested for a practical use. The new parameterized form of quark propagator is analytic everywhere in the finite complex p2-plane and has no Lehmann representation. The predictions for p2-dependence of effective quark masses, Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2), both from the numerical solutions of DSEs and from its parameterized form, are shown dynamically. Our conclusion is that all numerical results are consistent with empirical values used in QCD sum rules and lattice QCD calculations. For a qualitative study, the parameterized form is a sufficiently good approximation to confining quark propagator.
Quark-Quark Forces in Quantum Chromodynamics
Arkhipov, A A
2014-01-01
By single-time reduction technique of Bethe-Salpeter formalism for two-fermion systems analytical expressions for the quasipotential of quark-quark interactions in QCD have been obtained in one-gluon exchange approximation. The influence of infrared singularities of gluon Green`s functions on the character of quark-quark forces in QCD has been investigated. The way the asymptotic freedom manifests itself in terms of two-quark interaction quasipotential in quantum chromodynamics is shown. Consistent relativistic consideration of quark interaction problem by single-time reduction technique in QFT allows one to establish a nontrivial energy dependence of the two-quark interaction quasipotential. As a result of the energy dependence of the interaction quasipotential, the character of the forces changes qualitatively during the transition from the discrete spectrum (the region of the negative values of the binding energy) to the continuous spectrum (that of the positive values of the binding energy): the smooth be...
Black, Kevin; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.
Non-relativistic supergravity in three space-time dimensions
Zojer, Thomas
2016-01-01
This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary coordinat
A brief introduction to non-relativistic supergravity
Energy Technology Data Exchange (ETDEWEB)
Zojer, Thomas [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen (Netherlands)
2016-04-15
Non-relativistic geometries have received more attention lately. We review our attempts to construct supersymmetric extensions of this so-called Newton-Cartan geometry in three space-time dimensions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Non-relativistic supergravity in three space-time dimensions
Zojer, Thomas
2016-01-01
This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary
Non-relativistic classical mechanics for spinning particles
Salesi, G
2004-01-01
We study the classical dynamics of non-relativistic particles endowed with spin. Non-vanishing Zitterbewegung terms appear in the equation of motion also in the small momentum limit. We derive a generalized work-energy theorem which suggests classical interpretations for tunnel effect and quantum potential.
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
When the Standard-Model Extension (SME) is applied in curved spacetime, the Lorentz-violation coefficients must depend on spacetime position. This work describes some of the consequences of this spacetime variation. We focus on effects that appear at a nonrelativistic scale and extract sensitivity of completed experiments to derivatives of SME coefficient fields.
Theory of non-relativistic three-particle scattering
Malfliet, R.; Ruijgrok, Th.
1967-01-01
A new method, using asymptotically stationary states, is developed to calculate the S-matrix for the scattering of a non-relativistic particle by the bound state of two other particles. For the scattering with breakup of this bound state, we obtain a simplified form of the Faddeev integral
On the strange quark mass with improved staggered quarks
Hein, J.; Davies, C.; Lepage, G. P.; Mason, Q.; Trottier, H.
2002-01-01
We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.
Effective field theories of baryons and mesons, or, what do quarks do?
Energy Technology Data Exchange (ETDEWEB)
Keaton, G.L. [Lawrence Berkeley Lab., CA (United States). Theoretical Physics Group
1995-06-26
This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N{sup 2}. To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark.
Indian Academy of Sciences (India)
Yuji Takeuchi
2012-10-01
Since the top quark was discovered at Tevatron in 1995, many top quark properties have been measured. However, the top quark is still interesting due to unique features which originate from the extremely heavy mass, and providing various test grounds on the Standard Model as well as searches for a new physics. Though the measurements of the top quark had been performed only at Tevatron so far, LHC is now ready for measurements with more top quarks than Tevatron. In this article, recent measurements of top quark properties from Tevatron (CDF and DØ) as well as LHC (ATLAS and CMS) are presented.
Non-relativistic twistor theory and Newton--Cartan geometry
Dunajski, Maciej
2015-01-01
We develop a non-relativistic twistor theory, in which Newton--Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle ${\\mathcal O}\\oplus{\\mathcal O}(2)$. We show that the Newton--Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton--Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non--trivial on twistor lines. The resulting geometries agree with non--relativistic limits of anti-self-dual gravitational instantons.
Entanglement and mutual information in 2d nonrelativistic field theories
Hosseini, Seyed Morteza
2015-01-01
We carry out a systematic study of entanglement entropy in nonrelativistic conformal field theories via holographic techniques. After a discussion of recent results concerning Galilean conformal field theories, we deduce a novel expression for the entanglement entropy of (1+1)-dimensional Lifshitz field theories --- this is done both at zero and finite temperature. Based on these results, we pose a conjecture for the anomaly coefficient of a Lifshitz field theory dual to new massive gravity. It is found that the Lifshitz entanglement entropy at finite temperature displays a striking similarity with that corresponding to a flat space cosmology in three dimensions. We claim that this structure is an inherent feature of the entanglement entropy for nonrelativistic conformal field theories. We finish by exploring the behavior of the mutual information for such theories.
Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas
Niemiec, Jacek; Bret, Antoine; Wieland, Volkmar
2012-01-01
We present results of 2D3V particle-in-cell simulations of non-relativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While non-relativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution.
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; WU Xiao-Hua; SUN Wei-Min; ZHAO En-Guang; WANG Fan
2003-01-01
A method for obtaining the smallcurrent quark mass dependence of the dressed quark propagator froman effective quark-quark interaction model is developed. Within this approach the small current quark mass effects ondressed-quark propagator have been studied. A comparison with previous results is given.
Energy Technology Data Exchange (ETDEWEB)
Paschos, E A
1976-01-01
This contribution reviews the evidence accumulated over the past year in favor of quarks and partons. Then it applies the quark ideas in order to interpret the neutrino-induced production of charm and the structure of neutral currents.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Fodor, Z; Katz, S D; Lellouch, L; Portelli, A; Szabo, K K; Toth, B C
2015-01-01
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Do non-relativistic neutrinos constitute the dark matter?
Nieuwenhuizen, T.M.
2009-01-01
The dark matter of the Abell 1689 Galaxy Cluster is modeled by thermal, non-relativistic gravitating fermions and its galaxies and X-ray gas by isothermal distributions. A fit yields a mass of h(70)(1/2) (12/(g) over bar)(1)/(4) 1.445(30) eV. A dark-matter fraction Omega(nu) = h(70)(-3/2) 0.1893(39)
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Fodor, Z. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); Hoelbling, C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Katz, S.D. [Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group, H-1117 Budapest (Hungary); Lellouch, L., E-mail: lellouch@cpt.univ-mrs.fr [CNRS, Aix-Marseille U., U. de Toulon, CPT, UMR 7332, F-13288, Marseille (France); Portelli, A. [School of Physics & Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Szabo, K.K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Toth, B.C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany)
2016-04-10
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Directory of Open Access Journals (Sweden)
Z. Fodor
2016-04-01
Full Text Available Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Pion production model - connection between dynamics and quark models
Energy Technology Data Exchange (ETDEWEB)
Lee, T.-S. H.; Sato, T.
2000-05-17
The authors discuss the difficulties in testing the hadron models by using the N{sup *} parameters extracted from the empirical amplitude analyses of the {pi}N and {gamma}N reaction data. As an alternative or perhaps a more advantageous approach, they present a Hamiltonian formulation that can relate the pion production dynamics and the constituent quark models of N{sup *} structure. The application of the approach in investigating the {Delta} and N{sup *}(S{sub 11}) excitations is reviewed. It is found that while the {Delta} excitation can be described satisfactory, the {pi}N scattering in S{sub 11} channel can not be described by the constituent quark models based on either the one-gluon-exchange or one-meson-exchange mechanisms. A phenomenological quark-quark potential has been constructed to reproduce the S{sub 11} amplitude.
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
Energy Technology Data Exchange (ETDEWEB)
Geracie, Michael, E-mail: mgeracie@uchicago.edu; Prabhu, Kartik, E-mail: kartikp@uchicago.edu; Roberts, Matthew M., E-mail: matthewroberts@uchicago.edu [Kadanoff Center for Theoretical Physics, Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)
2015-10-15
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.
Symmetries and couplings of non-relativistic electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)
2016-11-08
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.
Symmetries and Couplings of Non-Relativistic Electrodynamics
Festuccia, Guido; Hartong, Jelle; Obers, Niels A
2016-01-01
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell's equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a $U(1)$ current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galile...
Iorio, Alberto Orso Maria
2016-01-01
Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on dif- ferential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.
ATLAS collaboration; LHCb collaboration
2016-01-01
Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on differential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.
Υ Radiative Decays to Light Quark Jets and Color Octet Mechanism
Institute of Scientific and Technical Information of China (English)
GAO Ying-Jia; ZHANG Yu-Jie; CHAO Kuang-Ta
2006-01-01
We study radiative decays of Υ to light quark jets in nonrelativistic QCD by taking both the color singlet and color octet b(b) operators into consideration. The cut for quark jet energy and cut for the angle between two quarkjets are introduced. The sensitivity to the soft and collinear singularities in the loop integrals are greatly reduced by these cuts. With the jet energy cut of about 1 GeV, and the jet angle cut of about 36°, the branching ratio for Υ→γq(q)is found to be 8.2 × 10-4 from color singlet contributions. The color octet contributions could be much larger than that of color singlet, depending on the estimate of the color octet matrix elements. This process may provide a new test for the color octet mechanism in nonrelativistic QCD.
Pion Cloud Effects on △-N Mass Splitting from Quark Models
Institute of Scientific and Technical Information of China (English)
DONG Yu-Bing; FENG Qing-Guo
2002-01-01
Pion cloud effects on △-N mass splitting are studied based on quark models. Pseudo-scalar pion-quarkcoupling is discussed in the relativistic and nonrelativistic frameworks. We separately calculate the pion cloud effects bythe one-pion exchange potential and by another method which is consistent with the baryon chiral perturbation theory.Remark able discrepancy in the mass splitting between the two methods is shown.
Real-time quantum dynamics of heavy quark systems at high temperature
Akamatsu, Yukinao
2012-01-01
On the basis of the closed-time path formalism of non-equilibrium quantum field theory, we derive the real-time quantum dynamics of heavy quark systems. Even though our primary goal is the description of heavy quarkonia, our method allows a unified description of the propagation of single heavy quarks as well as their bound states. To make calculations tractable, we deploy leading-order perturbation theory and consider the non-relativistic limit. Various dynamical equations, such as the master equation for quantum Brownian motion and time-evolution equation for heavy quark and quarkonium forward correlators, are obtained from a single operator, the renormalized effective Hamiltonian. We are thus able to reproduce previous results of perturbative calculations of the drag force and the complex potential simultaneously. In addition, we present stochastic time-evolution equations for heavy quark and quarkonium wave function, which are equivalent to the dynamical equations.
Real-time quantum dynamics of heavy-quark systems at high temperature
Akamatsu, Yukinao
2013-02-01
On the basis of the closed-time-path formalism of nonequilibrium quantum field theory, we derive the real-time quantum dynamics of heavy-quark systems. Even though our primary goal is the description of heavy quarkonia, our method allows a unified description of the propagation of single heavy quarks as well as their bound states. To make calculations tractable, we deploy leading-order perturbation theory and consider the nonrelativistic limit. Various dynamical equations, such as the master equation for quantum Brownian motion and the time-evolution equation for heavy-quark and quarkonium forward correlators, are obtained from a single operator: the renormalized effective Hamiltonian. We are thus able to reproduce previous results of perturbative calculations of the drag force and the complex potential simultaneously. In addition, we present stochastic time-evolution equations for the heavy-quark and quarkonium wave function, which are equivalent to the dynamical equations.
Exact duality and Bjorken sum rule in heavy quark models à la Bakamjian-Thomas
Le Yaouanc, A; Pène, O; Raynal, J C
1996-01-01
The heavy mass limit of quark models based on the Bakamjian-Thomas cons\\-truction reveals remarkable features. In addition to previously demonstrated properties of covariance and Isgur-Wise scaling, exact duality, leading to the Bjorken-Isgur-Wise sum rule, is proven, for the first time to our knowledge in relativistic quark models. Inelastic as well as elastic contributions to the sum rule are then discussed in terms of ground state averages of a few number of operators corresponding to the nonrelativistic dipole operator and various relativistic corrections.
Penta-Quark States with Strangeness, Hidden Charm and Beauty
Wu, Jia-Jun; Zou, Bing-Song
The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.
Penta-quark States with Strangeness, Hidden Charm and Beauty
Wu, Jia-Jun
2015-01-01
The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow $N^*$ and $\\Lambda^*$ resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such $N^*$ with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.
Searches for baryons with multiple heavy quarks at LHCb
CERN. Geneva
2017-01-01
Hadrons are systems bound by the strong interaction, which is described at the fundamental level by quantum chromodynamics (QCD). While QCD is well understood at high energy in the perturbative regime, low-energy phenomena, such as the binding of quarks and gluons within hadrons, are more difficult to predict. High precision measurements are then of paramount importance to test the reliability of several models and computational techniques, such as constituent-quark models or lattice-QCD calculations, in predicting the mass spectrum and the properties of hadrons. Owing to its excellent capabilities with particle identification, tracking and vertex reconstruction, LHCb is in a unique position to make significant contributions to the sector of particle spectroscopy. For example, five narrow structures have been recently observed in the $\\Xi_c^+K^-$ mass spectrum, consistent with excited $\\Omega_c^{0}$ states, composed of a charm quark and two strange quarks. Despite the fact that the quark model predicts the ex...
Strange baryon spectroscopy in the relativistic quark model
Faustov, R N
2015-01-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R. N.; Galkin, V. O.
2015-09-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Meson Spectroscopy in the Light Quark Sector
Energy Technology Data Exchange (ETDEWEB)
De Vita, R.; Lunardi, S.; Bizzeti, P. G.; Bucci, C.; Chiari, M.; Dainese, A.; Di Nezza, P.; Menegazzo, R.; Nannini, A.; Signorini, C.; Valiente-Dobon, J. J.
2014-01-01
Understanding the hadron spectrum is one of the fundamental issues in modern particle physics. We know that existing hadron configurations include baryons, made of three quarks, and mesons, made of quark-antiquark pairs. However most of the mass of the hadrons is not due to the mass of these elementary constituents but to their binding force. Studying the hadron spectrum is therefore a tool to understand one of the fundamental forces in nature, the strong force, and Quantum Chromo Dynamics (QCD), the theory that describes it. This investigation can provide an answer to fundamental questions as what is the origin of the mass of hadrons, what is the origin of quark confinement, what are the relevant degrees of freedom to describe these complex systems and how the transition between the elementary constituents, quarks and gluons, and baryons and mesons occurs. In this field a key tool is given by meson spectroscopy. Mesons, being made by a quark and an anti-quark, are the simplest quark bound system and therefore the ideal benchmark to study the interaction between quarks and understand what the role of gluons is. In this investigation, it is fundamental to precisely determine the spectrum and properties of mesons but also to search for possible unconventional states beyond the configuration q{anti q} as tetraquarks (qq{anti qq}), hybrids (q{anti q}g) and glueballs. These states can be distinguished unambiguously from regular mesons when they have exotic quantum numbers, i.e. combinations of total angular momentum, spin and parity that are not allowed for q{anti q} states. These are called exotic quantum numbers and the corresponding states are referred to as exotics. The study of the meson spectrum and the search for exotics is among the goals of several experiments in the world that exploit different reaction processes, as e{sup +}e{sup -} annihilation, p{anti p} annihilation, pion scattering, proton-proton scattering and photo-production, to produce meson states
The mass effect of the quark phase transition in supernova core
Institute of Scientific and Technical Information of China (English)
Lai Xiang-Jun; Liu Men-Quan; Liu Jing-Jing; Luo Zhi-Quan
2008-01-01
Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable thres-flavour quark matter in the core of supernovae.The result shows that the transition has a significant influence on the increasing of the core temperature,the neutrino abundance and the neutrino energies,which contributes to the enhancement of the successful probability of supernova explosion.However,the equilibrium values of these parameters (except the temperature) from the constituent quark mass model in this work are slightly bigger than those obtained from the other model.And we find that the constituent quark mass model is also applicable to describing the transition in the supernova core.
Nonlocal quark model description of a composite Higgs particle
Kachanovich, Aliaksei
2016-01-01
We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic quark model of Nambu - Jona-Lasinio type. In contrast to model with local four-fermion interaction, the mass of the scalar bound state can be lighter than the sum of its constituents. This is achieved by adjusting the interaction range and the value of the coupling constant to experimental data, for both the top quark mass and the scalar Higgs boson mass, which can simultaneously be described.
Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang
2005-01-01
Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.
Directory of Open Access Journals (Sweden)
Hwang Sungmin
2017-01-01
Full Text Available We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO via the effective string theory (EST. Full systematics of effective field theory (EFT are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.
Space-Time Geometry of Quark and Strange Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).
Electromagnetic properties of light and heavy baryons in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Nicmorus Marinescu, Diana
2007-06-14
One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
The notion of uniform and/or constant tensor fields of rank $>0$ is incompatible with general curved spacetimes. This work considers the consequences of certain tensor-valued coefficients for Lorentz violation in the Standard-Model Extension varying with spacetime position. We focus on two of the coefficients, $a_\\mu$ and $b_\\mu$, that characterize Lorentz violation in massive fermions, particularly in those fermions that constitute ordinary matter. We calculate the nonrelativistic hamiltonian describing these effects, and use it to extract the sensitivity of several precision experiments to coefficient variation.
Conservation of energy and momentum in nonrelativistic plasmas
Energy Technology Data Exchange (ETDEWEB)
Sugama, H.; Watanabe, T.-H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Graduate University for Advanced Studies, Toki 509-5292 (Japan); Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan)
2013-02-15
Conservation laws of energy and momentum for nonrelativistic plasmas are derived from applying Noether's theorem to the action integral for the Vlasov-Poisson-Ampere system [Sugama, Phys. Plasmas 7, 466 (2000)]. The symmetric pressure tensor is obtained from modifying the asymmetric canonical pressure tensor with using the rotational symmetry of the action integral. Differences between the resultant conservation laws and those for the Vlasov-Maxwell system including the Maxwell displacement current are clarified. These results provide a useful basis for gyrokinetic conservation laws because gyrokinetic equations are derived as an approximation of the Vlasov-Poisson-Ampere system.
Non-relativistic Bondi–Metzner–Sachs algebra
Batlle, Carles; Delmastro, Diego; Gomis, Joaquim
2017-09-01
We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein–Gordon field.
Scattering theory the quantum theory of nonrelativistic collisions
Taylor, John R
2006-01-01
This graduate-level text is intended for any student of physics who requires a thorough grounding in the quantum theory of nonrelativistic scattering. It is designed for readers who are already familiar with the general principles of quantum mechanics and who have some small acquaintance with scattering theory. Study of this text will allow students of atomic or nuclear physics to begin reading the literature and tackling real problems, with a complete grasp of the underlying principles. For students of high-energy physics, it provides the necessary background for later study of relativistic p
Energy Technology Data Exchange (ETDEWEB)
Ahmadov, A.; Azuelos, G.; Bauer, U.; Belyaev, A.; Berger, E. L.; Sullivan, Z.; Tait, T. M. P.
2000-03-24
The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t {r_arrow} Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of {tau} decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by
On the question of symmetries in non-relativistic diffeomorphism invariant theories
Banerjee, Rabin; Mukherjee, Pradip
2016-01-01
Nonrelativistic diffeomorphism invariance has recently emerged as a powerful tool for investigating various phenomena. The flat limit of such an invariance which should yield the Galilean invariance is, surprisingly, riddled with ambiguities and anomalies. We show that our approach, based on Galilean gauge theory, resolves these shortcomings. As a spin-off, we provide a systematic and unique way of interpreting nonrelativistic diffeomorphism invariance and Galilean invariance as appropriate nonrelativistic limits of relativistic invariances in curved and flat backgrounds, respectively. The complementary role of flat and nonrelativistic limits is highlighted.
Testa, Massimo
1990-01-01
In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.
From Gauging Nonrelativistic Translations to N-Body Dynamics
Lukierski, J; Zakrzewski, W J
2001-01-01
We consider the gauging of space translations with time-dependent gauge functions. Using fixed time gauge of relativistic theory, we consider the gauge-invariant model describing the motion of nonrelativistic particles. When we use gauge-invariant nonrelativistic velocities as independent variables the translation gauge fields enter the equations through a d\\times (d+1) matrix of vielbein fields and their Abelian field strengths, which can be identified with the torsion tensors of teleparallel formulation of relativity theory. We consider the planar case (d=2) in some detail, with the assumption that the action for the dreibein fields is given by the translational Chern-Simons term. We fix the asymptotic transformations in such a way that the space part of the metric becomes asymptotically Euclidean. The residual symmetries are (local in time) translations and rigid rotations. We describe the effective interaction of the d=2 N-particle problem and discuss its classical solution for N=2. The phase space Hamilt...
Juste, A
2006-01-01
Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron Run II.
Cuevas Maestro, Javier
2016-01-01
An overview of recent top quark measurements in proton-proton collisions at 7, and 8 TeV in data collected with the CMS and ATLAS experiments at the LHC, using a data sample collected during the years 2011, 2012 is presented. The results include measurements of top-quark pairs spin correlation, the top pair charge asymmetry, the cross section of top-quark pair events produced in association with a W or a Z boson. The mass of the top quark is estimated by different methods. Some results on the same topics are also presented in data collected by the CDF and D0 collaborations at the Tevatron collider.
Ghosh, Sabyasachi; Roy, Victor; Serna, Fernando E; Krein, Gastão
2015-01-01
We have calculated the temperature dependence of shear $\\eta$ and bulk $\\zeta$ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-$\\pi$ and quark-$\\sigma$ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses, and quark-meson couplings are obtained in the Nambu--Jona-Lasinio model. We found a non-trivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios $\\eta/s$ and $\\zeta/s$, where $s$ is the entropy density (also determined in the Nambu--Jona-Lasinio model in the quasi-particle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for $\\eta/s$ has a minimum very close to the conjectured AdS/CFT lower bound, $\\eta/s = 1/4\\pi$.
Ghosh, Sabyasachi; Peixoto, Thiago C.; Roy, Victor; Serna, Fernando E.; Krein, Gastão
2016-04-01
We have calculated the temperature dependence of shear η and bulk ζ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-π and quark-σ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses and quark-meson couplings are obtained in the Nambu-Jona-Lasinio model. We found a nontrivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios η /s and ζ /s , where s is the entropy density (also determined in the Nambu-Jona-Lasinio model in the quasiparticle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for η /s has a minimum very close to the quantum lower bound, η /s =1 /4 π .
New quarks: exotic versus strong
Holdom, B.
2011-01-01
The new quarks of a fourth family are being pushed into the strongly interacting regime due to the lower limits on their masses. The theoretical basis and experimental implications of such quarks are compared with exotic quarks.
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
Dynamics of the QCD string with light and heavy quarks
Gubankova, E C
1994-01-01
Abstract: The generalization of the effective action [1] of the quark--antiquark system in the confining vacuum is performed for the case of arbitrary quark masses. The interaction of quarks is described by the averaged Wilson loop for which we use the minimal area law asymptotics. The system is quantized by the path integral method and the quantum Hamiltonian is obtained. It contains not only quark degrees of freedom but also the string energy density. As well as in the equal masses case [1] two dynamical regimes are found [2]: for large orbital excitations (l \\gg 1) the system is represented as rotating string, which leads to asymptotically linear Regge trajectories, while at small l one obtains a potential-like relativistic or nonrelativistic regime. In the limiting cases of light-light and heavy-light mesons a unified description is developed [2]. For the Regge trajectories one obtains nearly straight-line patterns with the slope very close to 1/2 \\pi \\sigma and 1/ \\pi\\sigma correspondingly. The upper bou...
Mass spectra of four-quark states in the hidden charm sector
Patel, Smruti; Shah, Manan; Vinodkumar, P. C.
2014-08-01
Masses of the low-lying four-quark states in the hidden charm sector ( are calculated within the framework of a non-relativistic quark model. The four-body system is considered as two two-body systems such as diquark-antidiquark ( - and quark-antiquark-quark-antiquark ( - q molecular-like four-quark states. Here, the Cornell-type potential has been used for describing the two-body interactions among Q - q , - , Q - , Qq - and Q - q , with appropriate string tensions. Our present analysis suggests the following exotic states: X(3823) , Z c(3900) , X(3915) , Z c(4025) , (4040) , Z 1(4050) and X(4160) as Q - q molecular-like four-quark states, while Z c(3885) , X(3940) and Y(4140) as the diquark-antidiquark four-quark states. We have been able to assign the JPC values for many of the recently observed exotic states according to their structure. Apart from this, we have identified the charged state Z(4430) recently confirmed by LHCb as the first radial excitation of Zc(3885) with G = + 1 and Y(4360) state as the first radial excitation of Y(4008) with G = - 1 and the state as the first radial excitation of the state.
The quark mean field model with pion and gluon corrections
Xing, Xueyong; Shen, Hong
2016-01-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pion and gluon into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pion and gluon on the nucleon structure are treated in second-order perturbation theory. For the nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, $m_q$, we determine three parameter sets about the coupling constants between mesons and quarks, named as QMF-NK1, QMF-NK2, and QMF-NK3 by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give satisfactory description on properties of nuclear matter and finite nuclei, meanwhile they can also predict the larger neutron star mass around $2.3M_\\odot$ without the hypero...
Quark mean field model with pion and gluon corrections
Xing, Xueyong; Hu, Jinniu; Shen, Hong
2016-10-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, mq, we determine three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3 M⊙ without hyperon degrees of freedom.
Contribution of Quark Structure Term in Nucleon Electric and Magnetic Form Factors
Institute of Scientific and Technical Information of China (English)
WANGHong-Min; ZHANGBen-Ai
2004-01-01
The constituent quarks in the nucleon have always been considered as a point-like particle in the relativisticconstituent quark model. However its calculation results of GEn agree poorly with the new experimental data. Theelectromagnetic structure of light front constituent quarks is considered in this paper. We find that the calculationresults have good agreement with the new experimental data of GEn after considering the contribution of the quarkstructure term. This treatment seems to be able to improve the fit to experimental data of GEp/GMp,√Q2F2p/kpF1p,and GEn/GMn as well.
E. Laenen
2011-01-01
The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.
Indian Academy of Sciences (India)
Eric Laenen
2012-10-01
The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.
Janiszewski, Stefan; Karch, Andreas
2013-02-22
We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.
Newton-Cartan (super)gravity as a non-relativistic limit
Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas
2015-01-01
We define a procedure that, starting from a relativistic theory of supergravity, leads to a consistent, non-relativistic version thereof. As a first application we use this limiting procedure to show how the Newton-Cartan formulation of non-relativistic gravity can be obtained from general relativit
Energy Technology Data Exchange (ETDEWEB)
Erbacher, Robin D.; /UC, Davis
2005-10-01
While the top quark was discovered in 1995 at the Fermilab Tevatron, a decade later they still have very little information about the top. As the heaviest particle yet discovered, the top quark is interesting in and of itself, but some speculate that it may play a special role in physics beyond the Standard Model. With Run 2 of the Tevatron well underway, they have the opportunity to study top quark properties with much better sensitivity, and to test whether top quarks behave as predicted by current theories. This article focuses on the basics of top quark physics at the Tevatron, highlighting only a sample of the many recent measurements, as new results are being released monthly, and constantly changing the landscape of our knowledge of top.
Effective approach to non-relativistic quantum mechanics
Jacobs, David M
2015-01-01
Boundary conditions on non-relativistic wavefunctions are generally not completely constrained by the basic precepts of quantum mechanics, so understanding the set of possible self-adjoint extensions of the Hamiltonian is required. For real physical systems, non-trivial self-adjoint extensions have been used to model contact potentials when those interactions are expected a priori. However, they must be incorporated into the effective description of any quantum mechanical system in order to capture possible short-distance physics that does not decouple in the low energy limit. Here, an approach is described wherein an artificial boundary is inserted at an intermediate scale on which boundary conditions may encode short-distance effects that are hidden behind the boundary. Using this approach, an analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of this artificial bou...
Differential Regularization of a Non-relativistic Anyon Model
Freedman, Daniel Z; Rius, N
1994-01-01
Differential regularization is applied to a field theory of a non-relativistic charged boson field $\\phi$ with $\\lambda (\\phi {}^{*} \\phi)^2$ self-interaction and coupling to a statistics-changing $U(1)$ Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the $\\phi {}^{*} \\phi {}^{*} \\phi \\phi$ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the $\\beta$-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to $\\beta(\\lambda,e)$ vanish, and $\\beta(\\lambda,e)$ itself vanishes when the ``self-dual'' condition relating $\\lambda$ to the gauge coupling $e$ is imposed.
A Signed Particle Formulation of Non-Relativistic Quantum Mechanics
Sellier, Jean Michel
2015-01-01
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schroedinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the val...
Nonrelativistic QED approach to the bound-electron g factor
Pachucki, K; Yerokhin, V A
2004-01-01
Within a systematic approach based on nonrelativistic quantum electrodynamics (NRQED), we derive the one-loop self-energy correction of order alpha (Zalpha)^4 to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order alpha^2 (Zalpha)^4 ln[(Zalpha)^-2] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for the 1S bound-electron g factor and influence the value of the electron mass determined from g factor measurements.
Nonrelativistic QED Approach to the Bound-Electron g Factor
Pachucki, Krzysztof; Jentschura, Ulrich D.; Yerokhin, Vladimir A.
2004-10-01
Within a systematic approach based on nonrelativistic quantum electrodynamics, we derive the one-loop self-energy correction of order α(Zα)4 to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order α2(Zα)4ln([(Zα)-2] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for the 1S bound-electron g factor and influence the value of the electron mass determined from g-factor measurements.
Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Spitkovsky, Anatoly
2014-01-01
We use kinetic hybrid simulations (kinetic ions - fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for i...
Nonrelativistic QED expansion for the electron self-energy
Patkóš, V.; Šimsa, D.; Zamastil, J.
2017-01-01
The recently proposed relativistic multipole expansion (RME) of the self-energy effect suggests some observations on the nonrelativistic expansion of the effect. First, the nature of the series for the one-loop self-energy of an electron bound by the Coulomb field of the nucleus is clarified. It is shown that the expansion of the energy shift caused by the self-energy effect contains terms of the form α (Zα ) 7ln(Z α ) , α (Zα ) 8ln3(Z α ) , α (Zα ) 9ln2(Z α ) , α (Zα ) 10ln4(Z α ) , and so on. Here Z is the charge of the nucleus. The origin of these terms is traced back to the logarithmic divergence of the Dirac S -wave function at the origin. These terms eventually lead to breakdown of the nonrelativistic quantum electrodynamics approach. Second, at leading order relativistic multipole expansion requires an evaluation of the "extended Bethe logarithm" (EBL). When expanded in series in Z α EBL reduces at leading order to the ordinary Bethe logarithm. However, it is argued that it is both more accurate and easier to calculate the EBL than the ordinary Bethe logarithm. Both variants of the Bethe logarithm can be calculated by means of the pseudostate method. An improvement of this method is suggested. Finally, the contribution of the combined self-energy vacuum polarization contribution to the Lamb shift in muonic hydrogen for the 1 s -4 s and 2 p -4 p states by means of the EBL is calculated. For cases that had already been calculated the results reported here are more accurate than the previous ones.
Light Quark Mass Effects in Bottom Quark Mass Determinations
Hoang, A. H.
2001-01-01
Recent results for charm quark mass effects in perturbative bottom quark mass determinations from $\\Upsilon$ mesons are reviewed. The connection between the behavior of light quark mass corrections and the infrared sensitivity of some bottom quark mass definitions is examined in some detail.
The Harari Shupe preon model and nonrelativistic quantum phase space
Żenczykowski, P.
2008-03-01
We propose that the whole algebraic structure of the Harari-Shupe rishon model originates via a Dirac-like linearization of quadratic form x2 +p2, with position and momentum satisfying standard commutation relations. The scheme does not invoke the concept of preons as spin-1/2 subparticles, thus evading the problem of preon confinement, while fully explaining all symmetries emboded in the Harari-Shupe model. Furthermore, the concept of quark colour is naturally linked to the ordering of rishons. Our scheme leads to group U (1) ⊗ SU (3) combined with SU (2), with two of the SU (2) generators not commuting with reflections. An interpretation of intra-generation quark-lepton transformations in terms of genuine rotations and reflections in phase space is proposed.
Fritzsch, Harald
1983-01-01
Quark rossi, verdi e blu ; quark dotati di stranezza e di incanto ; quark 'su' e 'giù' : sembra che i fisici delle particelle giochino a confondere la curiosità del profano, con queste denominazioni fantasiose. Che cosa significano ? e, soprattutto, i quark sono i costituenti davvero elementari della materia ?
Huang, Z; Huang, Zheng
1993-01-01
We study the behavior of the self-mass for a quark with a current mass larger than $\\Lambda_QCD$, as a function of its Euclidean momentum and mass, in QCD. An expression for the Bethe-Salpeter kernel of the Schwinger-Dyson (SD) equation valid in both the infrared and ultraviolet regions is obtained based on a renormalization group analysis. The resulting SD equation is solved numerically. It is found that the quark constituent mass at zero momentum is substantially enhanced due to its effective gauge interaction. The solution in the ultraviolet region agrees well with the known asymptotic solution. The self-mass scales exactly as the on-shell current mass at a fixed momentum.
Top quark measurements at ATLAS
Grancagnolo, Sergio; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan
2002-01-01
We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.
Energy Technology Data Exchange (ETDEWEB)
Parke, S.
1998-01-01
In this presentation I will primarily focus on top quark physics but I will include a discussion of the W-boson mass and the possibility of discovering a light Higgs boson via associated production at the Tevatron.
Guichon, P A M; Thomas, A W
1996-01-01
We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.
Indian Academy of Sciences (India)
Narendra Singh
2003-01-01
Assuming a relation between the quark mass matrices of the two sectors a unique solution can be obtained for the CKM ﬂavor mixing matrix. A numerical example is worked out which is in excellent agreement with experimental data.
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Taylor, John C.
1984-01-01
Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....
Λc semileptonic decays in a quark model
Hussain, Md Mozammel; Roberts, Winston
2017-03-01
Hadronic form factors for semileptonic decay of the Λc are calculated in a nonrelativistic quark model. The full quark model wave functions are employed to numerically calculate the form factors to all relevant orders in (1 /mc, 1 /ms). The form factors obtained satisfy relationships expected from the heavy quark effective theory (HQET). The differential decay rates and branching fractions are calculated for transitions to the ground state and a number of excited states of Λ . The branching fraction of the semileptonic decay width to the total width of Λc has been calculated and compared with other theoretical estimates and experimental results. The branching fractions for Λc→Λ*l+νl→Σ π l+νl and Λc→Λ*l+νl→N K ¯ l+νl are also calculated. Apart from decays to the ground state Λ (1115 ) , it is found that decays through the Λ (1405 ) provide a significant portion of the branching fraction Λc→Xsl νl . A new estimate for f =B (Λc+→Λ l+νl)/B (Λc+→Xsl+νl) is obtained.
Jido, Daisuke
2016-01-01
The possibility to have diquark configuration in heavy baryons, such as Lambda_c and Lambda_b, is examined by a nonrelativistic potential model with a heavy quark and a light scalar diquark. Assuming that the Lambda_c and Lambda_b baryons are composed of the heavy quark and the scalar-isoscalar ud diquark, we solve the two-body Schrodinger equation with the Coulomb plus linear potential and obtain the energy spectra for the heavy baryons. Contrary to our expectation, it is found that the potential determined by the quarkonium spectra fails to reproduce the excitation spectra of the Lambda_c and Lambda_b in the quark-diquark picture, while the Lambda_c and Lambda_b spectra is reproduced with a half strength of the confinement string tension than for the quarkonium. The Xi_c excitation energy is also calculated and is found to be smaller than Lambda_c in the quark-diquark model. This is not consistent with the experimental observation. These puzzles should be solved when one takes the quark-diquark picture for ...
Holographic energy loss in non-relativistic backgrounds
Atashi, Mahdi; Farahbodnia, Mitra
2016-01-01
In this paper, we study some aspects of energy loss in non-relativistic theories from holography. We analyze the energy lost by a rotating heavy point particle along a circle of radius $l$ with angular velocity $\\omega$ in theories with general dynamical exponent $z$ and hyperscaling violation exponent $\\theta$. It is shown that this problem provides a novel perspective on the energy loss in such theories. A general computation at zero and finite temperature is done and it is shown that how the total energy loss rate depends non-trivially on two characteristic exponents $(z,\\theta)$. We find that at zero temperature there is a special radius $l_c$ where the energy loss is independent of different values of $(z,\\theta)$. Also, there is a crossover between a regime in which the energy loss is dominated by the linear drag force and by the radiation because of the acceleration of the rotating particle. We discover different behaviors at finite temperature case.
Non-Relativistic Anti-Snyder Model and Some Applications
Ching, Chee Leong; Ng, Wei Khim
2016-01-01
We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigen solutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states due to the orthogonality of the polynomials and the maximum energy is truncated at the maximum n. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti- Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit. By taking zero mass limit, we explore the motion of effective zero mass charged Fermions in Graphene like material and obtained a maximum bound of deformed parameter. Furthermore, we consider the modified energy dispersion relations and its...
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Energy Technology Data Exchange (ETDEWEB)
Gevorkyan, A. S., E-mail: g_ashot@sci.am [NAS of Armenia, Institute for Informatics and Automation Problems (Armenia)
2013-08-15
Spontaneous transitions between bound states of an atomic system, the 'Lamb Shift' of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations (fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schroedinger type and is defined on the extended space Double-Struck-Capital-R {sup 3} Circled-Times {Xi}{sup n}, where Double-Struck-Capital-R {sup 3} and {Xi}{sup n} are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Gevorkyan, A. S.
2013-08-01
Spontaneous transitions between bound states of an atomic system, the "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations ( fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger type and is defined on the extended space ℝ3⊗Ξ n , where ℝ3 and Ξ n are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Nonrelativistic anti-Snyder model and some applications
Ching, C. L.; Yeo, C. X.; Ng, W. K.
2017-01-01
In this paper, we examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the nonrelativistic anti-Snyder model which is relevant to doubly/deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigensolutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states nmax due to the orthogonality of the polynomials and the maximum energy is truncated at nmax. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti-Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit β → 0. By taking m → 0, we explore the motion of effective massless charged fermions in graphene-like material and obtained a maximum bound of deformed parameter βmax. Furthermore, we consider the modified energy dispersion relations and its application in describing the behavior of neutrinos oscillation under modified commutation relations.
Hadronic correction to Coulomb potential between quarks and diquark structure
Energy Technology Data Exchange (ETDEWEB)
Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Xue-Qian, Li; Peng-Nian, Shen [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang [Nankai Univ., TJ (China). Dept. of Physics
1997-07-01
We have studied the hadronic correction from the background pion fields due to the chiral symmetry breaking to the Coulomb potential that governs the short-distance behavior of the interactions between the bound quarks. The background fields are associated with the constituent quark mass. We find a modified form which favors the diquark structure. We also roughly estimate an influence of this correction on the phase shifts in nucleon scattering and find that it may cause an extra middle range attraction between nucleons which is expected. (author) 17 refs., 4 figs.
Relativistic Covariance and Quark-Diquark Wave Functions
Dillig, M
2006-01-01
We derive covariant wave functions for hadrons composed of two constituents for arbitrary Lorentz boosts. Focussing explicitly on baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to covariant 3-dimensional forms by projecting on the relative quark-diquark energy. Guided by a phenomenological multi gluon exchange representation of covariant confining kernels, we derive explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly sketch implications of breaking the spherical symmetry of the ground state and the transition from the instant form to the light cone via the infinite momentum frame.
Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model
Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho
2016-05-01
Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.
Radiation of non-relativistic particle on a conducting sphere and a string of spheres
Shul'ga, N F; Larikova, E A
2016-01-01
The radiation arising under uniform motion of non-relativistic charged particle by (or through) perfectly conducting sphere is considered. The rigorous results are obtained using the method of images known from electrostatics.
Adorno, T C; Gitman, D M
2010-01-01
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a $\\theta$-modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the $\\theta$-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (\\`a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the $\\theta$-modified Pauli equation. Then, we extract $\\theta$-modified interaction between a nonrelativistic spin and a magnetic field from the $\\theta$-modified Pauli equation and construct a $\\theta$-modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal EPR (Einstein-Podolsky-Rosen) states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which...
Adorno, T C; Gitman, D M
2010-01-01
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a $\\theta$-modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the $\\theta$-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (\\`a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the $\\theta$-modified Pauli equation. We extract $\\theta$-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a $\\theta$-modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal EPR (Einstein-Podolsky-Rosen) states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the...
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Nonrelativistic mean-field description of the deformation of Λ hypernuclei
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The deformations of light Λ hypernuclei are studied in an extended nonrelativistic deformed Skyrme-Hartree-Fock approach with realistic modern nucleonic Skyrme forces,pairing correlations,and a microscopical lambda-nucleon interaction derived from Brueckner-Hartree-Fock calculations.Compared to the large effect of an additional Λ particle on nuclear deformation in the light soft nuclei within relativistic mean field method,this effect is much smaller in the nonrelativistic mean-field approximation.
Recursive fragmentation model with quark spin. Application to quark polarimetry
Artru, X
2010-01-01
An elementary recursive model accounting for the quark spin in the fragmentation of a quark into mesons is presented. The quark spin degree of freedom is represented by a two-components spinor. Spin one meson can be included. The model produces Collins effect and jet handedness. The influence of the initial quark polarisation decays exponentially with the rank of the meson, at dierent rates for longitudinal and transverse polarisations
Bootstrapping quarks and gluons
Energy Technology Data Exchange (ETDEWEB)
Chew, G.F.
1979-04-01
Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.
Rizzo, T G
1979-01-01
The weak decay of heavy b and t quarks is discussed using the mixing angles obtained in Fritzsch's model (1978). The author finds that the decay b to c dominates over b to u for 7
Time as an Observable in Nonrelativistic Quantum Mechanics
Hahne, G. E.
2003-01-01
The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.
Finite Hypernuclei in the Latest Quark-Meson Coupling Model
Energy Technology Data Exchange (ETDEWEB)
Pierre A. M. Guichon; Anthony W. Thomas; Kazuo Tsushima
2007-12-12
The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of finite hypernuclei. The calculations for $\\Lambda$ and $\\Xi$ hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for $\\Sigma$ hypernuclei. Whereas in the earlier work they were bound by an amount similar to $\\Lambda$ hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the $\\Sigma$ is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of $\\Sigma$-atoms.
Challenges to quantum chromodynamics: Anomalous spin, heavy quark, and nuclear phenomena
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J.
1989-11-01
The general structure of QCD meshes remarkably well with the facts of the hadronic world, especially quark-based spectroscopy, current algebra, the approximate point-like structure of large momentum transfer inclusive reactions, and the logarithmic violation of scale invariance in deep inelastic lepton-hadron reactions. QCD has been successful in predicting the features of electron-positron and photon-photon annihilation into hadrons, including the magnitude and scaling of the cross sections, the shape of the photon structure function, the production of hadronic jets with patterns conforming to elementary quark and gluon subprocesses. The experimental measurements appear to be consistent with basic postulates of QCD, that the charge and weak currents within hadrons are carried by fractionally-charged quarks, and that the strength of the interactions between the quarks, and gluons becomes weak at short distances, consistent with asymptotic freedom. Nevertheless in some cases, the predictions of QCD appear to be in dramatic conflict with experiment. The anomalies suggest that the proton itself as a much more complex object than suggested by simple non-relativistic quark models. Recent analyses of the proton distribution amplitude using QCD sum rules points to highly-nontrival proton structure. Solutions to QCD in one-space and one-time dimension suggest that the momentum distributions of non-valence quarks in the hadrons have a non-trival oscillatory structure. The data seems also to be suggesting that the intrinsic'' bound state structure of the proton has a non- negligible strange and charm quark content, in addition to the extrinsic'' sources of heavy quarks created in the collision itself. 144 refs., 46 figs., 2 tabs.
The Quark's Model and Confinement
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
The Quark's Model and Confinement
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
Mulders, Martijn
2016-01-01
Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I wil...
Indian Academy of Sciences (India)
H Weigel
2003-11-01
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.
Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Burkardt Matthias
2015-01-01
Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
Quark Helicity and Transversity Distributions
Hwang, Dae Sung
2016-01-01
The quark transversity distribution inside nucleon is less understood than the quark unpolarized and helicity distributions inside nucleon. In particular, it is important to know clearly why the quark helicity and transversity distributions are different. We investigate the origin of their discrepancy.
Color confinement multi quark resonance
Energy Technology Data Exchange (ETDEWEB)
Wang Fan [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China); Ping, J.L. [Department of Physics, Nanjing Normal University, Nanjing, 210097 (China); Pang, H.R. [Department of Physics, Southeast University, Nanjing, 210008 (China); Chen, L.Z. [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China)
2007-06-15
A new kind microscopic resonance, the color confinement multi quark resonance is proposed and studied. The quark delocalization color screening model is compared to one of the chiral quark model, the Salamanca model, and a new mechanism of the intermediate range NN interaction, the mutual distortion of interacting nucleons, is checked to be similar to the {sigma} meson exchange.
Comment on a confining theory of quarks, leptons and sarks
Yasuè, Masaki
1990-12-01
The confining SU(2) Lloc theory for composite quarks, leptons and extra weak-triplet and -singlet fermions (called sarks), which fixes the generation number ⩽3 as suggested by Frampton and Ng in their sark model, is shown to incorporate extra composite W and Z bosons, W‧ and Z‧, as the remnant of confined hypercolors carried by sark constituents. The model deals with SU(2) Lloc -and hypercolor-singlet composites that exhibit the duality of compositeness and “elementariness”, in which it differs from the original sark model of Frampton and Ng. W‧ and Z‧ primarily couple to sarks but not to quarks and leptons while the indirect coupling of Z‧ to quarks and leptons is induced as a result of the vector meson dominance of the photon.
Quark-antiquark bound-state spectroscopy and QCD
Energy Technology Data Exchange (ETDEWEB)
Bloom, E.D.
1982-11-01
The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)
De Sanctis, M; Santopinto, E; Vassallo, A
2015-01-01
We briefly describe our relativistic quark-diquark model, developed within the framework of point form dynamics, which is the relativistic extension of the interacting quark-diquark model. In order to do that we have to show the main properties and quantum numbers of the effective degree of freedom of constituent diquark. Our results for the nonstrange baryon spectrum and for the nucleon electromagnetic form factors are discussed.
Decay constants in the heavy quark limit in models à la Bakamjian and Thomas
Morénas, V; Oliver, L; Pène, O; Raynal, J C
1998-01-01
In quark models à la Bakamjian and Thomas, that yield covariance and Isgur-Wise scaling of form factors in the heavy quark limit, we compute the decay constants $f^{(n)}$ and $f^{(n)}_{1/2}$ of S-wave and P-wave mesons composed of heavy and light quarks. Heavy quark limit scaling $\\sqrt{M} f = Cst$ is obtained, and it is shown that this class of models satisfies the sum rules involving decay constants and Isgur-Wise functions recently formulated by us in the heavy quark limit of QCD. Moreover, the model also satisfies the selection rules of the type $f^{(n)}_{3/2} = 0$ that must hold in this limit. We discuss different Ansätze for the dynamics of the mass operator at rest. For non-relativistic kinetic energies ${p^2 \\over 2m}$ the decay constants are finite even if the potential $V(r)$ has a Coulomb part. For the relativistic form $\\sqrt{p^2 + m^2}$, the S-wave decay constants diverge if there is a Coulomb singularity. Using phenomenological models of the spectrum with relativistic kinetic energy and regula...
Gluon chains and the quark-antiquark potential
Greensite, J
2009-01-01
The flux tube between a quark and an antiquark in Coulomb gauge is imagined in the gluon-chain model as a sequence of constituent gluons bound together by Coulombic nearest-neighbor interactions. We diagonalize the transfer matrix in SU(2) lattice gauge theory in a finite basis of states containing a static quark-antiquark pair together with zero, one, and two gluons in Coulomb gauge. We show that while the string tension of the color-Coulomb potential (obtained from the zero-gluon to zero-gluon element of the transfer matrix) overshoots the true asymptotic string tension by a factor of about three, the inclusion of a few states with constituent gluons reduces the discrepancy considerably. The minimal energy eigenstate of the transfer matrix in the zero-, one-, and two-gluon basis exhibits a linearly rising potential with the string tension only about 1.4 times larger than the asymptotic one.
Relativistic and non-relativistic solitons in plasmas
Barman, Satyendra Nath
This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields
Demilly, A; The ATLAS collaboration
2014-01-01
Properties of the top quark are measured with the ATLAS detector using LHC proton-proton collisions data. Measurements of the top-quark mass and polarisation, as well as of the polarization of W bosons in top quark decays to probe the Wtb-vertex are presented. In addition, measurements of the spin correlation between top and anti-top quarks as well as of the top- quark charge asymmetry, which constitute important tests of QCD and are sensitive to new physics, are discussed.
Transverse-momentum dependent parton distribution functions beyond leading twist in quark models
Lorcé, C; Schweitzer, P
2014-01-01
Higher-twist transverse momentum dependent parton distribution functions (TMDs) are a valuable probe of the quark-gluon dynamics in the nucleon, and play a vital role for the explanation of sizable azimuthal asymmetries in hadron production from unpolarized and polarized deep-inelastic lepton-nucleon scattering observed in experiments at CERN, DESY and Jefferson Lab. The associated observables are challenging to interpret, and still await a complete theoretical explanation, which makes guidance from models valuable. In this work we establish the formalism to describe unpolarized higher-twist TMDs in the light-front framework based on a Fock-space expansion of the nucleon state in terms of free on-shell parton states. We derive general expressions and present numerical results in a practical realization of this picture provided by the light-front constituent quark model. We review several other popular quark model approaches including free quark ensemble, bag, spectator and chiral quark-soliton model.
Energy Technology Data Exchange (ETDEWEB)
Maki, Tuula [Univ. of Helsinki (Finland)
2008-03-18
The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parametrized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector.
Mulders, Martijn
2016-10-01
Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I will discuss the status of those techniques and their results, and present a brief outlook of further improvements in the experimental determination of the top quark mass to be expected at the LHC and beyond.
Indian Academy of Sciences (India)
C P Singh
2000-04-01
Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.
Pallante, E.; Petronzio, R.
1995-01-01
We construct an effective Lagrangian for low energy hadronic interactions through an infinite expansion in inverse powers of the low energy cutoff Î›Ï‡ of all possible chiral invariant non-renormalizable interactions between quarks and mesons degrees of freedom arising from the bosonization of a gen
Quark nuggets search using gravitational waves aluminum bar detectors
Directory of Open Access Journals (Sweden)
Ronga Francesco
2016-01-01
Full Text Available Up to now there is no evidence of supersymmetric WIMPS dark matter. This may suggests to look for more exotic possibilities, for example compact ultra-dense quark nuggets. Nuclearites are an example of compact objects that could be constituent of the dark matter. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors NAUTILUS and EXPLORER is reported.
Study of Ratio of Proton Momentum Distributions with a Chiral Quark Model
Institute of Scientific and Technical Information of China (English)
LIU Jian; DONG Yu-Bing
2005-01-01
The ratio between the anomalous magnetic moments of proton and neutron has recently been suggested to be connected to the ratio of proton momentum fractions carried by the valence quarks inside it. This moment fraction ratio is respectively evaluated by using constituent quark model and chiral quark model in order to check meson cloud effect. Our results show that the meson cloud effect is remarkable to the ratio of the proton momentum fractions, and therefore, this ratiois a sensitive test for the meson cloud effect as well as for the SU(6) symmetry breaking effect.
The neutron electric dipole form factor in the perturbative chiral quark model
Dib, C; Gutsche, T; Kovalenko, S; Kuckei, J; Lyubovitskij, V E; Pumsa-ard, K; Dib, Claudio; Faessler, Amand; Gutsche, Thomas; Kovalenko, Sergey; Kuckei, Jan; Lyubovitskij, Valery E.; Pumsa-ard, Kem
2006-01-01
We calculate the electric dipole form factor of the neutron in a perturbative chiral quark model, parameterizing CP-violation of generic origin by means of effective electric dipole moments of the constituent quarks and their CP-violating couplings to the chiral fields. We discuss the relation of these effective parameters to more fundamental ones such as the intrinsic electric and chromoelectric dipole moments of quarks and the Weinberg parameter. From the existing experimental upper limits on the neutron EDM we derive constraints on these CP-violating parameters.
Axial form factors of the octet baryons in a covariant quark model
Ramalho, G
2015-01-01
We study the weak interaction axial form factors of the octet baryons, within the covariant spectator quark model, focusing on the dependence of four-momentum transfer squared, Q^2. In our model the axial form factors G_A(Q^2) (axial-vector form factor) and G_P(Q^2) (induced pseudoscalar form factor), are calculated based on the constituent quark axial form factors and the octet baryon wave functions. The quark axial current is parametrized by the two constituent quark form factors, the axial-vector form factor g_A^q(Q^2), and the induced pseudoscalar form factor g_P^q(Q^2). The baryon wave functions are composed of a dominant S-state and a P-state mixture for the relative angular momentum of the quarks. First, we study in detail the nucleon case. We assume that the quark axial-vector form factor g_A^q(Q^2) has the same function form as that of the quark electromagnetic isovector form factor. The remaining parameters of the model, the P-state mixture and the Q^2-dependence of g_P^q(Q^2), are determined by a f...
Jido, Daisuke; Sakashita, Minori
2016-08-01
The possibility of having a diquark configuration in heavy baryons, such as Λ and Λ, is examined by a nonrelativistic potential model with a heavy quark and a light scalar diquark. Assuming that the Λ and Λ baryons are composed of the heavy quark and the point-like scalar-isoscalar ud diquark, we solve the two-body Schrödinger equation with the Coulomb plus linear potential and obtain the energy spectra for the heavy baryons. Contrary to our expectation, it is found that the potential determined by the quarkonium spectra fails to reproduce the excitation spectra of the Λ and Λ in the quark-diquark picture, while the Λ and Λ spectra are reproduced with half the strength of the confinement string tension than for the quarkonium. The finite size effect of the diquark is also examined and it is found that the introduction of a finite size diquark would resolve the failure of the spectrum reproduction. The Ξ excitation energy is also calculated and is found to be smaller than Λ in the quark-diquark model. This is not consistent with experimental observations.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
Chen, H.; Wei, J.-B.; Schulze, H.-J.
2016-09-01
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11km. We obtain an energy release as large as 3.6 × 10^{53} erg from conversion of neutron stars into strange quark stars.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
Chen, H; Schulze, H -J
2016-01-01
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9--11 km. We obtain an energy release as large as $3.6 \\times 10^{53}\\,\\text{erg}$ from conversion of neutron stars into strange quark stars.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
Energy Technology Data Exchange (ETDEWEB)
Chen, H.; Wei, J.B. [China University of Geosciences, School of Mathematics and Physics, Wuhan (China); Schulze, H.J. [Universita di Catania, Dipartimento di Fisica, Catania (Italy); INFN, Sezione di Catania (Italy)
2016-09-15
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11 km. We obtain an energy release as large as 3.6 x 10{sup 53} erg from conversion of neutron stars into strange quark stars. (orig.)
The effect of meson wave function on heavy-quark fragmentation function
Energy Technology Data Exchange (ETDEWEB)
Moosavi Nejad, S.M. [Yazd University, Faculty of Physics (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2016-05-15
We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c-quark to split into S-wave D{sup 0} -meson and compare our results with experimental data from BELLE and CLEO. (orig.)
Excited bottom and bottom-strange mesons in the quark model
Lü, Qi-Fang; Pan, Ting-Ting; Wang, Yan-Yan; Wang, En; Li, De-Min
2016-10-01
In order to understand the possible q q ¯ quark-model assignments of the BJ(5840 ) and BJ(5960 ) recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the BJ(5840 ) and BJ(5960 ) can be identified as the B (2 1S0) and B (1 3D3) , respectively, and the B (5970 ) reported by the CDF Collaboration can be interpreted as the B (2 3S1) or B (1 3D3) . Further precise measurements of the width, spin and decay modes of the B (5970 ) are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.
Velocity statistics in holographic fluids: magnetized quark-gluon plasma and superfluid flow
Energy Technology Data Exchange (ETDEWEB)
Areán, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805, Munich (Germany); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Patiño, Leonardo; Villasante, Mario [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 70-542, México D.F. 04510 (Mexico)
2016-10-28
We study the velocity statistics distribution of an external heavy particle in holographic fluids. We argue that when the dual supergravity background has a finite temperature horizon the velocity statistics goes generically as 1/v, compatible with the jet-quenching intuition from the quark-gluon plasma. A careful analysis of the behavior of the classical string whose apparent world sheet horizon deviates from the background horizon reveals that other regimes are possible. We numerically discuss two cases: the magnetized quark-gluon plasma and a model of superfluid flow. We explore a range of parameters in these top-down supergravity solutions including, respectively, the magnetic field and the superfluid velocity. We determine that the velocity statistics goes largely as 1/v, however, as we leave the non-relativistic regime we observe some deviations.
Excited bottom and bottom-strange mesons in the quark model
Lü, Qi-Fang; Wang, Yan-Yan; Wang, En; Li, De-Min
2016-01-01
In order to understand the possible $q\\bar{q}$ quark-model assignments of the $B_J(5840)$ and $B_J(5960)$ recently reported by the LHCb Collaboration, we evaluate mass spectra, strong decays, and radiative decays of bottom and bottom-strange mesons in a nonrelativistic quark model. Comparing these predictions with the relevant experimental results, we suggest that the $B_J(5840)$ and $B_J(5960)$ can be identified as $B(2^1S_0)$ and $B(1^3D_3)$, respectively, and the $B(5970)$ reported by the CDF Collaboration can be interpreted as $B(2^3S_1)$ or $B(1^3D_3)$. Further precise measurements of the width, spin and decay modes of the $B(5970)$ are needed to distinguish these two assignments. These predictions of bottom and bottom-strange mesons can provide useful information to further experimental investigations.
Instanton-dyon Ensembles III: Exotic Quark Flavors
Larsen, Rasmus
2016-01-01
"Exotic quarks" in the title refers to a modification of quark periodicity condition on the thermal circle by introduction of some phases -- known also as "flavor holonomies" -- different quark flavors. These phases provide a valuable tool, to be used for better understanding of deconfinement and chiral restoration phase transitions: by changing them one can dramatically modify both phase transitions. In the language of instanton constituents -- instanton-dyons or monopoles -- it has a very direct explanation: the interplay of flavor and color holonomies can switch topological zero modes between various dyon types. The model we will study in detail, the so called $Z_{N_c}$-symmetric QCD model with equal number of colors and flavors $N_c=N_f=2$ and special arrangement of flavor and color holonomies, ensure "most democratic" setting, in which each quark flavor and each dyon type are in one-to-one correspondence. The usual QCD has the opposite "most exclusive" arrangement: all quarks are antiperiodic and thus al...
Non-leptonic decays in an extended chiral quark model
Eeg, J O
2012-01-01
We consider the color suppressed (nonfactorizable) amplitude for the decay mode $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $. We treat the $b$-quark in the heavy quark limit and the energetic light ($u,d,s$) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ is suppressed by a factor of order $\\Lambda_{QCD}/m_b$ with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for $\\bar{B_{d}^0} \\rightarrow \\pi^...
Two-solar-mass hybrid stars: a two model description with the Nambu-Jona-Lasinio quark model
Pereira, Renan Câmara; Providência, Constança
2016-01-01
Hybrid stars with a quark phase described by the Nambu$-$Jona-Lasinio model are studied. The hadron-quark model used to determine the stellar matter equation of state favors the appearance of quark matter: the coincidence of the deconfinement and chiral transitions and a low vacuum constituent quark mass. These two properties are essential to build equations of state that predict pure quark matter in the center of neutron stars. The effect of vector-isoscalar and vector-isovector terms is discussed, and it is shown that the vector-isoscalar terms are necessary to describe 2$M_\\odot$ hybrid stars, and the vector-isovector terms result in larger quark cores and a smaller deconfinement density.
Are non-relativistic neutrinos the dark matter particles?
Nieuwenhuizen, Theo M.
2010-06-01
. Thereby the spead up the intracluster gas to virial speeds of 10 keV, which causes reionization without assistance of heavy stars. Within the analysis, the baryons are poor tracers of the dark matter density. This work is described in Theo M. Nieuwenhuizen, Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86, 59001 (2009). This text of this paper is an update of this work. Structure formation is presently believed to need cold dark matter. However, hydrodynamics alone may explain baryonic clustering without this trigger. Th. M. Nieuwenhuizen, C. H. Gibson and R. E. Schild, Gravitational hydrodynamics of large scale structure formation, Europhysics Letters 2009, to appear.
Physical stress, mass, and energy for non-relativistic spinful matter
Geracie, Michael; Roberts, Matthew M
2016-01-01
For theories of relativistic matter fields with spin there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.
Energy Technology Data Exchange (ETDEWEB)
Lai, Sheng-Hong; Lee, Jen-Chi; Yang, Yi [Department of Electrophysics, National Chiao Tung University,1001 University Street, Hsinchu, ROC (China)
2016-05-31
We review and extend high energy four point string BCJ relations in both the fixed angle and Regge regimes. We then give an explicit proof of four point string BCJ relations for all energy. This calculation provides an alternative proof of the one based on monodromy of integration in string amplitude calculation. In addition, we calculate both s−t and t−u channel nonrelativistic low energy string scattering amplitudes of three tachyons and one higher spin string state at arbitrary mass levels. We discover that the mass and spin dependent nonrelativistic string BCJ relations can be expressed in terms of Gauss hypergeometry functions. As an application, for each fixed mass level N, we derive extended recurrence relations among nonrelativistic low energy string scattering amplitudes of string states with different spins and different channels.
Lai, Sheng-Hong; Yang, Yi
2016-01-01
We review and extend high energy string BCJ relations in both the fixed angle and Regge regimes. We then give an explicit proof of four point string BCJ relations for all energy. This calculation provides an alternative proof of the one based on monodromy of integration in string amplitude calculation. In addition, we calculate both s-t and t-u channel nonrelativistic low energy string scattering amplitudes of three tachyons and one leading trojectory string state at arbitrary mass levels. We discover that the mass and spin dependent nonrelativistic string BCJ relations can be expressed in terms of Gauss hypergeometry functions. As an application, for each fixed mass level N, we derive extended recurrence relations among nonrelativistic low energy string scattering amplitudes of string states with different spins and different channels.
Lai, Sheng-Hong; Lee, Jen-Chi; Yang, Yi
2016-05-01
We review and extend high energy four point string BCJ relations in both the fixed angle and Regge regimes. We then give an explicit proof of four point string BCJ relations for all energy. This calculation provides an alternative proof of the one based on monodromy of integration in string amplitude calculation. In addition, we calculate both s- t and t- u channel nonrelativistic low energy string scattering amplitudes of three tachyons and one higher spin string state at arbitrary mass levels. We discover that the mass and spin dependent nonrelativistic string BCJ relations can be expressed in terms of Gauss hypergeometry functions. As an application, for each fixed mass level N, we derive extended recurrence relations among nonrelativistic low energy string scattering amplitudes of string states with different spins and different channels.
SPECTRAL PROPERTIES OF QUARKS IN THE QUARK-GLUON PLASMA.
Energy Technology Data Exchange (ETDEWEB)
KARSCH,F.; KITAZAWA, M.
2007-07-30
We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter {kappa} in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of {kappa}. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.
Spectral Properties of Quarks in the Quark-Gluon Plasma
Karsch, F
2007-01-01
We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter \\kappa in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of \\kappa. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.
Finite Nuclei in the Quark-Meson Coupling Model.
Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W
2016-03-04
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
Energy Technology Data Exchange (ETDEWEB)
Morenas, V. [Universite Blaise Pascal, Clermont-Ferrand II, (CNRS), Lab. de Physique Corpusculaire, 63 - Aubiere (France); Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J.C. [Paris-11 Univ., Lab. de Physique, 91 - Orsay (France); Melikhov, D. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik
2000-07-01
Quark-hadron duality in the inclusive semileptonic decay B {yields} X{sub c}l{nu} in the Shifman-Voloshin limit {lambda} << m{sub b} - m{sub c} << m{sub b},m{sub c} is studied within a nonrelativistic potential model. The integrated semileptonic decay rate is calculated in two ways: first, by constructing the Operator Product Expansion, and second by a direct summation of the exclusive channels. Sum rules (Bjorken, Voloshin, etc) for the potential model are derived, providing a possibility to compare the two representations for {gamma}(B {yields} X{sub c}l{nu}). An explicit difference between them referred to as duality-violation effect is found. The origin of this effect is related to higher charm resonances which are kinematically forbidden in the decay process but are nevertheless picked up by the OPE. Within the considered 1/m{sub c}{sup 2} order the OPE and the sum over exclusive channels match each other, up to the contributions of higher resonances, by virtue of the sum rules. In particular this is true for the terms of order {delta}m{sup 2}/m{sup 2}{sub c} and {lambda}{delta}m/m{sub c}{sup 2} which are present in each of the decay channels and cancel in the sum of these channels due to the Bjorken and Voloshin sum rules, respectively. The size of the duality violation effects is estimated to be of the order O({lambda}{sup 2+b}/m{sup 2}{sub c}{delta}m{sup b}) with b > 0 depending on the details of the potential. Constraints for a better accuracy are discussed. (authors)
Parametrization of Fully Dressed Quark Propagator
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; ZHU Ji-Zhen; ZHOU Li-Juan; SHEN Peng-Nian; HU Zhao-Hui
2005-01-01
Based on an extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized form of the quark propagator is suggested. The corresponding quark selfform of the quark propagator proposed in this work describes a confining quark propagation, and is quite convenient to be used in any numerical calculations.
The Multimedia Project Quarked!
Bean, Alice
2011-01-01
Can exposure to fundamental ideas about the nature of matter help motivate children in math and science and support the development of their understanding of these ideas later? Physicists, designers, and museum educators at the University of Kansas created the Quarked!(tm) Adventures in the subatomic Universe project to provide an opportunity for youth to explore the subatomic world in a fun and user friendly way. The project components include a website (located at http://www.quarked.org) and hands-on education programs. These are described and assessment results are presented. Questions addressed include the following. Can you engage elementary and middle school aged children with concepts related to particle physics? Can young children make sense of something they can't directly see? Do teachers think the material is relevant to their students?
Energy Technology Data Exchange (ETDEWEB)
Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
Riordan, M
1992-05-29
Quarks are widely recognized today as being among the elementary particles of which matter is composed. The key evidence for their existence came from a series of inelastic electron-nucleon scattering experiments conducted between 1967 and 1973 at the Stanford Linear Accelerator Center. Other theoretical and experimental advances of the 1970s confirmed this discovery, leading to the present standard model of elementary particle physics.
Melting Hadrons, Boiling Quarks
Rafelski, Johann
2015-01-01
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustra...
Kane, Gordon L.; Perry, Malcolm J.
2015-03-01
We are used to thinking of quarks as fundamental particles in the same way we think of the electron, or gauge bosons, neutrinos, leptons. In strong theory, these objects are unified with gravitation and the physics of spacetime into what is hoped to be an ultimate theory, string/M theory. The string/M theory paradigm completely changes the way we think of the socalled elementary particles in quantum field theory.
Santopinto, E
2015-01-01
In this contribution, we briefly discuss the results for charmonium and bottomonium spectra with self-energy corrections in the unquenched quark model, due to the coupling to the meson-meson continuum. The UQM formalism can be extended to include also the effects of hybrid mesons, i.e. hybrid loops. Finally, we discuss the results of a calculation of hybrid mesons spectrum in Coulomb Gauge QCD.
Top quark pair production and top quark properties at CDF
Energy Technology Data Exchange (ETDEWEB)
Moon, Chang-Seong [INFN, Pisa
2016-06-02
We present the most recent measurements of top quark pairs production and top quark properties in proton-antiproton collisions with center-of-mass energy of 1.96 TeV using CDF II detector at the Tevatron. The combination of top pair production cross section measurements and the direct measurement of top quark width are reported. The test of Standard Model predictions for top quark decaying into $b$-quarks, performed by measuring the ratio $R$ between the top quark branching fraction to $b$-quark and the branching fraction to any type of down quark is shown. The extraction of the CKM matrix element $|V_{tb}|$ from the ratio $R$ is discussed. We also present the latest measurements on the forward-backward asymmetry ($A_{FB}$) in top anti-top quark production. With the full CDF Run II data set, the measurements are performed in top anti-top decaying to final states that contain one or two charged leptons (electrons or muons). In addition, we combine the results of the leptonic forward-backward asymmetry in $t\\bar t$ system between the two final states. All the results show deviations from the next-to-leading order (NLO) standard model (SM) calculation.
Nayak, Tapan; Sarkar, Sourav
2014-01-01
At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.
Validity of Parametrized Quark Propagator
Institute of Scientific and Technical Information of China (English)
ZHUJi-Zhen; ZHOULi-Juan; MAWei-Xing
2005-01-01
Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the “rainbow”approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions A/(p2), Bl(p2) and effective mass M$(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.
Validity of Parametrized Quark Propagator
Institute of Scientific and Technical Information of China (English)
ZHU Ji-Zhen; ZHOU Li-Juan; MA Wei-Xing
2005-01-01
Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions Af(p2), Bf(p2) and effective mass Mf(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.
String worldsheet for accelerating quark
Hubeny, Veronika E.; Semenoff, Gordon W.
2015-10-01
We consider the AdS bulk dual to an external massive quark in SYM following an arbitrary trajectory on Minkowski background. While a purely outgoing boundary condition on the gluonic field allows one to express the corresponding string worldsheet in a closed form, the setup has curious consequences. In particular, we argue that any quark whose trajectory on flat spacetime approaches that of a light ray in the remote past (as happens e.g. in the case of uniform acceleration) must necessarily be accompanied by an anti-quark. This is puzzling from the field theory standpoint, since one would expect that a sole quark following any timelike trajectory should be allowed. We explain the resolution in terms of boundary and initial conditions. We analyze the configuration in global AdS, which naturally suggests a modification to the boundary conditions allowing for a single accelerated quark without accompanying anti-quark. We contrast this resolution with earlier proposals.
Excitation rates of heavy quarks
Energy Technology Data Exchange (ETDEWEB)
Canal, C.A.G.; Santangelo, E.M.; Ducati, M.B.G.
1985-06-01
We obtain the production rates for c, b, and t quarks in deep-inelastic neutrino- (antineutrino-) nucleon interactions, in the standard six-quark model with left-handed couplings. The results are obtained with the most recent mixing parameters and we include a comparison between quark parametrizations. The excitations are calculated separately for each flavor, allowing the understanding of the role of threshold effects when considered through different rescaling variables.
Quark matter or new particles?
Michel, F. Curtis
1988-01-01
It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).
Quark matter or new particles?
Michel, F. Curtis
1988-01-01
It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).
Phenomenology of heavy quark systems
Energy Technology Data Exchange (ETDEWEB)
Gilman, F.J.
1987-03-01
The spectroscopy of heavy quark systems is examined with regards to spin independent and spin dependent potentials. It is shown that a qualitative picture exists of the spin-independent forces, and that a semi-quantitative understanding exists for the spin-dependent effects. A brief review is then given of the subject of the decays of hadrons containing heavy quarks, including weak decays at the quark level, and describing corrections to the spectator model. (LEW)
Exotic Signals of Vectorlike Quarks
Energy Technology Data Exchange (ETDEWEB)
Dobrescu, Bogdan A. [Fermilab; Yu, Felix [U. Mainz, PRISMA
2016-12-06
Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, including $t\\bar t + 4\\tau$, $t\\bar b\
Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs
2005-04-01
Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or
Top Quark Current Experimental Status
Juste, A
2006-01-01
Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron.
Quark forces from hadronic spectroscopy.
Pirjol, Dan; Schat, Carlos
2009-04-17
We consider the implications of the most general two-body quark-quark interaction Hamiltonian for the spin-flavor structure of the negative parity L = 1 excited baryons. Assuming the most general two-body quark interaction Hamiltonian, we derive two correlations among the masses and mixing angles of these states, which constrain the mixing angles, and can be used to test for the presence of three-body quark interactions. We find that the pure gluon-exchange model is disfavored by data, independently of any assumptions about hadronic wave functions.
Cold quark matter in compact stars
Energy Technology Data Exchange (ETDEWEB)
Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)
2013-03-25
We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.
Plasmons in Anisotropic Quark-Gluon Plasma
Carrington, Margaret E; Mrowczynski, Stanislaw
2014-01-01
Plasmons of quark-gluon plasma - gluon collective modes - are systematically studied. The plasma is, in general, non-equilibrium but homogeneous. We consider anisotropic momentum distributions of plasma constituents which are obtained from the isotropic one by stretching or squeezing in one direction. This leads to prolate or oblate distributions, respectively. We study all possible degrees of one dimensional deformation from the extremely prolate case, when the momentum distribution is infinitely elongated in one direction, to the extremely oblate distribution, which is infinitely squeezed in the same direction. In between these extremes we discuss arbitrarily prolate, weakly prolate, isotropic, weakly oblate and arbitrarily oblate distributions. For each case, the number of modes is determined using a Nyquist analysis and the complete spectrum of plasmons is found analytically if possible, and numerically when not. Unstable modes are shown to exist in all cases except that of isotropic plasma. We derive con...
The Discovery of the Top Quark
Sinervo, P.K.
1995-12-01
The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.
Quark and Gluon Relaxation in Quark-Gluon Plasmas
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
Quark and Gluon Relaxation in Quark-Gluon Plasmas
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
Light Fermion Finite Mass Effects in Non-relativistic Bound States
Eiras, D; Eiras, Dolors; Soto, Joan
2000-01-01
We present analytic expressions for the vacuum polarization effects due to a light fermion with finite mass in the binding energy and in the wave function at the origin of QED and (weak coupling) QCD non-relativistic bound states. Applications to exotic atoms, \\Upsilon (1s) and t\\bar{t} production near threshold are briefly discussed.
Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory
Kormos, M.; Mussardo, G.; Pozsgay, B.
2010-01-01
We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic
Energy Technology Data Exchange (ETDEWEB)
Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)
2016-03-15
We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv{sub rel} right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv{sub rel} right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv{sub rel} right angle {sub nr} coinciding with the large x expansion of left angle σv{sub rel} right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v{sub rel}, showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)
Cannoni, Mirco
2015-01-01
We find an exact formula for the thermally averaged cross section times the relative velocity $\\langle \\sigma v_{\\text{rel}} \\rangle$ with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at $x=m/T\\gg 1$ directly gives the nonrelativistic limit of $\\langle \\sigma v_{\\text{rel}}\\rangle$ which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section $\\sigma(s)$ in powers of the nonrelativistic relative velocity $v_r$. We show the correct invariant procedure that gives the nonrelativistic average $\\langle \\sigma_{nr} v_r \\rangle_{nr}$ coinciding with the large $x$ expansion of $\\langle \\sigma v_{\\text{rel}}\\rangle$ in the comoving frame. We explicitly formulate flux, cross section, thermal aver...
On the Theory of Resonances in Non-Relativistic QED and Related Models
DEFF Research Database (Denmark)
Abou Salem, Walid K.; Faupin, Jeremy; Froehlich, Juerg;
We study the mathematical theory of quantum resonances in the standard model of non-relativistic QED and in Nelson's model. In particular, we estimate the survival probability of metastable states corresponding to quantum resonances and relate the resonances to poles of an analytic continuation...
Kurkela, Aleksi; Vuorinen, Aleksi
2016-07-22
We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.
Kurkela, Aleksi
2016-01-01
We generalize the state-of-the-art perturbative Equation of State of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to order g^5 in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated using a dimensionally reduced effective theory, while the soft non-zero modes are resummed using the Hard Thermal Loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.
Hard probes (and soft ones) to test the quark-gluon soup
Preuss, Paul
2006-01-01
"We need the hardest probes of all to study the hot, dense state of matter that exists when two heavy nuclei like gold collide with enough energy to temporarily free the quarks and gluons in their constituent protons and neutrons." (3 pages)
Energy Technology Data Exchange (ETDEWEB)
Déliot, Frédéric [IRFU, Saclay; Hadley, Nicholas [Maryland U., College Park; Parke, Stephen [Fermilab; Schwarz, Tom [Michigan U.
2014-10-01
The top quark is the heaviest known elementary particle, and it is often seen as a window to search for new physics processes in particle physics. A large program to study the top-quark properties has been performed both at the Tevatron and LHC colliders by the D0, CDF, ATLAS and CMS experiments. The most recent results are discussed in this article.
Heavy quark spectroscopy at LHCb
INSPIRE-00165164
2015-01-01
The analysis of $3.0 fb^{-1}$ of proton-proton collisions collected with the LHCb detector has yielded a broad range of results in spectroscopy of conventional and exotic hadrons with heavy quark(s) inside. We review the LHCb results which have been obtained over the last year.
Broniowski, Wojciech; Rybczynski, Maciej
2016-01-01
We review the results of the wounded quark model, with a stress on eccentricity observables in small systems. A new element is a presentation of symmetric cumulants for the elliptic and triangular flow correlations, obtained in the wounded-quark approach.
Gluon, Quark and Hadron Masses from a Modified Perturbative QCD
Rigol, M
2000-01-01
The development of a Modified Perturbation Theory for QCD, introduced in previous works, is continued. The gluon propagator is modified as consequence of a soft gluon pairs condensate in the vacuum. The modified Feynman rules for $\\alpha=1$ are shown, and some physical magnitudes calculated with them. The mean value of $G^{2}$, gluon masses and the effective potential are calculated up to the $g^2$ order, improving previous calculations. In connection with the gluon self-energy it follows that the gluonic mass shell becomes tachyonic in the considered approximation. The constituent quarks masses, produced by the influence of the condensate, are also calculated. Results of the order of 1/3 of the nucleon mass, are obtained for the constituent masses of the up and down quarks. In addition, the predicted flavour dependence of the calculated quarks masses turns out to be the appropriate to reproduce the spectrum of the ground states within the various groups of hadronic resonances, through the simple addition of ...
Can sea quark asymmetry shed light on the orbital angular momentum of the proton?
Nocera, Emanuele R
2016-01-01
A striking prediction of several extensions of the constituent quark model, including the unquenched quark model, the pion cloud model and the chiral quark model, is a proportionality relationship between the quark sea asymmetry and the orbital angular momentum of the proton. We investigate to which extent a relationship of this kind is corroborated by the experiment, through a systematic comparison between expectations based on models and predictions obtained from a global analysis of hard-scattering data in perturbative Quantum Chromodynamics. We find that the data allows the angular momentum of the proton to be proportional to its sea asymmetry, though with a rather large range of the optimal values of the proportionality coefficient. Typical values do not enable us to discriminate among expectations based on different models. In order to make our comparison conclusive, the extrapolation uncertainties on the proportionality coefficient should be reduced, hopefully by means of accurate measurements in the r...
Relativistic three-body quark model of light baryons based on hypercentral approach
Aslanzadeh, M.; Rajabi, A. A.
2015-05-01
In this paper, we have treated the light baryons as a relativistic three-body bound system. Inspired by lattice QCD calculations, we treated baryons as a spin-independent three-quark system within a relativistic three-quark model based on the three-particle Klein-Gordon equation. We presented the analytical solution of three-body Klein-Gordon equation with employing the constituent quark model based on a hypercentral approach through which two- and three-body forces are taken into account. Herewith the average energy values of the up, down and strange quarks containing multiplets are reproduced. To describe the hyperfine structure of the baryon, the splittings within the SU(6)-multiplets are produced by the generalized Gürsey Radicati mass formula. The considered SU(6)-invariant potential is popular "Coulomb-plus-linear" potential and the strange and non-strange baryons spectra are in general well reproduced.
On diquark clustering in quark-gluon plasma
Indian Academy of Sciences (India)
A K Sisodiya; V S Bhasin; R S Kaushal
2006-02-01
The possibility that pairs of quarks will form diquark clusters in the regime above deconfinement transition for hadron matter at finite density is revisited. Here we present the results on the diquark-diquark (dq-dq) interaction in the framework of constituent quark model taking account of spin, isospin and color degrees of freedom in the spirit of generalized Pauli principle. By constructing the appropriate spin and color states of the dq-dq clusters we compute the expectation values of the interaction Hamiltonian involving pairwise quark-quark interaction. We find that the effective interaction between two diquark clusters is quite sensitive to different configurations characterized by color and spin states, obtained after the coupling of two diquark states. The value of the coupling parameter for a particular color-spin state, i.e., $\\{\\bar{3}, 1\\}$ is compared to the one obtained earlier by Donoghue and Sateesh, Phys. Rev. D38, 360 (1988) based on the effective 4-theory. This new value of derived for different color-spin dq-dq states, may lead to several important implications in the studies of diquark star and diquark gas.
Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak
2008-10-01
Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose
Clustered Quark Matter Calculation for Strange Quark Matter
Na, Xuesen
2009-01-01
Motivated by the need for a solid state strange quark matter to better explain some observational phenomena, we discussed possibility of color singlet cluster formation in cold strange quark matter by a rough calculation following the excluded volume method proposed by Clark et al (1986) and adopted quark mass density dependent model with cubic scaling. It is found that 70% to 75% of volume and 80% to 90% of baryon number is in clusters at temperature from 10MeV to 50MeV and 1 to 10 times nuclear density.
Evidence for production of single top quarks
Abazov, V.M.; et al., [Unknown; de Jong, S.J.; Demarteau, M.; Houben, P.; van den Berg, P.J.
2008-01-01
We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p (p) over bar collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top-q
Top Quark Properties Measurements in CMS
Yazgan, Efe
Recent top quark properties measurements made with the CMS detector at the LHC are presented. The measurements summarized include spin correlation of top quark pairs, asymmetries, top quark mass, and the underlying event in top quark pair events. The results are compared to the standard model predictions and new physics models.
Top quark properties at ATLAS and CMS
Brock, Ian; The ATLAS collaboration
2016-01-01
Recent results from ATLAS and CMS connected to the properties of the top quark are presented. The talk concentrates on asymmetries connected with top-quark production and the measurement of spin correlations between the top quark and antiquark. A search for CP violation in top-quark-antiquark production is also discussed.
Top quark properties measurements in CMS
Yazgan, E.; CMS Collaboration
2017-07-01
Recent top quark properties measurements made with the CMS detector at the LHC are presented. The measurements summarized include spin correlation of top quark pairs, asymmetries, top quark mass, and the underlying event in top quark pair events. The results are compared to the standard model predictions and new physics models.
Chemical constituents of Asparagus
Directory of Open Access Journals (Sweden)
J S Negi
2010-01-01
Full Text Available Asparagus species (family Liliaceae are medicinal plants of temperate Himalayas. They possess a variety of biological properties, such as being antioxidants, immunostimulants, anti-inflammatory, antihepatotoxic, antibacterial, antioxytocic, and reproductive agents. The article briefly reviews the isolated chemical constituents and the biological activities of the plant species. The structural formula of isolated compounds and their distribution in the species studied are also given.
Radiative leptonic Bc decay in the relativistic independent quark model
Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita
2008-12-01
The radiative leptonic decay Bc-→μ-ν¯μγ is analyzed in its leading order in a relativistic independent quark model based on a confining potential in an equally mixed scalar-vector harmonic form. The branching ratio for this decay in the vanishing lepton mass limit is obtained as Br(Bc→μνμγ)=6.83×10-5, which includes the contributions of the internal bremsstrahlung and structure-dependent diagrams at the level of the quark constituents. The contributions of the bremsstrahlung and the structure-dependent diagrams, as well as their additive interference parts, are compared and found to be of the same order of magnitude. Finally, the predicted photon energy spectrum is observed here to be almost symmetrical about the peak value of the photon energy at Ẽγ≃(MBc)/(4), which may be quite accessible experimentally at LHC in near future.
Color Instabilities in the Quark-Gluon Plasma
Mrowczynski, Stanislaw; Strickland, Michael
2016-01-01
When the quark-gluon plasma (QGP) - a system of deconfined quarks and gluons - is in a nonequilibrium state, it is usually unstable with respect to color collective modes. The instabilities, which are expected to strongly influence dynamics of the QGP produced in relativistic heavy-ion collisions, are extensively discussed under the assumption that the plasma is weakly coupled. We begin by presenting the theoretical approaches to study the QGP, which include: field theory methods based on the Keldysh-Schwinger formalism, classical and kinetic theories, and fluid techniques. The dispersion equations, which give the spectrum of plasma collective excitations, are analyzed in detail. Particular attention is paid to a momentum distribution of plasma constituents which is obtained by deforming an isotropic momentum distribution. Mechanisms of chromoelectric and chromomagnetic instabilities are explained in terms of elementary physics. The Nyquist analysis, which allows one to determine the number of solutions of a ...
Nonperturbative equation of state of quark gluon plasma: Applications
Komarov, E. V.; Simonov, Yu. A.
2008-05-01
The vacuum-driven nonperturbative factors Li for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for μ = 0 including P/ T4, ɛ/ T4, {ɛ-3P}/{T4}. The basic role in the dynamics at T ≲ 3 Tc is played by the factors Li which are approximately equal to the modulus of Polyakov line for quark Lfund and gluon Ladj. The properties of Li are derived from field correlators and compared to lattice data, in particular the Casimir scaling property Ladj=(Lfund) follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for P/ T4, ɛ/ T4, {ɛ-3P}/{T4} are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.
Quark Virtuality and QCD Vacuum Condensates
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; MA Wei-Xing
2004-01-01
@@ Based on the Dyson-Schwinger equations (DSEs) in the ‘rainbow' approximation, we investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, we calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ2u,d = 0.7 GeV2 for u, d quarks, and 2s 1.6 GeV2 for s quark.Our theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions.
Top quark studies at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)
1997-01-01
The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.
Energy Technology Data Exchange (ETDEWEB)
Menzione, A. [INFN Sezione di Pisa (Italy)
1995-10-01
Most of the material presented in this report, comes from contributions to the parallel session PL20 of this conference. We summarise the experimental results of direct production of Top quarks, coming from the CDF and C0 Collaborations at Fermilab, and compare these results to what one expects within current theoretical understanding. Particular attention is given to new results such as all hadronic modes of t{bar t} decay. As far as the mass is concerned, a comparison is made with precision measurements of related quantities, coming from LEP and other experiments. An attempt is made to look at the medium-term future and understand which variables and with what accuracy one can measure them with increased integrated luminosity.
Melting Hadrons, Boiling Quarks
Rafelski, Johann
2015-01-01
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. Finally in two appendices I present previously unpublished reports describing the early prediction of the different forms of hadron matter and of the formation of QGP in relativistic heavy ion collisions, including the initial prediction of strangeness and in particular strange antibaryon signature of QGP.
Melting hadrons, boiling quarks
Energy Technology Data Exchange (ETDEWEB)
Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)
2015-09-15
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP. (orig.)
Thorndike, Edward H.; Poling, Ronald A.
1988-01-01
Recent experimental results on the decay of b-flavored hadrons are reviewed. Substantial progress has been made in the study of exclusive and inclusive B-meson decays, as well as in the theoretical understanding of these processes. The two most prominent developments are the continuing failure to observe evidence of decays of the b quark to a u quark rather than a c quark, and the surprisingly high level of B 0- overlineB0 mi xing which has recently been reported by the ARGUS collaboration. Notwithstanding these results, we conclude that the health of the Standard Model is excellent.
Energy Technology Data Exchange (ETDEWEB)
Wicke, Daniel; /Wuppertal U., Dept. Math.
2009-08-01
The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the
Quasiparticle properties of the quarks of the Nambu-Jona-Lasinio model
Cao, Nan-Wei; Shakin, C. M.; Sun, Wei-Dong
1992-12-01
In spite of the apparent limitations of the model, in recent years there have been many applications of the Nambu-Jona-Lasinio (NJL) model in the study of hadron structure and in the study of the behavior of nuclear matter at finite temperature and density. A number of researchers have studied a generalized SU(3) version of the NJL model. For example, Vogl, Lutz, Klimt, and Weise [Nucl. Phys. A516 469 (1990)] have performed extensive calculations that include a calculation of a scalar form factor of a constituent quark, Fs(q2), and a calculation of a quark sigma term σq. (In their work, the latter quantity is related to the nucleon sigma term σN as in a constituent quark model: σN=3σq.) These calculations are made in what may be termed a sigma-dominance approximation. In the work reported here, we review the important role played by the nucleon sigma term in understanding the behavior of the quark condensate in the presence of matter. We make use of the original SU(2) version of the NJL model to study how various quark properties are modified when we take into account the dressing of the constituent quarks by the pion, the Goldstone boson of the model. We calculate the quark self-energy arising from emission and absorption of a pion and also show how the calculation of the scalar form factor of the quark and σq are modified due to the coupling of the quark to the pion. The correction terms considered here serve to reduce the value of σq by a small amount relative to the value obtained in the simplest version of the sigma dominance model. For example, for a Euclidean momentum cutoff, Λ=1050 MeV, the uncorrected result is σN=54.6 MeV. That value is then reduced to σN=51.5 MeV, if the corrections due to the pion ``dressing'' are included. It is also found that the residue at the quasiparticle pole of the quark propagator Z is about 0.86 when the coupling to the pion field is taken into account.
Energy Technology Data Exchange (ETDEWEB)
Parvan, A.S. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Horia Hulubei National Institute of Physics and Nuclear Engineering, Department of Theoretical Physics, Bucharest (Romania); Moldova Academy of Sciences, Institute of Applied Physics, Chisinau (Moldova, Republic of)
2015-09-15
In the present paper, the Tsallis statistics in the grand canonical ensemble was reconsidered in a general form. The thermodynamic properties of the nonrelativistic ideal gas of hadrons in the grand canonical ensemble was studied numerically and analytically in a finite volume and the thermodynamic limit. It was proved that the Tsallis statistics in the grand canonical ensemble satisfies the requirements of the equilibrium thermodynamics in the thermodynamic limit if the thermodynamic potential is a homogeneous function of the first order with respect to the extensive variables of state of the system and the entropic variable z = 1/(q - 1) is an extensive variable of state. The equivalence of canonical, microcanonical and grand canonical ensembles for the nonrelativistic ideal gas of hadrons was demonstrated. (orig.)
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J
2015-01-01
Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...
Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Kanazawa, Takuya; Yamamoto, Arata
2016-01-01
We apply QCD-inspired techniques to study nonrelativistic N -component degenerate fermions with attractive interactions. By analyzing the singular-value spectrum of the fermion matrix in the Lagrangian, we derive several exact relations that characterize spontaneous symmetry breaking U (1 )×SU (N )→Sp (N ) through bifermion condensates. These are nonrelativistic analogues of the Banks-Casher relation and the Smilga-Stern relation in QCD. Nonlocal order parameters are also introduced and their spectral representations are derived, from which a nontrivial constraint on the phase diagram is obtained. The effective theory of soft collective excitations is derived, and its equivalence to random matrix theory is demonstrated in the ɛ regime. We numerically confirm the above analytical predictions in Monte Carlo simulations.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Holographic quark-gluon plasmas at finite quark density
Energy Technology Data Exchange (ETDEWEB)
Bigazzi, F. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Firenze), Pisa (Italy); INFN, Sezione di Torino (Italy); Cotrone, A. [Dipartimento di Fisica, Universita di Torino (Italy); Mas, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela (Spain); Instituto Galego de Fisica de Altas Enerxias (IGFAE), Santiago de Compostela (Spain); Tarrio, J. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht, 3584 CE, Utrecht (Netherlands); Mayerson, D. [Institute for Theoretical Physics, University of Amsterdam (Netherlands)
2012-07-15
Gravity solutions holographically dual to strongly coupled quark-gluon plasmas with non-zero quark density are reviewed. They are motivated by the urgency of finding novel tools to explore the phase diagram of QCD-like theories at finite chemical potential. After presenting the solutions and their regime of validity, some of their physical properties are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quark-anti-quark potential in N = 4 SYM
Gromov, Nikolay; Levkovich-Maslyuk, Fedor
2016-12-01
We construct a closed system of equations describing the quark-anti-quark potential at any coupling in planar N = 4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion.
Heavy quarks and CP: Moriond 1985
Energy Technology Data Exchange (ETDEWEB)
Bjorken, J.D.
1985-03-01
The presentations at the Fifth Moriond Workshop on Heavy Quarks, Flavor Mixing, and CP Violation (La Plagne, France, January 13-19, 1985) are summarized. The following topics are reviewed. What's New (beyond the top, top quarks, bottom quarks, charm quarks, strange quarks, and others); why is all this being done (strong interactions and hadron structure, and electroweak properties); and what next (facilities and can one see CP violation in the B-anti B system). 64 refs., 10 figs.
Structure of Nonlocal Vacuum Condensate of Quarks
Institute of Scientific and Technical Information of China (English)
周丽娟; 马维兴
2003-01-01
The Dyson-Schwinger formalism is used to derive a fully dressed quark propagator. By use of the derived form of the quark propagator, the structure of non-local quark vacuum condensate is studied, and the values of local quark vacuum condensate as well as quark gluon mixed condensate are calculated. The theoretical predictions are in good agreement with the empirical one used commonly in the literature.
Abdelmadjid Maireche
2017-01-01
The modified theories of noncommutative quantum mechanics have engrossed much attention in the last decade, especially its application to the fundamental three equations: Schrödinger, Klein-Gordon and Dirac equations. In this contextual exploration, we further investigate for modified quadratic Yukawa potential plus Mie-type potential (MIQYM) in the framework of modified nonrelativistic Schrödinger equation (MSE) using generalization of Bopp’s shift method and standard perturbation theory ins...
Vortex solutions in axial or chiral coupled non-relativistic spinor- Chern-Simons theory
Németh, Z A
1997-01-01
The interaction of a spin 1/2 particle (described by the non-relativistic "Dirac" equation of Lévy-Leblond) with Chern-Simons gauge fields is studied. It is shown, that similarly to the four dimensional spinor models, there is a consistent possibility of coupling them also by axial or chiral type currents. Static self dual vortex solutions together with a vortex-lattice are found with the new couplings.
Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED
Amour, L
2010-01-01
We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.
Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state
Amour, Laurent
2011-01-01
We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.
Quantization of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L; Leal, Lorenzo
2005-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model comprises open-strings interacting through a Kalb-Ramond field in four dimensions. It is shown that a consistent geometric-representation can be built using a scheme of ``surfaces and lines of Faraday'', provided that the coupling constant (the ``charge'' of the string) is quantized.
Energy shift of interacting non-relativistic fermions in noncommutative space
Directory of Open Access Journals (Sweden)
A. Jahan
2005-06-01
Full Text Available A local interaction in noncommutative space modifies to a non-local one. For an assembly of particles interacting through the contact potential, formalism of the quantum field theory makes it possible to take into account the effect of modification of the potential on the energy of the system. In this paper we calculate the energy shift of an assembly of non-relativistic fermions, interacting through the contact potential in the presence of the two-dimensional noncommutativity.
Condensation for non-relativistic matter in Hořava–Lifshitz gravity
Directory of Open Access Journals (Sweden)
Jiliang Jing
2015-10-01
Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.
Energy Technology Data Exchange (ETDEWEB)
Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)
2014-11-15
Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.
Isotropic Landau levels of relativistic and non-relativistic fermions in 3D flat space
Li, Yi; Wu, Congjun
2012-02-01
The usual Landau level quantization, as demonstrated in the 2D quantum Hall effect, is crucially based on the planar structure. In this talk, we explore its 3D counterpart possessing the full 3D rotational symmetry as well as the time reversal symmetry. We construct the Landau level Hamiltonians in 3 and higher dimensional flat space for both relativistic and non-relativistic fermions. The 3D cases with integer fillings are Z2 topological insulators. The non-relativistic version describes spin-1/2 fermions coupling to the Aharonov-Casher SU(2) gauge field. This system exhibits flat Landau levels in which the orbital angular momentum and the spin are coupled with a fixed helicity. Each filled Landau level contributes one 2D helical Dirac Fermi surface at an open boundary, which demonstrates the Z2 topological nature. A natural generalization to Dirac fermions is found as a square root problem of the above non-relativistic version, which can also be viewed as the Dirac equation defined on the phase space. All these Landau level problems can be generalized to arbitrary high dimensions systematically. [4pt] [1] Yi Li and Congjun Wu, arXiv:1103.5422.[0pt] [2] Yi Li, Ken Intriligator, Yue Yu and Congjun Wu, arXiv:1108.5650.
Dumé, Belle
2003-01-01
"Physicists working at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the US say that they have come closer than ever before to creating a quark-gluon plasma" (0.5 page)
Quark Model and multiquark system
da Silva, Cristiane Oldoni
2010-01-01
The discovery of many particles, especially in the 50's, when the firsts accelerators appeared, caused the searching for a model that would describe in a simple form the whole of known particles. The Quark Model, based in the mathematical structures of group theory, provided in the beginning of the 60's a simplified description of hadronic matter already known, proposing that three particles, called quarks, would originate all the observed hadrons. This model was able to preview the existence of particles that were later detected, confirming its consistency. Extensions of the Quark Model were made in the beginning of the 70's, focusing in describing observed particles that were excited states of the fundamental particles and others that presented new quantum numbers (flavors). Recently, exotic states as tetraquarks and pentaquarks types, also called multiquarks systems, previewed by the model, were observed, what renewed the interest in the way as quarks are confined inside the hadrons. In this article we pre...
Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alitti, J.; Álvarez, G.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Bendich, J.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Chevalier, L.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.; Cutts, D.; Dahl, O. I.; de, K.; Demarteau, M.; Demina, R.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S. P.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Dixon, R.; Draper, P.; Drinkard, J.; Ducros, Y.; Dugad, S. R.; Durston-Johnson, S.; Edmunds, D.; Efimov, A. O.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Yu.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Franzini, P.; Fredriksen, S.; Fuess, S.; Galjaev, A. N.; Gallas, E.; Gao, C. S.; Gao, S.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glaubman, M.; Glebov, V.; Glenn, S.; Glicenstein, J. F.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gomez, B.; Goncharov, P. I.; Gordon, H.; Goss, L. T.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Griffin, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guida, J. A.; Guida, J. M.; Guryn, W.; Gurzhiev, S. N.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hatcher, R.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernandez-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Igarashi, S.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Johnstad, H.; Jonckheere, A.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kang, J. S.; Kehoe, R.; Kelly, M.; Kernan, A.; Kerth, L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klochkov, B. I.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lanou, R. E.; Lebrat, J.-F.; Lee-Franzini, J.; Leflat, A.; Li, H.; Li, J.; Li, Y. K.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Mandrichenko, I. V.; Mangeot, Ph.; Mani, S.; Mansoulié, B.; Mao, H. S.; Margulies, S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Marx, M.; May, B.; Mayorov, A. A.; McCarthy, R.; McKibben, T.; McKinley, J.; Melanson, H. L.; de Mello Neto, J. R.; Merritt, K. W.; Miettinen, H.; Milder, A.; Milner, C.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mohammadi-Baarmand, M.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mudan, M.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Neis, E.; Nemethy, P.; NešiĆ, D.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, C. H.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peryshkin, A.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Pluquet, A.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pušeljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rao, M. V.; Rapidis, P. A.; Rasmussen, L.; Read, A. L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Roldan, J. M.; Rubinov, P.; Ruchti, R.; Rusin, S.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schmid, D.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stocker, F.; Stoianova, D. A.; Stoker, D.; Streets, K.; Strovink, M.; Taketani, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Taylor, T. L.; Teiger, J.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Virador, P. R.; Vititoe, D.; Volkov, A. A.; von Goeler, E.; Vorobiev, A. P.; Wahl, H. D.; Wang, J.; Wang, L. Z.; Warchol, J.; Wayne, M.; Weerts, H.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J. A.; Wilcox, J.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Wolf, Z.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhang, Y.; Zhou, Y. H.; Zhu, Q.; Zhu, Y. S.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zinchenko, A.; Zylberstejn, A.
1995-04-01
The D0 Collaboration reports on a search for the standard model top quark in pp¯ collisions at s = 1.8 TeV at the Fermilab Tevatron with an integrated luminosity of approximately 50 pb-1. We have searched for tt¯ production in the dilepton and single-lepton decay channels with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2×10-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measured its mass to be 199+19-21 (stat) +/-22 (syst) GeV/c2 and its production cross section to be 6.4+/-2.2 pb.
Solid Bare Strange Quark Stars
Xu, R X
2003-01-01
The reason, we need three terms of `strange', `bare', and `solid' before quark stars, is presented concisely though some fundamental issues are not certain. Observations favoring these stars are introduced.
Third-order QCD corrections to heavy quark pair production near threshold
Energy Technology Data Exchange (ETDEWEB)
Schuller, Kurt
2008-11-07
The measurement of the top quark mass is an important task at the future International Linear Collider. The most promising process is the top quark pair production in the threshold region. In this region the top quarks behave non-relativistically and a perturbative treatment using effective field theories is possible. Current second order theoretical predictions in a fixed order approach show an uncertainty which is bigger than the expected experimental errors. Therefore, an improvement of the cross section calculation is desirable. There are two ways to incorporate higher order effects, one is to calculate the full next order in the fixed order approach, another possibility is to resum large logarithms. In this work, the fixed order calculation has been extended to the third order in perturbation theory for the QCD corrections. The result is a strongly improved scale behavior and a better understanding of heavy quarkonium systems. The Green function result is given in a semi-analytic form. The energy levels and wave functions for heavy quarkonium states have been calculated from the poles of the Green function and are presented for arbitrary quantum number n. The results have been implemented in a Mathematica program which makes the data easily accessible. Once some missing matching coefficients are calculated, and a complete electroweak calculation is available, the results of this work can be used to improve the precision of the top quark mass measurement to an uncertainty of less than 50 MeV. An inclusion of initial state radiation and beam effects are essential for a realistic observable. In the future, the results obtained could be used for a third order resummation of large logarithms. Further applications are also the extraction of the bottom quark mass with sum rules. (orig.)
Top Quark Physics: Future Measurements
Energy Technology Data Exchange (ETDEWEB)
Jaros, John A
2003-05-09
We discuss the study of the top quark at future experiments and machines. Top's large mass makes it a unique probe of physics at the natural electroweak scale. We emphasize measurements of the top quark's mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.
Stability of Quark Star Models
Azam, M.; Mardan, S. A.; Rehman, M. A.
2016-05-01
In this paper, we investigate the stability of quark stars with four different types of inner matter configurations; isotropic, charged isotropic, anisotropic and charged anisotropic by using the concept of cracking. For this purpose, we have applied local density perturbations technique to the hydrostatic equilibrium equation as well as on physical parameters involved in the model. We conclude that quark stars become potentially unstable when inner matter configuration is changed and electromagnetic field is applied.
Pourquoi les quarks restent invisibles
Gross, David J
2005-01-01
At the beginning of the seventies, physicists discovered a new scale in the matter structure. Protons and neutrons, components of the atomic nucleus, seemed to be constituted by even more elementar particles: the quarks. But while they seemed to move freely inside the protons, it was impossible to isolate one of these quarks. The Nobel Prize for physics rewarded the explanation of this phenomenon (3 pages)
Heavy quark production and spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Appel, J.A.
1993-11-01
This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.
The strange-quark distribution
Energy Technology Data Exchange (ETDEWEB)
Barone, V. [Turin Univ. (Italy). Ist. di Fisica Teorica; Genovese, M. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Nikolaev, N.N. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik]|[L.D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); Predazzi, E. [Turin Univ. (Italy). Ist. di Fisica Teorica; Zakharov, B.G. [L.D. Landau Institute for Theoretical Physics, Moscow (Russian Federation)
1996-03-01
We discuss the latest CCFR determination of the strange sea density of the proton. We comment on the differences with a previous, leading-order, result and point out the relevance of quark mass effects and current non-conservation effects. By taking them into account it is possible to solve the residual discrepancy with another determination of the strange-quark distribution. Two important sources of uncertainties are also analysed. (orig.). With 4 figs.
Deconfinement and virtual quark loops
Çelik, T.; Engels, J.; Satz, H.
1983-12-01
We calculate paer Monte Carlo evaluation on an 83 × 3 lattice the energy density ɛG of the gluon sector of QCD, including virtual quark loops up to the fourth power in the hopping parameter expansion. For light quarks of one flavour, we observe at T/ΛL 95 +/- 10 a rapid variation of ɛG in T, accompanied by strong fluctuations from iteration to iteration. as clear signal of the deconfinement transition.
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)
2015-09-15
A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.
Unquenched QCD with Light Quarks
Duncan, A; Yoo, J
2003-01-01
We present recent results in unquenched lattice QCD with two degenerate light sea quarks using the truncated determinant approximation (TDA). In the TDA the infrared modes contributing to the quark determinant are computed exactly up to some cutoff in quark off-shellness (typically 2$\\Lambda_{QCD}$). This approach allows simulations to be performed at much lighter quark masses than possible with conventional hybrid MonteCarlo techniques. Results for the static energy and topological charge distributions are presented using a large ensemble generated on very coarse (6$^4$) but physically large lattices. Preliminary results are also reported for the static energy and meson spectrum on 10$^3$x20 lattices (lattice scale $a^{-1}$=1.15 GeV) at quark masses corresponding to pions of mass $\\leq$ 200 MeV. Using multiboson simulation to compute the ultraviolet part of the quark determinant the TDA approach becomes an exact with essentially no increase in computational effort. Some preliminary results using this fully u...
Polarization in heavy quark decays
Energy Technology Data Exchange (ETDEWEB)
Alimujiang, K.
2006-07-01
In this thesis I concentrate on the angular correlations in top quark decays and their next.to.leading order (NLO) QCD corrections. I also discuss the leading.order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: t({up_arrow}) {yields} b + H{sup +}. I provide closed form formulae for the O({alpha}{sub s}) radiative corrections to the unpolarized and the polar correlation functions for m{sub b}{ne}0 and m{sub b}=0. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: t({up_arrow}){yields}X{sub b}+l{sup +}+{nu}{sub l}. I present closed form expressions for the O({alpha}{sub s}) radiative corrections to the unpolarized part and the polar and azimuthal correlations for m{sub b}{ne}0 and m{sub b}=0. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jung, A. W. [Fermilab
2014-09-24
Recent measurements of top-quark properties at the LHC and the Tevatron are presented. Most recent measurements of the top quark mass have been carried out by CMS using $19.7/$fb of $\\sqrt{s} = 8$ TeV data including the study of the dependence on event kinematics. ATLAS uses the full Run I data at $\\sqrt{s} = 7$ TeV for a "3D" measurement that significantly reduces systematic uncertainties. D0 employs the full Run II data using the matrix element method to measure the top quark mass with significantly reduced systematic uncertainties. Many different measurements of the top quark exist to date and the most precise ones per decay channel per experiment have been combined into the first world combination with a relative precision of 0.44%. Latest updates of measurements of production asymmetries include the measurement of the \\ttbar production asymmetry by D0 employing the full Run II data set, by CMS and ATLAS (including the polarization of the top quark) employing both the full data set at $\\sqrt{s} = 7$ TeV. CMS uses the full $\\sqrt{s} = 8$ TeV data to measure the top quark polarization in single top production, the ratio ${\\cal R}$ of the branching fractions ${\\cal B}(t \\rightarrow Wb) / {\\cal B}(t \\rightarrow Wq)$ and to search for flavor changing neutral currents. The results from all these measurements agree well with their respective Standard Model expectation.
Three-dimensional super Yang-Mills with compressible quark matter
Faedo, Antón F; Mateos, David; Pantelidou, Christiana; Tarrío, Javier
2015-01-01
We construct the gravity dual of three-dimensional, $SU(N_{\\textrm{c}})$ super Yang-Mills theory with $N_{\\textrm{f}}$ flavors of dynamical quarks in the presence of a non-zero quark density $N_{\\textrm{q}}$. The supergravity solutions include the backreaction of $N_{\\textrm{c}}$ color D2-branes and $N_{\\textrm{f}}$ flavor D6-branes with $N_{\\textrm{q}}$ units of electric flux on their worldvolume. For massless quarks, the solutions depend non-trivially only on the dimensionless combination $\\rho=N_{\\textrm{c}}^2 N_{\\textrm{q}} / \\lambda^2 N_{\\textrm{f}}^4$, with $\\lambda=g_{\\textrm{YM}}^2 N_{\\textrm{c}}$ the 't Hooft coupling, and describe renormalization group flows between the super Yang-Mills theory in the ultraviolet and a non-relativistic theory in the infrared. The latter is dual to a hyperscaling-violating, Lifshitz-like geometry with dynamical and hyperscaling-violating exponents $z=5$ and $\\theta=1$, respectively. If $\\rho \\ll 1$ then at intermediate energies there is also an approximate AdS$_4$ reg...
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Das, M.
1983-12-01
The effect of confinement on the magnetic moment of a quark has been studied in a simple independent-quark model based on the Dirac equation with a power-law potential. The magnetic moments so obtained for the constituent quarks, which are found to be significantly different from their corresponding Dirac moments, are used in predicting the magnetic moments of baryons in the nucleon octet as well as those in the charmed and b-flavored sectors. We not only get an improved result for the proton magnetic moment, but the calculation for the rest of the nucleon octet also turns out to be in reasonable agreement with experiment. The overall predictions for the charmed and b-flavored baryons are also comparable with other model predictions.
Measurement of top quark properties at CMS
Piedra Gomez, Jonatan
2015-01-01
Measurements of top quark properties in top quark decays are presented, using data collected by the CMS experiment during the years 2011 and 2012. The polarization of W bosons in top quark decays is measured. The W boson helicity fractions and angular asymmetries are extracted, and limits on anomalous contributions to the Wtb vertex are determined. Furthermore, searches for flavor changing neutral currents in top quark decays are presented. The flavor contents in top quark pair events are measured using the fraction of top quarks decaying into a W boson and a b quark relative to all top quark decays, $R=BR({\\rm t} \\to {\\rm Wb})/BR({\\rm t} \\to {\\rm Wq})$, and the result is used to determine the CKM matrix element $V_{\\rm tb}$ as well as the width of the top quark resonance.
Höing, Rebekka Sophie; Haller, Johannes
2015-01-01
A search for pairs of vector-like T' quark produced in proton-proton collisions recorded with the CMS experiment at p s = 8 TeV is presented. The search is optimized for decays of T' quarks to top quarks and Higgs bosons, where the top quarks and Higgs bosons decay hadronically. The T'-quark mass range between 500 and 1000 GeV is investigated. The top quarks and Higgs bosons produced in decays of the heavy T' quarks acquire large Lorentz boosts. The signatures of these particles in the detector can overlap and are therefore dicult to resolve using classical jet reconstruction methods. Large-radius jets are reconstructed and subjets formed from their constituents. The decay products of particles with large Lorentz boosts are highly collimated and can all be found within a single one of these large-radius jets. Top jets containing hadronic top-quark decays are identied with a top-tagging algorithm that analyzes the jet substructure. A b-tagging algorithm is applied to the reconstructed subjets in order to nd bo...
Determination of Deuteron Dipole Moment in Nuclear Quark-Like Model
Institute of Scientific and Technical Information of China (English)
N.Ghahramany; E.Yazdankish
2013-01-01
Using the quark-like model,we have improved the existing deviation between theoretical and experimental values of magnetic dipole moment of deuteron.Based upon Pauli Exclusion Principle,the constituent quarks form a ground state for l =0.The expectation value of the deuteron magnetic dipole moment operator is determined to be equal to 0.861 5978μN in better agreement with the measured value of 0.8574376μN as compared to the shell model calculations.
Wachter, H
2007-01-01
This is the second part of a paper about a q-deformed analog of non-relativistic Schroedinger theory. It applies the general ideas of part I and tries to give a description of one-particle states on q-deformed quantum spaces like the braided line or the q-deformed Euclidean space in three dimensions. Hamiltonian operators for the free q-deformed particle in one as well as three dimensions are introduced. Plane waves as solutions to the corresponding Schroedinger equations are considered. Their completeness and orthonormality relations are written down. Expectation values of position and momentum observables are taken with respect to one-particle states and their time-dependence is discussed. A potential is added to the free-particle Hamiltonians and q-analogs of the Ehrenfest theorem are derived from the Heisenberg equations of motion. The conservation of probability is proved.
AUTHOR|(SzGeCERN)655637
The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...
Quasiparticle properties of the quarks of the Nambu--Jona-Lasinio model
Energy Technology Data Exchange (ETDEWEB)
Cao, N.; Shakin, C.M.; Sun, W. (Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States))
1992-12-01
In spite of the apparent limitations of the model, in recent years there have been many applications of the Nambu--Jona-Lasinio (NJL) model in the study of hadron structure and in the study of the behavior of nuclear matter at finite temperature and density. A number of researchers have studied a generalized SU(3) version of the NJL model. For example, Vogl, Lutz, Klimt, and Weise (Nucl. Phys. A516 469 (1990)) have performed extensive calculations that include a calculation of a scalar form factor of a constituent quark, {ital F}{sub {ital s}}({ital q}{sup 2}), and a calculation of a quark sigma term {sigma}{sub {ital q}}. (In their work, the latter quantity is related to the nucleon sigma term {sigma}{sub {ital N}} as in a constituent quark model: {sigma}{sub {ital N}}=3{sigma}{sub {ital q}}.) These calculations are made in what may be termed a sigma-dominance approximation. In the work reported here, we review the important role played by the nucleon sigma term in understanding the behavior of the quark condensate in the presence of matter. We make use of the original SU(2) version of the NJL model to study how various quark properties are modified when we take into account the dressing of the constituent quarks by the pion, the Goldstone boson of the model. We calculate the quark self-energy arising from emission and absorption of a pion and also show how the calculation of the scalar form factor of the quark and {sigma}{sub {ital q}} are modified due to the coupling of the quark to the pion. The correction terms considered here serve to reduce the value of {sigma}{sub {ital q}} by a small amount relative to the value obtained in the simplest version of the sigma dominance model. For example, for a Euclidean momentum cutoff, {Lambda}=1050 MeV, the uncorrected result is {sigma}{sub {ital N}}=54.6 MeV.
Strange Quark Matter Status and Prospects
Sandweiss, J.
2004-01-01
The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.
Selected top quark mass measurements at CMS
Bouvier, Elvire
2016-01-01
Selected measurements of the top quark mass are presented, obtained from CMS data collected in proton-proton collisions at the LHC at center-of-mass energies of 7, 8, and 13 TeV. ``Standard'' techniques are employed in each decay channel of top quark pair events and their results are combined. The mass of the top quark is also measured using several ``alternative'' methods, including measurements from shapes of top quark decay distributions in single top quark and top quark pair events as well as pole mass measurements.
Propagators and Masses of Light Quarks
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; ZHU Ji-Zhen; MA Wei-Xing
2003-01-01
Based on Dyson-Schwinger equations in "rainbow" approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.
Propagators and Masses of Light Quarks
Institute of Scientific and Technical Information of China (English)
ZHOULi-Juan; ZHUJi-Zhen; MAWei-Xing
2003-01-01
Based on Dyson-Schwinger equations in “rainbow” approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.
Finite Nuclei in the Quark-Meson Coupling (QMC) Model
Stone, J R; Reinhard, P G; Thomas, A W
2016-01-01
We report the first use of the effective QMC energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the non-relativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having clear physical basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist however multiple Skyrme paramater sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF parameter set is not open to such variation, chosen set being applied, without adjustment, to both the propert...
Constituents of Doubly Periodic Instantons
Ford, C; Ford, Chris; Pawlowski, Jan M.
2002-01-01
Using the Nahm transform we investigate doubly periodic charge one SU(2) instantons with radial symmetry. Two special points where the Nahm zero modes have softer singularities are identified as constituent locations. To support this picture, the action density is computed analytically and numerically within a two dimensional slice containing the two constituents. For particular values of the parameters the torus can be cut in half yielding two copies of a twisted charge 1/2 instanton. Such objects comprise a single constituent.
Leptons, quarks, and their antiparticles from a phase-space perspective
Energy Technology Data Exchange (ETDEWEB)
Zenczykowski, Piotr, E-mail: piotr.zenczykowski@ifj.edu.pl [Division of Theoretical Physics, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland)
2011-07-08
It is argued that antiparticles may be interpreted in macroscopic terms without explicitly using the concept of time and its reversal. The appropriate framework is that of nonrelativistic phase space. It is recalled that a quantum version of this approach leads also, alongside the appearance of antiparticles, to the emergence of 'internal' quantum numbers identifiable with weak isospin, weak hypercharge and colour, and to the derivation of the Gell-Mann-Nishijima relation, while simultaneously offering a preonless interpretation of the Harari-Shupe rishon model. Furthermore, it is shown that - under the assumption of the additivity of canonical momenta - the approach entails the emergence of string-like structures resembling mesons and baryons, thus providing a different starting point for the discussion of quark unobservability.
Duality between quark-quark and quark-antiquark pairing in 1+1 dimensional large N models
Thies, M
2003-01-01
We identify a canonical transformation which maps the chiral Gross-Neveu model onto a recently proposed Cooper pair model. Baryon number and axial charge are interchanged. The same physics can be described either as chiral symmetry breaking (quark-antiquark pairing) or as superconductivity (quark-quark pairing).
Search for non-relativistic magnetic monopoles with IceCube
Energy Technology Data Exchange (ETDEWEB)
Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Toscano, S.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ackermann, M.; Benabderrahmane, M.L.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X.; Evenson, P.A.; Gaisser, T.K.; Gonzalez, J.G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S. [University of Delaware, Bartol Research Institute and Department of Physics and Astronomy, Newark, DE (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Eichmann, B.; Fedynitch, A.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [T.U. Munich, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Oskar Klein Centre and Department of Physics, Stockholm (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others
2014-07-15
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km{sup 3} of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10{sup -27} to 10{sup -21} cm{sup 2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10{sup -22} (10{sup -24}) cm{sup 2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ{sub 90} ≤ 10{sup -18} (10{sup -17}) cm{sup -2} s{sup -1} sr{sup -1} at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. (orig.)
Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model
Institute of Scientific and Technical Information of China (English)
宗红石; 吴小华; 侯丰尧; 赵恩广
2004-01-01
A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.
Operator Product Expansion and Conservation Laws in Non-Relativistic Conformal Field Theories
Golkar, Siavash
2014-01-01
We explore the consequences of conformal symmetry for the operator product expansions in nonrelativistic field theories. Similar to the relativistic case, the OPE coefficients of descendants are related to that of the primary. However, unlike relativistic CFTs the 3-point function of primaries is not completely specified by conformal symmetry. Here, we show that the 3-point function between operators with nonzero particle number, where (at least) one operator has the lowest dimension allowed by unitarity, is determined up to a numerical coefficient. We also look at the structure of the family tree of primaries with zero particle number and discuss the presence of conservation laws in this sector.
Testing the Higgs sector directly in the non-relativistic domain
Zhang, Zhentao
2016-01-01
Directly measuring the Higgs self-coupling is of great importance for testing the Brout-Englert-Higgs mechanism in the Standard Model. As a scattering that contains the direct information from the Higgs self-coupling, we investigate the process $\\mu^-\\mu^+\\rightarrow HH$ in the threshold region. We calculate the one-loop corrections to the cross section and consider the non-perturbative contribution from the Higgs self-interactions in the final state. It is found that the scattering in the non-relativistic domain could be an especial process to testing the Higgs sector directly.
Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom
Energy Technology Data Exchange (ETDEWEB)
Chen Panying, E-mail: pychen@umd.ed [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ji Xiangdong [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute of Particle Physics and Cosmology, Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Xu Yang [Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Zhang Yue [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China)
2010-04-26
We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, alpha{sub em}{sup 3}/18pi, which might be measurable in future atomic experiments.
A relativistic non-relativistic Goldstone theorem: gapped Goldstones at finite charge density
Nicolis, Alberto
2012-01-01
We adapt the Goldstone theorem to study spontaneous symmetry breaking in relativistic theories at finite charge density. It is customary to treat systems at finite density via non-relativistic Hamiltonians. Here we highlight the importance of the underlying relativistic dynamics. This leads to seemingly new results whenever the charge in question is spontaneously broken and does not commute with other broken charges. These would normally be associated with gapless Goldstone excitations. We find that, in fact, their currents interpolate gapped excitations. We derive exact non-perturbative expressions for their gaps, in terms of the chemical potential and of the symmetry algebra.
Nonrelativistic gauged quantum mechanics: From Kaluza–Klein compactifications to Bargmann structures
Energy Technology Data Exchange (ETDEWEB)
Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co
2015-08-14
Highlights: • Null compactification techniques are used to derive the nonrelativistic gauged Schrödinger equation. • Compactification of both Klein–Gordon and Maxwell theories are revisited. • Connections with Kaluza–Klein-like Bargmann frameworks are established. - Abstract: The Schrödinger equation for a spinless particle in presence of an external electromagnetic field is derived by means of null compactification of five dimensional massless Klein–Gordon theory and five–dimensional Maxwell electrodynamics. Connections with Kaluza–Klein-like Bargmann frameworks are established.
Geometric Representation of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L
2013-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model consists of open-strings interacting through a Kalb-Ramond field in four dimensions. The geometric representation proposed uses lines and surfaces that can be interpreted as an extension of the picture of Faraday's lines of classical electromagnetism. This representation results to be consistent, provided the coupling constant (the "charge" of the string) is quantized. The Schr\\"odinger equation in this representation is also presented.
Nonrelativistic limit of the abelianized ABJM model and the ADS/CMT correspondence
Lopez-Arcos, Cristhiam; Murugan, Jeff; Nastase, Horatiu
2016-05-01
We consider the nonrelativistic limit of the abelian reduction of the massive ABJM model proposed in [1], obtaining a supersymmetric version of the Jackiw-Pi model. The system exhibits an mathcal{N}=2 Super-Schrödinger symmetry with the Jackiw-Pi vortices emerging as BPS solutions. We find that this (2 + 1)-dimensional abelian field theory is dual to a certain (3+1)-dimensional gravity theory that differs somewhat from previously considered abelian condensed matter stand-ins for the ABJM model. We close by commenting on progress in the top-down realization of the AdS/CMT correspondence in a critical string theory.
Maxwell-Chern-Simons Models: Their Symmetries, Exact Solutions and Non-relativistic Limits
Directory of Open Access Journals (Sweden)
J. Niederle
2010-01-01
Full Text Available Two Maxwell-Chern-Simons (MCS models in the (1 + 3-dimensional space-space are discussed and families of their exact solutions are found. In contrast to the Carroll-Field-Jackiw (CFE model [2] these systems are relativistically invariant and include the CFJ model as a particular sector.Using the InNonNu-Wigner contraction a Galilei-invariant non-relativistic limit of the systems is found, which makes possible to find a Galilean formulation of the CFJ model.
Lorcé, Cédric
2014-01-01
The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.
Gluon propagator with dynamical quarks
Papavassiliou, Joannis
2014-01-01
We review recent work on the effects of quark loops on the gluon propagator in the Landau gauge, relying mainly on the Schwinger-Dyson equations that describe the two-point sector of QCD. Particularly important in this context is the detailed study of how the standard gluon mass generation mechanism, which is responsible for the infrared finiteness of the quenched gluon propagator, is affected by the inclusions of dynamical quarks. This issue is especially relevant and timely, given the qualitative picture that emerges from recent unquenched lattice simulations. Our results demonstrate clearly that the gluon mass generation persists, and that the corresponding saturation points of the unquenched gluon propagators are progressively suppressed, as the number of quark flavors increases.
Energy Density in Quark-Gluon Plasma
Institute of Scientific and Technical Information of China (English)
马忠彪; 苗洪; 高崇寿
2003-01-01
We study the energy density in quark-gluon plasma. At the very high temperature, the quark matter is a hot and dense matter in the colour deconfinement condition, and quarks can coalescent diquarks. Energy density of this system is worked out and compared with the energy density in the other two kinds of situations. Possible energy density is about eo ≈ 2.4 GeV/fm3 according to our estimation for quark matter including diquarks,
Xu, J L
2002-01-01
We assume that the u quarks and the d quarks constitute a body center cubic quark lattice in the vacuum. Using energy band theory, we deduce an excited quark spectrum (from the quark lattice). Using the accompanying excitation concept, we deduce a baryon spectrum (including S, C, b, I, Q, and mass) from the quark spectrum. With a phenomenological binding energy formula, we deduce a meson spectrum (including S, C, b, I, Q, and mass) from the quark spectrum. The baryon and meson spectra agree well with experimental results. The BCC Quark Model predicts many new quarks (u'(3), d'(6)), baryons ($\\Lambda^0(4280)$, $\\Lambda_{C}^{+}(6600)$, $\\Lambda_{b}^{0}(9960))$, and mesons (K(3597), D(5996), B(9504), $\\eta(5926)$, $\\Upsilon(17805)$, T(1603) with I=2). The quarks u'(3) and d'(6) and the meson T(1603) have already been discovered.
Equilibration in quark gluon plasma
Das, S. K.; Alam, J.; Mohanty, P.
2011-07-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.
Equilibration in Quark Gluon Plasma
Das, Santosh K.; Alam, Jan-e; Mohanty, Payal
2009-01-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more real...
Equilibration in Quark Gluon Plasma
Das, Santosh K; Mohanty, Payal
2009-01-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.
2016-01-01
This is the fifth volume in the series on the subject of quark-gluon plasma, a unique phase created in heavy-ion collisions at high energy. It contains review articles by the world experts on various aspects of quark-gluon plasma taking into account the advances driven by the latest experimental data collected at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). The articles are pedagogical and comprehensive which can be helpful for both new researchers entering the field as well as the experienced physicists working on the subject.
Searches for monopoles and quarks
Energy Technology Data Exchange (ETDEWEB)
Matis, H.S.
1986-07-01
Within the last year, several sensitive searches for monopoles and quarks have been done. Recent experiments at the Tevatron and at the CERN p anti p collider have detected no evidence for free fractional charge. An experiment in a iron refinery, which searched for GUT monopoles trapped in iron ore with two SQUID detectors, found no monopole candidate. However, an experiment looking for monopoles in cosmic rays has measured an interesting event which could be interpreted as a monopole. Several detectors are being built to achieve significant improvements in sensitivity for detection of quarks and monopoles. 21 refs.
Beneke, M; Schuller, K
2013-01-01
This is the first in a series of papers, in which we compute the third-order QCD corrections to top-antitop production near threshold in e+ e- collisions. The present paper provides a detailed outline of the strategy of computation in the framework of non-relativistic effective theory and the threshold expansion, applicable more generally to heavy-quark pair production near threshold. It summarizes matching coefficients and potentials relevant to the next-to-next-to-next-to-leading order and ends with the master formula for the computation of the third-order Green function. The master formula is evaluated in part II of the series.
Why quarks cannot be fundamental particles
Kalman, C S
2005-01-01
Many reasons why quarks should be considered composite particles are found in the book Preons by D'Souza and Kalman. One reason not found in the book is that all the quarks except for the u quark decay. The electron and the electron neutrino do not decay. A model of fundamental particles based upon the weak charge is presented.
SPONTANEOUS CP VIOLATION AND QUARK MASS AMBIGUITIES.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ,M.
2004-09-21
I explore the regions of quark masses where CP will be spontaneously broken in the strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the concept of a single massless quark is ill defined.
LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.
Energy Technology Data Exchange (ETDEWEB)
EJIRI,S.
2007-11-20
We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.
Greenlee, H B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Böhnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystrický, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christiansen, T; Christofek, L; Claes, D; Clement, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cothenet, A; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cristetiu, M; Cutts, D; Da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Ginther, G; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Abazov, V M; Greenwood, Z D; Gregores, E M; Gris, P; Grivaz, J F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kuleshov, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lahrichi, N; Landsberg, G L; Lazoflores, J; Le Bihan, A C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lueking, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melanson, H L; Melnitchouk, A S; Mendes, A; Merkin, M; Merritt, K W; Meyer, A; Michaut, M; Miettinen, H; Mitrevski, J; Mokhov, N V; Molina, J; Mondal, N K; Moore, R W; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Oshima, N; Oteroy-Garzon, G J; Padley, P; Parashar, N; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Pérez, E; Petroff, P; Petteni, M; Phaf, L; Piegaia, R; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pope, B G; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Reay, N W; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Sidwell, R A; Simák, V; Sirotenko, V I; Skubic, P L; Slattery, P F; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vlimant, J R; Von Törne, E; Vreeswijk, M; Vu-Anh, T; Wahl, H D; Walker, R; Wang, L; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xu, Q; Xuan, N; Yacoob, S Y; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G
2005-01-01
In this talk I will present recent preliminary results from the D0 experiment from Tevatron Run II ($p\\bar p$ collisions at $\\sqrt{s} = 1.96$ TeV). The results presented in this talk include top quark pair production cross section, top quark mass, and upper limits on single top quark production.
In-medium kaon and antikaon properties in the quark-meson coupling model
Tsushima, K; Thomas, A W; Wright, S V
1998-01-01
The properties of the kaon, $K$, and antikaon, $\\kbar$, in nuclear medium are studied in the quark-meson coupling (QMC) model. Employing a constituent quark-antiquark (MIT bag model) picture, their excitation energies in a nuclear medium at zero momentum are calculated within mean field approximation. The scalar, and the vector mesons are assumed to couple directly to the nonstrange quarks and antiquarks in the $K$ and $\\kbar$ mesons. It is demonstrated that the $\\rho$ meson induces different mean field potentials for each member of the isodoublets, $K$ and $\\kbar$, when they are embedded in asymmetric nuclear matter. Furthermore, it is also shown that this $\\rho$ meson potential is repulsive for the $K^-$ meson in matter with a neutron excess, and renders $K^-$ condensation less likely to occur.
Three-dimensional super Yang-Mills with compressible quark matter
Energy Technology Data Exchange (ETDEWEB)
Faedo, Antón F. [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Kundu, Arnab [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Mateos, David [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, ES-08010, Barcelona (Spain); Pantelidou, Christiana [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Tarrío, Javier [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Université Libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique, Campus de la Plaine, CP 231, B-1050, Brussels (Belgium)
2016-03-22
We construct the gravity dual of three-dimensional, SU(N{sub /tiny} {sub c}) super Yang-Mills theory with N{sub /tiny} {sub f} flavors of dynamical quarks in the presence of a non-zero quark density N{sub /tiny} {sub q}. The supergravity solutions include the backreaction of N{sub /tiny} {sub c} color D2-branes and N{sub /tiny} {sub f} flavor D6-branes with N{sub /tiny} {sub q} units of electric flux on their worldvolume. For massless quarks, the solutions depend non-trivially only on the dimensionless combination ρ=N{sub /tiny} {sub c}{sup 2}N{sub /tiny} {sub q}/λ{sup 2}N{sub /tiny} {sub f}{sup 4}, with λ=g{sub /tiny} {sub YM}{sup 2}N{sub /tiny} {sub c} the ’t Hooft coupling, and describe renormalization group flows between the super Yang-Mills theory in the ultraviolet and a non-relativistic theory in the infrared. The latter is dual to a hyperscaling-violating, Lifshitz-like geometry with dynamical and hyperscaling-violating exponents z=5 and θ=1, respectively. If ρ≪1 then at intermediate energies there is also an approximate AdS{sub 4} region, dual to a conformal Chern-Simons-Matter theory, in which the flow exhibits quasi-conformal dynamics. At zero temperature we compute the chemical potential and the equation of state and extract the speed of sound. At low temperature we compute the entropy density and extract the number of low-energy degrees of freedom. For quarks of non-zero mass M{sub /tiny} {sub q} the physics depends non-trivially on ρ and M{sub /tiny} {sub q}N{sub /tiny} {sub c}/λN{sub /tiny} {sub f}.
Velocity operator and velocity field for spinning particles in (non-relativistic) quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Milan (Italy)]|[Campinas State Univ., SP (Brazil). Dept. of Applied Math.; Salesi, G. [Catania Univ. (Italy). Dip. di Fisica
1995-06-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, the paper introduces - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, a new (non-relativistic) velocity operator for a spin 1/2 particle is also proposed. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of- mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework, i.e. in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which the constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current.
Harada, Koji; Yoshimoto, Issei
2012-01-01
Low-energy effective field theory describing a nonrelativistic three-body system is analyzed in the Wilsonian renormalization group (RG) method. No effective auxiliary field (dimeron) that corresponds to two-body propagation is introduced. The Efimov effect is expected in the case of an infinite two-body scattering length, and is believed to be related to the limit cycle behavior in the three-body renormalization group equations (RGEs). If the one-loop property of the RGEs for the nonrelativistic system without the dimeron field, which is essential in deriving RGEs in the two-body sector, persists in the three-body sector, it appears to prevent the emergence of limit cycle behavior. We explain how the multi-loop diagrams contribute in the three-body sector without contradicting the one-loop property of the RGEs, and derive the correct RGEs, which lead to the limit cycle behavior. The Efimov parameter, $s_{0}$, is obtained within a few percent error in the leading orders. We also remark on the correct use of t...
Search for non-relativistic Magnetic Monopoles with IceCube
Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Meli, A; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M
2014-01-01
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting $1\\,\\mathrm{km}^3$ of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of $10^{-27}\\,\\mathrm{cm^2}$ to $10^{-21}\\,\\mathrm{cm^2}$. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal ...
Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Pop, Ana-Roxana; Spitkovsky, Anatoly
2015-01-01
We use kinetic hybrid simulations (kinetic ions-fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.
Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles
Chenu, Aurelia; Branczyk, Agata; Sipe, John
2016-05-01
We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.
Exotic-Hadron Signature by Constituent-Counting Rule in Perturbative QCD
Chang, Wen-Chen; Kumano, S; Sekihara, T
2016-01-01
We explain a method to find internal quark configurations of exotic hadron candidates by using the constituent counting rule. The counting rule was theoretically predicted in perturbative QCD for hard exclusive hadron reactions, and it has been tested in experiments for stable hadrons including compound systems of hadrons such as the deuteron, $^3$H, and $^3$He. It indicates that the cross section scales as $d\\sigma /dt \\sim 1/s^{n-2}$, where $s$ is the center-of-mass energy squared and $n$ is the total number of constituents. We apply this method for finding internal configurations of exotic hadron candidates, especially $\\Lambda (1405)$. There is a possibility that $\\Lambda (1405)$ could be five-quark state or a $\\bar K N$ molecule, and scaling properties should be different between the ordinary three-quark state or five-quark one. We predict such a difference in $\\pi^- + p \\to K^0 + \\Lambda (1405)$, and it could be experimentally tested, for example, at J-PARC. On the other hand, there are already measurem...
Top quark physics with the CMS experiment
Directory of Open Access Journals (Sweden)
Cuevas Javier
2014-04-01
Full Text Available An overview of recent top quark measurements in proton-proton collisions at √s = 7 and 8 TeV in data collected with the CMS experiment at the LHC, using a data sample collected during the years 2011 and 2012 is presented. Measurements of top quark pair production cross sections in several top quark final states are reported, as well as electroweak production of single top quarks in both t-and tW-channels. The mass of the top quark is estimated by different methods.
Top-Quark Physics Results From LHC
INSPIRE-00214275
2012-01-01
The top-quark is a fundamental element of the physics program at the Large Hadron Collider (LHC). We review the current status of the top-quark measurements performed by ATLAS and CMS experiments in pp collisions at sqrt(s)=7 TeV with a focus on the recent results of the top-quark production rates and the measurements of the mass and other properties of the top-quark. We will also describe the recent searches for physics beyond the Standard Model in the top-quark sector.
Quark sea asymmetry of the nucleon
Mírez, Carlos; Tomio, Lauro; Trevisan, L. A.; Frederico, T.
2010-02-01
The light anti-quark and quark distribution in the proton, as well as the neutron to proton ratio of the structure functions, extracted from experimental data, are well fitted by a statistical model of linear-confined quarks. The parameters of the model are given by a temperature, which is adjusted by the Gottfried sum-rule violation, and two chemical potentials given by the corresponding up ( u) and down ( d) quark normalizations in the nucleon. The quark energy levels are generated by a relativistic linear-confined scalar plus vector potential.
Heavy quark colorimetry of QCD matter
Dokshitzer, Yu L; Dokshitzer, Yu.L.
2001-01-01
We consider propagation of heavy quarks in QCD matter. Because of large quark mass, the radiative quark energy loss appears to be qualitatively different from that of light quarks at all energies of practical importance. Finite quark mass effects lead to an in-medium enhancement of the heavy-to-light D/\\pi ratio at moderately large (5--10 GeV) transverse momenta. For hot QCD matter a large enhancement is expected, whose magnitude and shape are exponentially sensitive to the density of colour charges in the medium.
Triminimal parametrization of quark mixing matrix
He, Xiao-Gang; Li, Shi-Wen; Ma, Bo-Qiang
2008-12-01
Starting from a new zeroth order basis for quark mixing (CKM) matrix based on the quark-lepton complementarity and the tribimaximal pattern of lepton mixing, we derive a triminimal parametrization of a CKM matrix with three small angles and a CP-violating phase as its parameters. This new triminimal parametrization has the merits of fast convergence and simplicity in application. With the quark-lepton complementary relations, we derive relations between the two unified triminimal parametrizations for quark mixing obtained in this work and for lepton mixing obtained by Pakvasa-Rodejohann-Weiler. Parametrization deviating from quark-lepton complementarity is also discussed.
Kim, S. B.
1995-08-01
Top quark production is observed in{bar p}p collisions at{radical}s= 1.8 TeV at the Fermilab Tevatron. The Collider Detector at Fermilab (CDF) and D{O} observe signals consistent with t{bar t} to WWb{bar b}, but inconsistent with the background prediction by 4.8{sigma} (CDF), 4.6a (D{O}). Additional evidence for the top quark Is provided by a peak in the reconstructed mass distribution. The kinematic properties of the excess events are consistent with the top quark decay. They measure the top quark mass to be 176{plus_minus}8(stat.){plus_minus}10(sys.) GeV/c{sup 2} (CDF), 199{sub -21}{sup+19}(stat.){plus_minus}22(sys.) GeV/c{sup 2} (D{O}), and the t{bar t} production cross section to be 6.8{sub -2.4}{sup+3.6}pb (CDF), 6.4{plus_minus}2.2 pb (D{O}).
Hydrodynamics of a quark droplet
DEFF Research Database (Denmark)
Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas
2012-01-01
We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...
Energy Technology Data Exchange (ETDEWEB)
Barberis, Emanuela; /Northeastern U.
2006-05-01
A summary of the results on the measurement of the Top Quark mass and the study of the kinematics of the t{bar t} system at the Tevatron collider is presented here. Results from both the CDF and D0 collaborations are reported.
Lebed, Richard F; Swanson, Eric S
2016-01-01
This review presents an overview of the remarkable progress in the field of heavy-quark exotic hadrons over the past 15 years. It seeks to be pedagogical rather than exhaustive, summarizing both the progress and specific results of experimental discoveries, and the variety of theoretical approaches designed to explain these new states.
2003-01-01
Fitted with new state-of-the-art silicon detectors, NA60 is prepared to study the phase transition from confined hadronic matter to a deconfined (free) quark-gluon plasma, a state of matter which probably existed an instant after the Big Bang.
Heavy Quark Asymmetries at LEP
Halley, A W
1999-01-01
Measurements of b and c quark asymmetries using data collected at LEP 1 are described. The relative merits of each of the individual techniques used is emphasised as is the most profitable way of combining them. Effects of radiative corrections are discussed, together with the impact of these measurements on global electroweak fits used to estimate the expected mass of the Higgs boson.
Quark masses without Yukawa hierarchies
Energy Technology Data Exchange (ETDEWEB)
Fanchiotti, H.; Garcia-Canal, C. [Plata Univ. Nacional, Laboratorio de Fisica Teorica, Dept. de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina); Ponce, W.A. [Antioquia Univ., Instituto de Fisica, Colombia La (Argentina)
2005-12-15
A model based on the local gauge group SU(3){sub c}*SU(3){sub L}*U(1){sub X} without particles with exotic electric charges is shown to be able to provide the quark mass spectrum and their mixing, by means of universal see-saw mechanisms, avoiding a hierarchy in the Yukawa coupling constants. (authors)
Dilepton production by dynamical quasiparticles in the strongly interacting quark gluon plasma
Linnyk, O
2010-01-01
The dilepton production by the constituents of the strongly interacting quark-gluon-plasma (sQGP) is addressed. In order to make quantitative predictions at realistically low plasma temperatures (O(T_c)), experimentally relevant low dilepton mass (O(1 GeV)) and strong coupling (alphaS=0.5-1), we take into account not only the higher order pQCD reaction mechanisms, but also the non-perturbative spectral functions (off-shellness) and self-energies of the quarks, anti-quarks and gluons thus going beyond the leading twist. For this purpose, our calculations utilize parametrizations of the non-perturbative propagators for quarks and gluons provided by the dynamical quasi-particle model (DQPM) matched to reproduce lattice data. The DQPM describes QCD properties in terms of single-particle Green's functions (in the sense of a two-particle irreducible approach) and leads to the notion of the constituents of the sQGP being effective quasiparticles, which are massive and have broad spectral functions (due to large inte...
Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian
2009-01-01
Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the
Irving, A C; Michael, C; Sharkey, K J; Wittig, H
2001-01-01
We report on determinations of the low-energy constants alpha5 and alpha8 in the effective chiral Lagrangian at O(p^4), using lattice simulations with N_f=2 flavours of dynamical quarks. Precise knowledge of these constants is required to test the hypothesis whether or not the up-quark is massless. Our results are obtained by studying the quark mass dependence of suitably defined ratios of pseudoscalar meson masses and matrix elements. Although comparisons with an earlier study in the quenched approximation reveal small qualitative differences in the quark mass behaviour, numerical estimates for alpha5 and alpha8 show only a weak dependence on the number of dynamical quark flavours. Our results disfavour the possibility of a massless up-quark, provided that the quark mass dependence in the physical three-flavour case is not fundamentally different from the two-flavour case studied here.
State of matter for quark stars
Lai, X Y
2009-01-01
It depends on the state of matter at supra-nuclear density to model pulsar's structure, which is unfortunately not certain due to the difficulties in physics. In cold quark matter at realistic baryon densities of compact stars (with an average value of $\\sim 2-3\\rho_0$), the interaction between quarks is so strong that they would condensate in position space to form quark-clusters. We argue that quarks in quark stars are grouped in clusters, then we apply two phenomenological models for quark stars, the polytropic model and Lennard-Jones model. Both of the two models have stiffer EoS, and larger maximum mass for quark stars (larger than 2 $M_\\odot$). The gravitational energy releases during the AIQ process could explain the observed energy of three supergiant flares from soft gamma-ray repeaters ($\\sim 10^{47}$ ergs).
The effect of dynamical quark mass on the calculation of a strange quark star's structure
Institute of Scientific and Technical Information of China (English)
Gholam Hossein Bordbar; Babak Ziaei
2012-01-01
We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.
Randall, Lisa
1994-01-01
We present a detailed analysis of the use of heavy quark fragmentation into heavy hadrons for testing the heavy quark effective theory through comparison of the measured fragmentation parameters of the c and b quarks. Our analysis is entirely model independent. We interpret the known perturbative evolution in a way useful for exploiting heavy quark symmetry at low energy. We first show consistency with perturbative QCD scaling for measurements done solely with c quarks. We then apply the perturbative analysis and the heavy quark expansion to relate measurements from ARGUS and LEP. We place bounds on a nonperturbative quark mass suppressed parameter, and compare the values for the b and c quarks. We find consistency with the heavy quark expansion but fairly sizable QCD uncertainties. We also suggest that one might reduce the systematic uncertainty in the result by not extrapolating to low z.
Inclusive Single-Spin Asymmetries, Quark-Photon, and Quark-Quark Correlations
Burkardt, Matthias
2016-01-01
We consider quark-photon correlations that have been proposed as a source for single-spin asymmetries in inclusive deep-inelastic scattering. A new sum rule for these correlators is derived and its phenomenological consequences are discussed. The results are interpreted within the context of an intuitive 'electrodynamic lensing' picture.
Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter
Energy Technology Data Exchange (ETDEWEB)
Matevosyan, Hrayr [Louisiana State Univ., Baton Rouge, LA (United States)
2007-08-01
Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green’s functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme
Isospin properties of quark matter from a 3-flavor NJL model
Liu, He; Xu, Jun; Chen, Lie-Wen; Sun, Kai-Jia
2016-09-01
We have studied the properties of hot and dense quark matter based on the 3-flavor Nambu-Jona-Lasinio (NJL) model as well as its Polyakov-loop extension (pNJL) with scalar-isovector and vector-isovector couplings. Provided a considerable large isospin asymmetry or isospin chemical potential, isospin splittings of constituent mass, chiral phase transition boundary, and critical point for u and d quarks can be observed for positive isovector coupling constants but are suppressed for negative ones. The quark matter symmetry energy decreases with the increasing isovector coupling constant, and is mostly enhanced in the pNJL model than in the NJL model. A positive scalar-isovector coupling constant is more likely to lead to an unstable isospin asymmetric quark matter. The isovector coupling has been further found to affect particle fractions as well as the equation of state in hybrid stars. Possible effects on the isospin properties of quark matter have also been discussed if the strangeness sector is further broken among the flavor symmetry.
Maximal Wavelength of Confined Quarks and Gluons and Properties of Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /YITP, Stony Brook /Durham U.; Shrock, Robert; /YITP, Stony Brook
2008-08-01
Because quarks and gluons are confined within hadrons, they have a maximum wavelength of order the confinement scale. Propagators, normally calculated for free quarks and gluons using Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the operator {bar q}q evaluated in the background of the fields of the other hadronic constituents, in contrast to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The effects of instantons are also modified. We discuss the implications of the maximum quark and gluon wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number N{sub f} of massless fermions.
Dielectric laser acceleration of non-relativistic electrons at a photonic structure
Energy Technology Data Exchange (ETDEWEB)
Breuer, John
2013-08-29
This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in
Results on top-quark physics and top-quark-like signatures by CMS
Chabert, Eric Christian
2017-01-01
This report reviews the results obtained by the CMS Collaboration on top quark physics, focusing on the latest ones based on p--p collisions provided by the LHC at $\\sqrt{s}$=13 TeV during Run II. It covers measurements of single-top, top quark pairs and associated productions as well as measurements of top quark properties.Finally several beyond the standard model searches involving top quark in the final states are presented such as searches for supersymmetry in the third generation, heavy resonances decaying into a top quark pair, or dark matter produced in association to a single-top or a top quark pair.
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Discovery of single top quark production
Gillberg, Dag
2011-01-01
The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking—the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of singl...
Institute of Scientific and Technical Information of China (English)
SUN Le-Xue; WANG Rui-Qin; SONG Jun; SHAO Feng-Lan
2012-01-01
The quark combination mechanism of hadron production is applied to nucleus-nucleus collisions at the CERN Super Proton Synchrotron (SPS) and the BNL Alternating Gradient Synchrotron (AGS).The rapidity spectra of identified hadrons and their spectrum widths are studied.The data of π-,K±,φ,A,(A),Ξ- and Ξ+ at 80 and 40 A GeV,and in particular at 30 and 20 A GeV where the onset of deconfinement is suggested to happen,are consistently described by the quark combination model.However,at AGS 11.6 A GeV below the onset,the π±,K± and A spectra cannot be simultaneously explained,indicating the disappearance of the intrinsic correlation of their production in the constituent quark level.The collision-energy dependence of the rapidity spectrum widths of the constituent quarks,and the strangeness of the hot and dense quark matter produced in heavy ion collisions,are obtained and discussed.
A Study of Quark Fragmentation Using Kaons Produced in Association with Prompt $D_s^±/D^±$ Mesons
Energy Technology Data Exchange (ETDEWEB)
Singh, Niharika Ranjan [Purdue Univ., West Lafayette, IN (United States)
2012-01-01
Quarks are considered to be the fundamental constituents of hadronic matter, but they have never been observed as free particles. When quarks are produced at high energy colliders, they quickly form bound colorless states, which then decay to produce the particles observed in experiments. The process by which an initially free quark combines with other quarks to form a hadronic particle is called quark fragmentation and has been described using phenomenological models since quarks were first proposed. Since then, several models have been developed to describe the quark fragmentation phenomenon, and these have been tuned to reproduce many average properties of hadrons produced in high energy collisions. In this dissertation, we describe an analysis that probes the properties of particles produced in association with a hadron containing a charm quark that provides a way, for the first time, to study what is thought of as the second particle produced in the process of heavy quar k fragmentation. Data from proton anti-proton collisions was used to carry out this research, which were collected with the CDF II detector at the Fermilab Tevatron and corresponds to 360/pb^{-1} of integrated luminosity. We reconstruct $D_s^±$ and $D^±$ mesons, which contain charm quarks, and identify the kaons produced in association with them. The kinematic properties of these kaons are compared with predictions of the fragmentation models implemented in the PYTHIA and HERWIG event generators. We find that kaon production in association with $D_s^±$ mesons is enhanced at levels that are in agreement with the fragmentation models but observe differences in production rates of kaons that are produced later in the fragmentation process.
Construction of the ground state in nonrelativistic QED by continuous flows
Bach, Volker; Könenberg, Martin
For a nonrelativistic hydrogen atom minimally coupled to the quantized radiation field we construct the ground state projection P by a continuous approximation scheme as an alternative to the iteration scheme recently used by Fröhlich, Pizzo, and the first author [V. Bach, J. Fröhlich, A. Pizzo, Infrared-finite algorithms in QED: The groundstate of an atom interacting with the quantized radiation field, Comm. Math. Phys. (2006), doi: 10.1007/s00220-005-1478-3]. That is, we construct P=limP as the limit of a continuously differentiable family ()t⩾0 of ground state projections of infrared regularized Hamiltonians H. Using the ODE solved by this family of projections, we show that the norm ‖P‖ of their derivative is integrable in t which in turn yields the convergence of P by the fundamental theorem of calculus.
Caprioli, Damiano
2014-01-01
We use large hybrid (kinetic ions-fluid electrons) simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of energetic particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient (at quasi-parallel shocks), we find that the magnetic field develops transverse components and is significantly amplified in the pre-shock medium. The total amplification factor is larger than 10 for shocks with Mach number $M=100$, and scales with the square root of $M$. We find that in the shock precursor the energy spectral density of excited magnetic turbulence is proportional to spectral energy distribution of accelerated particles at corresponding resonant momenta, in good agreement with the predictions of quasilinear theory of diffusive shock acceleration. We discuss the role of Bell's instability, which is predicted and found to grow faster than resonant instability in shocks with $M\\gtrsim 30$. Ahead of these strong shocks we distinguis...
GenASiS: General Astrophysical Simulation System. II. Nonrelativistic Hydrodynamics
Cardall, Christian Y; Endeve, Eirik; Mezzacappa, Anthony
2012-01-01
In this paper, the second in a series, we document the algorithms and solvers for compressible nonrelativistic hydrodynamics implemented in GenASiS (General Astrophysical Simulation System)---a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae. In the Mathematics division of GenASiS we introduce Solvers, which includes finite-volume updates for generic hyperbolic BalanceEquations and ordinary differential equation integration Steps. We also introduce the Physics division of GenASiS; this extends the Manifolds division of Mathematics into physical Spaces, defines StressEnergies, and combines these into Universes. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the manifest superiority of the HLLC over the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's abili...
Path integral polymer propagator of relativistic and non-relativistic particles
Morales-Técotl, Hugo A; Ruelas, Juan C
2016-01-01
A recent proposal to connect the loop quantization with the spin foam model for cosmology via the path integral is hereby adapted to the case of mechanical systems within the framework of the so called polymer quantum mechanics. The mechanical models we consider are deparametrized and thus the group averaging technique is used to deal with the corresponding constraints. The transition amplitudes are written in a vertex expansion form used in the spin foam models, where here a vertex is actually a jump in position. Polymer Propagators previously obtained by spectral methods for a nonrelativistic polymer particle, both free and in a box, are regained with this method. Remarkably, the approach is also shown to yield the polymer propagator of the relativistic particle. This reduces to the standard form in the continuum limit for which the length scale parameter of the polymer quantization is taken to be small. Some possible future developments are commented upon.
Ultra high energy cosmic rays from non-relativistic quasar outflows
Wang, Xiawei
2016-01-01
It has been suggested that non-relativistic outflows from quasars can naturally account for the missing component of the extragalactic $\\gamma$-ray background and explain the cumulative neutrino background through pion decay in collisions between protons accelerated by the outflow shock and interstellar protons. Here we show that the same quasar outflows are capable of accelerating protons to energies of $\\sim 10^{20}$ eV during the early phase of their propagation. The overall quasar population is expected to produce a cumulative ultra high energy cosmic ray flux of $\\sim10^{-7}\\,\\rm GeV\\,cm^{-2}s^{-1}sr^{-1}$ at $E_{\\rm CR}\\gtrsim10^{18}$ eV. The spectral shape and amplitude is consistent with recent observations for outflow parameters constrained to fit secondary $\\gamma$-rays and neutrinos without any additional parameter tuning. This indicates that quasar outflows simultaneously account for all three messengers at their observed levels.
On the Infrared Problem for the Dressed Non-Relativistic Electron in a Magnetic Field
Amour, Laurent; Grebert, Benoit; Guillot, Jean-Claude
2008-01-01
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamiltonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E'(P_3)=0$, where $P_3 \\mapsto E'(P_3)$ is the derivative of the map $P_3 \\mapsto E(P_3) = \\inf \\sigma (H(P_3))$. If $E'(P_3) \
Energy Technology Data Exchange (ETDEWEB)
Butenschoen, Mathias; Kniehl, Bernd A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2009-09-15
We calculate the cross section of inclusive direct J/{psi} photoproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics, for the first time including the full relativistic corrections due to the intermediate {sup 1}S{sub 0}{sup [8]}, {sup 3}S{sub 1}{sup [8]}, and {sup 3}P{sub J}{sup [8]} color-octet states. A comparison of our results to recent H1 data suggests that the color octet mechanism is indeed realized in J/{psi} photoproduction, although the predictivity of our results still suffers from uncertainties in the color-octet long-distance matrix elements. (orig.)
Cotner, Eric
2016-09-01
Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations but may be approximated in the nonrelativistic regime with a coupled Schrödinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.
Failure of relativistic codes in the non-relativistic limit: the role of Brillouin configurations
Indelicato, P J; Desclaux, J P
2004-01-01
In the present letter we solve a long standing problem with relativistic calculations done with the widely used Multi-Configuration Dirac-Fock Method. We show, using Relativistic Many-Body Perturbation Theory (RMBPT), how even for relatively high-$Z$, relaxation or correlation causes the non-relativistic limit of states of different total angular momentum but identical orbital angular momentum to have different energies. We identify the role of single excitations obeying to Brillouin's theorem in this problem. We show that with large scale calculations in which this problem is properly treated, we can reproduce very accurately recent high-precision measurements in F-like Ar, and turn then into precise test of QED
Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models
Institute of Scientific and Technical Information of China (English)
2001-01-01
Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.
Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit
Ishikawa, R.; Bae, J.; Mizuno, K.
2001-04-01
Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.
Semi-classical locality for the non-relativistic path integral in configuration space
Gomes, Henrique
2015-01-01
In an accompanying paper, we have put forward an interpretation of quantum mechanics grounded on a non-relativistic Lagrangian 3+1 formalism of a closed Universe, existing on timeless configuration space. However, not much was said there about the role of locality, which was not assumed. In this paper, I describe how subsystems existing in (spatial) regions with fixed boundary conditions can be represented as submanifolds of the complete configuration space. I show that if the action functional can be put in the form of Riemannian distance element, then dynamical independence of the subsystem implies that the respective submanifolds are totally geodesic. When two regions are mutually independent the semi-classical path integral kernel factorizes, showing cluster decomposition. To exemplify these constructions I then construct a specific gravitational system with two propagating physical degrees of freedom and no refoliation-invariance. Finally, considering the path integral in this 3+1 context, I implement an...
Nonrelativistic limit of the abelianized ABJM model and the ADS/CMT correspondence
Lopez-Arcos, Cristhiam; Nastase, Horatiu
2015-01-01
We consider the nonrelativistic limit of the abelian reduction of the massive ABJM model proposed in \\cite{Mohammed:2012gi}, obtaining a supersymmetric version of the Jackiw-Pi model. The system exhibits an ${\\cal N}=2$ Super-Schr\\"odinger symmetry with the Jackiw-Pi vortices emerging as BPS solutions. We find that this $(2+1)$-dimensional abelian field theory is dual to a certain (3+1)-dimensional gravity theory that differs somewhat from previously considered abelian condensed matter stand-ins for the ABJM model. We close by commenting on progress in the top-down realization of the AdS/CMT correspondence in a critical string theory.
Static spherically symmetric solutions in the IR limit of nonrelativistic quantum gravity
Harada, Tomohiro; Tsukamoto, Naoki
2009-01-01
We investigate static spherically symmetric vacuum solutions in the IR limit of projectable nonrelativistic quantum gravity, including the renormalisable quantum gravity recently proposed by Ho\\v{r}ava. It is found that the projectability condition plays an important role. Without the cosmological constant, the spacetime is uniquely given by the Schwarzschild solution. With the cosmological constant, the spacetime is uniquely given by the Kottler (Schwarzschild-(anti) de Sitter) solution for the entirely vacuum spacetime. However, the ``ultra-static'' metric of spherical and hyperbolic spaces can be also admissible for the locally empty region, for the positive and negative cosmological constants, respectively, if its nonvanishing contribution to the global Hamiltonian constraint can be compensated by that from the nonempty or nonstatic region. This implies that static spherically symmetric entirely vacuum solutions would not admit the freedom to reproduce the observed flat rotation curves of galaxies. On the...
Virial Theorem for Non-relativistic Quantum Fields in D Spatial Dimensions
Lin, Chris L
2015-01-01
The virial theorem for non-relativistic complex fields in $D$ spatial dimensions and with arbitrary many-body potential is derived, using path-integral methods and scaling arguments recently developed to analyze quantum anomalies in lower-dimensional systems. The potential appearance of a Jacobian $J$ due to a change of variables in the path-integral expression for the partition function of the system is pointed out, although in order to make contact with the literature most of the analysis deals with the $J=1$ case. The virial theorem is recast into a form that displays the effect of microscopic scales on the thermodynamics of the system. From the point of view of this paper the case usually considered, $J=1$, is not natural, and the generalization to the case $J\
Non-relativistic Schroedinger theory on q-deformed quantum spaces III, Scattering theory
Wachter, H
2007-01-01
This is the third part of a paper about non-relativistic Schroedinger theory on q-deformed quantum spaces like the braided line or the three-dimensional q-deformed Euclidean space. Propagators for the free q-deformed particle are derived and their basic properties are discussed. A time-dependent formulation of scattering is proposed. In this respect, q-analogs of the Lippmann-Schwinger equation are given. Expressions for their iterative solutions are written down. It is shown how to calculate S-matrices and transition probabilities. Furthermore, attention is focused on the question what becomes of unitarity of S-matrices in a q-deformed setting. The examinations are concluded by a discussion of the interaction picture and its relation to scattering processes.
Electron acceleration in a nonrelativistic shock with very high Alfv\\'en Mach number
Matsumoto, Y; Hoshino, M
2013-01-01
Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfv\\'en Mach-number ($M_A \\sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-hi...
Weak electric and magnetic form factors for semileptonic baryon decays in an independent-quark model
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.; Das, M.
1985-10-01
Weak electric and magnetic form factors for semileptonic baryon decays are calculated in a relativistic quark model based on the Dirac equation with the independent-quark confining potential of the form (1+..gamma../sup 0/)V(r). The values obtained for (g/sub 2//g/sub 1/), for various decay modes in a model with V(r) = a'r/sup 2/, are roughly of the same order as those predicted in the MIT bag model. However in a similar model with V(r) = (a/sup nu+1/r/sup ..nu../+V/sub 0/), the (g/sub 2//g/sub 1/) values agree with the nonrelativistic results of Donoghue and Holstein. Incorporating phenomenologically the effect of nonzero g/sub 2/ in the ratio (g/sub 1//f/sub 1/), we have estimated the values for (f/sub 2//f/sub 1/) for various semileptonic transitions. It is observed that SU(3)-symmetry breaking does not generate significant departures in (f/sub 2//f/sub 1/) values from the corresponding Cabibbo values.
Effect of a Small Current Quark Mass on Bag Constant
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; FENG Hong-Tao; SUN Wei-Min; DING Xiao-Ping; PING Jia-Lun
2004-01-01
A method for obtaining the small current quark mass effect on the dressed quark propagator within the Dyson-Schwinger approach is developed. From this the small current quark mass dependence of the bag constant is evaluated. It is found that the bag constant decreases with the increasing current quark mass and the contribution of the current quark mass cannot be dropped.
Effect of a Small Current Quark Mass on Bag Constant
Institute of Scientific and Technical Information of China (English)
ZONGHong-Shi; FENGHong-Tao; SUNWei-Min; DINGXiao-Ping; PINGJia-Lun
2004-01-01
A method for obtaining the small current quark mass effect on the dressed quark propagator within the Dyson Schwinger approach is developed. From this the small current quark mass dependence of the bag constant is evaluated. It is found that the bag constant decreases with the increasing current quark mass and the contribution of the current quark mass cannot be dropped.
Quark Confinement and Force Unification
Directory of Open Access Journals (Sweden)
Stone R. A. Jr.
2010-04-01
Full Text Available String theory had to adopt a bi-scale approach in order to produce the weakness of gravity. Taking a bi-scale approach to particle physics along with a spin connection produces 1 the measured proton radius, 2 a resolution of the multiplicity of measured weak angle values 3 a correct theoretical value for the Z 0 4 a reason that h is a constant and 5 a “neutral current” source. The source of the “neutral current” provides 6 an alternate solution to quark confinement, 7 produces an effective r like potential, and 8 gives a reason for the observed but unexplained Regge trajectory like J M 2 behavior seen in quark composite particle spin families.
Quark-lepton complementarity revisited
Zhang, Xinyi; Ma, Bo-Qiang
2012-01-01
We reexamine the quark-lepton complementarity (QLC) in nine angle-phase parametrizations with the latest result for a large lepton mixing angle $\\vartheta_{13}$ from the T2K, MINOS and Double Chooz experiments. We find that the original form of the QLC two relations only hold in the standard parametrization (P1) and only one of the relations holds in P2, P3, P4, P5, P6 and P9 parametrizations separately. We also work out the corresponding reparametrization-invariant form of the relations and examine the resulting expressions with the data. The results can be used as check of the validity of the QLC relations, as well as new perspective into the issue of seeking the connection between quarks and leptons.
Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin
1999-01-01
We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.